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The probability density function of the acoustic field amplitude scattered by the seafloor was mea-

sured in a rocky environment off the coast of Norway using a synthetic aperture sonar system, and

is reported here in terms of the probability of false alarm. Interpretation of the measurements

focused on finding the appropriate class of statistical models (single versus two-component mixture

models), and on appropriate models within these two classes. It was found that two-component

mixture models performed better than single models. The two mixture models that performed the

best (and had a basis in the physics of scattering) were a mixture between two K distributions, and

a mixture between a Rayleigh and generalized Pareto distribution. Bayes’ theorem was used to esti-

mate the probability density function of the mixture model parameters. It was found that the K-K

mixture exhibits a significant correlation between its parameters. The mixture between the Rayleigh

and generalized Pareto distributions also had a significant parameter correlation, but also contained

multiple modes. It is concluded that the mixture between two K distributions is the most applicable to

this dataset. https://doi.org/10.1121/1.5089892

[BTH] Pages: 761–774

I. INTRODUCTION

The probability density function (pdf) of the amplitude

of the acoustic field scattered by a rough, heterogeneous sea-

floor is closely tied to the properties seafloor environment. In

acoustic target detection systems, it is intimately tied to sys-

tem performance through the probability of false alarm, or

pfa. For envelope-threshold detectors, the pdf is related to

the pfa by 1 � F, where F is the cumulative distribution

function (cdf) associated with the pdf. If the real and imagi-

nary parts of the complex scattered pressure have a zero

mean Gaussian pdf with equal standard deviations, then the

pdf of the magnitude of the complex pressure (hereafter

called the envelope pdf) will be Rayleigh, which is the case

if the central limit theorem applies to the scattering process

(Strutt, 1919).

Many measurements of the envelope statistics of sea-

floor scattering have resulted in envelope pdfs where high

amplitude events compared to the mean occur more fre-

quently than the Rayleigh case, termed a heavy-tailed pdf

(Becker, 2004; Chotiros et al., 1985; Crowther, 1980;

Dorfman and Dyer, 1999; Gavrilov and Parnum, 2010; Gelb

et al., 2010; Gensane, 1989; Le Chenadec et al., 2007;

Lyons and Abraham, 1999; Lyons et al., 2010; Lyons et al.,
2009; Stewart et al., 1994; Trevorrow, 2004). Several mod-

els have been used for heavy-tailed clutter statistics, includ-

ing the Weibull (WB) (Schleher, 1976), log-normal (LN)

(Chotiros et al., 1985), K (Ward, 1981), and generalized

Pareto (GP) (La Cour, 2004) distributions. A few of these

distributions have a basis in the physics of scattering, e.g.,

the K-distribution shape parameter is related to the effective

number of scatterers within a resolution cell (Abraham and

Lyons, 2002).

Measurements of the envelope distribution from syn-

thetic aperture sonar (SAS) images of glacially eroded rock

outcrops off the coast of Norway are presented in this work

in terms of the pfa.1 These outcrops were selected because

there is a paucity of scattering measurements from very

rough surfaces, and glacially quarried surfaces have very

large root mean square roughness (Olson et al., 2016). For

parts of the rock outcrop consisting of fractured surfaces, the

image intensity changes rapidly over a variety of scales, and

results in a heavy-tailed distribution. One of these outcrops

was studied by Gauss et al. (2015) in terms of moments of

the scattered field and bathymetry; heavy-tailed statistics

were also observed.

These measurements were analyzed in two ways, (1) via

model-data comparisons in terms of the Kolmogorov-

Smirnov and Anderson-Darling tests and (2) via analysis of

the probability distribution of model parameters obtained

using Bayes’ theorem. It was observed that the pfa measure-

ments are poorly fit by all of the models listed above.

Mixture models, which consist of a linear combination of

distributions, have also been used to model heavy tailed scat-

tering (Abraham et al., 2011; Gallaudet and de Moustier,

2003; Lee and Stanton, 2014; Stanton and Chu, 2010), and

we found that a good fit to the pfa is obtained using a two-

component mixture. Our choice of a mixture model is moti-

vated by the morphology of the outcrops studied in in this

paper, which is presented in Sec. II. While the statistical testsa)Electronic mail: dolson@nps.edu
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give a good indication of model-data fit, the posterior proba-

bility distribution contains global information regarding the

parameter space, including multiple modes and correlations

between parameters.

Our long-term goal for this dataset is to link parameters

of the environment to statistical parameters via a physical

scattering model, and to perform geoacoustic inversion.

Interpretation of the results will be performed with this ori-

entation, although no geoacoustic inversion is performed

here. We found that consideration of the connections

between statistical parameters and environmental parameters

is useful for determination of an appropriate statistical distri-

bution. Relating model parameters to environmental parame-

ters requires a physical scattering model that has been

demonstrated to be accurate, e.g., through numerical solution

of the governing integral equations or scale model experi-

ments. For the extremely rough surfaces studied in this

work, such a model does not exist to date, and is an opportu-

nity for future work.

In Sec. II, an overview of the environment and acousti-

cal measurements is given. The measured pfa from four out-

crops is presented and compared to single component

models in Sec. III. In Sec. IV the mixture model is presented,

along with details of parameter estimation and inversion

methods. We then present results and discuss them in Sec.

V, with conclusions given in Sec. VI.

II. ENVIRONMENTAL AND ACOUSTICAL DATA

The roughness characteristics of the rock outcrops stud-

ied in this work were formed through glacial quarrying and

abrasion. Quarrying results in large-scale roughness charac-

terized by steps, and small-scale roughness on each step.

Abrasion results in very low amplitude roughness at small

scales, and large-scale smooth undulations due to the flow

pattern of the glacier. Only acoustic measurements from

quarried portions of the rock outcrops are examined in this

work. More details on these classes of roughness, including

roughness measurements of outcrops near the acoustic

experiment using stereo photography can be found in Olson

et al. (2016), and references therein. These roughness char-

acteristics are common in high-latitude environments where

glacial erosion is the dominant force on the geomorphology.

Synthetic aperture sonar (SAS) images are the source of

acoustic data in this work. SAS is a data collection and proc-

essing technique in which an acoustic transmitter and

receiver array move along a track (which in this case was

planned to be linear) and was traversed by an autonomous

underwater vehicle (AUV). At regular intervals in space,

pulses (linear frequency modulated in this case) are transmit-

ted, and the scattered field collected along the receiver array.

A diagram of the imaging geometry used in this study is

shown in Fig. 6 of Hansen et al. (2011).

The measured data collected from multiple pings are

combined into an array whose length is greater than the

physical array, known as a synthetic array or aperture

(Hawkins, 1996). The synthetic aperture length is limited by

the beamwidth of each receiver element, and thus the along-

track resolution of the resulting image is proportional to the

receiver element length. In practice, the sampling is nonuni-

form and the track is not straight due to oceanographic con-

ditions. To correct for this, an inertial navigation system

along with the displaced phase center (DPC) technique

(Bellettini and Pinto, 2002) are used to estimate vehicle

motion.

A matched filter is applied to each recorded ping in the

frequency domain, and an additional apodization function is

applied before transforming back to the time domain. The

frequency apodization in this case was a Kaiser function

(Oppenheim et al., 1999, p. 474), resulting in a peak side-

lobe level of approximately �46 dB. After the matched filter,

a synthetic aperture is formed for a given pixel by using a

delay and sum beamformer for all the receive elements that

have the pixel within the half power beamwidth. In practice,

only 75% of this maximum aperture length is used to form

the image, which reduces the effect of phase errors caused

by residual unknown vehicle position at the expense of reso-

lution. Random phase errors along the synthetic aperture

have been shown to produce increased side-lobe levels

(Cook and Brown, 2009). During the beamforming stage, a

Hamming window (Oppenheim et al., 1999, p. 468) is

applied as a function of azimuth to control sidelobes in the

along-track dimension, resulting in a peak sidelobe level of

approximately �40 dB. The theoretical peak sidelobe levels

in the along-track dimension functions are typically not

achieved due to residual navigation errors.

The sonar used to collect data was the HISAS 1030,

mounted on the HUGIN 1000 HUS AUV (both manufac-

tured by Kongsberg Maritime) (Fossum et al., 2008). The

platform travelled at approximately 10 m altitude off of the

sea floor. The system had a center frequency of 100 kHz,

and a nominal bandwidth of 30 kHz. Typically, the achieved

system resolution (when tapering and uncertainty in the

vehicle navigation and soundspeed are taken into account) is

approximately 3.3 cm in both the along track and across

track directions. SAS images of four rock outcrops are

shown in Fig. 1, S1–S4. Images S1a and S1b are of the same

rock outcrop from orthogonal imaging geometries. These

images are modified from Fig. 10 in Olson et al. (2016), and

were collected off the coast of Sandefjord, Norway in April

2011 (Midtgaard et al., 2011).

Image-level scattering statistics are studied in this work.

Reverberation and image data are often spatially normalized

[using, for example, a cell averaging constant false alarm

rate (CA-CFAR) normalizer (Gandhi and Kassam, 1988)]

prior to statistical analysis. This processing step is typically

employed to remove the effects of smoothly varying

changes, such as spatially varying terms in the sonar equa-

tion, or smooth changes in the environment. Most target

detection systems use a CA-CFAR, or a similar type of nor-

malizer. However, the focus here is on making inferences on

the environment through the pdf, rather than system perfor-

mance. Normalization may discard large-scale spatial infor-

mation contained in the SAS image that may be important

for environmental inference. Therefore, the pfa is estimated

from calibrated image data but without any empirical

normalization.
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The SAS images used in this work are calibrated, mean-

ing that intensity of each pixel corresponds to the unaver-

aged differential scattering cross section per unit area. The

technique used to calibrate the system is detailed in Olson

et al. (2016). It should be noted that the calibration was not

based laboratory measurements of the transmit level and

receive sensitivity. Rather, it was based on comparisons

between measured data and models produced using estimates

of the geoacoustic properties and the roughness power spec-

trum of glacially abraded areas. Spatial changes in intensity

due to the measurement system are absent, although pixel

intensity is the result of averaging over the frequency and

angular response of the imaging system. The sonar equation

based calibration procedure used here [described in Olson

et al. (2016)] does not account for sources of nonstationarity

due to the environment. Thus the intensity fluctuations in the

image are due to changes in the local grazing angle, in sea-

floor composition, and in roughness properties.

Glacially quarried regions studied in this work are

denoted by dashed boxes in Fig. 1. Examination of these

regions shows that the scattered field potentially arises from

four sources: low amplitude diffuse scattering from horizon-

tally oriented facets, high amplitude near-specular scattering

from vertically oriented facets (with multiple scattering from

the concave corners likely), scattering from the convex

edges, and scattering from glacial drop stones. An illustra-

tion of these scattering mechanisms in terms of the system

and environmental geometry is shown in Fig. 2, in which

dimensions are not meant to be representative. The first of

these components is lower amplitude, and distributed over

large areas. The latter three components are higher ampli-

tude and are distributed over smaller areas and are treated

here as discrete scattering. Each arrow represents an incom-

ing or outgoing ray path. The near-specular scattering paths

are included in the diagram as part of the concave corner

scattering paths.

FIG. 1. (Color online) Synthetic aperture sonar images of rock outcrops. The horizontal axis denotes ground range (across track mapped to the seafloor using

coarse SAS bathymetry estimates) position in meters. The vertical axis denotes the along track position in meters. Image intensity denotes the decibel version

of the unaveraged dimensionless scattering cross section per unit area per unit solid angle. Boxes denote areas where pixels were extracted to form estimates

of the pfa. These images are modified from Olson et al. (2016).
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To account for all of these sources of scattering, a four

component mixture model would seem to be appropriate. If

a Rayleigh distribution were used for each component, this

model would have seven parameters, which can be consid-

ered to be the simplest four component model. Since clutter

distributions commonly have two parameters, employing

heavy-tailed distributions for the three discrete components

would increase the number of parameters to 11.

However, the computational burden (for both time and

memory) of a four component model with 11 parameters is

prohibitive. The Bayesian inference performed in this work

would have to be performed on a cluster, and statistical sam-

pling of the parameter space would be required (Gelman

et al., 2014, Chap. 11). More important, such a complex

model would likely have a large degree of uncertainty in its

parameter estimates. For reference, the four component

Rayleigh mixture has an average relative parameter standard

deviation [understood in terms of the Cramer-Rao lower

bound, defined in Eq. (12)], of 0.15, whereas the two compo-

nent Rayleigh mixture has an average relative standard devi-

ation of 0.040. Increasing the number of parameters from 3

to 7 increased the uncertainty by about a factor of 4. The

average relative standard deviation of parameters for all the

mixtures between Rayleigh and a clutter distribution (with

four parameters) is 0.12. Increasing the number of parame-

ters to 11 would likely increase the uncertainty to an unac-

ceptable level. In this work, the sources of discrete scattering

are combined into a single component, resulting in a simpler

two component mixture.

III. PFA MEASUREMENTS AND SINGLE COMPONENT
MODELS

In this work, the pfa is estimated from a group of pixels

defined by the dashed boxes in Fig. 1. The complex image

data within the boxes is decimated by a factor of 9 in each

dimension to ensure that the pixels represent independent

samples. Although independent samples are not required to

estimate the CDF (a binned histogram could be used), inde-

pendent samples are required for any estimator based on the

single-observation likelihood function, and for the evalua-

tion of the Cramer-Rao lower bound below. The decimation

factor was chosen by gradually increasing the decimation

factor until the pfa shapes and parameter estimates began to

converge. The decimated samples are then divided by the

average intensity. The pfa is estimated by 1 � FE, where FE

is the empirical distribution function (Papoulis and Pillai,

2002).

Single component models were fit to the data, and plots

of the model pfas are compared to the data in Fig. 3. In the

pfa analysis outcrops S1a and S1b are combined into a single

dataset by concatenating the decimated pixels before nor-

malizing by the mean intensity. Each pfa is heavy-tailed and

some have an inflection point, or knee, where there is a tran-

sition between concave and convex curvature in log-linear

space (e.g., normalized amplitude of about 1.5 in Fig. 3, in

S1, and S2). Others change from concave downwards to flat,

as in Fig. 3, S3 and S4 near a normalized amplitude of 1.5

and 2, respectively. In this figure, pfa estimates below 10/N,

where N is the number of samples, are not shown due to their

high uncertainty, although they are used to compute parame-

ter estimates and test statistics here and below. The number

of samples obtained from each outcrop are 1722, 3143,

2926, 2054 for S1–S4, respectively.

The pdfs of the statistical models are given in Table I,

and include the Rayleigh (R), K, Weibull (WB), log-normal

(LN), and generalized Pareto (GP) distributions. In this table,

x is the pixel amplitude, K�(z) is the modified Bessel func-

tion of the second kind of order �, and C(z) is the gamma

function. The scale parameter for these distributions is k,

and the shape parameters are denoted a, b, r, and c for the

K, WB, LN, and GP pdfs, respectively. Note that the GP pdf

given is the equivalent envelope pdf when the GP distribu-

tion is used for the intensity. This choice was made because

the GP distribution reduces to the exponential distribution

when c¼ 0. The pdf for intensity, y, can be obtained using

the substitution x ¼ ffiffiffi
y
p

and multiplying by the Jacobian

1=ð2 ffiffiffi
y
p Þ.
Several of these distributions have a basis in the physics

of scattering and can be derived from modulated Rayleigh-

distributed clutter through a compound, or product model

(Ward, 1981),

pðxÞ ¼
ð

dk pkðkÞpRðxjkÞ; (1)

where p(x) is the pdf of the observed envelope, pRðxjkÞ is the

Rayleigh pdf with power E[x2]¼ k, and pk(k) is the distribution

of the scale parameter, which is equal to the average intensity

of the Rayleigh distribution. If k is gamma-distributed, then

p(x) will be K-distributed (Ward, 1981; Ward and Tough,

2002). Similarly, if k has an inverse gamma distribution, then

p(x) will have a generalized Pareto distribution (Barnard and

Khan, 2004). Other statistical models can also be generated

from this model (Lyons and Abraham, 1999), however, the

log-normal and Weibull pdfs cannot.

Parameter estimates and test statistics for the single

component models are shown in Table II. For all cases, the

maximum likelihood (ML) technique was used. Both the

Anderson Darling upper tail (AU) test (Sinclair et al., 1990)

and the Kolmogorov-Smirnov (KS) test (Papoulis and Pillai,

FIG. 2. (Color online) Diagram of scattering geometry. Each text box and

set of arrows represent the geometry for the hypothesized scattering process

responsible for the scattered field. Each pair of arrows denotes incoming and

outgoing wave vectors for backscattering. The concave corner contains extra

scattering paths due to multiple scattering. Dimensions in this figure are not

meant to be realistic and are intended to be illustrative.

764 J. Acoust. Soc. Am. 145 (2), February 2019 Olson et al.



2002, p. 361) were used to test goodness of fit. The AU and

KS test statistics are scaled between 0 and 1, in the same

way as p-values. Since the parameters were estimated from

the data they do not represent the true p-value. The

Anderson-Darling test statistic emphasizes the upper tails of

the distribution and is based on an average squared distance

between the data and model CDF, whereas the KS test statis-

tic weights all values of the CDF equally and is based on the

maximum absolute CDF difference.

For each outcrop, the only model whose scaled test sta-

tistic for the KS or AD test was greater than 0.001 was the

GP distribution, which had KS statistics of 0.40, 0.25, 0.51,

and 0.025, respectively, and AU statistics of 0.22, 0.31, 0.48,

FIG. 3. (Color online) Plots of the pfa for each rock outcrop compared to single-parameter distributions on a log-linear scale.

TABLE I. Probability distributions used in this work. Mixture models are

formed from linear combinations of these distributions. Columns starting
from the left are the distribution name, probability density function, shape
parameter, and scale parameter.

Distribution pdf Shape Scale

Rayleigh 2x=ðkÞ expð�x2=kÞ — k

K
4=ð

ffiffiffi
k
p

C að ÞÞðx=
ffiffiffi
k
p
ÞaKa�1

2xffiffiffi
k
p
� �

a k

Weibull 2bx2b�1=ðkbÞe�ðx2=kÞb b k

log-normal 2=ðxr
ffiffiffiffiffiffi
2p
p
Þe�ð2 logðx=kÞÞ2=ð2r2Þ r k

Generalized Pareto 2x=ðkð1þ cx2k�1Þc
�1þ1Þ c k

TABLE II. Parameters and statistical test statistics of the single parameter

models. From left to right, the columns are the rock outcrop, single parame-

ter distribution, Anderson Darling upper tail scaled test statistic (AU),

Kolmogorov Smirnov scaled test statistic (KS), shape parameter (if any),

and scale parameter.

Set Dist. AU KS Shape Scale

S1 R 0.000 0.000 — 1.000

K 0.000 0.000 0.790 1.008

LN 0.000 0.000 1.835 0.207

WB 0.000 0.000 0.563 0.510

GP 0.223 0.405 0.989 0.214

S2 R 0.000 0.000 — 1.000

K 0.000 0.000 0.854 0.802

LN 0.000 0.000 1.762 0.191

WB 0.000 0.000 0.564 0.450

GP 0.311 0.247 0.811 0.222

S3 R 0.000 0.000 — 1.002

K 0.000 0.000 0.776 0.937

LN 0.000 0.000 1.826 0.186

WB 0.000 0.000 0.549 0.456

GP 0.583 0.514 0.944 0.198

S4 R 0.000 0.000 — 1.000

K 0.000 0.000 0.939 0.893

LN 0.000 0.000 1.734 0.252

WB 0.000 0.000 0.604 0.586

GP 0.078 0.025 0.791 0.299
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and 0.08, respectively. The better fit relative to the other sin-

gle component models (but poor by absolute standards) that

the GP model provides to S1–S3 is likely because the GP

distribution is extremely flexible, and can fit data with inflec-

tion points in log-linear space. However, from visual inspec-

tion, it does not do a perfect job of fitting the pfa near the

knee in S3, or the tails in S1. Note that the log-linear scale of

the pfa plots shows model-data mismatch in a relative, rather

than an absolute sense. Thus what appears to be high model

data error at high amplitudes corresponds to rather small

absolute error.

As discussed in Abraham et al. (2011), the single parame-

ter models provide a good estimate of the pfa only when they

intersect with the data. In other regions, the models provide a

poor estimate of the pfa. This poor fit, along with the knee in

the data motivate the use of mixture models.

IV. MIXTURE MODEL AND INVERSION METHODS

A. Mixture models

The mixture models used in this work consist of two

components, a background, p0, and a clutter, p1, component.

In the work of Abraham et al. (2011), a Rayleigh distribution

was used exclusively for the background model, although in

this work, a K distribution is also used. From each distribu-

tion, the mixture pdf is formed by (Titterington et al., 1985)

pðxjhÞ ¼ q p0ðxjh0Þ þ ð1� qÞp1ðxjh1Þ; (2)

where pðxjhÞ is the pdf of the envelope, x, with parameter

vector h; p0ðxjh0Þ is the background pdf; p1ðxjh1Þ is the clut-

ter pdf; and q is the mixing proportion, which defines the

ratio of samples corresponding to the background and clut-

ter, and specifies the relative weight between the clutter and

background distributions. The background parameter vector

h0 consists of a single parameter, k0 for the Rayleigh distri-

bution, and consists of two parameters, a0 and k0 for the K

distribution. The clutter parameter vector consists of the two

parameters for the clutter distribution, of which the first is

the shape parameter, and the second is the scale parameter.

The parameter vector, h ¼ fq; h0; h1g, consists of the mix-

ing proportion, and the parameter vectors for both compo-

nent distributions.

Only two component mixture models are considered

here. Infinite component mixture distributions, such as the

K-A distribution (Middleton, 1999), and the Poisson-

Rayleigh distribution (Fialkowski et al., 2004; McDaniel,

1993) have previously been used to model heavy-tailed scat-

tering statistics, but are applicable to lower-resolution envi-

ronments and systems where the scattering results from a

coherent sum of background and spiky clutter (Ward and

Tough, 2002). In the present case, due to the high resolution

of the sonar, and the low sidelobe levels, each acoustic sam-

ple can be identified with one or the other mixture compo-

nent, and not their coherent sum.

In this work, the distributions from Table I are used,

specifically combinations of Rayleigh background with K,

Weibull, log-normal and generalized Pareto clutter distribu-

tions [the same distributions used in Abraham et al. (2011)],

as well as a K background with a K clutter distribution [used

in Dong and Haywood (2007), Farshchian and Posner

(2010), and Ward and Tough (2002)]. Using the K distribu-

tion for the background component was motivated by the

behavior of the S3 and S4 pfa curves, which tended to a

straight line in log-linear space both above and just below

the knee, and because of the variety of physical interpreta-

tions it has (Abraham and Lyons, 2002). Given that the

roughness of the horizontal facets appears uniform and

homogeneous, it may seem strange that the low-amplitude

background region does not behave like a Rayleigh distribu-

tion (which has quadratic rather than linear behavior in log-

linear space). However, closer inspection of the horizontal

components in Fig. 1 (e.g., S3 at 20 m ground range and

29 m along track), shows that the pixel intensity of the hori-

zontal facets is not constant, but decreases slightly as ground

range increases. This trend is likely due to the decrease of

scattering strength with the grazing angle of the facet. Since

the rock outcrops are several meters high, the local grazing

angle is much smaller than it would be at the surrounding

sea floor. Small changes in range therefore produce larger

changes in the local grazing angle than would occur for a

patch of seafloor surrounding the outcrop. Combining

Rayleigh-distributed samples whose power changes deter-

ministically can result in heavy-tailed statistics through Eq.

(1), which has been used by Lyons et al. (2010) and Lyons

et al. (2016).

Below, likelihood functions for the pdf as well as its

components are defined. The likelihood function,

‘ðhjxÞ ¼ pðxjhÞ, is equal to the pdf of the mixture model as a

function of the parameters, with the data held constant. For

statistically independent samples of x, the likelihood func-

tion is the product of the likelihood for each sample

(Papoulis and Pillai, 2002),

‘ðhjXÞ ¼
YN
n¼1

‘ðh;XnÞ; (3)

where X is the collection of samples of the random variable

x with elements Xn with n ranging from 1 to N. We will also

use the likelihood functions of the mixture components,

defined by

‘0ðh0jxÞ ¼ p0ðxjh0Þ; ‘1ðh1jxÞ ¼ p1ðxjh1Þ: (4)

The clutter to background power ratio (CBR) is an important

parameter for characterizing a mixture distribution. The

CBR is defined as the ratio between the mean intensity of

the clutter component to the mean intensity of the back-

ground component, defined by

CBR ¼

ð
dx x2p1 xjh1ð Þð
dx x2p0 xjh0ð Þ

: (5)

Based on the interpretation of p1 as the clutter component,

the CBR should be greater than 1 in intensity, and greater

than 0 decibels (dB). Otherwise, the labels “clutter” and
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“background” should be exchanged. For all subsequent dis-

cussions and reported CBR parameters will use the dB

version.

B. Parameter estimation methods

1. Expectation maximization

Expectation maximization (EM) is a method that can be

used to efficiently maximize the likelihood function for mix-

ture models (Dempster et al., 1977). If we are given a set of

values of the envelope data Xn, then the parameters of the

mixture model, Eq. (2), could be estimated by finding the

parameter vectors that maximize the likelihood function.

With a mixture model, a maximum likelihood (ML) estima-

tor is frequently difficult to implement analytically because

the mixture pdf is the sum of its component pdfs. The expec-

tation maximization algorithm addresses this problem by

maximizing an intermediate function that is the weighted

log-likelihood for each component distribution. We define

the intermediate function as Q, with the Q functions for each

component defined as (Bishop, 2006, p. 440)

QiðhiÞ ¼
XN

n¼1

Wi;n log piðXnjhiÞ (6)

and Q¼Q0þQ1. The values of Wi,n are weights with values

between zero and one that constitute a soft partition of the

data. They specify the probability (or belief in Bayesian ter-

minology) that sample n belongs to distribution i, with i¼ 0

for the background, and i¼ 1 for the clutter component. In

this work, W0,n are referred to as the background weights,

and W1,n clutter weights. These weights are computed using

W0;n ¼
q̂‘0 ĥ0jXn

� �
q̂‘0 ĥ0jXn

� �
þ 1� q̂ð Þ‘1 ĥ1jXn

� � ; (7)

W1;n ¼ 1�W0;n; (8)

where the hatted variables denote parameter estimates.

From the previous three equations, the weights can be

estimated given parameter estimates, and the Q function can

be maximized to obtain new parameter estimates. The

expectation maximization algorithm proceeds in two steps

(Dempster et al., 1977). In step one (expectation), the

weights are estimated from Eqs. (7), and (8). In step two

(maximization), improved parameter estimation is per-

formed. The two steps are repeated until the parameter esti-

mates converge to a specified criterion. These two steps are

guaranteed to increase the likelihood function with every

iteration (Titterington et al., 1985). One method to initialize

the EM algorithm was derived in Abraham et al. (2011), and

used in this work. For more details on EM in general see

Titterington et al. (1985) or Chapt. 9 of Bishop (2006).

2. Bayesian inference

Bayes’ theorem allows one to estimate the probability

distribution of the parameter vector of a model, given data

and prior information regarding the model parmeters. In

Bayesian analysis, this distribution is called the posterior

probability distribution (ppd), and is given by (Gelman

et al., 2014)

p hjxð Þ ¼ p xjhð Þp hð Þ
p xð Þ ; (9)

where pðhjxÞ is the ppd (i.e., the pdf of the parameters given

the data), pðhÞ is the prior pdf of the parameters, pðxjhÞ is

the conditional probability of the data, given the model, and

is interpreted as the likelihood function, ‘ðhjxÞ. The proba-

bility of the data (also called the evidence) is p(x), and is

given by

pðxÞ ¼
ð

dh pðxjhÞpðhÞ (10)

and can be interpreted as a normalizing factor that ensures

that the integral of the ppd over the parameter space is equal

to 1. The prior distribution incorporates any known informa-

tion about the parameters. In this work, uninformative

bounded uniform priors are used.

Although there are several choices for minimally infor-

mative priors, we choose bounded uniform distributions

whose endpoints are chosen by trial and error such that the

1D marginal ppd at the edges of the domain decays to at

least 1/100 times the maximum 1D marginal. This is a some-

what arbitrary choice that removes the very low probability

tails of the ppd. Since bounded uniform priors are used, the

maximum value of the ppd, called the maximum a posteriori
(MAP) estimate, corresponds to the maximum value of the

likelihood function (ML estimate) so long as it falls within

the domain of support of the prior pdfs. Thus when compar-

ing the best fit parameters, the Bayesian MAP can be taken

as a surrogate for ML when comparing to results from the

EM algorithm.

To select the bounds of the prior distributions, a direct

numerical search on the likelihood function was performed

with randomly chosen initial values. The random initial val-

ues were drawn from a uniform distribution between 0 and 1

for q and c, and 0 and 15 for all other parameters. The

restriction on q ensures that the pdf is positive, and the

restriction on c is due to the fact that the GP only has a finite

mean intensity, E[x2], for c< 1, and has lighter than

Rayleigh tails for c< 0. The randomized initial parameters

ensured that any multiple local maxima in the likelihood

function are included in the domain of support of the prior

distributions. When maxima with CBR> 0 dB were found,

the prior distributions were specified by increasing their lim-

its until they satisfied the criterion stated above.

For several mixture pdfs, this randomly initialized ML

search resulted in a local or global maximum parameter esti-

mate whose CBR was negative. From examining the pfa

data in Fig. 3, the Rayleigh distribution is inappropriate for

modeling the upper tails of the distribution. Parameter esti-

mates with CBR< 0 dB were discarded. For the K-K mix-

ture, the pdf is invariant to exchange of the clutter and

background parameters along with replacing q by 1 � q.
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This behavior results from the symmetry of the K-K mixture

and in turn results in symmetry in the ppd. If the two peaks

based on the symmetry are well separated, then only the

peak with positive CBR is used, due to the high-amplitude

nature of clutter.

Once the bounds of the prior distributions were set, a

numerical estimate of the ppd was found by computing the

likelihood function exhaustively over the support of the uni-

form prior distributions and computing the evidence numeri-

cally. The ppd is typically a high dimensional function and

is difficult to visualize. In practice, it is commonly visualized

in term of each of its one and two dimensional joint marginal

distributions. These are computed by integrating the full ppd

over all but one or two elements of the parameter vector, h,

and examining all combinations.

V. RESULTS AND DISCUSSION

In this section parameter estimates and comparisons are

presented between measurements of the pfa to mixture mod-

els. The results of the global Bayesian inversion are also pre-

sented in terms of the 1D and 2D joint marginal ppds.

A. Mixture model parameter estimates and model-data
comparisons

1. Results

Parameter estimates are shown in Table III, along with

the CBR and the scaled output of the AU and KS tests. The

top two KS and AU tests for each dataset are bolded. The

entries are all MAP estimates unless the EM and MAP esti-

mates differed significantly. If the two methods resulted in a

difference in parameters greater than 0.1%, then both MAP

and EM parameters are listed on different lines. Since EM is

guaranteed to converge to a local maximum in the likelihood

function, the EM and MAP parameter estimates should only

differ if EM was initialized near a secondary mode. Indeed,

when the EM algorithm was run with randomized starting

parameters, it converged to the MAP estimates. Thus the

comparison between EM and the MAP estimates is really a

test of the initialization method.

Overall, the R-GP, R-LN, and K-K mixture distributions

perform the best in terms of the test statistics. Although the

MAP estimate for the R-GP mixture has the best KS statistic

for S2, the EM estimate has a higher AU statistic. This may

be because the EM estimate has a higher shape parameter

and is better able to fit the tails of the data.

Plots of the pfa for rock outcrops along with the mixture

models specified in Sec. IV A are shown in the subplots of

Fig. 4. For all cases, the MAP estimates are used to compute

model pfa curves. For all datasets, the R-GP, R-LN, and K-

K mixture pdfs perform the best in terms a visual fit to the

data, a confirmation of the analysis using the KS and AU sta-

tistics above. The R-K, and R-WB distributions perform

poorly for all outcrops. For the models that perform well, the

match is good at both high and low amplitudes. Many of the

poorly performing mixture distributions have trouble fitting

the tails of the distribution as well as the transition region

between the background and clutter region (e.g., around a

normalized amplitude of 2 in S3).

2. Discussion

For the mixture pdfs used in this work, several of the

parameters only have meaning in the context of that particu-

lar pdf. However, several parameters of mixture distributions

have a strong relation to the environment, such as q and

CBR, although they may not be strictly equal to environmen-

tal parameters. From Table III these two parameters differ a

great deal between each mixture model, and between each

outcrop. This variability means that some of the models are

likely more appropriate than others, although at the moment

comparisons to ground truth cannot be made due to a lack of

a valid scattering model. In the following, we propose sev-

eral hypotheses to explain the variability in q. CBR esti-

mates also varied a great deal, but we do not explore this

quantity because we believe that it is related to the same

sources of variability in q.

For the K-K mixture, q tended to be high, and for the R-

GP mixture it tended to be low. For the R-GP mixture and

datasets S2 and S3, q is extremely small, around 0.03. For

other mixture distributions, q tended to be around 0.4–0.6.

Differences in estimates of q between outcrops are plausible

because the mixing proportion is related to the sizes of the

geophysical features that cause background and clutter sam-

ples. From inspection of the SAS images, the background

TABLE III. Parameters of the mixture distribution for each rock outcrop.

From left to right, the columns are the scaled Anderson-Darling upper tail

(AU) statistic, the scaled Kolmogorov-Smirnov (KS) statistic, mixture

weight parameters, shape parameter for the background distribution, scale

parameter for the background distribution, shape parameter for the clutter

distribution, scale parameter for the clutter distribution, and the CBR in

decibels.

Data Dist. Bk. Cl. CBR

Set Name AU KS q Sh. k0 Sh. k (dB)

S1 R-K 0.337 0.340 0.447 — 0.172 0.762 1.989 9.456

K-K 0.695 0.780 0.685 1.897 0.153 0.808 2.980 9.197

R-GP 0.964 0.947 0.370 — 0.105 0.700 0.540 12.335

R-LN 0.633 0.808 0.399 — 0.097 1.434 0.533 11.887

R-WB 0.237 0.328 0.493 — 0.191 0.574 1.038 9.398

S2 R-K 0.026 0.008 0.644 — 0.272 0.548 3.283 8.211

K-K 0.645 0.556 0.919 1.515 0.273 0.558 12.346 12.207

R-GP MAP 0.548 0.828 0.033 — 0.013 0.762 0.247 18.988

R-GP EM 0.638 0.616 0.209 — 0.480 0.984 0.181 13.731

R-LN 0.606 0.691 0.455 — 0.354 2.063 0.187 6.452

R-WB. 0.036 0.021 0.663 — 0.287 0.481 0.906 8.323

S3 R-K 0.023 0.026 0.571 — 0.220 0.594 2.935 8.985

K-K 0.881 0.969 0.874 1.447 0.254 0.710 7.380 11.529

R-GP 0.978 0.996 0.031 — 0.014 0.896 0.220 21.775

R-LN 0.832. 0.889 0.332 — 0.306 2.020 0.196 6.926

R-WB 0.031 0.032 0.593 — 0.234 0.508 0.966 9.047

S4 R-K 0.053 0.027 0.475 — 0.340 0.714 1.996 6.222

K-K 0.908 0.802 0.937 1.399 0.402 1.819 4.107 11.230

R-GP MAP 0.852 0.977 0.102 — 0.046 0.662 0.401 14.148

R-GP EM 0.668 0.514 0.275 — 0.839 1.000 0.198 1
R-LN 0.997 0.904 0.347 — 0.606 1.907 0.216 3.427

R-WB 0.033 0.008 0.564 — 0.370 0.543 0.967 6.572
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component appears to occupy a large number of samples in

the image compared to the clutter component, at least above

0.5 for all images, but certainly larger than 0.7 or 0.8 for S2,

S3, and S4. This very approximate estimate makes the K-K

mixture an attractive model because it agrees the most with

qualitative inspection of the acoustic images.

To explain the variation, we could compare with ground

truth in the form of SAS bathymetry estimates (Fossum

et al., 2008; Sæbø, 2010), which were available for these

scenes. Quantitative comparisons are difficult to obtain from

SAS bathymetry because of the presence of outliers in the

height estimate, particularly for areas with low SNR, and the

resolution is not high enough to resolve dropstones. For con-

vex corners, the presence of multiple scattering makes esti-

mating the phase between the two interferometric arrays

difficult (due to the arrival times of each scattering path),

and produces unreliable bathymetry estimates. Additionally,

size of the specular returns in the image is not only depen-

dent on the bathymetry, but is also dependent on the local

grazing angle of the sonar, as well as the orientation of the

nominally vertical facet. Multiple scattering from convex

corners also causes a time delay in the scattered signals,

causing multiple high amplitude bands to appear, or a smear-

ing of the high amplitude region in the cross range direction

if the resolution of the system is not high enough to resolve

the multiple arrivals. Independent (i.e., non-acoustic)

bathymetry estimates are required to perform this analysis.

FIG. 4. (Color online) Plots of the pfa for each outcrop, along with mixture model results using MAP parameter estimates.

TABLE IV. Cramer-Rao lower bound for the mixture distribution parame-

ters evaluated at the parameter estimates. From left to right the parameters

are the mixing proportion, the background shape parameter, the background

scale parameter, the clutter shape parameter, and the clutter scale parameter.

The lower bound is presented as the square root of the lower bound of the

variance divided by the parameter estimate.

Data Dist. Bk. Cl.

Set Name q Sh. k0 Sh. k

S1 R-K 0.078 — 0.074 0.085 0.123

K-K 0.123 0.266 0.363 0.2936 0.201

R-GP 0.074 — 0.097 0.024 0.019

R-LN 0.227 — 0.125 0.063 0.154

R-WB 0.065 — 0.063 0.035 0.099

S2 R-K 0.036 — 0.035 0.051 0.122

K-K 0.022 0.083 0.113 0.286 0.266

R-GP 0.576 — 0.791 0.013 0.013

R-LN 0.058 — 0.048 0.017 0.028

R-WB. 0.031 — 0.034 0.031 0.091

S3 R-K 0.042 — 0.042 0.058 0.101

K-K 0.055 0.114 0.162 0.554 0.308

R-GP 1.828 — 1.219 0.011 0.046

R-LN 0.087 — 0.071 0.016 0.025

R-WB 0.037 — 0.0310 0.028 0.085

S4 R-K 0.089 — 0.066 0.075 0.138

K-K 0.051 0.095 0.185 1.991 1.349

R-GP 0.219 — 0.324 0.018 0.011

R-LN 0.111 — 0.073 0.019 0.030

R-WB 0.058 — 0.056 0.036 0.091
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Therefore, a physics-based scattering model is absolutely

required to be able to quantitatively compare SAS bathyme-

try with statistical modeling of SAS images.

One possible origin of the wide variation in estimates of

q is that this parameter is difficult to estimate precisely. This

hypothesis can be tested using the Cramer-Rao lower bound

(CRLB) for the various distributions. The CRLB gives a

lower bound to the variance in the estimate of a parameter

attainable when using an unbiased estimator (such as ML),

and is related to the Fisher information matrix. For a given

probability density function, f ðxjhÞ, the elements of the

Fisher information matrix, IðhÞ, are given by (Papoulis and

Pillai, 2002)

I hð Þi;j ¼ E
@ log f xjhð Þð Þ

@hi

� �
@ log f xjhð Þð Þ

@hj

 !" #
: (11)

The CRLB for a single parameter, hi, using an estimate com-

puted with n independent samples is given by

var hi½ � � n�1ðI�1Þii: (12)

The Fisher information matrix was computed using numeri-

cal integration, due to the complexity of the mixture distribu-

tions. The CRLB is evaluated at the parameters estimated

from the data, and gives an approximate indication of how

easy or difficult it is to estimate each parameter.

Results for the CRLB are given in Table IV, and are

presented in terms of the square root of the lower bound on

the variance, i.e., the lower bound of the standard deviation,

divided by the parameter estimate, in order to report the rel-

ative difficulty in estimating parameters. From the table,

the relative CRLB for q is generally quite small, with some

exceptions in the K-K and R-LN mixtures for S1, the R-GP

mixture for S2, the R-GP mixture for S4, and the R-GP and

R-LN mixtures for S4. These mixtures have relative stan-

dard deviations of 0.1 or greater. Although some values of

the CRLB are significant compared to the parameter esti-

mate, we believe that the variance is not large enough to

account for the significant variability in estimates of q
across distributions.

Another hypothesis is that the different clutter distri-

butions can accurately model higher or lower amplitude

samples from the ensemble, therefore assigning higher or

lower values of the mixing proportion. The differing esti-

mates of q would then result from the properties of the dis-

tribution, rather than the environment. The EM algorithm

can be used here as a diagnostic tool to test this hypothesis.

The clutter weights, W1,n, are used here to analyze whether

samples are being assigned more weight to the background

or clutter components. For each of the mixture distribu-

tions and data sets, W1,n is plotted in Fig. 5. The weights

were calculated using the ML parameter estimate, which is

the same as the final EM estimate, so long as it achieves

the global maximum.

The R-GP distribution had systematically lower values

of q than all other distributions. These very small value for q
could result because the GP distribution can fit an inflection

point in the log-linear amplitude pfa on its own, and with the

R-GP mixture, the background component fits only the low-

est amplitude data. The clutter belief weights for this distri-

bution are quite high for much of the amplitude domain, and

stay rather high even at low amplitudes. For this mixture,

even very low amplitude pixels are assigned to have a clutter

weight of about 0.3 for S1, and weights of 0.5 or above for

all other outcrops. Based on Fig. 5, we may conclude that

the R-GP distribution tended to have low values of q because

most of the range of amplitudes can be accurately fit by the

GP model. High values of the clutter weights for both low

and moderate amplitude pixels does not make physical

sense, and in our opinion counts as evidence against using

the R-GP mixture to model these datasets.

For the K-K mixture distribution, the opposite situation

occurs, where the high amplitude pixels (above a normalized

amplitude of say, 2.5), have a large weight assigned to the

clutter distribution, and a small weight for the background

distribution. At low amplitudes, the clutter weights are quite

low, with only the R-K mixture (which did not fit the data

very well) being lower. There is a region in which both the

background and clutter components will contribute signifi-

cantly to the total. The K-K mixture has the lowest clutter

belief weights at all amplitudes (apart from the R-K mix-

ture), and therefore has the largest mixing proportion. The

behavior of the K-K mixture weights makes physical sense:

it assigns low clutter weight to low amplitudes, high clutter

weight to high amplitudes, and in the intermediate region,

transitions between the two. This agreement with our quali-

tative inspection of the images gives a great deal of evidence

in favor of the K-K mixture as the most appropriate mixture

model out of the ones studied here. Based on the clutter

weights in Fig. 5, the variability in q between each model is

FIG. 5. (Color online) Belief weights from the EM algorithm for each mix-

ture model and outcrop studied in this work.
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a direct result of the way that the mixture distributions parti-

tion the pixel amplitudes.

B. Posterior probability distribution

Due to the large amount of information present in the

Bayesian inversions, only two datasets, S3 and S4 were ana-

lyzed, and only the K-K and R-GP mixture distributions

were considered. This choice was made because the K-K

and R-GP distributions both generally fit the measurements

very well, and the distribution components have a basis in

the physics of scattering. The log-normal distribution also

fits these data very well but does not have a direct link to

scattering physics.

The marginal distributions for the R-GP mixture are

plotted in Fig. 6. Solid lines denote the MAP parameter esti-

mate, and dashed lines denote the EM estimate. The most

striking feature of these marginal distributions is the pres-

ence of multiple local maxima, or multiple modes. Only the

R-GP mixture distributions resulted in solutions with multi-

ple local maxima in the ppd and did so for outcrops S2–4.

This behavior is likely due to the extreme flexibility of the

GP distribution. For inversion purposes, this extreme flexi-

bility is a liability because it can increase parameter uncer-

tainty, and obscures connections between statistical

parameters and environmental parameters.

For all of the 2D marginal distributions in this figure,

there is significant correlation between all of the parameters.

Moreover, the shapes of the 2D marginal distributions indi-

cate that the inverse problem is highly nonlinear. Inference

for the physical properties of the rock outcrops using the

R-GP mixture model would likely be difficult due to the

multimodal behavior of the ppd and significant parameter

correlation. Additionally, the GP distribution has infinite

intensity variance for c> 1/2 (Hosking and Wallis, 1987).

Since the MAP estimate of the GP shape parameter falls

within this regime for all datasets, the scintillation index

(intensity variance divided by the intensity mean) of this

FIG. 6. (Color online) Marginal distributions for the R-GP mixture distribution for outcrops 3 [(a) and (b)] and 4 [(c) and (d)]. Solid lines indicate MAP param-

eter estimates, while dashed lines indicate EM.
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model is also infinite. This is a nonphysical result (since the

sample scintillation index is always finite), and gives further

evidence against the suitability of the R-GP mixture for this

dataset.

The marginal distributions for the K-K mixture are plot-

ted in Fig. 7. Unlike the R-GP mixture, the 1D and 2D mar-

ginals do not show multiple maxima, apart from the

ambiguity between clutter and background due to the sym-

metry of the K-K mixture. The K-distribution is less flexible

in terms of the shapes of the tails. As a tends to zero, the tails

of the K pfa tend to a straight line in log-linear space, and as

a tends to infinity, it approaches the Rayleigh case. Although

the K distribution can have positive curvature in log-linear

amplitude space for very small shape parameters, this only

occurs at low amplitudes. This limitation on the possible

shapes that the K distribution can adequately fit provides

some measure of protection against multiple modes in the

ppd.

Like the 2D marginals of the R-GP mixture, the K-K

mixture exhibits strong parameter correlation. Even though

parameter correlation is high, the high probability regions of

several 2D marginals sometimes exhibit simple behavior,

such as in q versus a0 and q versus k0 in both datasets. Other

2D marginals exhibit much more complex shapes such as

curved peaks in a0 versus k0 and a versus k in both datasets.

These two specific parameter correlations are likely the

result of the K distribution having constant intensity along

lines of constant ak and a0k0. Like the R-GP distribution,

inference regarding the physical properties of the rock out-

crops using the scattered field statistics would likely be

FIG. 7. (Color online) Marginal distributions for the K-K mixture distribution for outcrops 3 [(a) and (b)] and 4 [(c) and (d)]. Solid lines indicate MAP parame-

ter estimates, while dashed lines indicate EM.
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difficult due to parameter correlation, although the K-K mix-

ture does not exhibit multimodal behavior.

VI. CONCLUSIONS

Measurements of the statistics of scattering from rock

outcrops have been presented. Comparisons with several com-

monly used single-component statistical models fail to ade-

quately model these data, due an inflection point in the PFA

curve. Mixture models have an interpretation in terms of the

physics of scattering from this environment and were found to

provide a better fit to the data. It was found that the Rayleigh-

generalized Pareto, Rayleigh-log normal, and K-K mixtures

performed the best in terms of the AU and KS test. Of those

three, the mixing proportion of the K-K mixture corresponded

the best with qualitative interpretation of the sonar images.

This analysis was confirmed by analysis of the belief weights

from the EM algorithm. A multimodal parameter ppd was

observed in the R-GP mixture, as well as significant parameter

correlation. For the K-K mixture, no multimodal behavior

was observed, but significant parameter correlation was found.

Both multimodal ppds and nonlinear parameter correlation

pose significant problems if mixture models are to be used to

perform geoacoustic inversion. Based on this analysis, the K-

K mixture has the greatest evidence in its favor: (1) it per-

forms well in terms of the AU and KS statistics, (2) its values

of q agreed the most with qualitative interpretation of the

sonar images, (3) its clutter belief weights make intuitive

sense based on the images, (4) it has a well-behaved ppd (i.e.,

a single maximum), and (5) the K distribution has links to the

physics of scattering, both for discrete scatterers, (Abraham

and Lyons, 2004), and for homogeneous environments at high

resolution (Lyons et al., 2016).
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