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Abstract

In this paper we define a new transform on (generalized) Boolean functions, which gen-
eralizes the Walsh-Hadamard, nega-Hadamard, 2%-Hadamard, consta-Hadamard and all
H N-transforms. We describe the behavior of what we call the root-Hadamard transform
for a generalized Boolean function f in terms of the binary components of f. Further, we
define a notion of complementarity (in the spirit of the Golay sequences) with respect to
this transform and furthermore, we describe the complementarity of a generalized Boolean
set with respect to the binary components of the elements of that set.
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1 (Generalized) Boolean functions

Let [F7 be the vector space of the n-tuples over I,, and, for an integer ¢, let Z, be the ring of
integers modulo g. By ‘+’ and ‘—’ we respectively denote addition and subtraction in 7.

A function F : F5 — T, n > 0, is called a Boolean function in n variables, whose set
will be denoted by B,,. A Boolean function can be regarded as a multivariate polynomial
over [y, called the algebraic normal form (ANF)

S, .o x,) = a0+ ZaixmL Z aijXixj +---+ap. pX1x2...xXp,

I<i<n I<i<j<n
where the coefficients ag, a;j, ..., a12.., € Fz. The maximum number of variables in a
monomial is called the (algebraic) degree. The (Hamming) weight of x = (x1, ..., x,) € F}

is denoted by wr (x) and equals > 7, x; (the Hamming weight of a function is the weight of
its truth table, that is, the weight of its output vector). The cardinality of a set S is denoted
by |S].

We order Fg lexicographically, and denote v9 = (0,...,0,0), vi = (0,...,0,1),

von_1 = (1, ..., 1, 1). The truth table of a Boolean function f € I3, is the binary string of
length 2", [ f(vo), f(V1), ..., f(van_1)] (we will often disregard the commas).
Ifx = (x1,...,x,) andy = (y1, ..., yn) are two vectors in 5 we define the scalar (or

inner) product, by X-y = x1y1 +Xx2y2+ - - - + X, ¥». The scalar/inner product x @y in C x C
is similar, with the sum over C. The intersection of two vectors x and y in some vector
space under discussion is X xy = (x1y1, X2Y2, - . ., Xn Yn). We write a = R(z), b = J(z) for
the real part, respectively, imaginary part of the complex number z = a + bi € C, where
i =—1,and a, b € R. Further, |z| = Va2 + b? is the absolute value of z, and 7 = a — bi
denotes the complex conjugate of z.

We call a function from [ to Z, (¢ > 2) a generalized Boolean function on n variables,
and denote the set of all generalized Boolean functions by GBY and, when ¢ = 2, by B,,
as previously mentioned. If ¢ = 2* for some k > 1, we can associate to any f € GB!I a
unique sequence of Boolean functions a; € B, (i =0, 1, ...,k — 1) such that

f) =ap(®) +2a1(x) + -+ 25" 1ap 1 (x), forall x € F.

For a Boolean function f € B,, we define its sign function f by f x) = (—=1)/™. In
N 2mi
general, the sign function of f € GBI is f(x) = qf ) , where {; = e ¢ 1is the g-complex
root of 1 (for easy writing, we sometimes use ¢ instead of ¢;, when q is fixed).
For a generalized Boolean function f : F) — Z, we define the (normalized) generalized

Walsh-Hadamard transform to be the complex valued function

chq) (u) — 2—11/2 Z é-qf(x) (_1)U~X.

n
xeF)

(we sometimes use H ¢, instead of 7-[5?), when ¢ is fixed.)
For g = 2, we obtain the usual Walsh-Hadamard transform

Wyu) =27"23 " (—1)/0+ex,
xelf}

The sum

Cro(z) = ng(erZ)fg(X)

n
xelfy
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is the crosscorrelation of f and g at z € F}. The autocorrelation of f € GBI atu € I} is
Cy, r(u) above, which we denote by C ¢ (u).

Given a generalized Boolean function f, the derivative D, f of f with respect to a
vector a € IF7, is the generalized Boolean function defined by

Daf(x) = f(x+a) — f(x), forall x € ). (1)

A function f : [F} — Z4 is called generalized bent (gbent) if |H r(u)| = 2/2 for all
u € [F5. For descriptions of (generalized) bents, the reader can consult [10, 15, 18, 20].

The nega—Hadamard transform of f € GB}: at any vector u € I} is the complex valued
function:

N}Q)(u) — 2—% Z;f(x)(_l)ux lwt(x)‘

n
xelfy

As customary, we may drop (some of) the superscripts in all of our notations, if convenient.
In [13], some of us considered generalized bent criteria for Boolean functions by analyz-
ing Boolean functions which have flat spectrum with respect to one or more transforms
chosen from a set of unitary transforms. The transforms chosen are n-fold tensor products

0 ), the Walsh—-Hadamard transformation —= ( bl ), and

of the identity mapping ( ! Al

01

1 . .
the nega—Hadamard transform \/Li 1 -, ) where 12 = —1. That choice is motivated by
local unitary transforms that play an important role in the structural analysis of pure n-qubit
stabilizer quantum states.

A function f : F5 — Z, is said to be (generalized) negabent if the nega—Hadamard
transform is flat in absolute value, namely |\ }q) (w)| = 1 for allu € 5. The sum

Cho@ = ) ¢/ OHs®qyx

n
xelfy

is the nega—crosscorrelation of f and g at z. We define the nega—autocorrelation of f at
u € 5 by

Ch(u) = Z;f(xﬂ)—f(x)(_l)x.z_

n
xelf

For more on (generalized) Boolean functions, the reader can consult [2, 3, 10, 14, 18, 20]
and the references therein.

2 The root-Hadamard transform

Walsh-Hadamard, nega-Hadamard transforms, as well as, 2k Hadamard [17], consta-
Hadamard [11] and H N-transforms [13], can be generalized (thus, unifying under the
same umbrella all of these transforms) into what we will call the root-Hadamard
transform.

Definition 1 Let f € gB,%k, ¢or a 2k-complex root of 1 (when convenient we drop the

2mi
index), A = {ay,...,a;} a set of roots of unity a; = e i, K = {kjiti<j<r and L =
{R;}sek be a partition of the index set {0, ..., n—1} = |_|S€K R, |L| = r(for convenience,
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we index the partition by the elements of K). For L = {Rs}sck, we let Xg, = (x;) jer,
wit (XRy)

and Az (x) = [] o , where wt(Xg,) = ij € N(observe that A7 (0) = 1, for any
seK jeRs
partition L). We define the root-Hadamard transform of f at any vector u € F; as the

complex valued function:

UZ) @ =273 ) ).

xel;

If f is a Boolean function, we let 77 4 ¢ = Z/{f)A - A function f on ngk is said to be
root-bent if the root-Hadamard transform is flat in absolute value, namely [U 4, ()| = 1
for all u € 5. The sum

_ Ok,
CIIj,A,f,g(Z) = Z;f(x—l—z) g(x)l—[,u;(R -

xel} sekK

is the root—crosscorrelation of f and g at z (recall that ug; = af). We define the root—
autocorrelation of f atu € I, by

_ Oz,
CI‘IJ),A,f(Z): Z;f(xﬂ) f(X)l_[M;(R‘ 2

xel} sekK

When the sets L, A are understood from the context, to simplify the notation, we may write
PooP 29 2 o P

Ur, Ty, Cf’g, Cf in lieu of U;" 4 ¢, ’TL,A,f, CL,A,f,g’ CL7A7f.

Example 2 Consider A = {e%, e% } and L = {(0, 2), (1, 3)}. The generalized Boolean

function
f(X) = x1x2 + x2x3 + x2X4 + X1x4 + x3x4 + 2 (X1X2 + X1X3 + X3X4)

is root-bent, that is, [UL 4, r(u)| = 1 for all u € 7.

This transform is related to (but more general than) the concept of consta-Hadamard
transform (see [11, 17]). First, we show that it is a proper kernel transform, so we
show its invertibility by providing a simple proof of that (the proof also follows from
the fact that the matrix corresponding to the root-Hadamard transform is an orthogonal
matrix).

Proposition 3 Ler f € GB,, A be a set of complex roots of 1 and {Ry}rex be a partition
of {0, 1, ..., n — 1}, indexed by the elements in A. Then, for anyy € F, we have that

oy — U ny».
¢ ML(y)Z LA fW)(=1)

wel
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Proof We perform the following computation:

272 Y Upap (W) (=1

weF)
— on Z Zg.f(x)(_l)wx Haswf(xks)(_l)yw

wel)xel) sekK
— N Z;f(x) naévt(xm) Z (_1)(x+y)-w

xelfy sek welF)
_ g_f(y) Ha;m(ym’

sekK
and the claim follows. ([

If o is a complex root of 1, we let u = a2 (recall the scalar product x © z is computed
over C). We will make use throughout of the well-known identity on binary vectors (see [9])

wt(xX +y) = wt(x) + wt(y) — 2wt(X x y). 2)

The following result is a collection of facts from [18, 19].

Proposition 4 We have:
(1) If f,ge GBY, then
> Cre@ (=D = H (0 (%),

uclk’
Cre) =2""Y Hr@)H @) (-1, 3)

n
xelfy

In particular, if f = g, then Cy(u) = 27" Z 1M x)P(—1)#,
xel
(2) If f, g € By, then the nega—crosscorrelation equals

h @ = 1" Ny )N () (—1)".

uelf;
We now prove a result similar to Proposition 4 for this newly defined transform.

Theorem S Let f, g € B,%k, A be a set of complex roots of 1 and { R }xek be a partition of

{0, 1, ..., n — 1} as before. The root-crosscorrelation of f, g is
Cf’f,g(z) = Ar(z) X]:FHZ/{L,A,if(u)UL,A,g(u)(—1)“.
uc )

Furthermore, the root-Parseval identity holds

> Upay@)=2"

n
uclk)

Moreover, f is root-bent if and only ifo’A’ f(u) =0, forallu # 0.
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Proof Using [3, Lemma 2.9] and identity (2), we write

a@ Y Upa @ U a g (=)

uel
=27 Y OV @A WAL@ Y (D) D
x,yel; uel)
— 2—n Z é‘zjlc((X)_g(y) l_[a;ut(XRx)_u”(YRs )+wt(ZRs) Z (_ l)u'(X+y+Z)
x,yelF; sekK uel;
f(®)—g(x+z) 2wt(st *ZRS)
= > & [ e
x,ye]F’Z’ sekK
= D (O T — (@),
erFg sekK

If f = g, then we get

_ o,
CZA,f(Z) = Z(_l)f(x) f(Xﬂ)l_[M?R' -

xel seK

=@ Y UparUp a p)(—D)",

n
uel;

and by replacing z = 0, then we get the root-Parseval identity. The last claim is also implied
by the previous identity. 4

Example 6 The generalized Boolean function f(x) in Example 2 satisfies Cf, A f(u) =0
for all u # 0 (as predicted by Theorem 5).

3 Complementary sequences

We next give a brief overview of Golay complementary pairs (CP) (see, for example, [4-8,

16] or the reader’s preferred reference on CP). Let a = {qa; }N 61 be a sequence of &1 (bipo-

=
lar) and let the aperiodic autocorrelation of a at k be defined by A, (k) = lN: kala,-a,urk,

0 < k < N — 1. The periodic autocorrelation of a at 0 < k < N — 1 is defined by
Calk) = Z,N:BICH ai+k, 0 < k < N —1, where we take indices modulo N. The negaperiodic

autocorrelation is C;f- (u) = Ziziala,-a,urk(_ DLK+D/2"]
Two bipolar sequences a, b form a (Golay) complementary pair if

Aa(k) + Ap(k) =0, fork # 0.
We call them a P-complementary pair if

Ca(k) + Cp(k) =0, fork # 0,
and N-complementary pair if

Cy (k) + Cy(k) =0, fork # 0,

@ Springer
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We associate a polynomial A to the sequence a by A(x) = ag +ajx + --- +ay_1x¥ "L It

is rather straightforward to show that two sequences a, b (with corresponding polynomials
A, B) form a Golay complementary pair if and only if

AX)AG™YH + Bx)B(x~") =2N. 4)
Similarly, they form a P-complementary pair if
ANA Y +B@)Bx"H =2N (mod xV —1) (5)
and a N-complementary pair if
AAHY + BB~ =2N  (mod xV + 1). (6)
Let U, V be the following N x N matrices, defined by
010---00 010---00
001---00 001---00
uU=\|::: .. |, v=| ¢ . :
00001 00001
100---00 -100---00

We can quickly see that the periodic and negaperiodic autocorrelations satisfy Cy(k) =
a-aU* and Ci(k)y=aa VK 1Itis interesting to note that a pair of sequences is complementary
if and only if it is P-complementary and N-complementary, which easily follows from the
identities

Pa(k) = Aa(k) + Aa(N — k),
Cg(k) = Aa(k) - »Aa(N — k).

All of the above concepts can be extended to a set of sequences S = {a;}1<i<m by
imposing the sum of autocorrelations to be zero at nonzero shift, and we shall such, a
complementary set) (with respect to some fixed autocorrelation). For example, the set S

M
is P-complementary (respectively, N-complementary) if ZAaf (k) = O (respectively,
y i=1
Z Ca, (k) = 0), for k # 0. We shall also define the notion of pairwise complementary set
i=1
S, by assuming that any pair within the set is complementary with respect to some auto-
correlation (see [21] for a particular case of what we suggest here, and the reference to
applications in signal multiplexing of acoustic surface-wave sequences — there are surely
more recent references, and we simply added one of the earliest we know on the concept of
complementary sets).

The previous concepts take different forms for Boolean functions, since when we add
vectors in the input of a function, we lose the circular permutation property (though, it can
regarded as negacyclic permutation property). For two functions f, g € GBI, we let the
periodic/negaperiodic correlation of f, g to be

2"—1

Cre(u) = Z ;f(V)fg(eru),
i=0
21

Few = Y oSO e,
i=0
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We say that two Boolean functions are complementary if and only if they are both
P-complementary and N-complementary.
We will now define our new concept of (periodic and aperiodic) complementarity.
Definition 7 We say that two pairs of functions (a1, az), (b1, by) are:
(i) A-crosscomplementary if
Aayar (k) + Ap, b, (k) =0, for k # 0.
(ii)  P-crosscomplementary if
Cay.ay (k) + Cp, b, (k) =0, fork # 0.
(iii)  N-crosscomplementary if

Cgl,az (k) + CZI,bZ (k) =0, fork # 0.

4 Complementary pairs and components of generalized Boolean
functions

The following lemma from [10, 18, 20], provides a relationship between the generalized
Walsh-Hadamard transform and the classical transform. Recall the “canonical bijection”

L Fg_l — Zsk—1, which is defined by ¢(¢) = Zl;;% cj-2j where ¢ = (cg, ¢1, ..., Ck_2).

Lemma 8 For a generalized Boolean f € QB,Zf, fx) = ap(x) + 2a1(x) + --- +
2kl _1(x), a; € B, we have

1 d,d
Hrw =5 Y, OGO Weaw. (7)
(c.d)elFs ! xFA~!
where fo(X) = coao(X)Pc1a1(X)D- - -DBcr_rar—2(X)Pay—_1(X) are the component functions
of f.

The next lemma is known and easy to show.

Lemma 9 If b, c are bits and z is a complex number, then

22" =1+ (=" + (1 - (=1)b)z,

b\ e 1z ifb=0
(1+( 9] Z>( 1)) —{(1_Z)(_1)c ifb=1.

In the next theorem, we generalize Lemma 8 with respect to our root-Hadamard trans-
forms. The proof is interestingly enough, similar to the proof of Lemma 8, with some
appropriate changes.

Theorem 10 For a generalized Boolean f € ngl", A and L as in Definition 1, and f(x) =
ao(x) + 2a1(x) + - - - + 25" Lap_1(x), a; € By, we have

1 [
Uras = Do OG0 Tia ), 8)

k—1_ mk—1
(c.d)elF;~ xIF,
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where fo(X) = coag(X)PDc1a1 (X)D- - -DBcr_rar—2(X)Pag—1(X) are the component functions

of f.

k—2
Proof Denoting y. = l_[ (1 + (=D“ {2/(7,‘), where ¢ = (cg,c1,...,Cr_2) € IFS_I, we

i=0
compute

k=1 ¢ oaoi
22Uy 4w = 3O ™m0 = Y e Y e

xelf] xelF;
k—2
= Z(_l).fk—L(X)+u-XAL(X) 1_[ é.szzgi)
xelf) i=0
1 k=2
= 57 2 DG 00 TT (14 dyrs + (1= i) (D)
xelF; i=0
= 2/%1 Z (— 1) fe-1GFux;
xelF;
k—2
Y (—DESE SO TT (14 (=1 ¢y ) (by Lemma 9)
ceFy! i=0
— % 3 e Y (D () % > veTi.ap (.
ceFs~! xel; ccFk-!

The theorem follows after easily expressing y, as a sum of powers of the complex roots of
1 (or simply using [20, Lemma 5]). (|

The next lemma will be used later.
Lemma 11 (Inversion Lemma) We let F, : 5, — C be a class of complex-valued functions

indexed by u € IFIE_I. Then, for every ¢ € Fg_l, we have

1
Fe@ =5 Y, (-D""F@).

u,ve]FIE_l

Proof Observe that
Y DM R@ = Y R@ Y (—D®OY =2 R (),

u,ve]F’;_1 ue]F’;_1 ve]Fg_1

by [3, Lemma 2.9], and our result follows. O

In the spirit of the Hadamard and nega-Hadamard complementary notions, we define a
root-transform complementarity notion next. For L = {R} ek, apartitionof {0, 1, ..., n—
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I} and A = {o;}jek, a set of complex roots of 1, we say that a set § = {g;};_, of functions
in GB! (¢ may be 2) is L A-complementary if

M
Y Cl 4 =0, forallu # 0,
i=1

Moreover, two tuples S1 = ( f,-)f‘i 12 = (gi)f‘i | of (generalized or not) Boolean functions
are L A-crosscomplementary if

M
ZCZA,fi,gi (u) = 0, for all u # 0.
i=1

We give such an example below.

Example 12 Let A = {e%, e%} and L = {{0,2}, {1, 3}}. Consider the generalized

Boolean function fe GB1, defined by f(x) = x1 + x2 + x3 + x4 + 2 f1 (X) where fj is any
Boolean function in the set Sg(see Table 1). Then,

16, u = 0
Cf,A,f(u) =1-8, u=(0,1,0,1).
0, otherwise

Furthermore, let g GI3%, defined by g(x) = x1x2 + x3 + x4 4 x1x4 + 2g1(x), where g1 is
a Boolean function in the set Sg (see Table 2). Then,
16, u=0
Cla, =18, u=(0,1,0,1).
0, otherwise

Clearly, Cf A f(u) + Ci, A g(u) = 0, for all u # 0. In other words, the generalized Boolean
functions f, g are L A-complementary.

Theorem 13 Let S = {fi}ic1, fi € QB,%k, be a set of generalized Boolean functions and
A, L as in Definition 1. Then S forms an L A-complementary set if and only if for all a, c €
Fg_l, Sa = {fa} res, Se = {fe} res form a binary L A-crosscomplementary set.

Table 1 Set of Boolean functions
SF X1X3 + X3X2 + X1X4 + X3X4 + X4

X1x2 +x3 + Xx1x4 + X4

X1x2 + Xx3x2 + X3 + xX1X4 + x3X4 + X4

X1+ x2x3 + X3x4 + X4

X2X1 + Xa4x1 + X1 + xX2X3 + X3X4 + X4
X2X1 + x4x1 + X1 + X3 + X4

X2X1 + x4x1 + X1 + xX2X3 + X3 + xX3X4 + X4
X1+ x2 + x2x3 + x3X4

X2X1 + X4x1 + X1 + X2 + x2X3 + X3X4
X1+ X2 + x2X3 + X3 + X3X4

X2X1 + X4x1 + X1 + X2 + X3

X2X] + X4X1 + X1 + X2 + X2Xx3 + X3 + X3X4
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Table 2 Set of Boolean functions Sg

X1X2 + X1X3X2 + X3X2 + X1 X3 + X1X4 + X1X3X4

X1X2 + X1X3X2 + X4X2 + X1X3 + X1X4 + X1X3X4 + X3X4 + X4

X1X2 + X1X3X2 + X3X2 + X1X3 + X3 + X1X4 + X1 X3X4

X1X2 + x1x3x2 + X4x2 + x1X3 + X3 + xX1X4 + X1X3X4 + X3X4 + X4

X2X1 + XpX3X] + X3X] + X3X4X] + X4X1 + X1 + X2X3

X2X1 + X2X3X1 + X3X1 + X3X4X] + X4X1 + X1 + X2X4 + X3X4 + X4

X2X1 + X2x3X1 + X3X1 + X3X4X1 + X4X1 + X1 + X2X3 + X3

X2X1 + X2X3X1 + X3X1 + X3x4X1 + X4X1 + X1 + X3 + X2X4 + X3X4 + X4
X2X3X1 + X3X1 + X3X4X1 + X1 + X2 + X2X4 + X3X4

X2X1 + X2X3X1 + X3X1 + X3X4X] + X4X1 + X1 + X2 + X2X4 + X3X4
X2X3X1 + X3X1 + X3X4X1 + X1 + X2 + X2X3 + X4

X2X1 + X2x3X1 + X3X] + X3X4X1 + X4X1 + X1 + X2 + X2X3 + X4

X2X3X1] + X3X1 + X3X4X1 + X1 + X2 + X3 + X2X4 + X3X4

X2X1 + XpX3X] + X3X] + X3X4X] + X4X1 + X1 + X2 + X3 + X2X4 + X3X4
X2x3X1 + x3x1 + x3x4Xx1 +x1 + X2 + x2Xx3 + X3 + X4

X2X1 + X2X3X] + X3X] + X3X4X] + X4X1 + X1 + X2 + X2X3 + X3 + X4

Proof We first assume that S forms an LA-complementary set. Then ZCZ A f (v) =0, for
fes

v # 0. From Theorem 5, we know that CE’A, (V) =AL(V) Zung UL A f]*(=1)"Y, and

using our assumption along with Theorem 10 we obtain (we divide throughout by A7 (v))

0= Y > UarP(=n""

ueIF’gfeS
: b)+:(d :
— Z (_1)(3,0) (b,d)gélg )ERA( )ZE,A,fa(u)ﬁ,A,‘fc (u)(_l)V u
uelF} fes
a,b,c,de[ﬁ‘g’]
: b)+:(d :
= > (—)eoed NN AL WTL A @ (=D
ab,c.deF5 ! ueF} fes
— ,©)-(b,d) -t (b)+u(d) p
D DR A S DCPEWAL)
a,b,c,deF5 ! fes
: b d
= Z Z (_1)(a’C) (bvd)gztflg ) Z Cf,A,fafo(V) §2L]E )’
deF;~" \ab,ceF5! fes

and since {g'zt,gd)}dequ is a basis of Q(¢,«), then, for alld e Fé_l,
2

D S D Y

a,b,ceﬂ?é’l fes
,0)-(b,d b
= > | X cn@othy el |,
be[F’éfl a,ceIFé*l fes
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which, by the same reason as above, renders, for all b, d € Féfl,

Y (n@OCDN e () =0.

a,ceIFg_1 fes

Inverting the previous equation using Lemma 11, we obtain ZC{ A farfe (v) = 0. The

fes
reciprocal follows easily from the identity
D Ca s =MD D U A p@P(=DY
fes uel; feS
=W Y ()EOCHDHORer ).
a,b,c,deIF";1 fes
The theorem is shown. O

Corollary 14 Let {f, g} be two generalized Boolean functions in gB,%k. Then {f, g}
forms an P-complementary (respectively, N-complementary) pair if and only if for all
a,c € Fgfl, {fa, fc} and {ga, gc} form a (binary) P-crosscomplementary (respectively,
N -crosscomplementary) pair.

5 Transforms and complementary constructions

It is well known [12] that a Boolean function f has flat spectrum with respect to the nega-
Hadamard spectrum if f + s> (where s, is the quadratic elementary symmetric polynomial)
has flat spectrum with respect to the Walsh-Hadamard transform. Thus, it is natural to
ask whether some connection exists between the Walsh-Hadamard and the nega-Hadamard
transforms defined on generalized Boolean functions. To that effect, we show the first
claim of our next result (see [1] for the particular case of k = 1). We can also relate the
root-Hadamard transform and the generalized Hadamard transform.

i

We let A = {a, ..., ar} be a set of roots of unity o; = e Xi such that kj =2",m; <
k, K = {kj}1<j<r and L = {Rs};ck be a partition of the index set {0,...,n — 1} =
lsex Rs, ILI = |K| =r.For J € K, welet A; be A with o, replaced by 1 forall s € J.

n
Let s1(x) = @xj, sy(x) = @ XjXk, and in general s;(X) = @ Xj X))
j=1

= I<j<k<n Isji<..<ji=n
be the symmetric polynomials of degree 1, 2, ¢, respectively, all reduced modulo 2. We will
use here Lemma 5 from [17]:

Lemma 15 ([17]) Letx € V,,. Then,
wt(X) (mod 4) = s51(X) + 252(X)
wt(x) (mod 25) = wr(x) (mod 2571y 4+ 2 1gy 1 (x)

Theorem 16 We have:

() Letn>1k=>1,feGB andg e GB*" defined by g(x) = 2f (x)+25 Vs (x)+
ok . k+1 @5\ a0 n
52(X) (the sum is taken modulo 2*1). Then, N f (w) =H, (w), forallu € IF5.
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i) Letn > 1 k > 1, f hg hy € GBY defined by hx(x) = f(x) —
Yook 2080 (%R, hy (%) = f() = Ygey 257 Y828 (xR, ) (the sum is
taken modulo 2% ), where Xp_ is the restriction of X to the indices in Ry. Then,

k k
U, @ =H wandu?), @ =U>) ), forallu € F}.

Proof We compute
k+1
HE D) = 2723 50 (e

xel}
— 2—}1/2 Z Cé];c(X)(_l)u'XiSI(X)+2SZ(X)
xelf]
_ ' X 2k
= 223 O e = ).
xelF

The two claims of (ii) are similar so we will show only the first part. Note that, by
Lemma 15, wt(x) (mod 2) = Y"%_{s,, (x). We compute

k < .
U, @) = 2723 BN ) (x)

xelF]

an/zz FOO=Y ek 257 3070 5, (xy) ( 1)”1—[ wt (Xg,)

xel; sekK
— 2—}’[/2 Z ;;;((X) Ha;wz(XRs)(_I)U'Xl_[a;vt(st)
erE"2Z seK sekK
_ . 2k
2 n/ZZg.zJIZ(X)(_l)uX:%(f )(ll),
xel;
and the theorem is shown. O

Two of us introduced the next concept in [14]. We call a function fe GB} a landscape
function if there exist t > 1, m; € No, £; € 2Ng + 1, 1 < i < ¢, such that

m my
UH 7 W uesuppre ) = 22 €1, ..., 27 4y).

We call the set of pairs {(m1, £1), (m2, £2), ...}, the levels of f,and ¢ + 1 (if O belongs to
the Walsh-Hadamard spectrum), or ¢ (if 0 is not in the spectrum) the length of f.
We can deduce this corollary (the second claim of the next result was also shown in [1]).

Corollary 17 Let f,h € B, where h(x) = f(X) + s2(X). If n is even, then f is negabent
if and only if h is bent. Furthermore, f is negaplateaued if and only if h is plateaued. In
general, f is negalandscape (defined as above, via the nega-Hadamard transform) if and
only if h is landscape.

Proof By Theorem 16 (i), for k = 1, we have that if f € B, and ge GB* defined by g(x) =
2 f(x) + s1(x) + 252(x), then, N ) (n) = H(4) (u), for all u € . Since the decomposition
of gis g(x) = ap(x) +2a;(x), where ap(x) = s1(x), and a1 (x) = f(x)+s52(x), this implies,
by [10], that, when n is even, g is gbent if and only if a; and ag + a; are bent Boolean
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functions. This implies that g is gbent if and only if f 4 s> and s1 + f + s are bent Boolean
functions. Since s is a linear Boolean function, this implies that f is negabent if and only
if h = f + 57 is bent, giving yet another proof to this known result [12].

Further, by Corollary 1 of [14], we see that, if g : F; — Z,« is a function given by g(x) =
ag(x) +2a1(x)+-- -+ 2k_1ak_1, and s > 0 is an integer, then, g is s-gplateaued if and only
if, foreachc € 15—1’ the Boolean function g, defined as g.(x) = ¢- (ap(x), ..., ax—2(x)) +
ar—1(x) is an s-plateaued (if n + s is even), respectively, an (s + 1)-plateaued function (if
n—+s is odd), with some extra conditions on the Walsh-Hadamard coefficients. In particular,
taking k = 1, this implies that f is negaplateaued if and only if f 4 s; + 57 is plateaued (no
extra conditions on the Walsh-Hadamard coefficients), which again implies that f + s> is
plateaued.

Using Theorem 3.2 of [14], this argument can be also extended to landscape functions,
in a similar way as in the plateaued case. 4

6 Further comments

In this paper we defined a class of transforms which generalize many others, like general-
izes the Walsh-Hadamard, nega-Hadamard, 2k Hadamard [17], consta-Hadamard [11] and
H N -transforms. For generalized Boolean functions, we describe its behavior on the binary
components. Further, we define a notion of complementarity (in the spirit of the Golay
sequences) with respect to this transform and furthermore, we describe the complementar-
ity of a generalized Boolean set with respect to the binary components of the elements of
that set. Some concrete examples are provided.

There are many questions one can ask on the new transforms. For example, it would be
interesting to provide more constructions of root-bent and more generally, root-plateaued
functions (surely, Theorem 16 may help). Certainly, finding connections between these
transforms, their values, and (relative) difference sets would be quite interesting, as well.
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