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STABILITY AND ERROR ANALYSIS FOR OPTIMIZATION AND
GENERALIZED EQUATIONS\ast 

JOHANNES O. ROYSET\dagger 

Abstract. Stability and error analysis remain challenging for problems that lack regularity
properties near solutions, are subject to large perturbations, and might be infinite-dimensional. We
consider nonconvex optimization and generalized equations defined on metric spaces and develop
bounds on solution errors using the truncated Hausdorff distance applied to graphs and epigraphs
of the underlying set-valued mappings and functions. In the process, we extend the calculus of
such distances to cover compositions and other constructions that arise in nonconvex problems.
The results are applied to constrained problems with feasible sets that might have empty interiors,
solution of KKT systems, and optimality conditions for difference-of-convex functions and composite
functions.
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1. Introduction. Since the early days of convex analysis, epigraphs have been
central to understanding functions in the context of minimization problems. Local
properties of epigraphs can be used to define subgradients, while global properties
characterize convexity and lower semicontinuity. The distance between two epigraphs
bounds the discrepancy between the corresponding minima and near-minimizers.
Likewise, set-valued mappings can be fully represented by their graphs, with graphi-
cal convergence being key to understanding approximations of solutions of generalized
equations defined by such mappings. These set-based perspectives lead to a unified ap-
proach to stability and error analysis for a wide range of variational problems. In this
paper, we estimate the truncated Hausdorff distance between sets and demonstrate
that it provides insight into the stability of constraint systems and optimization prob-
lems even when the feasible sets have empty interiors. Without assuming any local
properties, we establish that the truncated Hausdorff distance bounds the discrepancy
between near-solutions of two generalized equations when applied to the graphs of the
underlying set-valued mappings. The result is illustrated in the context of optimal-
ity conditions for difference-of-convex functions, composite functions, and nonlinear
programs. Throughout, we focus on nonconvex problems. Most of the results are
established for general metric spaces and therefore apply broadly, including in areas
such as nonparametric statistics, optimal control, function identification, and decision
rule optimization.
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Stability and error analysis for optimization and, more generally, variational prob-
lems have been developed from several angles; see, for example, [23, 1, 31, 32, 14] for
comprehensive treatments. There is an extensive literature on local stability based
on metric regularity and calmness [20, 30], tilt-stability [18, 24, 17], full-stability [27],
and connections with iterative schemes [22]; see also the monographs [7, 26, 25] and
the surveys [29, 8]. This paper takes an alternative, global perspective that can be
traced back to the late 1960s and pioneering studies of the truncated Hausdorff dis-
tance between convex cones [40] and general convex sets [28]. The full potential of
the approach emerges in [4, 5, 6], which establish that the truncated Hausdorff dis-
tances between epigraphs furnish bounds on the corresponding discrepancies between
minima and minimizers; see also [10, 2, 12, 13] for parallel developments, and espe-
cially the monograph [11] with its detailed treatment of topologies and metrics on
spaces of closed sets. From the myriad of possibilities, the Attouch--Wets distance
[3] emerges as the theoretically most useful by virtue of being a metric on spaces of
nonempty closed sets as well as other factors. Still, we concentrate on the truncated
Hausdorff distance due to its more intuitive form and direct relationship to quantities
of interest such as minima and minimizers. It nonetheless furnishes accurate esti-
mates of the Attouch--Wets distance [32, 33]. This global perspective based on set
distances provides foundations for computationally attractive approximations of func-
tions [36, 33, 34] and formulations of function identification problems [36], especially
in nonparametric statistics [37, 38].

The difficulty of estimating the truncated Hausdorff distance for actual problem
instances remains a major hurdle for its practical use. Fundamental results and calcu-
lus rules are laid out in [9, 4], but mostly for epigraphs in the convex case. Results on
epi-multiplication and epi-sums are given in [4]. Inverse images of convex sets are well
behaved under sufficiently small perturbations. This fact enables the development of
results for intersections of sets and sums of functions in the convex case [9]. Since the
Legendre--Fenchel transform is an isometry for lower semicontinuous proper convex
functions under a closely related pseudometric defined in terms of the epi-regularized
functions [3], additional estimates of the truncated Hausdorff distance emerge via the
dual operations under this transform [4]. In this paper, we switch the focus to non-
convex sets and functions and develop a series of results that support calculations of
the truncated Hausdorff distance in practice.

Section 2 lays out the terminology and provides some motivating facts. Sec-
tion 3 develops estimates for the truncated Hausdorff distance between arbitrary sets.
Section 4 turns to specific results for epigraphs and applications in disjunctive pro-
gramming, formulations with constraint softening, and penalty methods. Section 5
extends the methodology to set-valued mappings and demonstrates its usefulness for
generalized equations such as those arising from optimality conditions. Some proofs
are given in the appendix.

2. Distances and applications. For a point x in a metric space (X, dX) and
C \subset X, we denote by dist(x,C) the usual point-to-set distance, i.e.,

dist(x,C) := inf \{ dX(x, \=x) | \=x \in C\} if C is nonempty and dist(x, \emptyset ) := \infty .

The excess of C over D \subset X is given by

exs(C;D) := sup\{ dist(x,D) | x \in C\} if C,D are nonempty,
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754 JOHANNES O. ROYSET

exs(C;D) := \infty if C nonempty and D empty, and exs(C;D) := 0 otherwise. The
Pompeiu--Hausdorff distance between C and D is max\{ exs(C;D), exs(D;C)\} , but
tends to be infinity for unbounded sets and therefore is not central to our development.
Instead, we rely on a localization argument relative to a point x\mathrm{c}\mathrm{t}\mathrm{r} \in X, which we call
the centroid of X. The choice of centroid can be made arbitrarily, but results might
be sharper if it is near the ``interesting"" parts of the sets at hand, as we often restrict
our attention to intersections of sets with the centered closed ball

\BbbB X(\rho ) := \{ x \in X | dX(x\mathrm{c}\mathrm{t}\mathrm{r}, x) \leq \rho \} for \rho \geq 0.

Given \rho \geq 0, we define the truncated Hausdorff distance between two sets C,D \subset X
as

\widehat dl\rho (C,D) := max
\Bigl\{ 
exs
\bigl( 
C \cap \BbbB X(\rho );D

\bigr) 
, exs

\bigl( 
D \cap \BbbB X(\rho );C

\bigr) \Bigr\} 
,

which is always finite as long as C and D are nonempty and \rho < \infty . Trivially,\widehat dl\infty (C,D) is the Pompeiu--Hausdorff distance between C and D, but we focus on
finite \rho in the following.

The notation for the truncated Hausdorff distance suppresses its dependence on
the choice of metric and centroid. The following result holds for all metrics and cen-
troids unless otherwise specified. In particular,

for a normed linear space the metric is consistently assumed to be
the one induced by the norm and the centroid is the zero point of the
space.

This is a harmless assumption, easily overcome, but kept here to simplify expressions.
The ``hat notation"" hints at a broader landscape of closely related distances between
sets including the Attouch--Wets metric; see [32, Chap. 4] for a summary of results.
Although the truncated Hausdorff distance fails to be a metric on spaces of nonempty
closed sets, it is obviously nonnegative and symmetric. A triangle inequality of sorts
also holds. Let \BbbR + := [0,\infty ).

Proposition 2.1 (triangle inequality, extended sense). For a metric space X
with centroid x\mathrm{c}\mathrm{t}\mathrm{r}, sets C1, C2, C3 \subset X, and \rho \in \BbbR +,\widehat dl\rho (C1, C3) \leq \widehat dl\=\rho (C1, C2) + \widehat dl\=\rho (C2, C3),

provided that \=\rho > 2\rho +maxi=1,2,3 dist(x
\mathrm{c}\mathrm{t}\mathrm{r}, Ci).

Proof. The arguments in the proofs of [4, Prop. 1.2] and [33, Prop. 3.1] can easily
be modified for the present assumptions.

For a function f : X \rightarrow \BbbR := [ - \infty ,\infty ], the characterizing set in the context of
minimization problems is its epigraph,

epi f :=
\bigl\{ 
(x, \alpha ) \in X \times \BbbR | f(x) \leq \alpha 

\bigr\} 
.

The truncated Hausdorff distance between epigraphs requires a metric and centroid
for X \times \BbbR , and we consistently adopt

the product metric ((x, \alpha ), (\=x, \=\alpha )) \mapsto \rightarrow max\{ dX(x, \=x), | \alpha  - \=\alpha | \} and cen-
troid (x\mathrm{c}\mathrm{t}\mathrm{r}, 0), where x\mathrm{c}\mathrm{t}\mathrm{r} is a centroid of X.
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The main motivation for studying the truncated Hausdorff distance between
epigraphs is its relation to minima and minimizers. We recall that inf f := inf\{ f(x) | 
x \in X\} , \epsilon - argmin f := \{ x \in dom f | f(x) \leq inf f + \epsilon \} for \epsilon \geq 0, with dom f :=
\{ x \in X | f(x) < \infty \} , and lev\delta f := \{ x \in X | f(x) \leq \delta \} for \delta \in \BbbR . (We adopt the
usual arithmetic rules for extended real-valued numbers with an orientation towards
minimization so that \infty  - \infty as well as  - \infty +\infty are set to \infty ; see [32, sect. 1.E].) The
application in the context of minimization problems becomes clear from the following
two propositions, which are essentially in [5, 33]. Still, due to minor adjustments in
assumptions we provide proofs in the appendix.

Proposition 2.2 (approximation of infima and near-minimizers). For a metric
space X, functions f, g : X \rightarrow \BbbR , and \epsilon , \rho \in \BbbR +,

| inf f  - inf g| \leq \widehat dl\rho (epi f, epi g),
exs
\bigl( 
\epsilon - argmin g \cap \BbbB X(\rho ); \delta - argmin f

\bigr) 
\leq \widehat dl\rho (epi f, epi g),

provided that inf f, inf g \in [ - \rho , \rho  - \epsilon ) and \gamma - argmin f \cap \BbbB X(\rho ) as well as \gamma - argmin g\cap 
\BbbB X(\rho ) are nonempty for all \gamma > 0, with the second assertion also requiring \delta >

\epsilon + 2\widehat dl\rho (epi f, epi g).
These bounds are sharp, as discussed in [33]. We note that \delta cannot generally

be equal to \epsilon + 2\widehat dl\rho (epi f, epi g). For example, suppose that f(x) = x for x > 0 and
f(x) = \infty otherwise; and g(x) = x for x \geq 0 and g(x) = \infty otherwise. Then, for \rho \geq 0,\widehat dl\rho (epi f, epi g) = 0, argmin g = \{ 0\} , argmin f = \emptyset , and exs(argmin g; argmin f) = \infty .
The role of \rho emerges from the proposition: it needs to be large enough so that
the epigraphs intersected with \BbbB X\times \BbbR (\rho ) retain points corresponding to infima and
near-minimizers.

Proposition 2.3 (approximation of level sets). For a metric space X, functions
f, g : X \rightarrow \BbbR , \rho \in \BbbR +, and \delta \in [ - \rho , \rho ],

exs
\bigl( 
lev\delta g \cap \BbbB X(\rho ); lev\epsilon f

\bigr) 
\leq exs

\bigl( 
epi g \cap \BbbB X\times \BbbR (\rho ); epi f

\bigr) 
\leq \widehat dl\rho (epi f, epi g),

provided that \epsilon > \delta + exs(epi g \cap \BbbB X\times \BbbR (\rho ); epi f).

A parallel development is possible for set-valued mappings from a metric space
(X, dX) to a metric space (Y, dY ). The values of a set-valued mapping S : X \rightarrow \rightarrow Y are
the subsets S(x) \subset Y , x \in X, and the graph of S is

gphS :=
\bigl\{ 
(x, y) \in X \times Y

\bigm| \bigm| y \in S(x)
\bigr\} 
.

The truncated Hausdorff distance between such graphs requires a metric on X \times Y .
Throughout, we adopt the product metric ((x, y), (\=x, \=y)) \mapsto \rightarrow max\{ dX(x, \=x), dY (y, \=y)\} .
The centroid is likewise constructed from those of X and Y . A prime example of
such mappings is the subgradient mapping \partial f : X \rightarrow \rightarrow X for a convex function f on
a Hilbert space X. We recall that a function f : X \rightarrow \BbbR is proper if epi f \not = \emptyset and
f >  - \infty . It is lower semicontinuous (lsc) if epi f is closed as a subset of X \times \BbbR .

Proposition 2.4 (approximation of subgradient mappings [4]). For a Hilbert
space X, proper lsc convex functions f, g : X \rightarrow \BbbR , and \rho \in \BbbR + exceeding dist(0, epi f)
and dist(0, epi g), there exist \kappa , \=\rho \in \BbbR + such that

\widehat dl\rho (gph \partial f, gph \partial g) \leq \kappa 

\sqrt{} \widehat dl\=\rho (epi f, epi g).
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Explicit expressions for the constants \kappa and \=\rho in the proposition are available in
[4]. Section 5 establishes that \widehat dl\rho (gph \partial f, gph \partial g) bounds the discrepancy between
near-solutions of the generalized equations 0 \in \partial f(x) and 0 \in \partial g(x). Thus, the
proposition provides yet another way of bounding the distance between minimizers of
f and those of g in the convex case.

We can bring forward the effect of a constraint set C \subset X when the function of
interest is expressed as f + \iota C , where

\iota C(x) := 0 if x \in C and \iota C(x) := \infty otherwise.

Then optimality conditions can be stated using normal cones. For example, if C \subset \BbbR n

and f : \BbbR n \rightarrow \BbbR are convex, then the generalized equation 0 \in \partial f(x) + NC(x)
characterizes minimizers of f + \iota C , where NC(x) is the normal cone of C at x in the
sense of convex analysis; see [32, sect. 6.C]. Consequently, it becomes important to
examine the graph of a normal cone mapping NC : X \rightarrow \rightarrow X and its approximations.

Proposition 2.5 (approximation of normal cone mappings). For closed convex
subsets C,D of a Hilbert space and \rho \in \BbbR + exceeding dist(0, C) and dist(0, D), there
exist \kappa , \=\rho \in \BbbR + such that

\widehat dl\rho (gphNC , gphND) \leq \kappa 

\sqrt{} \widehat dl\=\rho (C,D).

Proof. In view of Corollary 3.2 below, the result is a direct application of Propo-
sition 2.4 to the functions f = \iota C and g = \iota D.

These preliminary facts point to a strategy for stability and error analysis of op-
timization and variational problems that extends much beyond the convex case: esti-
mate the truncated Hausdorff distances between the relevant constraint sets, graphs,
and/or epigraphs, which then immediately provide bounds on the discrepancy be-
tween solutions. The next sections develop practical guidelines for computing the
truncated Hausdorff distance and illustrate the strategy in concrete instances.

3. Distances between sets. We start with results about product sets, unions,
and convex hulls. The main theorem of the section bounds the truncated Hausdorff
distance between images of sets under Lipschitz continuous set-valued mappings.

Proposition 3.1 (product sets). For each i = 1, . . . ,m, suppose that Ci, Di are
subsets of a metric space (Xi, dXi

) with centroid x\mathrm{c}\mathrm{t}\mathrm{r}i and X = X1 \times \cdot \cdot \cdot \times Xm is
equipped with the metric dX = maxi=1,...,m dXi

and centroid x\mathrm{c}\mathrm{t}\mathrm{r} = (x\mathrm{c}\mathrm{t}\mathrm{r}i , . . . , x\mathrm{c}\mathrm{t}\mathrm{r}m ).
Then, with C = C1 \times \cdot \cdot \cdot \times Cm and D = D1 \times \cdot \cdot \cdot \times Dm,

\widehat dl\rho (C,D) \leq max
i=1,...,m

\widehat dl\rho (Ci, Di) for any \rho \in \BbbR +.

If C \cap \BbbB X(\rho ) and D \cap \BbbB X(\rho ) are nonempty, then the relation holds with equality.

Proof. Let \eta = maxi=1,...,m
\widehat dl\rho (Ci, Di), x = (x1, . . . , xm) \in C \cap \BbbB X(\rho ), and \epsilon > 0.

Since xi \in Ci \cap \BbbB Xi
(\rho ) and dist(xi, Di) \leq exs(Ci \cap \BbbB Xi

(\rho );Di) \leq \eta , there exists
yi \in Di with dXi

(xi, yi) \leq \eta + \epsilon . We can repeat this construction for all i and
obtain y = (y1, . . . , ym). Then dX(x, y) = maxi=1,...,m dXi(xi, yi) \leq \eta + \epsilon . Thus,
dist(x,D) \leq \eta + \epsilon and also exs(C \cap \BbbB X(\rho );D) \leq \eta + \epsilon , which holds trivially also
when C \cap \BbbB X(\rho ) = \emptyset . Repeating the argument with the roles of C and D reversed

establishes that \widehat dl\rho (C,D) \leq \eta + \epsilon . Since this holds for all \epsilon > 0, \widehat dl\rho (C,D) \leq \eta and
the first conclusion holds.
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To establish the inequality the other way, let x = (x1, . . . , xm) \in C\cap \BbbB X(\rho ), \epsilon > 0,
and i \in \{ 1, . . . ,m\} . Then there exists y = (y1, . . . , ym) \in D such that

dist(xi, Di) - \epsilon \leq dXi
(xi, yi) - \epsilon \leq dX(x, y) - \epsilon \leq dist(x,D) \leq \widehat dl\rho (C,D).

Since x \in C \cap \BbbB X(\rho ) is arbitrary, exs(Ci \cap \BbbB Xi
(\rho );Di) \leq \widehat dl\rho (C,D) + \epsilon . A similar

argument with the roles of C and D reversed allows us to conclude that exs(Di \cap 
\BbbB Xi(\rho );Ci) \leq \widehat dl\rho (C,D) + \epsilon . Thus, \widehat dl\rho (Ci, Di) \leq \widehat dl\rho (C,D) + \epsilon . Since i and \epsilon are
arbitrary, the conclusion follows.

Corollary 3.2 (indicator functions). For subsets C,D of a metric space and
\rho \in \BbbR +, \widehat dl\rho (epi \iota C , epi \iota D) = \widehat dl\rho (C,D).

Proof. By Proposition 3.1, \widehat dl\rho (epi \iota C , epi \iota D)= \widehat dl\rho (C \times \BbbR +, D \times \BbbR +)=max\{ \widehat dl\rho (C,D),\widehat dl\rho (\BbbR +,\BbbR +)\} = \widehat dl\rho (C,D) as long as C \cap \BbbB X(\rho ) and D \cap \BbbB X(\rho ) are nonempty. If one
or both of these sets are empty, the corollary holds trivially.

Proposition 3.3 (union of sets). For a metric space X, \{ C\alpha , D\alpha \subset X,\alpha \in A\} ,
with A being an arbitrary set, and \rho \in \BbbR +,

\widehat dl\rho \Biggl( \bigcup 
\alpha \in A

C\alpha ,
\bigcup 
\alpha \in A

D\alpha 

\Biggr) 
\leq sup

\alpha \in A

\widehat dl\rho (C\alpha , D\alpha ).

Proof. Let C = \cup \alpha \in AC\alpha , D = \cup \alpha \in AD\alpha , and \eta = sup\alpha \in A
\widehat dl\rho (C\alpha , D\alpha ). Suppose

that x \in C \cap \BbbB X(\rho ). Then there exists \alpha \in A such that x \in C\alpha . Since D\alpha \subset D and
x \in C\alpha \cap \BbbB X(\rho ),

dist(x,D) \leq dist(x,D\alpha ) \leq exs(C\alpha \cap \BbbB X(\rho );D\alpha ) \leq \widehat dl\rho (C\alpha , D\alpha ) \leq \eta .

The arbitrary choice of x \in C\cap \BbbB X(\rho ) allows us to conclude that exs(C\cap \BbbB X(\rho );D) \leq 
\eta . The roles of C and D can be reversed, yielding the conclusion.

There is no similar result for intersections. A revealing example is furnished
already on \BbbR by C1 = C2 = \{ 0\} , D1 = \{  - \epsilon \} , and D2 = \{ \epsilon \} with \epsilon > 0. Then\widehat dl\rho (C1 \cap C2, D1 \cap D2) = \infty because D1 \cap D2 = \emptyset . However, \widehat dl\rho (Ci, Di) = 2\epsilon for
\rho \geq \epsilon and i = 1, 2. The difficulty occurs even if C1 \cap C2 and D1 \cap D2 have nonempty
interiors. Consider C1 = D1 = [ - 1, 0] \cup [1, 2] and C2 = [ - 1, 0] \cup [2, 3] and D2 =
[ - 1, 0] \cup [2 + \epsilon , 3] with \epsilon \in (0, 1). Then C1 \cap C2 = [ - 1, 0] \cup \{ 2\} , D1 \cap D2 = [ - 1, 0],

and \widehat dl\rho (Ci, Di) \leq \epsilon for i = 1, 2 and \rho \geq 3. Still, \widehat dl\rho (C1 \cap C2, D1 \cap D2) = 2. In
the convex case, having intersections with nonempty interior remedies the situation
to a large extent; see [9, Cor. 2.5]. In the general case, however, it is difficulty to
say more than exs(\cap \alpha \in AC\alpha ;\cap \alpha \in AD

+
\alpha ) \leq 0, where D+

\alpha = \{ x \in X | dist(x,D\alpha ) \leq 
exs(C\alpha ;D\alpha )\} for \alpha \in A, which nevertheless provides guidance toward constructing
outer approximations.

For large enough \rho , the operation of taking the convex hull is nonexpansive under\widehat dl\rho . We denote by conC the convex hull of a set C and by \BbbN the natural numbers.

Proposition 3.4 (convex hulls). For subsets C and D of a normed linear space
X, \widehat dl\rho (conC, conD) \leq \widehat dl\rho (C,D)

when \rho \in [0,\infty ] is such that C,D \subset \BbbB X(\rho ).

D
ow

nl
oa

de
d 

08
/2

4/
20

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

758 JOHANNES O. ROYSET

Proof. Suppose that x \in conC \cap \BbbB X(\rho ). Thus, there exist r \in \BbbN , x1, . . . , xr \in C,
and \alpha 1, . . . , \alpha r \geq 0, with

\sum r
i=1 \alpha i = 1 such that x =

\sum r
i=1 \alpha ix

i. Let \epsilon > 0. Since
xi \in C \cap \BbbB X(\rho ), there exists yi \in D with \| xi  - yi\|  - \epsilon \leq dist(xi, D) \leq exs(C \cap 
\BbbB X(\rho );D) \leq \widehat dl\rho (C,D). For y =

\sum r
i=1 \alpha 

iyi, \| x - y\| \leq 
\sum r

i=1 \alpha i\| xi - yi\| \leq \widehat dl\rho (C,D)+\epsilon .

Thus, dist(x, conD) \leq \widehat dl\rho (C,D) + \epsilon because y \in conD. Since \epsilon and x are arbitrary,

exs(conC \cap \BbbB X(\rho ); conD) \leq \widehat dl\rho (C,D). The conclusion then follows by symmetry.

The difficulty with unbounded sets and a finite \rho is illustrated by C = \{ \lambda ( - 1, 1),
\lambda (1, - 1)\} \subset \BbbR 2 and D = \{ \lambda (1, 1), \lambda ( - 1, - 1)\} \subset \BbbR 2, with \lambda > 0. For the norm \| \cdot \| \infty 
and \rho < \lambda , \widehat dl\rho (conC, conD) = \rho but \widehat dl\rho (C,D) = 0. Near the origin C and D look
the same (empty), but their convex hulls are locally rather different.

Next, we turn our focus towards images of sets, which provide foundations for
several subsequent results. For metric spaces (X, dX) and (Y, dY ), we say that a
set-valued mapping S : X \rightarrow \rightarrow Y is Lipschitz continuous with modulus \kappa : \BbbR + \rightarrow \BbbR +

relative to \rho \ast \in [0,\infty ] if

\widehat dl\rho \ast 
\bigl( 
S(x), S(\=x)

\bigr) 
\leq \kappa (\rho )dX(x, \=x) for x, \=x \in \BbbB X(\rho ) and \rho \in \BbbR +.

We retain this terminology also for point-valued mappings, in which case the left-hand
side amounts to the truncated Hausdorff distance between two points.

The image of C \subset X under a set-valued mapping S : X \rightarrow \rightarrow Y is the set S(C) :=
\cup x\in CS(x). The corresponding inverse set-valued mapping is S - 1(y) := \{ x \in X | y \in 
S(x)\} for y \in Y . Moreover, for any nonempty C \subset X and f : X \rightarrow \BbbR , infC f :=
inf\{ f(x) | x \in C\} and supC f := sup\{ f(x) | x \in C\} . When C is empty, infC f = \infty 
and supC f =  - \infty .

Theorem 3.5 (images under Lipschitz mappings). Suppose (X, dX) and (Y, dY )
are metric spaces, with centroids x\mathrm{c}\mathrm{t}\mathrm{r} and y\mathrm{c}\mathrm{t}\mathrm{r}, respectively, \rho \in \BbbR +, and S, T : X \rightarrow \rightarrow Y
are nonempty-valued Lipschitz continuous with common modulus \kappa : \BbbR + \rightarrow \BbbR + rela-
tive to \rho \ast \in [0,\infty ]. Then, for any nonempty C,D \subset X,

\widehat dl\rho \bigl( S(C), T (D)
\bigr) 
\leq supx\in \BbbB X(\=\rho )

\widehat dl\rho \ast 
\bigl( 
S(x), T (x)

\bigr) 
+ \kappa (\^\rho )\widehat dl\=\rho (C,D),

provided that \rho \ast > 2\rho +max\{ dist(y\mathrm{c}\mathrm{t}\mathrm{r}, S(C)),dist(y\mathrm{c}\mathrm{t}\mathrm{r}, S(D)),dist(y\mathrm{c}\mathrm{t}\mathrm{r}, T (D))\} , \=\rho > 0
exceeds

sup
y\in U(E)\cap \BbbB Y (\rho \ast )

\Bigl\{ 
inf

U - 1(y)\cap E
dX(\cdot , x\mathrm{c}\mathrm{t}\mathrm{r})

\Bigr\} 
for U = S, T and E = C,D,

and \^\rho > \=\rho + \widehat dl\=\rho (C,D).

Proof. First, we bound \widehat dl\rho \ast (S(C), S(D)). Suppose that \=y \in S(C)\cap \BbbB Y (\rho 
\ast ). Then

there exists \=x \in S - 1(\=y) \cap C such that dX(\=x, x\mathrm{c}\mathrm{t}\mathrm{r}) \leq \=\rho , i.e., \=x \in C \cap \BbbB X(\=\rho ). Let

\epsilon \in (0, \^\rho  - \=\rho  - \widehat dl\=\rho (C,D)). There exists x \in D such that \widehat dl\=\rho (C,D) \geq exs
\bigl( 
C \cap 

\BbbB X(\=\rho );D
\bigr) 
\geq dist(\=x,D) \geq dX(\=x, x) - \epsilon . Thus, dX(x, x\mathrm{c}\mathrm{t}\mathrm{r}) \leq dX(\=x, x\mathrm{c}\mathrm{t}\mathrm{r}) + dX(\=x, x) \leq 

\=\rho + \widehat dl\=\rho (C,D) + \epsilon \leq \^\rho so that both \=x and x are in \BbbB X(\^\rho ). There exists y \in S(x) such
that dY (\=y, y) \leq dist(\=y, S(x)) + \epsilon , which implies that y \in S(D). Then

dY (\=y, y) \leq dist
\bigl( 
\=y, S(x)

\bigr) 
+ \epsilon \leq exs

\bigl( 
S(\=x) \cap \BbbB Y (\rho 

\ast );S(x)
\bigr) 
+ \epsilon 

\leq \widehat dl\rho \ast 
\bigl( 
S(\=x), S(x)

\bigr) 
+ \epsilon \leq \kappa (\^\rho )dX(\=x, x) + \epsilon \leq \kappa (\^\rho )\widehat dl\=\rho (C,D) + (\kappa (\^\rho ) + 1)\epsilon ,
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which implies that exs(S(C)\cap \BbbB Y (\rho 
\ast );S(D)) \leq \kappa (\^\rho )\widehat dl\=\rho (C,D)+(\kappa (\^\rho )+1)\epsilon . Repeating

the arguments with the roles of C and D reversed and recognizing that \epsilon is arbitrary
leads to \widehat dl\rho \ast 

\bigl( 
S(C), S(D)

\bigr) 
\leq \kappa (\^\rho )\widehat dl\=\rho (C,D).

Second, we bound \widehat dl\rho \ast 
\bigl( 
S(D), T (D)

\bigr) 
. Suppose that \=y \in S(D) \cap \BbbB Y (\rho 

\ast ). Then
there exists \=x \in S - 1(\=y) \cap D such that dX(\=x, x\mathrm{c}\mathrm{t}\mathrm{r}) \leq \=\rho , i.e., \=x \in D \cap \BbbB X(\=\rho ). Let
\epsilon > 0. There exists y \in T (\=x) such that dY (\=y, y) \leq dist(\=y, T (\=x)) + \epsilon , which implies
that y \in T (D). Then

dY (\=y, y) \leq dist
\bigl( 
\=y, T (\=x)

\bigr) 
+ \epsilon \leq exs

\bigl( 
S(\=x) \cap \BbbB Y (\rho 

\ast );T (\=x)
\bigr) 
+ \epsilon 

\leq \widehat dl\rho \ast 
\bigl( 
S(\=x), T (\=x)

\bigr) 
+ \epsilon \leq sup

x\in \BbbB X(\=\rho )

\widehat dl\rho \ast 
\bigl( 
S(x), T (x)

\bigr) 
+ \epsilon ,

which implies that exs(S(D)\cap \BbbB Y (\rho 
\ast );T (D)) \leq supx\in \BbbB X(\=\rho )

\widehat dl\rho \ast 
\bigl( 
S(x), T (x)

\bigr) 
+\epsilon . Again

by symmetry and the fact that \epsilon is arbitrary, we conclude that

\widehat dl\rho \ast 
\bigl( 
S(D), T (D)

\bigr) 
\leq sup

x\in \BbbB X(\=\rho )

\widehat dl\rho \ast 
\bigl( 
S(x), T (x)

\bigr) 
.

The result now follows by Proposition 2.1.

The requirement on \=\rho in the proposition is most easily verified when C and D
are bounded, but other possibilities exist---for example, under a Lipschitz property on
the inverse set-valued mappings. An example of this appears in Corollary 4.8 below.

Sums of sets arise in, among other places, subdifferential calculus: For functions
f1 and f2, the set of subgradients \partial (f1 + f2)(x) = \partial f1(x) + \partial f2(x) under appropriate
assumptions [32, sect. 10.9]; here and below subgradients are of the general kind1

[32, 25]. Of course, the previous theorem could be used to establish a result about
sums. We pursue a direct approach, with a proof in the appendix, as it is instructive
and also brings forth a possible adjustment in the case of unbounded sets.

Proposition 3.6 (sums of sets). For a normed linear space X, nonempty sets
\{ Ci, Di \subset X, i = 1, . . . ,m\} , and \rho \in \BbbR +,

\widehat dl\rho \Biggl( m\sum 
i=1

Ci,

m\sum 
i=1

Di

\Biggr) 
\leq 

m\sum 
i=1

\widehat dl\rho (Ci, Di),

provided that Ci, Di \subset \BbbB X(\rho ) for all i = 1, 2, . . . ,m. If Ci, Di \subset \BbbB X(\rho ) holds only for

i = 2, 3, . . . ,m, then the inequality remains valid as long as \widehat dl\rho (C1, D1) is replaced by\widehat dlm\rho (C1, D1).

A motivation for allowing one unbounded set emerges when studying a locally
Lipschitz continuous function f : \BbbR n \rightarrow \BbbR , a nonempty closed set C \subset \BbbR n, and the
optimality condition 0 \in \partial f(x)+NC(x) [32, Exer. 10.10], where NC(x) is the normal
cone of C at x in the general sense [32, 25], i.e., NC(x) = \partial \iota C(x). Here, \partial f(x) is
bounded, but NC(x) is unbounded in the interesting cases. We observe that if there
are two or more unbounded sets, then the assertion in the proposition fails. For an

1For f : \BbbR n \rightarrow \BbbR and a point \=x where f is finite, we recall that v \in \widehat \partial f(\=x) (a subgradient of the
regular kind) if and only if f(x) \geq f(\=x)+\langle v, x - \=x\rangle +o(\| x - \=x\| 2). Moreover, v \in \partial f(\=x) (a subgradient
of the general kind) if and only if there exist v\nu \rightarrow v and x\nu \rightarrow x, with f(x\nu ) \rightarrow f(x), such that

v\nu \in \widehat \partial f(x\nu ). In the convex case, regular and general subgradients coincide.
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example in \BbbR 2, let C1 = \{ \lambda (1, 1 + \delta ) | \lambda \geq 0\} , C2 = \{ \lambda ( - 1, - 1 + \delta ) | \lambda \geq 0\} ,
with \delta > 0, D1 = \{ \lambda (1, 1) | \lambda \geq 0\} , and D2 = \{ \lambda ( - 1, - 1) | \lambda \geq 0\} . All the sets

are rays and therefore unbounded. Now, \widehat dl\rho (Ci, Di) \leq \delta \rho for i = 1, 2. However,
because C1 + C2 is ``nearly"" the halfspace \{ (x1, x2) | x1  - x2 \leq 0\} for small \delta but

D1 +D2 = \{ (x1, x2) | x1 = x2\} , \widehat dl\rho (C1 + C2, D1 +D2) = \rho .
The inequality in the proposition is sharp because for x, y, z \in X and C1 = \{ x\} ,

C2 = \{ y\} , D1 = \{ x + z\} , and D2 = \{ y + z\} , we have \widehat dl\rho (C1 + C2, D1 +D2) = 2\| z\| 
and \widehat dl\rho (Ci, Di) = \| z\| for i = 1, 2 for sufficiently large \rho . Still, we can have strict
inequality. For example, x, y \in X, x \not = y \not = 0, and C1 = \{ x\} , C2 = \{  - x\} , D1 = \{ y\} ,
and D2 = \{  - y\} , we have \widehat dl\rho (C1 + C2, D1 + D2) = 0 and \widehat dl\rho (Ci, Di) = \| x  - y\| for
i = 1, 2 for sufficiently large \rho .

Corollary 3.7 (set multiplications). For nonempty subsets C and D of a normed
linear space, nonzero \lambda , \mu \in \BbbR , and \rho \in \BbbR +,

\widehat dl\rho (\lambda C, \mu D) \leq \=\rho | \lambda  - \mu | +max\{ | \lambda | , | \mu | \} \widehat dl\=\rho (C,D),

when \=\rho > (2\rho +max\{ | \lambda | dist(0, C), | \lambda | dist(0, D), | \mu | dist(0, D)\} )max\{ | \lambda  - 1| , | \mu  - 1| \} .
Proof. The result follows from Theorem 3.5 by setting S(x) = \lambda x and T (x) =

\mu x.

We end the section by recording a useful fact about the distance between level-
sets of two convex functions, which extends [32, Prop. 7.68] by allowing the functions
to be different.

Proposition 3.8 (level-sets; convex case). For \rho \in \BbbR +, \alpha , \beta \in [ - \rho , \rho ], and
proper convex lsc functions f, g : \BbbR n \rightarrow \BbbR , suppose that \alpha > inf f , \beta > inf g,
argmin f \not = \emptyset , and argmin g \not = \emptyset . Then, with \eta = \widehat dl\rho (epi f, epi g),

\widehat dl\rho (lev\alpha f, lev\beta g) \leq \eta + (\rho \ast + \rho 0)max

\biggl\{ 
\alpha + \eta  - \beta 

\alpha + \eta  - inf g
,
\beta + \eta  - \alpha 

\beta + \eta  - inf f

\biggr\} 
,

provided that \rho 0 \geq max\{ dist(0, argmin f),dist(0, argmin g)\} and \rho \ast \geq max\{ \rho 0, \rho +\widehat dl\rho (epi f, epi g)\} .
Proof. By Proposition 4.5 in [33], exs(lev\alpha f \cap \BbbB \BbbR n(\rho ); lev\alpha +\eta g) \leq \eta . An appli-

cation of Proposition 7.68 in [32] yields

exs
\bigl( 
lev\alpha +\eta g \cap \BbbB \BbbR n(\rho \ast ); lev\beta g

\bigr) 
\leq \alpha + \eta  - \beta 

\alpha + \eta  - inf g
(\rho \ast + \rho 0)

whenever \alpha + \eta > \beta . If \alpha + \eta \leq \beta , then exs(lev\alpha +\eta g \cap \BbbB \BbbR n(\rho \ast ); lev\beta g) = 0. Let
x \in lev\alpha f \cap \BbbB \BbbR n(\rho ). There exists y \in lev\alpha +\eta g with \| y  - x\| \leq \eta so that y \in \BbbB \BbbR n(\rho \ast ).
Thus, we have established that

exs
\bigl( 
lev\alpha f \cap \BbbB \BbbR n(\rho ); lev\beta g

\bigr) 
\leq \eta +max

\biggl\{ 
0,

\alpha + \eta  - \beta 

\alpha + \eta  - inf g
(\rho \ast + \rho 0)

\biggr\} 
.

Repeating the argument with the roles of f and g reversed leads to the conclusion.

The proposition relies heavily on the assumption that lev\alpha f and lev\beta g have
nonempty interiors. The next section dispenses with that requirement as well as
convexity.
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4. Distances between epigraphs of functions. As special sets, epigraphs of-
fer several possibilities to specialize the results of the previous section and also develop
new ones. First, we examine the Kenmochi conditions and their numerous applica-
tions, including in the analysis of constrained problems with feasible sets that lack
interiors. Second, we develop a series of calculus rules relying, in part, on section 3.

For a metric space (X, dX), let the closed balls at x \in X be denoted by

\BbbB X(x, \rho ) := \{ \=x \in X | dX(x, \=x) \leq \rho \} for \rho \geq 0.

4.1. Kenmochi conditions and applications. An alternative expression for
the truncated Hausdorff distance between epigraphs is provided by the Kenmochi con-
ditions, which can be traced back to [21]; see also [4]. The following result generalizes
[33, Prop. 3.2] by relaxing an lsc assumption and establishing that the conditions
provide tight estimates. A proof is provided in the appendix.

Proposition 4.1 (Kenmochi conditions). For a metric space X, functions f, g :
X \rightarrow \BbbR , both with nonempty epigraphs, and \rho \in \BbbR +,

\widehat dl\rho (epi f, epi g) = inf
\Bigl\{ 
\eta \geq 0

\bigm| \bigm| \bigm| inf\BbbB X(x,\eta ) g \leq max\{ f(x), - \rho \} + \eta \forall x \in lev\rho f \cap \BbbB X(\rho )

inf\BbbB X(x,\eta ) f \leq max\{ g(x), - \rho \} + \eta \forall x \in lev\rho g \cap \BbbB X(\rho )
\Bigr\} 
.

For \alpha \in (0,\infty ), a function f : X \rightarrow \BbbR is \alpha -H\"older continuous with modulus
\kappa : \BbbR + \rightarrow \BbbR + if

| f(x) - f(\=x)| \leq \kappa (\rho )
\bigl[ 
dX(x, \=x)

\bigr] \alpha 
for x, \=x \in \BbbB X(\rho ) and \rho \in \BbbR +.

The function is Lipschitz continuous with modulus \kappa : \BbbR + \rightarrow \BbbR + if the relation holds
with \alpha = 1.

The truncated Hausdorff distance between epigraphs of functions of this kind can
be bounded by an expression involving the worst pointwise difference between the
functions over a set.

Proposition 4.2 (estimates from sup-norm). For a metric space X, functions
f, g : X \rightarrow \BbbR , and \rho \in \BbbR +, we have that

\widehat dl\rho (epi f, epi g) \leq supA\rho 
| f  - g| ,

where A\rho = (lev\rho f \cup lev\rho g)\cap \BbbB X(\rho ). Suppose also that f and g are \alpha -H\"older contin-
uous with common modulus \kappa : \BbbR + \rightarrow \BbbR + and \alpha \in (0,\infty ). Then, for any nonempty
C \subset X,\widehat dl\rho (epi f, epi g) \leq max

\bigl\{ 
exs(A\rho ;C), \kappa (\^\rho )[exs(A\rho ;C)]

\alpha + supC | f  - g| 
\bigr\} 
,

provided that \^\rho > \rho + exs(A\rho ;C).

Proof. The first assertion holds via Proposition 4.1. For the second assertion, set
\eta = exs(A\rho ;C) and let \epsilon \in (0, \^\rho  - \rho  - \eta ). Suppose that x \in lev\rho f \cap \BbbB X(\rho ). Then
there exists \=x \in C with dX(x, \=x) \leq \=\eta = \eta + \epsilon and

inf\BbbB X(x,\=\eta ) g \leq g(\=x) \leq f(\=x) + supC | f  - g| \leq max\{ f(x), - \rho \} + \kappa (\^\rho )\=\eta \alpha + supC | f  - g| .

A similar result holds with the roles of f and g reversed. Thus, by Proposition 4.1\widehat dl\rho (epi f, epi g) \leq max\{ \=\eta , \kappa (\^\rho )\=\eta \alpha +supC | f - g| \} . Since \epsilon is arbitrary, \=\eta can be replaced
by \eta and the second conclusion holds.
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Example 1: Sample average approximations. In stochastic optimization and sta-
tistical learning, f : X \rightarrow \BbbR is often given as f(x) = \BbbE [\psi (\xi , x)], where \psi : \Xi \times X \rightarrow \BbbR 
and \BbbE denotes the expectation under the distribution of the random vector \xi with
values in \Xi . Under standard assumptions (see [32, Chap. 14], [39, Chap. 7]), f is well
defined and Lipschitz continuous with modulus \kappa : \BbbR + \rightarrow \BbbR +. An approximation of f
could be the sample average function f\nu : X \rightarrow \BbbR given by f\nu (x) = \nu  - 1

\sum \nu 
i=1 \psi (\xi 

i, x),
where \xi 1, . . . , \xi \nu \in \Xi are given data. Under related assumptions, f\nu is also Lipschitz
continuous with the same modulus as f . When X is finitely compact,2 A\rho in Propo-
sition 4.2 is compact and it is possible to construct for any \epsilon > 0 a set C consisting
of only a finite number of points and still have exs(A\rho ;C) \leq \epsilon . Since C is finite,
there exists a variety of ways of bounding supC | f  - f\nu | , say by \delta , using the theory
of large deviations; see, for example, [39, Chap. 7]. Proposition 4.2 then gives that\widehat dl\rho (epi f, epi f\nu ) \leq max\{ \epsilon , \kappa (\^\rho )\epsilon + \delta \} when \^\rho > \rho + \epsilon .

The next result extends [33, Prop. 3.3] by moving from indicator functions to
general functions and from Lipschitz to H\"older continuous functions; see also [4, 9]
for results on sums in the convex case.

Proposition 4.3 (sums under H\"older continuity). For a metric space X, func-
tions fi, gi : X \rightarrow \BbbR , i = 1, 2, where f1, g1 are \alpha -H\"older continuous with common
modulus \kappa : \BbbR + \rightarrow \BbbR +, \alpha \in (0,\infty ), and \rho \in \BbbR +, we have that

\widehat dl\rho \bigl( epi(f1 + f2), epi(g1 + g2)
\bigr) 
\leq supA\rho 

| f1  - g1| + \eta + \kappa (\^\rho )\eta \alpha ,

where \eta = \widehat dl\=\rho (epi f2, epi g2), provided that epi(f1+f2) and epi(g1+g2) are nonempty,
A\rho = (lev\rho (f1+f2)\cup lev\rho (g1+g2))\cap \BbbB X(\rho ), \=\rho \geq \rho +max\{ 0, - inf\BbbB X(\rho ) f1, - inf\BbbB X(\rho ) g1\} ,
and \^\rho > \rho + \eta .

Proof. Let \epsilon \in (0, \^\rho  - \rho  - \eta ) and x \in lev\rho (f1+f2)\cap \BbbB X(\rho ). Then f2(x) \leq \rho  - f1(x) \leq 
\=\rho , so that (x, f2(x)) \in epi f2 \cap \BbbB X(\=\rho ). Consequently, there exists (\=x, \=\alpha ) \in epi g2 with
dX(x, \=x) \leq \eta + \epsilon , | \=\alpha  - f2(x)| \leq \eta + \epsilon , and g2(\=x) \leq \=\alpha . These facts imply that

inf\BbbB X(x,\eta +\epsilon ) g1 + g2 \leq g1(\=x) + g2(\=x) = g1(\=x) - g1(x) + g1(x) - f1(x) + f1(x) + g2(\=x)

\leq \kappa (\^\rho )\eta \alpha + supA\rho 
| f1  - g1| + f1(x) + f2(x) + \eta + \epsilon 

\leq max
\bigl\{ 
f1(x) + f2(x), - \rho 

\bigr\} 
+ supA\rho 

| f1  - g1| + \kappa (\^\rho )\eta \alpha + \eta + \epsilon .

Repeating these arguments with the roles of f1, f2 switched with those of g1, g2, we
obtain via Proposition 4.1 that \widehat dl\rho \bigl( epi(f1+f2), epi(g1+g2)\bigr) \leq max\{ \eta +\epsilon , supA\rho 

| f1 - 
g1| + \kappa (\^\rho )\eta \alpha + \eta + \epsilon . Since \epsilon is arbitrary, the conclusion follows.

Example 1: Continued. Suppose that in addition to f the problem of interest
involves a ``regularizer"" r : X \rightarrow [0,\infty ), which is common in statistical learning,
i.e., we aim to minimize f + r. We may want to examine the stability of solutions
under changes to r. Let r\nu : X \rightarrow [0,\infty ) be such an alternative regularizer. A prime
example is when r = 0 and we want to quantify the effect of the regularizer r\nu . We
are therefore interested in comparing epi(f + r) to epi(f\nu + r\nu ). Suppose that r and
r\nu are \alpha -H\"older continuous with common modulus \mu : \BbbR + \rightarrow \BbbR + and \alpha \in (0,\infty ), and
X = \BbbR n. A possible choice is to have r\nu (x) =

\sum n
j=1 s

\nu (xj) with s
\nu (\tau ) = \lambda | \tau |  - \nu \tau 2/2

when | \tau | \leq \lambda /\nu , and s\nu (\tau ) = \lambda 2/(2\nu ) otherwise, with \lambda > 0 being a parameter. This
makes r\nu a nonconvex function with Lipschitz modulus \lambda globally. An even more

2Recall that a metric space is finitely compact if all its balls are compact.
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aggressive regularizer would be s\nu (\tau ) = \nu  - 1
\sqrt{} 

| \tau | , possibly further scaled, which is
nonconvex but 1/2-H\"older continuous. Regardless, Proposition 4.3 establishes that\widehat dl\rho \bigl( epi(f + r), epi(f\nu + r\nu )

\bigr) 
\leq supA\rho 

| r  - r\nu | + \eta + \mu (\^\rho )\eta \alpha ,

where \eta = \widehat dl\=\rho (epi f, epi f\nu ) can be expressed in terms of \kappa , \epsilon , and \delta , and A\rho and \^\rho 
are sufficiently large, as stipulated by the proposition. In particular when r = 0, this
error bound provides guidance on how fast the regularizer should vanish as the sample
size \nu grows. Typically, the sample error \delta is of order \nu  - 1/2, which indicates that r\nu 

should vanish at the same rate at least when \alpha = 1.

Example 2: Disjunctive programming. Suppose that \{ C\alpha , \alpha \in A\} is a collection
of nonempty subsets of a Hilbert space X and c \in X. Disjunctive programming
studies problems of the form minimize \langle c, x\rangle subject to x \in \cup \alpha \in AC\alpha . The effect of
replacing c by d \in X and the sets by \{ D\alpha \not = \emptyset , \alpha \in A\} on the minimum value and set
of near-minimizers can be bounded by Proposition 2.2 via Propositions 4.3 and 3.3.
Specifically, let f(x) = \langle c, x\rangle if x \in C = \cup \alpha \in AC\alpha , and f(x) = \infty otherwise. Likewise,
g(x) = \langle d, x\rangle if x \in D = \cup \alpha \in AD\alpha , and g(x) = \infty otherwise. Since infx\in \BbbB X(\rho )\langle c, x\rangle \geq 
 - \rho \| c\| and similarly with c replaced by d, \=\rho can be set to \rho (1 + max\{ \| c\| , \| d\| \} ) in
Proposition 4.3 and, in view of the Lipschitz continuity of \langle c, \cdot \rangle and \langle d, \cdot \rangle ,\widehat dl\rho (epi f, epi g) \leq \rho \| c - d\| +

\bigl( 
1 + max\{ \| c\| , \| d\| \} 

\bigr) \widehat dl\=\rho (epi \iota C , epi \iota D)

\leq \rho \| c - d\| +
\bigl( 
1 + max\{ \| c\| , \| d\| \} 

\bigr) 
sup\alpha \in A

\widehat dl\=\rho (C\alpha , D\alpha ),

where the last inequality follows by Corollary 3.2 and Proposition 3.3. Consequently,
solutions of disjunctive programs exhibit a Lipschitz property in this sense under a
remarkable absence of assumptions.

As already discussed in section 3, intersections of sets are generally not stable
under perturbations of the individual sets. This fact is the source of many difficulties
in constrained optimization. In particular, if the problem of minimizing f0(x) subject
to x \in C\alpha for all \alpha \in A is ``approximated"" by minimizing g0(x) subject to x \in D\alpha 

for all \alpha \in A, with both supX | f0  - g0| and \widehat dl\rho (C\alpha , D\alpha ) being ``small"" for all \alpha \in A,
then their solutions can still be arbitrarily far apart. The issue surfaces even in one
dimension: for example, set f0(x) = g0(x) = x, C1 = D1 = \{ 0, 1\} , C2 = [0, 1  - \epsilon ],
and D2 = [\epsilon , 1] for \epsilon \in (0, 1). Thus, a major challenge is to construct approximat-
ing problems that are associated with small truncated Hausdorff distances to their
original counterparts. We observe that in the convex case, having an intersection of
constraint sets with nonempty interior suffices to avoid this difficulty as long as the
approximations are sufficiently accurate; see [9, Cor. 2.5].

We illustrate three cases, while refraining from making assumptions about the
feasible sets having an interior or being convex. Moreover, the approximations can be
arbitrarily poor, i.e., we are not only considering small perturbations. This forces us to
construct approximating problems that are rather different from the actual problems
because simply replacing objective functions and constraint sets by approximating
counterparts usually fails to achieve small solution errors, as the trivial example in
the previous paragraph highlights.

Case I. The first case analyzes the feasibility problem of finding an x \in \cap m
i=1Ci

when we only have approximating sets D1, . . . , Dm. We construct an approximating
optimization problem in a higher-dimensional space that furnishes an approximat-
ing solution of the actual feasibility problem and is computationally attractive as it
``nearly"" decomposes into m subproblems.

D
ow

nl
oa

de
d 

08
/2

4/
20

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

764 JOHANNES O. ROYSET

Theorem 4.4 (approximation of feasibility problem). For subsets C1, . . . , Cm

and D1, . . . , Dm of a metric space (X, dX), with centroid x\mathrm{c}\mathrm{t}\mathrm{r}, \lambda \in (0,\infty ), \rho >
2\lambda (m - 1)maxi=1,...,m dX(x\mathrm{c}\mathrm{t}\mathrm{r}, Di), with \cap m

i=1Ci\cap \BbbB X(\rho ) \not = \emptyset , and \=\rho \in (3\rho ,\infty ), suppose
that the following constraint qualification holds: there exists a nondecreasing function
\psi : \BbbR + \rightarrow \BbbR + such that

dist(x1,\cap m
i=1Ci) \leq \psi 

\Biggl( 
m\sum 
i=1

dX(xi, x1)

\Biggr) 
for all xi \in Ci \cap \BbbB X(\=\rho ), i = 1, . . . ,m.

Then any solution

(\=x1, . . . , \=xm) \in argmin

\Biggl\{ 
\lambda 

m\sum 
i=1

dX(xi, x1)
\bigm| \bigm| \bigm| xi \in Di, i = 1, . . . ,m

\Biggr\} \bigcap 
\BbbB Xm(\rho )

satisfies

dist

\Biggl( 
\=x1,

m\bigcap 
i=1

Ci

\Biggr) 
\leq \=\rho 

\lambda 
+ \psi 

\Bigl( \=\rho 

\lambda 

\Bigr) 
+ (1 + 2m\lambda ) max

i=1,...,m

\widehat dl\=\rho (Ci, Di).

Proof. Let C = C1 \times \cdot \cdot \cdot \times Cm \subset Xm, D = D1 \times \cdot \cdot \cdot \times Dm \subset Xm, and define
f, f\lambda , g\lambda : Xm \rightarrow \BbbR to have f(x1, . . . , xm) = 0 if (x1, . . . , xm) \in C and xi = x1 for
all i, f\lambda (x1, . . . , xm) = \lambda 

\sum m
i=1 dX(xi, x1) if (x1, . . . , xm) \in C, and g\lambda (x1, . . . , xm) =

\lambda 
\sum m

i=1 dX(xi, x1) if (x1, . . . , xm) \in D. Otherwise, the functions take the value \infty .
First, we examine the Kenmochi conditions for f and f\lambda . Suppose (x1, . . . , xm)

\in lev\=\rho f \cap \BbbB Xm(\=\rho ). (Note that Xm = X \times \cdot \cdot \cdot \times X is equipped with the product
metric.) Then (x1, . . . , xm) \in C and xi = x1 for all i. Thus, inf\BbbB Xm ((x1,...,xm),0) f

\lambda \leq 
f\lambda (x1, . . . , xm) = 0 = f(x1, . . . , xm) and the first set of Kenmochi conditions holds
with \eta = 0. Next, suppose that (x1, . . . , xm) \in lev\=\rho f

\lambda \cap \BbbB Xm(\=\rho ). Then xi \in Ci for
all i and \lambda 

\sum m
i=1 dX(xi, x1) \leq \=\rho . In view of the constraint qualification, this implies

that

dist(x1,\cap m
i=1Ci) \leq \psi 

\Biggl( 
m\sum 
i=1

dX(xi, x1)

\Biggr) 
\leq \psi (\=\rho /\lambda ).

Let \epsilon > 0. There exists \=x \in \cap m
i=1Ci such that dist(x1,\cap m

i=1Ci) \geq dX(x1, \=x)  - \epsilon .
Certainly,

dX(xi, \=x) \leq dX(xi, x1) + dX(x1, \=x) \leq \=\rho /\lambda + \psi (\=\rho /\lambda ) + \epsilon .

Then, with \eta = \=\rho /\lambda + \psi (\=\rho /\lambda ) + \epsilon ,

inf\BbbB Xm ((x1,...,xm),\eta ) f \leq f(\=x, . . . , \=x) = 0 \leq f\lambda (x1, . . . , xm)

and the second set of Kenmochi conditions holds with this \eta . Since \epsilon is arbitrary, we
have established via Proposition 4.1 that

\widehat dl\=\rho (epi f, epi f\lambda ) \leq \=\rho /\lambda + \psi (\=\rho /\lambda ).

Second, we estimate \widehat dl\=\rho (epi f\lambda , epi g\lambda ). The Lipschitz modulus of the function
(x1, . . . , xm) \mapsto \rightarrow \lambda 

\sum m
i=1 dX(xi, x1) is the constant 2m\lambda . By Propositions 3.1 and 4.3

and Corollary 3.2,

\widehat dl\=\rho (epi f\lambda , epi g\lambda ) \leq (1 + 2m\lambda )\widehat dl\=\rho (C,D) \leq (1 + 2m\lambda )maxi=1,...,m
\widehat dl\=\rho (Ci, Di).

D
ow

nl
oa

de
d 

08
/2

4/
20

 to
 2

05
.1

55
.6

5.
22

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY AND ERROR ANALYSIS 765

For any \epsilon > 0, we have that

dist
\bigl( 
(x\mathrm{c}\mathrm{t}\mathrm{r}, . . . , x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi f

\bigr) 
\leq dist(x\mathrm{c}\mathrm{t}\mathrm{r},\cap m

i=1Ci) \leq \rho ,

dist
\bigl( 
(x\mathrm{c}\mathrm{t}\mathrm{r}, . . . , x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi f\lambda 

\bigr) 
\leq dist(x\mathrm{c}\mathrm{t}\mathrm{r},\cap m

i=1Ci) \leq \rho ,

dist
\bigl( 
(x\mathrm{c}\mathrm{t}\mathrm{r}, . . . , x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi g\lambda 

\bigr) 
\leq 2\lambda (m - 1) max

i=1,...,m
dX(x\mathrm{c}\mathrm{t}\mathrm{r}, Di) + \epsilon < \rho + \epsilon .

Thus, \=\rho > 3\rho is sufficiently large for use in Proposition 2.1 and

\widehat dl\rho (epi f, epi g\lambda ) \leq \eta = \=\rho /\lambda + \psi (\=\rho /\lambda ) + (1 + 2m\lambda )maxi=1,...,m
\widehat dl\=\rho (Ci, Di).

We next apply Proposition 2.2 to the functions f and g\lambda . The conditions of the
proposition are easily verified. In particular, for (x1, . . . , xm) \in D,

inf g\lambda \leq \lambda 

m\sum 
i=1

dX(xi, x1) \leq \lambda (m - 1) max
i=1,...,m

dX(xi, x1),

which together with the fact that dX(xi, x1) \leq 2maxi=1,...,m dist(x\mathrm{c}\mathrm{t}\mathrm{r}, Di) + \epsilon for any
\epsilon > 0 ensures that

inf g\lambda \leq 2\lambda (m - 1) max
i=1,...,m

dX(x\mathrm{c}\mathrm{t}\mathrm{r}, Di) + \lambda (m - 1)\epsilon .

Consequently, Proposition 2.2 yields exs
\bigl( 
argmin g\lambda \cap \BbbB Xm(\rho ); \delta - argmin f

\bigr) 
\leq \eta for

\delta > 2\eta . Since \delta - argmin f = \{ (x1, . . . , xm) \in C | xi = x1, i = 1, . . . ,m\} for \delta \geq 0, the
conclusion holds.

The constraint qualification quantifies how close the points \{ xi \in Ci, i = 1, . . . ,m\} 
will be to \cap m

i=1Ci when the points are close to each other. An example similar to the
one discussed prior to the theorem is furnished by C1 = D1 = \{ 0, 1\} , C2 = [0, 1 - \delta ],

with \delta \in (0, 1), and D2 = [\epsilon , 1  - \delta ], with \epsilon \in (0, 1  - \delta ], where \widehat dl\rho (Ci, Di) \leq \epsilon for
i = 1, 2 and \rho \geq \epsilon . Thus, C1 \cap C2 = \{ 0\} , but D1 \cap D2 = \emptyset , and it would be futile
to attempt to find a feasible point in C1 \cap C2 by solving x \in D1 \cap D2. However,
the approximating problem of the theorem produces the desired result. Specifically,
in this case we can take \psi (\gamma ) = \gamma /\delta for \gamma \geq 0. Thus, the approximating problem
produces a solution with error at most \=\rho (\lambda  - 1 + \delta  - 1\lambda  - 1) + (1 + 4\lambda )\epsilon . As \epsilon \searrow 0, this
error vanishes as long as \lambda is set appropriately to, for example, \epsilon  - 1/2.

In general, the rate of convergence depends on the conditioning function \psi . Poor
conditioning requires a large \lambda that in turn increases the third term in the conclusion
of Theorem 4.4. Even in the convex case, the conditioning can be arbitrarily poor: let
C1 = \{ x \in \BbbR 2 | x2 \leq 0\} and C2 = \{ x \in \BbbR 2 | x\alpha 1 \leq x2\} for \alpha > 1, with C1 \cap C2 = \{ 0\} .
Then \psi (\gamma ) = \gamma 1/\alpha , and x1 \in C1 and x2 \in C2 can be close even though x1 is far
from the origin for large \alpha . Further details about constraint qualifications arise in the
following two theorems for the case of inequality constraints.

Case II. The second case considers the optimization problem

(4.1) minimize
x\in X

f0(x) subject to fi(x) \leq 0 for i = 1, . . . ,m,

for which the actual functions need to be approximated by g0, . . . , gm. As already
mentioned, an ``approximating"" problem obtained by simply replacing fi by gi for
i = 0, 1, . . . ,m might fail to be epigraphically close to the actual problem (4.1) even
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though maxi=0,...,m supx\in X | fi(x) - gi(x)| is small. In particular, \{ x \in X | gi(x) \leq 0,
i = 1, . . . ,m\} could be empty while the actual feasible set is nonempty. As an alter-
native, we examine for \lambda > 0 the approximating problem

minimize
x\in X,y\in \BbbR m

g0(x) + \lambda 

m\sum 
i=1

yi subject to gi(x) \leq yi, yi \geq 0 for i = 1, . . . ,m,

with variable y = (y1, . . . , ym) \in \BbbR m. We see next that this approximating problem
furnishes approximating solutions for (4.1) via Proposition 2.2.

Theorem 4.5 (approximation by constraint softening). For a metric space X
and fi, gi : X \rightarrow \BbbR , i = 0, 1, . . . ,m, where f0 and g0 are Lipschitz continuous with
common modulus \kappa : \BbbR + \rightarrow \BbbR +, consider the functions f, g\lambda : X \times \BbbR m \rightarrow \BbbR defined
by

f(x, y) =

\Biggl\{ 
f0(x) if fi(x) \leq 0 and yi = 0 for all i = 1, . . . ,m,

\infty otherwise

and, with \lambda \in (0,\infty ),

g\lambda (x, y) =

\Biggl\{ 
g0(x) + \lambda 

\sum m
i=1 yi if gi(x) \leq yi, yi \geq 0 for all i = 1, . . . ,m,

\infty otherwise.

Then,3 for \rho \in \BbbR +,

\widehat dl\rho (epi f, epi g\lambda ) \leq \bigl( 1+\kappa (\^\rho )\bigr) max
\Bigl\{ \rho \ast 
\lambda 
, \psi  - 1

\Bigl( \rho \ast 
\lambda 

\Bigr) \Bigr\} 
+(1+m\lambda ) max

i=0,...,m
sup\BbbB X(\=\rho ) | fi - gi| ,

as long as \=\rho > 2\rho +max\{ dist((x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi f),dist((x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi g\lambda )\} , \rho \ast \geq \=\rho + max\{ 0,
 - inf\BbbB X(\=\rho ) f0\} , \^\rho > \=\rho +max\{ \rho \ast /\lambda , \psi  - 1(\rho \ast /\lambda )\} , and the following constraint qualifica-
tion holds: there is a strictly increasing function \psi : \BbbR + \rightarrow \BbbR + such that

max
i=1,...,m

fi(x) \geq \psi 
\Bigl( 
dist

\bigl( 
x, lev0\{ max

i=1,...,m
fi\} 
\bigr) \Bigr) 

when x \not \in lev0\{ max
i=1,...,m

fi\} .

Proof. As intermediate steps, we define h, h\lambda , f\lambda : X \times \BbbR m \rightarrow \BbbR to have values
h(x, y) = \iota X\times \{ 0\} (x, y) + \iota C(x, y), with C = \{ (x, y) \in X \times \BbbR m | fi(x) \leq yi, yi \geq 0, i =
1, . . . ,m\} , and

h\lambda (x, y) = \lambda 
m\sum 
i=1

yi + \iota C(x, y), f\lambda (x, y) = f0(x) + h\lambda (x, y).

First, we examine the Kenmochi conditions for h and h\lambda . Let (x, y) \in lev\rho \ast h\lambda \cap 
\BbbB X\times \BbbR m(\rho \ast ). Thus, (x, y) \in C, \lambda 

\sum m
i=1 yi \leq \rho \ast , and \| y\| \infty \leq \rho \ast /\lambda . Let \epsilon > 0 and

\eta = max\{ \rho \ast /\lambda , \psi  - 1(\rho \ast /\lambda )\} + \epsilon . If fi(x) \leq 0 for all i, then

inf
\BbbB X\times \BbbR m ((x,y),\eta )

h \leq h(x, 0) = 0 \leq max
\bigl\{ 
h\lambda (x, y), - \rho \ast 

\bigr\} 
.

Otherwise there is i\ast with fi\ast (x) > 0 so that

\rho \ast /\lambda \geq yi\ast \geq fi\ast (x) \geq \psi (dist(x, lev0\{ max
i=1,...,m

fi\} ))

3Here we use the product metric on X \times \BbbR m constructed from the sup-norm on \BbbR m.
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and \psi  - 1(\rho \ast /\lambda ) \geq dist(x, lev0\{ maxi=1,...,m fi\} ). There exists \=x \in lev0\{ maxi=1,...,m fi\} 
such that dX(x, \=x) \leq dist(x, lev0\{ maxi=1,...,m fi\} )+\epsilon \leq \psi  - 1(\rho \ast /\lambda ) +\epsilon . Consequently,

inf
\BbbB X\times \BbbR m ((x,y),\eta )

h \leq h(\=x, 0) = 0 \leq max
\bigl\{ 
h\lambda (x, y), - \rho \ast 

\bigr\} 
.

Thus, the second set of Kenmochi conditions holds with this \eta . Since h\lambda \leq h, the first
set also holds. Consequently, since \epsilon > 0 is arbitrary and Proposition 4.1 applies, we
have established that

\widehat dl\rho \ast (epih, epih\lambda ) \leq max
\bigl\{ 
\rho \ast /\lambda , \psi  - 1(\rho \ast /\lambda )

\bigr\} 
.

We obtain via Proposition 4.3 that

\widehat dl\=\rho (epi f, epi f\lambda ) \leq \bigl( 1 + \kappa (\^\rho )
\bigr) 
max

\bigl\{ 
\rho \ast /\lambda , \psi  - 1(\rho \ast /\lambda )

\bigr\} 
.

Second, we consider the Kenmochi conditions for f\lambda and g\lambda . Let \delta = maxi=0,1,...,m

sup\BbbB X(\=\rho ) | fi  - gi| and (x, y) \in lev\=\rho f
\lambda \cap \BbbB X\times \BbbR m(\=\rho ). Then (x, y) \in C, fi(x) \leq yi, and

gi(x) \leq yi + \delta for all i = 1, . . . ,m. Set \eta = (1 +m\lambda )\delta and \=y = y + (\delta , . . . , \delta ). With
B = \BbbB X\times \BbbR m((x, y), \eta ), we obtain

infB g
\lambda \leq g\lambda (x, \=y) = g0(x) + \lambda 

m\sum 
i=1

\=yi \leq f0(x) + \delta + \lambda 

m\sum 
i=1

yi + \lambda m\delta \leq f\lambda (x, y) + \eta .

Repeating this argument with the roles of g\lambda and f\lambda reversed, we obtain via Propo-
sition 4.1 that \widehat dl\=\rho (epi f\lambda , epi g\lambda ) \leq (1+m\lambda )\delta . Proposition 2.1 then yields the conclu-
sion.

The theorem presents a trade-off between two error terms. If the conditioning
function \psi (\gamma ) = \gamma \beta for \beta > 0, then \lambda should be of the order O(\delta  - \beta /(1+\beta )) to balance
the two terms, where \delta = maxi=0,1,...,m sup\BbbB X(\=\rho ) | fi - gi| . This leads to the overall rate

of convergence O(\delta 1/(1+\beta )), which can be significantly worse than what is indicated
by the pointwise error \delta . Still, the situation is much improved from the approach of
simply minimizing g0(x) subject to gi(x) \leq 0 for i = 1, . . . ,m. As discussed prior
to the theorem, that problem may have solutions that are arbitrarily far away from
those of the actual problem (4.1). In some sense, the theorem explains the popularity
of formulations with constraint softening in practice (see [15] for a prime example);
they are in a fundamental way ``robust"" to inaccuracy in the constraint functions.

Theorem 4.5 makes no Slater-type constraint qualification for the actual problem
and places no restrictions on the properties of the constraint functions at points in the
feasible set. Naturally, if such conditions are brought in, we can improve the results;
cf. Proposition 3.8 and [33, Thm. 4.6].

Case III. While still addressing the actual problem (4.1), the third case examines
the classical penalty method and the resulting unconstrained approximating problems.

Theorem 4.6 (approximation by penalty formulation). For a metric space X,
with centroid x\mathrm{c}\mathrm{t}\mathrm{r}, \lambda \in (0,\infty ), and fi, gi : X \rightarrow \BbbR , i = 0, 1, . . . ,m, where f0 and g0
are Lipschitz continuous with common modulus \kappa : \BbbR + \rightarrow \BbbR +, consider the functions
f, g\lambda : X \times \BbbR m \rightarrow \BbbR defined by

g\lambda (x) = g0(x)+\lambda 

m\sum 
i=1

max\{ 0, gi(x)\} and f(x) =

\Biggl\{ 
f0(x) if fi(x) \leq 0 \forall i = 1, . . . ,m,

\infty otherwise.
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Then

\widehat dl\rho (epi f, epi g\lambda ) \leq max\{ 1, \kappa (\^\rho )\} \psi  - 1
\Bigl( \=\rho  - inf\BbbB X(\=\rho ) f0

\lambda 

\Bigr) 
+(1+m\lambda ) max

i=0,...,m
sup
\BbbB X(\=\rho )

| fi - gi| ,

provided that \=\rho > 2\rho + max\{ dist(x\mathrm{c}\mathrm{t}\mathrm{r}, epi f),dist(x\mathrm{c}\mathrm{t}\mathrm{r}, epi g\lambda )\} , \^\rho > \=\rho + \psi  - 1((\=\rho  - 
inf\BbbB X(\=\rho ) f0)\lambda 

 - 1), and the same constraint qualification as in Theorem 4.5 holds.

Proof. As an intermediate quantity, we define f\lambda : X \rightarrow \BbbR to have values f\lambda (x) =
f0(x) + \lambda 

\sum m
i=1 max\{ 0, fi(x)\} . We start by examining the Kenmochi conditions for

f and f\lambda . Let x \in lev\=\rho f
\lambda \cap \BbbB X(\=\rho ) so that f0(x) + \lambda 

\sum m
i=1 max\{ 0, fi(x)\} \leq \=\rho . If

maxi=1,...,m fi(x) > 0, then

maxi=1,...,m fi(x) \leq 
m\sum 
i=1

max\{ 0, fi(x)\} \leq \=\rho  - f0(x)

\lambda 
.

Since f0(x) \leq \=\rho , inf\BbbB X(\=\rho ) f0 \leq \=\rho . These facts together with the constraint qualification
lead to

dist
\bigl( 
x, lev0\{ max

i=1,...,m
fi\} 
\bigr) 
\leq \psi  - 1

\bigl( 
max

i=1,...,m
fi(x)

\bigr) 
\leq \eta = \psi  - 1

\biggl( 
\=\rho  - inf\BbbB X(\=\rho ) f0

\lambda 

\biggr) 
.

Let \epsilon \in (0, \^\rho  - \=\rho  - \psi  - 1((\=\rho  - inf\BbbB X(\=\rho ) f0)\lambda 
 - 1)]. There exists \=x \in lev0\{ maxi=1,...,m fi\} 

such that dX(x, \=x) \leq \eta + \epsilon and

inf\BbbB X(x,\eta +\epsilon ) f \leq f(\=x) = f0(\=x) \leq f0(x) + \kappa (\^\rho )(\eta + \epsilon ) \leq f\lambda (x) + \kappa (\^\rho )(\eta + \epsilon ).

Alternatively, if maxi=1,...,m fi(x) \leq 0, then inf\BbbB X(x,0) f \leq f0(x) \leq f\lambda (x). We

have therefore established the second Kenmochi condition for f and f\lambda with error
max\{ 1, \kappa (\^\rho )\} (\eta + \epsilon ). Since f \geq f\lambda , the first Kenmochi condition holds with an error
of zero. Since \epsilon > 0 is arbitrary, we have established via Proposition 4.1 that

\widehat dl\=\rho (epi f, epi f\lambda ) \leq max
\bigl\{ 
1, \kappa (\^\rho )

\bigr\} 
\psi  - 1

\biggl( 
\=\rho  - inf\BbbB X(\=\rho ) f0

\lambda 

\biggr) 
.

Trivially, | f\lambda (x) - g\lambda (x)| \leq (1+m\lambda )maxi=0,1,...,m sup\BbbB X(\=\rho ) | fi  - gi| for x \in \BbbB X(\=\rho ), so

that \widehat dl\=\rho (epi f\lambda , epi g) is also bounded by the same quantity; cf. Proposition 4.2. The
conclusion then follows by Proposition 2.1.

We again find a trade-off between two error terms that are nearly identical to
those in Theorem 4.5. From this perspective, the penalty formulation has the same
rate of convergence as that in Case II and is therefore stable even when the actual
feasible set in (4.1) has an empty interior.

4.2. Calculus rules for compositions. The truncated Hausdorff distance be-
tween epigraphs of functions that are certain compositions can be bounded, as we see
next. The results of this subsection extend in some sense Proposition 4.3, which deals
with sums. Composition rules for epi-sum and epi-multiplication can be found in [4];
see also [9] for a systematic treatment of the convex case including sums of convex
functions.

Proposition 4.7 (compositions; Lipschitz inner mapping). For metric spaces
(X, dX) and (Y, dY ), with centroids x\mathrm{c}\mathrm{t}\mathrm{r} and y\mathrm{c}\mathrm{t}\mathrm{r}, respectively, f, g : Y \rightarrow \BbbR , and
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F,G : X \rightarrow Y , suppose that F - 1, G - 1 : Y \rightarrow \rightarrow X are nonempty-valued and Lipschitz
continuous with common modulus \kappa : \BbbR + \rightarrow \BbbR + relative to \rho \ast \in [0,\infty ]. Then, for
\rho \in \BbbR +,\widehat dl\rho \bigl( epi(f\circ F ), epi(g\circ G)\bigr) \leq sup

y\in \BbbB Y (\=\rho )

\widehat dl\rho \ast (F - 1(y), G - 1(y))+max\{ 1, \kappa (\^\rho )\} \widehat dl\=\rho (epi f, epi g),
provided that \rho \ast > 2\rho +max\{ | \alpha | , | \=\alpha | ,dist(x\mathrm{c}\mathrm{t}\mathrm{r}, F - 1(y)),dist(x\mathrm{c}\mathrm{t}\mathrm{r}, F - 1(\=y)), and dist(x\mathrm{c}\mathrm{t}\mathrm{r},
G - 1(\=y))\} for some (y, \alpha ) \in epi f and (\=y, \=\alpha ) \in epi g,

\=\rho > max
\bigl\{ 
\rho \ast , supx\in \BbbB X(\rho \ast ) dY

\bigl( 
F (x), y\mathrm{c}\mathrm{t}\mathrm{r}

\bigr) 
, supx\in \BbbB X(\rho \ast ) dY

\bigl( 
G(x), y\mathrm{c}\mathrm{t}\mathrm{r}

\bigr) \bigr\} 
,

and \^\rho > \=\rho + \widehat dl\=\rho (epi f, epi g).
Proof. Let \^F , \^G : X \times \BbbR \rightarrow Y \times \BbbR have \^F (x, \alpha ) = (F (x), \alpha ) and \^G(x, \alpha ) =

(G(x), \alpha ) for (x, \alpha ) \in X \times \BbbR . Then it follows directly that

epi(f \circ F ) = \^F - 1(epi f) and epi(g \circ G) = \^G - 1(epi g),

and we can bring in Theorem 3.5 with S = \^F - 1 and T = \^G - 1. Let \epsilon > 0. There exists
x \in F - 1(y) such that dX(x\mathrm{c}\mathrm{t}\mathrm{r}, x) \leq dist(x\mathrm{c}\mathrm{t}\mathrm{r}, F - 1(y)) + \epsilon . Then f(F (x)) = f(y) \leq \alpha 
and (x, \alpha ) \in epi(f \circ F ). Consequently,

dist
\bigl( 
(x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi(f \circ F )

\bigr) 
\leq max

\bigl\{ 
dX(x\mathrm{c}\mathrm{t}\mathrm{r}, x), | \alpha | 

\bigr\} 
\leq max

\bigl\{ 
dist(x\mathrm{c}\mathrm{t}\mathrm{r}, F - 1(y))+\epsilon , | \alpha | 

\bigr\} 
.

Similar arguments establish that

dist
\bigl( 
(x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi(g \circ F )

\bigr) 
\leq max

\bigl\{ 
dist(x\mathrm{c}\mathrm{t}\mathrm{r}, F - 1(\=y)) + \epsilon , | \=\alpha | 

\bigr\} 
,

dist
\bigl( 
(x\mathrm{c}\mathrm{t}\mathrm{r}, 0), epi(g \circ G)

\bigr) 
\leq max

\bigl\{ 
dist(x\mathrm{c}\mathrm{t}\mathrm{r}, G - 1(\=y)) + \epsilon , | \=\alpha | 

\bigr\} 
.

This ensures that \rho \ast is selected sufficiently large for the application of Theorem 3.5.
Next, we consider the size of \=\rho and find that

sup
(x,\alpha )\in \^F - 1(\mathrm{e}\mathrm{p}\mathrm{i} f)\cap \BbbB X\times \BbbR (\rho \ast )

\Bigl\{ 
inf

\^F (x,\alpha )\cap \mathrm{e}\mathrm{p}\mathrm{i} f
dY\times \BbbR 

\bigl( 
\cdot , (y\mathrm{c}\mathrm{t}\mathrm{r}, 0)

\bigr) \Bigr\} 
=sup

\Bigl\{ 
max

\bigl\{ 
dY (F (x), y

\mathrm{c}\mathrm{t}\mathrm{r}), | \alpha | 
\bigr\} \bigm| \bigm| \bigm| f\bigl( F (x)\bigr) \leq \alpha , x \in \BbbB X(\rho \ast ), | \alpha | \leq \rho \ast 

\Bigr\} 
\leq max

\Bigl\{ 
\rho \ast , supx\in \BbbB X(\rho \ast ) dY

\bigl( 
F (x), y\mathrm{c}\mathrm{t}\mathrm{r}

\bigr) \Bigr\} 
.

Since similar statements hold with F replaced by G and epi f replaced by epi g, the
condition on \=\rho suffices and Theorem 3.5 yields the conclusion.

Corollary 4.8 (compositions; linear inner mapping). For f, g : \BbbR n \rightarrow \BbbR and
nonsingular n \times n matrices A and B, suppose that \phi , \psi : \BbbR n \rightarrow \BbbR are defined by
\phi (x) = f(Ax) and \psi (x) = g(Bx), x \in \BbbR n. Then,4 for \rho \in \BbbR +,\widehat dl\rho (epi\phi , epi\psi ) \leq \=\rho \| A - 1  - B - 1\| +max

\bigl\{ 
1, \| A - 1\| , \| B - 1\| 

\bigr\} \widehat dl\=\rho (epi f, epi g),
as long as \=\rho > max\{ 1, \| A\| , \| B\| \} (2\rho +max\{ | \alpha | , | \=\alpha | ,dist(0, A - 1y), dist(0, A - 1\=y), and
dist(0, B - 1\=y)\} ) for some (y, \alpha ) \in epi f and (\=y, \=\alpha ) \in epi g.

Proof. The result follows directly from Proposition 4.7.

4Here we use the operator norm for matrices.
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The corollary extends in some sense [9, Cor. 2.6] by allowing for nonconvex f, g
and different linear mappings, but at the expense of requiring invertible mappings.

Proposition 4.9 (compositions; Lipschitz outer function). For metric spaces
(X, dX) and (Y, dY ), with y\mathrm{c}\mathrm{t}\mathrm{r} being the centroid of Y , suppose that f : Y \rightarrow \BbbR is
Lipschitz continuous with modulus \kappa : \BbbR + \rightarrow \BbbR +, and F,G : X \rightarrow Y . Then, for
\rho \in \BbbR +,

\widehat dl\rho \bigl( epi(f \circ F ), epi(f \circ G)
\bigr) 
\leq max

\bigl\{ 
1, \kappa (\^\rho )

\bigr\} \widehat dl\=\rho (gphF, gphG),
provided that \^\rho > \=\rho + \widehat dl\=\rho (gphF, gphG) and

\=\rho > max
\Bigl\{ 
\rho , sup

x\in \BbbB X(\rho )

\bigl\{ 
dY (y

\mathrm{c}\mathrm{t}\mathrm{r}, F (x))
\bigm| \bigm| f(F (x)) \leq \rho 

\bigr\} 
,

sup
x\in \BbbB X(\rho )

\bigl\{ 
dY (y

\mathrm{c}\mathrm{t}\mathrm{r}, G(x))
\bigm| \bigm| f(G(x)) \leq \rho 

\bigr\} \Bigr\} 
.

Proof. Let \eta = \widehat dl\=\rho (gphF, gphG), x \in lev\rho (f \circ F ) \cap \BbbB X(\rho ), and \epsilon \in (0, \^\rho  - \=\rho  - \eta ].
Then (x, F (x)) \in \BbbB X\times Y (\=\rho ), and there exists \=x \in X with dX(\=x, x) \leq \eta + \epsilon and
dY (F (x), G(\=x)) \leq \eta + \epsilon . Since both F (x), G(\=x) \in \BbbB Y (\^\rho ),

inf\BbbB X(x,\eta +\epsilon )(f \circ G) \leq f
\bigl( 
G(\=x)

\bigr) 
\leq f

\bigl( 
F (x)

\bigr) 
+ \kappa (\^\rho )(\eta + \epsilon ).

We repeat the argument with the roles of F and G reversed and obtain via Proposition
4.1 that \widehat dl\rho (epi(f \circ F ), epi(f \circ G)) \leq max\{ 1, \kappa (\^\rho )\} (\eta + \epsilon ). Since \epsilon is arbitrary, the
conclusion follows.

The previous two propositions largely summarize the line of reasoning in the
proofs of Theorems 4.4, 4.5, and 4.6 and thereby facilitate various extensions of Cases
I, II, and III.

Proposition 4.10 (inf-projections). For a metric space X and \{ f\alpha , g\alpha : X \rightarrow 
\BbbR \} , with A an arbitrary set, define f, g : \BbbR n \rightarrow \BbbR as f(x) = inf\alpha \in A f\alpha (x) and
g(x) = inf\alpha \in A g\alpha (x). Then, for \rho \in \BbbR +,

\widehat dl\rho (epi f, epi g) \leq sup\alpha \in A
\widehat dl\rho (epi f\alpha , epi g\alpha ).

Proof. In view of the fact that epi f = \cup \alpha \in A epi f\alpha and similarly for epi g, the
conclusion follows immediately from Proposition 3.3.

Since a function f = sup\alpha \in A f\alpha has as epigraph the intersection of epi f\alpha , \alpha \in A,
it is clear from the discussion in section 3 that no comparable result is possible for
sup-projections. We refer the reader to [9, Cor. 2.5] for a result in the convex case
and to [35, Thm. 5.6] for one under Lipschitz continuity assumptions.

Given metric spaces X and Y as well as f : X \rightarrow \BbbR and F : X \rightarrow Y , the
epi-composition Ff : Y \rightarrow \BbbR has

(Ff)(y) := inf
\bigl\{ 
f(x) | F (x) = y

\bigr\} 
for y \in Y.

Epi-compositions arise, for example, in parametric studies of equality constrained
problems.

Proposition 4.11 (epi-compositions). For metric spaces (X, dX) and (Y, dY ),
with x\mathrm{c}\mathrm{t}\mathrm{r} being the centroid of X, f, g : X \rightarrow \BbbR , and Lipschitz continuous F,G : X \rightarrow 
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Y with common modulus \kappa : \BbbR + \rightarrow \BbbR + relative to \infty , suppose that

y \in Y and (Ff)(y) \in \BbbR imply argminx\in X\{ f(x) | F (x) = y\} \not = \emptyset ; and

y \in Y and (Gg)(y) \in \BbbR imply argminx\in X\{ g(x) | G(x) = y\} \not = \emptyset .

Then, for \rho \in \BbbR +,\widehat dl\rho (epiFf, epiGg) \leq supx\in \BbbB X(\=\rho ) dY
\bigl( 
F (x), G(x)

\bigr) 
+max\{ 1, \kappa (\^\rho )\} \widehat dl\=\rho (epi f, epi g),

provided that \rho \ast > 2\rho + max\{ dY (F (x), y\mathrm{c}\mathrm{t}\mathrm{r}), dY (F (\=x), y\mathrm{c}\mathrm{t}\mathrm{r}), dY (G(\=x), y\mathrm{c}\mathrm{t}\mathrm{r}), | \alpha | , | \=\alpha | \} 
for some (x, \alpha ) \in epi f and (\=x, \=\alpha ) \in epi g, \=\rho > \rho \ast and also exceeds

sup
\Bigl\{ 
dX(x, x\mathrm{c}\mathrm{t}\mathrm{r})

\bigm| \bigm| \bigm| (x, \alpha ) \in C, | \alpha | \leq \rho \ast , U(x) \in \BbbB Y (\rho 
\ast )
\Bigr\} 

for U = F,G;C = epi f, epi g,

and \^\rho > \=\rho + \widehat dl\=\rho (epi f, epi g).
Proof. We start by confirming that epiFf = \{ (F (x), \alpha ) | (x, \alpha ) \in epi f\} ; a finite-

dimensional version of this fact is asserted as Exercise 1.31 in [32]. For (\=x, \=\alpha ) \in epi f ,
we have that inf\{ f(x) | F (x) = F (\=x)\} \leq f(\=x) \leq \=\alpha . Thus, epiFf \supset \{ (F (x), \alpha ) | (x, \alpha )
\in epi f\} . Suppose that (y, \alpha ) \in epiFf . Then (Ff)(y) < \infty . If (Ff)(y) =  - \infty ,
then there exists \=x \in X such that f(\=x) \leq \alpha and F (\=x) = y. Consequently, (y, \alpha ) \in 
\{ (F (x), \alpha ) | (x, \alpha ) \in epi f\} . If (Ff)(y) \in \BbbR , then there exists by assumption \=x \in X
such that f(\=x) = inf\{ f(x) | F (x) = y\} and F (\=x) = y. Thus, f(\=x) = (Ff)(y) \leq \alpha ,
(\=x, \alpha ) \in epi f , and epiFf \subset \{ (F (x), \alpha ) | (x, \alpha ) \in epi f\} . We have confirmed the
assertion, which also holds for Gf .

The conclusion follows by Theorem 3.5 applied to the mappings \^F , \^G : X \times \BbbR \rightarrow 
Y \times \BbbR defined by \^F (x, \alpha ) = (F (x), \alpha ) and \^G(x, \alpha ) = (G(x), \alpha ). Since F and G are
Lipschitz continuous with common modulus \kappa : \BbbR + \rightarrow \BbbR + relative to \infty , \^F and \^G
are Lipschitz continuous with modulus \rho \mapsto \rightarrow max\{ 1, \kappa (\rho )\} relative to any real number.
The requirement on \rho \ast in Theorem 3.5 is satisfied because dist((y\mathrm{c}\mathrm{t}\mathrm{r}, 0), \^F (epi f)) \leq 
max\{ dY (F (x), y\mathrm{c}\mathrm{t}\mathrm{r}), | \alpha | \} for (x, \alpha ) \in epi f , with similar inequalities holding for \^G and
epi g. The requirement on \=\rho in Theorem 3.5 also is satisfied because

sup
(y,\alpha )\in \^F (\mathrm{e}\mathrm{p}\mathrm{i} f)\cap \BbbB Y \times \BbbR (\rho \ast )

\Bigl\{ 
inf

\^F - 1(y,\alpha )\cap \mathrm{e}\mathrm{p}\mathrm{i} f
dX
\bigl( 
\cdot , (x\mathrm{c}\mathrm{t}\mathrm{r}, 0)

\bigr) \Bigr\} 
\leq sup

(x,\alpha )\in \mathrm{e}\mathrm{p}\mathrm{i} f,| \alpha | \leq \rho \ast ,F (x)\in \BbbB Y (\rho \ast )

max\{ dX(x, x\mathrm{c}\mathrm{t}\mathrm{r}), | \alpha | \} ,

with similar expressions for \^G and epi g.

5. Distances between graphs of set-valued mappings. We next turn to the
solution of generalized equations. For metric spaces X and Y , a set-valued mapping
S : X \rightarrow \rightarrow Y and a point y \star \in Y define the generalized equation y \star \in S(x). Its solution
set is S - 1(y \star ). In this section, we focus on the set of near-solutions that consists
of those x \in X with S(x) ``nearly reaching"" y \star . Specifically, for \epsilon \geq 0, the set of
\epsilon -solutions is defined as

S - 1
\bigl( 
\BbbB Y (y

 \star , \epsilon )
\bigr) 
=

\bigcup 
y\in \BbbB Y (y \star ,\epsilon )

S - 1(y).

For example, suppose that f : \BbbR n \rightarrow \BbbR is locally Lipschitz continuous and C \subset \BbbR n

is nonempty and closed. Then an optimality condition for the problem of minimizing
f + \iota C would be

0 \in \partial f(x) +NC(x);
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see [32, Exer. 10.10]. With S = \partial f +NC and y \star = 0, the set of \epsilon -solutions becomes

S - 1
\bigl( 
\BbbB \BbbR n(\epsilon )

\bigr) 
=
\bigl\{ 
x \in \BbbR n | 0 \in \partial f(x) +NC(x) + \BbbB \BbbR n(\epsilon )

\bigr\} 
.

The next theorem bounds the discrepancy between near-solutions of generalized equa-
tions in terms of the truncated Hausdorff distance without making assumptions about
local regularity properties of the underlying set-valued mappings.

Theorem 5.1 (approximation of near-solutions of generalized equations). For
metric spaces X and Y , suppose that S, T : X \rightarrow \rightarrow Y have nonempty graphs, 0 \leq 
\epsilon \leq \rho <\infty , and y \star \in \BbbB Y (\rho  - \epsilon ). Then

exs
\Bigl( 
S - 1

\bigl( 
\BbbB Y (y

 \star , \epsilon )
\bigr) 
\cap \BbbB X(\rho ); T - 1

\bigl( 
\BbbB Y (y

 \star , \delta )
\bigr) \Bigr) 

\leq \widehat dl\rho (gphS, gphT ),
provided that \delta > \epsilon + \widehat dl\rho (gphS, gphT ). If X and Y are finitely compact and gphT is

closed, then the result also holds for \delta = \epsilon + \widehat dl\rho (gphS, gphT ).
Proof. Let \gamma \in (0, \delta  - \epsilon  - \widehat dl\rho (gphS, gphT )]. Suppose that x \in S - 1

\bigl( 
\BbbB Y (y

 \star , \epsilon )
\bigr) 
\cap 

\BbbB X(\rho ). Then there is y \in S(x) with dY (y, y
 \star ) \leq \epsilon so that (x, y) \in \BbbB X\times Y (\rho ). Conse-

quently, for some (\=x, \=y) \in gphT ,

max
\bigl\{ 
dX(x, \=x), dY (y, \=y)

\bigr\} 
\leq dist

\bigl( 
(x, y), gphT

\bigr) 
+ \gamma \leq \widehat dl\rho (gphS, gphT ) + \gamma .

Moreover, dY (\=y, y
 \star ) \leq dY (\=y, y) + dY (y, y

 \star ) \leq \widehat dl\rho (gphS, gphT ) + \gamma + \epsilon \leq \delta , which
implies that \=x \in T - 1(\BbbB Y (y

 \star , \delta )). We have established that

exs
\Bigl( 
S - 1

\bigl( 
\BbbB Y (y

 \star , \epsilon )
\bigr) 
\cap \BbbB X(\rho ); T - 1

\bigl( 
\BbbB Y (y

 \star , \delta )
\bigr) \Bigr) 

\leq \widehat dl\rho (gphS, gphT ) + \gamma .

Since \gamma is arbitrary, the first conclusion follows. The minimum distance to a nonempty
closed subset of a finitely compact space is attained [33, Lem. 2.2], which allows us
to use \gamma = 0 in the above arguments. This establishes the second conclusion.

The result of the theorem is sharp. For example, consider S, T : \BbbR \rightarrow \rightarrow \BbbR with
S(x) = [x,\infty ) when x \in [0, 1], and S(x) = \emptyset otherwise; and T (x) = (1,\infty ) when

x \in [1, 2], and T (x) = \emptyset otherwise. Then for \rho \geq 0, \widehat dl\rho (gphS, gphT ) = 1, S - 1(0) =
\{ 0\} , T - 1(\delta ) = [1, 2], and exs(S - 1(0) \cap \BbbB \BbbR (\rho );T

 - 1(\BbbB \BbbR (\delta )) = 1 when \delta > 1. When
\delta \leq 1, the excess becomes infinity because T - 1(\delta ) = \emptyset . If T is modified to having
T (x) = [1,\infty ) for x \in [1, 2], then \delta = 1 gives an excess of one.

Theorem 5.2 (sum of mappings under Lipschitz property). For normed linear
spaces X and Y , suppose that S1, T1 : X \rightarrow \rightarrow Y are nonempty-valued and Lipschitz
continuous with common modulus \kappa : \BbbR + \rightarrow \BbbR + relative to \rho \ast \in [0,\infty ] and S2, T2 :
X \rightarrow \rightarrow Y have nonempty graphs. Then, for \rho \in \BbbR +,

\widehat dl\rho \bigl( gph(S1 + S2), gph(T1 + T2)
\bigr) 
\leq supx\in \BbbB X(\rho )

\widehat dl\rho \ast 
\bigl( 
S1(x), T1(x)

\bigr) 
+
\bigl( 
1 + \kappa (\^\rho )

\bigr) \widehat dl\=\rho (gphS2, gphT2),

provided that \=\rho \geq \rho + \rho \prime , with \rho \prime such that \BbbB Y (\rho 
\prime ) contains both S1(x) and T1(x) for

all x \in \BbbB X(\rho ), \^\rho > \rho + \widehat dl\=\rho (gphS2, gphT2), and \rho 
\ast > 3\rho \prime + \kappa (\^\rho )(\^\rho  - \rho ).

Proof. Let (x, y) \in gph(T1 + T2) \cap \BbbB X\times Y (\rho ). Thus, for some y1 \in T1(x) and
y2 \in T2(x) we have y = y1 + y2 and \| y2\| \leq \| y\| + \| y1\| \leq \rho + \rho \prime \leq \=\rho . Let \epsilon \in 
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(0, \^\rho  - \rho  - \widehat dl\=\rho (gphS2, gphT2)]. Consequently, (x, y2) \in gphT2 \cap \BbbB X\times Y (\=\rho ), so there

exists (\=x, \=y2) \in gphS2 with max\{ \| x - \=x\| , \| y2 - \=y2\| \} \leq \widehat dl\=\rho (gphS2, gphT2)+ \epsilon \leq \^\rho  - \rho ,
which ensures that \| \=x\| \leq \| x  - \=x\| + \| x\| \leq \^\rho  - \rho + \rho \leq \^\rho . Since S1 is nonempty-
valued, there is \=y1 \in S1(\=x) such that dist(y1, S1(\=x)) \geq \| y1  - \=y1\|  - \epsilon . Therefore,
(\=x, \=y1 + \=y2) \in gph(S1 + S2). Since y1 \in \BbbB Y (\rho 

\prime ), it follows that

\| y1  - \=y1\| \leq dist
\bigl( 
y1, S1(\=x)

\bigr) 
+ \epsilon \leq \widehat dl\rho \prime 

\bigl( 
S1(\=x), T1(x)

\bigr) 
+ \epsilon 

\leq \widehat dl\rho \ast 
\bigl( 
S1(\=x), S1(x)

\bigr) 
+ \widehat dl\rho \ast 

\bigl( 
S1(x), T1(x)

\bigr) 
+ \epsilon ,

where the last inequality is a consequence of Proposition 2.1; \rho \ast is indeed sufficiently
large because dist(y\mathrm{c}\mathrm{t}\mathrm{r}, T1(x)) \leq \rho \prime , dist(y\mathrm{c}\mathrm{t}\mathrm{r}, S1(x)) \leq \rho \prime , and

dist
\bigl( 
y\mathrm{c}\mathrm{t}\mathrm{r}, S1(\=x)

\bigr) 
\leq \rho \prime + exs

\bigl( 
S1(x) \cap \BbbB Y (\rho 

\ast );S1(\=x)
\bigr) 
\leq \rho \prime + \widehat dl\rho \ast 

\bigl( 
S1(x), S1(\=x)

\bigr) 
\leq \rho \prime + \kappa (\^\rho )\| x - \=x\| \leq \rho \prime + \kappa (\^\rho )(\^\rho  - \rho ).

Moreover, with \=y = \=y1 + \=y2, \| y  - \=y\| is not greater than

\| y1  - \=y1\| + \| y2  - \=y2\| \leq \widehat dl\rho \ast 
\bigl( 
S1(\=x), S1(x)

\bigr) 
+ \widehat dl\rho \ast 

\bigl( 
S1(x), T1(x)

\bigr) 
+ \widehat dl\=\rho (gphS2, gphT2) + 2\epsilon 

\leq \kappa (\^\rho )
\bigl[ \widehat dl\=\rho (gphS2, gphT2) + \epsilon 

\bigr] 
+ supx\prime \in \BbbB X(\rho )

\widehat dl\rho \ast 
\bigl( 
S1(x

\prime ), T1(x
\prime )
\bigr) 

+ \widehat dl\=\rho (gphS2, gphT2) + 2\epsilon .

This establishes that (\=x, \=y) \in gph(S1 + S2) satisfies

max\{ \| x - \=x\| , \| y  - \=y\| \} \leq max
\bigl\{ \widehat dl\=\rho (gphS2, gphT2) + \epsilon ,\bigl( 

1 + \kappa (\^\rho )
\bigr) \widehat dl\=\rho (gphS2, gphT2) + supx\prime \in \BbbB X(\rho )

\widehat dl\rho \ast 
\bigl( 
S1(x

\prime ), T1(x
\prime )
\bigr) 
+ (2 + \kappa (\^\rho ))\epsilon 

\bigr\} 
.

Since (x, y) and \epsilon are arbitrary, we obtain that

exs
\bigl( 
gph(T1 + T2) \cap \BbbB X\times Y (\rho ); gph(S1 + S2)

\bigr) 
\leq supx\prime \in \BbbB X(\rho )

\widehat dl\rho \ast 
\bigl( 
S1(x

\prime ), T1(x
\prime )
\bigr) 
+
\bigl( 
1 + \kappa (\^\rho )

\bigr) \widehat dl\=\rho (gphS2, gphT2).

The roles of (S1, S2) and (T1, T2) can be reversed, which leads to the conclusion.

A series of results are now possible with applications to games as well as equi-
librium and generalized fixed-point problems. We limit the discussion to optimality
conditions. As a preliminary example, let C,D \subset \BbbR n be nonempty, possibly noncon-
vex sets and let f, g : \BbbR n \rightarrow \BbbR be smooth and their gradients Lipschitz continuous with
modulus \kappa : \BbbR + \rightarrow \BbbR + relative to \rho \ast = \infty , i.e., \| \nabla f(x)  - \nabla f(\=x)\| \leq \kappa (\rho )\| x  - \=x\| for
\| x\| \leq \rho , \| \=x\| \leq \rho , and \rho \in \BbbR +, with the same condition holding for \nabla g. The-
orem 5.2 enables a study of the optimality conditions 0 \in \nabla f(x) + NC(x) and
0 \in \nabla g(x) + ND(x). The discrepancies between the corresponding near-stationary
points are bounded via Theorem 5.1 by

\widehat dl\rho \bigl( gph(\nabla f +NC), gph(\nabla g +ND)
\bigr) 
\leq sup\| x\| \leq \rho \| \nabla f(x) - \nabla g(x)\| 

+
\bigl( 
1 + \kappa (\^\rho )

\bigr) \widehat dl\=\rho \bigl( gphNC , gphND

\bigr) 
for sufficiently large \^\rho and \=\rho with further simplifications possible if C and D are
convex; cf. Proposition 2.5.
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Example 3: Difference-of-convex functions. For convex functions f1 : \BbbR n \rightarrow \BbbR 
and f2 : \BbbR n \rightarrow \BbbR ---the latter also lsc and proper---as well as a point \=x with f2(\=x)
finite, the following optimality condition holds5 [19]:

\=x local minimizer of f2  - f1 =\Rightarrow 0 \in \partial f2(\=x) - \partial f1(\=x).

The minimization of such difference-of-convex functions arises in numerous applica-
tions, including some in modern statistics [16, 34]. Error analysis of near-stationarity
in this case can be carried out as follows.

Suppose initially that f1, g1 are also smooth and \rho \in \BbbR +. Then there are \alpha , \=\rho \in \BbbR +

such that6

\widehat dl\rho \bigl( gph(\partial f2  - \nabla f1), gph(\partial g2  - \nabla g1)
\bigr) 
\leq sup\| x\| 2\leq \rho \| \nabla f1(x) - \nabla g1(x)\| 2

+\alpha 

\sqrt{} \widehat dl\=\rho (epi f2, epi g2),
which via Theorem 5.1 gives error estimates of near-stationary points. We can es-
tablish this fact by setting S1 =  - \nabla f1, T1 =  - \nabla g1, S2 = \partial f2, and T2 = \partial g2, so
that S1 and T1 are nonempty-valued and Lipschitz continuous with some common
modulus \kappa : \BbbR + \rightarrow \BbbR + relative to \rho \ast = \infty . An application of Theorem 5.2 with these
set-valued mappings and \rho \prime = sup\| x\| 2\leq \rho max\{ \| \nabla f(x)\| 2, \| \nabla g(x)\| 2\} , \=\rho = \rho + \rho \prime , and

\^\rho > \rho + \widehat dl\=\rho (gph \partial f2, gph \partial g2) yields
\widehat dl\rho \bigl( gph(\partial f2  - \nabla f1), gph(\partial g2  - \nabla g1)

\bigr) 
\leq sup\| x\| 2\leq \rho \| \nabla f1(x) - \nabla g1(x)\| 2
+
\bigl( 
1 + \kappa (\^\rho )

\bigr) \widehat dl\=\rho (gph \partial f2, gph \partial g2).
An application of Proposition 2.4 gives the result after an appropriate enlargement of
\=\rho .

We can relax the assumption about f1 and g1 being smooth by stating the opti-
mality condition in terms of the set-valued mappings S, T : \BbbR n \times \BbbR n \rightarrow \rightarrow \BbbR n \times \BbbR n with
expressions

S(x, v) =

\biggl( 
\partial f1(x) - \{ v\} 
\partial f2(x) - \{ v\} 

\biggr) 
and T (x, v) =

\biggl( 
\partial g1(x) - \{ v\} 
\partial g2(x) - \{ v\} 

\biggr) 
.

Clearly, 0 \in S(x, v) implies that 0 \in \partial f2(x)  - \partial f1(x), and 0 \in \partial f2(x)  - \partial f1(x)
implies that there exists a ``multiplier vector"" v \in \BbbR n such that 0 \in S(x, v). A bound

on \widehat dl\rho (gphS, gphT ) will then via Theorem 5.1 furnish a bound on the difference
between near-stationary points in the ``primal-dual"" space \BbbR n \times \BbbR n as one passes
from minimizing f2 - f1 to minimizing g2 - g1. For simplicity, we adopt the sup-norm
for the remainder of this example. Specifically, we find that for \rho \in \BbbR +\widehat dl\rho (gphS, gphT ) \leq max

i=1,2
sup

\| x\| \infty \leq \rho 

\widehat dl2\rho \bigl( \partial fi(x), \partial gi(x)\bigr) .
To see this let ((\=x, \=v), (\=y1, \=y2)) \in gphS \cap \BbbB \BbbR 4n(\rho ), i.e., \=y1 + \=v \in \partial f1(\=x) and \=y2 + \=v \in 
\partial f2(\=x). For i = 1, 2, since \| \=x\| \infty \leq \rho and \| \=yi + \=v\| \infty \leq 2\rho , there exists yi \in \BbbR n such
that

yi + \=v \in \partial gi(\=x) and \| (\=yi + \=v) - (yi + \=v)\| \infty \leq \widehat dl2\rho (\partial fi(\=x), \partial gi(\=x)),
5For subsets A and B of a linear space, A - B := \{ a - b | a \in A, b \in B\} .
6We here use the Euclidean distance on \BbbR n.
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which implies ((\=x, \=v), (y1, y2)) \in gphT . The distance between ((\=x, \=v), (y1, y2)) and

((\=x, \=v), (\=y1, \=y2)) then yields the stated upper bound on \widehat dl\rho (gphS, gphT ).
Example 4: KKT conditions. Theorem 5.1 also applies to the KKT conditions

for the problem

minimize f0(x) subject to fi(x) \leq 0 for i = 1, . . . ,m, with smooth fi : \BbbR n \rightarrow \BbbR ,

when compared to those of an alternative, possibly approximating, problem obtained
by replacing the functions by the smooth functions g0, g1, . . . , gm. Clearly, (x, y) \in 
\BbbR n+m satisfies the KKT conditions for the actual problem if and only if 0 \in S(x, y)
and likewise those of the alternative problem if and only if 0 \in T (x, y), where the
set-valued mappings S, T : \BbbR n+m \rightarrow \rightarrow \BbbR 3m+n have values

S(x, y) =

\left(                   

[f1(x),\infty )
...

[fm(x),\infty )
( - \infty , y1]

...
( - \infty , ym]
\{ y1f1(x)\} 

...
\{ ymfm(x)\} 

\{ \nabla f0(x) +
\sum m

i=1 yi\nabla fi(x)\} 

\right)                   

, T (x, y) =

\left(                   

[g1(x),\infty )
...

[gm(x),\infty )
( - \infty , y1]

...
( - \infty , ym]
\{ y1g1(x)\} 

...
\{ ymgm(x)\} 

\{ \nabla g0(x) +
\sum m

i=1 yi\nabla gi(x)\} 

\right)                   

,

with y = (y1, . . . , ym). A bound on the truncated Hausdorff distance between the
graphs of these two set-valued mappings furnishes the critical component in the ap-
plication of Theorem 5.1. In this example, we equip \BbbR n+m and \BbbR 3m+n with the
sup-norm. Then, for \rho \in \BbbR +,

\widehat dl\rho (gphS, gphT ) \leq max\{ \delta , \rho \delta , (1 +m\rho )\eta \} ,

where

\delta = max
i=1,...,m

sup
\| x\| \infty \leq \rho 

| fi(x) - gi(x)| and \eta = max
i=0,...,m

sup
\| x\| \infty \leq \rho 

\| \nabla fi(x) - \nabla gi(x)\| \infty .

This assertion is realized as follows. Let ((x, y), (u, v, w, s)) \in gphS \cap \BbbB \BbbR 4m+2n(\rho ) be
arbitrary and construct \=x = x, \=y = y, \=u = (\=u1, . . . , \=um), with \=ui = max\{ gi(x), ui\} 
for all i, \=v = v, \=w = ( \=w1, . . . , \=wm), with \=wi = yigi(x) for all i, and \=s = \nabla g0(x) +\sum m

i=1 yi\nabla gi(x). It is trivial to verify that ((\=x, \=y), (\=u, \=v, \=w, \=s)) \in gphT . For all i,

| ui  - \=ui| \leq 

\Biggl\{ 
0 if ui \geq gi(x),

\delta otherwise,

| wi  - \=wi| \leq | yi| 
\bigm| \bigm| fi(x) - gi(x)

\bigm| \bigm| \leq \rho \delta ,

\| s - \=s\| \infty \leq \| \nabla f0(x) - \nabla g0(x)\| \infty +

m\sum 
i=1

| yi| \| \nabla fi(x) - \nabla gi(x)\| \infty \leq (1 +m\rho )\eta .
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Consequently, the distance between ((x, y), (u, v, w, s)) and ((\=x, \=y), (\=u, \=v, \=w, \=s)) is at
most max\{ \delta , \rho \delta , (1 + m\rho )\eta \} , and we have that exs((gphS \cap \BbbB \BbbR 4m+2n(\rho ); gphT )) is
bounded by the same quantity. The assertion then follows by symmetry.

We see that, despite the fact that minimizers of inequality-constrained problems
are unstable under pointwise perturbations of the constraint functions (cf. section 4),
the KKT system has stable solutions in the sense that the excess of near-solutions
of one KKT system over those of the other exhibits a Lipschitz property in those
perturbations.

We end the paper with a result that generalizes the ideas of Examples 3 and 4.
For a proper lsc function \phi : \BbbR m \rightarrow \BbbR and a smooth mapping F : \BbbR n \rightarrow \BbbR m,
we recall that under rather weak assumptions7 the composite function \phi \circ F has
0 \in \nabla F (x)\top \partial \phi (F (x)) as a necessary optimality condition [32, Thm. 10.6], where the
m \times n-matrix \nabla F (x) is the Jacobian of F at x. By introducing auxiliary vectors
y, z \in \BbbR m, the optimality condition is equivalently stated in terms of the set-valued
mapping S : \BbbR n \times \BbbR m \times \BbbR m \rightarrow \rightarrow \BbbR m \times \BbbR m \times \BbbR n as 0 \in S(x, y, z), with

(5.1) S(x, y, z) =

\left(  \{ F (x) - z\} 
\partial \phi (z) - \{ y\} 
\{ \nabla F (x)\top y\} 

\right)  .

Since 0 \in S(x, y, z) is also an optimality condition for the problem of minimizing \phi (z)
subject to F (x) = z, y can be interpreted as a multiplier vector and z as representing
feasibility. Parallel conditions hold for a composite function \psi \circ G expressed in terms
of \psi : \BbbR m \rightarrow \BbbR and G : \BbbR n \rightarrow \BbbR m, which we may think of as approximations of \phi and
F . Specifically, under the appropriate assumptions, an optimality condition becomes
0 \in T (x, y, z), where the set-valued mapping T : \BbbR n\times \BbbR m\times \BbbR m \rightarrow \rightarrow \BbbR m\times \BbbR m\times \BbbR n has

(5.2) T (x, y, z) =

\left(  \{ G(x) - z\} 
\partial \psi (z) - \{ y\} 
\{ \nabla G(x)\top y\} 

\right)  .

In view of Theorem 5.1, a bound on \widehat dl\rho (gphS, gphT ) leads to estimates of the change
in near-stationary points as we pass from \phi \circ F to \psi \circ G.

Theorem 5.3 (stationarity of composite functions). For proper lsc functions \phi , \psi :
\BbbR m \rightarrow \BbbR , smooth mappings F,G : \BbbR n \rightarrow \BbbR m, and the resulting set-valued mappings
S and T expressed in (5.1) and (5.2), we have for \rho \in \BbbR + that8

\widehat dl\rho (gphS, gphT ) \leq sup
\| x\| \leq \rho 

max
\Bigl\{ \bigm\| \bigm\| G(x) - F (x)

\bigm\| \bigm\| + \widehat dl2\rho \bigl( gph \partial \phi , gph \partial \psi \bigr) ,
\rho 
\bigm\| \bigm\| \nabla G(x)\top  - \nabla F (x)\top 

\bigm\| \bigm\| \Bigr\} .
Proof. Suppose that ((\=x, \=y, \=z), (\=u, \=v, \=w)) \in gphS \cap \BbbB X(\rho ), where X = \BbbR n \times \BbbR m \times 

\BbbR m \times \BbbR m \times \BbbR m \times \BbbR n and using the norm indicated in the footnote. Then

\=u = F (\=x) - \=z, \=v + \=y \in \partial \phi (\=z), \=w = \nabla F (\=x)\top \=y.

7For example, if \phi is convex, then it suffices that dom\phi cannot be separated from the range of
the linearized mapping w \mapsto \rightarrow F (\=x) +\nabla F (\=x)w for a local minimizer \=x.

8Here, \widehat dl\rho is defined in terms of the product norm on \BbbR n\times \BbbR m\times \BbbR m\times \BbbR m\times \BbbR m\times \BbbR n constructed
by any norms on \BbbR n and \BbbR m, and the matrix norm is any one compatible with the norm on \BbbR m.
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Since (\=z, \=v + \=y) \in gph \partial \phi \cap \BbbB \BbbR m\times \BbbR m(2\rho ) (using the product norm on \BbbR m \times \BbbR m) and
gph \partial \psi is nonempty [32, Cor. 8.10], there exist z, v \in \BbbR m such that (z, v+\=y) \in gph \partial \psi 

and neither \| z  - \=z\| nor \| (\=v  - \=y)  - (v  - \=y)\| exceed \widehat dl2\rho (gph \partial \phi , gph \partial \psi ). Construct
u = G(\=x) - z and w = \nabla G(\=x)\top \=y. Clearly, ((\=x, \=y, z), (u, v, w)) \in gphT and

\| u - \=u\| =
\bigm\| \bigm\| (G(\=x) - z) - (F (\=x) - \=z)

\bigm\| \bigm\| \leq 
\bigm\| \bigm\| G(\=x) - F (\=x)

\bigm\| \bigm\| + \widehat dl2\rho (gph \partial \phi , gph \partial \psi ).
Moreover, due to the assumed compatibility of the adopted matrix norm relative to
the norm on \BbbR m,

\| w  - \=w\| =
\bigm\| \bigm\| \nabla G(\=x)\top \=y  - \nabla F (\=x)\top \=y

\bigm\| \bigm\| \leq \rho 
\bigm\| \bigm\| \nabla G(\=x)\top  - \nabla F (\=x)\top 

\bigm\| \bigm\| .
The point ((\=x, \=y, z), (u, v, w)) is therefore within a distance of

max
\Bigl\{ \bigm\| \bigm\| G(\=x) - F (\=x)

\bigm\| \bigm\| + \widehat dl2\rho (gph \partial \phi , gph \partial \psi ), \rho \bigm\| \bigm\| \nabla G(\=x)\top  - \nabla F (\=x)\top 
\bigm\| \bigm\| \Bigr\} 

of ((\=x, \=y, \=z), (\=u, \=v, \=w)), which establishes the conclusion after we realize the obvious
symmetry in the result.

Appendix A. Proofs.

Proof of Proposition 2.2. Denote by dX the metric on X and \eta = \widehat dl\rho (epi f, epi g).
Let \gamma \in (0, \rho  - \epsilon  - inf f). Since \gamma - argmin f \cap \BbbB X(\rho ) \not = \emptyset , there exists \=x \in \BbbB X(\rho ) such
that f(\=x) \leq inf f + \gamma < \rho  - \epsilon \leq \rho . Moreover, f(\=x) \geq inf f \geq  - \rho . Thus, (\=x, f(\=x)) \in 
epi f \cap \BbbB X\times \BbbR (\rho ) and there exists (x, \alpha ) \in epi g such that max\{ dX(x, \=x), | \alpha  - f(\=x)| \} \leq 
dist((\=x, f(\=x)), epi g) + \gamma . Then

\eta \geq exs
\bigl( 
epi f \cap \BbbB X\times \BbbR (\rho ); epi g

\bigr) 
\geq dist

\bigl( 
(\=x, f(\=x)), epi g

\bigr) 
\geq dX

\bigl( 
x, \=x

\bigr) 
 - \gamma 

and also \eta \geq | \alpha  - f(\=x)|  - \gamma . Collecting the above results yields inf g \leq g(x) \leq 
\alpha \leq f(\=x) + \eta + \gamma \leq inf f + \eta + 2\gamma . Since \gamma is arbitrary, we have established that
inf g \leq inf f + \eta . The same argument with the roles of f and g reversed leads to the
first conclusion.

Let \=x \in \epsilon - argmin g \cap \BbbB X(\rho ). Then g(\=x) \leq inf g + \epsilon < \rho , g(\=x) \geq inf g \geq  - \rho ,
and (\=x, g(\=x)) \in epi g \cap \BbbB X\times \BbbR (\rho ). Let \gamma > 0. There exists (x, \alpha ) \in epi f such that
max\{ dX(x, \=x), | \alpha  - g(\=x)| \} \leq dist((\=x, g(\=x)), epi f) + \gamma . Consequently, \eta \geq dX(x, \=x)  - 
\gamma and \eta \geq | \alpha  - g(\=x)|  - \gamma . These facts, together with the first conclusion, establish
that f(x) \leq \alpha \leq g(\=x) + \eta + \gamma \leq inf g + \epsilon + \eta + \gamma \leq inf f + \epsilon + 2\eta + \gamma . Thus,
x \in (\epsilon + 2\eta + \gamma )- argmin f and dX(x, \=x) \leq \eta + \gamma , and then also exs(\epsilon - argmin g \cap 
\BbbB X(\rho ); (\epsilon + 2\eta + \=\gamma )- argmin f

\bigr) 
\leq \eta + \gamma when \=\gamma \geq \gamma . Since \gamma is arbitrary, the second

conclusion follows.

Proof of Proposition 2.3. Let \=x \in lev\delta g\cap \BbbB X(\rho ) and B = \BbbB X\times \BbbR (\rho ). Then g(\=x) \leq 
\delta \leq \rho . There are two cases. Suppose that g(\=x) \geq  - \rho . Then (\=x, g(\=x)) \in epi g \cap 
B. Let \gamma \in (0, \epsilon  - \delta  - exs(epi g \cap B; epi f)). There exists (x, \alpha ) \in epi f such that
max\{ dX(x, \=x), | \alpha  - g(\=x)| \} \leq dist((\=x, g(\=x)), epi f) + \gamma \leq exs

\bigl( 
epi g \cap B; epi f

\bigr) 
+ \gamma .

Consequently,

f(x) \leq \alpha \leq g(\=x) + exs
\bigl( 
epi g \cap B; epi f

\bigr) 
+ \gamma \leq \delta + exs

\bigl( 
epi g \cap B; epi f

\bigr) 
+ \gamma < \epsilon .

Thus, x \in lev\epsilon f and dX(x, \=x) \leq exs(epi g \cap B; epi f)) + \gamma . This implies that

exs(lev\delta g \cap \BbbB X(\rho ); lev\epsilon f) \leq exs(epi g \cap B; epi f) + \gamma .

If g(\=x) <  - \rho , the same holds because the arguments in that case can be carried out
with g(\=x) replaced by  - \rho . Since \gamma is arbitrary, the second conclusion follows.
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Proof of Proposition 3.6. Let C =
\sum m

i=1 Ci, D =
\sum m

i=1Di, and \epsilon > 0. Suppose

without loss of generality that \widehat dl\rho (C,D) = exs(C \cap \BbbB X(\rho );D). If C \cap \BbbB X(\rho ) = \emptyset , then\widehat dl\rho (C,D) = 0 and the result holds trivially. Thus, suppose that C \cap \BbbB X(\rho ) \not = \emptyset . Then
there are xi \in Ci and yi \in Di, i = 1, . . . ,m, such that x =

\sum m
i=1 xi \in C \cap \BbbB X(\rho ),

\| xi  - yi\| \leq dist(xi, Di) + \epsilon , and

\widehat dl\rho (C,D) \leq dist(x,D) + \epsilon \leq \| x - y\| + \epsilon \leq 
m\sum 
i=1

\| xi  - yi\| + \epsilon where y =

m\sum 
i=1

yi.

Since xi \in Ci implies xi \in \BbbB X(\rho ),

\| xi  - yi\| \leq dist(xi, Di) + \epsilon \leq exs(Ci \cap \BbbB X(\rho );Di) + \epsilon \leq \widehat dl\rho (Ci, Di) + \epsilon .

Hence, \widehat dl\rho (C,D) \leq 
\sum m

i=1
\widehat dl\rho (Ci, Di)+(m+1)\epsilon . Since \epsilon is arbitrary, the first conclusion

follows. Under the relaxed assumption, x1 \in \BbbB X(m\rho ) because \{ x, xi \in \BbbB X(\rho ), i =
2, . . . ,m\} . Thus,

\| x1  - y1\| \leq dist(x1, D1) + \epsilon \leq exs(C1 \cap \BbbB X(m\rho );D1) + \epsilon \leq \widehat dlm\rho (C1, D1) + \epsilon .

Since the other arguments carry over, the second conclusion follows.

Proof of Proposition 4.1. Let \eta = \widehat dl\rho (epi f, epi g) and \epsilon > 0. Suppose that (x, f(x))
\in epi f \cap \BbbB X\times \BbbR (\rho ). Then there exist (\=x, \=\alpha ) \in epi g such that dX(\=x, x) \leq \eta + \epsilon ,
| \alpha  - f(x)| \leq \eta + \epsilon , and g(\=x) \leq \alpha < \infty . Thus, g(\=x) \leq \alpha \leq f(x) + \eta + \epsilon \leq 
max\{ f(x), - \rho \} + \eta + \epsilon . This establishes that inf\BbbB (x,\eta +\epsilon ) g \leq max\{ f(x), - \rho \} + \eta + \epsilon 
for x \in lev\rho f \cap \BbbB X(\rho ) and f(x) \geq  - \rho . Suppose that x \in lev\rho f \cap \BbbB X(\rho ) and
f(x) <  - \rho . Then (x, - \rho ) \in epi f \cap \BbbB X\times \BbbR (\rho ) and there exist (\=x, \=\alpha ) \in epi g such
that dX(\=x, x) \leq \eta + \epsilon , | \alpha + \rho | \leq \eta + \epsilon , and g(\=x) \leq \alpha <\infty . Consequently,

inf\BbbB X(x,\eta +\epsilon ) g \leq g(x) \leq \alpha \leq  - \rho + \eta + \epsilon \leq max\{ f(x), - \rho \} + \eta + \epsilon .

Repeating the arguments with the roles of f and g reversed, we establish that the two
sets of constraints on the right-hand side in the proposition are satisfied with \eta + \epsilon .
Thus, the right-hand side does not exceed \eta + \epsilon . Since \epsilon is arbitrary, the right-hand
side furnishes a lower bound on \widehat dl\rho (epi f, epi g). By [33, Prop. 3.2], it is also an upper
bound; the lsc assumption in that proposition is not needed in its proof.
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