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ABSTRACT 

 In this paper, we study the independence number of various classes of I-graphs. 

I-graphs are generalizations of the Generalized Petersen Graphs. We provide 

constructions of independent sets given any parameters, as well as bounds for some 

subclasses of I-graphs. We also prove exact results for some specific I-graphs. 
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CHAPTER 1:
Introduction

Graph theory is a field of mathematical study dating back to the eighteenth century.
Renowned mathematician Leonhard Euler is credited with the first publication, in which
he characterized and solved the historical Königsberg Bridge problem. Since then, graph
theory has quickly evolved and established itself as an amazingly useful tool for modeling.

The goal of our research is to further develop our understanding of graph theory by studying
the independence number of some classes of I-graphs.

1.1 I-graph Development
Our research subject, I-graphs, has its origins in a famous and widely used graph known as
the Petersen Graph. Because of its unique structure, graph theorists often use the Petersen
Graph to test or disprove conjectures, making it valuable to understand. Though it has only
ten vertices, the Petersen Graph has many properties and symmetries. For example, it is
vertex transitive; that is, assuming the vertices are unlabeled, it is impossible to distinguish
between any two vertices. The same applies for the edges of the graph. The graph is now
very well understood, but its generalizations have not been fully characterized.

A first such generalization is aptly named a Generalized Petersen Graph. These graphs
can be chosen to be any size, and can have slightly different constructions. Despite these
changes, the Generalized Petersen Graphs retain many of the original properties. At this
point, we have transitioned from a single graph to countably infinitely many graphs that we
call a class of graphs. This vast space of possible Generalized Petersen Graphs has been
the subject of extensive research, and much about this class has been understood.

The next level generalization creates the I-graphs. As the Petersen Graph is an element
of the Generalized Petersen Graphs, the Generalized Petersen Graphs are a subset of the
I-graphs. With yet another parameter added to modify the construction, the class of I-graphs
is more complex and larger. While researchers have begun to unearth the properties of these
graphs, there is clearly much more to be realized. It is with this class of graphs that our
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research lies.

1.2 Relevance
Graph theory has been in the forefront of modeling discrete systems for years. Graphs
present a reach structure, since the edge set captures the relationships between the objects
to be studied.

Among the most apparent and direct applications are cyber networks. When cyber systems
are linked together in any form, it can be modeled as vertices with edges between them.
Such models, armed with the tools of graph theory, can help understand things like traffic
flow, points of failure, central systems, and vulnerabilities. Social networks, too, can be
modeled and analyzed as graphs to suggest certain group dynamics based on patterns of
interaction.

The research we present makes contributions to understanding a few very specific classes
of graphs. Any advancement of what is known within the field adds possible tools to be
used to understand models such as those above. The results we present rely on intrinsic
structural characteristics of the I-graphs chosen, and identifying and understanding these
types of characteristics is necessary for continuing research.

In Chapter 2, we will be presenting many of the existing results regarding Generalized
Petersen Graphs and I-graphs, before presenting novel results in Chapter 3 and summarizing
them in Chapter 4.
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CHAPTER 2:
Background

In this chapter, we explore prior research to Generalized Petersen Graphs and I-Graphs.
This chapter is organized into sections including Graph Theory Overview, Generalized
Petersen Graphs, and I-Graphs.

2.1 Graph Theory Overview
Graph theory is a constantly developing tool in discrete mathematics for visualizing and
proving results on relations on a set. Graph theory has been applied to countless areas, from
protein composition [1], to social networks, to delivery routes, to cyber networks, and many
more. Graphs can be weighted or unweighted and directed or undirected. When a graph is
unweighted and undirected, we describe it as “simple.” This is the only type of graph we
will be considering in this thesis. Before we go further, we will recall the definition a graph
G as:

Definition 1. Graph

A graph G is a pair of sets (V,E) such that E ⊂ V × V of unordered pairs of V . We call
the set V = V(G) the set of vertices and the set E = E(G) the set of edges. An edge {x, y}
joining the vertices x and y is denoted xy [2].

Throughout, we will be using the terms “nodes” and “vertices” interchangeably.

As defined above, graphs describe relations on sets. These relations are shown in the edge
set E .

Definition 2. Adjacency

In a graph G, two vertices u, v ∈ V are said to be adjacent if uv ∈ E . Subsequently, vertices
u, v ∈ V as above are nonadjacent if uv < E

In this paper, however, we will be more interested in non-adjacent vertices within a graph.
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Definition 3. Independent Set

A subset of vertices such that each are pairwise non-adjacent is called an independent set,
denoted I(G).

When analyzing graphs, it is often more important to know the size of an independent set,
without knowing each element.

Definition 4. Independence Number

The independence number, α(G), is the cardinality of a largest independent set.

It is clear that such a set is not unique in general, though the independence number is. We
will be exploring these concepts later when applied to specific classes of graphs.

We now also recall the definitions of graph isomorphism [3], graph automorphism [4],
vertex transitive graphs [4], and edge transitive graphs [4].

Definition 5. Graph Isomorphism

An isomorphism from a graph G to a graph H is a bijection φ : V(G) → V(H) such that
φ(u)φ(v) ∈ E(H) if and only if uv ∈ E(G). We say “G is isomorphic to H”, written G � H

if there is an isomorphism from G to H.

Understanding graph isomorphisms, we can build a set of functions describing them.

Definition 6. Graph Automorphism

A graph automorphism on a graph G is an isomorphism mapping G to itself. The set of
all automorphisms of G is called the automorphism group of G, denoted Aut(G), which
satisfies group properties under composition.

Using automorphisms, we can rigorously describe some symmetry properties of graphs.

Definition 7. Vertex Transitive

A graph G = (V,E) is called vertex transitive if for any two vertices u, v ∈ V, ∃φ ∈ Aut(G)

such that φ(u) = v.
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Vertex transitivity acts on any pair of vertices in a graph, but if we want to see edges
preserved, we must look at edge transitivity.

Definition 8. Edge Transitive

A graph G = (V,E) is called edge transitive if for any two edges u1v1,u2v2 ∈ E, ∃φ ∈

Aut(G) such that φ(u1)φ(v1) = u2v2.

With these definitions, we can fully review existing results on some classes of graphs,
specifically the Generalized Petersen Graphs and the I-Graphs.

2.2 Generalized Petersen Graphs
The Petersen Graph is a commonly used graph which gained renown following a publication
by Julius Petersen in 1898 [4]. The Petersen Graph, Figure 2.1, was constructed as a
counterexample to the conjecture that all connected, bridgeless, 3-regular graphs have an
edge-coloring of three colors [4].

Figure 2.1. The Petersen Graph

In 1950, Harold Coxeter introduced a family of graphs that would later be known as the
Generalized Petersen Graphs [5].

5



Definition 9. Generalized Petersen Graph

The Generlized Petersen Graph, P(n, k), has vertices and edges given by

V(P(n, k)) = {ai, bi | 0 ≤ i ≤ n − 1},

E(P(n, k)) = {aiai+1, aibi, bibi+k | 0 ≤ i ≤ n − 1},

where the subscripts are expressed as integers modulo n. Define A(n, k) (re-
spectively, B(n, k)) to be the subgraph of P(n, k) on vertices {ai | 0 ≤ i ≤ n−1}
(respectively, {bi | 0 ≤ i ≤ n − 1}) with edges {aiai+1 | 0 ≤ i ≤ n − 1} (respec-
tively, {bibi+k | 0 ≤ i ≤ n − 1}). We will call A(n, k) the outer subgraph and
B(n, k) the inner subgraph.

Note: it is clear that P(n, k) � P(n,n − k), so we will consider k ≤ bn/2c.

We can think of the Petersen Graph as a set of two rings of five vertices, an inner ring and
an outer ring. There are, of course, different depictions which are isomorphic. However, we
will use the above picture to foster intuition. Each vertex in the outer subgraph is adjacent
to its immediate neighbors in the outer ring and to the corresponding vertex in the inner
subgraph. Subsequently, each vertex in the inner subgraph is connected to every second
vertex (this can be referred to as a “skip” of 2. Then we can construct the Petersen Graph
as the Generalized Petersen Graph P(5,2).

Figure 2.2. P(6,2)
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Theorem1 (Fox, Gera, and Stănică [6]). The following are true for theGeneralized Petersen
Graphs P(n, k), 1 ≤ k ≤ b n−1

2 c. Note that we take the “skip” k ≤ b n−1
2 c, because of the

obvious isomorphism P(n, k) � P(n,n − k):

1. P(n, k) is a 3-regular graph with 2n vertices and 3n edges.
2. P(n, k) is bipartite if and only if n is even and k is odd.
3. Assume that n, k, s are positive integers satisfying k . ±s (mod n). Then P(n, k) is

isomorphic to P(n, s) if and only if ks ≡ ±1 (mod n).
4. P(n, k) is vertex-transitive if and only if (n, k) = (10,2) or k2 ≡ ±1 (mod n).
5. P(n, k) is edge-transitive only in the following seven cases: (n, k) = (4,1), (8,3),
(10,2), (10,3), (12,5), (24,5).

Further reading on Petersen Graphs can be found in [4].

2.3 I-Graphs
A further generalization of the Petersen Graph exists, known as an I − graph. Recall that
in a Generalized Petersen Graph, we can specify both the number of vertices and the skip
on the inner subgraph. In an I-graph, we have the same parameters, with the additional
parameter of identifying the skip in the outer subgraph as well.

Definition 10. I-Graph

An I-graph, I(n, j, k), is a graph whose vertices and edges are given by:

V(I(n, j, k)) = {ai, bi | 0 ≤ i ≤ n − 1},

E(I(n, j, k)) = {aiai+ j, aibi, bibi+k | 0 ≤ i ≤ n − 1}.

As above, we will call A(n, j, k) and B(n, j, k) our outer and inner subgraphs,
respectively. Again, both are defined as the induced subgraphs on {ai | 0 ≤ i ≤

n − 1} and {bi | 0 ≤ i ≤ n − 1}, respectively.

As we explored earlier, we can see that the Petersen Graph can be constructed as the I-graph
I(5,1,2). Clearly any Generalized Petersen Graph P(n, k) � I(n,1, k).
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Figure 2.3. I(8,2,3)

Boben, Pisanski, and Žitnik give the following properties of I-graphs:

Theorem 2 (Boben, Pisanski, and Žitnik [7]). The following hold:

1. The graph I(n, j, k) is connected if and only if gcd(n, j, k) = 1. If gcd(n, j, k) = d > 1,
then the graph I(n, j, k) consists of d copies of I(n/d, j/d, k/d).

2. A connected graph I(n, j, k) is bipartite if and only if n is even and j and k are odd.
3. If j , ±k, then I(n, j, k) has a cycle of lenghth 8. if j = ±k then I(n, j, k) has a cycle

of length 4.
4. Let n, j, k and a be positive integers such that gcd(n, j, k) = 1 and gcd(n,a) = 1.

Then the graph I(n,a j,ak) is isomorphic to I(n, j, k).

Having added an additional parameter to the graph construction, it may seem the graphs
have grown greatly in complexity. It turns out that many of the graphs within the class of I-
graphs are isomorphic to Generalized Petersen Graphs. I(8,2,3), for example, is isomorphic
to P(8,2). Boben et al. give a complete description of such I-graphs through the following
theorem and corollary.

Theorem 3 (Boben, Pisanksi, and Žitnik [7]). Let n, j, k be positive integers such that
gcd(n, j, k) = 1, gcd(n, j) , 1, and gcd(n, k) , 1. Then the graph I(n, j, k) is neither vertex
transitive nor edge transitive.
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Corollary 3.1 ( [7]). A graph I(n, j, k) is a Generalized Petersen graph if and only if
gcd(n, j) = 1 or gcd(n, k) = 1. If gcd(n, j) = 1 then I(n, j, k) � P(n,r), where r is the
solution of the equation k ≡ r · j (mod n).

We call such I-graphs which are connected and are not isomorphic to Generalized Petersen
Graphs proper I-graphs.In fact, there is such an overlap between Generalized Petersen
Graphs and I-graphs that there are no proper I-graphs for n ≤ 11.

Corollary 3.2. There are no proper I-graphs with n prime number of vertices.

Figure 2.4. I(12,2,3) Figure 2.5. I(12,3,4)

Figure 2.6. I(12,2,3) and I(12,3,4) are the smallest proper I-graphs.

In Chapter 3, we will present novel results about the independence numbers of some classes
of I-graphs.

9
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CHAPTER 3:
Results

In this chapter, we present various novel results about the independence numbers of I-graphs.
We first show a lower bound for a specific class of I-graph via an explicit construction, then
move on to show that the lower bound is, for a specific subclass, tight. Further, we present
a constructive lower bound for any proper I-graph.

3.1 The Independence Number of I(12r,3,4)
As discussed in Chapter 2, I(12,3,4) is one of the smallest proper I-graphs, alongside
I(12,2,3). For this reason, we chose to evaluate I(12r,3,4), a class of proper I-graphs
containing I(12,3,4).

Theorem 4. For proper I-graphs I(12r,3,4), ∀r ∈ N,⌊
21r
2

⌋
≤ α(I(12r,3,4)) ≤ 12r − 2δ(r),

where δ(r) =


0, if r is even

1, if r is odd.

Proof. Toward proving the lower bound, consider the following constructions in the three
cases:
Case 1: r even. The set

A =
{
a0+8s, a1+8s, a2+8s, b3+8s, b4+8s, b5+8s, b6+8s | s ∈ N ∪ {0}, s ≤

3r
2
− 1

}
is an independent set. To see this, note that there are no such ai, b j ∈ A such that i = j.
There are no such ai, a j ∈ A such that i = j + 3. There are no such bi, b j ∈ A such that
i = j + 4. A has 12r

8 · 7 =
21r
2 elements. Then 21r

2 ≤ α(I(12r,3,4)) for r even.
Case 2: r = 1. The set

A = {b0, b1, ,a2, a3, a4, b6, b7, a8, a9, a10}

11



is an independent set, by the same logic as Case 1. See Figure 3.1. Then A has b 21r
2 c = 10.

Then b 21
2 c ≤ α(I(12,3,4).

Figure 3.1. Case 2: α(I(12,3,4)) = 10

Case 3: r ≥ 3 odd. The set A ={b0, b1, ,a2, a3, a4, b6, b7, a8, a9, a10}
⋃

{a12+8s, a13+8s, a14+8s, b15+8s, b16+8s, b17+8s, b18+8s | s ∈ N ∪ {0}, s ≤ 3(r−1)
2 − 1} is an

independent set, by the same logic as Case 1. A has 10 + 12r−12
8 · 7 = 10 + 21(r−1)

2 = b 21r
2 c.

Then b 21
2 c ≤ α(I(12r,3,4)) for r odd.

Since the cases are exhaustive, and since b 21r
2 c ≤

21
2 ∀r ∈ N, we have that

b 21r
2 c ≤ α(I(12r,3,4)).

Toward proving the upper bound, consider first the cycles of B(12r,3,4) (the inner subgraph).
Each cycle is of length 12r

4 = 3r . For r even, since each cycle is of even length, we can take
every second node in each cycle, for a total of 3r

2 nodes. There are four such cycles, so we
can take at most 6r nodes from B(12r,3,4). For r odd, each cycle is of odd length, so we
can take at most 3r−1

2 nodes from each. There are four such cycles, so we can take at most
6r − 2 nodes from B(12r,3,4).
Consider now the cycles of A(12r,3,4)) (the outer loop). Each cycle is of length 12r

3 = 4r .
Then for all r , each cycle is of even length. As before, we can take atmost 4r

2 = 2r nodes from
each cycle. There are three such cycles, so we can take at most 6r nodes from A(12r,3,4).

Thus, we can take at most 12r−2 ·δ(r) from I(12r,3,4), where δ(r) =


0, if r is even

1, if r is odd
. �

Remark. It is important to note that the upper bound is attainable, but not sharp. For
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example, for I(12,3,4), we have that
⌊ 21·1

2 c = 10 ≤ α(I(12,3,4)) ≤ 12 · 1 − 2 · 1 = 10.

We have established loose bounds, and acknowledge that the upper bound is not sharp. We
now consider the independence number of I-graphs for specific values of 0 < r ∈ Z. Surely,
we can do the next theorem computationally, but we wanted to argue that even for some
specific small cases, a theoretical proof is quite involved.

Theorem 5. We have α(I(24,3,4)) = 21.

Proof. By the lower bound presented above, we know that α(I(24,3,4)) ≥ 21. Suppose
there exists an independent set such that α(I(24,3,4)) = 22. As we have seen before,
each ring can contain at most n

2 independent nodes, in this case twelve. Then there are
three possible configurations: A(24,3,4) contains twelve nodes of our independent set, each
A(24,3,4) and B(24,3,4) contain eleven nodes of our independent set, or B(24,3,4) contains
twelve nodes of our independent set. We will handle these each in separate cases.

Case 1: A(24,3,4) contains twelve nodes of our independent set. There are exactly two
ways to achieve this: groups of three or every other node in the outer ring. Then we must
select the inner nodes. In the first pattern, the available nodes on the inner ring come in four
blocks of three. To select 10 nodes, by the pigeonhole principle, at least one block must
have all three selected. But the boundary nodes are adjacent to nodes in the neighboring
groups of three, eliminating them from being used. Then there are 7 spaces left from which
to choose 7 nodes, but by the same logic any boundary node eliminates the boundary node
of the next group, thus impossible. In the second pattern, since the outer selection pattern
aligns with the inner cycles, we can take at most half of the remaining 12 nodes in the inner
ring.

Case 2: B(24,3,4) contains twelve nodes of our independent set. Again, there are exactly
two ways to ways to achieve this: choosing the set {b8i, b8i+1, b8i+2, b8i+3 |i ∈ {0,1,2}} or the
set {b8i, b8i+2, b8i+3, b8i+5 |i ∈ {0,1,2}}. Consider the first pattern. Again, by the pigeonhole
principle, since this pattern repeats three times, one off-grouping in A(24,3,4)must contain
at least 4 nodes. This is obviously impossible. Consider the second pattern. Again, we
must fit 4 nodes in at least one of the groupings, which is impossible. (The most we can
take from any is 3).

13



Case 3: Each A(24,3,4) and B(24,3,4) contain eleven nodes of our independent set.
Suppose we chose 11 nodes in the outer ring. Recall that there are three cycles of 8 nodes in
the outer ring, and we can take at most four from each. Partition A(24,3,4) into subgraphs
A0, A1, and A2 corresponding to each cycle. For example, A0 = {a0, a3, a6, a9, a12, a15,

a18, a21}. Then there are two cycles with four nodes selected, and there is one cycle with
three selected. Consider now any of the inner cycles. Similarly, we have 4 cycles of 6
nodes each. To achieve eleven nodes, there must be three cycles containing three nodes of
our independent set and one cycle containing two nodes of our independent set. Choose
any of the inner cycles, and select three nodes. Due to the symmetry of the graph, we can
assign the three nodes to labels b0, b8, b16. Since gcd(8,6) = 2, we know that each cycle
in B(24,3,4) will be adjacent to exactly two nodes in each cycle of A(24,3,4). Consider
A0 = {a0, a3, a6, a9, a12, a15, a18, a21}. Then a0 is adjacent to b0, and therefore cannot
be selected. Since we must have four nodes selected, we must choose a3, a9, a15, and a21.
Now consider A1 = {a1, a4, a7, a10, a13, a16, a19, a22}. Again, since we must have four
nodes selected, we must choose a1, a7, a13, and a19. Finally, consider A2 = {a2, a5, a8, a11,
a14, a17, a20, a23}. We need only choose three nodes from A2. Before we can choose which
three nodes, we must consider the next cycle in B(24,3,4), {b1, b5, b9, b13, b17, b21}. By
our forced selections, b1, b9, b13, and b21 are ineligible to be selected, so we must ensure
nodes b5 and b17 can be selected. This necessitates we choose nodes a2, a14, and a20 from
the A2 subgraph. Finally, consider the third cycle of B(24,3,4), {b2, b6, b10, b14, b18, b22}.
We can choose exactly two nodes from this group (anything of the form {b6, b10} × {b18,
b22}). However, to attain the requisite 11 nodes from the inner ring, we needed to be able
to select three nodes. Thus this case is also impossible.

Since the cases are exhaustive, we have that α(I(24,3,4)) = 21. �

We have investigated the cases for r = 3 (n = 36) and r = 4 (n = 48), and, as with I(12,3,4)
and I(24,3,4), we have not been able to identify an independent set with more than b 21r

2 c

elements.

We offer now a construction-based formula which can provide a lower bound for any proper
I-graph. The construction utilizes a greedy algorithm to quickly generate an independent
set. Toward building intuition for the formula, we first define k- groupings and j- groupings.
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In order to offer the next theorem, we must first introduce a partition on the I-graph
I(24r,3,4). Define Q =

⋃3r−1
γ=0 (Qγ) where Qγ = {a8γ, b8γ, a8γ+1, b8γ+1, . . . , a8γ+7, b8γ+7}.

We can see that by construction that Q = I(24r,3,4) and that Qi
⋂

Q j∀i , j. Then this is a
partition of I(24r,3,4).

Lemma 1. If Qi ∈ Q contains eight nodes of an independent set, then Qi+1 can contain at
most seven such nodes.

Proof. Assume a set Qd contains eight nodes of an independent set. We know that if we
select a node a` ∈ A(24r,3,4), it is impossible to also select either a`−3 or a`+3. Similarly,
if we select a node b` ∈ B(24r,3,4), it is impossible to select either b`−4 or b`+4 (in both
cases, indices are given modulo 24r). Using this, we know that we can select at most three
consecutive nodes in A(24r,3,4). Repeating this logic, we know we can select at most four
consecutive nodes in B(24r,3,4).

Since we must select eight nodes from Qd , we know that there must be an index i in Qd

such that ai and bi+1 are in our independent set. Since we have now chosen at most seven
nodes, there must be an index h such that bh and ah+1 are in our independent set.

Looking now at Qd+1, we see that bh+4 and a(h+1)+3 are both ineligible to be selected. We
know that h must be such that this overlap occurs in Qd+1 else we would have failed to select
eight nodes in Qd . Due to this overlap, we see that Qd+1 contains at most seven nodes of an
independent set. �

Lemma 2. Between any two sets Qµ,Qγ ∈ Q, such that each contain eight nodes of an
independent set, there is a set Qi ∈ Q such that Qi contains at most six nodes of our
independent set.

Proof. Assume we have two sets, Qµ and Qγ which each contain eight nodes of an indepen-
dent set. Without loss of generality, assume µ < γ. Consider the set Qµ+1. From Lemma 1,
we see that it can contain at most seven nodes of an independent set. Again, following the
logic of Lemma 1, we see that in order to contain seven nodes, there must be an index h

in Qµ+1 such that bh and ah+1 are in the independent set. Looking forward to Qµ+2, we
see again that bh+4 and a(h+1)+3 are both ineligible to be selected, and we know this overlap
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must occur in Qµ+2 for the same reasons. This pattern continues for all further adjacent sets
in Q which contain seven nodes of the independent set.

Now consider Qγ−1. Again, we know that Qγ−1 can contain at most seven nodes, and to do
so, there is an index ω in Qγ−1 such that aω and bω+1 are in the independent set. Then in
Qγ−2 both aω−3 and b(ω+1)−4 are ineligible. This pattern will also extend for all adjacent
sets in Q which contain seven nodes.

Finally consider a set Qi ∈ Q with µ < i < γ, and with Qi−1 and Qi+1 each containing at
least seven nodes of an independent set. As shown above, there is are indices τ and ψ in
Qi−1 and Qi+1, respectively which cause the overlaps in Qi as described above. However,
since we know that τ is an index in Qi−1, the overlap must occur in the first four positions
of Qi. Similarly, since we know ψ is an index in Qi+1, we know the overlap must occur in
the last four positions of Qi. Therefore, the overlaps cannot occur in the same spot in Qi, so
Qi can contain at most six nodes of an independent set. �

Remark. A special case of Lemma 2 is when we have exactly one Qi ∈ Q which contains
eight elements of an independent set. In this case, we can see we will still encounter the same
problem of needing at least one set in Q containing at most six nodes of our independent
set.

Theorem 6. For I(24r,3,4), we have that α(I(24r,3,4)) = 21r .

Proof. Assume we have a graph I(24r,3,4)which has an independent set of 21r nodes. We
know this is possible by the earlier construction.

Consider a partition Q =
⋃3r−1
γ=0 (Qγ) of the graph into windows of 8 indices: Qγ = {a8γ,

b8γ, a8γ+1, b8γ+1, . . . , a8γ+7, b8γ+7}. Since we have 21r nodes in our independent set
and 3r partitions, we know that the partitions must contain an average of 7 nodes each.
Assume now, towards contradiction, that we add one more node to the independent set, so
α(I(24r,3,4)) = 21r + 1. By the pigeonhole principle, it must be the case that at least one
partition contains eight nodes of our independent set. Since we added a node to exactly
one partition, the remaining partitions must still contain an average of seven nodes of the
independent set. By the above lemma, one of these partitions must contain at most six nodes
of the independent set. In order to keep the average of seven nodes per partition, there must
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be at least one partition containing eight nodes of the independent set. Using the above
lemma again, we see another partition must contain at most six nodes of the independent
set. Repeating this across all partitions, we arrive at our contradiction. At least one of the
following will hold:

1. Two partitions containing eight nodes of the independent set will be adjacent (⇒⇐).
2. We will have failed to select 21r + 1 nodes to be in our independent set (⇒⇐).

Therefore α(I(24r,3,4)) ≤ 21r , and consequently, putting these bounds together,
α(I(24r,3,4)) = 21r . �

3.2 Other Constructive Bounds
Before we continue with our next constructive bound, we first define k-groupings and
j-groupings.

Definition 11. k-Groupings

We call a sequence of k consecutively indexed nodes (mod n) from B(n, j, k) a k-grouping.

Definition 12. j-Groupings

We call a sequence of j consecutively indexed nodes (mod n) from A(n, j, k) a j-grouping.

We used the ideas of k-groupings and j-groupings in our constructive lower bound for
I(12r,3,4), but here we need to use them more generally. Now we provide a closed form,
constructive lower bound for any given proper I-graph.

Theorem 7. For any proper I-graph I(n, j, k), with j < k and n
k even, we have:

n
2k
· (k + j ·

⌊
k
2 j

⌋
+ δ0(

⌊
k
j

⌋
) ≤ α(I(n, j, k)),

where δ0(b
k
j c) =


k (mod j), if

⌊
k
j

⌋
is even

j, if
⌊

k
j

⌋
is odd.
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Proof. Suppose we have a proper I-graph I(n, j, k) with j < k. Suppose also that n
k is

even. We choose to look at a an interval of size 2k. Without losing any generality,
we will use indices {0, 1, . . . ,2k − 1}. We first select a k-grouping into our indepen-
dent set using nodes {b0, b1, . . . bk−1}. This leaves only choices from the following set:
{ak,ak+1, . . . ,a2k−1}. From the remaining k nodes in A(n, j, k), we can choose at least
k
2 j j-groupings: {ak, ak+1, . . . ak+ j−1} ∪ {ak+2 j, ak+2 j+1, . . . ak+3 j−1} ∪ · · · ∪ {ak+2(b k2j c−1) j,

ak+2(b k2j c−1) j+1, . . . ,ak+2b k2j c− j−1}. We now consider the remaining k − 2 j · b k
2 j c, nodes in

two cases.

Case 1: k − 2 j · b k
2 j c < j. Under this assumption, we can see that b k

j c is even. In this case,
we have taken as many full j-groupings as possible to be in our independent set. However,
since each j-grouping above has been selected with the necessary off-grouping, or a set of
nodes that cannot be selected, alongside, we know that all the remaining k − 2 j · b k

2 j c nodes
can be selected. Notice that under the assumption that we have fewer than j remaining
nodes, k − 2 j · b k

2 j c returns the same value as k (mod j).

Case 2: k − 2 j · b k
2 j c ≥ j. When this is true, we can see that b k

j c is odd. In this case, we
can select exactly one more j-grouping to be in our independent set. This is true because,
as discussed in Case 1, every earlier j-grouping was chosen on an interval to include its
necessary off-grouping.

These cases are exhaustive, and complete a constructive lower bound for any interval of
length 2k. However, we must finally prove that each interval, as constructed, behaves
independently. That is, no node selected in one interval disallows the selection of a node
in another interval that otherwise would have been selected by the proposed construction.
To do so, we will look at three consecutive intervals. If the construction holds for both the
interval immediately before and the interval immediately after, then by the symmetry of the
I-graphs, we know that we can apply the construction to each of the n

2k intervals.

For simplicity of notation, we will choose our reference interval to use indices {2k, 2k +

1, . . . ,4k − 1}. Call this interval Q0. Then Q−1 uses indices {0, 1, . . . ,2k − 1} and
Q1 uses indices {4k, 4k + 1, . . . ,6k − 1}. By our construction, we selected nodes
{b2k, b2k+1, . . . , b3k−1} into our independent set. Outside Q0. This prevents us from
selecting nodes {bk, , bk+1, . . . , b2k−1}, none of which are used in this construction. While
it is hard to specify in general which indices the final selected group in Q0 uses, we know

18



the largest it can be is j consecutive nodes. This case prevents us from selecting nodes
{a4k, a4k+1, . . . ,a4k+ j}. Since we assumed j < k, we know that none of these nodes are
used in this construction. Then no nodes selected in Q0 prevent the selection of nodes in
Q−1 or Q1, we have that this is a valid construction, and the bound holds. �

This bound was developed in collaboration with Zachary Klein. It prioritizes selecting
complete k-groupings and filling in with as many j-groupings as possible. For this reason,
we informally call this the “k-grouping bound”. In some cases, such as the class I(24r,3,4),
this bound is actually equality. Additionally, our colleague, Zachary Klein, has shown
equality will hold for the class I(6r,2,3) (with r ≥ 2) [8]. This is not true in general,
however. We offer one more bound to demonstrate this.

Theorem 8. For proper I-graphs I(15r,3,5), ∀r ∈ N,

5 ·
⌊
5r
2

⌋
+ δ(r) ≤ I(15r,3,5) ≤ 15r − 4 · δ(r),

where δ(r) =


0, if r is even

1, if r is odd
.

Proof. Toward proving the lower bound, we offer the following constructions for three
cases:
Case 1: r even. The set

A =
{
a0+6s, a1+6s, a2+6s, b3+6s, b5+6s |s ∈ N ∪ {0}, s ≤

5r
2
− 1

}
is an independent set. Note that there are no such ai, b j ∈ A such that i = j. Similarly, there
are no such ai,a j ∈ A such that i = j + 3. Finally, there are no such bi, b j ∈ A such that
i = j + 5. Thus, |A| = 15r

6 · 5 =
25r
2 , and the bound holds.

Case 2: r = 1. The set

A = {a0, a1, a2, b3, b5, ,a6, a7, a8, b9, b11, b12}

is an independent set. See Figure 3.2. Then |A| = 11, and the bound holds.
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Figure 3.2. Case 2: α(I(15,3,5)) = 11

Case 3: r odd. The set

A =
{
b2} ∪ {a3+6s, a4+6s, a5+6s, b6+6s, b8+6s |s ∈ N ∪ {0}, s ≤

5r − 1
2
− 1

}
is an independent set, by the same logic as in Case 1. Then |A| = 5 · b 15r

6 c + 1, and the
bound holds.

Toward proving the upper bound, first, as we have before, consider the cycles of B(15r,3,5).
Each cycle is of length 15r

5 = 3r . When r is even, each cycle has even length, so we can
take 3r

2 nodes. When r is odd, we can select 3r−1
2 nodes. There are five such cycles, so we

can take 15r
2 nodes when r is even or 15r−5

2 nodes when r is odd.

Consider now the cycles of A(15r,3,5). Similarly, each cycle has length 15r
3 = 5r . When r

is even, we can take at most 5r
2 nodes from each. When r is odd, we can take at most 5r−1

2
nodes from each. There are three such cycles, so we can take 15r

2 nodes when r is even or
15r−3

2 nodes when r is odd. Thus we can take at most 15r − 4 · δ(r) from I(15r,3,5), where

δ(r) =


0, if r is even

1, if r is odd
. �

Corollary 8.1. We have that α(I(15,3,5)) = 11.

Proof. By applying the bounds given in Theorem 8, we see 11 ≤ α(I(15,3,5)) ≤ 11. �

Remark. Notice that in Theorem 7, we get that 12r ≤ α(I(15r,3,5)), but we have just
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shown, in Case 2 of Theorem 8, that when r is even, we can select at least 25r
2 nodes.

Therefore Theorem 7 is not always equality.

As opposed to Theorem 7, this construction prioritizes selecting complete j-groupings from
B(15r,3,5), then finding the appropriate nodes from A(15r,3,5). This is an example of
what we informally call a “ j-grouping bound”. We do not yet have a closed formula for
such a bound, but we conjecture that for any proper I-graph, either a k-grouping bound or
a j-grouping bound will be equal to the independence number.
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CHAPTER 4:
Conclusion

In this chapter we will summarize what we present in this thesis in Chapter 2 and Chapter
3. After doing so, we will briefly discuss future work relevant to this thesis.

In this thesis, we investigate the independence number of some classes of I-graphs. We
prove bounds for specific classes of I-graphs as well as for a much more general class.

4.1 Summary
In Chapter 2, we offer several definitions, beginning with a simple discrete graph and
some other relevant graph definitions. This includes definitions of an independent set
and a graph’s independence number. We proceed to discuss the Petersen Graph, and the
generalizations that took place to get from the Petersen Graph to the Generalized Petersen
graphs and finally, to the I-graphs we studied. Of the I-graphs, we chose to study only
proper I-graphs. Throughout, we present current results pertaining to each class of graphs.

In Chapter 3, we offer several theorems and detailed proofs of each. We begin by bounding
the independence number of the class of graphs of the form I(12r,3,4), for r ∈ N. Next we
prove α(I(24,3,4)) = 21 in order to test our bounds and develop intuition for the general
case. We go on to prove a formula which produces the exact independence number for
even values of r . From there, we provide a general lower bound for any proper I-graph
meeting certain criteria using a method we describe as “k-groupings,” which constructs an
independent set based on the input parpameters. Finally, we demonstrate that while this
method works well in general, it can be improved since we identified a parallel method,
which we call “ j-groupings”, that is better in the class I(15r,3,5).

4.2 Future Work
Due to time limitations for this project, and the difficulty of finding the independence
number (it is an NP-hard optimization problem, after all), we did not fully characterize the
independence numbers of I-graphs. There are several problems directly related to this work
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that we believe should be studied.

The first is finding and proving equality for the cases of α (I(12r,3,4)) for r odd. We have
observed that our presented lower bound seems to be equality, but our k-groupings pattern
does not hold throughout.

Next is to identify a general closed-form equation which gives a lower bound for any proper
I-graph using a j-grouping construction. This construction requires much greater under-
standing of the interactions between the parameters j and k than a k-grouping construction.

Finally, we identified two conjectures that we are leaving open for future progress. The first
is that for the case of I (r · j( j + 1), j, j + 1), with r even, a k-grouping construction will
produce a maximum independent set. The second is that for any proper I-graph, either a
k-grouping construction or a j-grouping construction will produce a maximum independent
set. We have observed both to be true.
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