
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2020-06

STRUCTURAL PROPERTIES OF I-GRAPHS:
THEIR INDEPENDENCE NUMBERS AND CAYLEY GRAPHS

Klein, Zachary J.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/65383

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



NAVAL 
POSTGRADUATE 

SCHOOL
MONTEREY, CALIFORNIA 

THESIS

STRUCTURAL PROPERTIES OF I-GRAPHS: THEIR 
INDEPENDENCE NUMBERS AND CAYLEY GRAPHS 

by 

Zachary J. Klein 

June 2020 

Co-Advisors: Thor Martinsen 
Ralucca Gera 

Pantelimon Stanica 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2020

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
STRUCTURAL PROPERTIES OF I-GRAPHS: THEIR INDEPENDENCE
NUMBERS AND CAYLEY GRAPHS

5. FUNDING NUMBERS

6. AUTHOR(S) Zachary J. Klein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
We discuss in this paper the independence numbers and algebraic properties of I-graphs. The I-graphs

are a further generalization of the Generalized Petersen graphs whose independence numbers have been 
previously researched. Specifically, we give bounds for the independence number of different I-graphs and 
sub-classes of I-graphs, and exactly determine the independence number for other I-graphs and sub-classes 
of I-graphs. 
 We also analyze the automorphism groups of the I-graphs. These groups have been characterized in 
previous papers; in this paper, we examine them via their Cayley graphs. These Cayley graphs are 
characterized completely and examined according to their graph theoretical and algebraic properties. 

14. SUBJECT TERMS
I-graphs, independence number, Cayley graphs, automorphism groups, graph theory,
algebraic structures

15. NUMBER OF
PAGES

47
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

STRUCTURAL PROPERTIES OF I-GRAPHS:  
THEIR INDEPENDENCE NUMBERS AND CAYLEY GRAPHS 

Zachary J. Klein 
Ensign, United States Navy 

BS, United States Naval Academy, 2019 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN APPLIED MATHEMATICS 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 2020 

Approved by: Thor Martinsen 
 Co-Advisor 

 Ralucca Gera 
 Co-Advisor 

 Pantelimon Stanica 
 Co-Advisor 

 Wei Kang 
 Chair, Department of Applied Mathematics 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 We discuss in this paper the independence numbers and algebraic properties of 

I-graphs. The I-graphs are a further generalization of the Generalized Petersen graphs 

whose independence numbers have been previously researched. Specifically, we give 

bounds for the independence number of different I-graphs and sub-classes of I-graphs, 

and exactly determine the independence number for other I-graphs and sub-classes of 

I-graphs. 

 We also analyze the automorphism groups of the I-graphs. These groups have 

been characterized in previous papers; in this paper, we examine them via their Cayley 

graphs. These Cayley graphs are characterized completely and examined according to 

their graph theoretical and algebraic properties. 
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CHAPTER 1:
Introduction

Graph Theory is a relatively new branch of mathematics, comparatively that is, but the
study of objects and their relationships to each other is perhaps universal. It is therefore
no surprise that the mathematical laws and theorems that have flowered from the study of
graphs have myriad applications. Indeed the subject is so large (and at times intractable)
that it is quite difficult to generate broad sweeping theorems and axioms as can often be
found in other disciplines. It is in this sense that focusing on specific classes of graphs and
their properties becomes essential to the progression of our knowledge in graph theory. In
this spirit, this paper focuses on the I-graphs, and to a lesser extent, other generalizations of
the Petersen graph.

The object of this thesis is to study the graphs collectively known as I-graphs, both in
terms of the independence number of these graphs, and in terms of the Cayley graphs that
represent their automorphism groups. The I-graphs themselves are in fact a generalization
of a very famous graph in graph theory, the Petersen graph. In Chapter 1, we seek to explain
more casually the topics that are defined with mathematical rigor in proceeding chapters,
and give a general context for the work of this thesis.

The Petersen graph has been an object of great interest to graph theorists since its inception.
In many cases, the Petersen graph provides an important counterexample for graph theoret-
ical conjectures. This has given the Petersen graph an important place over time as a tool
by which new graph theoretical conjectures may be tested [1]. The graph itself is relatively
simple, it consists of ten vertices arranged as two five-cycles attached to one another at each
of their vertices (it is 3-regular). In its normal embedding in the plane there is an inner
cycle and an outer cycle, with the inner cycle forming the shape of a five-sided star. In this
fashion we observe that in the “outer cycle” every consecutive vertex is connected by an
edge and in the “inner cycle” every second vertex is connected by an edge (a skip of two).
This notion of an “inner graph” and an “outer graph” along with associated edge patterns
for each is important to generalizing the Petersen graph into the class of graphs we study in
this thesis.

1



Figure 1.1. The Petersen graph.

The Generalized Petersen graph (introduced by [2]) preserves the basic structure of the
Petersen graph in that it consists of two n-cycles attached to each other at every vertex
(3-regular again). These graphs are no longer contained to just ten vertices however, and
the vertices of each cycle need not be connected according to the pattern observed in the
Petersen graph itself. This means that if we embedded a Generalized Petersen graph on the
plane as before with an “outer cycle” where every consecutive vertex is attached by an edge,
then the vertices of the “inner cycle” do not need to have a skip of two, but can in fact have
a skip of any number. This is usually taken to be less than half the number of vertices in a
cycle by convention.

Yet the class of I-graphs which we study in this thesis are an even further generalization of
the Generalized Petersen graphs. These graphs viewed in the conventional embedding on
the plane allow for not only a skip on the “inner cycle,” but also a skip on the “outer cycle.”
If we try to construct a graph we may realize that the graph we have constructed could be
re-arranged to a different embedding on the plane to resemble a Generalized Petersen graph.
In fact, many I-graphs are actually isomorphic to Generalized Petersen graphs. This thesis
however, is concerned with I-graphs that are not themselves Generalized Petersen graphs.
As we shall see these are called “proper” I-graphs.
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The first goal of this thesis is to study and understand independent sets in the I-graphs. In
particular we find bounds and expressions for the size of maximum independent sets. But
why is this important? From what problem did the question of independent sets arise?
What is an independent set? Finding an independent set in a graph is essentially the same
as solving some scheduling problem [3]. In other words we are seeking a set of objects that
share no commonalities. In the graph this is simply a set of vertices where no two vertices
have an edge between them. Thus giving parameters for a maximum size independent set
in a graph or a class of graphs gives us a notion of the maximum sized set of objects with no
redundancies for some system. There are many applications that rely on algorithms which
find maximum size independent sets. Picking course loads or de-conflicting traffic are just
two examples.

This thesis moves beyond independent sets to discuss the algebraic properties of the I-
graphs. Graphs admit a great deal of algebraic structure. One such structure on graphs
of interest in this thesis is the automorphism group of a graph. Notice that if we start
from the conventional drawing of the Petersen graph, certain rotations or reflections of the
Petersen graph are indistinguishable from our original starting point. In more mathematical
terms, this means that there are isomorphisms between the Petersen graph and itself.
These isomorphisms, in fact called automorphisms, form an algebraic structure called a
group when paired with the operation of functional composition. The I-graphs being a
generalization of the Petersen graphs admit both automorphisms of rotation and reflection,
but also other more complex automorphisms described later in this thesis that work on the
“inner” and “outer” cycles of the graph.

Why are these automorphism groups important to mathematicians? Well in some sense the
automorphism group of any object encodes all of the various symmetries that object has.
This notion of a group of symmetries has many applications and often allows physicists
to describe the geometry of different objects and their symmetry properties as they move
through space.

The automorphism groups of the I-graphs have been established in previous work, which
we describe fully in Chapter 2, but no further work has been done to characterize properties
of these automorphism groups. In this thesis, we study the algebraic properties of these
automorphism groups via their associated Cayley graphs. These graphs represent the

3



structural properties of a given group. In our case, they succinctly represent the elements
of the automorphism groups and the relations between those elements. We provide some
important new results concerning the Cayley graphs for the automorphism groups of an
I-graph, both in specific cases and in general.

We also move to examine the eigenvalues for our Cayley graphs. It is therefore that in
coming up with eigenvalues for the adjacency matrix of our Cayley graphs we have traveled
all the way from Graph Theory to Linear Algebra. Finding the spectrum of our Cayley
graphs gives further insight into the automorphism groups for the I-graphs in this thesis.

One inadvertent consequence of studying the I-graphs in this thesis is that we have in reality
gained a small window of insight into how thoroughly the mathematical world and all of
its various fields are connected. The fact that an analysis of the structure of one small class
of graphs can take us all the way from Graph Theory, to Algebra and Group Theory, and
finally to a study of eigenvalues, shows this connection clearly.
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CHAPTER 2:
Background and Literature Review

In this chapter, we outline prerequisite results that will contribute to our own work on
independent sets and algebraic properties in I-graphs. Our work builds upon the results
of Boben, Fox, Gera, Pisanski, Stănică, and Zitnik, in addition to others, as we detail and
reference in this chapter.

We start in the first section by introducing common graph theory terminology. We subse-
quently examine the links between graph theory and groups in the second section. The third
section states prior results for finding bounds of the independence number in Generalized
Petersen graphs. The Generalized Petersen graphs are a sub-class of the I-graphs introduced
in the fourth section of this chapter.

This paper uses common graph theory terminology found in reference [4]. For the benefit
of the reader, we list some of these common definitions and concepts in Section 2.1. We
build upon these definitions to understand I-graphs.

Gross and Tucker’s work on the connection between Graph and Group theory forms the core
of Section 2.2 in this chapter [5]. Our own work seeks to explore the algebraic properties
of the I-graphs in the form of automorphism groups. Boben, Pisanski and Zitnik discuss
the automorphism groups of I-graphs in their paper [6].

The basis of the Section 2.4 is formed by Fox, Gera, and Stănică’s results on bounding the
independence number in Generalized Petersen graphs [7]. This work is helpful to our own
goal of finding bounds on the independence number of I-graphs.

Boben, Pisanski and Zitnik demonstrate many properties of I-graphs in their work that
inform the final section of this chapter [6]. The properties of I-graphs are integral for finding
bounds on the independence number and exploring automorphism groups in I-graphs. This
section is integral to the new work of this thesis.
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2.1 Graph Theory Basics
As stated, we now provide some basic graph theory definitions for the benefit of the reader.
We start with the definition of a graph itself. The definition appears here as in [4].

Definition 2.1.1. A graph is a pair G = (V,E) of sets satisfying E ⊂ V2. Thus
the elements of E called edges of G are two element subsets ofV . The elements
of V are known as vertices of G.

For the purposes of this paper we limit ourselves to the study of simple graphs. This means
that our graphs avoid loops and multi-edges. All I-graphs and Generalized Petersen graphs
are simple. For convenience, edges of graphs are often denoted by their incident vertices in
alphanumeric order and not in set form.

In this paper, we concern ourselves with independent sets in graphs. These sets are useful
in applications, and give us a graph invariant. We now give the definition of an independent
set. An example of an independent set in a graph is found in Figure 2.1. This definition
appears here as found in previous work [7].

Definition 2.1.2. Given a graph G, an independent set I(G) is a subset of the
vertices of G such that no two vertices in I(G) are adjacent.

6



Figure 2.1. The filled in vertices identify an independent set in I(12,2,3).

Clearly, these sets have many interesting applications. The independent sets that we are
interested in are the maximum independent sets. Note that independent sets are not unique,
not even maximum independent sets. The size of the largest independent set in a graph
is known as the independence number as we introduce in Definition 2.1.3. Finding the
independence number of I-graphs is what this paper is chiefly concerned with. Finding the
independence number is an NP-hard problem [8], and we therefore rely on finding bounds
for the independence number in some cases. We formally define the independence number
below.

Definition 2.1.3. The independence number, α(G) of the graph G, is the car-
dinality of a largest set of independent vertices.

The independent set shown in the previous figure is in fact maximum, and therefore we may
say that α(I(12,2,3)) = 10.

2.2 Algebraic Perspectives on Graphs
Another important goal of this project is to find a well-defined Cayley graph that can
represent the automorphism group of an I-graph. To that end, we introduce some basic
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definitions here such as the notions of isomorphism, automorphism and Cayley graphs.
Much work has been done on the connection between group and graph theory. We rely
largely on the work of Gross and Tucker, and specifically [5]. Another great source for this
paper was the work of Joyner and Melles in [4]. Many definitions below are taken from
these works.

Definition 2.2.1. We say f : G2 → G1 is a map from the graph G2 = (V2,E2)

to G1 = (V1,E1) if f is associated to the maps fV : V2 → V1 and fE : E2 → E1

where fE (uv) = fV (u) fV (v) ∈ E1. We say f is an isomorphism if both fV and
fE are bijections.

Isomorphisms are important for understanding the characteristics of graphs that are invari-
ant. The notion of isomorphism between graphsmotivates the assigning of a group structure
to a graph, or likewise, the assigning of a graph to a group structure. Gross and Tucker give
us the following definition in [5].

Definition 2.2.2. An isomorphism, f : G → G, from a graph to itself is
called an automorphism. Under the operation of composition, the family of all
automorphisms of a graph G forms a group called the automorphism group of
G, and is denoted Aut(G).

Note that automorphisms must by definition preserve graph invariants. Only certain ver-
tex/edge re-labelings are automorphisms of the graph. To emphasize this point we introduce
the definitions of vertex-transitivity and edge-transitivity in graphs. These are important
notions that further ground our understanding of Cayley graphs and the connections between
group and graph theory. We take these definitions from Joyner and Melles [4].
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Definition 2.2.3. A vertex-transitive graph is a graph G such that, given any
two vertices v1 and v2 of G, there is an automorphism of G that maps v1 to v2.

Definition 2.2.4. Likewise, an edge-transitive graph is a graph G such that,
given any two edges e1 and e2 of G, there is an automorphism of G that maps
e1 to e2.

The group of automorphisms of a graph essentially encodes the structure of a graph alge-
braically. In other words, it is the group of vertex/edge re-labelings that do not change the
fundamental structure of the graph. Likewise, we would like to be able to represent groups
via a graph that preserves the structure of the group. This is done with Cayley graphs.
These too will be important to our work. We give the definition of the Cayley graph as
defined in [4] by Joyner and Melles.

Definition 2.2.5. Let G be a finite multiplicative group. Let S ⊂ G be a subset
which satisfies the condition S = S−1 and 1 < S. The Cayley graph of (G ,S)
is the graph G = Cay(G ,S) whose vertices are V = G and whose edges E

are defined by pairs (g1, g2) such that g2g
−1
1 ∈ S. Note that G = Cay(G ,S) is

|S |-regular, and is connected if and only if S generates G .

Gross and Tucker go on to explain the connection of Cayley graphs to group theory by
linking maps between Cayley graphs to group homomorphisms. This is done by assigning
both colors and directions to the Cayley graph and thus making a Cayley color graph. To
get the Cayley color graph we say the positive direction of an edge is from g1 to g2, and a
coloring is assigned (see [5]). This link between group theory and graph theory is important
because it allows us to shift seamlessly between algebraic and graph theoretical observations
of the same structure. This is outlined in the following result from [5].
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Theorem 2.2.1 (Gross, Tucker). Let f : Cay(G ,S) → Cay(G ′,S′) be a color-
consistent, direction-preserving, identity preserving map. Then its vertex func-
tion coincides with a group homomorphism G → G ′. Conversely, any group
homomorphism h : G → G ′ such that h(S) ⊂ S′ coincides with the vertex
function of a color-consistent, direction-preserving, identity preserving map
Cay(G ,S) → Cay(G ′,S′). If our map is a graph isomorphism then the theo-
rem implies coincidence with a group isomorphism.

Gross and Tucker go on to the following result which is helpful to our work in that it sheds
light on a connection to I-graphs.

Theorem 2.2.2 (Gross, Tucker). Any Cayley graph is vertex transitive.

Gross and Tucker move on to note that the converse of this does not hold, and that a notable
exception is the Petersen graph itself. This is important to our work here.

2.3 Generalized Petersen Graphs
To understand fully the class of I-graphswe first introduce the notion ofGeneralized Petersen
graphs as found in reference [7]. The I-graphs are a further generalization of this class of
graphs, and work has already been done to determine bounds for the independence number
of Generalized Petersen graphs. This work was done by Fox, Gera, and Stănică [7], and
some of their results appear here in this section.

The Petersen graph is quite a famous graph in itself. It is often cited as a counter-example to
many graph theoretical results. The Petersen graph is made of outer and innerC5 sub-graphs
connected such that the inner sub-graph is in a pentagram form. This graph will become
the base of our notion of Generalized Petersen graphs. See Figure 2.2.

10



Figure 2.2. The Petersen graph, with an independent set.

The Generalized Petersen graphs expand on the Petersen graph by allowing a generic
skip in the inner sub-graph and a generic number of vertices. It is hard to pin down the
independence number of these graphs. Indeed, finding the independence number is a NP
hard problem [8].

Definition 2.3.1. A Generalized Petersen graph, P(n, k) has vertices and edges
given by

V(P(n, k)) = {ai, bi |0 ≤ i ≤ n − 1},

E(P(n, k)) = {aiai+1,aibi, bibi+k |0 ≤ i ≤ n − 1},

where the subscripts are expressed as integers modulo n (n >= 5). We define
A(n, k), the outer sub-graph, as the sub-graph of P(n, k) consisting of the
vertices {ai |0 ≤ i ≤ n − 1} and edges {aiai+1 |0 ≤ i ≤ n − 1} . Similarly,
B(n, k), the inner sub-graph, is the sub-graph of P(n, k) restricted to the b

vertices.

We now move to give some basic properties of the Generalized Petersen graphs. These
results are recorded in [7] as introduction to the results of Fox, Gera, and Stănică as well.

11



Theorem 2.3.1 (Fox, Gera, Stănică). The following are true for the Generalized
Petersen graphs P(n, k),1 ≤ k ≤ b n−1

2 c. The restriction on the “skip” k follows
from (1).

1. P(n, k) � P(n,n − k).

2. P(n, k) is a 3-regular graph with 2n vertices and 3n edges.

3. P(n, k) is bipartite if and only if n is even and k is odd.

4. Assume that n, k, s are positive integers satisfying k . ±s (mod n). Then
P(n, k) � P(n, s) if and only if ks ≡ ±1 (mod n)).

5. P(n, k) is vertex-transitive if and only if (n, k) = (10,2) or
k2 ≡ ±1 (mod n).

6. P(n, k) is edge-transitive only in the following cases (n, k) = (4,1), (5,2), (8,3), (10,2),
(10,3), (12,5), (24,5).

7. P(n, k) is a Cayley graph if and only if k2 ≡ ±1 (mod n).

Finding bounds for the I-graphs is an important aspect of our work. Fox, Gera, and Stănică
go on in their noteworthy paper (reference [7]) to give sharp bounds and exact equations for
the independence number of Generalized Petersen graphs. This is important to our work
because this class of graphs is in fact a sub-class of the I-graphs. We will rely on many of
Fox, Gera, and Stănică’s methods for finding bounds of the independence number in this
work. We therefore record some of the results for independence number bounds in the class
of Generalized Petersen graphs below. This work can be found in [7].

Theorem 2.3.2 (Fox, Gera, Stănică). The following results apply to a Gener-
alized Petersen graph P(n, k):

1. For any n and k we have, α(x) ≤

{
n if n is even
n − 1 if n is odd.

Equality is achieved when k = 1.
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2. α(P(n, k) = n if and only if P(n, k) is bipartite.

3. If n ≥ 5, then α(P(n,2)) = b 4n
5 c.

4. If n > 6, then α(P(n,3)) =

{
n if n is even
n − 2 if n is odd.

5. If n > 10, then α(P(n,5)) =

{
n if n is even
n − 3 if n is odd.

6. If n and k are odd integers then α(P(n, k)) ≥ 2n−k−1
2 . With equality if k

divides n.

7. If n and k are integers with n odd and k even, then

α(P(n, k)) ≥
n − 1

2
+

⌊
d n

k e + 1
2

⌋
·

⌊
n

2dd n
k e

⌋
+

d − 1
2
·

⌊
1
2

( n
d
(mod d

n
k
e)

)⌋
.

This equation approaches (2d+1)n
4d + d−1

2 asymptotically, where d =

gcd(n, k).

8. If n and k are even integers, then α(P(n, k)) ≥ n
2 +

d
2
⌊ n

2d

⌋
� 3n

4 , where
d = gcd(n, k).

In order to find these sharp bounds Fox, Gera, and Stănică developed techniques that we
use in this paper. Most notably are the techniques of breaking a graph into sub-graphs
and examining independent sets locally. Another interesting method discussed in [7] that
we place particular emphasis on is the so called “greedy” approach to finding a maximum
independent set where you start at a particular vertex and iteratively expand the set as quickly
as possible as you move away. This approach does not necessarily guarantee a maximum
sized independent set, but we discuss this in this paper.

2.4 I-graphs
By now it is surely irritating to realize that none of the definitions and preliminary results we
have discussed have been related to our desired class of graphs, that is, I-graphs. I-graphs are
a generalization of Generalized Petersen graphs. In fact, theGeneralized Petersen graphs are
themselves a special sub-class of I-graphs. We further generalize the Generalized Petersen
graphs by also allowing a skip in the outer sub-graph. The authors Boben, Pisanski, and
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Zitnik, give a definition for the class of I-graphs in reference [6], and we replicate the
definition here.

Definition 2.4.1. The I-graph I(n, j, k) is a graph with vertex set

V(I(n, j, k)) = {a0,a1, ...,an−1, b0, b1, ..., bn−1}

and edge set

E(I(n, j, k)) = {aiai+ j,aibi, bibi+k |0 ≤ i ≤ n − 1}.

Since I(n, j, k) � I(n, k, j) we assume that j ≤ k. Note that we define the outer
and inner sub-graphs as we did before with the Generalized Petersen graphs. It
should also be obvious that P(n, k) � I(n,1, k).

Boben, Pisanski and Zitnik term the vertices ai of the outer sub-graph A(n, j, k) the vertices
on the outer rim. Likewise, the vertices bi of B(n, j, k) are the vertices on the inner rim.
The edges running between A(n, j, k) and B(n, j, k) are termed spokes.

As with the Generalized Petersen graphs we start with some basic properties of the I-graphs.
These properties appear here as they are in reference [6], where they introduce the work
of Boben, Pisanski, and Zitnik. These properties are crucial for this paper, and we draw
special attention to (5) and (6). These properties distinguish when an I-graph falls into the
sub-class of the Generalized Petersen graphs.

Theorem 2.4.1 (Boben, Pisanski, Zitnik). The following are true for I-graphs
I(n, j, k):

1. The graph I(n, j, k) is connected if and only if gcd(n, j, k) = 1. If
gcd(n, j, k) = d > 1, then the graph I(n, j, k) consists of d copies of
I(n/d, j/d, k/d).
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2. A connected graph I(n, j, k) is bipartite if and only if n is even and j, k are
odd.

3. If j , ±k then I(n, j, k) has a cycle of length 8. If j = ±k then in I(n, j, k)

there exists a cycle of length 4.

4. Let n, j, k and a be positive integers such that gcd(n, j, k) = 1 and
gcd(n,a) = 1. Then the graph I(n,a j,ak) � I(n, j, k).

5. Let n, j and k be positive integers such that gcd(n, j, k) = 1,gcd(n, j) , 1
and gcd(n, k) , 1 then the graph I(n, j, k) is neither vertex-transitive nor
edge-transitive.

6. A corollary of (5). A graph I(n, j, k) is a Generalized Petersen graph
if and only if gcd(n, j) = 1 or gcd(n, k) = 1. If gcd(n, j) = 1 then
I(n, j, k) � P(n, s), where s is the solution of the equation k ≡ s· j (mod n)

(this equation is always solvable, for s > n/2 take instead P(n,n − s)).

7. Let n, j, k, j′, and k′ be positive integers such that gcd( j, k) = gcd( j′, k′) =
1 and gcd(n, j) = gcd(n, j′) , 1, and gcd(n, k) = gcd(n, k′) , 1. Then the
graph I(n, j, k) � I(n, j′, k′) if and only if k · j′ ≡ ±k′ · j (mod n).

Boben, Pisanski, and Zitnik note that specifically items (4), (6) and (7), as well as (4)
from Theorem 2.4.1 point to the fact that it is entirely possible to have I-graphs with
different parameters that are in fact isomorphic graphs. Understanding this overlap and
its implications is important to the work of this paper. Note that (5) defines a class of
the I-graphs that are not isomorphic to Generalized Petersen graphs themselves. Boben,
Pisanski, and Zitnik term these proper I-graphs. We are chiefly concerned with this set of
I-graphs in this paper. We give the formal definition below.

Definition 2.4.2. An I-graph is called proper if it is connected and not isomor-
phic to a Generalized Petersen graph.

These are the graphs that we are chiefly concerned with in this work and most of our results
are tailored for application to this sub-class of the I-graphs. The class is narrower than might

15



be thought. The two smallest proper I-graphs, shown below in Figure 2.5 are I(12,2,3) and
I(12,3,4).

Figure 2.3. I(12,2,3) Figure 2.4. I(12,3,4)
Figure 2.5. The smallest proper I-graphs.

In summary, this chapter gave a background of both the graph theory and group theory
surrounding I-graphs. Most notably we discussed previous work on Cayley graphs, Gen-
eralized Petersen graphs, sharp bounds on the independence number for such graphs, and
properties of the I-graphs. We will go on to explore these topics as applied to I-graphs in
our work.
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CHAPTER 3:
The Results

In this chapter, we provide some results that state or bound the independence number for
specific classes of proper I-graphs. We then move on to characterize the Cayley graphs for
the automorphism groups of proper I-graphs.

3.1 Bounds on the Independence Number of Specific I-
graphs

We begin this section by introducing bounds for specific proper I-graphs, generalizing these
in some direction, further in the section. We note from the introduced definitions and
Theorem 2.4.1 that for a proper I-graph I(n, j, k) we have that n is a multiple of ( j, k). This
will be very useful for the following theorems involving independence numbers in I-graphs.

Since the decision problem associated with maximum independent set is NP-Complete [8],
it is in general difficult to show that an independent set is maximum even for a given I-graph.
In the next theorem we determine precisely the independence number for a specific subclass
of the I-graphs.

Theorem 3.1.1. Consider the proper I-graphs of the form I(6r,2,3), with 2 ≤ r ∈ Z. Then
α(I(6r,2,3)) = 5r .

Proof. We first demonstrate by construction that α(I(6r,2,3)) ≥ 5r . Take an independent
set Q via the following construction. Let

Q1 = {b0, b1, b2, b6, b7, b8, . . . , bn−6, bn−5, bn−4}.

As k = 3, this is an independent set. Take also

Q2 = {a3,a4,a9,a10, . . . ,an−3,an−2}.

As j = 2, these vertices are not adjacent to themselves. Because no index value appears
twice in Q = Q1 ∪Q2, none of the vertices are adjacent.
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Note that 6r is an even multiple of 3 for all r ≥ 2. We see Q thus includes half the vertices
of the inner subgraph B(n, j, k). Furthermore, Q includes 6r

2k sets of consecutively indexed
vertices. We can conclude that for every consecutively indexed set of B(n, j, k) vertices, Q

includes two vertices from the outer subgraph A(n, j, k). Thus |Q | = 6r
2 +

2·6r
2k = 5r .

We now demonstrate that α(I(6r,2,3)) ≤ 5r . We define a subset Qi of V(I(6r,2,3)) by
Qi = {bi, bi+1, . . . , bi+5,ai,ai+1, . . . ,ai+5}, where 0 ≤ i ≤ n−1. Then Qi must contain either
5 or 6 independent vertices in a maximal independent set denoted by Q′i as we show next.
We then show Q′i ∪ Q′i+6 ∪ . . . ∪ Q′i+(6(r−1)) is only an independent set if |Q′i+ j | = 5 for all
j ∈ {0,6, . . . ,6(r − 1)}, where r is the parameter in I(6r,2,3).

We next show by contradiction that this is the case when r = 2. Suppose that the vertices
of an I-graph can be partitioned into two sets Q0 and Q6 as defined. Note that max |Q′i | = 6
for all i. This can be realized by taking Q′i = {bi+2, bi+3, bi, bi+1,ai+4,ai+5} and since
every index value of Qi is represented in the set no other vertex from Qi can be included
in the independent set Q′i. Thus in order to beat the bound of 5r either |Q′0 | = 5 and
|Q′6 | = 6 or |Q′6 | = 5 and |Q′5 | = 6. Without loss of generality we suppose |Q′0 | = 6, then
Q′0 = {b2, b3,a0,a1,a4,a5}. Note that the vertices b6, b11,a6,a7,a10,a11 are all adjacent to
vertices in Q′0, therefore; since Q′0 ∪ Q′6 is an independent set, none of these vertices are
elements of Q′6. This leaves only b7, b8, b9, b10,a8,a9, but we can take at most one vertex
(either bi or ai) for every index value i as an element of Q′6. It is therefore impossible to
have |Q′6 | = 5.

Due to the fact that k = 3 we can have at most three vertices from the inner-subgraph in any
Q′i. There are three possibilities for this, either bp, bp+1, bp+2 ∈ Q′i where p ∈ {0,1,2,3},
bi, bi+1, bi+5 ∈ Q′i or bi, bi+4, bi+5 ∈ Q′i. In every case where this occurs we can include
only two additional vertices from the outer-subgraph in Q′i. We pick these from the three
index values not adjacent to some bp ∈ Q′i. We thus have that if Q′i has three vertices
from the inner-subgraph (the most possible) then max |Q′i | = 5. Since j = 2, we can
have at most four independent a vertices in Qi. This can only occur in one way, where
Q′i = {bi+2, bi+3,ai,ai+1,ai+4,ai+5}. In this case, we have |Q′i | = 6.

We now show by contradiction that our claim holds in the case when r ≥ 3. Suppose that
we partition I(6r,2,3) into r subsets of Qi and there exists j ∈ {0,6, . . . ,6(r − 1)} such
that Q′i+ j = {bi+ j+2, bi+ j+3,ai+ j,ai+ j+1,ai+ j+4,ai+ j+5}. Without loss of generality (simply a
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Figure 3.1. This image displays a Q′i with six vertices.

consequence of labeling) say this occurs at j = 0 and i = 0.

Then Q′0 = {b2, b3,a0,a1,a4,a5}, and the vertices b6, bn−1,a6,a7,an−1,an−2 are all adjacent
to vertices in Q′0. In order to achieve an independent set larger than the bound of 5r , it must

be the case that
|Q′6 |+|Q

′
12 |+···+|Q

′
6(r−1) |

r−1 ≥ 5. If there exists some Q′j ( j ∈ {6, . . . ,6(r − 1)})such
that |Q′j | ≤ 4 then it necessitates that there is some Q′p (p ∈ {6, . . . ,6(r − 1)}, and p , j)
such that |Q′p | = 6. Having both |Q′p | = 6 and |Q′0 | = 6 leads to an immediate contradiction
because it would imply two Q′s (s ∈ {6, . . . ,6(r − 1)}, and s , j, k) such that |Q′s | ≤ 4. This
implies further sets Q′i of size six, this process continues to compound until we arrive at the
contradiction of two adjacent subsets saywithout loss of generalityQ′j andQ′j+6 with size six.
Thus in order to beat the bound of 5r it must be the case that |Q′6 |, |Q

′
12 |, . . . , |Q

′
6(r−1) | ≥ 5.

Due to the vertices included in Q′0, we note that there is only one possibility for choosing
Q′6 such that |Q′6 | ≥ 5. That is having Q′6 = {b7, b8, b9,a10,a11}. This then forces Q′12 =

{b13, b14, b15,a16,a17} and so forth. Thus if we have Q′j = {b j+1, bJ+2, b j+3,a j+4,a j+5} then
it must be that Q′j+6 = {b j+7, b j+8, b j+9,a j+10,a j+11}. We therefore conclude that it must be
the case that Q′6(r−1) = {bn−5, bn−4, bn−3,an−2,an−1}, but this set includes vertices adjacent
to Q′0. We have a contradiction.

Thus Q′i ∪ Q′i+6 ∪ · · · ∪ Q′i+(6(r−1)) is only an independent set if |Q′i+ j | = 5 for all j ∈

{0,6, . . . ,6(r − 1)}. We have shown by contradiction that if this is not the case then the
union is not an independent set. If |Q′i+ j | = 5 for all j ∈ {0,6, . . . ,6(r − 1)}, then the size of
Q′i ∪Q′i+6 ∪ · · · ∪Q′i+(6(r−1)) is 5r . Thus α(I(6r,2,3)) ≤ 5r . Since 5r ≤ α(I(6r,2,3)) ≤ 5r ,
we have α(I(6r,2,3)) = 5r . �

3.2 K-groupings and J-groupings
We have developed (in conjunction with our colleague Matthew Dods [9]) methods for
constructing an independent set in an I-graph that will always provide a decent lower bound
for the independence number. For the construction we use the terms “K-groupings” and
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“J-groupings.”

Definition 3.2.1. Take a sequence of k consecutively indexed vertices in the inner subgraph
B(n, j, k)we call this aK-grouping. Likewise, we call a sequence of j consecutively indexed
vertices from A(n, j, k) a J-grouping.

We give now a loose description of constructing an independent using K-groupings, that
we employ in our Theorems. The construction partitions the vertices of the inner subgraph
B(n, j, k) into K-groupings. For the construction of an independent set we take a sequence
of k consecutively indexed vertices from B(n, j, k) in an independent set as our first K-
grouping. We then exclude the adjacent K-groupings from our set, as we examine each
consecutive vertex of B(n, j, k) we include every other K-grouping in our independent set
until we arrive at our original K-grouping or at a K-grouping adjacent to the original. We
say two K-groupings are adjacent when every edge bibi+k ∈ E(B(n, j, k)) is such that bi

belongs to the first K-grouping and b j belongs to the second. In the second case we have
two adjacent K-groupings not in our independent set. We then fill in as many vertices from
A(n, j, k) as possible between each K-grouping in our independent set. This method gives
an independent set. The construction for J-groupings is identical except that we start by
taking J-groupings from A(n, j, k). Note that in the construction we partitioned the inner
subgraph.

Note that in the previous theorem we used the method of K-groupings to construct the
lower bound in our proof, and in fact, that independent set was maximum. We now provide
a theorem that pins down a lower bound for the independence number of I-graphs with
k = j + 1 using the method of K-groupings.

Theorem 3.2.1. Consider the proper I-graphs of the form I(r · j( j + 1), j, j + 1), where
r > j are both positive integers. Then

α(I(r · j( j + 1), j, j + 1)) ≥ (2 j + 1) ·
⌊
r j
2

⌋
+ 2δ(r j),

where for x an integer

δ(x) =


0 x is even

1 x is odd.
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Proof. This is shown by constructing an independent set via the method of K-groupings.
We form a partition of B(r · j( j + 1), j, j + 1) with K-groupings. We start by taking j + 1
consecutively indexed vertices K1 = {b0, . . . , b j}. Without loss of generality this is the first
K-grouping, and we let K1 ⊂ Q. Note now that K2 = {b j+1, . . . , b2 j+1} consists entirely
of vertices adjacent to vertices from K1. We therefore let K2 1 Q. Moving consecutively
through B(r · j( j + 1), j, j + 1) we take

⋃
i odd

Ki ⊂ Q. Note that if r · j is odd then

Kr j, Kr j−1 1 Q, and that if r · j is even then Kr j 1 Q and Kr j−1 ⊂ Q. Thus we see
that the number of K-groupings in Q is exactly b r j

2 c. Now note that since k = j + 1 we
can include a J-grouping from A(r · j( j + 1), j, j + 1) for every K-grouping that is a subset
of Q into the set Q and it will still be an independent set. For example, we can take the
J-grouping J1 = {a j+1, . . . a2 j which are the indices in the outer-subgraph that are indexed
consecutively to indices in K1. With these vertices we now have |Q | = (2 j + 1) · b r j

2 c. Now
suppose that r j is odd. In this case we have that Kr j, Kr j−1 1 Q. We can therefore include
more vertices from A(r · j( j + 1), j, j + 1) since there are two consecutive K-groupings that
are not included in Q. We can in fact include J′ = {a(r · j( j+1))−1,a(r · j( j+1))−2} into Q. These
two vertices are not adjacent to any vertices already in Q. Any other ai adjacent to a vertex
in Kr j is adjacent to Jr j−2. Thus we see that |Q | = (2 j + 1) · b r j

2 c + 2δ(r j), where we define
the δ function over the integers as

δ(x) =


0 x is even

1 x is odd.

Since Q is an independent set by construction, we have the claim. �

In summation, using K-groupings and J-groupings to construct an independent set in I-
graphs provides a lower bound for the independence number. Independent sets constructed
in this fashion include vertices in a way that is evenly distributed across the graph. It is in
some way a greedy approach that seeks to maximize the number of independent vertices in
a localized subgraph.
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3.3 Cayley Graphs for Aut(I(n, j, k))
We have already briefly discussed the connection between graphs and groups. We now
move to solidify this connection for I-graphs in particular.

Theorem 3.3.1. No proper I-graph is itself a Cayley graph for any group.

Proof. This is an immediate result of the definition of a proper I-graph and a Cayley graph.
Let G = I(n, j, k) be an I-graph. We note that all Cayley graphs are by definition vertex
transitive. The I-graph G is only vertex transitive if gcd(n, j) = 1 or gcd(n, k) = 1. Now, we
see by Theorem 2.4.1 that G is not a proper I-graph in this case. �

Boben, Pisanski and Zitnik [6] have characterized the automorphism groups of the proper
I-graphs completely. That when taken in combination with the work of Frucht, Graver, and
Watkins gives us a complete characterization for the automorphism group of any I-graph [6].

This paper will focus on the automorphism groups of proper I-graphs. To define these
groups we first define the necessary automorphisms [6].

Proposition 3.3.1 (Boben, Pisanski, Zitnik). The following mappings are au-
tomorphisms of I(n, j, k):

1. The “rotation” mapping ρ, such that ρ(xa) = xa+1.

2. The “reflection” mapping τ, such that τ(xa) = x−a.

This implies that the automorphism group of G = I(n, j, k), denoted Aut(G),
has the dihedral group Dn as a subgroup.

These automorphisms of the dihedral group do not represent all possible automorphisms of
I(n, j, k). The restrictions on the proper I-graphs, means there are also I-graphs that have
automorphisms which rotate cycles from A(n, j, k) and reflect cycles in B(n, j, k) or vice
versa.

We note that since the I-graphs under consideration are proper we have for I(n, j, k) that
gcd(n, j) = j1 , 1, gcd(n, k) = k1 , 1. This notation is borrowed [6].
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Proposition 3.3.2 (Boben, Pisanski, Zitnik). Let n = j1k1 or n = 2 j1k1, since
j, k are relatively primewe label a vertex xa of I(n, j, k) as xi j+pk where i j+pk ≡

a (mod n). Then the graph I(n, j, k) has also the following automorphisms:

1. The mapping φ, such that φ(xi j+pk) = x−i j+pk .

2. The mapping ψ, such that ψ(xi j+pk) = xi j−pk .

We can now completely characterize the automorphism group of any I-graph. This is shown
in the following theorem.

Theorem 3.3.2 (Boben, Pisanski, Zitnik). If n
j1k1

> 2, then the automorphism
group of the graph I(n, j, k) is isomorphic to the dihedral group Dn otherwise
it is isomorphic to the group Γ defined by:

Γ = 〈ρ, φ,ψ |ρn = φ2 = ψ2 = 1, φψ = ψφ, ρφ = φρa, ρψ = ψρb〉

where b ≡ −a (mod n) and a is the inverse in Zn of the element sk − t j such
that sk + t j ≡ 1 (mod n).

Theorem 3.3.3. Consider the proper I-graphs, G = I(n, j, k), with their automorphism
groups Aut(G). The following constructions are Cayley graphs that represent Aut(G) using
the fewest group generators:

1. If Aut(G) = Dn then we have for the Cayley graph C1(Dn,S1) that

V(C) =
{
1, ρ, ρ2, . . . , ρn−1, τ, τρ, τρ2, . . . , τρn−1}

E(C) = {(a, ρa), (a, τa)|a ∈ Dn}

S1 = {ρ, τ}.

23



2. If Aut(G) = Γ then we have for the Cayley graph C2(Γ,S2) that

V(C) =
{
1, ρ, ρ2, . . . , ρn−1, φ, φρ, φρ2, . . . , φρn−1,

ψρ,ψρ2, . . . ,ψρn−1,ψφρ,ψφρ2, . . . ,ψφρn−1}
E(C) = {(a, ρa), (a, φa), (a,ψa)|a ∈ Γ}

S2 = {ρ, φ,ψ}.

Proof. We construct the Cayley graphs as possible. Take the vertices of the graphs as
the automorphisms on an I-graph, G = I(n, j, k), which form the group Aut(G). These
automorphisms are the elements of Dn or Γ respectively. The smallest generating set for Dn

is S1 = {ρ, τ}. This is because τ cannot be represented as a composition of ρ functions. The
smallest generating set for Γ is S2 = {ρ, φ,ψ}. This is because none of these automorphisms
can be represented as compositions of the others via their definition. For two vertices
g1, g2 ∈ Dn we create the directed edge (g1, g2) if g2 · g

−1
1 ∈ S1. For two vertices g1, g2 ∈ Γ

we create the directed edge (g1, g2) if g2 · g
−1
1 ∈ S2. We see that these are by definition

Cayley graphs.

�

3.4 TheEigenspectrumof theCayleyGraphs for Aut(I(n, j, k))
We know from the previous section that the automorphism groups for I-graphs break into
two categories, either it is the dihedral group of appropriate order, or it is the group Γ
of appropriate order described previously. In this section, we move to characterize the
eigenvalues for the Cayley graphs of these automorphism groups.

Example 3.4.1. We begin by computing the eigenvalues forCay(Aut(I(12,2,3)),S2). Since
Aut(I(12,2,3)) has 48 vertices the eigenvalues for its associated 48 x 48 adjacency matrix
were computed via the online computing platform COCALC. To facilitate this computation
Cay(Aut(I(12,2,3)),S2) was created in the graph making program Gephi. The code used
and the results are shown, the eigenspectrum of the Cayley graph is shown as outputted
from the computer program.
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Figure 3.2. The Cayley graph for the automorphism group of I(12,2,3)

G = nx . read_gml ( ’ CayleyGraph . gml ’ )
nx . d r aw_sp r i ng (G)
Adj = nx . to_numpy_mat r ix (G)
nx . w r i t e _ g e x f (G, ’ CayleyGraphAdjacencyMat . gexf ’ )
e i g v a l s = np . l i n a l g . e i g v a l s ( Adj )

There were 12 eigenvalues in this case each of multiplicity four. They are:

−1,−0.866 + 0.5i,−0.866 − 0.5i,−0.5 + 0.866i,−0.5 − 0.866i,−1.388 × 10−16 + i,

−1.388 × 10−16 − i,0.5 + 0.866i,0.5 − 0.866i,1,0.866 + 0.5i,0.866 − 0.5i.
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The next and final section of this thesis uses a lot of terminology from Group Theory and
Representation Theory. We point the reader to [10] and [11] for any unfamiliar definitions.
Some definitions are included here for the benefit of the reader as well.

We now seek to characterize the eigenspectrum of the Cayley graphs representing the group
Γ = Aut(G), or Dn = Aut(G) of an arbitrary I-graph, G = I(n, j, k). To do this we employ
Cayley’s Theorem to represent the automorphismgroups as an isomorphic symmetric group.
We use the language of a “group acting on G” to describe this. This allows us to embed
the group into the general linear group, GL(4n,C) or GL(2n,C) respectively, via group
homomorphisms. Such homomorphisms are called representations of the group. Only
with these can we completely characterize the eigenspectrum of our Cayley graphs in the
general case.

We know by Cayley’s Theorem that every order t finite group is isomorphic to a subgroup
of St . In our specific case we know that the automorphism group of an I-graph I(n, j, k)

is either the group Dn with order 2n, or the group Γ of order 4n. Thus we have that the
automorphism group being subgroups of the following,

Γ < S4n

Dn < S2n.

But the question remains, what does this look like as a subgroup? Well Cayley’s Theorem
is often termed in the language of a group acting on a set. That is, we say that the
automorphism groups in question are isomorphic to a subset of a symmetric group acting
on the elements of Aut(G). That is the automorphisms that are elements of Aut(G) are in
fact simply permutations that act on themselves. We say Aut(G) is an Aut(G)-set.

More formally we have, for all g ∈ Aut(G), let fg : Aut(G) → Aut(G) be defined by
fg(x) = g ◦ x. These are permutations and X = { fg |g ∈ Aut(G)} � Aut(G) by Cayley’s
Theorem. Note that X is an Aut(G)-set.

We are now ready to determine a representation of Γ = Aut(G). Take the standard ordered
basis for Cn given by B = {e1, e2, · · · e4n}. Take a permutation α ∈ Aut(G). We now define
a linear transformation Tα : C4n → C4n where Tα(ei) = eα(i) for all i. Thus we now have
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that [Tα]B is a matrix for the permutation α. This is a permutation matrix and we denote it
Pα.

Thus we set up the following representation of Γ via a group homomorphism.

π : Γ→ GL(4n,C)

π(α) =Pα, for all α ∈ Γ.

For our I-graph with automorphism group in the form Γ, we note that since the set {φ,ψ, ρ}
generates Γ so to does {Pφ,Pψ,Pρ} generate the image under the group representation
homomorphism π.

But in order to completely characterize the eigenspectrum of an automorphism group we
need the irreducible representations of Γ. These are simply representations that are not
the direct sum of other group representations. Luckily, it is well known that given a group
representation, the irreducible representations of the group can be found in polynomial
time [12]. It is not however the irreducible representations themselves but their correspond-
ing irreducible characters that is needed to characterize the eigenspectrum. We provide the
definition of an irreducible character as it appears in [10].

Definition 3.4.1. The character of a representation π of group Γ is the mapping
χπ : Γ → C defined as χπ(g) = Tr(π(g)), g ∈ Γ. Where “Tr” is the trace of a
matrix. If the representation is such that π � π1 ⊕ π2 then it and its associated
character mapping are said to be reducible. They are said to be irreducible if
no such non-trivial representations exist.

In order to characterize the eigenspectrum for the Cayley graph of an automorphism group
Γ in the general case we need one final piece of the puzzle. That is the fact that given
a representation π of Γ that is based on a generating set, we can compute the irreducible
characters of π in polynomial time. The necessary theorem is quoted here from [12].
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Theorem 3.4.1 (Babai, Rónyai). Let S ⊂ Γ be a set of generators of the group Γ.
Assume that a representation π : Γ→ GL(n,F) is given by the list of matrices
{π(g); g ∈ S}, where F is an algebraic number field. Then the irreducible
characters involved in π and their multiplicities can be determined in time
polynomial in the input size.

Thus we see that our representation π can be used to find all the irreducible characters for
the automorphism group Γ in polynomial time. The generating set S guarantees that this set
of irreducible characters is maximal. This is because we have captured all the conjugacy
classes of Γ. Though we do not show the calculation of all the irreducible characters here
it is possible in every case.

Finally, we can completely characterize the eigenspectrum for the Cayley graph of an
automorphism group Γ in the general case. This is shown in the following theorem as it
appears in [10], and is originally the work of Babai as found in [13].

Theorem 3.4.2 (Babai). Let Γ be a finite group. Let χ1, χ2, · · · , χh be the
irreducible characters of Γ and let n1,n2, · · · ,nh be their respective degrees.
Then the eigenvalues λi,j with (1 ≤ i ≤ h,1 ≤ j ≤ ni) of a Cayley graph
Cay(Γ,S) of Γ satisfy

λt
i,1 + · · · λ

t
i,ni =

∑
A⊂S,|A|=t

χi

∏
g∈A

g

for any positive integer t.

Thus we note that it is possible to characterize the eigenspectrum for the Cayley graph of
the group Aut(I(n, j, k)) in a general case. Though we worked through the process for an
automorphism group of the form Γ we note that it is also possible when the automorphism
group of the given I-graph is a dihedral group. Though we found a representation of an
automorphism group of the form Γ and showed it is possible to find the necessary irreducible
character functions from such a representation, we did not do the required calculations here.
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CHAPTER 4:
Conclusion

In this chapter we give a brief summary and conclusion of the work of this thesis, and of the
subject matter as a whole. We also seek to lay out potential areas of future work in regards
to the independence number of I-graphs, and the algebraic properties of the I-graphs.

As explained in Chapters 1 and 2, the work of this thesis began by generalizing the problem
of finding the independence number of a Generalized Petersen graph to the I-graphs.
These graphs, especially in their proper forms, have a more complicated edge set then the
Generalized Petersen graphs. This means that finding the independence number of I-graphs
with equality is quite challenging in the general case. We therefore relied on applying
bounds to the independence number of I-graphs via the method of “K-groupings.”

The method of “K-groupings” is simply a way of constructing an independent set in an I-
graph that relies upon knitting together a series of locally maximal independent sets. These
sets are started by taking the maximum possible number of consecutively indexed vertices
from the inner subgraph of an I-graph to include in the independent set and filling in as many
remaining vertices from the outer subgraph as possible. The method of “J-groupings” is the
same except that we begin by taking consecutively indexed vertices on the outer subgraph.

As indeed is clear from the proofs, these constructed independent sets are not necessarily
always maximum and do not necessarily have cardinality equal to the independence number
of an I-graph. It is however conjectured that one of these constructions either “K-groupings”
or “J-groupings” will yield a maximum independent set for a given I-graph.

In some more specific I-graph classes, the independence number was able to be determined
exactly. This was done by examining subgraphs and determining all of the different locally
maximal independent sets possible. Thus it was proven that I-graphs of the form I(6r,2,3)
have an independence number of |5r |. We note that the construction of an independent set
of this size was achieved via the method of “K-groupings” in the proof.

The algebraic properties of the I-graphs were of great interest in this thesis as well. More
specifically, creating a Cayley graph for the automorphism of an I-graph in a general case.
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We did this from the definition of the Cayley graph and from its automorphism group.
These Cayley graphs have eigenvalues. Eigenvalues were calculated in the final portion of
this thesis and we discussed how this may be done in the general case theoretically.

4.1 Future Work
Naturally, it would be beneficial to continue the work of this thesis for other classes of
I-graphs and determine their independence numbers in general cases. Future work focusing
specifically on the independence number of I-graphs, I(n, j, k), where there is a large
difference between j and k may be beneficial, it is in this case that we believe the constructive
bound based on K-groupings does not give equality. We conjecture that in the case of skips
of j and j + 1 we have in fact equality, and not just a lower bound using K-groupings.

There is also potential for future algebraic work with the I-graphs. We note that, in seeking
to completely characterize the eigenspectrum of the Cayley graphs covered, we did not
actually compute the irreducible characters that arise from the given representation of the
automorphism group Γ, and gave little treatment for the automorphism groups that are
dihedral groups. Future work calculating the necessary irreducible characters would be
beneficial.
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