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ABSTRACT 

America needs to rapidly inject advanced technology into its Armed Forces to put 

pressure on near-peer adversaries in great power competition. In one such effort, the 

United States Army is working to quickly and efficiently develop a system involving two 

vehicles, the Future Attack Reconnaissance Aircraft with Air-Launched Effects. This 

family of vehicles will be critical to establishing dominance in multi-domain operations 

on the battlefield. These vehicles are in a rapid prototyping initiative with no established 

Analysis of Alternatives. In order for the program to stay on an ambitious deliverable 

timeline, a set of low-detailed simulations for these vehicles in the Joint Dynamic 

Allocation of Fires and Sensors modeling environment are created with a design of 

experiments to provide narrowed criteria and required performance characteristics for the 

two vehicles. This data will feed a higher-fidelity model in the Advanced Warfighting 

Simulation (AWARS) environment. This research will reduce the delivery time of the 

project by enabling AWARS modelers to focus on a smaller subset of characteristic 

attributes. This thesis provides the Research and Analysis Center with a Pareto optimal 

frontier for the vehicles’ characteristics, explores characteristic tradeoffs, and 

determines measures of effectiveness and measures of performance for policymakers 

and program managers. 
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EXECUTIVE SUMMARY 

Within the next few years, the United States Army will have a capability gap with 

ensuring mission success in a wide array of conflicts. The Army may not have the critical 

ability against near-peer advisories to disrupt or destroy opposition air defense assets in 

order to provide air corridors deep behind enemy lines. To reduce this capabilities gap, the 

Army is in the process of developing an autonomous family of aerial vehicles charged with 

the mission of ensuring friendly force survival through the course of an engagement. 

This family of vehicles is called the Future Attack Reconnaissance Aircraft 

ecosystem. These vehicles are designed to travel close to the forward line of troops and 

deploy smaller unmanned aerial vehicles. These smaller vehicles are called Air Launched 

Effects (ALE) and they are being designed to disrupt or destroy enemy vehicles, radars, 

and launched systems. However, due to the experimental nature of the vehicles and their 

unproven capability in battle, it is difficult to tell what critical capabilities should be 

focused on for in-depth analysis and high-resolution modeling. Without an alternative 

against which the ALEs can be compared, the range of values for characteristics such as 

speed, lethal range, and radar ranges are limitless. This requires a narrow band to alleviate 

finite critical resources on classified systems. 

To provide recommendations for ALE characteristics and formation 

configurations, a low-resolution model is required for use as a rapid method of modeling 

to feed higher-resolution models. In this study, the Joint Dynamic Allocation of Fires and 

Sensors (JDAFS) model was used. This model was used because it has been validated by 

the Research and Analysis Center–Monterey and can provide extremely fast results with 

relatively low manpower compared to higher-resolution models. The purpose of this is to 

provide initial recommendations to the sponsor about optimal trait mixes for the ALE and 

suggest further areas for study in higher-resolution models. The results from this study will 

directly feed the Advanced Warfighting Simulation and COMBATXXI models. These 

systems require much more resources than JDAFS. From there, the Army will have a 

picture of what is required for design specifications in the contracting phase. 
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The methodology required to provide these observations and recommendations 

required research behind the proper formations and implementation of weapons systems 

and the capabilities of systems. Then, the characteristics capable of being modeled in 

JDAFS were used to create a design of experiments. This design provided a range of values 

for the study, then provided an optimal mix of these configurations to determine what was 

important to the model. Thousands of configurations were turned into scripts to run through 

simulations to determine what is important to ALE survival and enemy asset destruction. 

A snapshot of this methodology is provided in Figure ES-1. 

 
 

Figure ES-1.  Methodology Flowchart 
 

The results from 44,870 simulated battles were used to analyze the performance of 

the ALE. Two important metrics were created to assess ALE characteristics and 

configurations. These metrics are ALE survivability and ALE lethality. A linear model was 

developed for each one of these metrics, or measurements of effectiveness (MOE), to 
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determine variable importance and interactions between predictor variables. Next, random 

forests were also used to predict these MOEs and provide recommendations based on the 

splits in the model. 

When each design point was aggregated across its number of replications, the linear 

models provided decent fits for the MOE for survivability (with an R-square value of .791) 

as well as for the MOE of lethality (with an R-square value of .737). For survivability, the 

flight configuration of the ALEs and their speed were the most important variables. For 

lethality, the configuration and speed were important, in addition to the number of rounds 

each ALE had.  

When creating random forests, the cross-validation error for survivability was 

reduced to .193 and for lethality this value was reduced to .221. Random forests did a much 

better job of creating a predictive model for this study. The important variables and their 

importance are in Table ES-1, as well as the best possible configuration in Table ES-2. 

Table ES-1.  Random Forest Variable Importance 

MOE1 Variable Variable Importance MOE2 Variable Variable Importance 
# Disrupt ALE 8.1744 Configuration 1.4919 

# Kill ALE 4.2467 # Rounds .8122 
Configuration 4.2467 # Disrupt ALE .7584 

# Rounds 2.9141 # Kill ALE . 7584 
Speed .5340 Speed .41047 

Table ES-2.  Optimal Characteristics 

Characteristic Optimal Value 
# Kill ALE 9 

# Disrupt ALE 9 
Speed 150knots 

Pk(near) .9 
Pk(far) .16 

Radar Distance 7.8 miles 
Kill Distance 14.9 miles 
Burst Radius 64.136 meters 

# Rounds 5 
Mean Time to Detection 1.281 seconds 

Configuration 5 
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Based on which variables were important to the model, this study found areas for 

future research. Most importantly, higher speeds were critical for ALE success, as well as 

having at least three rounds on each ALE. Areas highlighted in darker green in Figure ES-

2 show these areas that should be utilized in future higher-resolution models to directly 

support the final development stages of the ALE and the FARA ecosystem. With less than 

12% of ALEs surviving on average from any replication, the vehicles may be best utilized 

as a disposable asset. In addition, mixes of kill and disrupt ALEs provide better results than 

simulations using only one type of variant. 

 
Figure ES-2.  R Studio Screenshot of Contour Plot for Summarized MOE Metrics 
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1 

I. INTRODUCTION 

This thesis uses simulation and efficient design of experiments (DOE) to determine 

the optimal design characteristics and support an initial analysis of alternatives for a future 

aerial reconnaissance and attack group of vehicles called the Future Attack Reconnaissance 

Aircraft (FARA) ecosystem. The FARA itself is a helicopter-type vehicle that would bridge 

a current capability gap within the Army and provide targeting capabilities alongside 

reconnaissance technology in delivering lethal and non-lethal effects (Tate 2020). Two 

concept photos are provided in Figure 1. 

Source:https://www.army.mil/article/234002/future_vertical_lift_army_selects_future_
attack_reconnaissance_aircraft_prototype_performers. 

Figure 1. FARA Concept Photos 

The FARA cannot accomplish this alone. The FARA is currently designed to 

deploy smaller vehicles to bridge the gap between the enemy front and air defense assets 

deep behind enemy lines. This smaller vehicle is called air launched effects (ALE). Each 

FARA is being designed to hold multiple ALEs, capable of relaying information to friendly 
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forces and disrupting adversarial assets on the battlefield. But, until this study, the range of 

capabilities for these ALEs have been identified, but the ideal values not yet found. 

The program used to determine the optimal characteristics for the FARA ecosystem 

is the Joint Dynamic Allocation of Fires and Sensors (JDAFS) model. This simulation, 

developed in 2002 at the Naval Postgraduate School, is a highly capable low-fidelity model 

approved for use by The Research and Analysis Center - Monterey (TRAC-Monterey) 

within the scope of identifying the best possible vehicle characteristics (Havens 2002). 

Creating an optimal vehicle design or a Pareto optimal frontier of characteristics through 

modeling in a low-resolution simulation enables future American operations across a 

spectrum of multi-domain operations. 

A. BACKGROUND 

The United States Army has a need for a near-term capability to successfully 

conduct multi-domain operations. As an accredited model accepted by TRAC-Monterey, 

the low-resolution JDAFS model is the first step into determining what parameters should 

be used in the Advanced Warfighting Simulation (AWARS) scenario development. JDAFS 

is a low-resolution model that can be implemented to determine initial results and provide 

data exploration, saving time on classified systems and reducing the sample space required 

on a more computationally restricted cluster of computers. Using an unclassified generic 

enemy threat scenario, varying elements relevant to the FARA ecosystem in JDAFS 

determines what characteristics are the most important contributing factors to mission 

success. This is critically important considering the nature of an experimental vehicle. 

Without models such as JDAFS or AWARS, it would be difficult to determine the most 

critical aspects of the FARA vehicles and their optimal characteristics. The necessary 

condition for success is a FARA ecosystem that overcomes enemy air defense artillery 

(ADA) and integrated air defense systems (IADS). 

B. THESIS OBJECTIVE 

This research creates and explores a basic unclassified friendly formation and a 

generic enemy threat scenario as the backdrop for the experiment within JDAFS. Utilizing 

a sponsor-approved range of values for vehicle characteristics, a data farming approach 
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using the Naval Postgraduate School’s Hamming supercomputer provides the ability to 

conduct output analysis and determine optimal characteristics. This generated output also 

provides the opportunity for tradeoff analysis, giving the sponsor and other decision makers 

the opportunity to determine how having a vehicle that is not capable of the optimal design 

characteristics may affect mission success. 

The purpose of this study is to provide guidance on the optimal design mix for the 

Air-Launched Effects (ALE) portion of the FARA ecosystem. The study determines this 

by varying as many system characteristics as possible within JDAFS. The DOE is created 

from an efficient nearly orthogonal Latin hypercube (NOLH) to provide the greatest 

possible fidelity in the results. Output analysis then provides the tools and equations 

necessary to provide informed input to higher-resolution simulations. 

C. RESEARCH QUESTIONS 

This research provides insights into the following questions necessary to determine 

how ALEs can best enable ground forces and follow-on aerial assets: 

• What ALE characteristics provide the greatest benefit to enable friendly 

force survival?  

• What ALE characteristics enable the suppression of enemy air defenses? 

• What is the tradeoff of friendly force survivability if certain ALE 

characteristics cannot be achieved? 

• What is the narrow band of characteristics that should be explored in 

higher resolution models? 

• Should the ALE platform have long-term survivability or be designed to 

be disposable? 

• Are some ALE characteristics unimportant to the success of the platform 

environment and ground forces? 
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• To where should additional time and resources be allocated during in-

depth characteristic studies in modern models and simulations? 

• Are certain vehicle characteristics dependent upon each other for success? 

D. THESIS SCOPE 

The scope of this thesis is as follows: 

1. Identify the vehicles, formations, and characteristics necessary to create a 

model for simulations within JDAFS. 

2. Create a DOE for ALE characteristics to be simulated within JDAFS. 

3. Implement the DOE and scenarios within the JDAFS environment. 

4. Conduct analysis with simulation output data to determine the optimal 

ALE characteristics for the scenario to support higher level modeling and 

analysis. 

5. Conduct measurement of performance modeling to support characteristic 

tradeoff analysis. 

E. THESIS FLOW 

The format of this thesis is as follows: 

• Chapter II provides background to the FARA ecosystem, background for 

creating the DOE, a review of prior JDAFS and Dynamic Allocation of 

Fires (DAFS) use cases, and scenario development. 

• Chapter III covers the methodology for data farming, model creation, data-

output processing, and tradeoff analysis. 

• Chapter IV provides the results from the model. 

• Chapter V contains a summary of the study, conclusions, and 

recommendations for follow-on research. 
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II. BACKGROUND 

This chapter provides background on portions of the FARA ecosystem and the basis 

for the NOLH design used to determine characteristics used within the simulation. 

A. DESIGN OF EXPERIMENTS ANALYSIS SUPPORT 

In mid-2019, TRAC – Monterey was tasked with providing support to TRAC – Fort 

Leavenworth on an experimental aerial vehicle that would enable ground forces as well as 

follow-on air assets. TRAC – Fort Leavenworth is currently supporting the Future Vertical 

Lift Cross Functional Team’s modernization priority to design, build, and test FARA 

vehicles to fill an existing capability gap with the retirement of the OH-58 Kiowa 

helicopter. The goal is to have a multi-purpose vehicle (either manned or unmanned) that 

could deploy smaller vehicles to enable communications to long-range precision fires while 

simultaneously destroying or disrupting enemy efforts. As the vehicle is experimental, and 

no realistic alternatives exist, the state-space for characteristics on vehicles within the 

FARA ecosystem is limitless. The FARA ecosystem encompasses multiple vehicles and 

configurations, but for the purposes of this thesis, and in support of TRAC – Monterey’s 

objectives, the FARA and the ALE assets are the basis of the study. 

1. Design of Experiments Characteristic Development 

Before any portion of JDAFS was fit for modeling, it was first important to 

determine what characteristics are most important and the range values for those 

characteristics. Since JDAFS is a low-resolution model, it is not capable of addressing 

every characteristic critical to an aviation asset. However, it does create an environment 

capable of closely examining a few specifications. In conjunction with both TRAC – 

Monterey and TRAC – Fort Leavenworth, a list of possible attributes capable of 

implementation within the model were proposed. Table 1 provides the list of characteristics 

modeled within this study as well as their abbreviated notation for use within this thesis. 
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Table 1. Study Characteristics 

Abbreviation Characteristic and Unit of Measure 
Speed Speed of the vehicle (knots) 
Pk(near) Probability of kill at nearest range (miles) 
Pk(far) Probability of kill at farthest range (miles) 
Rad D Radar detection range (miles) 
Kill D Kill distance (miles) 
B Rad Burst radius (meters) 
Rounds Armament round count 
Mean Det Mean time to detection (seconds) 

 

The second step was to create a range of values for each of these characteristics that 

is generic enough for unclassified distribution but also realistic enough to properly address 

concerns with the model. Table 2 provides the ranges of data used for each of the 

characteristics listed in Table 1, as well as the number of significant digits used after the 

decimal point. 

Table 2. Characteristic Value Thresholds 

Characteristic Lower Value Upper Value Decimals 
Speed 50 knots 150 knots 1 
Pk(near) .75 .95 2 
Pk(far) .1 .4 2 
Rad D 2 miles 11 miles 1 
Kill D 12 miles 20 miles 1 
B Rad 3.31 feet 165.3 feet 1 
Rounds 1 10 0 
Mean Det 1 second 10 seconds 8 

 

2. Additional Design Consideration 

While the characteristic’s threshold values are of critical importance to the model, 

there is another consideration that is important to decision makers and to those analysts 

that will use the results of this study to inform higher-level modeling in AWARS. This 

major consideration involves the different types of vehicles that TRAC – Fort Leavenworth 

wanted to study. With the ALE, TRAC – Fort Leavenworth wanted to study a vehicle 
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capable of killing enemy SEAD assets as well as disrupting enemy SEAD assets. These 

are the kill and disrupt variants of the platform. For this thesis, characteristics needed to be 

varied in order to study what is most important as well as different configurations and 

mixes of the two types of vehicles. This added another dimension to the DOE, but one that 

required more of a systematic approach in evaluating what is possible on a battlefield and 

what may be feasible in exploring the state-space. Table 3 describes the seven 

configurations of ALE explored in this study. 

Table 3. ALE Configurations 

Configuration Number Percentage of Kill ALEs Percentage of Disrupt ALEs 
1 100% 0% 
2 0% 100% 
3 50% (every other) 50% (every other) 
4 50% (all on flanks) 50% (all on inside) 
5 50% (all on inside) 50% (all on flanks) 
6 66.6% 33.3% 
7 33.3% 66.6% 

 

3. Design of Experiments Limitations in JDAFS 

Due to some of the limitations in JDAFS, a common-sense approach to determining 

the characteristics in Table 2 had to be adapted. For example, model entities, particularly 

ones that move, have a difficult, if not impossible, time functioning properly if their radar 

detection distance is greater than their kill distance. Applying this to a modern combat 

example, a bullet from a rifle or a tank round can very well go much further than the eye 

or a radar can detect. While this provides constraint on the range of certain parameters and 

design points within the DOE, it still passes common weapon conventions. Thus, in 

determining characteristics, for the model to perform properly, the kill and radar distances 

had to be layered in such a way that would not break the simulation.  

A second limitation that needed to be addressed before a proper DOE could be 

implemented was the difference in units of measure. The characteristics within the model 

required different units between distances. These units are also represented differently 



8 

within JDAFS. Metrics were converted from the JDAFS proprietary units of measure in 

order to help inform the DOE and further confirm that these characteristics are possible to 

study. These conversions are provided in Table 4. 

Table 4. JDAFS Unit Conversion Table 

Standard Unit of Measure JDAFS Unit of Measure 
1 knot 30.63212 speed units 

1 mile per hour 26.61857 speed units 
1 mile 1597.114 distance units 
1 foot .30248 distance units 

 

A third limitation is the inability of the model to handle an effective modeling 

situation for a vehicle launching smaller vehicles and subsequently providing mission 

support. Originally, TRAC – Fort Leavenworth wanted a model where ALEs would be 

able to move forward and relay positional data back to their parent FARA. Then, each 

FARA could provide a target handoff to long-range precision fires. The intent for this 

would be to keep critical assets safe while simultaneously allowing them to fire on targets. 

However, JDAFS does not allow for multi-stage target passing. The ALEs can be modeled 

to pass off target data, but can only do it once. A system of relays is not possible within the 

model. Thus, the study evolved into a version looking almost exclusively at the capabilities 

of the ALEs. 

This was not entirely unrealistic. Thoughts behind this scoping focus was that 

FARA vehicles would maintain a safe distance way from enemy air defenses anyway. 

Thus, modeling them into the system was just another thing the enemy could shoot down 

in the simulation, but they would not be able to do as easily in real life. As a feasible 

alternative, the ALEs were given a longer radar and detections distance, which also enables 

them to communicate further with units in the rear. 

Within the JDAFS graphical user interface, the ALEs can be grouped together and 

then branch out to accomplish their mission after a certain line of departure. This has a 

similar effect to being launched from a FARA, as a single round impacting any one of the 
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ALEs would have a burst radius large enough to destroy all the ALEs housed within that 

vehicle. Once these terms were accepted by TRAC, the design space became the next 

important step in generating the model design.  

B. NEARLY ORTHOGONAL LATIN HYPERCUBES 

With the characteristics, units, and conversions established, an intelligent method 

was required to sample the nine-dimensional states-space to provide an efficient method of 

identifying an optimal configuration for the ALE. A quick and efficient way of doing this 

was in creating a design based on NOLHs. 

1. NOLH Background 

Former U.S. Army Colonel Thomas M. Cioppa and Dr. Thomas W. Lucas explored 

the possibilities of efficient high-dimensional DOEs with their research on NOLHs (Cioppa 

et al. 2007). The basic idea of their work explores how to create random Latin hypercubes 

with the best possible orthogonality and space-filling properties. In their research, they 

developed an algorithm for creating NOLHs that provides minimal correlation between 

columns in the design matrix, which are factors within this study. These designs also 

sample as uniformly as possible in the design space and provide broad analytic flexibility, 

allowing analysts to fit a diverse set of metamodels on multiple model outputs. These 

designs sample the state-space extremely well and, considering the number of 

characteristics attributed to the design of the ALEs, the design is a good initial exploration 

for the range of possible values. In addition, this method is quick in terms of its 

implementation within the model and can be utilized on characteristics with and without 

decimal values. 

2. NOLH Implementation (Sanchez) 

A NOLH design was implemented on the first eight characteristics. Then, the same 

NOLH was used on each of the seven ALE configurations. To do this efficiently, the Ruby 

programming language (Ruby 2019) was accessed through the command line to create the 

design. This programming language uses an efficient syntax to generate requested output. 

The exact DOE was created using a Ruby Gem that was built by Dr. Paul J. Sanchez 
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(Sanchez 2018). This Ruby Gem provides a text file of maximum and minimum values 

with the requisite number of decimal places in a NOLH. The Ruby script, called 

stack_nolhs.rb is a component of the Datafarming Ruby Gem. This text file can then be 

directly used to vary parameter values within the experiment. 641 design points were 

created for each ALE configuration. 65 levels were used for each characteristic. This means 

that 65 evenly distributed values were chosen between the maximum and minimum values 

for each ALE characteristic, with decimal places also strategically assigned. Certain values 

did not lend themselves to non-whole numbers (such as number of rounds) and others had 

a minimum and maximum value so high that it did not provide for a very large increase in 

information for the increase data generated by longer strings of numbers. The design was 

also stacked ten times, providing rotation in the design-space and further decreasing 

correlation while increasing the degrees of freedom. This number was also chosen 

strategically, because of memory allocation issues with replication. 

The final number that is critical to the design is the number of repetitions required 

for each design point. Initially, 30 repetitions for each design point was the target value. 

However, this was not possible for two major reasons. The first is that the Java Virtual 

Machine for the JDAFS program had memory allocation issues with storing so much 

information before being able to write out to a file. Simulation runs with greater than ten 

repetitions caused the simulation to freeze, even on cluster computing. The second reason 

dealt with the ability to download the information from NPS’ Hamming supercomputer. 

Due to the state of the nation and required quarantine in March through April 2020, output 

data must be downloaded through a virtual private network. The gigabytes of data took 

approximately eight days to download and increasing the amount of data through repetition 

was not a linear increase in the time required. Even though using rotational stacking is not 

the same as increasing repetitions, it is an additional method of sampling the state-space. 

Doing additional runs of the same design points was also not possible since it is impossible 

to set the random number seed outside of the JDAFS graphical user interface, and running 

the design point again ran the risk of generating the same output instead of providing new 

data. In summary, a total of 44,870 simulated battles were run (641 design points × 7 

configurations × 10 replications). Without an efficient design, a full factorial design would 
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have resulted in over 3.16 × 1015 replications. Any reduction in the amount of levels within 

this replication (65 levels) would have affected the precision of the model. On a single 

personal computer, this would have resulted in a run time of approximately 1.2 billion 

centuries. 

3. JDAFS and DAFS Background 

The nexus for JDAFS began with the development and publication of DAFS in 

2002. The purpose of then Lieutenant Michael Haven’s study was to create a low-

resolution model that could export Extensible Markup Language (XML) files from a 

discrete event simulation to enable higher-fidelity models and Army systems (Havens 

2002). The real benefit of DAFS is its ability to dynamically use linear programming to 

solve engagement optimizations and prioritize fires across platforms. 

In an effort to improve this system’s modeling capabilities, DAFS was upgraded to 

JDAFS and validation in this improved model was demonstrated in work conducted by 

Jeffrey T. Freye (2007). This work generated further improvements to the communication 

abilities of the model and a proof of concept through use as a way of data farming 

information through a DOE and a NOLH to determine measures of effectiveness and 

provide tradeoff analysis for surveillance assets. Data farming is a method of finding 

insights into data, particularly in areas where very little or no data exists at all. Additional 

information on utilizing this method first in research done by Lieutenant Ben L. Anderson 

(2011). 

This study builds upon the amazing work done before it to establish JDAFS as a 

capable model with a reputation credible enough to provide real-world support to higher-

fidelity models. Being a low-resolution model does not undermine its critical input into 

other modeling systems, such as AWARS or COMBATXXI. More information can be 

found on AWARS (2020a) and more information on COMBATXXI (2020b) can be found 

on the TRAC website. The results generated from JDAFS helps narrow the range of design 

points necessary in future studies. The system also provides quick results. While many 

combat simulations require a team of personnel working over the course of months, the 

whole JDAFS system can be taught, implemented, and results analyzed by one person in 
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less than four months. The ability to provide such rapid analysis helps cut down on required 

personnel, time, and funding—as well as to speed up the decision cycle.  

Finally, with efforts being conducted elsewhere across the Army to create scenarios 

and determine what factors are most important, JDAFS was used in such a rapid and 

effective manner that the results of this study can be used to support planning and 

implementation of these scenarios in higher-resolution simulations. With computational 

times reduced on classified systems, there is potential that Soldiers on the ground could see 

the final product sooner than later. 

4. Scenario Development 

The last big research element came from friendly allocation of forces documents 

and enemy threat templates. The first step was to determine which kinds of fighting and 

sensing force entities were necessary in the model. To find the number and types of 

equipment within a combat unit, data was pulled from the Army database for unit 

allocations located on FMSWeb (2020). Critical equipment types and quantities were 

annotated from this database for a friendly armored regiment. U.S. Army Acquisition 

Support Center published a guide in 2018 with unclassified system characteristics (U.S. 

Army Acquisition Support Center 2018).  

Unclassified threat documents were found on the Army Training Network website 

(2019) to determine the vehicle types and quantities for a generic enemy force. The enemy 

force size of an armored brigade and its assets were identified and non-critical assets to the 

model were dropped. Two final documents were required to find enemy asset 

characteristics. The first document also came from the Army Training Network site in the 

form of the Worldwide Equipment Guide for 2016 (2016). This guide has generic weapon 

and senor data for various equipment across the world. However, this guide is missing 

certain enemy air defense characteristics. The data for enemy air defense assets came from 

work done by Dr. Lester W. Grau and Charles K. Bartles on certain modern anti-air 

weapons systems (2016). With both friendly and enemy forces, for weapon and sensor 

characteristics that could not be found, inferences were made using similar vehicles to 
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complete the model. It was impossible to find the probabilities of kill for any vehicles or 

assets in an unclassified medium. 

Since JDAFS lacks an ability for entities to survive a certain number of rounds or 

to explicitly incorporate armor thickness, infantry forces were removed from the study. 

Additionally, assault vehicles fighting against tanks would not be modeled properly as an 

assault vehicle armament would have little to no affect against a tank and would mostly 

only be able to provide scouting capabilities. Therefore, the model was reduced to friendly 

tanks, artillery, long-range rockets, radar units, and decoys. On the enemy side, the entities 

included tanks, artillery, surface-to-air missiles, anti-aircraft guns, radar units, and 

integrated air defense systems (IADS). Table 5 shows the units and their common 

nomenclature used throughout the modeling and results process. 

Table 5. Entity Table 

Common Name Entity Type Friendly / Enemy / Both 
Friendly Tank M1A2 Friendly 

MLRS Multiple Launch Rocket 
System Friendly 

Paladin Paladin Artillery Friendly 
Decoy Decoy Aerial Vehicle Friendly 
Apache Apache Helicopter Friendly 
Radar Generic Radar System Both 

Enemy Tank T90s Enemy 
Enemy Howitzer 2S19M1 Enemy 

MANPAD SA-24 Enemy 
AA Gun 2S6M Enemy 

SAM 9K37 Enemy 

IADS Integrated Enemy Air 
Defense System Enemy 

 

Certain threat documents do not show this exact configuration. However, wherever 

possible, the most effective enemy vehicle of that type was researched and chosen in an 

effort to model future combat systems in the mid-2020s. For example, generic threat 

documents do not always show enemy units having both T90s tanks and 2S6M MANPADS 
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within the same unit, but they were both chosen as the most effective pieces of equipment 

for that type with unclassified and reputable weapons characteristics. 

C. CONSTRAINTS, LIMITATIONS, AND ASSUMPTIONS 

The biggest constraint in this study was the requirement to use JDAFS as the 

modeling environment. JDAFS was selected because TRAC – Monterey required a model 

in which they were confident and had a certain degree of accreditation. In addition, there 

were few modeling alternatives that could be learned as quickly with such few personnel 

working on it. The next biggest constraint was that the scenario had to be unclassified. This 

created issues in finding unclassified weapons characteristics that could be put within 

JDAFS. This created a possibility for error in that more assumptions were required to 

complete the inputs within the scenarios. 

Entity quantities were a large limitation to this study. Exact quantities of what 

would be an operational-level engagement was not possible due to memory allocation and 

optimization sequences. Entity numbers on both sides were reduced to get the model to run 

on the Hamming supercomputer. Other limitations to this study revolve around the ability 

of JDAFS to model certain aspects of the simulated engagements. For example, assets on 

both sides can only be hit by one round before they are destroyed. Non-critical hits are not 

possible. Similarly, units could not be reconstituted or be temporarily disabled. 

These constraints and limitations led to the development of certain assumptions. 

The first assumption is that units and engagements can be scaled up or down to conduct 

analysis on strategic level engagements all the way to tactical level scenarios. Assumptions 

were also made to the way an IADS system was disrupted. Essentially, disruption of this 

system in the model is equivalent to it being destroyed, but was handled in a manner that 

provided recommendations as if it were disrupted. Assumptions were also made on friendly 

and enemy weapon’s characteristics. These are likely the most loosely held assumptions, 

but due to the nature of having the model on an unclassified system, there was very little 

that could be done to validate these assumptions. 
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III. METHODOLOGY 

This chapter describes the steps required to use the JDAFS simulation to determine 

optimal characteristics for the ALE design. In order to achieve this goal, multiple different 

coding languages were required to streamline the effort and achieve the objective in a 

manageable time. Without the steps described in this section, this research would have a 

duration orders of magnitude longer than that conducted in this report. As a quick 

reference, the methodology for this work is portrayed in the flowchart described in Figure 

2. 

 
Figure 2. Methodology Flowchart 

A. JDAFS SETUP 

JDAFS is a delicate environment and generating a sizeable force for two different 

factions can take an incredible amount of time. Additionally, without an organized and 

methodical process, it would be near impossible to conduct a full-scale DOE without 

automating changes. While JDAFS is a system that mostly relies on hand changes in its 
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database to run, creating a base file, changing certain parameters, then running the 

simulations is a far more streamlined process. 

1. Model Creation 

The first step in this process was to create a base JDAFS file with the approved 

entities represented with their given combat characteristics. Tables 6 and 7 show the 

friendly and enemy entities created in the model and their characteristics. The tables also 

show the number of entities for each type that are eventually entered for each simulation 

run but were then added at a later step. If an asterisk accompanied a number, that 

characteristic or quantity came from a noted reference, allocation table, or United States 

Army provided generic threat assessment. 

Table 6. Friendly Entity Characteristics 

Entity Quantity Speed Pk(near) Pk(far) Rad 
D 

Kill 
D 

B 
Rad Rounds 

M1A2 42 30 
mph* .9 .5 4000 

m 
3500 

m 60 m 40* 

MLRS 12 65 
kph* .9 .45 N/A 70 

km* 
100 
m 12 

Paladin 18* 28 
mph .9 .35 N/A 30 

km* 80 m 95* 

Radar 13* 31 
mph* N/A N/A 30 

km N/A N/A N/A 

Decoy 10 90 
knots N/A N/A N/A N/A N/A N/A 

Apache 20 50 
mph N/A N/A N/A N/A N/A N/A 
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Table 7. Enemy Entity Characteristics 

Entity Quantity Speed Pk(near) Pk(far) Rad 
D 

Kill 
D 

B 
Rad Rounds 

T90s 71 N/A .9 .45 3000 
m 

2000 
m 60 m 37* 

Radar 5* N/A N/A N/A 80 
km* N/A N/A N/A 

152MM 
Howitzer 14 N/A .85 .1 N/A 24.7 

km* 80 m 60 

MANPAD 42* N/A .85 .1 6 km 3 
km* 15 m 1 

AA Gun 12* N/A .5 .1 18 
km* 

4 
km* 1 m 500 

SAM 4 N/A .85 .1 80 
km* 

40 
km* 10 m 3 

IADS 20 N/A .75 .25 113 
mi 

119 
mi 50 m 6 

Notional 
Radar 24 N/A N/A N/A N/A N/A N/A N/A 

 

Based on the scenario, the enemy entities are created as stationary units that do not 

move. The rational is that the enemy would be conducting a defense and it would logically 

be safer for them to maintain defensive and protective positions against an approach march 

instead of breaking position and moving to contact. Therefore, research on speeds for these 

vehicles were noted but not used in this scenario. 

Using conversions provided in Table 4, these values were converted to the JDAFS 

standard units of measure and stored. In order to input the converted data for simulations, 

entries were made into a Microsoft Database file (mdb). Within JDAFS 0.7.3, there were 

certain tables required for entity creation. An example of one of these tables is provided in 

Figure 3. 



18 

 
Figure 3. Screenshot from the Mover Table 

The first step in creating the table was to manipulate the PlatformType Table. In 

this table, one entity of each type is put into the model. Next, each entity is entered into the 

Mover Table. Its side and characteristics are entered at its stationary starting location. After 

this step, waypoints were created to give direction and speed to entities that move. For this 

scenario, most of the entities are given direct lines of movement, from their start-point 

directly to their end-point. One exception to this is the movement of the ALEs. In an effort 

for some representation of the FARA, the ALEs do not move in a straight line. They are 

grouped in three sets of six, and then branch out at the friendly forward line of troops to 

their final locations. The effect of this is for real-world representation. If a FARA is shot 

down before it can deploy its ALEs, all of its ALEs would be destroyed. Mapping the ALEs 

over each other has the same effect in JDAFS. Enabling these entities to work within 

JDAFS, the MoverManger Table is used. This table just tells each vehicle or system when 

to start after the model begins its run, if at all.  

An additional aspect of the PlatforrmType Table is critical to the model and 

required careful consideration before entry. Within this table is a place to assign values to 

each entity. This value has two important functions. The first function is that it provides a 

score for each replication that can be used to determine a winner or measure the 

effectiveness of a battle. This is not used in this study because the survival or destruction 

of the entities are pulled directly from the results and calculated based on what the sponsors 

deem important. The second but most critical function of these values are for model 
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optimization. Fires are allocated and optimized based on this value. Given two values are 

detected, a firing system will engage the target with the highest value from this column. 

The values for these entities are in Table 8. 

Table 8. Entity Optimization Value 

Entity Value Entity Value 
Anti-Aircraft Gun 700 Apache 900 

Kill ALE 1000 Disrupt ALE 1000 
Decoy 150 Howitzer 1000 
IADS 950 MANPAD 300 
MLRS 650 Notional Radar 100 
Paladin 700 Radar 500 
SAM 900 Tank 800 

 

Entities were placed in anticipation of where the rest of the model entities would 

fall in on the formation. A sample friendly and enemy formation was initially created and 

vetted with TRAC–Monterey and Fort Leavenworth. These were created based on  

common-sense and prior military experience with maneuver forces because of the 

classification level. The first entity of each type is created in the database, but the rest of 

the units are generated through XML. A screenshot of the formation generated in JDAFS 

is displayed in Figure 4. 

 
Figure 4. Screenshot of JDAFS Friendly and Enemy Formations 
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The MunitionType Table is then changed in order to assign weapons to the entities. 

Similarly, the Munition Table assigns the designed weapons to each required entity. A 

sample of the MunitionType Table (after all units were properly converted) is shown in 

Figure 5. 

 
Figure 5. Screenshot from the MunitionType Table 

Similar additions and changes were made to the SensorType and Sensor tables. 

Sensors were added to entities that required them and then assigned to the movers. Not all 

movers needed both weapons and sensors. Entities such as radar systems provide 

information for all friendly assets within their radar range. As such, entities that only had 

a firing capability relied on these sensors to provide distance and direction for fires. Within 

the SensorType Table, the mean time to detection is also changed for the ALEs to provide 

a unit of measure on how quickly the ALE sensor can detect enemy units. 

The last few tables are essential for any model to run, regardless of the entity types. 

The Mediator table required modification in order to add a mean time to detection element 

for the ALEs. The DFASScenario Table changes the number of replications for each run. 

For this study, ten replications was used because of the memory requirement in the JDAFS 

Java Virtual Machine. Finally, the Constrained Value Optimizer Table holds the 

optimization tolerance for the simulation. The implementation interval had to be increased 

because the simulation had an excessive amount of sensors within a close space and the 

simulation would time out. Increasing the time between firing and sensing optimizations 

reduced the memory and time required to execute every design point. 

The result of this effort is the creation of seven different base scenarios. The reason 

for seven scenarios instead of one is because of the need for the different type of ALE 
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configurations. Kill variants of the ALE can only hold one munition. Disrupt ALEs have a 

changing number of rounds based on the DOE. For scenarios with both configurations, the 

JDAFS databased required configuring to make sure that one of each type of ALE was 

starting in the proper place. Figure 6 shows a screenshot of the output for one of the base 

configurations. 

 
Figure 6. Base Configuration JDAFS Output 

2. Additional Model Considerations 

There were certain elements that needed adjustment for the model to more 

accurately depict a real-world scenario. The biggest challenge was to model how a disrupt 

ALE could have an effect on the battlefield without destroying an enemy asset. A kill 

variant ALE can only have one munition, so the challenge was to find a solution possible 

within JDAFS. The solution for this was to create notional enemy radars around enemy air 

defenses. These radars have the same characteristics as the air defense counterparts and are 

spaced far enough away from to avoid blast damage from the ALE. Therefore, kill ALEs 

target air defense entities and disrupt ALEs target notional radars. A destroyed notional 

radar renders the defense useless without targeting assistance. 
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There is an interpretability issue behind this methodology. A real-world scenario 

would allow for these radars or defense capabilities to merely be temporarily disrupted, but 

without a reconstitution capability in the model, this is just not possible. This work-around 

is merely a way of attempting to show differences in ALE configurations and would require 

further exploration in a higher-resolution model. 

The second adaptation of the model was the late addition of Apache Helicopters to 

the model. The inclusion of these vehicles was an additional way of measuring the 

effectiveness of the ALEs. Their ability to clear an aerial corridor is critical to ensuring the 

survival of follow on air assets. This provides a measure of ALE capability and a possible 

metric to help distinguish the optimal ALE characteristics. 

Another way to add distinguishability between design points was the inclusion of 

MANPAD entities on the battlefield. A box was identified around the enemy area of 

operations. From there, a seed was set in R and 42 random numbers were generated for 

both the x and y coordinates within JDAFS. With these coordinates established, they were 

maintained for every design point across every configuration. This provided an added 

amount of noise to determine whether they affect the model and should studied in future 

iterations. Full randomization of these positions was unnecessary and inappropriate 

considering the low number of replications allowed for each design point, given the 

memory and optimization issues. 

There was one big correction that needed to be made after doing some initial testing 

and small-scale runs. Due to the incredible quantity of sensors and weapons in such a small 

location, the model would not run, even after relaxing the optimization parameters. In order 

to get the model to run, even after expanding the amount of memory allocated to the Java 

Virtual Machine, a small number of entities needed to be removed. This was done in a 

symmetric manner in that the friendly and enemy forces were not skewed towards one side 

or another. Table 9 shows the initial number of entities pulled from background research 

as well as the resulting number of entities that the model can handle. 
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Table 9. Entity Quantity Corrections in JDAFS 

Entity Initial Quantity Resulting Quantity 
Friendly Tank 58 42 

Friendly MLRS 16 12 
Enemy Tank 95 71 

Enemy Howitzer 18 14 

 

B. XML EXECUTION 

Once a shell database file is created, JDAFS can run that scenario. This scenario 

does not mean much for the process. However, every database that is processed by JDAFS 

produces an XML file. This file is a replication of the Microsoft Database file, but in an 

alternate and more compact form. This XML file is the building block for the DOE. 

1. XML Basics 

The idea behind utilizing XML to conduct the DOE is that the files are small enough 

to quickly generate and move to the Hamming supercomputer for the simulation runs. 

Because the DOE consisted of 65 levels, with a stack of ten, across seven configurations, 

4,487 different XML files needed to be generated. Each file would be encoded to conduct 

ten replications in order to generate more fidelity with the data. This base file represents 

every model entity except for the additional ALEs, which needed to be created using a 

different file. The easiest method for doing this was to implement the process through the 

R Studio coding environment (R Core Team 2020). 

Using the “xml2” package within R Studio created by Hadley et al. (2019), model 

entities were easier to find and manipulate. The reason this became important is because 

of the necessity to potentially change and shift formations or locations of units. Changing 

these characteristics in Microsoft Access would take a significant amount of time to keep 

track of and move. Through R Studio, entities are added, modified, and moved in a rapid 

fashion. This is the reason it was important to create one of each type of mover. That mover 

is copied as many times as necessary and a function changes the location and destination 

(if necessary) without having to manipulate the original file. Every entity was given a 
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function to place its additional identical units into a new XML file. Figure 7 provides a 

screenshot of an entity’s function within R. 

 
Figure 7. Sample R Studio Code for Entity Creation Function 

(Paladin Vehicle) 

These functions were used to map the units properly across the JDAFS scenario. 

An additional function utilizing the equation of a circle was created in order to place the 

IADS in a circular manner away from the front of the enemy defenses. Putting all the 

elements together, an XML base file was created for every one of the seven scenarios. This 

effort, while creating a large up-front cost in time to create, likely saved over 48 hours of 

additional work in having to type every one of these unit entries and changing their 

locations every time the scenario was modified prior to final execution.  

2. DOE Manipulation 

With a base file for every scenario, the DOE was executed within R. R read in the 

XML file as well as the list of design points created from the NOLH Ruby Gem. Functions 

converted the necessary units required for JDAFS and returned a dataframe for the final 

DOE. The “xml2” package then used a created function to change every one of the 

attributes studied in this thesis for the ALE. For every ALE that was a kill variant, the 

number of rounds were subsequently reduced to a single round. A screenshot of this 

function is in Figure 8. 
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Figure 8. Sample R Studio Code for ALE Attribute Modification 

Function 

This attribute modification function was then nested within the ALE creation 

function. This led to the final step in file output creation. Each design point created an 

XML file (641 for each configuration in all), but special care had to be paid in order to 

name the file properly and capture design characteristics. 

3. Grep Utilization 

Each file output required a naming convention for output analysis. In order to do 

post-processing analysis, the input DOE characteristics need to follow along with the 

results. Therefore, every design carried these variables within its name. An example of this 

file-naming convention is provided in Figure 9. 

 
Figure 9. Sample XML File Name 

The example above shows that within this simulation run, there are 12 kill ALEs, 

six disrupt ALEs, a speed of 1,531.6 speed units, a Pk(near) of 0.34, a Pk(far) of 0.34, a 



26 

radar distance of 8,305.0 distance units, a weapons distance of 27,310.6 distance units, a 

burst radius of 31.6 distance units, six rounds for all disrupt ALEs, a mean time to detection 

of .0027 time units, and is part of the sixth configuration. Grep is then used in the post-

processing R Studio script in order to capture which characteristics produced which results. 

Without context of what generate them, the results would have been meaningless. Enabling 

this process is the “stringr” package through R Studio (Hadley 2019). This package is an 

efficient way of extracting string data out of given parameters. For this use, it extracts the 

data necessary from the file name to turn into proper variables for analysis. 

4. Hamming Supercomputer 

The next step for this thesis was to transfer and run all 4,487 XML files on the NPS 

Hamming supercomputer. This process was necessary in order to accomplish this study in 

a reasonable amount of time for multiple reasons. The biggest reason was because of the 

number of runs required for the DOE. The Java Virtual Machine requires a dedicated core 

to run. On a personal computer with only six cores, running constantly, it would have taken 

over 312 hours to accomplish. With ten replications, it takes approximately 20 to 25 

minutes to conduct all runs and produce an output file. 

The second biggest reason for using Hamming was the memory required for the 

output. Each design point generated over 40 megabytes of output. The result was over 178 

gigabytes of memory in output. Using Hamming allowed for runs to be conducted while 

simultaneously downloading finished data and moved to a storage space large enough to 

accommodate the data locally. 

Three scripts were generated in order to run all the design points. Additional 

support for creating efficient batch simulations came from the Hamming help guide 

produced by Naval Postgraduate School (Naval Postgraduate School 2018). The first script 

called the requisite amount of memory, a minimum number of computer nodes, and 

initiated a batch run. The second script properly arrayed the number of runs, directed where 

all the input XML files were located and where to send the output along with how to name 

it. The final script dictated to run JDAFS on the input file and to create a Microsoft Access 
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file with the output. Each configuration was batched into two groups in order to offer 

continuous data processing and initial data analysis. 

Using Hamming was not without its complications. Based on the time this study 

was written, there was an increase in workload across the campus and the number of cores 

that were dedicated to the study varied wildly between 42 cores and 100. Additionally, due 

to the nature of quarantined telecomputing during the methodology and analysis periods, 

downloading data off the Hamming supercomputer through a virtual private network was 

very slow. Because of this, each configuration took approximately 17 hours to run and 

download. 

5. Merging the Data 

With all the data returned and downloaded off Hamming, the final step in the 

methodology was to determine what information was most important to save and getting 

that data on a useful platform. JDAFS outputs four tables into each output database with 

indications for each one of the ten replications. The first table describes when sensors detect 

and stop detecting enemy units. The second table describes what happens with each shot 

of a weapon system. The third table reports the end state of every entity in the simulation. 

The final table records the time and absolute directory path of the simulation. 

An important consideration was to determine what data was useful for this study. 

The fourth table did not provide any relevant information and was immediately deemed 

unnecessary for the study. The first table provided interesting data, but since the study did 

not focus on sensor systems, it was also discarded. The second table was useful for initial 

troubleshooting and to determine whether the model was behaving properly, but was not 

entirely useful. In discussions with the sponsor and interested parties, the third table was 

the most important. To be precise, the most important aspects were what entities were alive 

at the end of a replication. This table was deemed the only one necessary for analysis in 

this study. 

JMP is a powerful data analysis tool that can be utilized to help interpret results 

(JMP 2020), and it was chosen to make sense of the output data. JMP can input Access 

data, however, because of the tabular nature of the output, a user interface is required to 
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select the correct data. R Studio has similar issues with importing data due to multiple 

tables. Administrative permissions were changed on a personal computer and a blank 

database was created in order to link admin privileges between the computer and R Studio 

to use the “RODBC” (Ripley et al. 2019) and “odbc” (Hester et al. 2020) packages in R 

Studio. These packages allowed for a specific table to be extracted from an Access database 

in an iterative manner.  

From this selected table, a few numbers were pulled for final analysis. Friendly 

ALE and Apache numbers were selected from every replication, as well as friendly missile 

launchers. Paladin systems and tanks which were grouped together into a friendly vehicle 

category. Enemy tanks, anti-aircraft guns, and Howitzers were grouped into an enemy 

vehicle category. Finally, enemy air defense assets and notional radars were selected for 

final data analysis. Utilizing Grep in R Studio, all of these items were brought into a final 

database along with the corresponding ALE characteristics for every design point and 

replication. The resulting dataframe is a by 44,870 by 17 sized element. 

There were certain instances where runs timed out on Hamming or not all the data 

was captured within the Access database. There are many possible reasons for this. One 

reason could be that the duration set for reserving the nodes on Hamming was not long 

enough and a run was cut off before it finished. Internet connection may have also been an 

issue and interrupted the downloading process. Using R Studio, these problematic runs 

were identified and sent back to Hamming. 

There were additional complications in transferring the data from output to R 

Studio, then subsequently into JMP. For R Studio to read Microsoft Access files, the ODBC 

Data Source Administrator application on the personal computer needed to be reverted to 

its 2010 build. The idea for this came from a Microsoft forum (BananaRepublic 2015). 

This provided the proper operating conditions for the computer to connect the data to a 

processing program. At this point, an empty database was required to connect permissions 

for other programs to read Access databases. The instructions for creating this blank 

database is provided on the “R-bloggers” website by the user “Programming on 

nielsenmark.us (2018).  
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IV. ANALYSIS AND RESULTS 

This chapter describes the analysis and results stemming gleaned from the data 

generated by the methodology described in the previous chapter. With a considerable 

amount of output data, intelligent methods were required to provide actionable 

recommendations and conclusions from the data. To find the aspects of a successful ALE, 

the input data was first reviewed. From there, the output data was then analyzed. After 

these two steps were complete, the final step was to use the analysis to provide answers to 

the thesis research questions. 

The analysis started with determining four measurements of effectiveness (MOEs). 

These metrics are important measures in determining the success or lack thereof for each 

configuration. These MOEs fit into the categories of friendly asset survivability and 

friendly asset lethality. However, after binning the results into certain MOEs, two of these 

metrics did not provide any insights into the performance of certain characteristics. 

Because there was no signal, two metrics were dropped, which ended up helping analysis. 

A. INPUT ANALYSIS 

To provide any recommendations to the sponsor or answer any of the deliverables 

for this study, the first step was to make sure that everything entered into the model was in 

accordance with the DOE. This helped to frame follow-on actions and provide context for 

results. 

The first check for making sure that all the inputs were correct in the model was to 

look at the distributions of the input variables. Figure 10 shows a JMP screen capture of 

the distributions of these variables that went into the DOE. 
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Figure 10. JMP Screenshot of Input Distributions 

These distributions seem to be reasonable for 65 evenly spaces data points between 

most of the variables. The initial inclination for a DOE would be to see uniform 

distributions across each of the variables, but this was not possible each input for multiple 

reasons. For the number of ALEs, there were more configurations where there were nine 

kill and nine disrupt ALEs. There was also only one configuration were ALE counts were 

at their extremes, thus producing discrete almost normal looking distributions. 

Additionally, with the distributions for round counts, kill ALEs can only have a single 

round, so the distribution is skewed because the kill ALEs had to be forced to have only 

one round. Furthermore, because of the intelligent design of NOLHs, the DOE is created 

to minimize correlation while trying to evenly space points within a range of values for 

each characteristic. Finally, the discrete nature of certain variables can cause issues with 
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the sample space. This issue is most clearly demonstrated in Figure 11. This screenshot of 

a scatterplot matrix for the input variables from JMP shows some of the gaps in the design 

created by discrete variables. 

 
Figure 11. JMP Screenshot of a Scatterplot Matrix for Input Variables 

As evident from Figures 10 and 11, this design appeared to be reasonable and valid 

for analysis. Because of this, there did not appear to be a need to create a second DOE in 

order to sample within design gaps and the data was sufficient to begin analysis. For 

reference, the correlations that were not zero between the variables are provided in Table 

10. 
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Table 10. Correlation Coefficients 

Variables ALE Kill ALE 

Disrupt 

Radar 

Dist. 

Round 

Count 

Round Count -.39 .39 .01 N/A 

Configuration -.17 .17 N/A .33 

Radar Dist. N/A N/A N/A .01 

 

B. INITIAL OUTPUT ANALYSIS 

1. Master File Creation 

With the data merged into a single dataframe, two types of analysis were required. 

The first analysis done was on the unaltered raw data. R Studio was used to combine the 

results into a single dataframe for each configuration. These files had the configuration 

parameters and the vehicle status at the end of every design point and replication. R Studio 

was used to summarize the amount of each vehicle type alive or killed, depending on if 

they were friendly or enemy assets, by replication. Additionally, vehicles were grouped 

into categories to better understand the data. Table 11 shows these groupings and the 

maximum optimal value for each of these groups in terms of survival or killed. As a 

reminder, the only way within JDAFS to simulate a disruption was to kill a radar system 

supporting an enemy air defense asset, annotated as a notional radar system. 

Table 11. Summarized Vehicle Categories Table 

Group Category Vehicles in Group Maximum Survive / Dead 
ALE ALE 18 

Apache Apache 20 
Blue Tank / MLRS / Paladin 72 
Red Tank / Howitzer / AA Gun 97 

ADA Killed IADS / SAM 48 
ADA Disrupt Notional Radar 48 
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Each configuration resulted in a dataframe with 6410 entries that were eventually 

merged into one master file. This created a file containing each replication’s design 

characteristics and the value for the number survived or killed for the above groups. 

2. Metric Determination 

The initial intent was to look at the most important metrics a commander would use 

to assess an engagement: friendly ALEs surviving, friendly Apaches surviving, friendly 

vehicles surviving, enemy vehicles killed, and enemy air defenses killed or disrupted. For 

ease of analysis, these MOEs were turned into percentages, and ground vehicles for 

friendly and enemy sides were grouped together. Table 12 shows the four MOEs for initial 

consideration. 

Table 12. MOE Formulas 

MOE Formula 

1 𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴

 

2 
𝐾𝐾𝑆𝑆𝑇𝑇𝑇𝑇𝐾𝐾𝐾𝐾 𝐴𝐴.𝐴𝐴𝑆𝑆𝑆𝑆 𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑆𝑆𝐷𝐷𝐾𝐾 + (. 6)𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑇𝑇𝐾𝐾𝐾𝐾 𝐴𝐴.𝐴𝐴𝑆𝑆𝑆𝑆 𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑆𝑆𝐷𝐷𝐾𝐾
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴.𝐴𝐴𝑆𝑆𝑆𝑆 𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑆𝑆𝐷𝐷𝐾𝐾 + (. 6)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴.𝐴𝐴𝑆𝑆𝑆𝑆 𝐷𝐷𝐾𝐾𝐷𝐷𝐾𝐾𝑆𝑆𝐷𝐷𝐾𝐾

 

3 
𝐴𝐴𝐷𝐷𝑇𝑇𝐴𝐴ℎ𝐾𝐾𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐷𝐷𝑇𝑇𝐴𝐴ℎ𝐾𝐾𝐷𝐷

 

4 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹.𝐺𝐺𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝐾𝐾 𝐹𝐹𝑇𝑇𝑆𝑆𝐴𝐴𝐾𝐾𝐷𝐷 + (. 5)𝐾𝐾𝑆𝑆𝑇𝑇𝑇𝑇𝐾𝐾𝐾𝐾 𝐴𝐴.𝐺𝐺𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝐾𝐾 𝐹𝐹𝑇𝑇𝑆𝑆𝐴𝐴𝐾𝐾𝐷𝐷
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹.𝐺𝐺𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝐾𝐾 𝐹𝐹𝑇𝑇𝑆𝑆𝐴𝐴𝐾𝐾𝐷𝐷 + (. 5)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴.𝐺𝐺𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝐾𝐾 𝐹𝐹𝑇𝑇𝑆𝑆𝐴𝐴𝐾𝐾𝐷𝐷

 

 

These MOEs were confirmed with the sponsor as appropriate for analysis. The 

rationale behind this decision is that for MOE2, a disrupted enemy air defense system is 

worth 60% of the value of a killed enemy air defense system. Similarly, for MOE4, a 

surviving friendly vehicle was deemed twice as important as killing an enemy ground force 

unit. Figure 12 shows the histograms for MOE1 and MOE2 over every battle within the 

simulation. There is enough variability within this data to provide reasonable confidence 

in the possibility to conduct modeling in support of characteristic analysis. 
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Figure 12. Histogram Graphs for MOE1 and MOE2 

A reduction in the number of MOEs was required due to a lack of variance and an 

inability to properly model these metrics. This showed that varying ALE parameters did 

nothing to affect the outcome of these parameters. As visual confirmation of this, Figure 

13 shows the two histograms of these MOEs. They show very little variance and the 

inability to fit any descriptive model for these MOEs with reasonable confidence made 

them of little interest to the sponsor. 

  
Figure 13. Histogram Graphs for MOE3 and MOE4 

An additional benefit of using these histogram graphics in initial analysis was that 

outliers were easy to determine. 11 design points lied well outside the reasonable range of 

values. In-depth research of these points showed that the runs for these 11 design points 
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did not run properly and output data was cut off when ran on the Hamming Supercomputer. 

For these runs, the commands sent to the Hamming supercomputer timed-out and the full 

output data was incomplete in areas describing whether vehicles were alive or dead at the 

end of each replication. Without full vehicle survivability data, the data points were useless. 

These points were identified, run again, and incorporated into the plots above. 

C. LINEAR REGRESSION 

The next step in this study was to find a method of modeling that could be used in 

tradeoff analysis. In particular, the most important deliverable in creating a model is 

determining how much a metric of interest is reduced or improves by varying a particular 

parameter or combinations of parameters. With the analysis reduced to two MOEs, the first 

natural step was to see how well a linear model describes the results. From Julian Faraway’s 

text on linear models, he describes this type of modeling as having the goals of predicting 

future responses and assessing the relationships between predictor variables while having 

a single response variable (Faraway 2015, p. 7-8). Because each MOE is a single response, 

and initially assumed to be independent, using linear regression was a quick way to provide 

cursory analysis on the importance of predictor variables and their possible relationships. 

1. Linear Model Using the Raw Data 

Using the total dataset, a linear model with two-way interactions and polynomials 

to the second degree was created in JMP. A stepwise regression using a least-squares fit 

was generated using the data. Models were created to predict the two remaining MOEs 

using every design characteristic as an independent variable and the configuration as a 

factor. Figure 14 shows the results of linear regression on the two MOEs. 
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Figure 14. JMP Screenshots of Initial MOE Linear Regression 

These two linear models have extremely poor fits. The R-square values as well as 

the graphical representations show that there is very little evidence to conclude that 

modeling the MOEs in this fashion is a reasonable representation.  

Based on the histograms in Figure 12, the assumption that the residuals for both 

MOEs are normal is also not a valid one. However, to improve predictability, the data was 

averaged across each of the ten replications for each design point. Histograms in Figure 15 

shows the improvement in the normalization of the data. 
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Figure 15. Histogram Graphs for Aggregated MOE1 and MOE2 

2. Linear Model Using the Aggregated Data 

The improvements through aggregating across the replications go beyond the 

normalization of the MOEs. The linear model fit increases a substantial amount and is 

graphically much more representative of the data. Figure 16 shows the improved fit with a 

stepwise regression using a least-squares fit with two-way interactions and polynomials to 

the second degree. Three-way interactions and polynomials to the third degree were 

checked but they provided a miniscule benefit to the data that was not deemed worthy of 

the loss of parsimony and interpretability. 
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Figure 16. JMP Screenshots of Aggregated MOE Linear Regression 

In addition, a better fitting model provides additional confidence in the variables 

and interactions actually important in the model. But these models still are not what one 

would like to see in predictive analysis. With R-square values below .90, this shows the 

complexity of the simulations. The p-values for these regressions will not be due to the 

lack of normality in the residuals, but the unbiased metamodels are still informative using 

a least-squares fit. Good insights can be gathered from these MOE responses being 

explained by important variables. Figure 17 shows these critical parameters of the two 

models in order of their statistical significance. Note that MOE1 is dominated by ALE 

configuration categories while MOE2 depends more on multiple variables. This is likely 

due to the nature of the MOEs. The focus of MOE1 on survivability is much less complex 

than MOE2, which is focused on lethality and then to a much lesser extent on survivability. 
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But for MOE2, survivability is still important because a vehicle cannot be lethal if it does 

not survive long enough to fire on the enemy. 

 
Figure 17. JMP Screenshots of Variable Importance 

It is important to look at correlation within the datapoints before conducting initial 

analysis on variables that should be further studied in-depth. The DOE was structured in 

an NOLH format in order to minimize correlation. This is evident from a screenshot from 

R Studio of the correlation table from Figure 18. 
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Figure 18. R Studio Screenshot of Aggregated Correlation Table 

In predicting MOE1, the configuration type, speed, and their interactions are the 

most important factors in a linear regression. The biggest takeaway is that speed is very 

important to the ALEs success with respect to this MOE. The only positive coefficients in 

the model involve speed. Different configurations then make the MOE slightly worse or 

significantly worse. What is interesting in this model is the lack of the number of rounds 

as an important parameter. This means that, in terms of its own survival, the number of 

rounds an ALE has does not determine its survivability. 

In predicting MOE2, the configuration type, speed, and round count are the most 

important factors in a linear regression. This regression passes the common-sense test in 

that, in determining how well the ALE does in a metric focused on killing or disrupting the 

enemy, the number of rounds the vehicle has would be important. It also makes sense that 

speed is important to this MOE as well. As with MOE1, an ALE can only influence the 

enemy if it survives, and speed is important to survival. 

In looking at three dimensional plots with linear regression, there are some optimal 

value ranges that can be inferred from the model. In JMP, these visualizations were created 

by varying the parameters important to each of the MOEs while keeping non-critical 
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parameters at their mean. The surface plot for MOE1 is in Figure 19. It is important to note 

that configuration is a qualitative variable. 

 
Figure 19. JMP Screenshot of Surface Plot for MOE1 (Speed versus 

Configuration versus MOE1) 

This figure shows that certain characteristics help improve survivability at the same 

rate or better than others. This is important in the event that a certain type of ALE, whether 

kill or disrupt, may cost more. Varying configurations may help reduce future costs instead 

of relying solely on the more expensive type. Additionally, it generally appears that a 

higher speed improves survivability. But, there is a region at approximately 100 knots 

where the ALE performs just as good, if not better than when flying at 150 knots. So long 
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as the fifth configuration is used, speed can be sacrificed with no increase in destroyed 

vehicles. This could provide huge savings when programming for the final ALE design; 

or, resources can be diverted to other portions of the vehicle. 

Three-dimensional plots were also created for MOE2in JMP. Once again, 

parameters not important to the MOE were held constant at their average. Two plots were 

necessary because there are three parameters important to this MOE. Figures 20 and 21 

show the results of this effort. 

 
Figure 20. JMP Screenshot of Surface Plot for MOE2 (Speed versus 

Configuration versus MOE2) 
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Figure 21. JMP Screenshot of Surface Plot for MOE2 (Rounds versus 

Configuration versus MOE2) 

In terms of lethality, the fifth configuration is also important with respect to MOE2. 

100 knots as a speed is also as important to MOE2 as it is to MOE1. The reason for this is 

likely because at speeds higher than 100 knots, the ALE is likely going too fast and is gets 

too close to the decoys deployed ahead of them, giving the IADS a choice between targets 

instead of spending rounds primarily on decoys. Eight rounds also seem to be a good 

configuration for the ALE, as there are marginal returns to arming the ALE with anything 

more. Table 13 provides recommendations for areas of study for certain characteristics in 

future modeling efforts. 
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Table 13. Areas for Further Study Based on Linear Regression 

Parameter Area for Future Study 
Speed 95-105, 120–125, 150 + (knots) 

Number of Rounds 5-8 (rounds) 
Configurations 3, 5 

 

D. RANDOM FOREST 

The benefit of using linear regression is the interpretability of the model and it is 

easy to see whether parameters have a positive or negative influence on an MOE and what 

their interactions may be. However, a random forest was able to provide a better fitting 

model and conduct predictive analysis. Based on Dr. Robert Koyak’s class lectures, the 

idea of using random forests for this type of analysis is appropriate for a few reasons 

(2019). First, the model uses binary splitting to fit the data. This means that, based on 

simple questions on the characteristics, counts of the number of times a specific value 

comes up for an MOE can be traced back to different bins it falls into through the different 

classifications. Additionally, they can be easily read to provide recommendations without 

the complex interaction terms or transformations. 

1. Random Forest Creation 

The “rpart” package was used in R Studio to create two separate models for the 

MOEs with a complexity parameter of .0001 for each (Therneau et al. 2019). This could 

lead to overfitting, particularly for future prediction capabilities. In an effort to combat 

overfitting, the forest splits were pruned back within one standard deviation of the best 

splits. This method of pruning random forests came from an advanced data analysis class 

lecture by Dr. Robert Koyak (2019). Once again, the aggregated data was used to create 

these models. The aggregated data again performed considerably better than models 

generated with the raw dataset. 

For the random forest for MOE1, the optimal number of splits after this 

methodology was 17 splits. This produced a relative error of .1932 and a cross-validation 

error of .1981. For the random forest for MOE2, the optimal number of splits was 36 splits. 
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This random forest produced a relative error of .2208 and a cross-validation error of .2402. 

This shows how complex it was to model MOE2. 

For both MOEs, Table 14 shows the important variables to each random forest and 

the variable importance for those factors. Variables left out of this table were orders of 

magnitude less important than any of the others in the table. 

Table 14. Random Forest Variable Importance 

MOE1 Variable Variable Importance MOE2 Variable Variable Importance 
# Disrupt ALE 8.1744 Configuration 1.4919 

# Kill ALE 4.2467 # Rounds .8122 
Configuration 4.2467 # Disrupt ALE .7584 

# Rounds 2.9141 # Kill ALE . 7584 
Speed .5340 Speed .41047 

 

The “rattle” package was used in R Studio to provide some visualization to these 

two random forests (Williams 2011). This package provides improved controls on random 

forest visualization though increased user controls. Although difficult to see because of the 

complexities of the trees, they are displayed in Figure 22 and Figure 23 for MOE1 and 

MOE2, respectively. 
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Figure 22. R Studio Minimal Split “rpart” Random Forests for MOE1 

 
Figure 23. R Studio Minimal Split “rpart” Random Forest for MOE2 
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These random forests are important because they provide good fits while providing 

relaxations on some of the assumptions. Because they have no distributional assumptions, 

correlation and other statistical issues that plague linear regression are not required for 

model validation. In addition, interactions occur naturally. Particularly with visualization, 

splits show a very simple way of determining what is critical to providing success for 

different MOEs.  

For both random forests, the first and most important factor in the fit is the 

configuration. For MOE1, after configuration splits, the random forest splits on the speed 

of the ALE, followed by another split between speed and the number of disrupt ALEs. This 

shows how important these very few variables are to the fit. There are additional splits that 

fall within one standard deviation of the best number of splits, but for legibility, these plots 

for both MOE1 and MOE2 are in the appendix, Figures 29 and 30. For MOE2, 

configuration is still the most important factor for the splits in the random forest. Next, the 

round count becomes the most important variable to the model fit. After that, speed and 

the number of disrupt ALEs become important. 

An interesting insight of these two trees is the values for the characteristics on the 

initial splits. For the maximum values for each of the MOEs, the paths of the trees do not 

immediately go to endpoint or maximum values. Rather, the trees take more than a few 

splits to get to levels where the random forests split near these maximum values. This 

shows that, based on this scenario, the ALEs do not need to be at their maximum values 

for every characteristic to have optimal performance. 

2. Improved Random Forest Visualization 

The decision trees for the random forests provide a cursory glance at the complexity 

of the random forest and the importance of certain characteristics based on their placement 

within the plot, but it does little for in-depth tradeoff analysis. The next step was to create 

a visualization method to enhance the ability to determine where in the DOE the critical 

characteristics provided the greatest benefit to the modeled FARA ecosystem. 

Because there are 11 dimensions varied through the design, visualization is 

particularly difficult. To alleviate this issue, the variable importance for both MOEs were 
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taken into consideration and only the five most important variables were brought in for 

visualization and tradeoff analysis. Because variables after the top five most critical were 

so much less important, changes in their values produces such minimal deviations that they 

would not provide much information for follow-on analysis. Within the most important 

characteristics, located in Table 13, ALE configuration is a method of representation for 

the number of kill and disrupt ALEs. Although not extremely correlated, with the 

correlation between kill ALE and configuration to be –0.17 and the correlation between 

disrupt ALE as .17, they are the most highly correlated variables in the DOE. An 

assumption that they are correlated enough was a bold assumption, but necessary to reduce 

dimensionality for visualization. Pairs plots were generated to predict both MOEs using 

their respective random forests, to include smoothers, but there were very little interactions 

between the variables. The pairs plots for the most critical factors to MOE1 and MOE2 are 

provided in Figure 24 and Figure 25, respectively. The full pairs plots for all variables are 

located in the appendix, Figure 31 and Figure 32, respectively. 

 
Figure 24. R Studio Screenshot of MOE 1 Pairs Plot with Smoothers 
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Figure 25. R Studio Screenshot of MOE2 Pairs Plot with Smoothers 

To better enable the determination of critical range values for the most important 

characteristics, two and three-dimensional contour plots were created for each 

configuration and each MOE. On these plots, the number of rounds and speed were varied. 

The appendix shows these plots for all configurations and both MOEs, but Figure 26 shows 

a specific instance for the third configuration with MOE3. The contour plots were 

generated using the basic R Studio package, but the three-dimensional plots were created 

from the “plot3Drgl” library created by Karline Soetaert (2016) Additionally, the method 

of gradient coloring through a plot was derived from a Stackoverflow.com user “joran” 

(2012). 
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Figure 26. R Studio Screenshot of Contour and 3D Plot for 

Configuration 3 and MOE2 

Just as with the linear regression analysis, certain instances provide for areas of 

focus outside of the extreme endpoints, suggesting that there could be a tradeoff with very 

little ramifications on performance. Certain configurations provide no benefit anywhere on 

the plot. This is specifically the case where there is a single type of ALE. This means that 

there is a critical importance to having a mixture of the types of ALE and a single type 

should not be sent into battle alone. 

While each ALE configuration can provide case specific benefits, all MOE values 

for each MOE was summed across all configurations and plotted on a contour map. This 

provides a very quick and rough snapshot of areas of focus for the number of rounds and 

speed for each ALE and for each MOE. This is shown in Figure 27. 
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Figure 27. R Studio Screenshot of Contour Plot for Summarized MOE 

Metrics 

The advantage of this method is that is provides quick recommendations for future 

study. For instance, if survivability is the most important aspect to designing the ALEs, 

speed is the most critical aspect and the vehicle should be designed to fly at a minimum of 

135 knots, as evident from the MOE1 contour plot. On the other hand, if lethality is the 

primary objective, the vehicle is best designed to have at least three rounds and fly at a 

minimum of 130 knots, as shown from the MOE2 contour plot. However, reductions in 

speed provides only marginal losses to performance for MOE2. 

There is a relationship between the MOEs. Despite the two metrics having different 

characteristic ranges that optimize their values, increases in one MOE has secondary 

benefits to the other MOE. In practical application, this makes sense. An ALE can usually 

only destroy the enemy if it is alive to shoot it, and shooting enemy assets also keeps the 

ALE alive. The pairs plot with smoothers in Figure 28 shows this seemingly linear 

relationship. The two MOEs have a correlation of .7759. 



52 

 
Figure 28. R Studio Screenshot of Pairs Plot Between MOEs with 

Smoothers 

E. SUGGESTION FOR BEST CONFIGURATION 

Visualization can certainly provide ranges for feasible and reasonably performing 

ALE, but an optimal configuration is the most difficult aspect to determine. The biggest 

reason for this is because, at such an early stage in development of the vehicle, it is 

currently unknown how important survival and lethality are relative to each other. Using 

an extremely basic method of giving MOE1 and MOE2 equal weights, a single 

configuration comes out at as maximizing this value. This configuration is provided in 

Table 15. 
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Table 15. Optimal Characteristics 

Characteristic Optimal Value 
# Kill ALE 9 

# Disrupt ALE 9 
Speed 150 knots 

Pk(near) .9 
Pk(far) .16 

Radar Distance 7.8 miles 
Kill Distance 14.9 miles 
Burst Radius 64.136 meters 

# Rounds 5 
Mean Time to Detection 1.281 seconds 

Configuration 5 

 

Many of the characteristics, such as speed, trend towards their maxim, as is 

reasonable to assume. But some of the values, such as the radar distance, kill distance, burst 

radius, and number of rounds are not at their maximum values. This is optimistic that a 

vehicle would work best outside of being the objectively best design; however, it also 

warrants additional study using higher resolution modeling tools. Additionally, having 

greater fidelity in the coefficients and importance of each MOE would provide an optimal 

solution with a more realistic framework. Depending on how heavily one MOE is weighed 

compared to another, this optimal set of characteristics can vary substantially, and even 

create a range of optimal characteristics. 

The fifth configuration being the optimal configuration is likely for two reasons. 

First, it provides an even-split mixture of the two types of ALEs. Throughout analysis, 

having a mixture provides the best results to friendly forces. Second, because of the disrupt 

ALEs have more rounds then the kill ALEs, the kill ALEs may detect targets and the disrupt 

ALEs can quickly respond because of the type of formation they are in. The ALEs can 

provide cover to each other if they can detect but must rely on another platform for lethality. 

In looking at the worst performers, there were a total of six configurations that 

provided no measurement in MOE1 or MOE2. While there is no clear pattern to predict or 

provide recommendations to how the ALE should not be designed, there is one item of 

note. Three of these six worst designs involved having all of one type of ALE, either all 
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kill variants or all disrupt variants. Figures 19 through 21 show this to be the case. 

Configurations on the end, with completely imbalanced mixes of ALE variants perform 

poorly. This bolsters the argument to ensure that there is some mix of ALEs in any real-

world combat scenario. 

With regards to whether the vehicle should be recoverable or disposable, the ALE 

should be disposable, if at all possible. Based on the scenario and the ranges for the DOE, 

an average of 1.1799 ALEs survive each replication. This provides a survival rate of 6.55%. 

With such a low rate, it would be extremely cost ineffective if these vehicles were designed 

for multiple use cases. However, in other scenarios against a less formidable foe, a 

recoverable vehicle may be more realistic. 
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V. SUMMARY 

In order to determine success, a quick glance back at the research questions reveal 

whether this study of the ALE provides actionable insight for the design of this platform. 

Success in these areas provide the basis for the creation of this future critical capability. 

A. CRITICAL CHARACTERISTICS AND THEIR VALUES 

1. Critical Variables, Interactions, and Optimal Values 

The most important characteristics, regardless of whether the performance was 

modeled by a linear regression or a random forest, are the configuration type, speed, 

number of rounds, and the number of each type of ALE. The biggest interactions in the 

modeling of both MOEs are the interaction between the configuration type and the speed, 

and the interaction between configuration and number of rounds. 

The optimal characteristics for the ALE is provided in Table 14, but, in general, the 

configuration can be summarized as a being in a evenly split formation between kill and 

disrupt ALEs, being really fast and extremely deadly up close, being able to detect and kill 

at moderate ranges, with a fairly modest number of rounds. However, this is predicated on 

equally weighted MOEs and can vary with MOE coefficient refinement. 

2. Long-Term Survivability 

With only 1.8 ALEs surviving a battle on average, the ALE should be designed to 

be disposable. If this is not the case, the vehicle should be used only in the most strategic 

of circumstances or have a significant number of decoys deployed in advance of its use. 

Other options include optimized routes to targets or deployment behind initial friendly 

force engagements, but these options may reduce the ALE’s surveillance benefits. 

3. Future Research Characteristic Ranges 

Future research should focus first on the ALE configuration on the battlefield. It is 

important to refine distances between the types of ALEs and where they are arrayed in 

formations. The first configuration should focus on an even distribution of kill and disrupt 
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ALEs, and progress to other configurations from there. The next most important 

characteristic for research is speed. Maximum possible speeds should be explored first, and 

if this is unattainable, a speed of anything greater than 130 knots should be a goal. 

However, a range of speeds between 90 to 105 knots are a good starting point in terms of 

cost savings while still achieving reasonable performance. Finally, the minimum number 

of rounds on an ALE is ideally three. Therefore, future studies should look to incorporate 

two to five rounds in their research. 

B. LOOKING BACK ON THE STUDY 

Looking back on the study, there were some complications and issues that should 

be addressed. The biggest issue is that, not having personally created JDAFS, some of the 

vagueness of the results are on account of the system being much of a “black box.” Certain 

characteristics and parameters can be modified, but much of the model is hard to interpret 

without an intimate knowledge of the underlying relationships between methods. Certain 

modeling aspects were also difficult to recreate or implement, such as the lack of the effects 

of terrain, the inability to precisely model disruption, or limitations on entities without 

dramatically affecting computer performance. The inability of setting the seed for the 

simulations also creates an issue with reproducibility. When combined with the limited 

number of runs capable in the model, these two issues are a cause for concern and should 

be addressed in future uses of JDAFS. 

However, given the nature of the study and the fact that these initial insights will 

feed further analysis, these issues are not necessary shortfalls. Rather, they are initial 

limitations that can be overcome with a more time and resource intensive effort. This quick 

method of analysis did provide some critical insights that will likely save the government 

resources through the design and implementation of the ALE vehicles and the FARA 

ecosystem. 

C. ADDITIONAL RESEARCH ASSISTANCE PROVIDED 

In addition to providing the analysis in this study, I conducted a class on my 

methodology used in JDAFS that was recorded for TRAC – Monterey. Because JDAFS 

has not been used to this level with this many replications, the method was rather unique 
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in combining so many different types of programming languages to solve an issue like this. 

The class had two major benefits. The first benefit was a way of instructing other analysts 

on how to carry on further research as necessary, particularly on classified systems. The 

second and more important benefit is a reinvigoration in using easily implemented models 

to support more complicated simulations. Not only will JDAFS likely be used in other 

studies, but success in this study can hopefully garner additional resources to validate these 

efforts and refine the product for the sponsor’s needs. 

D. LOOKING FORWARD TO FUTURE RESEARCH 

Future research on this topic should start with implementing JDAFS and this 

methodology on a classified network against real-world threats. Doing this would either 

validate the design characteristics or refine assumptions required to conduct analysis in an 

unclassified environment. Due to the inability to access a classified network, this was not 

possible during this study. 

The next step in additional research would be to narrow the characteristics’ ranges 

and increase the number of levels in a future DOE. Doing this could provide insight into 

sensitivity analysis for the characteristics and determine if other parameters had more 

subtle effects not picked up in this research. 

Based on watching more than a few of the simulations in the JDAFS graphical 

interface, it becomes apparent that one of the biggest reasons for success was the 

introduction of decoys into the system. The IADS assets spent many of their allocated 

rounds shooting at the drones. Decreasing the number of drones on the battlefield would 

have been even more detrimental to the ALE survival rates. Varying decoy distances and 

quantity would also provide critical information to what should be done in terms of tactics 

on the battlefield. 

The final recommendation for future research is to take this unclassified scenario 

and DOE and run it through a different model. The first suggested model would be to use 

Map Aware Non-Uniform Automata (Lauren et al. 2002). This model allows for 

modifications to terrain, unit attitudes, and armor thickness. Having a second model 
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validate the results from JDAFS, or provide alternate recommendations, would provide 

additional information to decision makers and analysts. 

E. CONCLUSION 

With the proper characteristics, the ALE can provide immense benefits to friendly 

forces by disrupting the enemy’s ability to control the airspace over an engagement area. 

However, with the current design from this study, this effect is limited to the airspace and 

provides negligible direct benefits to the Soldier on the ground. While the ALE has an 

important role, its inability to survive the engagement means it should be produced and 

procured as inexpensively as possible or be used in limited scenarios. This analysis will 

shortly be used to inform an AWARS study—with careful planning and a good design, 

friendly forces will see the benefits sooner rather than later. 
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APPENDIX. ADDITIONAL VISUALIZATIONS 

Figure 29 and Figure 30 are full partition trees for the predictive models for MOE1 

and MOE2. Abbreviated forms of these forests are displayed in Chapter IV with the most 

important characteristics, but these trees drill down to within one standard deviation of the 

best possible number of splits. 
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Figure 29. Full Random Forest for MOE1 
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Figure 30. Full Random Forest for MOE2 
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Figure 31 and Figure 32 show the pairs plot for the DOE characteristics. These are 

expanded versions from the pairs plots in Chapter IV with all the variables used for the 

ALEs. These plots have smoothers that show how the interactions between two variables 

contribute to predicting the MOEs. Most additional interactions from the figures in Chapter 

IV do not increase the predictive nature of the model, as per the plots in Figures 31 and 32. 

 
Figure 31. R Studio Screenshot of MOE1 Pairs Plot with Smoothers 
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Figure 32. R Studio Screenshot of MOE2 Pairs Plot with Smoothers 

Figure 33 through Figure 46 show side by side two- and three-dimensional plots 

for each configuration for each MOE. With an assumption that configuration can 

adequately represent the number of kill and disrupt ALE, the top five most important 

characteristics to the random forests are represented. This assumption of correlation 

between the configuration and ALEs by type is fairly lose, but in order to provide visual 

representation for tradeoff analysis, this assumption was necessary. Figure 32 and Figure 

33 show only two-dimensional measures. What this means is, based on MOE1, having a 

single type of ALE does not do much of anything to improve or hinder ALE performance. 

The real benefit is mixing ALE types within a scenario. It is important to show each of 

these plots because they provide a picture of how the configurations affect performance 

and how combining them can provide a much better picture for recommendations on 

optimal speed and number of rounds for the ALE. 
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Figure 33. R Studio Screenshot of Contour and 3D Plot for 

Configuration 1 and MOE1 

 
Figure 34. R Studio Screenshot of Contour and 3D Plot for 

Configuration 2 and MOE1 



65 

 
Figure 35. R Studio Screenshot of Contour and 3D Plot for 

Configuration 3 and MOE1 

 
Figure 36. R Studio Screenshot of Contour and 3D Plot for 

Configuration 4 and MOE1 
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Figure 37. R Studio Screenshot of Contour and 3D Plot for 

Configuration 5 and MOE1 

 
Figure 38. R Studio Screenshot of Contour and 3D Plot for 

Configuration 6 and MOE1 
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Figure 39. R Studio Screenshot of Contour and 3D Plot for 

Configuration 7 and MOE1 

 
Figure 40. R Studio Screenshot of Contour and 3D Plot for 

Configuration 1 and MOE2 
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Figure 41. R Studio Screenshot of Contour and 3D Plot for 

Configuration 2 and MOE2 

 
Figure 42. R Studio Screenshot of Contour and 3D Plot for 

Configuration 3 and MOE2 
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Figure 43. R Studio Screenshot of Contour and 3D Plot for 

Configuration 4 and MOE2 

 
Figure 44. R Studio Screenshot of Contour and 3D Plot for 

Configuration 5 and MOE2 
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Figure 45. R Studio Screenshot of Contour and 3D Plot for 

Configuration 6 and MOE2 

 
Figure 46. R Studio Screenshot of Contour and 3D Plot for 

Configuration 7 and MOE2 
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