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Graphical tool for computer-aided 
prototyping 

Luqi, P D Barnes and M Zyda 

The basic problem in rapid prototyping of software is information 
overload. Graphic interfaces can help by providing multiple views, 
where each view is limited to providing information relevant to a 
particular task or problem. The graphical editor under develop­
ment for the Computer Aided Prototyping System (CAPS) pro­
poses a dataflow-diagram-based model with multiple views and 
automatic program generation to manage the quantity of infor­
mation necessary to prototype large, real-time systems. 

software engineering, rapid prototyping, computer-aided design, 
computer graphics, graphical editor 

The need to improve software operational reliability and 
development productivity has resulted in research aimed 
at tools for rapidly prototyping large real-time software 
systems. The Computer Aided Prototyping System 
(CAPS) under development at the Department of 
Computer Science, Naval Postgraduate School, replaces 
the traditional software life-cycle with a two-phase cycle 
that consists of rapid prototyping and automatic pro­
gram generation1. The rapid prototyping technique 
provides the designer with a means of writing specifica­
tions and using matching reusable software components 
to build a prototype of the intended system. The proto­
type can then be used to evaluate both user's needs and 
system feasibility2-3. 

Although prototyping generally involves dealing with 
problems at a high level of abstraction, crucial decisions 
that designers must make are still too many to be eva­
luated at a single level. As the designer delves beneath the 
surface into increasing detail, the amount of information 
that must be retained to make good design decisions 
becomes unmanageable. The designer quickly becomes 
inundated with an overload of information — thus the 
term information overload'. Prototyping large real-time 
systems requires tools for managing this information 
such that unnecessary detail may be hidden and essen­
tials easily assimilated at a glance. 

This paper discusses the importance of using graphical 
representations to reduce information overload and 
describes a graphical editor in development for CAPS. 

Department of Computer Science, Naval Postgraduate School, Mon­
terey, CA 93943, USA. 
Paper submitted: 10 May 1989. 
Revised version received: 5 December 1989. 

REDUCING INFORMATION OVERLOAD 
An essential function of CAPS is to help the prototype 
designer focus on subsets of the decisions in a design 
needed to evaluate alternatives and further refine or 
modify the system4. CAPS initially provided for entering 
component specifications via a syntax-directed editor 
accessed through its user interface. It could then try to 
match the specifications to reusable modules in the data­
base. For complex systems, however, if the search was 
unsuccessful, the component had to be manually decom­
posed into increasingly detailed statements, which 
resulted in the information management problem pre­
viously described. What was needed was a means of 
entering specifications graphically, so that decompo­
sition would be cleaner and information hiding could be 
managed via a multi-layered representation. 

Graphics alone cannot provide a magic solution to the 
problem of software complexity. In fact, they can some­
times complicate matters even further. Thus to be effec­
tive the application of graphical techniques must be cou­
pled with a strategy for extracting a meaningful subset of 
available information. Yourdon5 lists the following 
important features of automated tools for systems analy­
sis and design: 

• graphics support for multiple types of models 
• error-checking features to ensure model accuracy 
• cross-checking of different models 
• additional software engineering support 

Development of a graphical editor, then, requires 
addressing the following issues. First, it must provide 
multiple system views — reducing the amount and detail 
of information that must be assimilated at any one time. 
Second, a provision has to be made for maintaining 
consistency between the Prototype System Description 
Language (PSDL) and various graphic representations, 
as well as syntactic and semantic correctness of the 
design. Finally, under the subject of additional software 
engineering support, a graphic representation for proto­
typing must be automatically programmable. In the case 
of CAPS, it must map directly to equivalent PSDL rep­
resentations with which CAPS can construct a proto­
type3-6. The following sections describe these issues, 
beginning with the goal of the editor, the generation of 
PSDL code through automatic programming. 
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Automatic programming 
Automatic programming is a promising means of 
improving programmer productivity7. That is, the auto­
matic generation of code from software specifications 
rather than manual generation through several layers of 
language translation. The PSDL prototyping language8 

used by CAPS applies this concept. PSDL specifications 
may be used directly to produce an executable ADA pro­
gram from reusable components. PSDL provides for 
specification of both control and data flow and is based 
on the following mathematical model: 

G = (V,E,T(V),C(V)) 

where V is the set of vertices, E is the set of edges, T(V) is 
the maximum execution time (MET) associated with 
vertex V, and C(V) is the set of control constraints asso­
ciated with vertex V. 

In PSDL, vertices represent operators and edges repre­
sent data streams. Operators represent system compo­
nents and can map to either functions or state machines. 
Such components communicate with one another via 
data streams carrying values of a fixed abstract data type 
or the special PSDL type EXCEPTION. Operators are 
either data driven or periodic. That is, they execute either 
in response to the arrival of a datum or at a predeter­
mined interval. Operators can also be characterized as 
being either composite or atomic. If an operator cannot 
be further decomposed into data and control flow 
networks, it is atomic. Edges or data streams can repre­
sent either the traditional flows, in which data is guaran­
teed to reach its destination, or sampled streams. Sam­
pled streams represent continuous streams of 
information, which may be updated and sampled at 
different rates. 

Control constraints are used to limit an operator's 
behaviour by specifying conditions regarding its firing 
(execution) or input/output processing. While control 
constraints specify when an operator executes, timing 
constraints determine its execution time, response time, 
and period. 

The best representation or graphic model to use to 
both represent the prototype and map to PSDL is a 
problem with no clear solution. Pressman7 provides a 
taxonomy of graphical models for analysis and design 
based on various paradigms. However, no models speci­
fically for prototyping are discussed. This is probably 
because most prototyping approaches are just starting to 
address graphical representation issues. An exception is 
ENVISAGER6, which provides an animated simulation 
modelling capability where each database object has a 
unique iconic representation. Users combine compo­
nents from the icon-base with communication paths to 
form a prototype. An example of an almost purely 
graphic-based prototyping system is the Oregon Speed-
code Universe (OSU)9. The OSU is based on the notion 
of'showing rather than telling' the prototype what to do. 
It takes advantage of existing user-interface objects in a 
common standardized environment to generate proto-
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Figure 1. Operator decomposition8 

type user interfaces that require from one-half to one-
tenth the normal amount of code. 

The choice of graphical representations in the afore­
mentioned systems is highly dependent on the class of 
prototypes the systems are targeted toward. CAPS is 
designed to meet the strict requirements of hard real-time 
systems. Thus a more general approach to graphic rep­
resentation is taken. Although constrained to the under­
lying PSDL model, CAPS is not limited to a single view 
of the prototype. Rather, the approach taken is one of a 
basic dataflow diagram (DFD)5 augmented with addi­
tional views as required to specify clearly the prototype. 
This multi-view approach is discussed further in the next 
section and is based on the concepts introduced by 
Smedstad and Anderson10 and explored by Barnes and 
Hartrum11. This allows the prototyper to design without 
being constrained to a fixed set of components in the 
design database. 

The PSDL model can easily be mapped directly to the 
augmented DFD8. Execution time and constraints asso­
ciated with each operator are incorporated into the DFD 
and decomposed (see Figure 1). Note that consistency 
requires not only that inputs and outputs must match 
between levels, but timing constraints of a decompo­
sition must not allow a path that has a total execution 
time in excess of the parent operator's Maximum Execu­
tion Time (MET). 

Multiple views 
The CAPS database is able to maintain graphical rep­
resentations so that they may be retrieved in a manner 
similar to hypertext". That is, each operator exists as a 
node of a multi-way tree with its associated attributes 
and links to its parent and child nodes. Additional links 
are possible, representing other types of relationships 
between nodes. This capability provides for the following 
proposed set of graphical system representations: summ­
ary views, navigation structures, and focused slices. 

A summary view serves as an introduction to some 
aspect of the system under development. This lets 
someone unfamiliar with the system or component get 
'the big picture', as is necessary in a prototype demon-
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Figure 2: Summary view Figure 4. Annotation view for stream y 
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Figure 3. Exploring view of operator A 

stration or design review. A summary view therefore 
serves to establish a context for further explanation or 
detailed examination. 

An example useful summary view for a PSDL compo­
site operator is the DFD of Figure 2, showing only the 
operator's components and their interconnections. Such 
a view is valuable precisely because of the details it leaves 
out (such as data types and timing and control con­
straints). Without such additional detail, the relationship 
between major components of the operator can be rea­
dily understood by the observer. 

From the summary view, more detail about a particu­
lar aspect of the system can be determined via navigation 
structures. These include both exploding views and 
annotation views. In general, an exploding view of a 
component shows the structure of its immediate subcom­
ponents. In the context of the CAPS DFD of Figure 3, 
the exploding view shows the next level decomposition of 
operator A. Note that consistency among the data 
streams in the first view is maintained in the exploding 
view (specifically x and y). A graphical interface support­
ing exploding views makes it easy for a designer to repea­
tedly pick and display subcomponents of an operator 
until a part relative to the problem at hand is located. 
This procedure is similar to an outline processor, which 
allows selection of subheadings and creates views with 
the selected subheading as the main heading of the new, 
more detailed view. 

The second type of navigation structure, an anno­
tation view, gives symbolic or textual information about 
the selected component. The example in Figure 4 is an 
annotation view of a PSDL data stream, showing the 
data type, latency, and units associated with the selected 
stream. Annotation views are useful for presenting on 

Figure 5. Focused slices, showing timing and critical path 

demand details that are not always needed. Annotations 
need not be presented by text only. A numerical value, 
for example, could be presented digitally, as an analog 
gauge, or as a bar graph. A necessary annotation view 
for a PSDL operator would be one that depicts control 
and timing constraints. 

Besides the three types of views described above, 
focused slices can be formed, which are subsets of one or 
more views formed to highlight specific information or 
relationships. Examples include slices that show timing, 
exceptions, critical paths, and rooted sources and sinks. 
A timing slice, for instance, would focus only on the 
timing relationships between operators, eliminating 
other unnecessary information such as data-stream 
names. The timing slice of Figure 5 indicates the variety 
of means that might be used to present such information. 
Similar views for maximum response time or minimum 
calling periods are also useful for summarizing the tim­
ing properties of a system. 

Subsets that show just the time-critical operators, per­
iodic operators, or sporadic operators are useful for ana­
lysing timing problems. The two graphics in Figure 5 
show a highlighted critical path slice and a schedule 
congestion graph. The latter illustrates the intervals 
between the earliest and latest time an operator can start 
executing. Such a display can be useful for the interactive 
design of a static schedule for a critical component with 
particularly tight constraints. It can also help identify 
critical nodes that might benefit most from efficiency 
improvements. Clearly, automating the representation of 
such information frees the designer to make difficult 
design decisions rather than become immersed in detail. 
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Another type of focused slice shows only exception 
streams and the exception-handling operators. Excep­
tion slices depict responses that components must make 
to unexpected situations or ill-formed inputs. 

Maintaining consistency and correctness 

Maintaining consistency in a multi-level, multi-view 
system provides a considerable challenge. The Coral12 

developers dealt with this problem by associating con­
straints with objects. Thus manipulating an object takes 
into account its constraints and context in relation to 
other objects. 

Two types of consistency must be maintained: hier­
archical consistency and view consistency. Hierarchical 
inconsistencies arise since adding objects requires conti­
nued top-down modification to lower-level views. Delet­
ing operators not only requires deletion of an entire 
decomposition, but also modifying each object adjacent 
to the deleted object. 

In the augmented DFD used in CAPS, hierarchical 
consistency of both input/output and timing must be 
maintained. As shown in Figure 1, the external inputs 
and outputs of the child must match those of the parent. 
In addition, no path through the child graph may exceed 
the MET of the parent. 

The graphical editor must also take into account view 
consistency. Any modifications to the graphic represen­
tation will require regeneration of the PSDL link state­
ments along with other associated slice information to 
maintain the integrity of all views. 

Constraints on graphic objects reveal the relationships 
necessary to affect appropriate changes to the attributes 
of related objects when the graphic representation is 
modified. Constraints involve both the application speci­
fied values, such as timing, as well as the syntactic attri­
butes built into the CAPS. These 'built in' constraints 
not only help to ensure consistency, but also improve 
correctness. 

Constraints on graphic objects can be applied in 
design of the editor to preclude drawing diagrams with 
syntactically incorrect internal representations. This 
prevents the designer from having to check to be sure the 
correct PSDL statements are being generated. Ideally, 
the prototype designer should not even need to under­
stand the underlying PSDL syntax. 

DESIGN OF GRAPHICAL EDITOR 

The design and development of a prototype graphical 
editor for the CAPS project was undertaken at the Naval 
Postgraduate School. The results of that effort are now 
described13. First, general editor requirements are stated. 
Next, considerations are presented about the user inter­
face and input/output. Finally, implementation of the 
main processing algorithm for the prototype editor is 
described in some detail. In addition, some comments are 
provided about current and future development. 

Requirements for graphical editor 
The graphical editor must meet the following general 
requirements13: 

• Run in a windowed environment — controls move­
ment between levels, selection of editing modes, 
display of help. 

• Ensure syntactic correctness — only accept symbols in 
the graphic language. 

• Support semantic checking — a symbol's context must 
reflect intended meaning. 

• Provide view consistency — changes to the specifics j 

tion and graphical editor must result in comparable 
updates in the other view. 

• Provide hierarchical consistency — changes in one 
level of decomposition must be reflected in both higher 
and lower levels as applicable. 

The graphical editor must provide the following func­
tions: 

• Display operator context — the operator's name, 
inputs, outputs, states, and maximum execution time 
taken from the PSDL specification. 

• Draw objects—consisting of operators (bubbles), data 
streams, inputs, outputs, and self loops (arrows). 

• Retrieve and edit — modify existing graphic decompo­
sitions. 

• Generate PSDL link statements — automatically from 
the augmented DFD, of the form: data_stream .sour-
cermet] — > destination. 

Interface design 
A screen image of the graphic editor user interface is 
shown in Figure 6. Four factors influenced the design of 
the user interface13: 

• the choice of machines on which to implement CAPS 
• the choice of interface software support 
• human-factors issues 
• user-interface design guidelines 

Sun Workstation 
The selection of a graphic workstation for implementing 
a CAPS graphic editor was based both on the require­
ments previously stated and the availability of hardware 
at the test site. The Sun Workstation met the require­
ments, was readily available, and was consequently 
selected for the development and implementation of 
CAPS. The availability of a dedicated central processing 
unit in a multitasking environment greatly enhanced the 
design team's ability to code, test, and debug their soft­
ware. The Sun Workstation also provided a powerful 
integrated programming environment based on the Unix 
operating system. 

Sun View14 

The Sun View user environment available on the Sun 
Workstation was chosen to provide windowing support 
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Figure 6. User-interface screen image 

for the graphical editor. It supports interactive graphics-
based applications with multiple overlapping windows, 
and each window can run a task independent of the other 
windows. Sun View also provides a general toolkit for 
building window-based applications. 

Human factors 
Human factors may be the most significant determinant 
of a successful user-interface design. Of the many 
human-factors performance issues in the literature, the 
following were specifically addressed in designing the 
graphical interface. 
Functional principle Controls that are grouped accord­
ing to their functionality are easier to learn and result in 
fewer errors15. The graphical editor's controls fall into 
three functional groups: 

• session control group 
• drawing mode group 
• text input group 

Sequence of use principle Controls that are organized in 
the same sequence that they are used eliminate the need 
to jump around and therefore minimize the amount of 
information the user must remember15. The controls of 
the graphical editor are organized to be used in a series of 
top-to-bottom sequences. The top panel provides con­
text-sensitive help information about use of the tool. The 
second panel is used to control the basic system functions 

of printing, loading, and storing decompositions and 
quitting the tool. As such, it is used at the beginning and 
end of an editing session. The next panel down is the 
drawing selection panel. It is used to switch from draw­
ing one type of object to another. After the selection is 
made, the user enters appropriate information. The input 
panels for these entries are therefore located immediately 
below the drawing selection panel. Below this is a mess­
age panel used to display error messages. The drawing 
canvas is a large work-area panel located immediately 
below the message panel. This ordering of controls 
always allows, but does not force, the user to operate in a 
top-to-bottom circular fashion as follows: 

• select operator (optionally read HELP information) 
• enter and read name 
• enter and read time constraint 
• ensure no errors have occurred 
• draw object 

Human memory capacity principle Studies have shown 
t h a t  h u m a n s  h a v e  t h e  c a p a c i t y  t o  r e m e m b e r  7  +  / - 2  
things at once15. Since this principle is revised downward, 
the graphic editor has been configured to allow 
decomposition into a maximum of seven operators. 
Also, the user's view of the system is decomposed into 
only five steps, simplifying the design method. 
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User-interface design guidelines 
In addition to the previously mentioned human factors, a 
number of heuristics or guidelines for designing a user 
interface were considered in the graphic editor design. 
The following may be considered a set of goals for the 
design16: 

• be intuitive (things should work as would be expected) 
• accommodate experts and novices (provide confirma­

tion override mechanisms) 
• allow customization 
• provide extensibility 
• use lots of feedback (show status, make error messages 

clear) 
• be predictable (use a consistent, easy to remember set 

of basic actions in obvious ways) 
• be deterministic (consider type ahead and mouse 

ahead effects) 
• do not pre-empt the user (do not force them to 

respond) 

Input/output considerations 

Inputs 
The graphical editor accepts inputs from the user and the 
design database. User inputs come from the keyboard 
and pointing device (e.g., mouse). No restrictions are 
placed on the order that any of these inputs must occur 
except that each type of object should be drawn with a 
given name. User inputs are treated as events that are 
context sensitive and fall into the following categories: 
system control events, mode select events, text panel 
events, and canvas events. These events will be described 
in more detail later. 

When the graphical editor is used to edit an existing 
diagram, the tool interface retrieves the necessary recon­
struction information from the design database. The gra­
phical editor uses this information to reconstruct the 
diagram. 

Outputs 
The graphical editor employs both graphical and textual 
outputs to both the workstation display and to a file. If 
the user draws an object, it is displayed on the canvas so 
that he can see it. If a user-generated error occurs, an 
error message will be displayed in the message panel. 
Once the error condition has been corrected, the error 
message disappears. 

When the mouse is in a particular subwindow of the 
display, visual feedback, in the form of a bold subwin­
dow border, is provided. 

After a decomposition has been completed and the 
user wishes to store the design, the editor will generate 
the PSDL link statements along with additional infor­
mation needed to reconstruct the display. The CAPS 
interface will store this information in the design data­
base17. Additionally, the graphical image may be dumped 
to a bitmapped file for output to a printer. 

Algorithm description 
At the highest level, the algorithm for the graphical 
editor is simply: 

• create the window 
• poll for events 

Create user interface 
The user interface for the graphical editor is a window 
comprised of several panels with appropriate text and 
buttons. The windows were functionally described in the 
section 'Human factors' and an example screen display is 
depicted in Figure 6. The windowing package used 
provided the necessary library routines and data struc­
tures for setting up the windows, buttons, text panels, 
etc. 

Poll for events 
The events that are accepted by the graphical editor 
include system control events, mode select events, text 
panel events, and canvas events. These events are des­
cribed in the following sections. 
System control events The 'load existing', 'store', and 
'quit' event buttons are located in the top subwindow of 
the graphical editor frame. When the graphical editor is 
started it comes up in a mode that allows the user to 
create a new decomposition diagram. The three selec­
table events are described as follows. 

Load existing 

• The routine reads the reconstruction data from a file 
and checks its type. This data must have been pre­
viously retrieved from the design database by the 
CAPS user interface17. 

• If the object is an operator, an operator storage ele­
ment is created, filled in with its information, and 
attached to the list of operators. 

• If the object is of type EXTERNAL, an operator 
element is also created and is linked to the operator 
list. EXTERNALS are NULL operator nodes that 
serve as the source operator for input lines. The only 
fields of an EXTERNAL that get useful values are 
those pointing at the line list. 

• Any object encountered during the load process that is 
not an operator or external is some type of line. There­
fore, a line storage element is created, its values are 
filled in, and it is linked to the line list of the last 
operator that was read in. 

• After all of the objects in the file being loaded have 
been read in, stored, and linked, the diagram is then 
drawn. 

Store 

• Information for diagram reconstruction is stored by 
doing a traversal of the storage structure and writing 
out the contents of each operator node immediately 
followed by the contents of each of its associated line 
nodes. 
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• Creation of the PSDL link statements is a similar 
process. The entire storage structure is traversed, 
generating a PSDL link statement for each line node 
found. These link statements will be attached to the 
implementation part of the PSDL specification file by 
the sequence control function17. 

Quit 

• This routine will first check to see if the diagram has 
been stored. If so, it will destroy the window. 

• If the diagram has not been saved, an error message 
will appear on the drawing canvas telling the user to 
store the diagram. 

Mode select events The graphical editor always starts in 
the draw_operator mode. This is because operators must 
be drawn before data streams. This requirement has the 
advantage of making it easy to check the syntax of the 
diagram. The editor ensures that lines intersect operators 
in a way appropriate to their type (i.e., input, output, 
etc.). 

To switch operating modes, the user clicks on the 
desired mode. The selector will reverse its colour, indicat­
ing that it has been selected. This establishes the context 
in which canvas events for the left mouse button will be 
interpreted. 
Text panel events The graphical editor has two control 
panels, which provide a means of entering textual infor­
mation. 

Name panel 

• The name panel allows the user to enter a name for an 
operator or a line. 

• Selecting the read_name button causes the name panel 
to be read and the syntax checked. 

• If the name is not a valid ADA identifier (PSDL identi­
fier syntax matches ADA), an error message is dis­
played and the name must be edited before drawing 
events on the canvas. 

MET panel 

• The MET panel works essentially the same as the 
name panel. The difference is that the routine checks 
to ensure that the value is an integer and has the 
appropriate units. 

• Invalid values result in an error message and a lockout 
of operator events from the canvas since only opera­
tors have a MET. 

Canvas events Below the control panels is a large work-
area called the canvas. The following mouse events are 
handled by the editor when the mouse is in the canvas. 

Left Mouse Down 

• Capture the x and y coordinates of the position where 
the event occurred (the starting position of the object 
being drawn). 

Left Mouse Drag 

• Rubber-band the object. As the mouse pointer is 
moved across the screen, the object is erased and re­
drawn. 

Left Mouse Up 

• Perform syntactic and semantic checks on the object. 
• If the editing mode is draw_operator, the routine will 

verify that a name and a MET are available and that 
the coordinates of the new operator do not overlap 
another operator. If these conditions are met, the 
operator will be drawn, the MET and operator name 
will be retrieved and displayed, and the operator will 
be appended to the list of operators. 

• If the drawing mode is draw_data_stream, draw— 
input, draw output, or draw_self_loop, the routine 
verifies identifier has been entered and ensures the line 
intersects an operator in the appropriate fashion. If the 
checks turn out satisfactory, the line is drawn with an 
appropriate arrowhead, its name is retrieved and dis­
played, and it is appended to the source operator's list 
of lines. 

Right Mouse Down 

• Check to see if the mouse's coordinates are within the 
pick criteria of either a line or an operator. If so, the 
object is deleted from the storage structure and the 
screen redrawn. 

Current efforts 
The CAPS interface and graphic editor are currently 
undergoing a major modification. The prototype men­
tioned in this paper is being ported to the X-windows 
environment and is being implemented using Inter-
Views18. This version will implement the exploding and 
annotation views as well as focused slices discussed in the 
section 'Multiple views'. The need for consistency chec­
king discussed in the section 'Maintaining consistency 
and correctness' will be partially accomplished by inte­
grating the syntax-directed editor and the graphic editor, 
providing a single source for valid PSDL code. Many of 
the human-factors issues raised in the section 'User-
interface design guidelines', not addressed in the proto­
type, will be implemented in the new version. A modifi­
cation of the step-by-step design process will be intro­
duced to greater facilitate expert use and modification of 
an existing design. 

CONCLUSIONS 
This paper presents the need for graphical represen­
tations to ease the prototyping process and reduce the 
problem of information overload. The application of 
information hiding and multiple views, coupled with 
ensuring consistency and automatic programming, pro­
mises a significant improvement in user productivity. 
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Research on the graphical editor, as it relates to PSDL, 
indicates that a prototype design can be developed with 
much greater ease using the graphical editor than with 
only the syntax-directed editor. Graphical editor capabi­
lities will also greatly enhance prototype modification, 
presentation, and documentation for further develop­
ment. 

Computer-aided software engineering (CASE) tools 
using graphical representation of software are years 
behind similar tools used in business and industrial 
applications. As Yourdon writes "Just as the cobbler's 
children are the last to get shoes, programmers and 
system analysts have traditionally been the last to get the 
benefits of automation for their own work."5. In recogni­
tion that software development is requiring an ever 
greater portion of the available corporate budget, tools 
supporting graphical representations early in require­
ments and design must be used to improve the software 
process. A form of decision support for software design 
is needed". That is, the management and presentation of 
information needed by software engineers to make quali­
tative design decisions. The CAPS interface and graphic 
editor are a step in that direction. 
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