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1 Introduction 

Luqi 

Computer Science Department 
Naval Postgraduate School 

Monterey, CA 93943 

Software development capabilities lag far behind society's demands for better, 
cheaper, more reliable software. Since the gap is so -large, and widening, it is 
unlikely that "business as usual" will be able to meet this need. Engineering 
automation based on sound and scientific methods appears to be our best 
chance to close the gap. 

This is the sixth in a series of workshops whose common goal is helping 
to increase the practical impact of formal methods in software development. 
These workshops have succeeded in gradually bringing the theoretical and 
practical sides of the software engineering community closer together, focusing 
them on fulfilling the promise of scientific improvement of software engineering 
practice. The progress made in this direction at this workshop was larger and 
more readily apparent than in previous years, giving us hope that the effort 
will eventually succeed. 

The remainder of this paper is organized as follows. Section 2 restates the 
main premises of the workshop. Section 3 gives an overview of the papers. 
Section 4 summarizes some of the discussion at the workshop, and Section 5 
presents some conclusions. 

2 Premises of the Workshop 

The main premises of the workshop are that mathematics and formal meth
ods can help solve practical problems in the engineering of computer-based 
systems, and that engineering automation is a promising way to accomplish 
this. 

* This research was supported by ARO(MIPR8GNPSAR042), NSF(CCR-9813820), 
ONR(N0001499WR20019), SPAWAR(N6600198WR00438). 
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We use a broad definition of "formal method." Webster's Dictionary says 
that formal means definite, orderly, and methodical; that method means a 
regular, orderly, and definite procedure; and that model is a preliminary rep
resentation that serves as a plan from which the final, usually larger, object 
is to be constructed. Thus, to be formal does not necessarily require the use 
of logic, or even of mathematics. 

In computer science, the phrase formal method has taken on a narrower 
meaning, referring to the use of a formal notation to represent system models 
during program development. An even narrower sense refers to use of a for
mal logic to express system specifications, and proofs to check correctness of 
implementation code - i.e., that it satisfies the specification. 

The broader definition of formal method is appropriate to this workshop 
because it fits the theme of engineering automation. Processes need to be defi
nite, orderly, and methodical to be successfully and reliably automated. Thus, 
formalization of engineering processes in this broad sense is a prerequisite for 
engineering automation. 

The narrower sense of formal method - checking whether or not the code 
satisfies a particular requirement specification in a formal logic - is inappro
priate for this purpose, because of the well known fact that the majority of 
software defects are requirements errors ( see the paper by Berry in this Pro
ceedings). If the specification is wrong, we do not want code that satisfies the 
specification. 

The broader interpretation of formal method opens the door to other ap
proaches, such as requirements elicitation via prototyping and the automatic 
synthesis of correct code from requirements models formulated via domain
specific notations. Note that a formal model is required to generate an ex
ecutable version of a prototype, and practical prototyping requires extensive 
automation of the prototype design, analysis and implementation process. 
Such tools depend on extensive formalization of the processes involved. Simi
larly, the design of a domain-specific program generator depends on extensive 
domain analysis, culminating in the formalization of problem domain con
cepts, corresponding problem specification notations, and a library of solution 
methods for each domain. All of these activities are formal methods in the 
broad sense. 

The reader is cautioned that not all of the authors use the phrase forma~ 
method in the broader sense recommended here. For example, Berry states 
that formal methods do not help in identifying requirements. This is true un
der the narrower interpretation of the phrase, but not necessarily the broader 
one. 

3 Overview of the Papers 

Several concept papers assess the applicability of formal methods to engineer
ing practice. Berry notes that formal methods must be cost effective to be of 
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practical use, that requirements are the central practical issue, and that most 
formal methods do not help to identify requirements. He also conjectures that 
formal methods help when they do because they provide a second iteration 
on conceptual formalization. Robertson analyzes observed failures of formal 
methods and their causes. 

Another group of papers addresses automated reasoning and analysis. 
Bjorner presents a decision procedure for queues. Manna, Sipma and Uribe 
describe a method for combining deductive inference and model checking that 
can provide proofs about infinite state systems using algorithmic finite state 
methods. Cleaveland and Sims present methods to improve the efficiency 
of generic, automatically generated model checkers. N arasimba, Cleaveland 
and Iyer present a model, logic, semantics, and model-checking procedure for 
probabilistic systems. Kwak, Lee, and Sokolsky give a method for symbolic 
schedulability analysis that links to efficient equation solvers, which could be 
used to synthesize designs by solving for values of design parameters that 
would make the design achieve schedulability guarantees. Berzins analyzes 
the inference requirements for engineering automation and identifies the need 
for lightweight inference methods: sound, very efficient, typically restricted or 
incomplete. 

A third group of papers report on engineering aspects and practical experi
ences in the application of formal methods. Polak reports a successful applica
tion of automatic program synthesis in a specialized domain (satellite control 
systems), and analyzes the reasons for the project's success. Kosiuczenko and 
Wirsing formalize a common design notation for communication among dis
tributed systems (message sequence charts) using timed rewrite logic, and use 
the formalism to test a specification by executing it, revealing a fault. Gelfond 
and Watson describe the application of logic programs with non-monotonic 
semantics to realize automated decision support for a complex domain (space 
shuttle operation in the presence of multiple equipment failures). Volker and 
Kraemer describe the successful application of the higher order logic HOL to 
the development of a verified library of function blocks for a safety-critical 
domain (industrial control). Gafni, Feldman and Yehudai present a real-time 
design language for large scale applications and explain the associated design 
process via an example (cruise control). Cooke describes a formalism for ex
pressing implicit concurrency in data parallel computation, with applications 
to data mining. Zhang, Lee, Friedel, and Keyser describe statistical methods 
for generating facts from raw data to provide decision support for an engi
neering task ( diagnosis and repair of phased array antennas). 

Peter Wegner presented the idea that interactive systems fundamentally 
change the nature of computing, and that this change has far-reaching effects 
that have not been fully integrated into current theories of computing and 
engineering science. The main ideas are summarized here because there is 
no corresponding paper in the proceedings (for more details, see Mathemati
cal Models of Interactive Computing, http://www.cs.brown.edu/people/pw). 
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The difference is that the input to an interactive machine is not fixed in ad
vance, and could depend on the partial output produced by the machine up 
to that point. A difference in expressive power due to this effect is claimed. 
This view of computation leads to different kinds of formal models, such as 
co-algebras; and different modes of reasoning, such as co-induction, which are 
relevant to the analysis of open (extensible) systems of the kind common in 
the current practice of object oriented design. The proposed change in view
point stimulated discussion as well as some controversy about the details and 
their philosophical interpretation. 

4 Summary of the Discussions 

The National Science Foundation is considering the impact of the PTAC report 
(http://www.ccic.gov/ac) and its impact on national research priorities, as 
summarized below. The report's major recommendation was to make software 
research an absolute priority. The four major research priorities identified are: 

(i) Software 

(ii) Scalable information infrastructure (networking) 

(iii) High performance (peta-fiops) computing, including software R & D 

(iv) Socio-economic and workforce impacts 

The report finds that software demand exceeds the nation's capability to 
produce it, that we must still depend on fragile software, that technologies 
to build reliable and secure software are inadequate, and that the nation is 
under-investing in fundamental software research. 

The report makes the following recommendations: 

(i) Fund fundamental research in software development methods and com
ponent technology; 

(ii) Sponsor a national library of software components in subject domains; 

(iii) Make software research a substantive component of every major IT re
search initiative; and 

(iv) Fund fundamental research in human/ computer interfaces and interac
tions. 

Relevant research initiatives include ASCI (Accelerated Strategic Comput
ing Initiative) and NGI (Next Generation Internet). The internet is making 
the next step, with major implications for software research. Yesterday's envi
ronment is not tomorrow's, and many issues need rethinking within the future 
context. 

We are at a unique point in IT history: agendas are being set and rec
ommendations are being made. The field needs a research agenda, a plan 
for research management, and action to build public support. Consequences 
of not acting include negative economic impact and loss of global leadership 
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and competitiveness. One issue is that we are not currently able to meet the 
demand for software. We therefore need to: 

(i) empower end-users with domain-specific tools that create software; 

(ii) make component-based development a reality; 

(iii) automate software engineering processes; and 

(iv) produce more well-trained professionals. 

Another issue is that we cannot produce high-confidence systems, and 
cannot even produce routine systems routinely. We therefore need to: 

(i) understand what works and what does not; 

(ii) understand the science of software construction; and 

(iii) create a discipline of software engineering. 

The problems identified in the PITAC report have many facets, including 
unresolved practical problems, rapid change, immaturity of the science, a gap 
between theory and practice, fragmentation of the research community, and 
inadequate infrastructure for technology transfer. 

The recurring horror story is that we can not afford to build software 
systems using current technology. This has been true for many years despite 
improvements in the state of practice. We have not made a convincing case 
that we have done much. Some of the reasons for this are increasing demand 
and rapid change, lack of effective technology transfer, and lack of the right 
kind of science. 

The practice of software engineering is moving very fast, in an attempt 
to keep up with demand and stay ahead of the intense competition. Time to 
market is vital in the commercial world. Many developers jump on aggressively 
marketed software fashions, although they often include ad hoc methods and 
worst practices along with some improvements. 

Despite these difficulties, the commercial world has made progress. For ex
ample, Java is an improvement over previous practice. Networking and com
munication are coming together, and succeeding in reusing resources. Com
mercial systems engineering is improving. We can successfully educate pro
fessionals in about ten years. 

Other commercial steps have been less effective. UML had the benefit 
of lots of talent with inconclusive results. The semantics of C++ remains 
controversial. Component technology is in fashion although it is still difficult 
to make components work together. 

There is a widespread attitude in the commercial world that academic 
results are impractical and that theoretical results take too much time and 
cost to incorporate into practice, especially in a highly competitive world. 
Some parts of the theoretical computing community take the attitude that 
practical engineering is irrelevant. The result is ineffective technology transfer 
and engineering practice with a weak scientific basis. 
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This is an area where improvement is possible. Instead of a struggle be
tween theory and practice, there should be a supply chain, and a coherent 
vision of problems flowing up the supply chain and solutions flowing down 
the supply chain. This should be a continuous, orderly, and effective process. 
Currently, it is not. We can not afford change in random directions. 

There are multiple causes for the current situation, including immaturity 
of the discipline. The problem goes deeper than a lack of communication 
that could be resolved by the current practices of our educational systems. 
Many issues that arise in engineering practice have not been addressed by the 
scientific community. There is growing awareness of these issues and increasing 
resolve in the scientific community to address them by developing a more 
robust and principled basis for future software engineering technologies. 

Past emphasis on formal methods in response to this problem has been a 
mistake. We should instead speak of and insist on effective, rational methods 
to achieve goals. The Latin for method is "via ratio," a rational path. It is 
not convincing to say, "We are on the right side because math and formulas 
are what matters." A shift of paradigm is now needed. The quality of the 
result and the cost of producing that result are what matter. For progress in 
engineering, it is essential to automate the process. The solution must be a 
highly interactive, adaptive, automated system. We must admit that, even if 
we build an advanced system, it will be at a cost of not doing it again. 

As science is currently inadequate to support automated engineering, our 
community needs to understand and develop the science needed to bring the 
engineering to this level. Formalization is useful to the degree that it con
tributes to this goal by enabling automation or systematization of engineering 
processes. 

There are two kinds of science: theoretical science focuses on understanding 
and prediction, while engineering science focuses on empirical validation of 
theory-based predictions, and learns mostly from failures - as, for example, in 
seismology. A finer interplay between mathematics and empirical science is 
needed to achieve progress. Many good ideas have been proposed, but often 
without a plan to evaluate success. The only basis for rational judgement is 
empirical science. Many ideas that sound good in the abstract can not be 
realized in practice. Good empirical computer science is needed, but no one 
has been able to do it well so far. 

To focus effort where it is needed, it may be useful to distinguish engineer
ing science from theoretical science. Recognition of the category engineering 
science is important because research funding agencies typically support sci
ence rather than engineering. The aim of engineering science is to improve the 
capabilities of practicing engineers. The aim of theoretical computing science 
is to improve our ·understanding of computing. Automation is a primary goal 
for engineering science, but not necessarily for theoretical computing science. 

Advances in theoretical computing science can contribute in the long term 
to software engineering by providing better conceptual models and better prin-
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ciples that can be used to build tools for engineers. However, significant effort 
is required to identify, reformulate, extend, and package the relevant results 
from theoretical computer science to make them useful for engineering. For 
example, theoretical advances are often made using simplified models that 
avoid issues and details that are inescapable in practical engineering. These 
issues are in the realm of engineering science, and are vital for progress. 

We need technology transfer from relevant new engineering science to make 
things work. Nobody has the responsibility for this now. There should be an 
"Expedition Center" to envision what the world is going to be like in 100 
years, and a "Transfer Center" to transform those visions into reality. We 
have to be careful about what kind of technology we transfer: it must be 
relevant to practical problems. There is much irrelevant material from former 
type theoretical computer science and others: e.g., How do you get a theorem 
to find oil? 

The various parts of the community must interact more closely than they 
have in the past to achieve practical impact. Software isolation is a problem. 
Much software is connected to communication, hardware, and other compo
nents. If we do not include these components, we have not solved the problem. 
Results from other disciplines are relevant also. Software development is a spe
cial case of product development. Software is hard because it is abstract; it 
cannot be visualized. We can learn much from design theory and product 
management. 

Rapid change affects the scientific community as well. The nature of com
puting may change substantially in the 21-st century. For example, new mod
els of interactive computing and quantum computing are on the horizon. To
day's computing environments can not and will not be the environments of 
tomorrow. Computing is a relatively new science. There is opportunity, but 
also a need to educate people about what computer science is and what it 
can be. There is also need for periodic reality checks to ensure feasibility of 
long-term visions. These exercises can help improve the credibility of our field, 
can provide course corrections for research agendas and can evaluate readi
ness for technology transfer as we learn more about what can be done at what 
cost. DARPA and other agencies have challenge problems that could serve 
these functions. For example, the automatic theorem proving community has 
a standard set of benchmark theorems. 

There is a tension between long-term goals and short-term goals. Funding 
agencies require that goals be achieved on a yearly basis. This is an issue that 
must be faced by all branches of science, not just in computing. We can ask 
how the issue is handled in other disciplines, such as particle physics. Physics 
has a-history of setting up visionary programs. In Italy, 72 percent of money 
for basic science goes to physics, and only 1. 7 percent goes to information 
science. Why is this - a good part of the answer is that the physics community 
behaves in a political way, i.e., it has a lobby. They say, "We have this great 
vision. We need Congressional funding for astrophysics, etc.", and then set 
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up a lobby and get real money. We need to develop a similar vision and agree 
to work together toward that vision. 

In computing science, we have not agreed on the goals. This has been 
aggravated by the rapid rate of change, which has spawned computing schools 
of thought, and intense competition for scarce research support. We need 
to identify our goals and stick together, instead of "dissecting ourselves to 
death." Computing research does not have to be a zero sum game. The goals 
identified in PITAC report are a good starting point for developing a shared 
agenda for the entire computing community. 

Computing is the most successful technical discipline, in that it has come 
to relevance and has been applied in a relatively short time. Decidability 
and computability ideas appeared only at the beginning of this century. We 
had a vision of software engineering in 1968, but people were not aware of 
how much is hidden behind th~t vision. The digital point of view brought 
in a whole new view of the world, as opposed to physics. There is a basic 
difference between the root of physics and the root of computer science. The 
foundations of computer science are very simple - i.e., Turing machines suffice, 
with some modifications. NP completeness is not the most central problem. 
The real problems come on the macro level, in building systems and with 
human factors. The roots of physics are different, more involved. The theory 
of digital models may become much more than it is today. 

We should be happy to work in a scientific field that has such a high level 
impact. We should also understand that there is a real push in progress, and 
appreciate that scientific push. What we have done wrong is to engage in 
too much infighting, much of which is due to not understanding the inherant 
positions imposed by the disciplines of our colleagues. What we have gained 
over the last 20 years could not have been done without deeper understanding. 
What we actually do in practice is not called formal methods, yet we have 
made more progress than we realize. It is important to make the field more 
transparent. We are just at the beginning. 

5 Conclusions 

The technical presentations and the engineering experiences reported at the 
workshop support the premise that engineering automation can lead to signifi
cant practical gains. Some of the papers detail the circumstances under which 
such gains can be realized using currently known techniques, thus providing 
a snapshot of the current state of the art in the area. 

Another outcome of the workshop was a change in the attitude of the 
participants. For the first time there appeared a broad consensus that we 
should work together and agree on a larger common vision that we can all 
contribute to from our individual specialties. Most participants accepted the 
idea that theoretical work should contribute to engineering over a medium
to long-term time horizon. A working approximation to that vision is the 
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improvement and application of computing science to, in turn, improve and 
automate processes for developing reliable computer-based systems. 

This consensus suggests a direction for action. The common vision needs 
to be supported by a more detailed research and development plan, providing 
explicit intermediate goals on the way toward the ultimate end. We should 
interleave our specialized scientific efforts with periodic application and in
tegration of results from our different disciplines, with assessment steps and 
identification of unsolved problems that lie between the solved fragments, and 
with validation and adjustment of the assumptions used as the basis for the 
next round of basic research. Applications of new and sometimes deep theories 
rarely happen spontaneously. For best success, those researchers who origi
nate new theories should spend part of their effort identifying and developing 
applications of those theories, perhaps in cooperation with groups whose pri
mary focus is empirical engineering science. Some of our most valuable lessons 
have come from the analysis of failed attempts to apply existing theories. 

We must work together to agree on how these threads will fit together 
into a coherent whole, and to form a more detailed vision that addresses so
ciety's long-term needs. Technology transfer and public relations are part of 
this puzzle. We need to better communicate to the public how engineering 
automation and the basic research it will take to achieve that goal will alle
viate the difficulties associated with computer-based systems that currently 
touch all of our lives. We need to make concrete progress in this direction, 
and to demonstrate the practical impact of that progress in a systematic and 
coordinated way. It is important to put past disagreements behind us to work 
together for the common good of both the computing discipline and society 
at large. 

9 




