
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1990-04

Graphical Tool for Computer-Aided Prototyping

Luqi; Barnes, P.; Zyda, M.

Luqi, P. Barnes, and M. Zyda, "Graphical Tool for Computer-Aided Prototyping'',
Information and Software Technology, England, April 1990, Vol. 36, No. 3, pp. 199-206.
https://hdl.handle.net/10945/65701

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Graphical tool for computer-aided
prototyping

Luqi, P D Barnes and M Zyda

The basic problem in rapid prototyping of software is information
overload. Graphic interfaces can help by providing multiple views,
where each view is limited to providing information relevant to a
particular task or problem. The graphical editor under develop­
ment for the Computer Aided Prototyping System (CAPS) pro­
poses a dataflow-diagram-based model with multiple views and
automatic program generation to manage the quantity of infor­
mation necessary to prototype large, real-time systems.

software engineering, rapid prototyping, computer-aided design,
computer graphics, graphical editor

The need to improve software operational reliability and
development productivity has resulted in research aimed
at tools for rapidly prototyping large real-time software
systems. The Computer Aided Prototyping System
(CAPS) under development at the Department of
Computer Science, Naval Postgraduate School, replaces
the traditional software life-cycle with a two-phase cycle
that consists of rapid prototyping and automatic pro­
gram generation1. The rapid prototyping technique
provides the designer with a means of writing specifica­
tions and using matching reusable software components
to build a prototype of the intended system. The proto­
type can then be used to evaluate both user's needs and
system feasibility2-3.

Although prototyping generally involves dealing with
problems at a high level of abstraction, crucial decisions
that designers must make are still too many to be eva­
luated at a single level. As the designer delves beneath the
surface into increasing detail, the amount of information
that must be retained to make good design decisions
becomes unmanageable. The designer quickly becomes
inundated with an overload of information — thus the
term information overload'. Prototyping large real-time
systems requires tools for managing this information
such that unnecessary detail may be hidden and essen­
tials easily assimilated at a glance.

This paper discusses the importance of using graphical
representations to reduce information overload and
describes a graphical editor in development for CAPS.

Department of Computer Science, Naval Postgraduate School, Mon­
terey, CA 93943, USA.
Paper submitted: 10 May 1989.
Revised version received: 5 December 1989.

REDUCING INFORMATION OVERLOAD
An essential function of CAPS is to help the prototype
designer focus on subsets of the decisions in a design
needed to evaluate alternatives and further refine or
modify the system4. CAPS initially provided for entering
component specifications via a syntax-directed editor
accessed through its user interface. It could then try to
match the specifications to reusable modules in the data­
base. For complex systems, however, if the search was
unsuccessful, the component had to be manually decom­
posed into increasingly detailed statements, which
resulted in the information management problem pre­
viously described. What was needed was a means of
entering specifications graphically, so that decompo­
sition would be cleaner and information hiding could be
managed via a multi-layered representation.

Graphics alone cannot provide a magic solution to the
problem of software complexity. In fact, they can some­
times complicate matters even further. Thus to be effec­
tive the application of graphical techniques must be cou­
pled with a strategy for extracting a meaningful subset of
available information. Yourdon5 lists the following
important features of automated tools for systems analy­
sis and design:

• graphics support for multiple types of models
• error-checking features to ensure model accuracy
• cross-checking of different models
• additional software engineering support

Development of a graphical editor, then, requires
addressing the following issues. First, it must provide
multiple system views — reducing the amount and detail
of information that must be assimilated at any one time.
Second, a provision has to be made for maintaining
consistency between the Prototype System Description
Language (PSDL) and various graphic representations,
as well as syntactic and semantic correctness of the
design. Finally, under the subject of additional software
engineering support, a graphic representation for proto­
typing must be automatically programmable. In the case
of CAPS, it must map directly to equivalent PSDL rep­
resentations with which CAPS can construct a proto­
type3-6. The following sections describe these issues,
beginning with the goal of the editor, the generation of
PSDL code through automatic programming.

vol 32 no 3 april 1990 0950-5849/90/030199-08 © 1990 Butterworth & Co (Publishers) Ltd 199

Automatic programming
Automatic programming is a promising means of
improving programmer productivity7. That is, the auto­
matic generation of code from software specifications
rather than manual generation through several layers of
language translation. The PSDL prototyping language8

used by CAPS applies this concept. PSDL specifications
may be used directly to produce an executable ADA pro­
gram from reusable components. PSDL provides for
specification of both control and data flow and is based
on the following mathematical model:

G = (V,E,T(V),C(V))

where V is the set of vertices, E is the set of edges, T(V) is
the maximum execution time (MET) associated with
vertex V, and C(V) is the set of control constraints asso­
ciated with vertex V.

In PSDL, vertices represent operators and edges repre­
sent data streams. Operators represent system compo­
nents and can map to either functions or state machines.
Such components communicate with one another via
data streams carrying values of a fixed abstract data type
or the special PSDL type EXCEPTION. Operators are
either data driven or periodic. That is, they execute either
in response to the arrival of a datum or at a predeter­
mined interval. Operators can also be characterized as
being either composite or atomic. If an operator cannot
be further decomposed into data and control flow
networks, it is atomic. Edges or data streams can repre­
sent either the traditional flows, in which data is guaran­
teed to reach its destination, or sampled streams. Sam­
pled streams represent continuous streams of
information, which may be updated and sampled at
different rates.

Control constraints are used to limit an operator's
behaviour by specifying conditions regarding its firing
(execution) or input/output processing. While control
constraints specify when an operator executes, timing
constraints determine its execution time, response time,
and period.

The best representation or graphic model to use to
both represent the prototype and map to PSDL is a
problem with no clear solution. Pressman7 provides a
taxonomy of graphical models for analysis and design
based on various paradigms. However, no models speci­
fically for prototyping are discussed. This is probably
because most prototyping approaches are just starting to
address graphical representation issues. An exception is
ENVISAGER6, which provides an animated simulation
modelling capability where each database object has a
unique iconic representation. Users combine compo­
nents from the icon-base with communication paths to
form a prototype. An example of an almost purely
graphic-based prototyping system is the Oregon Speed-
code Universe (OSU)9. The OSU is based on the notion
of'showing rather than telling' the prototype what to do.
It takes advantage of existing user-interface objects in a
common standardized environment to generate proto-

75ms

state
10ms

30ms

Jog J
10ms

Figure 1. Operator decomposition8

type user interfaces that require from one-half to one-
tenth the normal amount of code.

The choice of graphical representations in the afore­
mentioned systems is highly dependent on the class of
prototypes the systems are targeted toward. CAPS is
designed to meet the strict requirements of hard real-time
systems. Thus a more general approach to graphic rep­
resentation is taken. Although constrained to the under­
lying PSDL model, CAPS is not limited to a single view
of the prototype. Rather, the approach taken is one of a
basic dataflow diagram (DFD)5 augmented with addi­
tional views as required to specify clearly the prototype.
This multi-view approach is discussed further in the next
section and is based on the concepts introduced by
Smedstad and Anderson10 and explored by Barnes and
Hartrum11. This allows the prototyper to design without
being constrained to a fixed set of components in the
design database.

The PSDL model can easily be mapped directly to the
augmented DFD8. Execution time and constraints asso­
ciated with each operator are incorporated into the DFD
and decomposed (see Figure 1). Note that consistency
requires not only that inputs and outputs must match
between levels, but timing constraints of a decompo­
sition must not allow a path that has a total execution
time in excess of the parent operator's Maximum Execu­
tion Time (MET).

Multiple views
The CAPS database is able to maintain graphical rep­
resentations so that they may be retrieved in a manner
similar to hypertext". That is, each operator exists as a
node of a multi-way tree with its associated attributes
and links to its parent and child nodes. Additional links
are possible, representing other types of relationships
between nodes. This capability provides for the following
proposed set of graphical system representations: summ­
ary views, navigation structures, and focused slices.

A summary view serves as an introduction to some
aspect of the system under development. This lets
someone unfamiliar with the system or component get
'the big picture', as is necessary in a prototype demon-

200 information and software technology

Figure 2: Summary view Figure 4. Annotation view for stream y

FINISH_WITHIN: 20
CRITICAL PATH: HIGHLIGHTED
LENGTH OF CP: 17

TOTAL CPU TIME: 21
DEADLINE: 20
POSSIBLE SOLUTIONS:

1. SPEED UP OPERATOR A, B, OR D BY 1
2. ADD 1 CPU

i_ LATEST FINISH
EARLIEST FINISH

EARLIEST START

Figure 3. Exploring view of operator A

stration or design review. A summary view therefore
serves to establish a context for further explanation or
detailed examination.

An example useful summary view for a PSDL compo­
site operator is the DFD of Figure 2, showing only the
operator's components and their interconnections. Such
a view is valuable precisely because of the details it leaves
out (such as data types and timing and control con­
straints). Without such additional detail, the relationship
between major components of the operator can be rea­
dily understood by the observer.

From the summary view, more detail about a particu­
lar aspect of the system can be determined via navigation
structures. These include both exploding views and
annotation views. In general, an exploding view of a
component shows the structure of its immediate subcom­
ponents. In the context of the CAPS DFD of Figure 3,
the exploding view shows the next level decomposition of
operator A. Note that consistency among the data
streams in the first view is maintained in the exploding
view (specifically x and y). A graphical interface support­
ing exploding views makes it easy for a designer to repea­
tedly pick and display subcomponents of an operator
until a part relative to the problem at hand is located.
This procedure is similar to an outline processor, which
allows selection of subheadings and creates views with
the selected subheading as the main heading of the new,
more detailed view.

The second type of navigation structure, an anno­
tation view, gives symbolic or textual information about
the selected component. The example in Figure 4 is an
annotation view of a PSDL data stream, showing the
data type, latency, and units associated with the selected
stream. Annotation views are useful for presenting on

Figure 5. Focused slices, showing timing and critical path

demand details that are not always needed. Annotations
need not be presented by text only. A numerical value,
for example, could be presented digitally, as an analog
gauge, or as a bar graph. A necessary annotation view
for a PSDL operator would be one that depicts control
and timing constraints.

Besides the three types of views described above,
focused slices can be formed, which are subsets of one or
more views formed to highlight specific information or
relationships. Examples include slices that show timing,
exceptions, critical paths, and rooted sources and sinks.
A timing slice, for instance, would focus only on the
timing relationships between operators, eliminating
other unnecessary information such as data-stream
names. The timing slice of Figure 5 indicates the variety
of means that might be used to present such information.
Similar views for maximum response time or minimum
calling periods are also useful for summarizing the tim­
ing properties of a system.

Subsets that show just the time-critical operators, per­
iodic operators, or sporadic operators are useful for ana­
lysing timing problems. The two graphics in Figure 5
show a highlighted critical path slice and a schedule
congestion graph. The latter illustrates the intervals
between the earliest and latest time an operator can start
executing. Such a display can be useful for the interactive
design of a static schedule for a critical component with
particularly tight constraints. It can also help identify
critical nodes that might benefit most from efficiency
improvements. Clearly, automating the representation of
such information frees the designer to make difficult
design decisions rather than become immersed in detail.

vol 32 no 3 april 1990 201

Another type of focused slice shows only exception
streams and the exception-handling operators. Excep­
tion slices depict responses that components must make
to unexpected situations or ill-formed inputs.

Maintaining consistency and correctness

Maintaining consistency in a multi-level, multi-view
system provides a considerable challenge. The Coral12

developers dealt with this problem by associating con­
straints with objects. Thus manipulating an object takes
into account its constraints and context in relation to
other objects.

Two types of consistency must be maintained: hier­
archical consistency and view consistency. Hierarchical
inconsistencies arise since adding objects requires conti­
nued top-down modification to lower-level views. Delet­
ing operators not only requires deletion of an entire
decomposition, but also modifying each object adjacent
to the deleted object.

In the augmented DFD used in CAPS, hierarchical
consistency of both input/output and timing must be
maintained. As shown in Figure 1, the external inputs
and outputs of the child must match those of the parent.
In addition, no path through the child graph may exceed
the MET of the parent.

The graphical editor must also take into account view
consistency. Any modifications to the graphic represen­
tation will require regeneration of the PSDL link state­
ments along with other associated slice information to
maintain the integrity of all views.

Constraints on graphic objects reveal the relationships
necessary to affect appropriate changes to the attributes
of related objects when the graphic representation is
modified. Constraints involve both the application speci­
fied values, such as timing, as well as the syntactic attri­
butes built into the CAPS. These 'built in' constraints
not only help to ensure consistency, but also improve
correctness.

Constraints on graphic objects can be applied in
design of the editor to preclude drawing diagrams with
syntactically incorrect internal representations. This
prevents the designer from having to check to be sure the
correct PSDL statements are being generated. Ideally,
the prototype designer should not even need to under­
stand the underlying PSDL syntax.

DESIGN OF GRAPHICAL EDITOR

The design and development of a prototype graphical
editor for the CAPS project was undertaken at the Naval
Postgraduate School. The results of that effort are now
described13. First, general editor requirements are stated.
Next, considerations are presented about the user inter­
face and input/output. Finally, implementation of the
main processing algorithm for the prototype editor is
described in some detail. In addition, some comments are
provided about current and future development.

Requirements for graphical editor
The graphical editor must meet the following general
requirements13:

• Run in a windowed environment — controls move­
ment between levels, selection of editing modes,
display of help.

• Ensure syntactic correctness — only accept symbols in
the graphic language.

• Support semantic checking — a symbol's context must
reflect intended meaning.

• Provide view consistency — changes to the specifics j

tion and graphical editor must result in comparable
updates in the other view.

• Provide hierarchical consistency — changes in one
level of decomposition must be reflected in both higher
and lower levels as applicable.

The graphical editor must provide the following func­
tions:

• Display operator context — the operator's name,
inputs, outputs, states, and maximum execution time
taken from the PSDL specification.

• Draw objects—consisting of operators (bubbles), data
streams, inputs, outputs, and self loops (arrows).

• Retrieve and edit — modify existing graphic decompo­
sitions.

• Generate PSDL link statements — automatically from
the augmented DFD, of the form: data_stream .sour-
cermet] — > destination.

Interface design
A screen image of the graphic editor user interface is
shown in Figure 6. Four factors influenced the design of
the user interface13:

• the choice of machines on which to implement CAPS
• the choice of interface software support
• human-factors issues
• user-interface design guidelines

Sun Workstation
The selection of a graphic workstation for implementing
a CAPS graphic editor was based both on the require­
ments previously stated and the availability of hardware
at the test site. The Sun Workstation met the require­
ments, was readily available, and was consequently
selected for the development and implementation of
CAPS. The availability of a dedicated central processing
unit in a multitasking environment greatly enhanced the
design team's ability to code, test, and debug their soft­
ware. The Sun Workstation also provided a powerful
integrated programming environment based on the Unix
operating system.

Sun View14

The Sun View user environment available on the Sun
Workstation was chosen to provide windowing support

202 information and software technology

CAPS " GRAPHIC EDITOR

1 MOUSE INTERFACE:
Lift Mouti SELECTS graphic adltor function! and Tacatlena far now graphic abjacta
Hlddli Houta MOVES graphic objacta
Right Mouaa DELETES uhan paaltlenad: within an oparator, an tha tall af a aalf leap, an tha tall/haad ef a data flow. Input or autputg

OPERATING MODE: g (Land Existing) [St or a J (Qui t]

EDITINO MODE: • •ilJil'BHIITTTTT— Draw Data Flow Draw SaTf Laop Draw Input Draw Output

IDENTIFIER NAME: # (Road Nana I

TIME CONSTRAINT: 4 (Resd Tina)

| MESSAGE PANEL:

Amount counter

Figure 6. User-interface screen image

for the graphical editor. It supports interactive graphics-
based applications with multiple overlapping windows,
and each window can run a task independent of the other
windows. Sun View also provides a general toolkit for
building window-based applications.

Human factors
Human factors may be the most significant determinant
of a successful user-interface design. Of the many
human-factors performance issues in the literature, the
following were specifically addressed in designing the
graphical interface.
Functional principle Controls that are grouped accord­
ing to their functionality are easier to learn and result in
fewer errors15. The graphical editor's controls fall into
three functional groups:

• session control group
• drawing mode group
• text input group

Sequence of use principle Controls that are organized in
the same sequence that they are used eliminate the need
to jump around and therefore minimize the amount of
information the user must remember15. The controls of
the graphical editor are organized to be used in a series of
top-to-bottom sequences. The top panel provides con­
text-sensitive help information about use of the tool. The
second panel is used to control the basic system functions

of printing, loading, and storing decompositions and
quitting the tool. As such, it is used at the beginning and
end of an editing session. The next panel down is the
drawing selection panel. It is used to switch from draw­
ing one type of object to another. After the selection is
made, the user enters appropriate information. The input
panels for these entries are therefore located immediately
below the drawing selection panel. Below this is a mess­
age panel used to display error messages. The drawing
canvas is a large work-area panel located immediately
below the message panel. This ordering of controls
always allows, but does not force, the user to operate in a
top-to-bottom circular fashion as follows:

• select operator (optionally read HELP information)
• enter and read name
• enter and read time constraint
• ensure no errors have occurred
• draw object

Human memory capacity principle Studies have shown
t h a t h u m a n s h a v e t h e c a p a c i t y t o r e m e m b e r 7 + / - 2
things at once15. Since this principle is revised downward,
the graphic editor has been configured to allow
decomposition into a maximum of seven operators.
Also, the user's view of the system is decomposed into
only five steps, simplifying the design method.

vol 32 no 3 april 1990 203

User-interface design guidelines
In addition to the previously mentioned human factors, a
number of heuristics or guidelines for designing a user
interface were considered in the graphic editor design.
The following may be considered a set of goals for the
design16:

• be intuitive (things should work as would be expected)
• accommodate experts and novices (provide confirma­

tion override mechanisms)
• allow customization
• provide extensibility
• use lots of feedback (show status, make error messages

clear)
• be predictable (use a consistent, easy to remember set

of basic actions in obvious ways)
• be deterministic (consider type ahead and mouse

ahead effects)
• do not pre-empt the user (do not force them to

respond)

Input/output considerations

Inputs
The graphical editor accepts inputs from the user and the
design database. User inputs come from the keyboard
and pointing device (e.g., mouse). No restrictions are
placed on the order that any of these inputs must occur
except that each type of object should be drawn with a
given name. User inputs are treated as events that are
context sensitive and fall into the following categories:
system control events, mode select events, text panel
events, and canvas events. These events will be described
in more detail later.

When the graphical editor is used to edit an existing
diagram, the tool interface retrieves the necessary recon­
struction information from the design database. The gra­
phical editor uses this information to reconstruct the
diagram.

Outputs
The graphical editor employs both graphical and textual
outputs to both the workstation display and to a file. If
the user draws an object, it is displayed on the canvas so
that he can see it. If a user-generated error occurs, an
error message will be displayed in the message panel.
Once the error condition has been corrected, the error
message disappears.

When the mouse is in a particular subwindow of the
display, visual feedback, in the form of a bold subwin­
dow border, is provided.

After a decomposition has been completed and the
user wishes to store the design, the editor will generate
the PSDL link statements along with additional infor­
mation needed to reconstruct the display. The CAPS
interface will store this information in the design data­
base17. Additionally, the graphical image may be dumped
to a bitmapped file for output to a printer.

Algorithm description
At the highest level, the algorithm for the graphical
editor is simply:

• create the window
• poll for events

Create user interface
The user interface for the graphical editor is a window
comprised of several panels with appropriate text and
buttons. The windows were functionally described in the
section 'Human factors' and an example screen display is
depicted in Figure 6. The windowing package used
provided the necessary library routines and data struc­
tures for setting up the windows, buttons, text panels,
etc.

Poll for events
The events that are accepted by the graphical editor
include system control events, mode select events, text
panel events, and canvas events. These events are des­
cribed in the following sections.
System control events The 'load existing', 'store', and
'quit' event buttons are located in the top subwindow of
the graphical editor frame. When the graphical editor is
started it comes up in a mode that allows the user to
create a new decomposition diagram. The three selec­
table events are described as follows.

Load existing

• The routine reads the reconstruction data from a file
and checks its type. This data must have been pre­
viously retrieved from the design database by the
CAPS user interface17.

• If the object is an operator, an operator storage ele­
ment is created, filled in with its information, and
attached to the list of operators.

• If the object is of type EXTERNAL, an operator
element is also created and is linked to the operator
list. EXTERNALS are NULL operator nodes that
serve as the source operator for input lines. The only
fields of an EXTERNAL that get useful values are
those pointing at the line list.

• Any object encountered during the load process that is
not an operator or external is some type of line. There­
fore, a line storage element is created, its values are
filled in, and it is linked to the line list of the last
operator that was read in.

• After all of the objects in the file being loaded have
been read in, stored, and linked, the diagram is then
drawn.

Store

• Information for diagram reconstruction is stored by
doing a traversal of the storage structure and writing
out the contents of each operator node immediately
followed by the contents of each of its associated line
nodes.

204 information and software technology

• Creation of the PSDL link statements is a similar
process. The entire storage structure is traversed,
generating a PSDL link statement for each line node
found. These link statements will be attached to the
implementation part of the PSDL specification file by
the sequence control function17.

Quit

• This routine will first check to see if the diagram has
been stored. If so, it will destroy the window.

• If the diagram has not been saved, an error message
will appear on the drawing canvas telling the user to
store the diagram.

Mode select events The graphical editor always starts in
the draw_operator mode. This is because operators must
be drawn before data streams. This requirement has the
advantage of making it easy to check the syntax of the
diagram. The editor ensures that lines intersect operators
in a way appropriate to their type (i.e., input, output,
etc.).

To switch operating modes, the user clicks on the
desired mode. The selector will reverse its colour, indicat­
ing that it has been selected. This establishes the context
in which canvas events for the left mouse button will be
interpreted.
Text panel events The graphical editor has two control
panels, which provide a means of entering textual infor­
mation.

Name panel

• The name panel allows the user to enter a name for an
operator or a line.

• Selecting the read_name button causes the name panel
to be read and the syntax checked.

• If the name is not a valid ADA identifier (PSDL identi­
fier syntax matches ADA), an error message is dis­
played and the name must be edited before drawing
events on the canvas.

MET panel

• The MET panel works essentially the same as the
name panel. The difference is that the routine checks
to ensure that the value is an integer and has the
appropriate units.

• Invalid values result in an error message and a lockout
of operator events from the canvas since only opera­
tors have a MET.

Canvas events Below the control panels is a large work-
area called the canvas. The following mouse events are
handled by the editor when the mouse is in the canvas.

Left Mouse Down

• Capture the x and y coordinates of the position where
the event occurred (the starting position of the object
being drawn).

Left Mouse Drag

• Rubber-band the object. As the mouse pointer is
moved across the screen, the object is erased and re­
drawn.

Left Mouse Up

• Perform syntactic and semantic checks on the object.
• If the editing mode is draw_operator, the routine will

verify that a name and a MET are available and that
the coordinates of the new operator do not overlap
another operator. If these conditions are met, the
operator will be drawn, the MET and operator name
will be retrieved and displayed, and the operator will
be appended to the list of operators.

• If the drawing mode is draw_data_stream, draw—
input, draw output, or draw_self_loop, the routine
verifies identifier has been entered and ensures the line
intersects an operator in the appropriate fashion. If the
checks turn out satisfactory, the line is drawn with an
appropriate arrowhead, its name is retrieved and dis­
played, and it is appended to the source operator's list
of lines.

Right Mouse Down

• Check to see if the mouse's coordinates are within the
pick criteria of either a line or an operator. If so, the
object is deleted from the storage structure and the
screen redrawn.

Current efforts
The CAPS interface and graphic editor are currently
undergoing a major modification. The prototype men­
tioned in this paper is being ported to the X-windows
environment and is being implemented using Inter-
Views18. This version will implement the exploding and
annotation views as well as focused slices discussed in the
section 'Multiple views'. The need for consistency chec­
king discussed in the section 'Maintaining consistency
and correctness' will be partially accomplished by inte­
grating the syntax-directed editor and the graphic editor,
providing a single source for valid PSDL code. Many of
the human-factors issues raised in the section 'User-
interface design guidelines', not addressed in the proto­
type, will be implemented in the new version. A modifi­
cation of the step-by-step design process will be intro­
duced to greater facilitate expert use and modification of
an existing design.

CONCLUSIONS
This paper presents the need for graphical represen­
tations to ease the prototyping process and reduce the
problem of information overload. The application of
information hiding and multiple views, coupled with
ensuring consistency and automatic programming, pro­
mises a significant improvement in user productivity.

vol 32 no 3 april 1990 205

Research on the graphical editor, as it relates to PSDL,
indicates that a prototype design can be developed with
much greater ease using the graphical editor than with
only the syntax-directed editor. Graphical editor capabi­
lities will also greatly enhance prototype modification,
presentation, and documentation for further develop­
ment.

Computer-aided software engineering (CASE) tools
using graphical representation of software are years
behind similar tools used in business and industrial
applications. As Yourdon writes "Just as the cobbler's
children are the last to get shoes, programmers and
system analysts have traditionally been the last to get the
benefits of automation for their own work."5. In recogni­
tion that software development is requiring an ever
greater portion of the available corporate budget, tools
supporting graphical representations early in require­
ments and design must be used to improve the software
process. A form of decision support for software design
is needed". That is, the management and presentation of
information needed by software engineers to make quali­
tative design decisions. The CAPS interface and graphic
editor are a step in that direction.

REFERENCES
1 Luqi and Ketabchi, M 'A computer aided prototyping

system' IEEE Software Vol 5 No 2 (March 1988) pp
66-72

2 Luqi, Berzins, V and Yeh, R 'A prototyping language
for real-time software' IEEE Trans. Soft. Eng. Vol 14
No 10 (October 1988) pp 1409-1423

3 Luqi 'Software evolution via rapid prototyping'
Computer Vol 22 No 5 (May 1989) pp 13-25

4 Luqi and Lee, Y 'Interactive control of prototyping
process' Technical report NPS 52-89-014 Naval Post­
graduate School, Monterey, CA, USA (1989)

5 Yourdon, E Modern structured analysis Yourdon
Press, Englewood Cliffs, NJ, USA (1989)

6 Diaz-Gonzalez, J and Urban, J 'Prototyping concep­
tual models of real-time systems: a visual perspective'

in Proc. Twenty-Second Annual Hawaii Int. Conf.
System Sciences IEEE Computer Society Press, Los
Alamitos, CA, USA (January 1989)

7 Pressman, R Software engineering: a practitioner's
approach (second edition) McGraw-Hill, New York,
NY, USA (1987)

8 Luqi and Berzins, V 'Rapid prototyping real-time
systems' IEEE Software Vol 5 No 5 (September 1988)
pp 25-36

9 Lewis, T G, Handloser, F, Bose, S and Yang, S 'Proto­
types from standard user interface management
systems' Computer Vol 22 No 5 (May 1989) pp 51-60

10 Smedstad, T and Anderson, O 'Introduction of the
concept 'integrated projection illustrating" Soft. Eng.
Notes Vol 3 No 1 (January 1988)

11 Barnes, P and Hartrum, T 'A decision-based metho­
dology for object-oriented design' in Proc. IEEE 1989
Nat. Aerospace and Electronics Conf. (May 1989)

12 Szekely, P and Meyers, B 'A user interface toolkit
based on graphical objects and constraints' in Proc.
ACM OOP SLA Conf. (1988)

13 Thorstenson, R 'A graphical editor for the computer
aided prototyping system' MS Thesis Naval Post­
graduate School, Monterey, CA, USA (December
1988)

14 Sun Microsystems Sunview programmer's guide
revision: A Sun Microsystems, Inc., Mountain View,
CA, USA (October 1986)

15 Sanders, M and McCormick, E Human factors in
engineering and design (sixth edition) McGraw-Hill,
New York, NY, USA (1987)

16 Hopgood, F et al. Methodology of window manage­
ment Springer-Verlag, Berlin, FRG (1986)

17 Raum, H 'Design and implementation of an expert
user interface for the computer aided prototyping
system' MS Thesis Naval Postgraduate School, Mon­
terey, CA, USA (December 1988)

18 Linton, M, Vlissides, J and Calder, P 'Composing
user interfaces with Interviews' Computer Vol 22 No
2 (February 1989) pp 8-22

206 information and software technology

