
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1999

Engineering Automation for Computer Based Systems

Luqi
Elsevier

Luqi, "Engineering Automation for Computer Based Systems", Electronic Notes in
Theoretical Computer Science, Elsevier Science, 1999, Vol. 25, pp. 1-9.
https://hdl.handle.net/10945/65700

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Electronic Notes in Theoretical Computer Science 25 (1999)
URL: http://www. elsevier. nl/locate/ entcs/volwne25. html 9 pages

Engineering Automation for Computer Based
Systems *

1 Introduction

Luqi

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943

Software development capabilities lag far behind society's demands for better,
cheaper, more reliable software. Since the gap is so -large, and widening, it is
unlikely that "business as usual" will be able to meet this need. Engineering
automation based on sound and scientific methods appears to be our best
chance to close the gap.

This is the sixth in a series of workshops whose common goal is helping
to increase the practical impact of formal methods in software development.
These workshops have succeeded in gradually bringing the theoretical and
practical sides of the software engineering community closer together, focusing
them on fulfilling the promise of scientific improvement of software engineering
practice. The progress made in this direction at this workshop was larger and
more readily apparent than in previous years, giving us hope that the effort
will eventually succeed.

The remainder of this paper is organized as follows. Section 2 restates the
main premises of the workshop. Section 3 gives an overview of the papers.
Section 4 summarizes some of the discussion at the workshop, and Section 5
presents some conclusions.

2 Premises of the Workshop

The main premises of the workshop are that mathematics and formal meth
ods can help solve practical problems in the engineering of computer-based
systems, and that engineering automation is a promising way to accomplish
this.

* This research was supported by ARO(MIPR8GNPSAR042), NSF(CCR-9813820),
ONR(N0001499WR20019), SPAWAR(N6600198WR00438).

@1999 Published by Elsevier Science B. V.

LUQI

We use a broad definition of "formal method." Webster's Dictionary says
that formal means definite, orderly, and methodical; that method means a
regular, orderly, and definite procedure; and that model is a preliminary rep
resentation that serves as a plan from which the final, usually larger, object
is to be constructed. Thus, to be formal does not necessarily require the use
of logic, or even of mathematics.

In computer science, the phrase formal method has taken on a narrower
meaning, referring to the use of a formal notation to represent system models
during program development. An even narrower sense refers to use of a for
mal logic to express system specifications, and proofs to check correctness of
implementation code - i.e., that it satisfies the specification.

The broader definition of formal method is appropriate to this workshop
because it fits the theme of engineering automation. Processes need to be defi
nite, orderly, and methodical to be successfully and reliably automated. Thus,
formalization of engineering processes in this broad sense is a prerequisite for
engineering automation.

The narrower sense of formal method - checking whether or not the code
satisfies a particular requirement specification in a formal logic - is inappro
priate for this purpose, because of the well known fact that the majority of
software defects are requirements errors (see the paper by Berry in this Pro
ceedings). If the specification is wrong, we do not want code that satisfies the
specification.

The broader interpretation of formal method opens the door to other ap
proaches, such as requirements elicitation via prototyping and the automatic
synthesis of correct code from requirements models formulated via domain
specific notations. Note that a formal model is required to generate an ex
ecutable version of a prototype, and practical prototyping requires extensive
automation of the prototype design, analysis and implementation process.
Such tools depend on extensive formalization of the processes involved. Simi
larly, the design of a domain-specific program generator depends on extensive
domain analysis, culminating in the formalization of problem domain con
cepts, corresponding problem specification notations, and a library of solution
methods for each domain. All of these activities are formal methods in the
broad sense.

The reader is cautioned that not all of the authors use the phrase forma~
method in the broader sense recommended here. For example, Berry states
that formal methods do not help in identifying requirements. This is true un
der the narrower interpretation of the phrase, but not necessarily the broader
one.

3 Overview of the Papers

Several concept papers assess the applicability of formal methods to engineer
ing practice. Berry notes that formal methods must be cost effective to be of

2

LUQI

practical use, that requirements are the central practical issue, and that most
formal methods do not help to identify requirements. He also conjectures that
formal methods help when they do because they provide a second iteration
on conceptual formalization. Robertson analyzes observed failures of formal
methods and their causes.

Another group of papers addresses automated reasoning and analysis.
Bjorner presents a decision procedure for queues. Manna, Sipma and Uribe
describe a method for combining deductive inference and model checking that
can provide proofs about infinite state systems using algorithmic finite state
methods. Cleaveland and Sims present methods to improve the efficiency
of generic, automatically generated model checkers. N arasimba, Cleaveland
and Iyer present a model, logic, semantics, and model-checking procedure for
probabilistic systems. Kwak, Lee, and Sokolsky give a method for symbolic
schedulability analysis that links to efficient equation solvers, which could be
used to synthesize designs by solving for values of design parameters that
would make the design achieve schedulability guarantees. Berzins analyzes
the inference requirements for engineering automation and identifies the need
for lightweight inference methods: sound, very efficient, typically restricted or
incomplete.

A third group of papers report on engineering aspects and practical experi
ences in the application of formal methods. Polak reports a successful applica
tion of automatic program synthesis in a specialized domain (satellite control
systems), and analyzes the reasons for the project's success. Kosiuczenko and
Wirsing formalize a common design notation for communication among dis
tributed systems (message sequence charts) using timed rewrite logic, and use
the formalism to test a specification by executing it, revealing a fault. Gelfond
and Watson describe the application of logic programs with non-monotonic
semantics to realize automated decision support for a complex domain (space
shuttle operation in the presence of multiple equipment failures). Volker and
Kraemer describe the successful application of the higher order logic HOL to
the development of a verified library of function blocks for a safety-critical
domain (industrial control). Gafni, Feldman and Yehudai present a real-time
design language for large scale applications and explain the associated design
process via an example (cruise control). Cooke describes a formalism for ex
pressing implicit concurrency in data parallel computation, with applications
to data mining. Zhang, Lee, Friedel, and Keyser describe statistical methods
for generating facts from raw data to provide decision support for an engi
neering task (diagnosis and repair of phased array antennas).

Peter Wegner presented the idea that interactive systems fundamentally
change the nature of computing, and that this change has far-reaching effects
that have not been fully integrated into current theories of computing and
engineering science. The main ideas are summarized here because there is
no corresponding paper in the proceedings (for more details, see Mathemati
cal Models of Interactive Computing, http://www.cs.brown.edu/people/pw).

3

LUQI

The difference is that the input to an interactive machine is not fixed in ad
vance, and could depend on the partial output produced by the machine up
to that point. A difference in expressive power due to this effect is claimed.
This view of computation leads to different kinds of formal models, such as
co-algebras; and different modes of reasoning, such as co-induction, which are
relevant to the analysis of open (extensible) systems of the kind common in
the current practice of object oriented design. The proposed change in view
point stimulated discussion as well as some controversy about the details and
their philosophical interpretation.

4 Summary of the Discussions

The National Science Foundation is considering the impact of the PTAC report
(http://www.ccic.gov/ac) and its impact on national research priorities, as
summarized below. The report's major recommendation was to make software
research an absolute priority. The four major research priorities identified are:

(i) Software

(ii) Scalable information infrastructure (networking)

(iii) High performance (peta-fiops) computing, including software R & D

(iv) Socio-economic and workforce impacts

The report finds that software demand exceeds the nation's capability to
produce it, that we must still depend on fragile software, that technologies
to build reliable and secure software are inadequate, and that the nation is
under-investing in fundamental software research.

The report makes the following recommendations:

(i) Fund fundamental research in software development methods and com
ponent technology;

(ii) Sponsor a national library of software components in subject domains;

(iii) Make software research a substantive component of every major IT re
search initiative; and

(iv) Fund fundamental research in human/ computer interfaces and interac
tions.

Relevant research initiatives include ASCI (Accelerated Strategic Comput
ing Initiative) and NGI (Next Generation Internet). The internet is making
the next step, with major implications for software research. Yesterday's envi
ronment is not tomorrow's, and many issues need rethinking within the future
context.

We are at a unique point in IT history: agendas are being set and rec
ommendations are being made. The field needs a research agenda, a plan
for research management, and action to build public support. Consequences
of not acting include negative economic impact and loss of global leadership

4

LUQI

and competitiveness. One issue is that we are not currently able to meet the
demand for software. We therefore need to:

(i) empower end-users with domain-specific tools that create software;

(ii) make component-based development a reality;

(iii) automate software engineering processes; and

(iv) produce more well-trained professionals.

Another issue is that we cannot produce high-confidence systems, and
cannot even produce routine systems routinely. We therefore need to:

(i) understand what works and what does not;

(ii) understand the science of software construction; and

(iii) create a discipline of software engineering.

The problems identified in the PITAC report have many facets, including
unresolved practical problems, rapid change, immaturity of the science, a gap
between theory and practice, fragmentation of the research community, and
inadequate infrastructure for technology transfer.

The recurring horror story is that we can not afford to build software
systems using current technology. This has been true for many years despite
improvements in the state of practice. We have not made a convincing case
that we have done much. Some of the reasons for this are increasing demand
and rapid change, lack of effective technology transfer, and lack of the right
kind of science.

The practice of software engineering is moving very fast, in an attempt
to keep up with demand and stay ahead of the intense competition. Time to
market is vital in the commercial world. Many developers jump on aggressively
marketed software fashions, although they often include ad hoc methods and
worst practices along with some improvements.

Despite these difficulties, the commercial world has made progress. For ex
ample, Java is an improvement over previous practice. Networking and com
munication are coming together, and succeeding in reusing resources. Com
mercial systems engineering is improving. We can successfully educate pro
fessionals in about ten years.

Other commercial steps have been less effective. UML had the benefit
of lots of talent with inconclusive results. The semantics of C++ remains
controversial. Component technology is in fashion although it is still difficult
to make components work together.

There is a widespread attitude in the commercial world that academic
results are impractical and that theoretical results take too much time and
cost to incorporate into practice, especially in a highly competitive world.
Some parts of the theoretical computing community take the attitude that
practical engineering is irrelevant. The result is ineffective technology transfer
and engineering practice with a weak scientific basis.

5

LUQI

This is an area where improvement is possible. Instead of a struggle be
tween theory and practice, there should be a supply chain, and a coherent
vision of problems flowing up the supply chain and solutions flowing down
the supply chain. This should be a continuous, orderly, and effective process.
Currently, it is not. We can not afford change in random directions.

There are multiple causes for the current situation, including immaturity
of the discipline. The problem goes deeper than a lack of communication
that could be resolved by the current practices of our educational systems.
Many issues that arise in engineering practice have not been addressed by the
scientific community. There is growing awareness of these issues and increasing
resolve in the scientific community to address them by developing a more
robust and principled basis for future software engineering technologies.

Past emphasis on formal methods in response to this problem has been a
mistake. We should instead speak of and insist on effective, rational methods
to achieve goals. The Latin for method is "via ratio," a rational path. It is
not convincing to say, "We are on the right side because math and formulas
are what matters." A shift of paradigm is now needed. The quality of the
result and the cost of producing that result are what matter. For progress in
engineering, it is essential to automate the process. The solution must be a
highly interactive, adaptive, automated system. We must admit that, even if
we build an advanced system, it will be at a cost of not doing it again.

As science is currently inadequate to support automated engineering, our
community needs to understand and develop the science needed to bring the
engineering to this level. Formalization is useful to the degree that it con
tributes to this goal by enabling automation or systematization of engineering
processes.

There are two kinds of science: theoretical science focuses on understanding
and prediction, while engineering science focuses on empirical validation of
theory-based predictions, and learns mostly from failures - as, for example, in
seismology. A finer interplay between mathematics and empirical science is
needed to achieve progress. Many good ideas have been proposed, but often
without a plan to evaluate success. The only basis for rational judgement is
empirical science. Many ideas that sound good in the abstract can not be
realized in practice. Good empirical computer science is needed, but no one
has been able to do it well so far.

To focus effort where it is needed, it may be useful to distinguish engineer
ing science from theoretical science. Recognition of the category engineering
science is important because research funding agencies typically support sci
ence rather than engineering. The aim of engineering science is to improve the
capabilities of practicing engineers. The aim of theoretical computing science
is to improve our ·understanding of computing. Automation is a primary goal
for engineering science, but not necessarily for theoretical computing science.

Advances in theoretical computing science can contribute in the long term
to software engineering by providing better conceptual models and better prin-

6

LUQI

ciples that can be used to build tools for engineers. However, significant effort
is required to identify, reformulate, extend, and package the relevant results
from theoretical computer science to make them useful for engineering. For
example, theoretical advances are often made using simplified models that
avoid issues and details that are inescapable in practical engineering. These
issues are in the realm of engineering science, and are vital for progress.

We need technology transfer from relevant new engineering science to make
things work. Nobody has the responsibility for this now. There should be an
"Expedition Center" to envision what the world is going to be like in 100
years, and a "Transfer Center" to transform those visions into reality. We
have to be careful about what kind of technology we transfer: it must be
relevant to practical problems. There is much irrelevant material from former
type theoretical computer science and others: e.g., How do you get a theorem
to find oil?

The various parts of the community must interact more closely than they
have in the past to achieve practical impact. Software isolation is a problem.
Much software is connected to communication, hardware, and other compo
nents. If we do not include these components, we have not solved the problem.
Results from other disciplines are relevant also. Software development is a spe
cial case of product development. Software is hard because it is abstract; it
cannot be visualized. We can learn much from design theory and product
management.

Rapid change affects the scientific community as well. The nature of com
puting may change substantially in the 21-st century. For example, new mod
els of interactive computing and quantum computing are on the horizon. To
day's computing environments can not and will not be the environments of
tomorrow. Computing is a relatively new science. There is opportunity, but
also a need to educate people about what computer science is and what it
can be. There is also need for periodic reality checks to ensure feasibility of
long-term visions. These exercises can help improve the credibility of our field,
can provide course corrections for research agendas and can evaluate readi
ness for technology transfer as we learn more about what can be done at what
cost. DARPA and other agencies have challenge problems that could serve
these functions. For example, the automatic theorem proving community has
a standard set of benchmark theorems.

There is a tension between long-term goals and short-term goals. Funding
agencies require that goals be achieved on a yearly basis. This is an issue that
must be faced by all branches of science, not just in computing. We can ask
how the issue is handled in other disciplines, such as particle physics. Physics
has a-history of setting up visionary programs. In Italy, 72 percent of money
for basic science goes to physics, and only 1. 7 percent goes to information
science. Why is this - a good part of the answer is that the physics community
behaves in a political way, i.e., it has a lobby. They say, "We have this great
vision. We need Congressional funding for astrophysics, etc.", and then set

7

" .

LUQI

up a lobby and get real money. We need to develop a similar vision and agree
to work together toward that vision.

In computing science, we have not agreed on the goals. This has been
aggravated by the rapid rate of change, which has spawned computing schools
of thought, and intense competition for scarce research support. We need
to identify our goals and stick together, instead of "dissecting ourselves to
death." Computing research does not have to be a zero sum game. The goals
identified in PITAC report are a good starting point for developing a shared
agenda for the entire computing community.

Computing is the most successful technical discipline, in that it has come
to relevance and has been applied in a relatively short time. Decidability
and computability ideas appeared only at the beginning of this century. We
had a vision of software engineering in 1968, but people were not aware of
how much is hidden behind th~t vision. The digital point of view brought
in a whole new view of the world, as opposed to physics. There is a basic
difference between the root of physics and the root of computer science. The
foundations of computer science are very simple - i.e., Turing machines suffice,
with some modifications. NP completeness is not the most central problem.
The real problems come on the macro level, in building systems and with
human factors. The roots of physics are different, more involved. The theory
of digital models may become much more than it is today.

We should be happy to work in a scientific field that has such a high level
impact. We should also understand that there is a real push in progress, and
appreciate that scientific push. What we have done wrong is to engage in
too much infighting, much of which is due to not understanding the inherant
positions imposed by the disciplines of our colleagues. What we have gained
over the last 20 years could not have been done without deeper understanding.
What we actually do in practice is not called formal methods, yet we have
made more progress than we realize. It is important to make the field more
transparent. We are just at the beginning.

5 Conclusions

The technical presentations and the engineering experiences reported at the
workshop support the premise that engineering automation can lead to signifi
cant practical gains. Some of the papers detail the circumstances under which
such gains can be realized using currently known techniques, thus providing
a snapshot of the current state of the art in the area.

Another outcome of the workshop was a change in the attitude of the
participants. For the first time there appeared a broad consensus that we
should work together and agree on a larger common vision that we can all
contribute to from our individual specialties. Most participants accepted the
idea that theoretical work should contribute to engineering over a medium
to long-term time horizon. A working approximation to that vision is the

8

" '
LUQI

improvement and application of computing science to, in turn, improve and
automate processes for developing reliable computer-based systems.

This consensus suggests a direction for action. The common vision needs
to be supported by a more detailed research and development plan, providing
explicit intermediate goals on the way toward the ultimate end. We should
interleave our specialized scientific efforts with periodic application and in
tegration of results from our different disciplines, with assessment steps and
identification of unsolved problems that lie between the solved fragments, and
with validation and adjustment of the assumptions used as the basis for the
next round of basic research. Applications of new and sometimes deep theories
rarely happen spontaneously. For best success, those researchers who origi
nate new theories should spend part of their effort identifying and developing
applications of those theories, perhaps in cooperation with groups whose pri
mary focus is empirical engineering science. Some of our most valuable lessons
have come from the analysis of failed attempts to apply existing theories.

We must work together to agree on how these threads will fit together
into a coherent whole, and to form a more detailed vision that addresses so
ciety's long-term needs. Technology transfer and public relations are part of
this puzzle. We need to better communicate to the public how engineering
automation and the basic research it will take to achieve that goal will alle
viate the difficulties associated with computer-based systems that currently
touch all of our lives. We need to make concrete progress in this direction,
and to demonstrate the practical impact of that progress in a systematic and
coordinated way. It is important to put past disagreements behind us to work
together for the common good of both the computing discipline and society
at large.

9

