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ABSTRACT 

 High resolution images have been used to estimate and characterize the roughness 

of the rocky seafloor in terms of small scale roughness and power spectral density. The 

application of this work is acoustical modeling of scattering from the sea floor. Two 

camera systems were designed and built to collect images of the ten different types of 

surfaces along the rocky shoreline on the Monterey Peninsula at low tide. Using 

commercial photogrammetry software, the images were processed to calculate height 

Digital Elevation Maps, which were then used to estimate 1-D and 2-D roughness power 

spectra. A power-law model was fit to the spectrum and had two parameters, the spectral 

strength and spectral slope. These roughness power spectra parameters were compared to 

previously collected parameter data on sandy seafloor, and the scattering strength values 

were compared to recently collected data along the same rocky coastline of the Monterey 

Bay. The lower-frequency rocky seafloor spectral strength and slope showed overlap with 

some of the sand surfaces at varying spatial scales. These parameters were used as inputs 

into a small-scale roughness perturbation theory model to predict scattering strength of 

the ten different surfaces for a frequency of 200 kHz and three different grazing angles. 

The predictions using this scattering strength method were within 10 dB of measurements 

collected within the same area in the Monterey Bay. 
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I. INTRODUCTION AND BACKGROUND 

Acoustic systems have become the primary remote sensing tools used in the ocean 

for both civilian and military activities such as hydrography, anti-submarine warfare, and 

mine warfare (National Research Council (U.S.) 2007). While most active acoustic sonar 

systems use frequencies that range from roughly 100 Hz to several MHz (Jackson and 

Richardson 2007), many active remote sensing instruments use a higher frequency range 

of approximately 10 kHz to 1 MHz for shallow water applications (Jackson and Richardson 

2007). Although many of the measurable environmental characteristics of the water 

column and seafloor have an impact on underwater acoustic system performance, the 

physical characteristics of the seafloor are the most significant parameters needed when 

evaluating and predicting the acoustic detection performance of a system during high-

frequency applications. This is especially true in the shallow coastal environment, where 

acoustic scattering from the seafloor is highly important (Jackson and Richardson 2007). 

After the Cold War the acoustic community shifted its scientific focus from deep-

water environmental to the shallow water environment, where the characteristics of the 

seafloor have a much more significant impact on acoustics scattering (Jackson and 

Richardson 2007). While the shift from deep water to shallow water acoustics brought the 

littoral region into focus for the acoustics community, the vast majority of the coastal 

environmental characterization experiments in support of acoustic research have been 

focused characterizing the roughness of the sandy seafloors. The lack of research in rocky 

seafloor environments prevents performance estimation, or remote sensing in this type of 

area. Therefore, more research in rocky environments is required to carry out these 

activities. 

Acoustic scattering is the process in which acoustic waves are temporally and 

spatially dispersed when they interact with variations of the seafloor height and material 

properties. Since scattering becomes a primary concern when the surface variations 

(roughness) scales are on the same order of magnitude as the acoustic wavelength, high-

frequency acoustic waves tend to experience high scattering levels when interacting with 
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small scale surface features that are present across all seafloors (Jackson and Richardson 

2007, p. 21). 

Scattering strength can significantly impact the performance of a sonar system 

through either reverberation or changes in the propagation. This can have both positive and 

negative effects on the performance of the system depending on the application it is being 

used for. If target detection is the intent, the scattering interferes with the signal received 

back at the sensor, making the target harder to detect. However, if bottom characterization 

is the intent, the scattering ensures the signal makes it back to the sensor and the bottom 

can be mapped, or inferences made about its composition. No matter the intended 

application, accurately predicting the scattering strength allows for better application and 

performance of the acoustic system being used (Jackson and Richardson 2007, p. 1, 171). 

Since scattering strength is directly related to surface roughness, large datasets are 

necessary to establish roughness trends for individual environments such as the sandy 

seafloor or rocky coastline. These trends can then improve environmentally adaptive target 

detection algorithms, and performance estimates of the systems (Stack 2011). 

While roughness is one of many seafloor characteristics that impact the 

performance of an acoustic system, other factors include material composition, density, 

and porosity. Not all of these relevant characteristics have been well-studied for every 

possible seafloor environment. Surface roughness is one of the areas of study with 

significant data gaps in varying environments, despite the fact that it is one of the most 

significant factors in shallow water underwater acoustic scattering in the high-frequency 

range (Jackson and Richardson 2007). Surface roughness is generally understood as the 

variation in the surface features. A rough surface is marked by discontinuities or ridges. In 

other words, it has a bumpy or uneven surface (Merriam-Webster, n.d.). Many of the 

seafloor and coastal surfaces in and around the ocean are rough. These physical 

characteristics that make up the roughness parameters of the various seafloors exist on 

different spatial scales. These scales vary from the very large mid-Atlantic Ridge, with 

widths of  up 1500 kilometers protruding upwards of 2 to 3 kilometers from the abyssal 

plain, to the meter wide sand bars created by surface wave action and the centimeter-sized 

pits created by fish living near the seafloor (Jackson and Richardson 2007, p. 171). In 
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general, the features that make up the larger scale roughness along the seafloor are more 

stable, meaning that they do not change significantly over short periods of time. However, 

the features on the smaller end of that spatial frequency range tend to be less stable, 

changing over the course of hours to days (Jackson D.R. et al., 2009), (Jackson and 

Richardson 2007, p. 171), (Lyons, A.P, Brown, D.C, 2013) . Large-scale features are 

generally easier to identify and measure through basic hydrographic survey techniques 

used to map the ocean floor. Small scale features are more challenging to resolve and 

generally depend on statistical characterization, which means there are multiple techniques 

used to parameterize the roughness of a surface at these scales depending on the scientific 

application (Jackson and Richardson 2007). High-frequency acoustic applications between 

10kHz and 1 MHz are impacted by roughness parameters that are on the same or smaller 

scales than their associated wavelengths of 15 cm and 1.5 mm, respectively.  

Analysis of the surface roughness is often done using a roughness power spectral 

estimate of either a cross section (1-D) or a plane (2-D) of a height field of the surface. 

From the roughness power spectrum, acoustic parameters of the surface can then be 

identified. Two of the most prevalent acoustic parameters with respect to surface roughness 

characterization are the 1-D spectral intercept and the 1-D spectral slope . These 

two parameters are estimate by applying a power-law model, a straight line in log-log 

space, to the regression portion of the plotted roughness power spectrum which is derived 

from a cross section or slice of a surface (z(x) or z(y)). The parameter values for the 1-D 

spectral intercept and the 1-D spectral slope were ascertained from the slope and 

intercept of power-law fit lines that were applied to the regression each spectrum.   

In all the spectra plotted, a break in the slope was identified, creating two distinct 

portions of the regression of the spectra. Therefore, to best characterize the spectral 

parameters in this study, a power-law line was fit to each section and the spectral 

parameters were estimated for each section. An example of this can be seen in Chapter II, 

Figure 13. The presence of two different slopes may indicate that different processes may 

be responsible for the roughness. For example, on a rocky surface, very high spatial 

frequencies may be related to the grain scale of the granites. When identified and analyzed 
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together, these parameters can help to statistically characterize the variation of the surface 

roughness across a range of spatial frequencies on the surface that is being analyzed. 

These two 1-D parameters can also be converted to their equivalent 2-D parameters 

for input into acoustic scattering models (Jackson and Richardson 2007). These parameters 

are useful in scattering models since the scattering cross section is proportional to the 

power spectrum evaluated at the Bragg wavenumber (Jackson and Richardson, 2007). A 

more detailed discussion on how these values are calculated and how they are used in the 

perturbation theory scattering model can be found in the data processing section of Chapter 

II but it is relevant to identify both the 1-D and 2-D parameters now as many of the previous 

studies referenced in this chapter used these parameters to characterize the roughness of 

the seafloor and these will be the primary parameters utilized for roughness 

characterization in this experiment. 

The following sections will provide a brief background of the roughness 

characteristics, and associated parameters and methods by which this data collection was 

conducted for the sandy seafloor and rocky seafloor environments in recent decades. The 

measured values of scattering strength and means of collection for these environments will 

also briefly be described. These sections serve to provide a foundational understanding of 

what has been measured and how it has been collected to date in these environments, for 

both roughness parameters and their associated scattering strength values. 

A. ROUGHNESS CHARACTERISTICS OF THE SANDY SEAFLOOR 

Given that roughness exists at a range of spatial scales, a sandy seafloor can actually 

be characterized as having significant roughness at smaller, on the order of cm to mm, 

scales. Many small-scale roughness features on the sandy seafloor are created by 

movement in the water, primarily caused by waves and tidal currents, as is the case for 

sand bars, ridges, and ripples (Jackson and Richardson 2007, p. 60). Additionally, they can 

be created through the presence of small animals or other biological processes such as the 

mounds, craters, or pits created by small fish or the trails and burrows created by various 

small creatures that reside along the seafloor (Jackson and Richardson 2007, p. 171). Since 

these features are created and altered by the dynamic forcing due to currents and waves or 
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by biological organisms and processes, they are constantly changing. These changes can 

occur over the course of minutes to days, with some of the largest features, such as sand 

bars changing slightly slower, over weeks to months (seasonally) (Jackson D.R. et al. 

2009), (Jackson and Richardson 2007, p. 171; Lyons, A.P, Brown, D.C 2013) . 

With the small-scale features associated with the sandy seafloor being inherently 

time-varying, measuring and characterizing them in a way that is beneficial to acoustic 

applications is challenging. Below are a few summaries of experiments that were designed 

to conduct the type of roughness measurements and parameter characterization required 

for acoustic model application. 

1. Sandy Seafloor Roughness Parameter Collection – Previous Studies  

In the past few decades, numerous studies have collected and characterized 

roughness in sandy environments in support of acoustic applications. Twelve of these 

studies are presented in (Jackson and Richardson 2007), which does not encompass all 

studies conducted in this field, but does present a useful data set in which to analyze. A 

brief description of three of these studies follows. 

One of the earliest studies performed to collect and classify microscale roughness 

parameters of the seafloor in support of acoustic applications was conducted in 1989 

(Briggs 1989). During this study, various sediment morphologies from flat to rippled 

surfaces were measured using stereo photogrammetry. From these height measurements, 

roughness power spectral density was calculated. This study concluded that various 

sediment types changed the power spectrum characteristics. Specifically, the spectral slope 

( ) varies with sediment type and spatial frequency of the surface features. The effects of 

varying sediment types and spatial frequencies were evident across the spectrums, 

indicating that one single spectral model would not suffice to characterize all three of the 

locations analyzed in this study (Briggs 1989). 

As cameras and photogrammetry techniques improved, more studies were 

conducted using this method to measure seafloor roughness parameters in the sand 

environment at progressively higher resolutions. In 2002, (Lyons et al. 2002) conducted an 
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experiment with resolutions between one millimeter and one meter on sediment surfaces 

in shallow water using digital photographs, as opposed to the analog methods of Briggs 

1989. This study found that if a surface is dominated by directionally specific features 

(such as ripples in the case of this experiment), the 1-D spectral exponent ( ) and spectral 

slope ( ) parameters will not provide a complete characterization of the seafloor. Instead, 

they found that a two-component spectrum derived from the combination of a isotropic 

(meaning there are no directionally specific features) (Jackson and Richardson 2007) 

power-law component and a non-centered Gaussian component would provide a better 

characterization of the 2-D environment that has direction-specific features (Lyons et al. 

2002). 

In 2004, Richardson et al. performed a study using divers and stereo photography 

techniques to analyze the roughness and associated scattering strength by making 

deliberate directional modifications to the sandy seafloor surface. Photographs were 

collected before and after the modification of the seafloor with follow up photographs 

collected at 12-hour increments after the modification. This study had an effective 

resolution of about one millimeter horizontally and vertically. Analysis of the 

measurements included the calculation of 2-D power spectra and associated roughness 

parameters of  (spectral strength) and  (spectral exponent), which will be discussed 

in Chapter II. In general, this study found the spectral slope varies between -2.6 and -3.3 

with a larger variation of spectral exponent values between and 

as the roughness varied through time. While already quite variable 

parameters, this study showed the potential for variability of spectral parameter values as 

the surface roughness changed, even a short period of time due to biological forcing. It also 

highlighted the need for more information on how the biological processes impact surface 

roughness and associated acoustics scattering. While values like this are not necessarily be 

directly applied to the rocky seafloor, they provide a valid comparison of values at small 

spatial scales as more roughness data along the rocky seafloor is collected. 
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B. ROUGHNESS CHARACTERISTICS OF THE ROCKY SEAFLOOR  

The rocky seafloor is composed of features that span a wide range of spatial and 

temporal scales. From the large-scale tectonic features of the ocean basins to the biological 

life that exists across the reefs, in the sand, and on the rocky outcroppings near the coast, 

the composition of this environment varies significantly, therefore one can expect that the 

roughness of this environment will vary considerably as well (Jackson and Richardson 

2007). While the small-scale features will play the most significant role in high-frequency 

applications, it is important to understand the entirety of the environment to best predict 

the potential impacts on the acoustic system being used. The next few paragraphs will 

describe both the large and small-scale characteristics that are typical of the rocky seafloor 

environment. 

1. Rocky Seafloor Roughness Parameter Collection – Previous Studies  

Two relatively recently conducted studies used updated stereo photography 

techniques to characterize the surface roughness in environments other than the sandy 

seafloor. First, in 2015, (Leon et al. 2015) utilized these techniques to characterize an 

underwater coral reef environment. While not exactly equivalent to a rocky shore, this 

environment has many similarities to a rocky shoreline environment since both have 

dynamic biological processes and significantly more structural variation than a sandy 

seafloor. Collecting photographs along a transect, they were able to resolve roughness 

features at the submillimeter scale using diver hand-held cameras and commercial 

photogrammetry processing software. Through processing, they were able to characterize 

the environment through various types of roughness measurements. The study found that 

the variations across the different surfaces of the reef correlated best with the Fractal 

Dimension parameter (Leon et al. 2015).  

Olson et al. (2016) conducted an acoustically focused study using these 

photogrammetry techniques characterize the roughness of rock outcrops as part of a larger 

experiment to measure high-frequency acoustics scattering within a rock dominated 

environment. Using similar stereo photography techniques to previous studies done in 

sand, data were collected subaerially on rock surfaces that displayed various surface 
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structures, like those discussed above in for the large-scale roughness features of the rocky 

seafloor. 

This study found that roughness data collected above the waterline could be applied 

to the same surfaces underwater without affecting acoustics scattering measurements at 

high frequencies, due to the extreme resistance of the rock material to chemical weathering. 

The calculation of 2-D power spectrum and power-law fits for the two distinct surface types 

produced roughness parameters of  (spectral slope) and  (spectral exponent). These 

values were then applied to relative acoustic scattering strength models (Olson et al. 2016). 

The spectral parameter values found by (Olson et al. 2016) provide a comparison data set 

to the data collected for this paper as both data sets were conducted in an area dominated 

by granite outcroppings in the aerial environment. 

C. SPECTRAL PARAMETERS FROM PREVIOUS STUDIES 

To date, there is not a significant amount of data available regarding the spectral 

parameters measured during previous studies. Figure 1 shows some of the available data 

(Jackson, 2020).  
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Scatter plot showing sand and rock 2-D spectral equivalent values from sand and rock 
environments. In the legend, J& R stands for (Jackson and Richardson, 2007). The sand 
data was taken from Table 6.1 in Jackson and Richardson (2007) and converted to the 2-D 
values. rock values were pulled directly from Olson et al. (2016). The sand values are 
depicted by black diamonds while the rock values are depicted by red dots. Derived from 
Jackson and Richardson (2007) and Olson et al. (2016). 

Figure 1. 2-D Equivalent Spectral Parameters from Previous Studies 

The sand spectral parameter values were derived from a study conducted by Briggs 

(2002) and consolidated within Jackson and Richardson (2007). These 1-D values were 

converted to their 2-D equivalent values through the use of equations that will be discussed 

in Chapter II. These values, while not all encompassing for data available on the sandy 

seafloor, serve a good reference for the values that have been collected in the sandy seafloor 

environment. Even less data exists on the spectral parameters within the rocky seafloor 

environment. The two data points (red dots on the plot) for rocky spectral parameters are 

from Olson et al. (2016). These data points serve as a valid reference points for this study 

given that experiment was conducted over rock surfaces with similar composition to the 

rocky outcroppings found within the Monterey Bay, which will be discussed in a later 

section of this chapter. 
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Understanding the roughness parameters alone is not necessarily effective when 

trying to understand how roughness will impact sensors or systems. Therefore, these 

parameters need to be applied to models that can predict scattering strength in in order to 

increase performance. Since scattering strength is that measure for this experiment, the 

next section will discuss the correlation between roughness and scattering strength and why 

that is important to understand. 

D. SCATTERING STRENGTH AND SURFACE ROUGHNESS 
RELATIONSHIP  

As noted previously in the introduction, the roughness characteristics of the 

seafloor at the centimeter to millimeter scale play a primary role in scattering for high-

frequency acoustics systems in the shallow water environment. When an acoustic signal is 

incident upon a portion of the seafloor that is composed of roughness variations along the 

same scale as the signal wavelength, the incoming sound energy will scatter in multiple 

directions as depicted in Figure 2.  

 
Depiction of incoming and scattered sound waves along a rough surface. Source: (Oelze et 
al. 2002) 

Figure 2. Depiction of Scattering from a Rough Surface 

Scattering strength is defined as the ratio of scattered intensity to the incident 

intensity with spherical spreading and the ensonified area removed. Under the small 
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roughness perturbation approximation method used in this study, the scattering strength is 

proportional to the 2-D roughness power spectral density evaluated at the Bragg 

wavenumber, which for backscattering direction is , where  is the 

wavenumber in water, is the acoustic frequency, and is the acoustic speed of sound 

in water (Jackson and Richardson 2007). In order to understand the scattering effects and 

estimate acoustic performance in the near-shore environment, it is imperative that 

roughness characteristics of any given environment are quantified and the associated 

scattering strength of the acoustic system(s) that will be used is estimated. 

1. Scattering Strength on Sandy Seafloors 

To date, there have been numerous studies on roughness characteristics and 

associated acoustic scattering for sandy seafloors, the twelve studies described in (Jackson 

and Richardson 2007) encompass a significant portion of these studies that directly 

consider the connection between scattering strength and roughness parameters. Many of 

the earlier studies conducted to assess scattering strength either did not sufficiently 

characterize the seafloor environment when measuring the scattering strength. Other 

studies conducted lacked resolution or refined calibrations techniques, making their data 

less useful for comparison at the high resolution required when considering high-frequency 

acoustic applications (Jackson and Richardson 2007). These limitations on data 

notwithstanding, (Jackson and Richardson 2007) illustrated the variation in scattering 

strength over the multiple experiments through multiple scatter plots. Using the Lambert 

Law curves fit to the plots at a 45° grazing angle (for reference) the scattering strength 

along that curve for sand was -25 dB. The scattering strength for gravel was also estimated 

and may provide a good comparison to data in this study since the grain size of gravel is 

larger than the grain size of sand, and gravel is commonly found in areas around the rocky 

outcroppings within the Monterey Bay, which will be discussed in the next section. For the 

data collected over gravel seafloors, a 45° grazing angle produced a scattering strength of 

approximately -15 dB along the Lambert Law curve. It should be noted that scattering 
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strength also varies with frequency and should be considered if various frequencies will be 

used in an analysis (Jackson and Richardson 2007, p. 321–330). 

2. Scattering Strength on Rocky Seafloors 

Relative to the sandy seafloor environments, there have been fewer studies 

conducted to measure scattering strength in the nearshore or underwater rocky environment 

While there have been seven total studies conducted, only five have successfully collected 

scattering strength data in rocky environments that can be reliably used for comparison 

purposes when roughness based estimates are made (Gruber, 2019). These studies include: 

(Urick 1954), (McKinney and Anderson 1964), (Soukup and Gragg 2003), (Olson et al. 

2016)) and (Gruber 2019). There is also a relatively small data set analyzing rocky seafloor 

scattering strength in (Jackson and Richardson 2007). In that data set, a 45° grazing angle 

produced a scattering strength of approximately -10 dB at the curve fit to Lambert’s Law, 

but the values in this data showed significant variability when compared to the sand data 

that was analyzed in the same manner (Jackson and Richardson 2007, p. 324–325).  

E. DESCRIPTION OF THE MONTEREY BAY 

As discussed previously in the rocky environment roughness section, there are both 

large-scale, hundreds of meters to kilometers, and small-scale, sub millimeters to meter, 

features that impact acoustic scattering in the rocky environment.  

1. Large-Scale Features of the Monterey Bay 

The Monterey Bay is a crescent-shaped bay along the central coast of California 

with the Monterey Peninsula located on the southern tip of the Bay and its western coast 

exposed to the Pacific Ocean. Geologically, the Bay is located on the Salinian Block 

formation and was the site of a geological study conducted by Greene (1977). The portion 

of the Block that lies beneath the Monterey Bay is broken into multiple pieces by fault lines 

that primarily run northwest to southeast. The Monterey Peninsula itself resides on a sub-

block identified as the Monterey Block. Within the Monterey Block two smaller fault lines 

run along the peninsula’s northeast and southwest coasts in the same direction as the larger 

fault lines in the region. The faulting processes within the Bay and around the peninsula 
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have created significant rocky outcroppings along the coast. Eittreim et al. (2002) analyzed 

additional surveys conducted within the Monterey Bay and noted a highly variable, rough, 

knobby and fracture pattern on the granite outcroppings along the coast. These 

outcroppings along the shelf run continuously from offshore to onshore. Thus, the 

assumption can be made that the structure observed in the underwater imagery is similar, 

if not the same, to the structure within the nearshore and intertidal environments along the 

coast of the Monterey Bay (Eittreim et al., 2002). 

The Salinian Block, which is partially exposed due to the faulting activity, consists 

primarily of granite and is overlaid with various sediment types including mud, silty sand, 

course sand, and gravels (Greene, 1977), (Eittreim et al.). During the geological survey in 

1977, Greene collected multiple samples from the rocky outcroppings on the shelf and 

offshore along the coast of the Monterey Peninsula. The rock samples collected just to the 

west of the Monterey Peninsula, closest to the two coastal locations used for this 

experiment, were comprised of very angular granodiorite rocks and a few semi-rounded 

boulders. The overall shape, structure, and variability of the outcroppings within the Bay 

can be discrete scatterers for mid-frequency, 1 to 10 kHz, systems. However, depending 

on the scale, the physical characteristics (angularity and facet structures) of the rocks within 

the outcroppings will also have an impact on high-frequency acoustic systems due to 

changes in the local grazing angles caused by the larger scale features of the outcroppings.  

2. Small-Scale Features of the Monterey Bay 

While the rocky outcroppings along the coast make up the mid to large-scale 

features, the sediments, covering portions of the rocky outcroppings and seafloor as well 

as the small-scale biological organisms in the region will impact the roughness 

characteristics of both the seafloor and surfaces of the rocky outcroppings along the coast 

of the Bay and Peninsula. 

As noted above, portions of the seafloor in Monterey Bay are covered by various 

sediment types. In addition to rock samples, (Greene, 1977) also collected sediment 

samples along the west coast of the Peninsula. Samples collected closest to the two 
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locations selected for this experiment showed a mixed composition of medium to course-

grained granitic sand and fine-grained silty sand (Greene, 1977).  

Upwelling in the region, caused by the reoccurring wind patterns and eastern 

boundary current that runs northwest to southeast along the west coast of the United States, 

where the Monterey Bay and Monterey Peninsula are located, creates a superb environment 

for biological life. The upwelling causes cold, nutrient-rich water from near the seafloor to 

be pushed upwards into the water column toward the ocean surface, creating an 

environment for biological life such as plankton, seaweed (kelp), and other animal and 

plant species to flourish (NOAA). 

The Monterey Bay is well known for its diverse biological environment and has 

been designated as National Marine Sanctuary (NOAA, 2019). Biological life ranging in 

size from microscopic plankton to the giant blue whale reside in the Bay. Considering the 

upwelling characteristics and diversity of biological life found in this region, it is no 

surprise then than the rocky shores of the Peninsula are teeming with a variety of plant and 

animal life of all shapes and sizes. During the survey conducted by Greene (1977), 

significant biological presence, in the form of bryozoans, calcareous worm tubes, and 

barnacles, was noted on the rock samples collected in off the west coast of the Monterey 

Peninsula near the locations selected in for this experiment (Greene, 1977). This means 

that we can expect that the biological organisms found within the Bay can also be found 

on or around the rocky surfaces, impacting their roughness characteristics and ultimately 

the scattering strength.  

Given the physical and biological features present in the area, the Monterey Bay is 

a superb example of a rocky environment that showcases the spectrum of large- and small-

scale features that a rocky coastline can have. For these reasons, the Monterey Bay 

provided an excellent location for research focused on measuring and characterizing the 

roughness characteristics of a rocky coastline. 

F. GOALS AND INTENT OF THIS STUDY 

With markedly fewer data collected within the rocky environment, identifying 

techniques and environmental data, such as roughness, is critical to the future performance 
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of underwater acoustics systems in the nearshore rocky environment. Therefore, this 

experiment was designed with the goal of collecting rough surface parameters in the rocky 

environment of the Monterey Bay through the use of flexible stereo photography 

techniques and modern computer vision software. Since seafloor roughness is a dominant 

factor in acoustics scattering in the shallow water environment, the measured roughness 

parameters will be used to investigate the potential scattering impact that the measured 

surface roughness parameters have on high-frequency acoustics systems.  

Chapter II describes the methodology used for this study to include equipment 

selection and design as well as data collection and data processing techniques. Chapter III 

presents the results and a discussion of the findings. Chapter IV provides conclusions.  
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II. METHODOLOGY 

In this chapter, the methodology used throughout the study is described. Section A 

outlines the overall methodology of the experiment, Section B discusses the equipment 

used, Section C covers data collection, and Section D details the data processing and 

analysis techniques used. Since the experiment used a combination of camera setups, data 

collection, and post-processing techniques similar to previous experiments conducted in 

similar manner, background details from the experiments that were also designed to collect 

and process multiple photographs in a rocky area along the coast will be discussed 

throughout the various Sections. All the methods used in this experiment were selected 

with the intent of identifying a fast, portable, and effective method to obtain roughness 

parameters of the rocky seafloor for acoustic applications.  

A. OVERALL METHODOLOGY  

The fundamental methodology for these experiments were as follows:  

• Equipment Selection and Design 

 a. Determine Equipment and Setup: Working with a local 

underwater camera and dive store, cameras and equipment were selected 

that would meet the requirements of our experiment and work best in the 

local area. 

 b. Design and Test Equipment Setup: A portable frame was built to 

hold the selected camera equipment. The frame was tested in multiple 

environments to determine the best collection setup for the coastal 

environment it was to be used in.  

• Data Collection 

 a. Collect Data: Photographs were taken at multiple angles and 

elevations over ten different surface types along rocky areas on the 

Monterey bay coast with either dual mounted cameras on a portable PVC 
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frame or with a handheld single camera. A reference object was placed on 

or near each surface as photographs were taken for use during post-

processing. Data was collected at two locations during low tide events on 

the coast of the Monterey Peninsula. 

• Data Processing 

 a. Process Images and Produce Digital Elevation Maps (DEM): 

Images were processed using commercial software (Agisoft LLC 2020) to 

produce a digital elevation map (DEM) for each surface and height fields 

were exported from each DEM in the form of (x, y, z) coordinates. 

 b. Select Data for Processing and Estimate Power Spectral Density: 

The height fields for each surface were cut into 0.1m by 0.1m sections for 

processing due to processing capacity. MATLAB was then used to 

estimate the 1-D power spectral density of each section in the local x and y 

directions using a traditional averaged spectrum, and the multitaper 

method. Estimates of the 2-D spectrum were performed as well. 

 c. Fit Power Law Models (straight lines in log-log space) to 

determine  (Spectral Intercept) and (Spectral Slope) of each 

spectrum: Using the power law model, lines were fit to the two distinct 

regression sections on the power density spectrums of the ten surfaces to 

determine the spectral parameters of each section (Jackson and Richardson 

2007). 

 d. Predict Scattering Strength using the Small Roughness 

Perturbation Model: All the derived and parameters were converted 

to their equivalent 2-D components and run through scattering strength 

formulas that utilized the small roughness perturbation estimation 

technique for scattering strength calculations (Jackson and Richardson 

2007) to determine the potential scattering strength of each surface type.  
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 e. Plot Data and Analyze Data: Data was plotted in MATLAB 

using various methods to allow for analysis and comparison. 

The steps outlined above will now be discussed in further detail, starting with the 

equipment selection in Section B. While there may be variations that could be made to 

these steps based on the desired end state, this process is easily repeatable for future data 

collection in the rocky coastal environment. 

B. EQUIPMENT SELECTION AND DESIGN  

The equipment used to collect data for this experiment included a portable, dual-

camera mounted system constructed from PVC pipe and a single handheld underwater 

camera, both of which required an external reference object. Variations of these types of 

techniques have been used previously to measure seafloor roughness in support of acoustic 

scattering experiments (Briggs 1989), (Richardson et al.), (Briggs et al. 2002), (Lyons et 

al. 2002), and (Tang 2004). The earliest of these studies conducted in support of underwater 

acoustics was Briggs (1989), where analog cameras and an optical stereocomparator were 

used. More modern experiments, such as (Lyons et al. 2002), used dual-camera setups like 

Figure 3.                                                                              

 
Pictures (a) and (b) show the diver handheld setup utilized in 2002 near Fort Walton Beach 
Florida. Source: Briggs et al. (2002). Picture (c) shows a larger set up utilized in 2002 near 
Elba Island, Italy. Source: Lyons et al. (2002). 

Figure 3. Previous Stereo Photography Experiment Setups 
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Traditional photogrammetry techniques rely on the very specific arrangement of 

the cameras to utilize geometry to convert the coordinates of the pixels in the captured 

images to object coordinates. Figure 4 shows the geometry and associated equations used 

in this type of camera setup. By identifying the same pixel in both images, the disparity 

between the pixels can be quantified. Using that value and the known values of the focal 

lengths and camera baseline, similar triangle geometry can be used to determine the height 

(z coordinate) of the object/point of interest. 

 
Diagram of traditional stereo photography geometry. Object coordinates can be derived 
from similar triangles using the equations for pixel disparity and the object coordinated. 
Adapted from Olson (2014). 

Figure 4. Stereophotogrammetry Setup Geometry and Equations. 

Due to the precise geometry specifications required for these types of height 

measurements, previous studies that used this technique required frames to be constructed 

and cameras to be mounted at angles that allowed for significant overlap of pixels (for 

disparity calculations) between the two photographs being taken at the same time, or close 

to the same time, as depicted in Figure 5. Additionally, the cameras and set up needed to 

be calibrated using a checkerboard pattern to ensure that the images were not skewed or 
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distorted and the same focus that was used in the calibration was used in the measurement, 

which is essential when using this technique to gather elevation/height data. Photographs 

were then processed in camera pairs (right and left) along multiple views of the target area 

in order to calculate the height field of a given region. This technique was primarily used 

to collect data on sandy sea floor environments and requires high water clarity and minimal 

movement of the camera frame. Previous studies that used this or similar photogrammetry 

setup techniques include (Richardson et al.), (Briggs et al. 2002), (Lyons et al. 2002), and 

(Tang 2004).  

 
Camera footprint diagram representative of traditional stereo photography set ups. 

Figure 5. Traditional Stereophotogrammetry Setup Camera Footprint 
Diagram 

Olson et al. (2016) used a variation of this technique to characterize the roughness 

of glacially eroded rock surface with prominent surface variations. This study used a frame 

and two cameras, calibrated by a checkerboard pattern to collect stereo photography data 
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and derive height fields much like previous studies. This study, however, focused on the 

collection of the height field for characterization of roughness parameters along a rocky 

coast as it could be applied to underwater acoustics scattering. Additionally, this data 

collection was conducted fully in-air, much like the method used to collect data in this 

paper, but without the presence of the biological diversity (kelp, algae, grass, mussels, etc.) 

that was found along the Monterey coast.  

More flexible photogrammetry techniques were used by (Leon et al. 2015) where 

photographs were collected along a line of coral reef and the image data was processed 

using commercial software. For this data collection method, two handheld cameras were 

deployed by a diver to continuously collect side-by-side photographs with significant 

overlap over a 250 m long coral reef transect. For scaling purposes, lead weights, with 

known measurements, were places along the transect and a plastic disc was placed at the 

beginning and end of the transect to be used as georeferenced points during post-

processing. The commercial software was then used to build the digital terrain model 

(height fields) for the transect simultaneously with estimated camera locations and camera 

parameters. Select sections of the digital terrain model along specific areas of the transect 

were then analyzed to calculate various roughness parameters in post-processing. Both the 

handheld data collection method and commercial software used in (Leon et al. 2015) are 

similar to the methods used during the data collection and post-processing portions of this 

study. 

By taking advantage of modern photogrammetry software that uses algorithms to 

simultaneously estimate height and camera position, with enough data,  and improvements 

in photography technology, such as camera size and resolution, previously used techniques 

that required large setups and detailed calibration processes to obtain mm scale resolution 

can be simplified to the use of a handheld camera and a reference object. Below is a list of 

the equipment that was selected for this experiment. Ultimately, the camera and housing 

were used for aerial photo collection during low tide with a square wooden block used as 

a reference object.  
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1. Equipment Specifications 

The following section provides the specifics on the equipment that was tested and 

used for data collection and post-processing during this study.  

• Cameras 

 Olympus TG-6 waterproof cameras used for the experimental set 

up were selected for their size, resolution, and specifications. The camera, 

without the housing, measures 113 mm wide, 66 mm height and 32.4 mm 

deep, weighing in at about 253 grams. The TG-6 has both USB and HDMI 

connectors and is GPS enabled. This camera has a resolution of 12 

megapixels and produces RAW images 4000x3000. The focal length of 

the camera can be adjusted from 4.5 mm to 18 mm and shutter speed 

ranging from ½ to 1/2000 second (Olympus).  

• Housing 

 The underwater housing for the TG-6 is constructed out of 

polycarbonate and is waterproof to depths of 147 feet. Various ports allow 

connections to made from the camera to the strobe lights via fiber optical 

cable. The housing also has tripod/mounting sockets for mounting onto 

equipment set up frame (Olympus). 

• Strobe Lights 

 The YS-D2J underwater strobe was selected for its portability and 

strength. It is waterproof to depths of 100 m, has a beam angle of 80°x80° 

without the use of a diffuser, and a guide number of 32. This strobe also 

has a recycle time of 1.5 seconds which allows for sequential photographs 

of the same features in very small timeframes at different angles. Fiber 

optic connects allow the strobe to be connected and synced with the TG-6 

cameras (Sea & Sea). 
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• Connection Cables  

 Optical cable was selected to sync the strobe lights with the 

cameras for underwater use. These optical cables can stretch to vary with 

the setup width and allow for the underwater cameras to be used in darker 

underwater environments if necessary (AOI).  

• Equipment Frame 

 A frame for the cameras and strobe lights was constructed out of 

PVC pipe and handlebar camera mounts. This allowed for the cameras to 

be mounted and connected to strobe lights as required for operation above 

and below the surface of the water. The frame was light weight, portable 

and adjustable to house both cameras and strobes, only cameras, or 

singular camera set ups.  

• Reference Block  

 A reference object was used to build a local coordinate system 

within the photogrammetry software. For this experiment, a square 

wooden block from a children’s block set was selected. This object’s sides 

were easily identifiable within the photographs and could be measured 

using digital calipers to within a 100th of a millimeter. The block 

dimensions were 44.5 mm on each side.  

C. DATA COLLECTION 

This section describes all aspects of data collection for this study including 

collection locations, collection times, and collection methods.  

1. Data Collection Locations 

Data for this experiment were collected along the coast of Pacific Grove, California 

in areas where there were accessible rocky outcroppings and significant biological presence 

at low tide, as discussed in Chapter I. Data collection consisted of taking multiple sets of 
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photographs of the exposed rocky coastline at low tide. Each set encompassed 

morphologies that comprise the rocky coastlines. The surface types that were collected in 

this experiment were: algae, anemone, barnacle, grass, moderate/mixed rock, mussels, 

kelp, urchin, smooth rock, and gravel. The surfaces like kelp, algae, and grass were 

included because they are generally attached to the rock dominant surfaces and readily 

found along the rocky coastline. However, once submerged, these materials scatter and 

attenuate sound more as 3-D heterogeneities within the volume than as seafloor roughness 

scatterers, especially at frequencies greater than 1 kHz (Ballard et al. 2020). These surfaces 

are nonetheless important to understand and characterize because not only are they a 

significant biological feature in this environment, but in both the aerial and submerged 

environments, they can have an impact on surface roughness and as well acoustic scattering 

strength at some level.  

The two locations chosen for data collection were Asilomar Beach and Point Lobos. 

Figure 6. shows the two locations in reference to the Monterey Peninsula with insets of 

images showing what those two locations looked like at low tide. Both of these chosen 

locations were on the ocean side of the peninsula, as opposed to the bayside meaning they 

were more exposed to wave and tidal influence. These locations were chosen based on the 

accessibility on foot to the rock formations that were exposed at low tide as well as the 

wide range of surface types (biological and geological) present in those areas, which 

allowed for maximum data collection of various during low tide events. 

 



26 

 
Google earth representation of the two data collection locations, Asilomar Beach to the 
north and Point Lobos to the south. The insets depict some of the features present at each 
location at low tide. Adapted from Google (n.d.) 

Figure 6. Data Collection Locations. 

While the majority of the data collection was done in the air to minimize the noise 

in the images collected—which will be discussed in the next sub-section—Data Collection 

Time, a small dataset for underwater rocks was collected in the deep tide pools for 

underwater/above water dataset comparisons. More discussion on the determination to 

primarily collect photographs in the air, versus underwater, can be found in the Chapter I 

and the next section of this chapter. 

2. Data Collection Time 

Datasets were collected between October 2019 and February 2020, primarily 

during the window of lowest tide on the days that the region was experiencing King Tide 

events (Sea Grant California) (NOAA Tides and Currents, 2019). By conducting data 

collection during these periods of time, it was possible to take photographs in the air of 

surfaces that were submerged for the majority of the lunar month outside of the extreme 

tidal events. The decision was made to collect the photograph at low tide, as opposed to 
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underwater, for two primary reasons, increased photo clarity and more controlled data 

collection for various surface types. 

The first reason for conducting the majority of data collection in air during low tide 

events, versus taking the photographs of the surfaces while submerged, was that it allowed 

for higher clarity and less noise within the photographs. Generally, the dynamic nature of 

the intertidal zone, which is even more pronounced for locations not protected from wave 

energy by the Bay—as was the case for these two locations on the ocean side of the 

peninsula, makes for a constantly moving underwater environment with sand, debris, and 

grasses constantly shifting as the waves and tidal currents moved on and offshore. This 

movement in front of the camera lens creates a lot of noise in the photographs from one 

frame to another. Since these locations were also chosen for their significant biological 

presence at low tide, it was noted that the intertidal zone in this region was teeming with 

biological optical scatterers, such as plankton and algae. These optical scatterers created 

interference and variation between photographs, making it difficult for the 

photogrammetry data processing software to correlate pixels across multiple frames. The 

inability of the software to correlate enough common pixels between images leads to higher 

pixel disparity error and lower resolution of photo alignment during post-processing.  

The effect of taking underwater photos in the dynamic intertidal zone can be seen 

in Figure 7, which shows two sets of photographs. In the Figure, photographs (b) and (d) 

were taken 3 seconds after photographs (a) and (c), respectively, at the same location in the 

intertidal zone off of Asilomar Beach. While the seafloor features are recognizable in both 

images, there is a significant amount interference and movement within the water column, 

impacting the clarity and stationarity of the photos. 
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Two pairs of photos (a. and b.) and (c. and d.) were taken within 3 seconds of one another. 
Photos a. and c. were taken first in each set. The photographs show how the movement 
within the intertidal zone can create significant movement and interference between 
photographs, which impacts post-processing resolution. 

Figure 7. Underwater Photographs Depicting Water Clarity 

The other factor in conducting data collection during extreme low tide events was 

that the range of surface types common to this area could be easily identified and data 

collection efforts could be focused on each specific surface type. If data collection was 

conducted underwater, the divers would have had significantly less visibility of the 

surfaces, making the different types harder to distinguish, and isolated data sets more 

difficult to collect. This would have also made post-processing of the images much more 

challenging. To aid in post-processing accuracy, each surface data set was annotated by a 

photograph taken of a whiteboard identifying the surface and location at the start of each 

individual set (which encompassed one specific surface type as much as possible) to ensure 
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that the individual surfaces could be isolated during post-processing and therefore analyzed 

individually when calculating roughness parameters.  

3. Data Collection Techniques  

Individual data sets for the ten different surfaces identified above were collected 

over multiple tidal events. This meant that photographs of different surface types were 

acquired at both different times and different locations. Thus, ensuring a variety of data 

would be analyzed for each surface type. Data were split into sub-parts corresponding to 

surface type or morphology as a means in which to characterize the roughness 

characteristics of different surfaces that could be found along the rocky seafloor. This was 

done because it aligned with the way previous studies collected and analyzed data by 

different sediment types and because it allowed for the roughness measurement to be more 

stationary. Data were also collected and analyzed in this manner because if successful, it 

could create a means by which acousticians could estimate the roughness characteristics of 

a different area if the primary surface type for that location was known and spectral 

parameter data sets existed for that type of surface.  

For each data set, to ensure maximum coverage and resolution for photogrammetry 

post-processing, between 50 and 200 photographs were taken of each surface from 

different angles and different viewpoints. This technique guaranteed that all parts of the 

target surface were captured in multiple frames with significant overlap between each 

frame, which is important to properly estimate the intrinsic and extrinsic camera parameters 

along with the 3-D surface within the Metashape software. Generally, this meant that 

photographs were taken along one radial from 0° to 90° before moving to the next radial, 

making a full circle with 180° coverage to the best degree possible. Figure 8. shows the 

camera positions in the processing software shown to demonstrate the amount of coverage 

acquired using this type of technique. 
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Each blue square in the figure above represents a camera location for the photographs taken 
over this surface. 

Figure 8. Camera Location Depiction from Metashape 

Additionally, a square block with known dimensions of 44.5 mm was placed near 

or on each surface being photographed as a reference object as shown in Figure 9. The 

block remained in the same position while all photographs of the surface were collected. 

The photographs were taken so that the block was visible in the majority of the frames at 

different angles. The placement of a reference object into the collection area ensured that 

a local coordinate system could be created during post-processing, and the points in the 

digital terrain map assigned correct dimensions. The Metashape software used the block to 

create a reference scale to base its reconstruction of the surface. By creating a small three-

dimensional reference coordinate system, each point identified in the reconstruction was 

assigned scaled coordinates based on its location from the reference points. 

 
 



31 

 
The block, as shown in the picture, was used as a reference object during the data collection 
process. Using a reference object allowed for a local coordinate system to be created during 
post-processing of the images in the commercial photogrammetry software. 

Figure 9. Reference Object Example 

Data sets were collected with two different camera setups during the course of the 

study. First, during earlier data collection trials, two cameras were mounted on a camera 

frame built out of PVC pipe and standard camera handlebar mounts at a set distance apart 

as shown in on the left in Figure 10. The cameras were set to autofocus, which has the 

potential to increase the error of the height calculations within the 3-D reconstruction, 

especially if images are collected from significant distances from the surface (as would be 

the case for drones or other imagery collection systems). This potential error was 

minimized by taking many photographs over different angles ,but at similar and relatively 

small distances from the surface as well as by ensuring that the photographs from the same 

camera were imported and processed together in the photogrammetry software. For all data 

collection, the photographs were taken with a fixed International Organization for 
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Standardization (ISO), which is the setting for light sensitivity in digital image sensors, of 

200. The cameras were both set to take ten simultaneous photos at a predetermined interval 

(1-2 seconds). This allowed the data collector to press the execute button on the cameras 

and get multiple photographs of the surface by simply moving the PVC frame slightly 

between each picture. 

The camera frame was built out of PVC pipe, making the frame small and portable. 

The rectangular frame allowed for various camera distances to be used as well as a structure 

to stabilize the cameras or strobes as needed. The vertical handle allowed for easy carrying 

and camera positioning in either air or under water. All of the mounting hardware for the 

set-up was removable and adjustable to ensure maximum flexibility of camera distance and 

setup composition (1 or 2 cameras, with or without strobes). Handlebar mounts were used 

to attach the cameras (and housing if used) to the PVC frame. The same handlebar mounts 

were used for the strobe attachments but the addition of underwater ball joints, common in 

underwater photography tray setups, were necessary to connect the strobe lights to the 

frame. Fiber optic cables allowed the cameras and the strobe lights to be connected and 

synced, allowing the system to be used in a shallow underwater environment if the 

conditions were determined to be conducive for data collection.  

However, even given how portable and flexible the initial setup was, a second setup 

was deemed necessary as the environment along the rocky shore was not easily traversed 

or easily accessible with even a lightweight, portable camera setup. For the second setup, 

a single camera was detached from the frame and that camera, along with the reference 

object, was used by the data collector. Photographs were then taken manually as shown on 

the right in Figure 10. The settings of autofocus and ISO of 200 remained the same but the 

data collector had to actively take each frame using the same collection methods and 

considerations as described for the dual camera setup. While this secondary process was 

slower, it allowed for more surface coverage and collection precision during the imagery 

collection process in the rugged, slippery environment found along the rocky shoreline at 

low tide. While both methods worked, this second setup with one camera and a reference 

object was the primary means of collection for the data sets analyzed within this paper. 
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Picture (a) shows the dual mounted camera setup on the portable PVC frame. Picture (b) 
shows the author using a single hand-held camera and reference block to collect 
photographs in a hard to reach area of Point Lobos.  

Figure 10. Camera Setups 

It should be noted that this secondary setup was only feasible because of the 

commercial photogrammetry software that was being used to process the data. If traditional 

stereo photogrammetry techniques, as described earlier, for processing were used, only the 

first setup would have been valid and processing techniques would have had to include 

camera calibration. This is the case because unlike previous experiments using traditional 

stereo photogrammetry processing techniques, a checkerboard pattern was not required to 

calibrate the photographs for the primary data collection when the commercial 

photogrammetry software was used. This step was not necessary when processing the 

image sets from individual cameras because the software is designed to perform the 

calibration during processing, provided there are enough common points between 

photographs and a well-placed reference object (Agisoft Metashape User Manual, 2020). 

D. DATA PROCESSING  

The data processing portion of this experiment relied heavily on the use of 

Metashape Photogrammetry Software (Agisoft LLC, 2020) to produce the Digital 

Elevation Maps (DEMs) from which the height fields for the individual surfaces were 

derived. Metashape utilizes ‘Structure from Motion’ (SFM) and scale invariant feature 

transform (SIFT) algorithms to that identify features between overlapping images and 
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extract the camera parameters from the images to resolve the 3-D coordinate system and 

reconstruct the surface (Karmacharya et al. 2019). When the images are brought into the 

program and aligned, the software identifies tie points between overlapping images. These 

tie points are common objects in real space that can be identified in two or more images. 

The number of tie points identified is based on the resolution settings within the programs 

and the resolution and number of images being used (Agisoft LLC 2020). However, in an 

almost reverse process from traditional means, the software can use the relative information 

from the tie points to calculate the internal and external parameters of the cameras within 

the calibration groups, which are then used to undistort the images. From there, the 

software can process the tie points and all the pixels in the corrected images using the 

calculated parameters of focal length, camera baselines, and pixel disparities to create what 

is known as the dense cloud, or the 3-D map of the images (Agisoft LLC 2020). Figure 4 

showed a very simple example of these calculations for traditional techniques. However, 

the software is able to do this at significantly higher resolution, comparing millions of 

pixels throughout the photo set in order to produce extremely high resolution 3-D 

depictions and coordinate grids of the surfaces photographed. The steps of this process will 

now be explained in more detail below. 

1. Photograph Import and Data Management 

Once photographs were taken at each location, they were downloaded and 

converted from RAW to TIF files using the Olympus Workspace photo processing 

software recommended through the camera manual and put into folders by camera (if two 

were used), location and date. Within each folder, subfolders for each set of photos for the 

individual surface sets were created. Collecting, organizing, and processing the datasets as 

individual surfaces and surface types was important to the process since it allowed for 

decreased error in the alignment process (Agisoft LLC, 2020) and allowed each surface 

type to be processed individually, allowing for roughness parameters to be estimated 

specifically for each type of surface that was identified within this study. 
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2. Metashape Processing  

The first step in data processing involved the use of the Metashape Professional 

software (Agisoft LLC). The standard workflow utilized was as follows: 

1. Create a new Chunk (a set of photos within a project) and Import photos 

from one surface 

2. Align Photos 

3. Delete photos (cameras as referred to by the software) that failed to align 

4. Delete extraneous/mislocated points (ones significantly outside the 

model/region box) 

5. Assign markers to each corner of the reference object (block) and assign 

coordinates based   on measurements of the side lengths. 

6. Verify the marker locations in all photographs (cameras) and covert the 

coordinate system 

7. Build Dense Cloud 

8. Build Mesh 

9. Create Digital Elevation Map and Export 

10. Create Orthomosaic and Export 

The workflow outlined above was the standard procedure for all data collected. 

Depending on the number of photographs taken of each surface, the entire workflow could 

take as much one to two days since various points of the workflow required significant 

processing time due to the resolutions selected. More detail on each step of the workflow 

is outlined in the following paragraphs (Agisoft LLC, 2020). 

For each surface, a new Chunk, or set of photos within a project, was created and 

photos were imported into the Metashape software. The project was then saved by location, 
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date, and surface type so processing or data could be accessed at a later time if necessary 

(Agisoft LLC, 2020).  

Once photos were imported and saved, they were aligned using the highest accuracy 

settings. Metashape Professional software is designed to align the photos using aerial 

triangulation and bundle block adjustment (Agisoft LLC, 2020). By identifying common 

features in multiple photographs, the software could create ties, or common pixels, across 

images, creating a sparse point cloud, as shown in Figure 11. The sparse point cloud is a 

3-D representation of the tie-points that are found between the images, therefore 

maximizing the number of photographs, while ensuring significant overlap between photos 

during data collection, of a given surface will allow the software to find and calculate more 

tie points (matching pixels) between images. This will result in a higher resolution initial 

point cloud (Agisoft LLC, 2020).  

 
Sparse cloud of tie points created during the initial alignment phase of processing in 
Metashape Professional. Derived from (Agisoft LLC 2020) 

Figure 11. Sparse Cloud Example Created by Metashape  
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When the photos are imported, Metashape automatically divides the photos into 

calibration groups based on resolution and image data. During this alignment process, the 

software estimates the internal and external camera orientation parameters for each 

calibration group (groups can consist of one or more images). External parameters include 

the camera position and orientation (rotation) while internal parameters include the focal 

length and radial distortion (Agisoft LLC 2020). The accuracy of the alignment is 

dependent upon the amount overlap of the images (cameras—as denoted by Metashape), 

creating as many high confidence tie points as possible, as well as the amount of the surface 

that is visible within the images, since some angle of the camera may create blind spots 

where parts of the surface are not visible and therefore cannot be correlated. Accuracy of 

the alignment can be improved through the editing process of the sparse cloud which is 

why the next step in the workflow allowed for the deletion of any erroneous or mis-located 

tie points after camera alignment. Further optimization occurred when the reference object 

coordinates were set within the workflow (Agisoft LLC, 2020).  

Once the photos were imported, aligned and edited, reference markers were placed 

on each corner of the reference block as seen in Figure 12. For this experiment, the manual 

approach to placing markers was used in order to reduce error. Since it was done manually, 

this step could also be conducted prior to alignment of the photographs if desired. The 

manual placement process started with the first photo that the reference block was visible. 

In that first photograph a marker was added to one of the bottom corners of the block and 

that marker was given the local coordinate of (x=0, y=0, z=0) within the reference tab of 

the software. From there, markers were added to the other visible corners of the reference 

block and the appropriate local coordinate were given based on the measured length of 

each side. It was imperative to ensure that all three directions (x, y, and z) were referenced 

for each project in order to create a local coordinate system at the sub-millimeter scale. 

Once markers were created and assigned coordinates in the first photograph, the 

same markers were manually placed in the second photograph of the set. Metashape could 

then automatically place the markers in the subsequent photographs in the Chunk, but for 

accuracy purposes during this experiment, each remaining photograph was examined and 

markers were verified or moved as necessary to match the marker location in the first and 
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second photographs. While this was a more time-consuming process, by verifying the 

marker positions on the block in each photograph, the coordinate system error can be 

significantly reduced which will lead to a more accurate digital elevation map and exported 

xyz files later in the workflow. Once all the marker locations were verified in each photo, 

the coordinate system was converted using only these marker coordinates. This conversion 

established the local coordinate system that the 3-D model would be built upon in the 

following steps (Agisoft LLC, 2020).  

Following the alignment and creation of a local coordinate system, the dense cloud 

was built. For this experiment the ‘ultra high-quality’ setting was used to create the dense 

cloud for each surface, meaning that the original image size was used while making the 

dense cloud with no image downsizing. Additionally, depth filtering settings were kept at 

the ‘mild’ level to ensure that the smallest resolved features would not be removed as noise. 

This portion of the process took anywhere from a few to 48 hours because of the quality 

and filtering parameters selected. The number of cameras and tie points selected within 

each project determined the length of processing time. To create the dense cloud, the 

Metashape software processed the image data into spatial information using the camera 

positions (each photograph) to generate depth information, in a similar manner to the 

techniques described in Section 2.B. and depicted in Figure 4. Using these height 

calculations, the software creates a 3-D model of the images as shown in Figure 12. 

(Agisoft LLC, 2020).  
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Depiction of a dense cloud created by Metashape. Derived from (Agisoft LLC, 2020) 

Figure 12. Dense Cloud Example Created by Metashape 

From the dense cloud, Metashape can construct a polygon mesh model. To 

construct the mesh, the dense cloud was selected as the source data and the height field was 

selected as the surface type. As with the dense cloud, the ‘ultra high-quality’ was selected 

which meant that this step could also take a significant amount of processing time. The 

face count specification was set to high so that the software would create the highest 

possible resolution mesh based on the total number of points in the dense cloud. 

Additionally, the interpolation feature was disabled so that the mesh was only constructed 

in areas of the model that had dense cloud parameters. These settings ensure the highest 

level of resolution was maintained during the mesh processing (Agisoft LLC, 2020).  

With the dense cloud and the mesh created, data was exported from Metashape in 

order to estimate the power spectral density in MATLAB. For all the surfaces processed in 

Metashape, a digital elevation map (DEM), orthomosaic image, and text file containing the 

individual xyz points (point cloud) were created. An example of a DEM and orthomosaic 
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image for each surface can be found in the table in Appendix A. The DEM and the 

orthomosaic image created for each surface type were valuable for visual comparison, 

providing an understanding of what each surface feature looked like in a 3-D space, while 

the point cloud text file provided the height data that would be used to estimate the height 

power spectral density (Agisoft LLC, 2020).  

3. Roughness Power Spectral Density Calculations  

Once the point cloud file for each surface was exported from the Metashape 

software, it could then be further processed in MATLAB, to estimate the roughness power 

spectrum. In order to characterize roughness parameters of these surfaces, multiple 

techniques to calculate the power spectral density were utilized.  

Due to processing limitations of the computer systems and MATLAB, as well as 

the large size of the xyz files exported by Metashape, each surface was broken out into 0.1 

m by 0.1 m sections to be processed at a spatial resolution of 0.01 mm. By using these 

dimensions, features on spatial scales of 0.05 m and smaller could theoretically be resolved. 

These spatial scales correspond to the size of the wavelengths of signals that fall within the 

high-frequency range defined in Chapter I. These dimensions were chosen in order 

understand how scattering strength predictions will be impacted by surface roughness at 

very small spatial scales when utilizing high frequency acoustic signals (Jackson and 

Richardson 2007). 

To make the appropriate spectral density calculations, a rectangular grid in the x-y 

plane was first created from the xyz data file. The mesh was constructed at the set spatial 

resolution of 0.01 mm for all surfaces so that each (x,y) point was associated with a specific 

z value (or elevation). From there, 1-D spectra were calculated. To do this, a cross-section 

(or slice) of the height data was taken in both the x and y direction based on the local 

coordinate system created within Metashape. 

The 1-D roughness spectrum, is defined as the Fourier transform of the 

height covariance, , as depicted in the equation,  
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   (1) 

where  is the covariance in terms of the spectrum 

(Jackson and Richardson 2007, p. 375). 

If necessary, the 1-D spectrum can be converted, using the assumption of isotropy 

from the 2-D spectrum using the equation (Jackson and Richardson 2007, p. 375), 

  (2)  

Likewise, the 2-D roughness spectrum, , is defined as the Fourier transform 

of the height covariance, , where   and  , as depicted in the 

equation  (Jackson and Richardson 2007, p. 174),  

   (3) 

The Fourier transform is normalized by the root mean square of the window so that 

the spectral levels do not need to be corrected for the windows used. The root mean square 

(RMS) height is shown in the following equations (Jackson and Richardson 2007, p. 174),   

   (4) 

The Fourier transforms were then averaged using,  

     

   (5) 
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where  is the Fourier transform, the  brackets represents ensemble averaging, 

and  are the linear dimensions in the x and y direction of the measurement area 

(Olson, D.R, 2014). 

For spectral comparison purposes, two methods for spectrum calculations were 

used for the 1-D analysis, the Welch method and the multitaper method. For the Welch 

method, a single Hann window and a sampling interval of 10,000 m-1 (or 1/ 0.01 mm) 

were used. The Welch method produced a one-sided, normalized power spectral density 

estimate (Welch P., 1967). 

As a comparison, multitapers reduce spectral leakage, since they have the least 

spectral leakage for a given sequence length, N. They also provide a way to average the 

data by using the entire sequence through orthogonal windows instead of breaking the 

sequence up into sections, as is done in the Welch method. The multitaper calculation 

utilizes discrete prolate-spheroidal sequences (DPSS) as window functions, which is what 

reduces the spectral leakage (Thomson, 1982). The multitaper spectrum calculations for 

this study were done with the same sampling frequency as the Welch estimates and NW=4, 

which is defined as the time-bandwidth product. This value determines the number of 

tapers used based on the calculation of (2*NW-1) with last taper being dropped. Also, the 

NW parameter determines the effective bin width of the power spectral density. The 

multitaper method also produces a normalized one-sided power spectral density estimate 

(Thomson, 1982), (Mathworks Inc).  

In addition to the 1-D spectrum estimates, 2-D calculations were also completed as 

a means of comparison since both 1-D and 2-D spectrum estimates have been calculated 

during previous studies. Using the same point cloud file for each section, as was used for 

the 1-D estimates, the 2-D Fourier Transform function shown in the equation,   

   (6) 
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was applied to the data (Olson, D.R, 2014). 

Finally, a circular shift function was applied to the data in order to calculate the 

periodogram as in Figure 14. This spectrum calculation was conducted using a rectangular 

window and the same spatial resolution of 0.01 mm that was used for the 1-D spectrum 

calculations (Mathworks Inc). 

Once the spectrum calculations were completed and spectrum variables were saved 

into a master data table, plots of each spectrum could be generated. Each power spectrum 

estimate in the x and y directions were plotted on log-log plots. In addition to the Welch 

and multitaper spectrum estimates, the 1-D components in the x and y directions for the 2-

D spectrum data sets were plotted in the same manner. 

 

4. Spectral Parameter Calculations 

When the power spectrum estimates discussed in the previous section were plotted 

in log-log space, it was evident that there were consistently two distinct slopes (regressions) 

present within the majority of the spectrums. An example of the plotted spectra which can 

be seen in Figure 13. 

  
The graphic (a) shows a 1-D Welch method spectrum calculation over a kelp surface with 
two power-law lines on the spectrum. The graphic (b) shows the 1-D multitaper spectrum 
calculation for the same kelp surface with two power-law lines on the spectrum.  

Figure 13. 1-D Roughness Power Spectrum Plots and Power Law Fit Lines 
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Thus, with the intent of capturing the behavior of the roughness spectra, two 

separate lines were fit to each of the power spectrums. Since the fit was linear in log-log 

space, the spectral parameters of   and to be obtained from the equations of the line 

that was fit to each distinct spatial frequency band. Examples of the plotted lines are plotted 

over the spectrums in Figure 13.  

From the plotted lines for each spatial frequency band, the acoustically relevant 

parameters of  , the spectral strength or the y-intercept in log-log space of the best fit 

line of each frequency band,  and , the spectral slope or the slope of the spectrum for 

each frequency band in log-log space, could be determined (Jackson and Richardson 2007). 

It should be noted that owing to the direction of the slope (decreasing from left to right), 

the spectral slope value identified was always negative. Therefore, the spectral data values 

derived from the modeled lines actually reflects the value. 

These spectral parameters were determined through calculation of the 1-D power 

density spectrum , which was done in the previous processing step, and the fit of 

the power law in the equation, 

   (7) 

These spectra utilized spatial frequency but could be converted to a 1-D spectra 

based on wave number  if necessary, as shown in the equation, 

   (8) 

due to the spatial frequency relation to wave number, which is shown in the equation 

(Jackson and Richardson 2007), 
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   (9) 

From the 1-D parameters, equivalent 2-D parameters (  and ) can be calculated 

for use in acoustics scattering estimates using the following equations (Jackson and 

Richardson 2007, p. 478): 

   (10) 

   (11) 

   (12) 

Active input was required during the processing of each spectrum to select the start 

and end frequencies for each frequency band to ensure the most accurate model 

representation for the individual sections identified within each spectrum. To do this, three 

separate frequencies were chosen and manually input, upon prompting within the code, to 

delineate the two separate sections in which the power law lines would be fit. This plotting 

and line fitting process was completed for all spectra calculated on each 0.1 m by 0.1 m 

section across all the surfaces. Upon completion of each section, the spectrum parameters 

( and ) were saved to the master data table for follow on analysis. The spectral 

parameters for all the spectra analyzed can be found within the tables of Appendix B. 

For the 2-D spectrum calculations, 2-D polar roughness spectrums were also 

generated using a contour plot on the periodogram for all frequencies as seen in Figure 14. 

In addition to the 2-D polar colored contoured plot of the roughness spectrum, each 2-D 

output was averaged radially. This allows for a better graphically representation of the 2-

D data which will be shown in the results section of this paper. 
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2-D roughness spectrum for the same kelp surface as Figure 13. 

Figure 14. 2-D Polar Roughness Power Spectrum 

5. Acoustic Scattering Strength Calculations 

Using the spectral parameters and seafloor material properties, it is possible to 

predict the bottom scattering strength of a given surface using acoustic scattering models. 

For this study, the perturbation approximation was utilized. Perturbation theory is 

commonly utilized for acoustic scattering calculations for its ability to link wave 

propagation in the seafloor and the roughness spectrum to scattering strength (Jackson and 

Richardson 2007), (Jones and Jackson, 2001). The roughness properties inputs for the 

model were estimated from the data analyzed in this experiment and the geoacoustic inputs 

were taken from Gruber (2019). The selected values for the set variables are shown in  

Table 1. 
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Table 1. Acoustic Scattering Strength Model Variables 

Parameter Value 

Frequency 200 kHz 

Sound Speed of Water 1490 m/s 

Compressional Sounds Speed 6255 m/s 

Shear Speed 3464 m/s 

Water Density 1024 kg/m3 

Bottom Density 2644 kg/m3 

Bottom Attenuation Parameter in Rock 0.02 

Shear Wave Attenuation Parameter in Rock 0.04 

 

The frequency of 200 kHz was chosen because it was the frequency used in Gruber 

(2019) to collect scattering data on the rocky outcroppings in the Monterey Bay near where 

this data was collected. Using this frequency would allow for comparison between 

collected scattering strength values and scattering strength values derived from roughness 

measurements in this paper. For these calculations, an elastic geoacoustic model was 

selected (Gragg et al. 2001), (Jackson and Richardson 2007), since granite supports shear 

waves. A detailed description of the perturbation approximation techniques for an elastic 

model can be found in Chapter 13. of (Jackson and Richardson 2007). 

To run the scattering model estimates, the 1-D parameters, (spectral intercept) 

and discussed in the previous Section first had be converted to their 2-D equivalent 

values ( and ) using Eq. 10 and 11 that were described above. Scattering strength 

calculations using all the derived spectral parameters were then made for three different 

incident/grazing angles (which were set to the same value). Since acoustic systems utilize 

a range of angles, 10°, 45°, and 60° were chosen for these model runs in order to cover the 

range of grazing angles measured in Gruber (2019).  
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III. RESULTS AND DISCUSSION 

Image processing using the commercial photogrammetry software resulted in 

detailed DEM and orthomosaic images for each surface that was analyzed. Examples of a 

DEM and corresponding orthomosaic can be found in Figure 15. A DEM and orthomosaic 

example for each surface can also be found in Appendix A. Height fields were produced 

and exported as text files that could be analyzed through spectral analysis. 

 
Picture (a) shows a DEM of a surface cover in anemones. Picture (b) shows the 
corresponding orthomosaic image of the same anemone surface. Both images were created 
in Agisoft Metashape. 

Figure 15. DEM and Orthomosaic Image Examples 

Spectral parameters were estimated from a subset of the extracted height field data 

through the implementation of a power-law model to the roughness power density spectra. 

The methods used for these calculations were discussed in Chapter II and the results of all 

the estimates can be found in the tables of Appendix B. The 1-D and parameters for 

each spectrum can be found in the first three tables while the fractal dimension calculations 

can be found in the fourth table of Appendix B. 

During the data processing portion of this analysis, three different types of spectra, 

multitaper method, Welch method, and 2-D Fourier transform, were used to estimate the 

roughness power density spectra. The multitaper method generally best estimated the 
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roughness spectra while reducing noise at the higher spatial frequencies as compared to the 

other methods. Therefore, only the multitaper method spectral parameter results will be 

shown in this chapter for the 1-D parameters and scattering strength calculations. The rest 

of the spectral parameter plots can be found in Appendix C for comparison purposes.  

It should be noted that the results for roughness parameters and scattering strength 

of the surfaces covered in grass, kelp, and algae are most likely not appropriate once the 

surfaces are submerged in the water column since they become mobile, acting more as 

volume scatters as discussed in Chapter II. However, these surfaces were not removed from 

the plots within this chapter since they are widely present along the rocky shoreline both 

above and below the water line, and they provide a good comparison for potential surface 

scale and shape variability when considering the range of surfaces and associated spectral 

parameter values that are present within a rocky seafloor environment. 

This chapter will summarize the spectral parameter results and examine trends in 

the data. It will also provide any relevant discussion and dataset comparisons for the 

collection methods/techniques, the range of the frequency bands identified in the spectra, 

the estimated and parameters and associated calculations across both of the frequency 

bands, the 2-D radially averaged spectra, and finally the acoustics scattering strength 

estimates based on the spectral parameters.  

A. DATA COLLECTION METHODS AND EQUIPMENT 

Both the camera setups and the data collection techniques used for this experiment 

were effective in collecting photographs for this type of study. However, maximum 

flexibility was found using a single camera to take many images of one surface since it 

allowed for the most accessibility to the surfaces along the shoreline. It was also supported 

in post processing by the photogrammetry software utilized given that the software was 

designed to process each individual image as a separate ‘camera’, the term that Metashape 

assigned to each image. This method was effective because Metashape uses tie points 

estimated with structure from motion and scale invariant feature transform (SIFT) 

algorithm to simultaneously estimate the extrinsic and intrinsic parameters of the cameras, 

which is only possible if there is a significant dataset and overlap between images like the 
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datasets collected for this study. These data collection techniques and capabilities within 

the software allowed for significant photo collection flexibility on stationary surfaces. 

It is important to note that this type of data collection was only feasible because the 

images were collected in air, on stationary surfaces, where many images could be collected 

of a surface over a short period of time with no appreciable change to the surface in between 

frames. Data collection in a more dynamic environment would have required a more 

traditional approach to with dual, time-synced cameras to capture simultaneous images that 

could be processed together as pairs before the surface underwent any changes.  

3-D surfaces with spatial resolutions, on the order of millimeter to submillimeter 

scales, were produced using the equipment and the commercial stereophotogrammetry 

software outlined in Chapter II. Resolution at this scale was attained from the combination 

of using the high-resolution digital cameras, the collection of a larger number of 

photographs over each surface, and by applying the highest resolution thresholds available 

within the software during post processing. The final resolution is impacted by combination 

of all of these factors, meaning a reduction in resolution those inputs will have a negative 

impact on the final resolution results.  

The ability to use a single camera to conduct this type of data collection while 

maintaining a high spatial resolution output means that imagery collection for the purpose 

of estimating roughness parameters may be expanded to other techniques. These 

techniques could include imagery collected from drones or even satellites, as long as an 

object with known dimensions is present within the images collected and careful 

consideration of camera settings and calibration or processing settings is taken into account 

due with the higher elevation imagery collection. This type of data collection is something 

that is already being used within other fields of study in the coastal environment, and with 

the implementation of some automation, this type of method could allow the acoustics 

community to collect and analyze roughness estimates relatively quickly, over large areas 

of the coastline which would ultimately improve the roughness parameter data sets used 

for acoustic scattering strength estimates on the rocky seafloor.  
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B. SPATIAL FREQUENCY BANDS 

As discussed in Chapter II, three distinct spatial frequencies were chosen on the 

spectra to distinguish the two discrete slopes that were created by a consistently identified 

break in the slope of the regression portion of each power spectrum. Data from Briggs et 

al. (2002) which was plotted and analyzed in Jackson and Richardson (2007) also showed 

a break in the slope of the roughness power spectra for at least one collection site. It was 

unclear in the analysis of the data whether this break was natural, or a product of the data 

processing techniques applied to the data (Jackson and Richardson 2007, p. 182). Since all 

the data in this study was processed using consistent methods from start to finish, it is 

possible that the distinction in slopes is a product of processing as well. As with most 

processing techniques, artefacts such as spectral leakage and aliasing may play a role in 

producing a break in the slope, as could the image processing techniques. These impacts 

should have been minimized given the windows selected and the high resolution of the data 

and processing settings. Additionally, the break in slope was evident in all three spectral 

estimate methods that were utilized and the wavenumber on which the break fell varied by 

surface type. Therefore, the break in slope could be naturally occurring, delineating the 

primary and secondary spatial scales that make up the composition of the surface features 

at the range of spatial scales being analyzed (mm to submillimeter in this case).  

Within this study, the first spatial frequency identified marked the start of the 

regression, the second spatial frequency marked the delineation or break between the two 

different slopes, and the third frequency marked the end of the regression on the spectrum. 

Figure 15 shows the box plots illustrating the range of spatial frequencies chosen for each 

delineation, specifically for the multitaper spectra, broken out by surface type. On that 

figure, the spatial frequency delineations identified within the x-cross sections are shown 

in plots (a), (b), and (c), while the y-cross section delineations are displayed in plots (d), 

(e), and (f).  

For the purposes of this paper, the spatial frequency bands are referred to as either 

section 1 and section 2 or the 1st Frequency band and the 2nd Frequency band. Section 1 is 

the spatial frequency band between the first spatial frequency delineation on the plots (a) 

and (d) and the spatial frequency delineation illustrated on the plots (b) and (e) in Figure 
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15. Section 2 is therefore the spatial frequency band between the spatial frequency values 

shown on plots (b) and (e)and the spatial frequencies plotted on the plots (c) and (f), which 

also correspond directly with the limit of the spatial resolution set within the calculation 

parameters in Figure 16. 

Across all surfaces and spectrum types, the average value for the break in slope 

across all spectrums was 2302.6 m-1,  with the average spatial frequency range for section 

1 identified as 112.2 to 2302.6 m-1, and the average spatial frequency range for section 2 

calculated to be 2302.6 to 49990 m-1. These spatial frequencies correspond to spatial 

resolution ranges of 8.9 to 0.4 mm for section 1 and 0.4 to 0.02 mm for section 2. Therefore, 

the overall range of spatial scales considered for roughness parameters estimated in this 

paper falls between 0.02 mm and 8.9 mm. 

The box plots of the spatial frequency delineation ranges in Figure 15 show that 

while there is some variation around the mean spatial frequencies limits for each section 

listed above, they are relatively consistent for the first (plots (a) and (d)) and last 

frequencies (plots (c) and (f)) of each surface. The largest variations around the mean are 

seen for the middle frequency (the break in slope), delineating where section 1 ends and 

section 2 begins (plots (b) and (e)). This variation in the center frequency delineator could 

be due to multiple factors including the spectrum type or the surface type being analyzed. 

The existence of a break in the slope and the wavenumber at where that break falls 

on the spectra both could be an artefact of the surface composition. For example, the 

granodiorite found in this area of Monterey Bay is composed of both large crystals and a 

finer crystalline structure (Green, 1977). This type of scale and spatial variation in the 

composition of the surfaces could account for two distinct slopes, if the roughness 

parameters at each scale vary significantly. Since all the surfaces analyzed in this paper are 

composed of features of varying scale (within the spatial frequency bands analyzed), it is 

possible that the change in slope and the wavenumber on which that change occurs is a 

factor of the composition of the surfaces in this environment. 
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This figure shows box plots of the multitaper spectrum frequency delineators by surface 
type. The surface types are indicated on the y-axis. The top two plots (a) and (d) show the 
starting spatial frequencies of the power spectra regressions. The center plots (b) and (e) 
show the values of the break in slope identified in the spectra. The bottom two plots (c) 
and (f) show the spatial frequency marking the end of the spectra regressions. The median 
spatial frequency for each surface is depicted by the red line in each box. The blue box 
represents 50% of the data, or the limits of the 25th percentile and the 75th percentile. The 
dashed black lines represent the upper and lower adjacent values and the red plus signs 
represent outliers within the data for each surface. Plots (a), (b), and (c) show the frequency 
delineators for the x-cross sections and plots (d), (e), and (f) show the frequency delineators 
for the y-cross sections.  

Figure 16. Frequency Ranges Delineations for the Multitaper Spectrum 
Estimates - by Surface Type 

C. 1-D POWER-LAW PARAMETERS 

The 1-D and  parameters were derived from the power-law fit lines (in log-

log space) for both sections of the slope on the power spectra. Box plots for the  (spectral 

intercept) parameters derived from the multitaper spectra can be found in Figure 16, while 
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box plots for the  (spectral slope) parameters from the multitaper spectra can be found 

in Figure 17, both of which are delineated by surface type. Since  represents the 

magnitude of the slope, the direction of the slope for all the spectra (decreasing from left 

to right) meant that all the spectral slope values were estimated as , which is also what 

is plotted in the figures below. 

 

Box plots of (1-D spectral intercept) parameters for the multitaper spectrum based on 
surface type. The median  value for each surface is depicted by the red line in each box. 
The blue box represents 50% of the data, or the limits of the 25th percentile and the 75th 
percentile. The dashed black lines represent the upper and lower adjacent values and the 
red plus signs represent outliers within the data for each surface. 

Figure 17.  Boxplots Based on Multitaper Spectrum Estimates 
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Box plots of (spectral slope) parameters for the 1-D components for the multitaper 
spectrum based on surface type. Values were kept negative based on the direction of the 
slope in the spectrums. The median  value each surface is depicted by the red line in each 
box. The blue box represents 50% of the data, or the limits of the 25th percentile and the 
75th percentile. The dashed black lines represent the upper and lower adjacent values and 
the red plus signs represent outliers within the data for each surface. 

Figure 18. Boxplots Based on Multitaper Spectrum Estimates 

Figures 16 and 17 show that both the spectral exponent values and the spectral slope 

values vary significantly between surface types, interclass, and for the same surface types 

but across the two frequency bands, intraclass.  

For the parameters, the values calculated for the 1st spatial frequency band in 

both the x and y directions (Figure 16, plots (a) and (c)) fluctuate roughly around 10-5 while 

the values for the 2nd spatial frequency band fluctuate just above 100 for all the surfaces 

identified (Figure 16, plots (b) and (d)). However, within the 2nd spatial frequency band 

there are more outlier values across the surface types than seen within the 1st spatial  

frequency band (Figure 16, plots (a) and (c)). There is also intraclass variability in 



57 

parameter value ranges between the spatial frequency bands. For all the surface types, the 

parameters span a larger range of values within the 2nd spatial frequency band than in the 

1st spatial frequency band. This difference in outlier presence and intraclass value ranges 

between the spatial frequency bands could be due to a higher variability of the surface 

height at the smaller spatial scales or the fact that the end of the second spatial frequency 

band aligns with the limit of the spatial resolution that was attainable during the 

calculations, thus creating error as the spectrum slope reached that limit.  

For the  parameters, there is also a marked intraclass difference between the two 

spatial frequency bands. Within the 1st spatial frequency band (Figure 17, plots (a) and (c)), 

the mean values fluctuate roughly between 1 and 3 for the surfaces, while in the 2nd spatial 

frequency band the mean values fluctuate between 3 and 4 (Figure 17, plots (b) and (d)). 

However, unlike the first spatial frequency band, the interclass values ranges of  

parameters within the second spatial frequency (Figure 17, plots (b) and (d)) are smaller 

for each surface type. There are also more outlier parameter values within the 2nd spatial 

frequency band (Figure 17, plots (b) and (d)) than compared to the first the 1st spatial 

frequency band (Figure 17, plots (a) and (c)). The increase in outlier presence within the 

2nd spatial frequency band again may suggest that the potential for increased error as the 

estimates reach the resolution limit.  

Since the acoustic models use both parameters, the spectral slope and spectral 

exponent, in their respective calculations to classify surface roughness for modeling 

purposes, it is prudent to look at the relationship between the parameters for the various 

surface types. In order to do this, each  and  pair was plotted and color coded based 

on surface type on a scatterplot, as shown in Figure 18. 
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Scatter plots for each , pair based on surface type. Each surface is designated by a 
specific color based on the legend. The 1st spatial frequency band is plotted along the top 
row and the 2nd spatial frequency band is plotted along the bottom row. For both spatial 
frequency bands, the x-cross section variables are on the left and the y-cross section 
variables are on the right. For all four plots, the y-axis is a log-log scale while the x-axis is 
linear. 

Figure 19. vs Scatter Plots by Surface Type for the Multitaper 
Spectrum Estimates 

Once again, these plots show an intraclass distinction between the first (Figure 18, 

plots (a) and (c)) and second spatial frequency bands (Figure 18, plots (b) and (d)), which 

aligns with the values of the individual parameters discussed in the previous paragraphs. 

However, with the points colored by surface type, it is possible to more clearly identify the 

interclass distinctions for the different surface types within both spatial frequency bands. 

For instance, on the scatter plots for the 1st spatial frequency band (Figure 18, plots (a) 

and(c)), the yellow dots, which denote surfaces covered with barnacles, tend to all be within 

the upper left half of the group of points, while the purple and sea green dots, which denote 

surfaces inhabited by urchins and surfaces covered in kelp respectively, tend to all be in 

the lower right half of the grouping of points. This relationship is highlighted by the colored 

areas on the plots (a) and (c) in Figure 19.  
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Within the 2nd spatial frequency band, the points denoting the various surfaces are 

not as clearly grouped. Instead, the surfaces follow a more ‘linear’ (in semi-log space) 

pattern within the second spatial frequency band with the points for each surface type 

spread throughout the entire length of the point cloud but aligned in a way such that a line 

could be fit to the individual surface identifiers. In some cases, it appears that these lines 

created by the various surfaces run parallel to one another. Again, noting the sea green dots 

(kelp) and yellow dots (surfaces covered in barnacles), the relatively parallel relationship 

between surfaces and  pairs can be seen. These more linear relationships are shown 

in the plots to the right in Figure 19. The linear relationship shown here highlights again 

the potential for higher intraclass surface height variability at the smaller spatial 

resolutions.  

It is important to note that while there are both interclass and intraclass variations 

for these parameters, both the clustered relationship within the 1st spatial frequency band 

and the parallel ‘semi-log linear’ relationship identified in the 2nd spatial frequency band 

provide insight into the parameter ranges that could be considered for different surface 

types found along the rocky shoreline. 
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Scatter plots for each multitaper , pair based on surface type. The colored areas 
represent the groupings of the spectral pairs in the 1st spatial frequency band plots while 
the lines over the plots in the 2nd spatial frequency band represent the best fit lines for the 
pairs. For all four plots, the y-axis is a log-log scale while the x-axis is linear. 

Figure 20. vs Parameter Relationships: Multitaper Spectrum 
Estimates 

D. 2-D EQUIVALENT SPECTRAL PARAMETERS  AND   

Even though the two spectral parameters, and ,  have been identified in almost 

all of the previous studies of this type due to their acoustic applications, comparison of 

these values directly becomes difficult due to difference in parameter scales, variations in 

spatial frequency limits within the calculations, and the large amount of irregularity seen 

within the parameters themselves, even when collected within the same study.  

To compare the spectral parameter values collected in this study to other data 

collected in a previous studies, the and values from this study as well as the values 
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from the studies done in sandy seafloor environments found within Jackson and Richardson 

(2007) were converted to their 2-D equivalent spectral parameters  and  and 

converted to meters (as needed) using the Eq. 10 and 11 from Chapter II of this paper. All 

the values were then plotted on scatter plots with values from this study identified by dots 

colored by the individual surfaces types and the values from the sand studies identified by 

the black diamonds. These plots are shown in Figure 21. 

 

Scatter plots of the vs parameters calculated for the multitaper spectrums. The 
colored circles represent the surface types collected in this experiment and the black 
diamonds represent the converted values from Table 6.1 in (Jackson and Richardson 2007) 
which was comprised data collected from the twelve studies discussed in the book and 
represent various sediment types. 

Figure 21. vs Scatterplots Comparing Rocky Seafloor Values to Sand 
Seafloor Values 

It should be noted that the some of the sand studies discussed in Jackson and 

Richardson (2007) encompass data analyzed over larger areas and lower spatial resolutions 



62 

than the data from this experiment so the plotting of this data is not necessarily directly 

comparable but provides a good reference of values across different surface types (Jackson 

and Richardson 2007).  

The plots (a) and (c) in Figure 20 show the relationship of the values collected here 

within the 1st spatial frequency band and the values collected in the previous sandy seafloor 

studies. There is an overlap between the rocky surfaces and the sandy seafloor values 

indicating that there may be some similarities between the roughness, or variations in RMS 

surface height of the rocky seafloor surfaces at the mm range and the variations in the RMS 

surface height of the sandy seafloor at slightly higher spatial resolution ranges since the 

data from Briggs (2002) found within the table was collected at special resolutions between 

0.2 and 250 cm . The plots for the data collected for the second spatial frequency band, 

plots (b) and (d) in Figure 20, do not show the same correlation. In this spatial frequency 

band, there is almost no overlap between the rocky seafloor surface data and the sandy 

seafloor data. Indicating that the there is a significant difference in the roughness 

parameters of the sand at the cm scales and the roughness parameters of the rocky seafloor 

at the submillimeter scales.  

E. 1-D FRACTAL DIMENSIONS 

Continuing the evaluation of the parameters calculated in this experiment, the 

Fractal Dimension (D) parameter, which has been used in other studies as a seafloor 

classification feature of the surface environment, was evaluated from the 1-D parameters 

of the multitaper spectra. While this parameter has no new information since it is a function 

of the spectral slope, it is included as a discussion point to compare the values conducted 

in this study with the values collected in a coral reef environment. Figure 21. shows the 

fractal dimension values based on those 1-D parameters using the Eq. 13 (Russ, n.d.). Plots 

(a) and (c) depict the fractal dimension values for the x and y-cross sections for the 1st 

spatial frequency band plots (b) and (d) depict the fractal dimension values for the x and y-

cross sections for the 2nd spatial frequency band. In general, the higher the fractal 

dimension value, the more jagged the surface is. 



63 

It should be noted that for a 1-D surface (like considered in this paper), any fractal 

dimension value less than 1 and greater than 2 is not considered fractal. Since the standard 

fractal dimension range of 1 to 4, infers that values of D = 1equate to a uniform line (surface 

x or y-cross section), D = 2 equate to a plane, and values of  D = 3 equate to a volume (3-

D surface like a cube) (Vanderbilt, n.d), the values in the that are less than D = 1 may 

indicate that the features at those spatial scales may not significantly contribute to the 

surface variability using this calculation method.  

   (13) 

The box plots show that the 1st spatial frequency band (spatial range of 8.9 to.4 mm) 

has significantly higher fractal dimension values than the 2nd spatial frequency range 

(spatial range of .4 to .02 mm). For the 1st spatial frequency band (Figure 21, plots (a) and 

(c)), the fractal dimension values range from 0.93 to 2.9 with the median values ranging 

from 1.35 to 2.60 across both the x and y-cross sections. Likewise, for the 2nd spatial 

frequency band (Figure 21, plots (b) and (d)), the fractal dimension values ranged from 

0.43 to 1.81 with the median values ranging from 0.98 to 1.45 for the x and y-cross sections. 

These ranges indicate that the primary surface height variations here are caused by surface 

features that fall into the spatial range of 8.9 to 0.4 mm with potentially less variation in 

surface height coming from the features in the smaller spatial frequencies less than 0.4 mm.  
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Multitaper spectrum fractal dimension (FD) calculations (based on 1-D parameters). The 
median FD value each surface is depicted by the red line in each box. The blue box 
represents 50% of the data, or the limits of the 25th percentile and the 75th percentile. The 
dashed black lines represent the upper and lower adjacent values and the red plus signs 
represent outliers within the data for each surface. 

Figure 22. Fractal Dimension Values Based on the Multitaper Spectrums 

As noted in Chapter I, Leon et al. (2015) recently conducted an experiment that 

calculated fractal dimension values from estimated spectral parameters in order to describe 

the surface roughness of a coral reef environment. While that study was focused on a 

slightly different underwater environment, the coral reef environment has a lot of 

similarities to a rocky shoreline with regard to large- and small-scale surface features. The 

study was also conducted using a similar camera setup and data processing technique to 

this experiment, with roughness results resolved to the submillimeter scale. Therefore, the  
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The 2-D fractal dimension values obtained across the coral reef environment in 

(Leon et al. 2015) ranged from 2.2 to 2.59 with an average value of 2.45. While these 

values did not completely encompass the values found during this study, the range of values 

found within each should be noted. This type of comparison may indicate that the amount 

of variation of roughness spectral levels of the coral reef environment and the amount of 

variation roughness spectral levels of a few of the surfaces identified here may be 

comparable at the millimeter to submillimeter scale. The surfaces in this study that may be 

the most comparable to those found in the coral reef study also happen to be the surfaces 

that contain similar biological structures such as mussels, anemones, kelp, and urchins. 

The potential similarities between the surface height variations at the mm and 

submillimeter scale on the rocky seafloor and the coral reef environments could benefit 

both fields of study in future work. Assuming the difficulties of underwater data collection, 

collection in air along the shore may provide insight to the roughness of the coral given 

specific composition is known. Additionally, since more studies have been conducted in 

the coral reef environment than in the rocky shoreline, it is possible that some of the coral 

reef roughness data could be used to estimate roughness along the rocky shore. 

F. SCATTERING STRENGTH 

Scattering strength values were estimated using the small roughness perturbation 

method  (SPM) (Jackson and Richardson, 2007) with input parameters encompassing the 

geoacoustic properties from Gruber (2019) which are outlined in Table 1, a 200 kHz center 

frequency, roughness parameters from each estimate spectra which are all found in 

Appendix B, and three grazing angles of 10°, 45°, and 60° as was discussed in Chapter II. 

Although the SPM is only valid for small RMS roughness compared to the acoustic 

wavelength, it can be used as an indicator of the possible range of values that could be 

encountered in scattering strength measurements.  

For analysis of scattering strength at 200 kHz, only the first frequency band will be 

considered since the spatial scales of the second frequency band are likely not very 

important for scattering at 200 kHz based on the Bragg wave numbers. Scattering strength 
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values calculated for the spectral parameters from the 1st spatial frequency band are shown 

in Figure 22. 

For the 1st spatial frequency band, the scattering strength across the three different 

grazing angles ranged from -54 dB to 27 dB with mean values for each surface across the 

three different angles ranging from -46 dB to 11.75 dB. While there is some variation in 

scattering strength between the three different grazing angles of 10°, 45°, and 60°, the main 

scattering strength variations seem to be primarily attributed to the surface type. 

It should be noted that the high scattering strength values above -10 dB are most 

likely unrealistic, especially at low angles since scattering strength measurements 

conducted in comparable rocky environments have shown ranges between -33 and -26 dB 

for grazing angles of 20° and frequencies of 100 kHz in Olson et al., (2016) and ranges 

between -35 and -30 dB for grazing angles of 20° and frequencies of 201 kHz in Gruber, 

(2019). Additionally, a study conducted by McKinney and Anderson (1964) found that 

scattering strength actually decreases with frequencies over 100 kHz meaning that both the 

scattering strength data measured from Gruber (2019) and the scattering strength estimates 

from this study would be less than the scattering strength values found in Olson et al., 

(2016) given that the environments were similar enough over multiple spatial scales. Given 

the scattering strength values identified in this study, it is possible that the perturbation 

method used to calculate these scattering strength estimates overestimated the values 

significantly or is not a viable method given the spatial scales and spectral parameter values 

of the surfaces analyzed here. This method was shown to overestimate scattering strength 

by up to 8 dB in this type of environment by Olson et al. (2016) and it was theorized that 

the rms height values are significantly large as compared to the acoustic wavelengths 

(Olson et al., 2016). Given the scales and frequencies used in this study, it is possible that 

the same theory would apply to the surfaces identified here which could account for the 

very large scattering strength estimates attained in these calculations. 

The recent study conducted by Gruber (2019) measured scattering strength (at 201 

kHz) from the rocky outcroppings off Asilomar Beach, near to the locations in which data 

was collected for this study. In that experiment, scattering strength was estimated to be 

between -30 and -35 dB for a 10° grazing angle and between -25 dB and -30 dB for a 45° 
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grazing angle. While not all the data in the first frequency band collected in this experiment 

had scattering strength estimates that matched those measured values, a few of the surfaces 

identified within this study showed estimated scattering strength values that overlapped 

with the values identified in Gruber (2019). The surfaces identified with similar scattering 

strength values were the rock-specific surfaces (moderate and smooth), barnacles (which 

were rock surfaces covered in barnacles), and gravel. The overlap for these surfaces 

between the collected and modeled scattering strength values suggests that the perturbation 

model used in this study can potentially be used for surfaces along the rocky seafloor when 

the spectral parameter values are known, even at very small scales. However, this 

conclusion is probably limited to the exposed rock surfaces given the fact that surfaces 

with any biological presence, such as urchins or barnacles, can change much faster than 

the rocky structure on which they are located. Given the potential for this spatial and 

temporal variation, these scattering strength estimates may be inaccurate in other locations 

or times of year.  

The other surfaces identified in this experiment such as grass, kelp, and algae may 

also be significant factors in the scattering but due to their interaction and movement within 

the water column, they most likely influence the volume scattering more than the seafloor 

scattering when underwater. Taking that into consideration, the scattering strength 

estimates show in the following figures for these surfaces are most likely highly inaccurate. 
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Scattering Strength box plots for the 1st spatial frequency band for them multitaper 
spectrum calculations at scattering and grazing angles of 10°, 45°, 60°. The median 
scattering strength value each surface is depicted by the red line in each box. The blue box 
represents 50% of the data, or the limits of the 25th percentile and the 75th percentile. The 
dashed black lines represent the upper and lower adjacent values and the red plus signs 
represent outliers within the data for each surface. Note that the x-axis for the plots vary 
slightly since the box plots are arranged lowest to highest (left to right) by median 
scattering strength value. 

Figure 23. Scattering Strength for the Multitaper Spectrums: 1st Spatial 
Frequency Band 

G. 2-D RADIALLY AVERAGED SPECTRUM 

The 2-D polar spectrum values were averaged along each radial and the mean 

spectrum for each surface was plotted in Figure 24. The figure shows that the surfaces fall 

into two groups between the spatial frequency range of 101 to 102 m-1. The first group 

(algae, barnacle, moderate rock, smooth rock, and anemone) exhibits more energy within 

that spatial frequency range than the second group (kelp, grass, mussels, UW rock, and 

gravel). All the surfaces show the regression starting between  and m-1 where 



69 

the slope is relatively consistent for most of the surfaces until approximately m-1 

where small fluctuations in the slope can be seen. Between and m-1 that 

largest fluctuations on the surfaces are visible before the slopes for all the surfaces steepen 

slightly. Between m-1 and m-1 the individual surface spectra overlap or cross 

one another significantly but once the slopes steepen between m-1 and m-1 

the lines of each spectrum become more parallel to one another. These relationships match 

the spectral parameter values identified earlier in this chapter where there is a clear 

distinction between the spectral parameters and the two spatial frequency bands identified 

in these spectrum estimates.   

 
2-D radially average power spectrum by surface type. Each 2-D spectrum was average 
along each radial and then averaged across all radials to be plotted here by surface type.  

Figure 24. 2-D Radially Averaged Power Spectrum 
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IV. CONCLUSIONS  

Roughness measurements between O(10-3 m) and O(10-5 m) were calculated for ten 

different surface morphologies along the rocky shoreline of the Monterey Peninsula. These 

roughness measurements were performed using photogrammetry techniques. Photographs 

were collected during extreme low tide events with both dual-camera, and single-camera 

setups with a reference object of known size placed within the field of view of the 

camera(s). The photographs were processed using commercial photogrammetry software 

(AgiSoft Metashape) to calculate 3-D representations of the different surfaces from which 

1-D and 2-D roughness power spectral densities were estimated. Analysis of the roughness 

spectrum estimates showed power-law behavior across two distinct spatial frequency 

regions that correlated to spatial resolutions of 0.02 to 8.9 mm, with different slopes. The 

spectral parameters of and were derived from the roughness power spectrum estimates 

over both spatial frequency bands. The plotted spectral parameter values indicated that 

there was a clear distinction in the values for each parameter between the 1st and 2nd 

frequency bands across all the surfaces, potentially indicating a difference in variations in 

surface height between the mm and submillimeter scale surface features. Additionally, the 

wide range of values for each parameter for each surface within each frequency bands 

indicates additional potential for increased spatial variability of roughness characteristics 

present on each surface at these resolved scales along the rocky shoreline. This type of 

analysis also identified an overlap between the 2-D equivalent spectral parameters (when 

plotted in spectral pairs), of the mm scale features on the rocky seafloor surfaces and 

slightly larger scale roughness features of the sandy seafloors. Scattering estimates based 

on the estimated roughness parameters for the primarily rock dominant (not biological) 

surfaces of this study partially align with recently collected scattering measurements of the 

rocky outcroppings near the data collection sites, which was measured to be between -25 

and -30 dB for grazing angles of 45° (Gruber, 2019), but the scattering strength calculations 

within this experiment tended to show more variation than the data collected by Gruber 

(2019).  
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The portability and flexibility of these roughness measurement methods could 

easily be expanded to drone and satellite imagery collection. However, since a large 

number of high-resolution photographs are required to be processed using the highest 

thresholds in order to resolve features at smaller (mm to submillimeter) spatial scales, these 

methods would best be paired with the implementation of some automation into the data 

processing. Automation would potentially decrease processing time, allowing for larger 

areas or more distinct surfaces types found along the rocky coastline to be analyzed using 

these other means of imagery collection. If applied, these types of adaptations to the 

methods described in this paper would allow for an increase in data collection, roughness 

estimates, and ultimately the understanding of the acoustically relevant parameters that 

characterize the surfaces within the rocky seafloor environment.  
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APPENDIX A: OUTPUT EXAMPLES FOR EACH SURFACE TYPE 
FROM METASHAPE PROFESSIONAL 

The table within this Appendix provides an example of a Digital Elevation Map 

(DEM) and an Orthomosaic representation of the surface that were exported out of the 

AgiSoft Metashape Professional Software during image processing. 

 
Table 1: Digital Elevation Map and Orthomosaic Representations of Each Surface 

 
Surface Type Digital Elevation Map (DEM) Orthomosaic 

Algae 

  

Anemone 

  

Barnacles 
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Grass 

 
 

Moderate 
Rock 

 
 

Mussels 

  

Kelp 

  

Urchin 
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Smooth Rock 

  

Gravel 

  

Underwater 
Rock 
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APPENDIX B: DATA TABLES 

For all the tables below, phi refers to and gamma refers to . All values in 

these tables are based on meters. The values from the 2-dimensional spectrum in the third 

table are the parameters derived from the 1-D components of the 2-D spectrum output. 
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* FD Values above are all based on the 1-D cross sections of the data, specifically as 
discussed in Chapter II. 
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APPENDIX C: WELCH AND 2-D SPECTRUM DATA PLOTS 

All the plots in this appendix are the same format as the plots presented in Chapter 

III—Results and Discussion but for the spectrums derived from the Welch method and the 

2-D Fourier Transform method.  

 
Frequency Bands 

Pwelch Spectrum Frequency Bands 
 

 
2-D Spectrum Frequency Bands 
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1-D Spectral Parameters 

 
ϕ1 Parameters for 1st Frequency Band: All Spectrums 

 
 

 
ϕ1 Parameters for 2nd Frequency Band: All Spectrums 
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-γ1 Parameters for 1st Frequency Band: All Spectrums 

 

 
-γ1 Parameters for 2nd Frequency Band: All Spectrums 
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-γ1 vs. ϕ1 Scatter Plots by Surface for Welch Method Spectrum. 

 

 
-γ1 vs. ϕ1 Scatter Plots by Surface of 1-D Components for 2-D Spectrum. 
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2-D Equivalent Spectral Parameters  and  

 

2-D Equivalent Spectral Parameters   vs  Scatter Plots with ‘Sand’ Data: 
Welch Method Spectrum 

 

 

2-D Equivalent Spectral Parameters   vs  Scatter Plots with ‘Sand’ Data: 
2-D Spectrum 



88 

Fractal Dimension Parameter 

 
Fractal Dimension Values for Welch Method Spectrum. 
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Scattering Strength Estimates – Perturbation Method 

 
Scattering Strength for 1st Frequency Band of Welch Method Spectrum: 

Grazing and Scattering Angles of 10°, 45°, and 60° 
 

 
Scattering Strength for 2nd Frequency Band of Welch Method Spectrum: 

Grazing and Scattering Angles of 10°, 45°, and 60° 
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Scattering Strength for 1st Frequency Band of 2-D Spectrum: 

Grazing and Scattering Angles of 10°, 45°, and 60° 
 

 
Scattering Strength for 2nd Frequency Band of 2-D Spectrum: 

Grazing and Scattering Angles of 10°, 45°, and 60° 
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