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ABSTRACT 

 This study investigated the creation of a 3-D computational fluid dynamics model 

of the Transonic Compressor Rig used for the testing of the Naval Postgraduate School 

Military Fan. This modeled rig conditions the flow into the rotor while measuring the 

mass flow rate during experimental testing. Using these simulations, a new bell mouth 

inlet attachment was designed for the rig to further increase confidence in experimental 

mass flow data. The goal of computational modeling was to observe upstream flow 

conditions and validate the model against experimental results, while also providing data 

for further testing. Also documented in this thesis is the performance data from the 

smooth casing rotor-only tests. All testing was performed at the Turbopropulsion 

Laboratory at the Naval Postgraduate School. 

 The bell mouth attachment design process included the evaluation of shape and 

diameter sizing for the desired pressure readings. The computational model was created 

using compressible flow turbulence modeling and run for various pressure differentials. 

A parametric study on throttle indexing was created by imitating the throttle’s opening 

through the manipulation of the model’s geometry. Results gave insight into upstream 

characteristics of the flow prior to the compressor, while also showing promising 

comparisons to recorded test data. 

 Future work will involve the inclusion of the bell mouth attachment in both 

testing and analytical simulation. 
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I. INTRODUCTION 

A. MOTIVATION 

The shaping and constructing of a specific flow with desired boundary conditions 

in a repeatable fashion requires significant precision and attention to detail. Such precision 

and detail is also of utmost importance in the testing of advanced turbomachinery and the 

analysis of its performance. This study pursued this work for the testing of a transonic 

compressor rotor known as the Naval Postgraduate School Military Fan (NPSMF). The 

Naval Postgraduate School (NPS) has been testing the NPSMF at the Turbopropulsion 

Laboratory (TPL) in order to accurately determine its performance characteristics at 

various operating conditions. The NPSMF is being tested within the TPL’s transonic 

compressor rig (TCR)—a rig that requires around 9.144 meters (30 feet) of pipes and 

nozzles devoted to straightening and measuring the exact characteristics of the flow when 

it reaches the rotor’s face.  

In particular, the mass flow rate entering the NPSMF must be measured to be used 

in calculations of the fan’s performance. To ensure that these experimental measurements 

are accurate, the mass flow rate must be measured at multiple locations in multiple 

manners. The current mass flow rate measurement system within the TCR is not optimal, 

particularly with respect to ensuring proper boundary conditions for these measurements. 

This system also provides non-ideal inflow conditions to the test article, disturbing the flow 

in an undesirable manner. Providing redundancy in the mass flow rate measurements and 

including more consistent methods will increase the fidelity of the experimental 

performance data. In order to achieve this, a new bell mouth inlet attachment needed to be 

designed for the TCR to provide accurate, consistent boundary conditions for the recording 

of experimental data. 

The well characterized nature of a bell mouth inlet would also provide the correct 

conditions for computational modeling of the flow. Current computational fluid dynamics 

(CFD) models of the TCR disagree with the experimental data, revealing the need for a 

more accurate analytical model. Such a model would provide significant insight into the 
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nature of the flow throughout the rig and allow for additional research into the effects of 

adjustments to the rig on the flow characteristics entering the test rotor. Both a detailed 

CFD model of the full TCR and an additional bell mouth attachment for mass flow rate 

measurement would significantly benefit performance research for the NPSMF.  

B. THESIS OBJECTIVES

The research in this thesis centered on experimental mass flow rate measurement

guidelines for the TCR and bell mouth design practices to achieve consistent boundary 

conditions at the TCR’s inlet. Design work involved the modeling of the bell mouth 

attachment and the required cylinder casing surrounding the TCR’s throttle using 

Solidworks. The bulk of the thesis focused on the CFD modeling of the full TCR using 

ANSYS Workbench and CFX fluid simulation. The thesis also included an analysis of the 

CFD results at various throttle positions and various levels of additional detail. Finally, this 

thesis documented the performance data for the NPSMF at smooth casing operation and 

validated the CFD model’s results with this data. 
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II. BACKGROUND INFORMATION 

A. PREVIOUS WORK 

Research on transonic compressors in the TCR has been ongoing for many years, 

with data continuing to be taken and different aspects of rotors being analyzed. Initial work 

was undertaken by Villescas, 2005 [1], who completed three-hole probe flow field surveys 

of the compressor rotor. These probes measured the static and stagnation pressures within 

the free stream jet and were calibrated in order to be used in the TCR to determine the 

magnitude and direction of the flow by rotation in the field. This method aimed to 

experimentally determine the flow into the rotor and its performance characteristics. 

Brunner [2] then completed 5-probe surveys and used CFD to model the rotor and 

analyze the flow computationally. The experimental data was compared to the 3-probe 

surveys. ANSYS CFX was used to make numerical predictions of the flow, which were 

then compared to the experimental data. These were only the most basic simulations of the 

inlet duct. 

In late 2005, Payne [3] followed in the probe survey and CFD work, but applied it 

to the rotor during steam-ingestion, focusing on performance prior to and during a steam-

induced stall. He also experimentally focused on the kinetic turbulence intensity at the 

compressor at the various operating speeds. 

Koessler [4] directed a study towards the stall of the rotor, but included work in 

mass flow rate measurement in 2007. These were the initial stages of mass flow rate 

measurement and verification, using total temperature and pressure from the inlet to 

compare to the readings taken at the rotor face. This setup is still used, although it has been 

refined and improved upon with newly manufactured parts. 

The most direct relation to this research concluded in 2019 in work done by Thorton 

[5]. He sought to improve the computational-modeling fidelity of the NPSMF by modeling 

the rotor blade in ANSYS Mechanical and coupling it with a CFX fluid simulation. In order 

to do this, he had to model fluid-structure interactions by integrating two separate 

geometries into the ANSYS Workbench. He then compared the computational results to 
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the experimental results to ensure its accuracy. By doing so, he sought to be able to predict 

the performance of other transonic-rotor geometries without the high cost of running the 

TCR repeatedly for experimentation. Thorton [5] implemented his model using an 18 

degree slice of the flow pipe to match the 18 degree slice of test section previous created 

by McNab [6], covering only the flow that would pass over and be affected by a single 

rotor blade. The coupled wedge used can be seen in Figure 1. 

Figure 1. 18 degree wedge geometry of single rotor blade and fluid. Source: 
[5]. 

This method cut down on computational time significantly, while being adjusted 

appropriately to relate to experimental data. A similar method was modified and used for 

this research, altered to include all necessary components of the TCR. Thorton [5] applied 

the method to the flow nozzle in the rig upstream of the NPSMF and the internal bell mouth 

slightly farther upstream to begin observing the flow as it leads to the compressor and to 

determine its characteristics. This thesis further extended this model to the entire TCR from 

inlet to compressor face. 

B. MASS FLOW MEASUREMENT

The simplest and most prevalent way mass flow rates are measured within

turbomachinery is through the use of pressure measurements. Devices measure the static 
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pressure at various points in the rig and use those values along with the stagnation 

temperature and pressure of the inlet air to calculate the mass flow rate. For compressible 

flow, the stagnation velocity, a non-dimensionalized velocity “X,” is calculated using these 

pressures, and the ideal mass flow rate is found using that stagnation velocity and assuming 

a constant velocity and density profile at the exit plane.  

𝑋𝑋 =  
𝑣𝑣
𝑣𝑣𝑜𝑜

= �1 − �
𝑃𝑃1
𝑃𝑃𝑡𝑡1

�
𝛾𝛾−1
𝛾𝛾
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1
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This ideal mass flow rate is then related to the experimental mass flow rate by the 

discharge coefficient (CD) for the given rig. This discharge coefficient is the ratio of the 

two mass flow rates. 

𝐶𝐶𝐷𝐷 =
�̇�𝑚𝑖𝑖𝑒𝑒𝑝𝑝

�̇�𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

Mass flow rate measurements are often taken through the use of a bell mouth inlet 

for turbomachinery applications, as these inlets are efficient and have discharge 

coefficients close to unity. ASME MFC-26-2011 [7] is the standard for the measurement 

of gas flow by bell mouth flowmeters, and details on its guidelines and parameters are 

found in Appendix A. 

C. BELL MOUTH DESIGN 

A bell mouth inlet provides a reliable geometry by which one can measure the mass 

flow into a pipe, making it an excellent choice for an additional measurement system within 

the TCR. Such measurement methods have been widely documented and best practices 

proven. For the purposes of this research, the bell mouth design required a high efficiency 

with a discharge coefficient close to unity for minimal necessary correction to the mass 

flow data. Measurements closer to ideal flow rates would also provide increased confidence 

in their accuracy. 
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The exact parameters of a bell mouth’s shape determine its efficiency in operation. 

It was of great importance to ensure the design characteristics of the bell mouth were well 

documented and that the final geometry was constructed as closely as possible to the design 

intent. This would ensure the proper conditions used in measuring the mass flow rates. 

Considerations for the bell mouth’s design include ratio of diameters, profile shape, and 

radial tip size. A study by Blair and Cahoon [8] simulated a large number of different sizes 

and profiles of bell mouth to determine the most efficient configuration. Their conclusion 

was that an elliptical profile outperformed all other bell mouth shapes to provide the most 

ideal mass flow rate values and efficient discharge coefficients. Their study included 

computational model simulations like the one shown in Figure 2. Design work in this thesis 

relies on this study as its basis. Further details of the study are available in Appendix B.  

Figure 2. Velocity flow profiles into a bell mouth pipe. Source: [8]. 
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III. DESIGN 

The TCR has been used to test various pieces of turbomachinery over many years 

of operation, as the previous theses listed demonstrate. As various rotors have cycled 

through the test rig, the rig itself has grown and improved to allow for more diverse 

measurement methods, shorter sampling times, and more accurate results. The design of 

this additional attachment had to match the already present configuration and maintain the 

existing features used in testing. 

A. CURRENT SETUP 

The existing rig includes a box inlet opening up to outside air. This inlet includes a 

screen to prevent the ingestion of any foreign objects into the rig. It is a basic setup that 

provides no means of flow measurement and limited boundary condition settings. 

Within this box is the TCR throttle – a cylindrical-shaped piece with 6 sets of three-

holed inlets, shown in Figure 3. The throttle contains another circular plate behind the front 

plate with an identical hole pattern. The rotation of the second plate to various degrees 

closes the throttle, adjusting the speed of inflow to the testing rotor. Figure 4 shows a 

mockup image of the throttle’s rotation mechanism. The throttle is marked with 12 valve 

positions but can be adjusted anywhere between graduations. The operating range of the 

system rarely covers more than around half of that marked range, and test settings vary 

depending on the compressor being tested. For the NPSMF, typical valve positions range 

between 1 and 6.3, increasing by successively smaller increments as the compressor 

approaches stall. The positions are viewed through a window in the outer inlet box, and 

this operational necessity must be preserved. Additionally, multiple wires exit the outer 

inlet box towards the back bottom right corner which control the throttle and provide 

measurement readings at the inlet plane. These also must be accounted for in the new 

design. 
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Figure 3. TCR throttle component disconnected from rig. 

Figure 4. Representation of the throttle’s two-plate rotation method. 
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The throttle then leads into the main piping of the TCR, where flow passes through 

a flow-straightening screen and then through a thicker hexagonal screen to remove any 

induced swirling of the flow. At the end of this long pipe section, the flow accelerates 

through an interior bell mouth shape, followed by a mass flow measurement nozzle. This 

interior nozzle has been used up to this point to measure the mass flow rate in the TCR 

using pressure and temperature probes, and the overall discharge coefficient used for the 

rig was derived from these measurements. This CD value of 1.03 has been investigated 

through the use of CFD analysis by Thorton [5] referenced earlier. The higher than unity 

value has been determined to be a result of flow recirculation regions in the non-optimal 

installation configuration.  

After the mass flow nozzle, the piping continues into a final pre-rotor bell mouth 

that uses pressure taps and probes to measure flow characteristics directly prior to the 

operating rotor’s face. The final rotor stage can be seen in Figure 5. 

 
Figure 5. TCR final rotor stage engineering drawing. Source: [5]. 
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B. DESIGN REQUIREMENTS

The bell mouth attachment design was intended to replace the box inlet entirely,

and thus had to fit around the throttle and include the referenced features for operation. 

This includes the throttle level indicator and the electrical outlet wires. The new design 

also needed to include an additional outlet hole for the humidity measurement device that 

had been placed at the exterior screen of the box inlet. The bell mouth inlet needed to align 

with the ideal mass flow measurement guidelines outlined in ASME MFC-26-2011 [7]. 

This included a length of constant diameter pipe that stretched at least one diameter away 

from the bell mouth’s exit in order to ensure that the pressure probes can take 

measurements of the flow after it has fully developed. The bell mouth also needed to be 

properly sized in order to have a sufficiently large pressure differential of 3 kPa for the 

implemented probes and for desired mass flow rates of 6–10 kg/s. 

After the end of the bell mouth’s constant diameter section, the attachment then 

needed to expand in diameter to fully encompass the throttle. This conical connection can 

be seen in the next section in Figure 6 as a part of the cylinder casing. The entire interior 

of the attachment needed to be machined smoothly enough to not trip or disrupt the flow 

in any way leading down the pipe. The expansion section also needed to be smooth and 

ensure that it did not trip the flow into becoming turbulent or cause any undesirable 

movement entering the throttle. Once through the throttle, the flow would follow the path 

explained above. Finally, the entire setup would require a support structure that could easily 

move the large piece to attach or remove it from the TCR depending on the desired testing 

parameters. This motion had to be possible on uneven tarmac on which the exit of the TCR 

rests. 

C. CYLINDER CASING

The simpler section to design was the casing around the throttle. The most efficient

method of covering the throttle without excess weight or areas of backflow is a cylindrical 

casing. The cylinder’s is required to be at least 1.219 meters (48 inches) in internal diameter 

to encompass the throttle and allow for the level readings to be seen through a window cut 

into the upper portion. This window would be covered with a clear plastic covering that 
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must be sealed to prevent airflow from escaping. The transition to the smaller bell mouth 

diameter is accommodated by a conical connector piece that must be bolted to the bell 

mouth attachment by internal flanges. These internal flanges allow for much easier 

machining of the part, and they provide a backwards facing step for the flow entering the 

cylindrical chamber, ensuring a steady flow. The entire casing is constructed out of 

stainless steel 3.175e-3 meters (1/8”) thick to allow for minimal material requirements with 

maximum strength as well as protection from corrosion. The Solidworks 3-D model can 

be seen in Figure 6. The full drawings in detail can be found in Appendix C. 

 
Figure 6. Isometric views of cylindrical casing. 

D. BELL MOUTH ATTACHMENT 

The bell mouth portion of the attachment, as explained previously, had to be sized 

properly to align with the ASME standard, the bell mouth design guidance for optimum 

efficiency, and the pressure differential and mass flow rate requirements of the planned 

tests. Blair and Cahoon [8] proved an elliptical bell mouth shape to be the most efficient. 

The sketch shown in Figure 7 outlines the ellipse profile shape. 



12 

 
Figure 7. Basic sketch of elliptical profile bell mouth shape. 

The outer diameter was determined by estimating the flow into the bell mouth at 

various diameters by using compressible flow calculations. The mass flow rate was varied 

between the 6 kg/s and 10 kg/s while the static and stagnation pressure ratio was varied 

between 0.95 and 0.99. Using stagnation velocity and the derived compressible density and 

velocity expounded upon previously, the areas required were found. The calculations used 

and the table formulated can be found in Appendix D, while the results can be seen plotted 

in Figure 8. Based on these results and in order to ensure an accurately measureable 

pressure ratio of at most 0.975, a bell mouth exit diameter of 0.3048 meters (12 inches) 

was determined to be appropriate. 
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Figure 8. Compressible flow calculation results for varying bell mouth exit 

diameters. 

With the bell mouth exit size determined, Blair and Cahoon [8] guidance advised a 

short and stocky bell mouth for the most ideal discharge coefficients, leading to the 

decision to make the elliptical profile 0.3048 meters (12 inches) and 0.1016 meters (4 

inches) in radii. The length of constant diameter tubing following the bell mouth extends 

out to 0.3937 meters (15.5 inches) past the bell mouth’s exit in order to provide 

substantially enough distance for the flow to settle prior to pressure measurements being 

taken. 

The bell mouth is constructed out of 6061 aluminum because it is easier to machine 

and this portion of the attachment requires less strength than the cylinder casing. In order 

to make it simpler to machine, it was divided into four sections that would be bolted 

together. These pieces would include press-fit sealing by means of 5.08e-5 meter (0.002 

inch) gaps between bolt flanges. The piece closest to the conical link of the cylindrical 

casing houses the four pressure tap locations for mass flow measurement. The full design 

drawings can be found in Appendix E. The 3-D Solidworks model can be seen in Figure 9. 
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Figure 9. Isometric views of machined bell mouth attachment. 

E. SUPPORTS

The final design process involved the support structure for the entire attachment.

The attachment’s final weight was 235.98 kg (520.24 lbs), and its center of mass resided 

around the center of the conical link. Due to the cylindrical portion’s large diameter, the 

attachment leaves only around 0.3302 meters (13 inches) of clearance with the ground 

when attached. For this reason, and for the sake of stability, the supports were designed to 

attach on the side of the cylindrical section. In order to accommodate the forward center of 

mass, another connection was designed to extend up to the central portion of the bell mouth 

attachment. Industrial casters were used to ensure that the entire attachment can be rolled 

off the TCR and out of the way of incoming flow if necessary.  
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IV. COMPUTATIONAL FLUID DYNAMICS ANALYSIS 

Apart from the Solidworks design process of the bell mouth attachment, the 

remaining bulk of research was centered on the CFD model of the entire TCR. A full model 

of the rig had to this point never been created, and the process required the inclusion and 

consideration of many detailed attributes. This model included all sections of the TCR: the 

box inlet, throttle, interior bell mouth, mass flow nozzle, and pre-rotor bell mouth. Initial 

set up did not include the bell mouth attachment. This addition will be incorporated in later 

work. 

A. 60 DEGREE WEDGE MODEL 

Building off of previous work by Thorton [5], the TCR was modeled as a wedge 

representing a fraction of the circular piping. Thorton [5] used an 18 degree model of the 

flow directly around a rotor blade and also modeled a 1.8 degree partial section of the 

upstream rig to reduce computational time further. The section included only the mass flow 

nozzle and a section of piping allowing for the flow to full develop. When modeling the 

entire rig, the throttle necessitated a larger wedge to accurately model its geometry. The 

throttle, shown in Figure 4, contains six columns of three inlet holes. Thus the model 

required a 60 degree wedge with periodic sides to represent the motion of flow through 

one-sixth of the entire rig. This was created in Solidworks by outlining a perpendicular 

view of the rig from the center of the piping to the outer walls and then rotating it about 

the central axis 60 degrees. The model, shown in Figure 10, represents all areas of the flow 

within the TCR. 
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Figure 10. 60 degree wedge model of the flow through the TCR. 

B. THROTTLE LEVEL MODELING

The throttle also required another modification to fully capture its various level

settings. The throttle’s levels are determined by the rotation of the plate residing directly 

behind the front surface. Because these two surfaces are exactly the same, their inlet holes 

could be modeled by splitting the CFD model down the middle of the throttle. This created 

two sets of holes representing the flow passing through each plate. The two resulting 

sections were connected in an assembly and could then be loaded into CFX as a parasolid 

containing two bodies. To model the different levels, then, one of the two bodies needed 

to be rotated along their common wedge axis. For the sake of ease, the front body was used 

as the rotated body. An example of the TCR model with a rotated throttle setting can be 

seen in Figures 11 and 12. 
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Figure 11. Flow-line view of rotated front body to imitate a throttle level. 

 
Figure 12. Isometric view of rotated throttle setting. 
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The next step was to determine how to quantify how much the throttle area was 

reduced with a given rotation. It was decided that the TCR would be initially analyzed at 

various percentages of covered throttle for reference, particularly at 25% covered, 50% 

covered, and 60% covered. In order to calculate the angle of rotation required for each 

percentage, the area of a lens created by two intersecting circles needed to be calculated. 

Assuming two circles of equal radius R, the resulting area of the lens can be found using 

the following equation. 

𝑋𝑋𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙 = 2𝑅𝑅2 cos−1 �
𝑑𝑑

2𝑅𝑅�
−
𝑑𝑑
2
�4𝑅𝑅2 − 𝑑𝑑2 

where d = distance between the centers of the two circles 

Setting the area Alens equal to 75% of the area of one throttle circle and solving for d gives 

the distance between the centers of the throttle circles for a 25% covered throttle setting. 

The angle of rotation required to achieve that distance between centers can then be 

calculated using trigonometry. The angles used for each throttle level analyzed can be 

found in Table 1. 

Table 1. Degrees of rotation used to model throttle percentages. 

Percentage of Throttle Covered Degrees of Rotation 

25% 5.99559 

50% 12.2725 

60% 14.9564 

 

C. ANSYS CFX SETUP 

1. Geometry and Design Modeler 

The parasolid assembly was inserted into a basic CFX block in ANSYS workbench, 

consisting of the front and back separated bodies. A rotation was then created under the 

“Insert” tab within Design Modeler for the smaller front body, with the axis defined as the 
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wedge convergence line. The rotation could then be adjusted by setting the angle of rotation 

to whatever degree was required for each throttle level, as specified previously. The Design 

Modeler outline with the inserted rotation can be seen in Figure 13. 

 
Figure 13. Design Modeler tree outline and rotation details. 

2. Mesh 

The mesh for this model took significant refinement in particular areas due to its 

complexity. The final mesh was also quite large due to the TCR’s length from inlet to rotor. 

The goal for the bulk mesh was to provide a fine enough mesh to capture any possible flow 

swirling, separation zones, or other characteristics within the body of the wedge. As the 

meshing approached the walls, however, further refinement was necessary. A finer mesh 

closer to the walls was required to capture the full effects of recirculation and pressure 

effects at the corner intersections within the TCR. Additionally, this refinement was 

required to prevent too large of an aspect ratio between the bulk global mesh and the 

inflation layers up against the walls. These inflation layers were the last form of mesh 

refinement in order to reduce the y+ values throughout the rig, ensuring that the boundary 

layer flows were properly resolved. The y+ goals achieved were values of less than 10 in 

the mass flow nozzle and less than 10 averaged over the entire wall domain. The inflation 
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layers kept the maximum y+ along the wall domain around a value of 100. A thinner 

inflation layer was placed on the walls of the mass flow nozzle to ensure that the pressure 

and turbulent kinetic energy at those critically measured locations were accurate. 

Refinement sizing were placed around the walls of the throttle to ensure sufficiently 

detailed meshing in that area of flow acceleration and compression. A match control was 

set on either side of the wedge to ensure that the periodicity was correctly modeled without 

unnecessary interpolation. Some examples of the refined mesh locations can be seen in 

Figures 14 and 15. The full mesh can be seen in Figure 16. 

Figure 14. Mesh around throttle near inlet of TCR. 
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Figure 15. Mesh around mass flow nozzle. 

 
Figure 16. Full mesh of TCR. 
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Table 2 shows the mesh elements and nodes for the TCR. The full details of the 

mesh can be found in Appendix F. 

Table 2. Mesh statistics for full TCR 

Mesh Elements 8,135,034 

Mesh Nodes 2,576,986 

3. CFX-Pre Setup

Setup here required significant detail as well as trial and error to identify the 

adjustments required to ensure the CFX solver converged on an appropriate and accurate 

solution. For “Default Domain – Basic Settings,” the “Fluid 1” material was set to “Air 

Ideal Gas,” and the reference pressure set to 1 atm. The “Total Energy” heat transfer option 

was used under “Fluid Models,” and the “Shear Stress Transport” turbulence model was 

used. 

The inlet and outlet planes were defined in the typical manner as inlet and outlet 

boundaries. The inlet boundary was defined by a total pressure of 0 kPa with respect to the 

overarching relative pressure of 1 atmosphere. This represented the physical condition of 

atmospheric air at the box inlet. The total temperature was also defined in accordance to 

typical Monterey, California, weather, where NPS is located—approximately 285 K. The 

outlet boundary was defined by a relative static pressure, creating the pressure differential 

across the model to initiate flow. 

Because the geometry of this model is designed to imitate an exact sixth of the rig 

that is cylindrically repeated, the sides of the 60 degree wedge were set as periodic 

boundaries. This was done by creating a fluid-fluid interface whose domain spans from 

one side of the wedge to the other. The interface model was then set to a “Rotational 

Periodicity” and the rotation axis was selected as the convergence line of the wedge. The 

remaining default settings of such a fluid-fluid interface were sufficient for this problem. 
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A default interface was automatically created between the two split bodies of the 

TCR model geometry, connecting the throttle holes at the locations they were cut. All 

default settings were sufficient including a conservative interface flux and an automatic 

mesh connection. However, because the model was cut on a place with three distinct holes, 

CFX automatically created nine connections for that face. These connections include 

connections between physically non-connecting holes, such as the top hole on one side and 

the bottom hole on the other. Thus, under “Connectivity” in the CFX-Pre Outline, these 

incorrect connections were deleted, leaving only three remaining – top-to-top, middle-to-

middle, and bottom-to-bottom. The “Default Fluid Fluid Interface” boundaries also needed 

to be adjusted to account for the non-overlapping areas of the throttle that exit when the 

body is rotated. Within each of these boundaries, under the “Nonoverlap Conditions” tab, 

the “Nonoverlap Conditions” box was checked, and the wall was set as “No Slip Wall,” 

“Smooth,” and “Adiabatic.” Figure 17 shows the outline setup containing each of the 

aforementioned items. Figure 18 shows the model with the applied setup within CFX-Pre. 

 
Figure 17. CFX-Pre outline with all defined boundaries and interfaces. 
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Figure 18. CFX-Pre setup applied to TCR model. 

Trial-and-error revealed that the complex mesh and geometry required a smaller 

timescale factor to avoid a linear overflow error in the CFX solver. Within the “Solver 

Control,” the timescale factor was set to 0.3 within the default “Auto Timescale” control 

and “Conservative” length scale option sections. In “Advanced Options,” the 

compressibility control was turned on and high speed numerics were used to account for 

the flow realities of the real TCR in operation. 

The length of the TCR model required the activation of an “Expert Parameter” in 

CFX that accounted for the long distance through which the solver had to iteratively 

progress. The convergence control and memory control topology estimate factor was 

increased from its default of 1 to a value of 1.1 to correct this issue. Additionally, for 

increased accuracy in the solver, the max continuity loops parameter that is used for high 

speed models was increased to a value of 3. 
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4. Solution Controls 

Each solution’s accuracy was analyzed via residual results of the simulations. A 

monitor was added that recorded the mass flow rate differential between the inlet of the rig 

and the outlet of the rig over time throughout the simulations. This difference was set as an 

interrupt control after a set number of required iterations to ensure that the simulation had 

balanced the flow throughout the model. This interrupt control expression can be seen in 

Figure 19. The target differential achieved was 1e-03 [kg/s].  

 
Figure 19. Interrupt control expression used in CFX runs. 

Double precision was used in every simulation to increase accuracy and achieve 

better resolution in the results. Memory allocation factors were increased to values of 1.1. 

Parallel solving was used to decrease required time in the solutions. Low pressure runs 

were started using initial conditions for each throttle level setting, however, every high 

pressure differential used the current solution data available to reduce computational time 

and increase accuracy. 

5. Parameterization 

In order to run the simulations for various conditions automatically, two input 

parameters were designed within the ANSYS Workbench settings. Details concerning how 

to use parameters in ANSYS Workbench can be found in Thorton [5]. The first parameter 

was the throttle level. The rotation created on the geometry within the Design Modeler to 
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mimic the throttle valve locations was selected as an input parameter and could thus be 

varied for each design point. Additionally, the outlet static pressure used to initiate flow 

was set as an input parameter in order to vary the total pressure differential across the 

model. For each rotation, including a zero degree open throttle setting, six pressures were 

specified. This created a total of 24 design points. To easily tabulate key results of these 

runs, various output parameters were specified as well through the creation of expressions 

in CFD-Post.  

D. FLOW SCREEN MODELING EXPLORATION 

Attempts were made to include in the modeling the layers of porous media that 

exist within the body of the TCR after the throttle but prior to the mass flow nozzle. The 

purpose of these screens is to ensure that the flow is parallel through the remainder of the 

rig and free of any swirling or undesired flow effects. The method used to model these in 

CFX involved the addition of two porous domains in the geometry—one representing the 

thinner, denser upstream screen and the other representing the more downstream, hex-

shaped screen. The inclusion of these in the geometry and a basic, coarse mesh can be seen 

in Figures 20 and 21. 

 
Figure 20. Geometry of TCR model with two flow screens included. 
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Figure 21. Coarse mesh of TCR model with included flow screens. 

The porous domains required inputs for volume porosity, directional losses, and 

fluid-solid area density. The porosity represents the ratio of fluid volume at the surface of 

the material to total volume of the material. Setting this value to “1” would equate to a 

completely open material, while setting it equal to “0” would signify a solid wall of 

material. The desired loss model was the “Directional Loss” option, signifying in Cartesian 

coordinates which directions the porous material blocked and which it allowed. In the case 

of the TCR, these screens ensure the flow through them is solely in the normal direction, 

and in the case of this model, that direction was in the “x.” In CFX setup, the required 

settings would be [0,1,1] in the directional loss specification. To further define the porous 

material, an interfacial area density had to be defined as well. This is the surface area of 

the solid porous material in contact with the fluid over the total solid material volume. For 

these CFX runs, basic values were given that do not equate to the exact specifications of 

each flow screen within the TCR. These settings can be seen in Figure 22. 
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Figure 22. CFX-Pre setup settings for the flow screens included in some 
model runs. 

This model was run with a coarse mesh at low pressure ratios and an open throttle. 

The flow screen separations created not only the two additional domains of the screens, but 

also split the remaining domain into smaller sections. The resulting model contained six 

separate domains, greatly increasing the complexity and increasing the amount of time 

required for the solver to run. The results seemed promising but did not directly reflect the 

screens characteristics. Further work is still required in this area. 
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E. SIMULATION RESULTS 

1. High Pressure Issues 

At pressure differentials above 10 kPa, the residuals in the CFX solver began to 

oscillate after 50–100 iterations, slowly rising and no longer converging. Attempts were 

made to fix the problems by changing the turbulence model, the timescale factor, and 

various other setup parameters. The issue most likely was formed due to pressure waves 

beginning to oscillate up and down the long model as CFX attempted to converge onto a 

solution. The issue was solved by prescribing a mass flow rate at the inlet as opposed to 

the total pressure specified for the lower pressure differentials. In order to find the correct 

mass flow rate for the given pressure, the standard setup was used for lower pressure 

differentials under 15 kPa to acquire mass flow rates to form the quadratic performance 

curve. The mass flow rates for higher pressures, then, found from this curve, were used to 

initiate the model. This allows the flow to be fully analyzed for other characteristics at 

these higher pressure differentials. The method was effective for all throttle angles with a 

coarse mesh size. However, issues arose when the finer mesh was used, as the solver was 

unable to run due to a “fatal linear overflow error” in the CFX solver. Further work would 

need to be done to investigate the issues that caused this error. Thus the data presented in 

the pressure cases above 10 kPa is data run on a coarser mesh than the rest of the CFX 

simulations. 

2. Mass Flow Rates and Mach Numbers 

The mass flow rates found were used to plot the performance curves for each 

throttle setting tested. These curves can be seen in Figure 23. The tabulated data can be 

seen in Appendix G along with other important output parameters. 
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Figure 23. Mass flow rate curves derived from CFD flow analysis 

These curves show the expected quadratic shape and were derived from low 

pressure ratio runs of the CFD model. The plot in Figure 23 shows the range of mass flow 

rates found experimentally at the various compressor speeds tested. 

The maximum Mach numbers for each throttle setting and pressure differential can 

be seen in Appendix G. As expected, the maximum Mach number increased as the throttle 

area decreased, and within each throttle setting it increased with increasing pressure ratios. 

The highest Mach numbers were found around the throttle point where the flow was forced 

through the limited-area openings as well as the final bell mouth leading into the 

compressor face. Figures 24 and 25 show the Mach number profiles throughout the TCR 

model for a 10 kPa pressure differential for an open throttle and a 25 kPa pressure 

differential for a 12.273 degree rotated throttle, or 50% covered. 
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Figure 24. Mach number profile for 10 kPa and an open throttle. 
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Figure 25. Mach number profile for 25 kPa and 12.273 degree rotated throttle 

(50% covered). 
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The flow can be seen accelerating through the throttle and reconnecting in the main 

body of the TCR before accelerating through the mass flow nozzle further and again 

through the bell mouth into the compressor face. The flow shows some swirling after its 

acceleration through the throttle in both cases, although the disruption in the flow becomes 

much more apparent in the higher pressure differential case and tighter throttle case. As the 

pressure differential increased and as the throttle tightened, the flow’s movement increased. 

This is important to note as this model is being run without the implemented flow screens 

meant to limit any flow swirling within the rig. 

3. Pressure Profiles at Measurement Locations 

Pressure probes are used around the nozzle in the middle of the TCR to measure 

the stagnation pressure at the wall immediately before the nozzle and the static pressure 

about 0.0254 meters (1 inch) behind the static pressure. These pressures were also 

measured in the CFD model results, and their locations can be seen highlighted in Figure 

26.  
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Figure 26. Stagnation and static pressure curve locations. 

The probes assume that the pressure at those measuring planes is axisymmetric, 

making their location around the wall of the TCR irrelevant. It was important, however, to 

check this assumption by observing the pressure profiles of the simulated CFD runs. The 

stagnation and static pressure profiles for the 10 kPa, open throttle run are shown in Figures 

27 and 28. 
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Figure 27. Stagnation pressure profile over the length of the stagnation 

pressure curve from CFD simulation. 
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Figure 28. Static pressure profile over the length of the static pressure curve 
from CFD simulation. 

These profiles show that the flow is in fact axisymmetric in its pressure at these 

locations. The spread of values in each of these plots is very low, with a maximum 

difference of less than 50 Pa, or less than 1% of the specified outlet pressure. The minor 

differences over these profiles with respect to the uncertainty of the measurement probes 

confirm that their location around the wall have a negligible effect on the measurement of 

the mass flow rate at the nozzle. 

4. Turbulent Kinetic Energy Profiles

Another aspect of the flow investigated through the CFD simulations was the 

turbulent kinetic energy at the exit plane of the mass flow nozzle. If the flow was properly 
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paralleled at this point and not disturbed in any unexpected ways, the profile of the 

turbulent kinetic energy would show a smooth gradient from the wedge tip up to the wall. 

It would then show a spike followed by a steep drop to zero as the flow reached the laminar 

sublayer and the non-slip wall. Figures 29 and 30 shows the nozzle exit plane and the 

turbulence profile for the 10 kPa, open throttle case. 

 
Figure 29. Turbulent kinetic energy color map at the nozzle exit plane. 
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Figure 30. Turbulent kinetic energy profile over the vertical distance from the 

wedge tip to the wall of the model. 

These profiles demonstrate the expected performance of the flow at the nozzle exit 

plane, confirming that no undesired turbulence is affecting the mass flow rate 

measurements at the nozzle. 

Additional data on each of the runs can be found in Appendix G. 
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V. EXPERIMENTAL RESULTS

A. DATA RUNS SETUP

The NPSMF was run through the TCR for four different speeds: 70%, 80%, 85%,

and 90% of the compressor’s maximum speed. The runs were conducted using a smooth 

casing causing no flow disturbance into the compressor face. The method of testing 

involves creating a pressure difference from the atmospheric inlet pressure of the TCR 

through the operation of the rotor at an open throttle. This process is done isothermally, as 

no work is put into the flow until it reaches the compressor. At this point, the compressor 

heats up the flow and returns it to a pressure above atmospheric pressure, dumping the 

excess kinetic energy. This process can be seen in the T-s diagram shown in Figure 31. 

Figure 31. T-s diagram for TCR and NPSMF operation. 
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Through the testing, the throttle is set to more closed settings and steady-state data 

is acquired at each throttle level until the compressor reaches stall due to the decrease in 

mass flow rate. The raw data from these runs is recorded and subsequently fed through 

post-processing MATLAB scripts to identify measurement errors, malfunctioning probes, 

or oddities in the data. These scripts also analyze and plot the desired characteristics. 

B. PERFORMANCE CURVES AND EFFICIENCIES FOR NPSMF 

One of the most important characteristics that the TCR is used to demonstrate is the 

performance of the compressor being tested. By measuring the pressures around the nozzle 

and the pressures at the NPSMF inlet, the mass flow rate into the NPSMF was recorded. 

This was then scaled to account for any differences in conditions within the TCR from 

standard atmospheric operating conditions. The pressure ratio between the NPSMF rotor 

face and the inlet is recorded and scaled appropriately along with the mass flow rates, both 

according to the relationships described in Thorton [5]. Figure 32 shows the scaled 

performance curve for the 70% speed run of the NPSMF. The performance curve for the 

remaining 3 test speeds can be found in Appendix H. 

 
Figure 32. Performance curve of NPSMF at 70% speed +/- 1σ. 

5.5 6 6.5 7 7.5 8 8.5

Scaled Mass Flow [kg/s]

1.25

1.3

1.35

1.4

Pr
es

su
re

 R
at

io

      

 



41 

Additionally, these performance curves could be used to compare to the mass flow 

rate curves acquired through the CFD simulations. The unscaled values of pressure ratios 

and mass flow rates were used. The pressure ratio was calculated as the recorded inlet 

pressure over the averaged static pressure at the compressor’s face, taken from the raw data 

file as “Ps1_avg.” The mass flow rate used is identified in the raw data file as “m_dot_X.” 

The overlaid curves can be seen in Figure 33. 

Figure 33. Overlay of performance curves from experimental data and mass 
flow rate curves from CFD analysis. 

The figure above shows that the CFD model produces fewer losses in pressure drop 

than the actual performance curve of the NPSMF. This was expected, as the flow screens 

were not included in these results, and their presence would cause a further pressure drop 

in the TCR. The figure does show that the CFD model produced respectable mass flow 

predictions, however, when compared to the experimental data, as the curves do intersect 

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Mass Flow Rate (kg/s)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Pr
es

su
re

 R
at

io

Open Throttle

5.996 Degree Throttle

12.273 Degree Throttle

14.956 Degree Throttle

70% Speed Exp Data

80% Speed Exp Data

85% Speed Exp Data

90% Speed Exp Data



42 

in the testing pressure ratio spectrum and mass flow rate values recorded. Further work can 

add the additional components of the TCR that would provide the losses not accounted for 

here. 

Another important characteristic that was calculated and recorded for the NPSMF 

was the mass averaged efficiency. The mass averaged efficiency curve for the 70% data 

run can be seen below in Figure 34. In the calculation of the efficiency curves for the 

NPSMF, the thermocouples indexed in the raw data as “T 8” and “T 10” were removed 

from the calculations due to bias errors in their measurements. The remaining curves for 

the other speeds can be seen in Appendix I. 

Figure 34. Mass averaged efficiency of NPSMF at 70% +/- 1σ. 
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VI. CONCLUSION 

A. SUMMARY 

The goal of this thesis was to increase confidence in the mass flow rate 

measurements of the TCR while providing a robust computational model for future use to 

explore other aspects of the rig. The design of the bell mouth attachment will allow this 

goal to be pursued further upon its implementation. The CFD results of the TCR model 

confirmed assumptions regarding the flow dynamics through the mass flow nozzle and 

provided significant upstream data for future testing. The pressure profiles around the 

nozzle further affirmed the placement of the probes for measuring mass flow rate. The 

performance curves affirmed the validity of the CFD model while revealing its need for 

additional components to account for other losses in the flow. 

B. RECOMMENDATIONS FOR FUTURE WORK 

Further investigation ought to be pursued into the causes for overflow errors in high 

pressure ratios within the CFX model. Significant work was put in to trying to rectify the 

problems, however no solution was found. The lower pressures converge well, while each 

higher pressure failed to do so, oscillating up to larger residuals. 

The implementation of the flow screens in the CFD model would continue to 

increase the analysis’ accuracy and provide more comparable flow to experimental data 

and pressures. The basics of the model have already been implemented, but these screens 

must have the proper porosity and interfacial area density calculated and then specified 

within CFX. Computational time will be large for this kind of model. 

Upon the implementation of the bell mouth attachment, this attachment ought to 

replace the inlet in the CFX geometry. The data around that inlet bell mouth can then be 

compared to experimental data recorded once it is in operation, and the CFD model can 

then be checked to ensure accuracy.  
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APPENDIX A. ASME MFC-26-2011 BELL MOUTH INLET 
FLOWMETERS GUIDELINES 

This Standard is centered around the typical method of flow calculation in a bell 

mouth via pressure and temperature measurement at the bell mouth’s throat. The Standard 

defines the throat of the bell mouth as “the axial portion of the bell mouth of constant 

diameter” [7]. At the throat, the Standard specifies that the free-stream conditions ought to 

be directly measured axially and measured radially such that the points are not in the 

boundary layer. All sensing points of the inserted probes ought to be positioned within the 

same axial plane “at a distance greater than 0.5d downstream of where the flared inlet 

ends,…although 1d or greater is recommended” [7]. These probes ought to be positioned 

so as to not interfere with or disturb the wall static taps as well. 

In terms of quantity, larger bell mouths require more probes. However, four equally 

circumferentially spaced probes is sufficient, while two may be adequate for small diameter 

bell mouths. The same guidance is applied to static pressure taps. For the purposes of this 

research, the bell mouth attachment was designed for four static pressure taps only. It was 

designed to follow the “Clean Inlet Method” referenced in this Standard. This method 

assumes low air velocity and infers the total pressure and temperature at the throat from 

ambient conditions. 

Fluid properties that can affect the flow rate measurement are specified including 

density, viscosity, isentropic exponent, and thermal expansion. The effect of the size of the 

bell mouth on the flow conditioning is also explained. The Standard recommends 

additional flow conditioning downstream of the bell mouth for any throat diameters less 

than 0.508 meters (20 inches). 

The bell mouth ought to be made out of corrosion-resistant material. For high-

temperature uses, stainless steel is recommended. For normal operations, aluminum or 

composite materials such as fiberglass may be used.  

For the machining of the bell mouth, special care should be given to the bell mouth 

throat. It ought to be as cylindrical as possible, with any taper not exceeding -5.08e-5 
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meters (-0.0020 inches) for diameters larger than 0.1524 meters (6.00 inches). Tapers must 

err on the negative side, decreasing the throat diameter towards the outlet. In terms of 

surface roughness, in order to ensure fully developed flow with low wall friction, the 

surface finish, Rd, below should be followed. 

𝑅𝑅𝑖𝑖 = 10−5 ∗ 𝑑𝑑 

where d = bell mouth diameter 
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APPENDIX B. BLAIR AND CAHOON BELL MOUTH DESIGN 

This study focused on the best practices to optimize the design of an intake bell 

mouth by using CFD software and comparing various shapes and inlet conditions. The 

characteristics used to evaluate these bell mouths were mainly CD and mass flow rates.  

The three most common bell mouth configurations were analyzed and can be seen 

in Figure 35. These are the simple circular radius, the gradually expanding aerofoil, and 

the elliptical-shaped profile.  

 
Figure 35. Three bell mouth shapes tested by Blair and Cahoon [8]. 

A wide range of dimensions for these three configurations were tested at various 

pressure ratios. In order to most easily observe the results, the CD values and mass flow 
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rates with a set pressure ratio were plotted as a percentage of improvement from the most 

simple radius bell mouth, identified as RAD-46-23-35-6 in Figure 35. These results can be 

seen in Figures 36 and 37. 

 
Figure 36. CD improvements for each bell mouth shape tested by Blair and 

Cahoon [8]. 

 
Figure 37. Mass flow rate improvements for each bell mouth shape tested by 

Blair and Cahoon [8]. 



49 

The ultimate conclusion is that the “short and fat” elliptical bell mouth, identified 

as ELL-23-23-49-3 in the plots above, had the greatest percentage improvement over the 

simple radius bell mouth. This shaped bell mouth is thus the “best” bell mouth as defined 

by the CD and mass flow rates standards presented by Blair and Cahoon [8]. They note, 

however, that the advantage is slim, with an improvement percentage of a mere 2.5% in 

CD and 1.5% in mass flow rate.  

This “short and fat” elliptical shape of approximate 2-to-1 ratio between entry and 

exit diameters was used for the design expanded upon in this thesis. 
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APPENDIX C. CYLINDRICAL CASING DRAWINGS 
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APPENDIX D. BELL MOUTH COMPRESSIBLE FLOW 
CALCULATION 

 
The bell mouth exit sizing was determined by calculating the diameters required to 

form a given pressure ratio and mass flow rate via compressible flow equations. Using the 

non-dimensionalized velocity “X” shown below, the density and velocity of compressible 

flow can be found. These relationships can be seen below also. 

𝑋𝑋 =  
𝑣𝑣
𝑣𝑣𝑜𝑜

= �1 − �
𝑃𝑃1
𝑃𝑃𝑡𝑡1

�
𝛾𝛾−1
𝛾𝛾

 

𝑣𝑣 = 𝑣𝑣𝑜𝑜𝑋𝑋 = �2𝑐𝑐𝑝𝑝𝑇𝑇𝑜𝑜�1 − �
𝑃𝑃1
𝑃𝑃𝑡𝑡1

�
𝛾𝛾−1
𝛾𝛾

 

𝜌𝜌 =
𝑃𝑃𝑜𝑜
𝑅𝑅𝑇𝑇𝑜𝑜

�
𝑃𝑃1
𝑃𝑃𝑡𝑡1

�
1
𝛾𝛾
 

Using these relationships and the definition of mass flow rate, the area required was 

calculated according to the given mass flow rate and pressure ratio as well as the stagnation 

pressure and temperature. The final equation used can be seen below. 

𝑋𝑋 =  
�̇�𝑚

𝑃𝑃𝑜𝑜
𝑅𝑅𝑇𝑇𝑜𝑜

�𝑃𝑃1𝑃𝑃𝑡𝑡1
�
1
𝛾𝛾
�2𝑐𝑐𝑝𝑝𝑇𝑇𝑜𝑜�1 − �𝑃𝑃1𝑃𝑃𝑡𝑡1

�
𝛾𝛾−1
𝛾𝛾

 

This equation was used in an excel spreadsheet to easily calculate and then plot the 

resulting bell mouth diameters, and the results are detailed in Chapter III.  
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APPENDIX E. MACHINED BELL MOUTH ATTACHMENT 
DRAWINGS 
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APPENDIX F. CFX MODEL MESH STATISTICS 

Global Mesh 

 
 
Sizings 
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APPENDIX G. KEY CFD SIMULATION RESULTS 

Throttle Rotation 
(degrees) 

Pressure Ratio Mass Flow Rate 
(kg/s) 

Max Mach Number 

0 1.0100 0.38155 0.09525 

0 1.0519 0.84426 0.21292 

0 1.1095 1.1695 0.31551 

0 1.1738 1.448 0.42677 

0 1.2459 1.721 0.53124 

0 1.3275 1.985 0.64209 

5.996 1.0100 0.36481 0.09934 

5.996 1.0519 0.81855 0.21720 

5.996 1.1095 1.1373 0.30683 

5.996 1.1738 1.4390 0.43326 

5.996 1.2459 1.7090 0.53621 

5.996 1.3275 1.9720 0.64686 

12.273 1.0100 0.29384 0.11926 

12.273 1.0519 0.64753 0.2662 

12.273 1.1095 0.90773 0.38101 

12.273 1.1738 1.1460 0.48629 

12.273 1.2459 1.3620 0.5866 

12.273 1.3275 1.5710 0.67902 

14.956 1.0100 0.24507 0.12453 

14.956 1.0519 0.53924 0.28064 

14.956 1.1095 0.74595 0.40003 

14.956 1.1738 0.9400 0.49015 

14.956 1.2459 1.1170 0.59435 

14.956 1.3275 1.2880 0.69803 
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APPENDIX H. PERFORMANCE CURVES FOR NPSMF 

80% Speed Data 

 
 
 

85% Speed Data 

 
 
 

P
re

ss
ur

e 
R

at
io

P
re

ss
ur

e 
R

at
io



70 

90% Speed Data 
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APPENDIX I. MASS-AVERAGED EFFICIENCY CURVES FOR 
NPSMF 

80% Speed Data 

 
 

85% Speed Data 
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90% Speed Data 
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APPENDIX J. ADDITIONAL TCR AND BELL MOUTH 
ATTACHMENT VIEWS 

Full Computational Domain of TCR with Current Box Inlet 
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Assembly Drawing for Full Connected Bell Mouth Attachment 
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APPENDIX K. PRESSURE DROP ACROSS TCR COMPARISON 

The following plot shows the pressure drop across the TCR drawn from the 

experimental data compared to the pressure drop data from a matched CFD simulation run. 

The matched run set the outlet static pressure equal to the outlet static pressure of this 

particular 70% speed test run, defined as “Ps1_avg” in the raw data file. The CFD matched 

simulation then set the inlet mass flow rate equal to the recorded, unscaled mass flow rate 

from the raw data, defined as “mdot_X” in the raw data file. The results of that simulation 

were then plotted on top of the experimental data, shown in Figure 38. 

 

Figure 38. Pressure drop across the TCR for a matched 70% speed 
experimental test. 

This plot shows that the slopes of dropping pressure from the flow nozzle to the 

outlet are very similar in the CFD and the experimental data. It also further shows that there 

is a greater pressure drop in the experimental data than the CFD simulation. This pressure 



76 

drop occurs between the inlet and the flow nozzle, more clearly linking it to the positioning 

of the flow straightening screens located within this section of the TCR. 

 



77 

SUPPLEMENTAL. EXPERIMENTAL RAW DATA FILE 

The supplemental file shows the raw data recorded for each speed run of the 

NPSMF. This data was directly used for post processing and for the experimental analysis 

of the NPSMF shown in this thesis. It is available at the Dudley Knox Library at the Naval 

Postgraduate School. 
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