
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1996

Guest Editor's Introduction

Luqi
Kluwer

Luqi, "Guest Editor's Introduction", Journal of Systems Integration. (Special issue on
Computer-Aided Prototyping), 1996, Vol. 6, No. 1-2, pp. 15-17.
https://hdl.handle.net/10945/65702

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



Journal of Systems Integration, 6, 15-17 (1996) 
�9 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Guest Editor's Introduction 

The goal of research on computer-aided prototyping is to provide tools for developing 
reliable software systematically with high productivity. This area has strong connections 
with many other areas of software engineering, because it must face many of the same 
problems as other software development methods. For this reason, our goal of building a 
Computer-Aided Prototyping System (CAPS) required us to study software in its context of 
system engineering, and to consider software engineering issues ranging from requirements 
and domain modeling to software synthesis, analysis, reuse, and evolution, and also required 
us to integrate diverse systems addressing those issues. 

Often, difficulties with requirements for new systems only appear when clients actually 
use the system. Rather than throwing away an initial full-scale implementation, it is better 
to develop requirements incrementally through inexpensive prototypes. This reduces the 
cost and increases the value of the envisioned system to the people it serves. Computer aid 
for rapidly and inexpensively constructing and modifying prototypes makes this feasible. 

Evolution, which is the growth and change of systems, plays a key role in both computer- 
aided prototyping and in system engineering. Computers can support evolution by retrieving 
suitable reusable components from a software base, by merging independent changes to 
software components, by tracing dependencies to determine which parts of a software 
system are afffected by a requirements change, by using constraints to prevent errors by 
completing partial designs, and by generating programs, e.g., executable schedules for 
meeting real-time constraints or for gluing components together. Furthermore, methods 
and tools developed to support prototyping can often be applied to the ongoing evolution 
of mature software systems. 

The CAPS project has focused on computer support for designing, building and mod- 
ifying large real-time systems, because requirements for such systems can be especially 
troublesome. Begun more than a decade ago, this effort has addressed all the areas men- 
tioned above, as well as prototyping language design, engineering databases, and project 
coordination based on computer-aided design and manufacturing. 

The Papers 

The papers in this special issue illustrate the diversity of the connections between prototyping 
and other areas of software engineering and some of the research progress in these subareas 
of system engineering: 

1. A Model-Based Computer-Aided Prototyping System, by Li and Ketabchi, considers 
how domain models can be used to rapidly construct and exercise prototypes in an 



16 LUQI 

object oriented framework. The MB-CAPS system has a graphical interface designed for 
problem domain experts who may not be programming experts. 

2. Real-Time Scheduling for Software Prototyping, by Luqi and Shing, explains how hard 
real-time constraints can be realized for prototyping systems. This paper presents some 
practical scheduling algorithms for the single and multiple processor cases, and assesses 
their effectiveness. 

3. Translating EQL Programs for Bounded-Time Execution, by Mok and Wangs, shows 
how to realize rule-based programs that must complete execution within fixed bounds on 
computation time. The paper gives both a method for translating a rule based program 
into programing code and a method for determining a bound on the execution time of 
the resulting target code. 

4. Software Component Search, by Goguen et al., suggests improved methods for finding 
reusable software components for a given design. The user's query is a syntax declara- 
tion and a set of test cases. Incrementally ranked multi-level filtering finds a small set of 
most promising components. Users do not need specialized skills in module semantics. 

5. Software Merge: Combining Changes to Decompositions, by Berzins and Dampier, ad- 
dresses a subproblem of software evolution, providing a method for combining changes 
to a software design represented by a hierarchy of annotated dataflow diagrams. This 
method addresses changes to the structure of a design, as well as changes to the specified 
system behavior. 

Progress to Date 

The prototyping language of the CAPS system, called PSDL, has been designed, formally 
specified, and partially implemented. Its semantics covers single and multiple processor 
implementations in a possibly distributed environment. Implementation techniques include 
program generation, automated scheduling, and reuse. One reuse method takes the design 
used for constructing a prototype as the basis for a query. Software evolution models have 
helped in developing automated methods for configuration management, team coordination, 
and semantics based merging of changes to prototypes. Summaries and references to papers 
describing these results are accessible over the world wide web at 

http: //www.cs.nps.navy.mil/research/caps 

and 

http : //caps.airmics.gatech.edu/caps.html 

Release 1 of the CAPS system is available free of charge from DISA (703-681-2364 or email 
to dsrscao@ssedl.ims.disa.mil), and from the Ada Joint Program Office (800-ADA-IC11). 

CAPS has been used to develop a variety of prototypes, including a robot controller, a fish 
farm controller, a simple autopilot, a controller for a hyperthermia cancer therapy system, a 
secure communications link, a generic C3I system, a land to air missile, and a cruise missile 
guidance system. 



GUEST EDITOR'S INTRODUCTION 17 

Ongoing and Future Research 

The CAPS project is currently working to improve support for software evolution, software 
reuse, program generation, real-time scheduling, and configuration management. One inter- 
esting topic for future research is the transition from prototypes to final products. Progress 
here could remove barriers between prototyping and product development, and success 
could revolutionize the way the software industry does business, by introducing much 
higher levels of automation. Research issues here include the following: (1) optimization 
of prototype implementations, (2) transforming prototypes to run on hardware and operating 
systems different from those of the prototyping environment, (3) switching from simulated 
external systems to actual ones by generating appropriate concrete interface programs, (4) 
introducing data persistence and scaling up to large volumes of data, (5) realizing fault 
tolerance, (6) realizing security constraints, (7) certifying the integrity of designs, and (8) 
checking that implementations realize designs. 

The advances in computer-aided prototyping, partially reported in this issue, have been 
made possible by the contributions of a few hundred researchers and graduate students, and 
reflect Raymond Yeh's vision of twelve years ago. It is due to the trust, encouragement and 
strong support from Jack Schwartz, Dan Berry, KC Tai, CV Ramamoorthy, Sartaj Sahni, JB 
Rosen, David Hislop and many others, from the time when the CAPS approach to software 
development was a little "ugly duckling". I am grateful to all these people. 

Luqi 
Computer Science Department, 
Naval Postgraduate School, 
Monterey, CA 93943 


