
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1991-06

The Role of Prototyping Languages in CASE

Luqi
World Scientific Publishing

Luqi, "The Role of Prototyping Languages in CASE", International Journal of Software
Engineering and Knowledge Engineering, June 1991, Vol. 1, No. 2, pp.131-149.
https://hdl.handle.net/10945/65707

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



International Journal of Software Engineering and Knowledge Engineering 
Vol. 1, No. 2 (1991) 131-149 
© World Scientific Publishing Company 

THE ROLE OF PROTOTYPING LANGUAGES IN CASE* 

LUQI 
Computer Science Department, Naval Postgraduate School, Monterey, CA 93943, USA 

Received 3 February 1991 
Revised 26 February 1991 

Accepted 26 February 1991 

Prototyping languages form a new category in the computer language family. They are 
different from the commonly familiar computer languages because they are used to support a 
higher level of automation at early phases of software development as well as throughout the 
entire process. They are used to create mechanically processable and executable descriptions 
or models of proposed software systems. Prototyping languages are also used to firm up 
requirements via frequent modifications and demonstrations of the models in an iterative 
process of prototype evolution. The benefits of a prototyping language are fully realized when 
it is used with its computer-aided prototyping system (CAPS). In this paper, we describe the 
background, requirements, characteristics, computational features, and general principles for 
the design of prototyping languages. An example of a prototyping language design is used to 
illustrate these concepts. 

1. Introduction 

Computer Aided Prototyping Systems(CAPS) should be used to prototype large, 
parallel, distributed, real-time, and knowledge-based systems because the 
requirements for design of such software systems are difficult to assess, leading to 
demand for prototyping support in these areas [15, 24], The formal prototyping 
languages needed to build CAPS form a special category in the computer language 
family. 

Rapid prototyping languages are used to create software prototypes, which are 
mechanically processable and executable descriptions or simplified models of 
proposed software systems. They are also used to modify the models frequently in 
an iterative prototype evolution process for the purpose of firming up the 
requirements. Figure 1 illustrates the prototyping process, which consists of two 
stages: prototype construction and code generation. The prototyping stage firms up 
software requirements through iterative negotiations between customers and 
designers via examination of executable prototype?. The designer adjusts the 
requirements and modifies the prototype accordingly based on feed-back from the 
customer until the customer agrees on the requirements. The code generation stage 

* This research was supported in part by the National Science Foundation under grant number 
CCR-9058453. 

131 



132 Luqi 

Fig. 1. Rapid prototyping process 

focuses on augmenting the prototype to generate the production code. Prototypes 
are built to gain information to guide analysis and design, and support automatic 
generation of the production code. 

A rapid prototyping language intended to apply to a variety of software systems is 
an ambitious goal that raises many interesting research problems [7]. Goals for such 
a language have to include the modeling of those systems, providing a fundamental 
mechanism for the integration of the tools in its CAPS, and computer-aided 
transformations of prototypes into implementations of the production version of the 
software. Solutions to these problems are essential for achieving significant 
improvements in the quality and productivity of the software development process 
[26]. 

It is useful to briefly examine the history of computer languages. The terminology 
for describing languages has been changing dramatically with implementation 
technology. Originally any compiled programming language was a very high level 
language. As systems became more complex, the meaning of the term shifted 
towards design languages which can describe system structure without introducing 
low level implementation details and can define generalized components that can be 
adapted to many different situations. Technologies improved to the point where 
programming languages could support abstraction and generalization, e.g. Ada and 
Smalltalk. Systems became even larger, and the meaning of the term shifted again, 
towards languages describing what a system is supposed to do, without specifying 
how the system is to accomplish its goals. As technology advances some of these 
specification languages are becoming executable. The term "very high level 
language" is not precisely defined, since the concept of a very high level language is 
a moving target that depends on the current state of compiler technology and the 



The Role of Prototyping Languages in CASE 133 

speed, memory capacity, and cost of available hardware. Currently it refers to 
languages with abstractions and powerful mathematical constructs used in the early 
stages of the traditional software life cycle, such as domain modeling languages, 
specification languages, design languages, and prototyping languages. 

As compiler and hardware technology improves, the gaps among these high level 
computer language categories are getting smaller and may eventually disappear. 
Programming languages are getting more expressive and more flexible, and are 
supporting more abstract descriptions of the processes to be carried out, while 
specification and design languages are incorporating larger executable subsets [4, 
27]. In the near future these types of languages will remain distinct to more 
effectively support different classes of tools. Programming languages will support 
optimizing compilers whose main objective is to produce efficient implementations. 
Specification and design languages will support tools for requirements analysis and 
proving the correctness of designs and implementations. Prototyping languages will 
support tools for prototype construction, demonstration and production code 
generation. 

The theory and technology of computer languages has become sufficient to 
support exploratory development of a general purpose rapid prototyping language. 
In 1985, a special purpose rapid prototyping language PSDL (Prototype System 
Description Language) and its CAPS were published in [30] for rapid prototyping in 
the development of large and real-time systems [15]. In the past years, the feasibility 
study for the tools in the CAPS has shown great promise [1]. The design and 
implementation of a rapid prototyping language can benefit from past work on 
specification, design, and programming languages. Many such languages previously 
designed for programming, design or specification were used or intended to be used 
for prototyping purposes in different degrees. In the 1970's, the SETL programming 
language was designed based on set theory and already had the primitive concepts 
for integrating high level mathematics with an execution capability [23]. Other 
languages that have been used for prototyping at the programming level include 
APL, SNOBOL, LISP, and PROLOG. The Gypsy language from UT Austin 
provides a simple basis for representing, executing, and proving correctness of 
communicating processes [8]. Research on real-time modeling and scheduling 
provides fundamental support for the design of hard real-time systems [17]. Work 
on attribute grammars paved the road to automated approaches for prototyping 
special purpose languages [9, 22]. The GIST system at ISI has explored computer-
aided requirements modeling with the aid of symbolic evaluation and English 
paraphrasing [6, 25]. The OBSERV system has used abstract ports coupled with 
graphical interconnection facilities to support rapid prototyping and exploratory 
design [29]. The Argus project at MIT has explored implementation of atomic 
transactions in distributed systems [13]. The wide spectrum language Refine from 
Reasoning systems [21], the DRACO system from UC Irvine [19], and the CIP 
project from Munich [2] have explored the feasibility of using transformations to 
realize specifications. 



134 Luqi 

The strength of a specification language is its simplicity, abstraction, clarity of 
expression, and means for rigorous logical reasoning [3]. The strengths of a design 
language are its expressiveness and support for recording goals and justifications. A 
common weakness of specification and design languages is lack of efficient facilities 
for execution or lack of any effective means for execution. The strength of most 
programming languages is supporting efficient execution, while common weak­
nesses are the need for specifying many details and lack of facilities for recording 
goals and justifications in a formal way. A prototyping language should integrate the 
strengths and functions of specification and design languages with the capability for 
execution. Because of the wide range of goals for prototyping languages, design 
decisions for those languages are difficult to make. It is helpful to examine the 
functions of a prototyping language in the rapid prototyping process before further 
discussion of language principles. 

2. CAPS and Prototyping Languages 

In the rapid prototyping process, software prototypes must be constructed quickly 
and at low cost to be practical. The prototyping language and its CAPS are used for 

• Rapidly building and modifying prototypes, 
• Simplifying the design of complex systems, 
• Demonstrating prototype systems to users, 
• Evaluating and checking proposed design, and 
• Efficiently and reliably transforming prototypes into production code. 

A prototyping language has no obligation to give detailed algorithms for all 
components of the system as long as it is descriptive and executable. Its CAPS 
should automatically supply algorithmic details needed for execution, help the 
designer manipulate, analyze, demonstrate, and explain the prototype, and help the 
development team transform the prototype into a production version of the system. 
The design of the prototyping language is subject to the need of supporting the 
software tools in a CAPS system. 

2.1. Tools in a computer aided prototyping system 

Prototyping with computer-aided tools makes a rapid process possible. A CAPS 
designed for supporting a special prototyping language should make it easy to 
specify, construct, demonstrate, understand, explain, and modify a software 
prototype. The language provides the basic communication and representation 
medium for all the tools in a CAPS system. In the CAPS proposed in [15], 
guidelines for decomposing software modules, reusable components, a prototyping 
interface, a design database, and a software base management system with inference 
capabilities make the process possible. 

The tool set should provide facilities for analyzing the consistency of a prototype 
design. Some of the properties that should be checked include: 



The Role of Prototyping Languages in CASE 135 

• Type consistency, 
• Feasibility of timing constraints, 
• Consistency between the levels of a hierarchical description, 
• Preconditions on input parameters and generic parameters, 
• Constraints on relative rates of producer and consumer processes, 
• Absence of deadlocks in distributed and parallel systems, 
• Absence of unhandled exceptions. 

In addition to providing facilities for constructing and checking the internal 
consistency of a prototype, the tool set should provide facilities for generating input 
data, debugging, displaying output, and evaluating the results of prototype execution 
in terms of the same semantic model used for the design of the prototype. 

To support user validation and system evolution, a prototyping language should 
interface to a facility for maintaining the correspondence between requirements and 
design decisions. Tools are needed for determining which parts of a prototype are 
affected by a requirements change, and which requirements are affected by a 
proposed change to the behavior of a prototype. 

The tool set should also provide a design database for maintaining the design 
history, to capture dependencies between different versions of the system and to 
record alternative designs that were considered [5, 10, 16, 20]. This database should 
be capable of recording and maintaining constraints between the components of a 
prototype. An issue in the design of such a database is the relation between the 
prototyping language used for representing the design objects in the database, and 
representations for the attributes, relationships, and constraints used by the CAPS 
tools. The information in the designer's view of the language is a subset of the 
information in the tool views, since tools often add additional attributes to the 
entities defined by the language for recording the results of analysis and synthesis 
procedures. Since the tool set is likely to grow, the representation of design objects 
should be extendible without affecting the interfaces to existing tools. 

2.2. The purpose of a prototyping language 

A prototyping language is used by both people and software tools. To support the 
human users, a prototyping language should be easy to write, understand, and 
modify. To support the tools, the language should be easy to analyze and transform 
mechanically. The requirements for a prototyping language follow. 

A prototyping language should be clear and simple. This implies uniform structure, 
a small number of orthogonal constructs, and general interpretations without special 
cases or restrictions. To support automated tools, the language should have a simple 
abstract syntax and a precisely defined meaning. The underlying model should have 
a mathematical basis to support execution, rigorous reasoning, and transformations. 
The model should also support tools for communication with untrained people. 
Such tools should provide graphical summary views, English paraphrasing, and 
explanation facilities. 



136 Luqi 

A prototyping language should be powerful and concise. It should enable brief 
prototype definitions for a wide variety of software systems, including the tools in 
the CAPS. The language and the tools should support abstractions, incomplete 
descriptions, and automated design completion. The language should support 
abstractions for concurrency, synchronization, and timing constraints in addition to 
traditional functional, data, and control abstractions. The constructs of the language 
should match decisions made by the designer more closely than the operations 
performed by the processor, to make prototype descriptions easy to understand and 
change. The designer should be able to specify only the essential attributes of a 
proposed system, and the tools should supply default values for all attributes needed 
for execution of a software prototype. To avoid complicating the language, high 
level abstractions should be expressed as standard pre-defined components in a 
knowledge base whenever it is possible to do so without extending the language. 

A prototyping language should localize design decisions and interactions between 
system components or pieces of knowledge in the knowledge base. These features allow 
independently designed subsystems of complex systems to cooperate without 
unexpected interference, simplify concurrency issues, and aid in scheduling. 

A prototyping language should be able to represent black-box specifications. 
Specifications are needed for documenting prototypes, retrieving reusable software 
components, and verifying implementations via automated testing and proofs. Such 
descriptions also form the basis for automated synthesis capabilities, inheritance of 
common properties and constraints, and consistency checking. This part of the 
language may contain non-computable constructs such as unbounded logical 
quantifiers to gain expressive power. 

The language should be able to represent clear-box design information. This 
information includes interconnections of subcomponents, dependencies between 
components, design goals such as invariant constraints, and criteria for choosing 
between alternative designs. The language should have facilities for adapting 
components to new uses and making small perturbations on their behavior without 
examining the details of the internal implementation of the components, to make it 
easier to reuse components. 

The language should have an expressive executable subset. This subset should be 
easily recognizable both by people and automated tools. It should be possible to 
transform or augment expressions of the language outside the executable subset to 
make them recognizably executable. 

The language should support the construction of efficient implementations by 
augmenting the prototype description with annotations. These annotations should 
describe additional constraints or lower level design decisions. This enables 
developers to treat optimization as a refinement step where additional information 
is added to the original descriptions, rather than a complete redefinition of the 
system. This avoids repeated description of the same information in different ways, 
and reduces opportunities for making errors. 



The Role of Prototyping Languages in CASE 137 

It must be possible to run test cases and gather data in a practical amount of time. 
Efficiency does not have the highest priority in a prototyping language, but it cannot 
be ignored completely. Thus execution mechanisms based on exhaustive 
enumeration are insufficient for a prototyping language, although they may be 
supplied as a default to enable execution of small test cases even in the absence of 
information about more efficient execution strategies. The language should 
therefore support relatively efficient execution mechanisms, tools for locating 
performance bottlenecks, and incremental optimization transformations to improve 
prototypes that are impractically slow. 

Real-time constraints require execution times to be predictable, although not 
necessarily very fast. Prototypes of real-time systems may operate in simulated time 
or linearly scaled real time, but the actual execution times for the production 
version must be predictable within accurate bounds. 

3. Example of a Prototyping Language 

The rapid prototyping language PSDL [14, 15, 30] and its CAPS were designed to 
support prototyping of large, parallel, and real-time systems. The CAPS provides a 
designer interface for constructing, analyzing, and modifying a prototype, along with 
execution facilities which realize timing constraints with respect to either actual or 
linearly scaled real-time. 

PSDL encourages localized descriptions and software structures, to aid the 
designer in constructing and modifying understandable models of complex systems. 
The language has a simple and expressive computational model based on modified 
dataflow augmented with non-procedural constraints. The elements of the model 
are operators and data streams. Every operator is a state machine and some 
operators are functions, i.e. machines with an empty set of state variables and a 
single internal state. Every data stream carries values of an abstract type, and some 
streams carry exception values. 

The computational model was developed based on two main concerns: ease of 
use by human designers, and ease of processing by the tools in the CAPS. Data flow 
diagrams have been widely used in requirements analysis, partially because they are 
easy to understand both by developers and by customers. This motivated us to adopt 
a graphical notation in PSDL, based on operators and data flows. However, the data 
flow diagrams commonly used in informal, manual approaches to requirements 
analysis are not sufficiently precise to support execution and analysis of real-time 
behavior of a proposed system. The behavior of a classical data flow diagram is not 
completely determined because the diagram shows only the data that can flow 
through the system, and does not specify the cause and effect relationships and the 
timing properties that determine the details of system behavior. We added 
annotations to the graphics to express this information, and found that this was 
sufficient to enable automatic execution and real-time scheduling by the CAPS 
tools. 



138 Luqi 

A PSDL prototype consists of a hierarchically structured set of definitions for 
operators and types. Each definition has a specification part for black-box 
descriptions and an implementation part for clear-box descriptions. The 
specifications are used both for documentation of the prototype and for retrieval of 
reusable software components. A specification is executable without further 
information from the designer if the CAPS can automatically retrieve, adapt, and 
combine the reusable software components in its software base to match the 
specification. In cases where this is not possible, the designer must develop an 
implementation part decomposing the specified system into more primitive 
subsystems and provide black-box specifications for each of the subsystems. The 
decomposition is done in terms of the PSDL computational model, using 
augmented data flow diagrams. 

An augmented data flow diagram is a directed graph, annotated with control 
constraints and timing constraints. The nodes in an augmented data flow diagram 
represent operators, the edges represent data streams, and the numbers associated 
with the nodes represent maximum execution times. The diagram has a graphical 
representation and the constraints have a text representation, as illustrated in Fig. 2. 
The example shows a simple control system illustrating some typical features of 
embedded software. The filter performs a smoothing operation to reduce the noise 
in the sensor data, and the controller uses the filtered sensor data to determine how 
to respond to commands from a human operator, which are transmitted to the 
embedded system via a switch on the operator's control panel. A simple smoothing 
filter might take the form 

new state_variable = w * old state_variable + (1.0 - w) * sensor_data 

where the weight w is a real number between 0 and 1 that must be chosen to provide 
the best trade-off between response time and sensitivity to noise. The example has a 
minimal specification part with an informal description. The implementation part 
contains a graph showing the decomposition of the system into two subsystems, and 
the control constraints give control and timing information. The control constraints 
and the timing constraints determine both the conditions under which the operators 
are triggered and the buffering disciplines for the data streams. In general, control 
constraints can express conditional execution or output, and can control exceptions 
and timers. PSDL timers are used to control durations of states, and can be thought 
of as software stopwatches. 

Timing constraints can be added to operators to define hard real-time deadlines 
for time-critical operators. Timing constraints can express sporadic data-driven 
execution as well as periodic execution. In Fig. 2 both operators are time-critical. 
The filter operator must be fired periodically, every 100 milliseconds. The controller 
operator is fired sporadically, whenever a new value for the input jwitch arrives, and 
must complete execution within 200 milliseconds of the arrival of the new value. 



The Role of Prototyping Languages in CASE 139 

OPERATOR control_system 
SPECIFICATION 

INPUT operator_switch: boolean, sensor_data: real 
OUTPUT control_signal: real 
STATES state_variable: real INITIALLY 0.0 
DESCRIPTION { top level of a simple embedded system ) 

END 

IMPLEMENTATION 
GRAPH 

CONTROL CONSTRAINTS 
OPERATOR filter PERIOD 100 ins 
OPERATOR controller TRIGGERED BY ALL input_switch 
MAXIMUM RESPONSE TIME 200 ins 
MINIMUM CALLING PERIOD 200 ms 

END 

Fig. 2. Example of an augmented data flow diagram in PSDL 

There are two possible buffering disciplines for a data stream: dataflow and 
sampled. Dataflow streams act as first-in-first-out buffers, and are used for 
synchronizing data-driven computations. Sampled streams act as continuously 
available sources of data which can be read or updated on demand, and are used for 
connecting unsynchronized operators which can fire at different or unpredictable 
rates. Data streams have dataflow buffers if and only if they appear in a 
TRIGGERED BY ALL control constraint. In Fig. 2, the streams inputjwitch and 
control jignal are dataflow streams, while sensor_data and state_yariable are sampled 
streams. The triggering conditions express requirements for the controller and the 
actuator to respond exactly once to every new value in the streams input_switch and 



140 Luqi 

(a) generated buffer declarations and initialization 

input_switch_buffer is new fifo_buffer(boolean); 
sensor_data_buffer is new sampled_buffer(real); 
state_variable_buffer is new state_variable(real, 0.0); 

(b) generated driver code 

procedure controller_driver is 
input_switch: boolean; 
state_variable, control_signal: real; 

begin 
if input_switch_buffer.new_data then 

input_switch_buffer.read(input_switch); 
state_variable_buffer.read(state_variable); 
controller(input_switch, state_variable, control_signal); 
control_signal_buffer.write(control_signal); 

end if; 
end controller_driver; 

procedure filter_driver is 
sensor_data, state_variable: real; 

begin 
if true then 

sensor_data_buffer.read(sensor_data); 
state_variable_buffer.read(state_variable); 
filter (sensor_data, state_variable) 
state_variable_buffer, write (state_variable) 

end if; 
end filter_driver; 

Fig. 3. Generated Ada code for the control_system 

control jignal. The other streams must be sampled because the filter operator must 
operate at fixed times and values may be written into the sensor_data stream or read 
from the state_yariable stream at unpredictable times. 

The PSDL translator [1] generates Ada code for interconnecting operators 
appearing in an augmented dataflow diagram. Figure 3 shows a simplified version of 
the Ada code that would be generated for the example in Fig. 2 if the operators filter 
and controller are realized by reusable components from the software base. In the 
example we assume these components are Ada procedures with the same names as 
the corresponding PSDL operators. There are two different kinds of code 
generated: buffer declarations and driver code. Buffers are instances of pre-defined 
generic packages corresponding to the two buffering disciplines for PSDL data 
streams, with variants for declaring the initial values of streams that represent state 
variables for state machines. The driver procedures controllerjiriver and filter_driver 
realize the control constraints and perform the data stream operations. These 
procedures are called from the static schedule tasks at times determined by a pre-
computed static schedule. 



The Role of Prototyping Languages in CASE 141 

F C F C F C F C 
0 25 75 100 125 150 200 225 275 300 325 350 400 

F = filter, C = controller 

Fig. 4. Static schedule for the control_system 

The timing constraints associated with time-critical operators are realized by the 
static scheduler in CAPS. A static schedule for the operators in Fig. 2 is shown in 
Fig. 4. This schedule repeats every 400 milliseconds. Since there is no explicit 
deadline given for the filter operator, the deadline defaults to the maximum 
execution time, and the operator is scheduled at intervals exactly 100 milliseconds 
apart. The initial firing of the filter is scheduled before the initial firing of the 
controller because of the precedence relation created by the data stream state_ 
variable. The controller is scheduled so that a response to any request can be 
completed within 200 milliseconds of the request, regardless of when the request 
occurs. Each instance of the controller in the schedule is responsible for handling 
only those requests that arrive after the previous instance of the controller has 
started execution. The instance of the controller that starts at time 275 is interleaved 
with an execution of the filter. This is permissible because operators do not interact 
except via data streams. These interruptions are realized in Ada by making the calls 
to filter jlriver and controller_driver from two tasks with different priorities. There 
are short periods of time at the beginning and at the end of each execution of an 
operator when such interruptions cannot be scheduled, because of atomic read and 
write operations on the data streams. 

PSDL was designed so that operators can interact only via data streams. This 
locality property simplifies the design and modification of prototypes by ensuring 
that operators can be executed in parallel without interference and can interact only 
via the documented interfaces, and also makes it easier to construct schedules. The 
locality property is realized by the absence of a mechanism for transmitting objects 
with internal states along data streams and scoping rules that do not allow direct 
non-local data references. 

4. Designing a Prototyping Language 

A prototyping language should simplify the designer's view of the system and 
support automated means for bridging the gap between this simplified view and the 
detailed algorithmic descriptions currently needed for efficient execution. The 
CAPS system should provide mechanisms for execution, static analysis, preparation 
of test cases, display and analysis of results, and debugging to allow the prototype 
designers to work entirely within the simplified view. 



142 Luqi 

4.1. Static and dynamic properties 

Static properties of a computer language must be fixed before a system is 
executed, while dynamic properties can be changed as the system runs. Prototyping 
languages should support dynamic treatment of objects such as data types, 
operators, and timing constraints to support flexible demonstrations and 
prototyping of adaptive systems. For example, programs that can manipulate data 
types, programs, and schedules at run-time can adapt to unanticipated 
circumstances more readily than those that cannot. 

This goal is hard to meet, because static declarations allow tools to provide more 
information about a proposed system and enable more efficient execution 
techniques. A prototyping language with many dynamic features requires type 
checking, interpreter calls or compilation, loading, linking, and scheduling to be 
done as the system runs. These facilities are difficult to implement efficiently, and 
are not supported by the class of languages usually used for production versions. 
Uniform guarantees of type correctness, clean termination, or meeting hard real­
time constraints may not be possible without static restrictions on these properties. 
Thus a prototyping language should be able to represent optional static restrictions, 
and CAPS should support transformations adding explicit static restrictions to 
improve efficiency or predictability. 

4.2. Computational model 

The models underlying a prototyping language provide the common ground for 
the associated set of tools. The semantic model for the language provides the basis 
for automated analysis, while the computational model provides the basis for 
execution. One of the main challenges in developing a prototyping language is 
finding models that can coherently span the range of applications required. 

There is no common model of expert systems available for rapid prototyping. 
First order logic is one of the most familiar models for reasoning, but it has been 
criticized for its weaknesses, such as difficulties in handling uncertain information, 
representing heuristic methods for speeding up conclusions, and performing non­
monotonic reasoning. Many other kinds of logic have been proposed, but there has 
been no consensus on whether there is a single logic suitable for constructing all 
types of expert systems, or which variety of logic is the most promising. Some 
approaches to expert systems use models other than logic, such as semantic 
networks, Bayesian statistics, and production systems. It is not clear which approach 
will yield the best results in the long run. 

There is also no commonly accepted model for representing real-time constraints. 
Some approaches that have been explored include temporal logic, state machines, 
mode charts, augmented data flow diagrams, Petri nets, and I/O automata. The 
model for a prototyping language should be chosen to enhance the application of 
recent results in logic, graph theory, and combinatorics to provide an effective 
execution mechanism. Other unexplored areas include effective models for real-



The Role of Prototyping Languages in CASE 143 

time databases and real-time communications networks. Since different models 
appear to be best for different purposes, practical prototyping languages should 
seek a unified way to support multiple models. This requires careful attention to the 
interactions between the language and the set of pre-defined components that can 
be supplied by the CAPS. 

4.3. Execution support 

A knowledge-based approach is needed to provide adequate execution support 
for a prototyping language without requiring excessive algorithmic detail. CAPS 
should provide knowledge base support for the following functions: 

Design—The CAPS system should contain models of common design activities 
and common classes of design decisions, to allow prototypes to be expressed in the 
conceptual framework of the designer rather than that of the machine. If the system 
is aware of the choices faced by a designer at each point in the design, it can present 
compact representations of the choices using menus. Such alternatives should have 
corresponding representations in the prototyping language. 

Managing reusable components — The environment should contain a large 
software base with reusable components. This software base should be coupled with 
a set of rules for tailoring and combining available components to fulfill queries that 
do not exactly match any of the components explicitly stored in the software base. 
This allows the system to find algorithms and data structures without imposing all of 
the details of the designer. 

High level debugging — Errors and failures during prototype execution should be 
mapped from the programming language level to the level of the prototyping 
language, to keep programming details from intruding when the designer tests and 
demonstrates the prototype. 

Optimization — The transformations for optimizing a prototype version of a 
system to produce a production version should be performed with minimum 
interaction with the designer. CAPS should keep track of optimization decisions 
made for previous versions of the system, determine which of those decisions are 
valid for later versions, and automatically apply the ones that are still valid. While it 
is not currently feasible to produce highly optimized implementations without 
human help, it is possible to automate routine decisions and rely on the designer for 
only the difficult decisions. 

Explanations—Justifications for decisions made by CAPS should be available to 
provide feedback to the designer in cases where automated design completion 
procedures fail. Such a facility is needed to support systematic computer-aided 
design in situations where complete automation is not possible. This requires an 
expert system with a substantial knowledge base. 

It is natural to consider the execution aspect of a prototyping language in terms of 
compiler technology. Unfortunately, ordinary compiler technology is insufficient for 
execution of a rapid prototyping language. The reasons are: 



144 Luqi 

Flexibility — The need for flexibility and run-time handling of newly created types 
and procedures to support expert systems provides challenges for efficient 
implementation techniques. 

Real-time constraints — Conventional translation techniques must be coupled with 
facilities for scheduling to meet hard real-time constraints, transformations to allow 
the execution of incompletely specified processes, and access to an interpreter or an 
incremental compiler at run-time. 

Missing details — An issue that must be faced by an execution support system for a 
prototyping language is providing missing details. One of the goals of a rapid 
prototyping system is to execute prototype descriptions that do not contain details of 
algorithms and data structures [28]. This has to be handled by combining program 
transformations and specialized schedulers with a knowledge base containing 
programming and problem domain knowledge. 

Transformations are needed to execute incompletely specified components. Such 
transformations should supply reasonable default values for attributes necessary for 
execution if the designer does not explicitly specify them. Different choices for these 
attributes can be explicitly specified to produce a more accurate model of the system 
or to improve its performance. In particular, default algorithms for unspecified or 
partially specified components should be supplied. Key problems are finding 
systematic ways of developing such transformations and determining reasonable 
default values based on models of the application domain. It is essential to 
automatically generate stubs for components that are unavailable in the software 
base and have not yet been designed to allow testing and demonstrating partially 
completed systems. Such stubs can be created by simple or increasingly 
sophisticated techniques, such as asking the user to supply values, using random 
selections from a fixed set of responses, using logic programming to simulate 
black-box specifications, or using transformation techniques to generate efficient 
implementations from the black-box descriptions. Other examples include 
assignment of tasks to physical processors and choosing display formats for outputs 
and error messages. 

5. Semantics of a Prototyping Language 

The key to computer-aided prototyping is finding simple formal models that can 
express the range of expected applications and effectively support automated 
processing. The desire for extensive automated processing in a CAPS system argues 
for Spartan simplicity in the design of the prototyping language: new language 
features should be resisted whenever it is possible to cover all required functionality 
without introducing new primitives. This section examines some likely application 
areas for rapid prototyping and some of the implications for the design of a common 
prototyping language. 



The Role of Prototyping Languages in CASE 145 

5.1. Supporting real-time systems 

The language and the CAPS knowledge base should support representations for 
timing constraints and overload resolution policies. Scheduling is a difficult issue for 
real-time systems. High level representations of timing constraints and overload 
resolution policies are essential to allow the prototype to express the necessary 
constraints on the scheduling of different tasks at a level matching the problem 
rather than at the level of the underlying run-time support system. Timing 
constraints on communications primitives are needed to handle distributed real­
time systems. 

5.2. Modeling parallel systems 

High-level mechanisms for coordinating independent activities [11] and primitives 
for defining independent activities that are guaranteed not to interfere with each 
other are needed to simplify and speed up the construction of parallel systems. 
Localized modules with limited data access are essential for this purpose. Message 
passing, dataflow, and object-oriented ideas have been proposed to address this 
problem. Another consideration is avoidance of deadlock. It is useful to have a 
syntactically recognizable subset of the language that is capable of describing 
concurrent computations and carries a uniform guarantee of freedom from 
deadlock. Such a guarantee is possible if a suitable computational model is chosen. 
This kind of restricted subset is sufficient for many applications, and it can be 
augmented with facilities for adding additional constraints on global orderings of 
events, which are known to be potentially unsafe and are designed together with 
tools for checking safety of particular designs. For example, atomic transactions can 
simplify the design of distributed systems, although they introduce the potential for 
deadlocks. 

5.3. Designing distributed systems 

A prototyping language should provide a high level means for describing 

1. constraints on communication time, 
2. the granularity of atomic transactions, 
3. standard protocols for achieving reliability despite processing and 

communications failures, and 
4. constraints on the assignment of software tasks to physical processors. 

This information should be optional, and the default should be the safest option 
rather than the most efficient one. 

5.4. Prototyping knowledge-based systems 

CAPS can provide generic pre-defined software components to realize many of 
the common building blocks for knowledge-based systems. These include facts, 



146 Luqi 

rules, patterns, frames, contexts, constraints, demons, instance generators, pattern 
matchers, unification mechanisms, constraint propagation mechanisms, and 
inference engines. Thus the prototyping language does not appear to require special 
features beyond the flexibility described in Sect. 4.1 to provide these facilities. 
However, standardization of these building blocks requires careful analysis and 
specification of their required properties. 

An open issue is whether current mechanisms for defining generic components 
are flexible enough to adequately capture the range of behavior required for these 
kinds of components, and if not, what extensions are required. A solution to this 
general problem that has been applied successfully in other contexts such as parsing 
context free languages is meta-programming: a family of reusable components is 
defined implicitly via a special purpose problem definition language and a program 
generator that tailors a known general solution strategy to the particular problem 
represented by a statement in the problem definition language. The program 
generator creates instances of the component family based on statements in the 
problem definition language. The components created by the program generator 
can be represented in the prototyping language or in a conventional programming 
language. In the context of parsing, an example of a problem definition language is 
a grammar notation such as BNF, which defines the source language to be parsed, 
and an example of a corresponding program generator is an LALR parser generator 
such as the UNIX yacc tool, which creates a parsing program corresponding to the 
given grammar. Other examples include tools for generating user interface software 
[12, 18]. Thus in addition to a prototyping language, a CAPS system may need a 
meta-programming language for specifying computed families of reusable 
components in the software base. A meta-programming language and families of 
reusable software components could also provide a means for conveniently defining 
problem-specific external representations and input facilities for the knowledge in 
the knowledge base. 

To support rapid construction of expert systems a prototyping language should 
provide: 

1. unrestricted higher order objects such as types, functions, tasks, and generators, 
and 

2. control mechanisms such as state-triggered demons, backtracking, run-time 
control over task priorities, and temporal events. 

Several of these features are needed to support flexible prototypes for other kinds 
of systems as well. 

The presence of real-time constraints severely restricts the kinds of computations 
a system may perform, and in the case of expert systems, limits the amount of logical 
inference that can be performed. The design of expert systems that operate within 
real-time constraints is a largely unexplored area, and significant research progress 
is needed in this area to fully realize the goals of a rapid prototyping language. 



The Role of Prototyping Languages in CASE 147 

6. Conclusions 

Prototyping languages are designed based on knowledge and experience from all 
levels of the computer language hierarchy since they address functions from all of 
the levels. Studying the relevant aspects of specification, design, and programming 
languages is helpful in the design of prototyping languages. 

The purpose of a prototyping language is to define an executable model of a 
system. The language is used to create specifications, express designs, and execute 
prototypes. Prototyping languages are used in requirements analysis for the purpose 
of requirements validation via early demonstrations to the customer. They are also 
useful for evaluating competing design alternatives, validating system structures, 
and exploring feasibility. In contrast, specification languages are used for defining 
external interfaces in the functional specification stage and for defining internal 
interfaces during architectural design at the highest levels of abstraction. They are 
also used for verifying the correctness and completeness of a design or 
implementation. Design languages are used for recording conventions and 
interconnections during architectural design and module design. 

The difference between specification and design languages is the difference 
between interface and mechanism: a specification says what is to be done, and a 
design says how to do it. The main evaluation criterion for both specification and 
design languages is the ability to express simple, concise, and humanly understand­
able descriptions of complex behavior. It is useful for specification and design 
languages to be executable, but simplicity and ease of expression takes precedence 
when the considerations conflict. Computer aid is desirable for determining the 
properties of a specification and certifying that a design realizes a specification. An 
execution capability can contribute to these goals, but other types of mechanical 
analysis may turn out to be more useful for this purpose. 

The difference between a design and a program is the difference between a plan 
and a finished product: a design records the early decisions that determine an 
implementation strategy, while a program contains all the details necessary to get an 
efficiently executable system. The primary goal of a design is documentation rather 
than execution, while the primary goal of a program is usually efficient execution. 

A prototyping language aims at validating specifications and designs mainly via an 
execution facility. Prototyping languages can benefit from mechanisms developed to 
increase the expressiveness of specification and design languages, but must accept 
some restrictions to support execution. The execution mechanisms of a prototyping 
language should draw on programming language technology, but must accept some 
inefficiencies to support flexibility and ease of expression. The constructs of a 
prototyping language should be chosen to allow generation of efficient 
implementations by smoothly adding additional information and constraints. 

Since completely automatic and totally correct implementation of powerful 
specification languages is an algorithmically unsolvable problem, research on rapid 
prototyping should explore human interactions for effectively guiding computer-
aided implementation tools. A promising approach is augmenting abstract 



148 Luqi 

specifications with annotations or pragmas giving advice about implementation 
strategies. An important problem is finding concepts and notations that can 
naturally express such advice in an abstract and orthogonal way. It is desirable to 
keep the abstract specification separate or easily mechanically separable from the 
annotations to provide simplified views of large system models. 

Providing execution capability for high level prototype descriptions requires a 
knowledge based approach. The required knowledge base grows with the problem 
domain the language addresses. A substantial part of the knowledge in the 
knowledge base consists of reusable software components augmented with 
descriptions of their properties. Other kinds of relevant knowledge include methods 
for adapting and combining the components in the software base, properties of 
application domains, and the CAPS tools. Progress on rapid prototyping languages 
depends on solutions to open research problems in areas including semantic 
modeling, real-time scheduling, program transformations, version control in 
prototype databases, and retrieval of reusable software components. 

References 

1. C. Altizer, "Implementation of a Language Translator for a Computer Aided 
Prototyping System", M.S. Thesis, Computer Science, Naval Postgraduate School, 
Monterey, CA, Dec. 1988. 

2. F. Bauer, B. Moller, H. Partsch and P. Pepper, "Formal Program Construction by 
Transformations — Computer-Aided, Intuition-Guided Programming", IEEE Trans. 
Softw. Eng. 15, 2 (February 1989) 165-180. 

3. V. Berzins and Luqi, Software Engineering with Abstractions: An Integrated Approach to 
Software Development using Ada, Addison-Wesley, 1991. 

4. A. Berztiss, "The Specification and Prototyping Language SF", Report 78, Systems 
Development and Artificial Intelligence Laboratory, Department of Computer and 
Systems Sciences, Stockholm University, 1990. 

5. E. Borison, "Program Changes and the Cost of Selective Recompilation", Technical 
Report CMU-CS-89-205, Computer Science Department, CMU, Pittsburgh, PA, July 
1989. 

6. D. Cohen, "Symbolic Execution of the Gist Specification Language", in Proceedings of 
the Eighth International Joint Conference on Artificial Intelligence, 1983, pp. 17-20. 

7. R. Gabriel, ed., Draft Report on Requirements for a Common Prototyping System, DARPA 
Information Science and Technology Office, Arlington, VA, Nov. 1988. 

8. D. Good, R. Cohen and J. Keeton-Williams, "Principles of Proving Concurrent 
Programs in Gypsy", in Proceedings of the 6th Annual Symposium on Principles of 
Programming Languages, ACM, 1979, pp. 42-52. 

9. R. Herndon and V. Berzins, "The Realizable Benefits of a Language Prototyping 
Language", IEEE Trans. Softw. Eng. SE-14, 6 (June 1988) 803-809. 

10. M. Ketabchi, V. Berzins and S. March, "ODM: An Object Oriented Data Model for 
Design Databases", in Proc. ACM Computer Science Conference, February 1986, pp. 261 — 
269. 

11.. B. Kraemer, "SEGRAS —a Formal Language Combining Petri Nets and Abstract Data 
Types for Specifying Distributed Systems", in Proceedings of 9th International Conference 
on Software Engineering, March 1987, pp. 116-125. 

12. T. Lewis, F. Handlosser, S. Bose and S. Yang, "Prototypes from Standard User Interface 
Management Systems", IEEE Computer 22, 5 (May 1989) 51-60. 



The Role of Prototyping Languages in CASE 149 

13. B. Liskov, "Distributed Programming in Argus", Communications of the ACM 31, 3 
(March 1988) 300-312. 

14. Luqi, V. Berzins and R. Yeh, "A Prototyping Language for Real-Time Software", IEEE 
Trans. Softw. Eng., (October, 1988) 1409-1423. 

15. Luqi and M. Ketabchi, "A Computer Aided Prototyping System", IEEE Softw. 5, 2 
(March 1988) 66-72. 

16. Luqi, "A Graph Model for Software Evolution", IEEE Trans. Softw. Eng. 16, 8 (August 
1990) 917-927. 

17. A. Mok, "A Systematic Approach to the Design of Hard Real-Time Systems", in 
Proceedings of the ONR Workshop on the Foundations of Real-Time Computing, Office of 
Naval Research, Falls Church, VA, Nov. 1988, pp. 47-51. 

18. B. Myers, "User Interface Tools", in Milestones in Software Evolution, IEEE Computer 
Society, 1990, pp. 261-270. 

19. J. Neighbors, Draco: a Method for Engineering Reusable Software Systems, ACM Press, 
1989. 

20. J. Nestor, "Toward a Persistent Object Base", in Advanced Programming Environments, 
Vol. 244, Springer-Verlag, 1986, pp. 372-394. 

21. Refine User's Guide, Reasoning Systems Inc., Palo Alto, CA, 1988. 
22. T. Reps and A. Demers, "Sublinear-Space Evaluation Algorithms for Attribute 

Grammars", Trans. Prog. Lang and Syst. 9, 4 (July 1987), pp. 408-440. 
23. E. Schonberg, J. Schwartz and M. Sharir, "An Automatic Technique for the Selection of 

Data Representations in SETL Programs", Trans. Prog. Lang and Syst. 3, 2 (April 1981), 
pp. 126-143. 

24. J. Schwartz, "Broad Agency Announcement for New Language in Rapid Construction of 
Software Prototypes", Commerce Business Daily, Arlington, VA, Feb. 1989. 

25. W. Swartout, "GIST English Generator", in Proceedings of the National Conference on 
Artificial Intelligence, AAAI, 1982. 

26. M. Tanik and R. Yeh, "The Role of Rapid Prototyping in Software Development", in 
Proceedings of the 22nd Hawaii International Conference on System Science, Kona, Hawaii, 
January 1989, pp. 337-338. 

27. R. Terwilliger and R. Campbell, "PLEASE: Executable Specifications for Incremental 
Software Development", 7. Syst. Softw. 10 (1989), 97-112. 

28. J. Tsai, M. Aoyama and Y. Chang, "Rapid Prototyping Using FRORL Language", in 
Proc. COMPSAC88, Oct. 1988, pp. 410-417. 

29. S. Tyszberowicz and A. Yehudai, "OBSERV Object-oriented Specification, Execution 
and Rapid Verification System", in 3nd Israeli Conference on Computer Systems and 
Software Engineering, Tel-Aviv, Israel, June 1988. 

30. R. Yeh, N. Roussopoulos, Luqi and etc., "Research in Software Reusability", Final 
Report, Tech. Rep.-pl06/83/0004-3, Ballistic Missile Defense Advanced Technology 
Center, Huntsville, Alabama, July 1985. 


