
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1989

Rapid Prototyping Languages and Expert Systems

Luqi
IEEE

Luqi. "Rapid Prototyping Languages and Expert Systems." Intelligent Systems,
Summer 1989, pp. 2-5, vol. 4
https://hdl.handle.net/10945/65357

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

EU: l.:.rnl'c B. Eliot
E,pt'rt S)'ilt'Tll', I.ah
L1ni\·t:rs ity of Southern Ctlifornia

Rapid Prototyping Languages and Expert Systems
Luqi, The Naval Postgraduate School

DARPA/ ISTO- the Defense Advanced Research Projects Agency, Information Science and Technology Office - is seeking to
develop a new language for the rapid construction of software prototypes. The common prototyping language to be designed will be
part of larger subsequent efforts to develop a comprehensive prototyping system providing additional tools that realize a high­
productivity software design and prototyping environment.

While unrelated to the DARPAIISTO project, Luqi addresses this topic below. Specifically, in this IEEE Expert exclusive, she
responds to four questions in the following-order: (I) What are prototyping languages? (2) How do prototyping languages serve
expert system applications and development? (3) How can expert system techniques influence prototyping languages? (4) How can
a common prototyping language interface with Ada?

W
ork on rapid prototyping
languages aims at reducing
software development costs
via prototyping. A software

prototype is an executable initial version of
a proposed system. Prototypes are built
(among other reasons) to assess whether a
proposed system will be acceptable to its
users and whether a proposed design will
provide adequate functionality and perform­
ance. A prototype is constructed prior to the
system ' s production version to (I) gain in­
formation that guides analysis and design.
and (2) support generation of the production
version. To be useful, prototypes must be
constructed quickly and economically.
Therefore, a prototyping language must
make prototypes easy to construct, modify,
and monitor - possibly at the expense of
efficiency, completeness, capacity, or ro­
bustness. Prototyping is especially useful
for large systems or novel application
areas. Expert systems often fall into the
latter category.

Rapid prototyping languages should
support a comprehensive set of tools for
computer-aided software design and proto­
typing. The goals for such a language and the
associated prototyping system are

(l) To rapidly construct and adapt
software,

(2) Toenablethedevelopmentofmore
powerful systems,

(3) To validate that specified systems
are acceptable to users,

(4) To check the internal consistency
of proposed designs, and

(5) To ensure the correctness of trans­
formations and verify that implementa­
tions fully conform to specifications.

We will discuss the principles of lan­
guage support for rapid prototyping, based
on our experience in designing a prototyping
language and conducting feasibility studies
for its implementation over the past five
years. We will then examine some basic
issues involved in the design of a rapid proto­
typing language , paying special attention to
issues involving expert system prototyping.

Requirements

Developing a general-purpose prototyp­
ing language is an ambitious task. and re­
quires solutions to some open research prob­
lems for complete fulfillment. Prototyping
has potential benefits for large software
systems, many of which are concurrent and
distributed. exhibiting hard real-time con­
straints. Expert systems are being imple­
mented with concurrent and distributed
configurations, and a growing demand
exists for expert systems able to meet such
real-time constraints.

General properties. Let's examine the
general properties of a comprehensive proto­
typing language. A prototyping language
should have a clear and simple structure and
semantics to make it easy to learn, under­
stand, and process mechanically and rapidly.
This implies uniform structure, a small
number of orthogonal constructs, and gen­
eral interpretations without special cases or

0885-9000/89f(l51XJ-O<l02 $1.00 © 1989 IEEE

Henry Ayling
Managing Editor

restrictions. To support automated tools . the
language should have an abstract syntax and
an unambiguous and precisely defined mean­
ing. The underlying model should have a
mathematical basis to support execution.
analysis, verification. and trusted transfor­
mations. In particular, the semantics of the
language should support rigorous reasoning
about the properties of prototypes described
in the language and transformations of the
language ·sexpressions. The language should
also support a user interface to communicate
with untrained people. including graphical
summary views, English paraphrasing, and
explanation facilities.

A prototyping language should be ex­
pressive. The language should be easy to use
when constructing concise and clear descrip­
tions for many varied systems. This implies
language support for abstractions, uniform
communication. logical inference, incom­
plete descriptions, and automated design
completion. In addition to providing tradi­
tional facilities for functional. data, and
control abstraction. the language should also
support abstractions for concurrency, syn­
chronization, and timing constraints. The
language should be at a specification and
design level rather than at a programming
level: language constructs should correspond
directly to decisions made by designers, rather
than to operations performed by processors.
This will make prototype descriptions self
documenting and easy to change. The lan­
guage should allow designers to specify only
selected attributes, which requires automati­
cally supplying default values for all attrib­
utes needed for the execution of a software
prototype. The language should be capable

IEEE EXPERT

of constructing software tools in its own
prototyping environment.

To support large-scale prototypes, sys­
tem evolution, and parallel execution, a
prototyping language should have mecha­
nisms for (1) localizing design decisions in
the description, and (2) localizing interac­
tions between system components or pieces
of knowledge in the knowledge base. These
features allow independently designed sub­
systems of complex expert systems to coop­
erate without unexpected interference.

To support user validation and system
evolution, a prototyping language should
support a facility for maintaining corre­
spondence between requirements and de­
sign decisions. Tools will be needed to locate
the parts of a software prototype that are
affected by a requirements change. The
language should provide a harmonious
interface for such tools.

Facilities in a prototyping language for
recording black-box specifications can pro­
vide the benefits of a specification language.
They support prototype component docu­
mentation, verification via proofs and auto­
mated testing, and queries for reusable
component retrieval. They also form the
basis for automated synthesis capabilities,
inheritance of common properties and con­
straints, and consistency checking. For ex­
pressiveness, this part of the language may
contain noncomputable constructs including
quantifiers ranging overunbounded sets. The
language should support facilities for de­
scribing clear-box characteristics of designs;
for example, interconnections of available
components, dependencies between compo­
nents, design goals (including invariant
constraints or bounding functions), and de­
sign justifications (including criteria for
choosing between alternative designs).

The language should have a distinguished
executable subset that is easily recognizable
by human users and by automated tools.
Every expression in this distinguished sub­
set should be executable for all possible
initial conditions, although some expressions
may denote nonterminating computations.
The distinguished subset need not contain all
executable expressions, and expressions
outside the distinguished subset may be
partially executable in the sense that execu­
tion may fail under some conditions. It should
be possible to either augment or transform
expressions of the language outside the
executable subset to make them executable.

Besides supporting queries for the re­
trieval of reusable software components,
the language should have facilities for
adapting components to new uses and mak­
ing small perturbations on their behavior
without examining details of the internal
implementation of components.

To support high productivity, the lan­
guage should support the construction of
efficient implementations by augmenting the
prototype description with annotations de-

SUMMER 1989

scribing additional constraints or lower
level design decisions. This enables design­
ers to view optimization as a refinement
step where additional information is added
to original descriptions, rather than a com­
plete reformulation of the system descrip­
tion. Such an approach saves designer time
by avoiding repeated treatment of the same
issues in different ways, and by reducing
the opportunities for making transcription
or translation errors.

While more of a concern for the system's
production version than for the prototype,
efficiency cannot be ignored because we
must be able to run test cases and gather data
in a reasonable amount of time. This implies
that execution mechanisms based on ex­
haustive enumeration are insufficient to
meet the requirements of a prototyping lan­
guage, although they may be supplied as a
default to allow running small test cases
in the absence of information about more
efficient execution strategies. Therefore, the
language should provide a set of fairly ef­
ficient execution mechanisms, tools for lo­
cating performance bottlenecks in larger
systems, and incremental optimization
transformations to improve prototypes that
are impractically slow.

Real-time constraints. Real-time con­
straints impose a slightly different set of
subgoals: execution times must be predict­
able, although not necessarily fast. Proto­
types of real-time systems may operate in
simulated time or linearly scaled real time,
but actual execution times for the production
version must be predictable within accurate
bounds. The presence ofreal-time constraints
severely restricts the kinds of computation
systems may perform and - in the case of
expert systems - limits the amount of logi­
cal inference that can be performed. The
design of expert systems that operate within
real-time constraints has been largely unex­
plored; significant research progress is needed
in this area lo fully realize the goals of a
comprehensive prototyping language.

The rapid construction of software proto­
types depends on simplifying the system
view through which specifiers and designers
do their work, and providing automated
means for bridging the gap between this
simplified view and the detailed program­
ming-level description currently needed to
make a software system efficiently execut­
able. This automated support should include
mechanisms for execution, static analysis of
proposed system properties, preparation of
test cases, reporting and analyzing results,
and diagnosing ill-formed descriptions and
departures from desired behavior to enable
specifiers and designers to work entirely
within the simplified view - at least during
construction of the initial prototype. While
the construction of tools is not required until
later phases of the project, supporting the
construction of such a tool set is a major

driving force for language design. Develop­
ing an integrated set of tools requires a con­
sistent and simple semantic model rich
enough to express and support all of these
functions. Finding suitable models is the key
to the project.

Modeling issues

Models underlying the language provide
a common ground for the associated set of
tools. The semantic model for the language
provides the basis for automated analysis,
while the computational model provides the
basis for execution. One of the main chal­
lenges in this project is to find a model that
can coherently span the range ofapplications
required. This will require a significant
advance in the state of the art.

There is no single common model of
expert systems available for rapid prototyp­
ing. First-order logic is one of the most
familiar models for reasoning, but has been
criticized for weaknesses including the lack
of facilities for handling uncertain informa­
tion, representing heuristic methods for
speeding up conclusions, and nonmonotonic
reasoning. Many other kinds of logic have
been proposed, but theories of these logical
methods are still being explored and there
has been no consensus on whether a single
logic is suitable for constructing all types of
expert systems, or which variety of logic is
the most promising. Approaches to expert
systems are based on models other than logic;
for example, semantic networks, Bayesian
statistics, and production systems. Since it is
not clear which approach will yield the best
results in the long run, a comprehensive
prototyping language must find a unified
way of treating most issues raised by this
diverse set of models.

Moreover, no single commonly accepted
model can represent real-time constraints.
Some approaches that have been explored
include temporal logic, state machines, mode
charts, augmented dataflow diagrams, Petri
nets, and 1/0 automata. The model for a
comprehensive prototyping language should
be chosen lo enhance the application of re­
cent results in logic, graph theory, and com­
binatorics to link the semantic model to an
effective execution mechanism. Other
unexplored areas include effective models
for real-time databases and real-time com­
munications networks. In both areas, the
problems of providing service within guar­
anteed worst-case time bounds remain
largely unexplored.

Expert system design

Several special-purpose systems for sup­
porting expert system design have been
developed, some of which are known as
expert system shells. A comprehensive proto-

typing language should improve on avail­
able facilities if possible, and integrate them
with facilities suitable for producing other
kinds of software. Two approaches support
the prototyping of expert systems: (1) adding
special-purpose features to the prototyping
language, and (2) adding predefined reus­
able software components that we can define
within a general-purpose language; for ex­
ample, specialized data types, state machines,
and functions. The predefined-component
approach is preferable to the addition of
specialized language features because of the
requirement for simplicity. However, such
predefined components should have stan­
dardized interfaces to improve portability.

Standardization. Many standard build­
ing blocks for expert systems can be pro­
vided as generic predefined components.
These include facts, rules, patterns, frames,
contexts, constraints, demons, instance gen­
erators, pattern matchers, unification
mechanisms, and forward and backward
chaining inference engines. Standardization
requires careful analysis of these compo­
nents and specification of their required
properties. An open issue is whether current
mechanisms for defining generic compo­
nents are flexible enough to adequately
capture the range of behavior required for
these kinds of components - and, if not,
what extensions are required.

Expert system prototyping. Some re­
quirements for a prototyping language are
determined by the need for prototyping
expert systems. Examples of such require­
ments are (1) a means for conveniently
defining external representations and input
facilities for the knowledge in the knowl­
edge base, (2) support for the proper treat­
ment ofhigherorderobjects (including types,
functions, tasks, and generators), and (3)
support for control mechanisms such as state­
triggered demons, backtracking, runtime
control over task priorities, and the sched­
uling of temporal events. It is important
to meet these requirements in a prototyping
language for expert systems.

Knowledge base issues

Knowledge base management is an
important part of expert system design.
Rapid prototyping of knowledge-based
systems brings special requirements for
the design of a prototyping language as
well as its environment.

Expert system technology is useful in
implementing parts of the supporting envi­
ronment for a prototyping language. For
example, such an environment needs knowl­
edge base support for the following items:

(1) Managing reusable components:
The environment should contain a large
software base with reusable components.
This software base should be coupled with a
set of rules for tailoring and combining avail­
able components to fulfill queries that do not
exactly match any of the components explic­
itly stored in the software base.

(2) High-level debugging: Errors and
failures during prototype execution should
be mapped from the programming-language
level to the prototyping-language level,
thereby enabling designers to work entirely
in terms of the semantic model associated
with the prototyping language.

(3) Optimization: The transformations
for optimizing a system prototype to produce
a production version should be performed
with minimum designer interaction. This
implies keeping track of decisions made by
designers in optimizing previous versions,
determining which of these decisions are
still valid for later versions, and automati­
cally applying those valid decisions.

(4) Explanations: Justifications for de­
cisions made automatically should be avail­
able to provide feedback to designers when
automated design completion procedures fail.
This requires an expert system with a sub­
stantial knowledge base.

These needs indicate that the prototyping
system associated with a comprehensive
prototyping language will need expert sys­
tem technology for realizing some of its
major subsystems.

The Ada interface

DARPA/ISTO's proposed connection
between the common prototyping language
and Ada raises several issues that must be
considered. Goals for the common prototyp­
ing language include computer-aided trans­
formations of prototypes into Ada imple­
mentations of the software's production
version, and eventually implementing the
tools in the prototyping system in Ada to
provide portability. This poses a problem
because ordinary compiler technology is
insufficient to execute the prototyping lan­
guage. The need for flexibility and runtime
handling of newly created types and proce­
dures to support expert systems also pro­
vides challenges for efficient implementa­
tion techniques in terms of Ada. Conven­
tional translation techniques must be joined
with (1) facilities for scheduling to meet hard
real-time constraints, (2) transformations that
execute incompletely specified processes,
and (3) access to an interpreter or incre­
mental compiler at runtime.

Ada provides a completely static-type
system, treats types and functions as second­
class objects, and requires that task priorities
be known at compilation time. Clearly, the
flexibility required for supporting expert
system development can be provided by
adding a runtime interpreter on top of the
Ada language. The difficulty will be to pro­
vide these features efficiently, and without
introducing excessive runtime overhead for
prototype portions that do not require flexi­
bility beyond that provided directly by Ada.

Ada provides relatively weak guarantees
about task scheduling, and limits program­
mer control over scheduling to statically
specified priorities. Since this is somewhat
removed from the support level needed for
implementing hard real-time systems, the
execution support system for the prototyp­
ing language will have to provide higher
level facilities for scheduling real-time op­
erations. Such facilities can be classified as
on-line (done at runtime) and off-line (done
prior to execution). There is no universally
accepted approach to real-time scheduling.

Worth Knowing: Kudos and Recent IEEE Expert appointments

4

For the second consecutive year, IEEE Expert is a finalist for the Western Publications Association's Maggie Award
as best computer science publication in its category. Also up for Maggies are IEEE Computer Graphics and Applications
and IEEE Software.

Effective with this issue, Editor-in-Chief David Pessel has appointed Lance B. Eliot editor of our News and Focus
Sections in recognition of his numerous contributions over the last three years. In addition, Dr. Eliot will continue as
an IEEE Expert editorial board member.

Last February, EiC Pessel appointed Craig A. Anderson editor of IEEE Expert's Products Section. Editor Anderson plans
to increase product reviews and to implement product-related interviews with developers, vendors, and users. Anderson replaces
A. Winsor Brown, who served as products editor for the magazine's first three years. An IEEE Expert Editorial Board member,
Brown will continue with Products in an advisory capacity. Kittur S. (Doc) Shankar, also an Editorial Board member, continues
as resources editor. For a complete Editorial Board listing, see page 7.

The IEEE Expert staff welcomes and applauds these recent appointments, plus the addition to our staff masthead (in February)
of highly regarded commentators Ware Myers and Tom Schwartz as IEEE Expert contributing authors.

IEEE EXPERT

Optimal scheduling algorithms consume
considerable time and generally cannot be
carried out on-line, while off-line approaches
are inflexible and do not handle overload
situations well. Many different scheduling
algorithms exist; choosing the best one for a
given application is difficult.

Transformations are needed to execute
incompletely specified components. Such
transformations should supply reasonable
default values for attributes necessary for
execution if designers do not explicitly spec­
ify them. These attributes can be explicitly
specified to produce a more accurate
system model or to improve its perform­
ance. One example of such attributes is the
assignment of tasks to physical processors.
Sometimes the assignment of specific criti­
cal tasks to specific processors is necessary
to meet tight timing constraints by avoiding
the overhead of some interprocessor com­
munication. However, designers usually
don't care about the placement of all tasks,
and would like systems to assign reasonable
default locations to all tasks not having
explicit processor assignments.

D
ARPA/ISTO has made an impor­
tant decision to develop designs
for a rapid prototyping language
for software systems, which is in­

tended to apply to various large software
systems, including knowledge-based sys­
tems, parallel systems, distributed systems,
and real-time systems. DARPA/ISTO's
Common Prototyping Language Project has
an ambitious set of goals raising interesting
research problems, many of which involve
expert systems. Solutions to these problems
are essential for achieving significant im­
provements in the quality and productivity
of the software development process.

Over the last few years, Luqi has
worked on rapid software prototyping
and has made considerable recent
contributions to software engineering
and Al literature in IEEE Expert
(Winter 1988, pp. 9-18), Computer,
IEEE Software, and IEEE Transac­
tions on Software Engineering. She
received her BS in computational
mathematics from Jilin University
(PRC) and her MS and PhD in com­
puter science from the University of
Minnesota, where she taught and per­
formed software R&D. Before joining
the Naval Postgraduate School, she
worked for International Software
Systems, and did research for the
Academy of Science in Beijing. An
assistant professor of computer sci­
ence since 1986, Luqi can be reached
at the Computer Science Dept.,Naval
Postgraduate School, Monterey, CA
93943-5100.

SUMMER 1989

ARTIFICIAL INTELLIGENCE

AND EXPERT SYSTEMS

Tomorrow's Computing
Technology is Today's Challenge

---at---

Some of the nation's most excit­
ing developments in software
technology, supercomputer
architecture, AI, and expert sys­
tems are under scrutiny right
now at the Institute for Defense
Analyses. IDA is a Federally
Funded Research and Develop­
ment Center serving the Office of
the Secretary of Defense, the
Joint Chiefs of Staff, Defense
Agencies, and other Federal
sponsors.

IDA's Computer and Software
Engineering Division (CSED) is
seeking professional staff
members with an in-depth
theoretical and practical back­
ground in the area of Computer
Security. Tasks include efforts
on both the design/ development
of techniques to assess and
assure security and providing
advice to DoD decision makers
on appropriate and feasible
policy regarding security.

Specific desired skills and inter­
ests include:

• Formal verification, with
emphasis on the Ada language

• Secure kernels and reference
monitors

• Security in multiprocessor
systems

• Fault-tolerance in secure
systems

• Operating system, data base
and network security criteria

• Testing and evaluation

Specialists in other areas of
Computer Science are also
sought: Software Engineers, Dis­
tributed Systems, Artificial Intel­
ligence and Expert Systems, and
Programming Language
Experts.

We offer career opportunities at
many levels of experience. You
may be a highly experienced
individual able to lead IDA proj­
ects and programs ... or a
recent MS / PhD graduate. You
can expect a competitive salary,
excellent benefits, and a superior
professional environment.
Equally important, you can
expect a role on the leading edge
of the state of the art in comput­
ing. If this kind of future appeals
to you, we urge you to investi­
gate a career with IDA. Please
forward your resume to:

Mr. Thomas J. Shirhall
Manager of Professional Staffing
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311
An equal opportunity employer.
U.S. Citizenship is required.

	Luqi_Rapid Prototyping_Page_1
	Luqi_Rapid Prototyping_Page_2
	Luqi_Rapid Prototyping_Page_3
	Luqi_Rapid Prototyping_Page_4

