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Toward Formal Models of Software 
Engineering Processes1 

B e r n d  K r a m e r 1  a n d  L u q i  
Computer Science Department, Naval Postgraduate School, Monterey, California 

In this paper, a Petri net-based formal specification 
method for distributed systems is applied to the do­
main of software process modeling. We introduce do­
main-specific concepts stressing the distributed and 
dynamic nature of software processes. Development 
states are viewed as distributed entities. Development 
activities are characterized by their effects on soft­
ware objects, pertinent information exchange with hu­
man or technical participants involved, and local 
changes to development states. These dynamic as­
pects of software processes are represented as labeled 
Petri nets. Structuring mechanisms are sketched which 
support hierarchical decomposition and systematic 
combinations of separate views of a software engi­
neering process. 

1. INTRODUCTION 

Criticism of traditional life cycle models has been the 
subject of many recent papers arguing for new ap­
proaches to software process modeling [1, 5, 7]. Rather 
than paraphrasing their criticism, we cite evaluation 
criteria reported in the literature to justify our own 
approach of a Petri net-based process model (PNP 
model). 

Typical requirements for process models are ade­
quacy of the model, readability and ease of use, 
hierarchical decomposability, and amenability to for­
mal analysis and reasoning. These requirements are 
obvious, except for the notion of adequacy which is 
difficult to grasp due to the numerous aspects of soft­
ware engineering processes. These include management 
aspects concerning the optimal employment of people 
and use of material resources, contractual matters, 
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planning and cost issues, communication and synchro­
nization aspects and methodological concerns aiming at 
effective development procedures and tool use. 

As we can hardly imagine a homogeneous process 
model capturing all these different aspects in an ade­
quate way, we first discuss the conceptual framework 
which the PNP model covers. Basic concepts of the 
PNP model are described in Section 3. We emphasize a 
formal approach to specifying the dynamic behavior of 
software engineering processes, characteristic attributes 
of software objects, and tasks of human participants 
involved. We claim that formalism in software process 
modeling contributes to consistent and precise under­
standing of software processes, enables automated sup­
port to enhance the reliability and reusability of process 
models, and opens ways to automate well-understood 
parts of software processes. Our approach does not 
address human factors and social processes which might 
contribute to the software process dynamics [3]. An 
illustrative example is given in Section 4 where we 
present two views of a rapid prototyping process that 
supports evolutionary software development by interac­
tive construction of executable prototypes from reusable 
software components [12]. In Section 5 we illustrate 
constructions that allow consistent combinations and 
stepwise refinements of process model views. In Sec­
tion 6 the Petri net semantics underlying PNP models is 
sketched and the potential of the model to formal 
analysis and reasoning, verification, and symbolic sim­
ulation is outlined. Section 7 presents our conclusions 
and discusses the planned extension of the PNP model 
by a methodology for planning and scheduling the 
evolution of a software system. 

2 .  B E HAVIOR-ORIE NT E D SOFTWARE PROCESS 
MODELS 

Software development is a dynamic and distributed 
activity in which many cooperating participants may act 
partially independently of each other to iteratively 
transform an initial set of requirements into a validated 
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operational system. Different participants usually have 
different and selective knowledge about an evolving 
software system. The software system is typically char­
acterized by a large set of software objects such as 
requirements definitions, design documentation, speci­
fication and program modules, test protocols and the 
like which coexist at designated development states. 
Semantic relationships between these objects influence 
the process dynamics and are themselves subject to 
dynamic changes. 

In this context an adequate model should capture the 
distributed nature of information characterizing an ob­
ject system in its various development states and the 
distributedness of the changes it undergoes. Once con­
currency has been identified as a central issue, a 
process model is needed that is able to describe the 
synchronization and communication necessary to co­
ordinate concurrent activities. Incomplete knowledge 
introduces the need to cope with nondeterminism, 
which may occur in different forms in the course of a 
development process. For example, resource contention 
is likely to arise due to the boundedness of resources 
but often cannot be resolved as a process model is 
designed; or it might be necessary to specify the "range 
of alternative possibilities to pursue a process execution 
without being able to provide a deterministic decision 
procedure because it depends on information that can­
not be anticipated in sufficient detail. 

The dynamic behavior of a process model strongly 
depends on the structure of software components and 
information provided by tools or human participants as 
a process is executed. Therefore it is crucial to provide 
abstraction mechanisms that allow the process designer 
to define functional and structural properties of ob­
jects and of the information provided at execution time. 
These aspects of software processes must be specified 
at a level of detail that is sufficient to understand and 
control a development process but still gives developers 
a range of possibilities to make design decisions as 
needs arise. 

A suitable abstraction of a program module in the 
context of version control, for example, might describe 
its structure as consisting of the attributes author, inter­
face, body, and creation date. The functions performed 
by the authors of such modules might be sufficiently 
characterized by access rights determining who is al­
lowed to update which program modules. The behavior 
of the version control model then would specify at this 
abstraction level how and under which conditions these 
attributes can be changed by processes but would not 
refer to details of a module body, for instance. These 
changes include update rights as the team of program­
mers involved in a project or their tasks may change 
and new modules are constructed as the system evolves. 

This information cannot be fully determined prior to 
process execution, nor can it be derived from the 
process history at a given development state. What we 
might want to know, however, is the type of informa­
tion to be supplied and what constraints it might have to 
satisfy. 

3. BASIC CONCEPTS OF PNP MODELS 

We describe functional, behavioral, and data aspects of 
software processes by adapting the SEGRAS specifica­
tion method [9] to the conceptual framework discussed 
previously. The PNP model extends this method by 
introducing an object-oriented data abstraction facility 
and a restricted form of behavior specifications to 
enable domain-specific consistency, completeness, and 
plausibility checks. The difference between data and 
objects is that data values are immutable, while objects 
can have states which are subject to change. 

The object abstraction facility allows the process 
designer to introduce different types of software ob­
jects, provide them with distinguishing attributes, and 
describe functional relations between them. Labeled 
Petri nets are used to specify the rules governing 
dynamic changes to object attributes and relationships. 
The combination provides a suitable notion of dis­
tributed development states and state-dependent and 
state-changing actions that can dynamically create new 
software objects, concurrently change their attributes, 
and delete objects that are no longer needed. 

3.1 Object and Data Definition 

Software objects are treated as typed and uniquely 
named entities whose structure and properties are ex­
pressed in terms of extensible lists of attributes. At­
tributes are either (references to) objects or data. Ob­
ject types are defined through a special form relating a 
new type name with names and types of attributes 
which all instances of that object type share. For exam­
ple, the form 

object module : (author tname , spec : interface, 

body:implementation) 

defines objects of type module to have at least three 
attributes whose values are of type name, interface, 
and implementation, respectively. These attributes 
might capture the properties of program modules rele­
vant for configuration management. Further attributes 
can be added to an object during process execution as 
defined by the process model. 

Objects are represented by pairs. The first compo­
nent denotes a unique, system-provided object identifier 
and the second is a list of terms defining an object's 
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actual attribute values. The elements in the attribute list 
are given in the order of attribute declarations. An 
example is the following: 
<module#263, 

[torn, my - spec , my - body, unchecked] > 

where term torn denotes the author, my - spec the 
actual interface specification, and my - body the actual 
implementation body of module M. Attribute unchecked 
is an additional attribute value meant to express the 
verification state of the module object. Attributes can 
be accessed by pattern matching. For example, the 
expression 
<M, [A, S , B , unchecked] > 

matches all objects of type module that are still 
unchecked. To match a whole sublist of actual attribute 
values, we provide the asterisk character *. This allows 
us to use expressions like the following 
<M, [don, *]> 

which matches all module objects authored by don. 
Declared attributes can also be accessed by using at­
tribute names like author, spec, and body as projec­
tion functions mapping the object type into the corre­
sponding attribute type. For example, if my-mod de­
notes the above module object, the term author (my-
mod) is equal to torn. 

Similarly to objects, immutable data structures which 
are composed of a specific list of data components or 
have a variant type and value can easily be defined 
using two forms that are inspired by the object-oriented 
data model introduced in Kramer and Schmidt [10], An 
example of the first kind is the data structure represent­
ing simplified module interfaces as two lists of facilities 
that are exported and imported: 
record interface: 

(export, import: [facility]) 
where square brackets denote a list of items of the type 
they enclose. A unique constructor function with name 
mk - interface, arity types [facility] and [facil­
ity], and result type interface is automatically de­
rived from the type name. An example for a variant 
type definition is the following: 
variant verification - state : (unchecked, 

statically - checked, verified: unit) 
This variant data structure enumerates a finite set of 
distinct constants used to record the evaluation status of 
a software object of type unit. The injection functions 
unchecked, statically - ckd, and verified:unit 
are taken as the set constructor functions for variant 
type verification - state. Boolean-valued inspec­
tion functions named is - unchecked, etc., and par-
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tially defined selector functions named as - unchecked, 
etc., are also provided automatically. User-defined ab­
stract types can also be specified using the algebraic 
sub-language of SEGRAS [9]. 

3.2 Process Model Behavior 

Objects are created dynamically during process execu­
tion. Most of the objects created persist as system 
development proceeds and simply change their attribute 
values. There may also be situations in which it is 
useful to specify that objects are no longer needed and 
should be discarded. For example, patches to certain 
program modules can be deleted once a new system 
version including the dynamically patched changes has 
been released. 

All dynamic aspects of objects are captured in a 
graphical behavior specification given in terms of 
marked high-level Petri nets. A Petri net can be viewed 
as directed bipartite graph composed of two kinds of 
nodes which are called S-elements and T-elements 
(see Schmidt [16] for a formal definition). S-elements 
represent local states and T-elements represent transi­
tions. In the PNP model, all S-elements are labeled 
with names of unary predicates that are defined on 
user-defined object types. T-elements are labeled with 
action names. Arcs, which represent a causal flow 
relation between S- and T-elements, and vice versa, are 
labeled with sets of pairs of the form <Id, Attr -
list> where each pair denotes an instance of a defined 
object type, Id is a unique object identifier and Attr -
list is a list of terms denoting attribute values of this 
object. The attribute values are given in the order 
determined by the corresponding object definition and 
the causal order of supplementing add-on attributes. 
The object identity is implicitly provided as an object is 
created and can never be changed. It allows one to 
trace the history of changes an object underwent. 

The marking of a PNP net is given as a distribution 
of sets of objects over the S-elements of the net. 
Markings represent distributed development states. 

A labeled S-element such as 

p 

denotes a component of a distributed development state 
and can be viewed as the definition of a state dependent 
predicate p which is true for precisely the set of objects 
associated with the S-element by a marking. The values 
of state-dependent predicates can be changed by pro­
cesses. 
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Labeled arcs express two types of atomic changes: 

Q^XD 

denotes the atomic change that object <id, v> begins 
to satisfy the predicate p, while the form 

denotes the atomic change that object <id, v> ceases 
to satisfy p. 

The form 

constrain a by X<=Z end 

defines the state change due to an action named a. It 
describes a scheme of similar rules of changes ex­
pressed by using variables in arc labels. We use upper­
case symbols to denote variables, while function, at­
tribute, predicate, and action names begin with a lower 
case letter. We call the set of variables occurring on the 
arcs adjacent to the action a the environment variables 
of a. The variables in name positions of object tuples 
schematically describe which objects are affected by a 
(here the objects named I, J, and K). Attribute values 
on external arcs such as Z specify actual arguments 
that must be provided when action a is about to happen. 
All attribute values of objects on input arcs are avail­
able as outputs of an occurrence of a. Together with 
the actual arguments of a they form the set of known 
attribute values from which the attribute values of 
objects on output arcs can be constructed. 

An instance of action is obtained by consistently 
substituting ground terms, i.e., terms containing no 
variables, for environment variables (I, J, K, X, Y, 
and Z) such that the activation constraint "constrain 
a by X < Y end" is satisfied according to the specified 
meaning of functions and predicates appearing in the 
constraint. Note that activation constraints generally 
need not be given. 

The notation of objects allows us to determine for 
each action whether an object is deleted, created, or 
survives the changes it specifies. Deletion occurs when 
an object on one of the incoming arcs does not occur on 

any outgoing arc, while creation occurs when an object 
on one of the output arcs does not occur on any 
incoming arc of the action. To make object creation 
and deletion explicit and to provide checking redun­
dancy, we append a plus ( + ) or a minus sign (-) to 
the identifier of an object to be created or deleted, 
respectively. 

Objects are non-distributable entities but knowledge 
about objects can be distributed in the form of object 
names occurring as attribute values of other objects. 
This may even lead to the situations where names of 
objects that are already deleted are still known. Access 
to an object's attributes, however, is only possible 
through participation in the same action occurrences. 

3 .3  An Example  

To illustrate our concept of process model behavior, 
Figure 1 depicts the behavior of a very simple version-
control system. This system provides two actions only. 
Action establish - new - module serves to release 
initial versions of modules and to assign the right to 
update a new module to a specific programmer in the 
development team. The initial versions have just an 
interface specification but no implementation body. Ac­
tion update - module allows authorized programmers 
to update public versions of modules by implementation 
bodies of their private versions. In the given develop­
ment state, we have two public and three private mod­
ules, and three authors al, a2, a3, who are allowed 
to update module ml, m2, and ml, respectively. As we 
shall see in the following subsection, the specified 
behavior allows concurrent updates, provided that they 
involve different modules. Similarly, new modules with 
update rights for different authors can be established 
concurrently. 

To keep the example simple we give only a partial 
view of the version control system. This view, for 
example, does not show how private versions are con­
structed and how update rights are modified indepen­
dently of establishing new modules. As we shall see 
from later sections, this sort of constructing separate 
and incomplete views of a process model is supported 
by composition mechanisms that allow one to merge 
simple views in a consistent way to form larger and 
more complex ones. Further we assume the object- and 
data-type specifications given in Section 3.1 are in­
cluded in the definition part. 

In this example, we further use a special notation for 
mutable side-conditions of actions by means of dashed 
arcs (see Figure 1 and Figure 4) and for activation 
constraints using the keywords constrain and end. 
Side-conditions are just an abbreviation for inputs of 
actions that are returned to the S-element when the 
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action is completed, possibly with new attribute values. 
Here the side-condition expresses the requirement that 
only authorized authors may perform an update action. 
The effect of this side-condition can be changed dynam­
ically by an occurrence of action establish - new -
module. The current distributed state of the version 
control system is represented by markings of the places 
with object instances whose attribute values are given 
by ground terms. Markings are visually related to 
specific state elements by dotted lines. The activation 
constraint associated with the net constrains the set of 
admissible instances of action update - module to those 
authors A whose module update list ML contains the 
identifier of the module to be updated (here M). In our 
example, the identifier of a new module is appended to 
the module update list of a specific author as the 
module is established. 

3.4 Process Model Dynamics 

In a PNP model as shown in Figure 1, development 
states are conceived of as distributed entities. Their 
elements are derived from the state-dependent predi­
cates of a process model and the objects for which 
those predicates are currently satisfied. 
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Each development state together with the rules of 
change schematically defined by actions determines the 
set of possible future states. Transitions between devel­
opment states are caused by occurrences of instances of 
actions that are concurrently activated. Informally 
speaking, an instance of an action a is activated in a 
given development state if the instance satisfies the 
activation constraint of a (if any), if all objects labeling 
incoming arcs of that instance are in the marking of the 
adjacent S-element, and if all objects labeling outgoing 
arcs satisfy the predicate labeling the adjacent S-ele-
ment. The state change affected by an activated instance 
of an action is determined as follows: from each incom­
ing arc, the object denoted by its labeling is removed 
from the marking of the adjacent S-element and for 
each outgoing arc the object in its labeling is added to 
the marking of the adjacent S-element. All of the 
changes to the markings associated with an instance of 
an action are made as a single atomic action. In Kramer 
[9], a formal definition of these concepts is given for 
the high-level Petri net language used in SEGRAS. 
Similar definitions apply in a formal framework for 
PNP models. 

In Figure 1, three instances of action update -
module resulting from the substitutions {al / A, ml / 

record author: (authorized: [module]), 
actions establish (module,interface,author), 

update (author.module,module). 
predicates may-update (author), 

private(module), public (module). 

i 

c o n s t r a i n  u p d a t e - n o d u  1  e  b y  M  i n  M L  e n d  

Figure 1. A simple process model controlling the release and update of public 
versions. 
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< n i ,  [ i  i ,  * ]  > •  
< n 2 J  [  i  2 ,  *  ]  >  +  
< 0 3 ,  [ 1 3 , * ] >  

< p 3 , [ i 1 , b l 2 , a 3 ] >  

p u b  1 1 c  ec < m ,  [ i , * ,  f i ]  >  
-M 

<  M ,  [ I ,  B ,  R ] >  

n a y - u p d a t e  

< R ,  [ M L ]  >  

u p  d a  t e - ^  < P - #  [ I , B , n j x  /  
n o d u l e  i \ 
• 

• 

! < f l ,  [ M L ]  >  
i  
i  

< a l ,  [  [ n l ] ] >  +  

< a 3 ,  [  [ n l , n 3 ] ] >  

< f l ,  [ C M | M L ] ]  >  

< n + ,  [ i ,  * ,  R ]  >  
e s t a b 1 i s h -
n e w - n o d u l e  

Figure 2. A possible future development state of the process model in Figure 1. 

M ,  p l / P } ,  { a 2 / A ,  m 2 / M ,  p 2  /  P > ,  a n d  { a 3 / A ,  
ml / M, p3 / P> and infinitely many instances of action 
establish - new - module are activated. 

One of the possible future states of our example is 
shown in Figure 2. It was caused by occurrences of the 
first two instances of action update - module and the 
instance of establish - new - module resulting from 
the substitution {m3 / M, i3 / I>. These changes might 
have happened concurrently according to the given 
behavior specification. In contrast to this, two other 
changes that were possible at the given state, namely 
those affected by the first and last instance of update -
module mentioned above, mutually exclude each other 
because they "fight" for the same object named ml. 

4. FORMALIZING A RAPID PROTOTYPING 
PROCESS 

In this section we demonstrate how the PNP model can 
be applied to describing a rapid prototyping process 
that supports evolutionary software development by 
interactive, computer-aided construction of executable 
prototypes from reusable software components (see 
Luqi [12]). The exercise makes previous informal de­
scriptions of this prototyping approach more formal, 
concrete, and precise in that it supports suitable ab­
stractions of software objects and captures causal de­
pendencies and independencies among the actions of 
the process model. Figure 3 shows a typical example of 
this informal kind of process model description which 
can be appealing simple and intuitive but also ambigu­
ous and imprecise. 

We claim that the PNP model approach provides a 
basis for increasing the effectiveness of the prototyping 

methodology by better understanding and insight, im­
proving the functionality of the prototyping support 
environment [13], providing better user guidance, and 
controlling the application of its tools. Before we de­
velop a PNP model of Figure 3, we define some object 
and data types. 

The type definitions in Figure 5 refer to software 
concepts presented in Luqi [12]. A major component of 
this prototyping approach is the language PSDL used to 
describe prototype designs as networks of operators 
connected by data streams. These data-flow networks 
are augmented with timing and control constraints. 
Operator definitions consist of a name, a specification 
of input/output data, internal state variables, and con­
straints, and it may contain an implementation which 
refines an operator through a data-flow network of 

' 
p r o t o t y p e  

r 
1 n p 1 e n e n t  

o b j  e c t  s y s t e m  

Figure 3. A process model for software evolution through 
prototyping. 



Toward Formal Models J .  S Y S T E M S  S O F T W A R E  
1991; 15: 63-74 

69 

a b b r e v i a t e s  t o  

• 0<'-"' >• 

O >0 

< i , u >  " —  
~ p  

Figure 4. Abbreviations used in PNP models. 

other operators. Our data specification below reflects 
this structure of PSDL descriptions in a simplified form 
and we assume some types like text and name to be 
defined elsewhere. To simplify the graphical presenta­
tion of PNP nets, we use the abbreviations depicted in 
Figure 4. 

Figure 5 shows a PNP model corresponding to Fig­
ure 3. This model reveals the nondeterminism hidden in 
the informal description in the form of conflicting 
actions, explicates development states, and visualizes 

the information flow and feedback between different 
actions in the form of object schemes. It also shows 
relations between the various types of documents and 
how they are updated by development activities. In the 
given process model, actions implement - object -
system and adjust - requirements are in conflict 
with respect to prototype evaluation protocols because 
there is no activation constraint associated with these 
actions defining deterministically whether requirements 
have to be adjusted using the evaluation protocol, pre­
vious requirements, and the evaluated prototype as 
feedback information or whether the intended object 
system can be implemented. The model just tells us that 
there is this conflict and that it has to be resolved as the 
model is refined or when it is executed. 

At the given simplified abstraction level, we do not 
want to formalize to what extent, for example, the text 
describing the requirements for a specific system com­
ponent determines the interface specification S, the list 
Rc of Ada packages providing reusable code used in 
prototype construction, or the Ada code C of a newly 
constructed prototype realizing these requirements. We 
just want to make certain relationships between objects 
and their attributes explicit. The actual arguments of 
actions represent information which cannot be derived 
from the history of the objects involved but has to be 
supplied by their users. The information flow repre-

T h i s  f o r n  

P  b  
<1. \» .  < 1 ,  9 >  

i ( I )  

o < i ,  v >  < i ,  u >  •O 

Figure 5. PNP model of the software evolu­
tion process model. 

T  

i 
d e t e r n i n e -
r e q u i r e n e n t s  

i n i t i a l - r e q  

S  -

<  R  +  ,  [ T ] >  1 
c o n s t r u c t -  I  <  R ,  [  T  ,  P  ]  >  < R ,  [ T . P ] > ^ |  a d j u s t -
p r o t o t y p e  I  f  H i  r e r u ^ r - t r . t !  

R c  
u s e d - r e q  i n p r o w e d - r e q  < R ,  [ T  P ] >  f 

< R , [ T ' , P ] >  

e x e c u t a b  1 e - p  t  

n o d i f  y -
p r o t o t y p e  

, < P  +  ,  [ R ,  s , c ] >  [ R . s ' . c i '  

i" 

. S  '  
•c* 

< P ,  [ R . s . c ] >  

T p  •  e x e c u t e -
p r o t o t y p e  

CR, 
e v a l u a t i o n - / ^  ^  
protocol V J 

t e s t e d - p t < P ,  [ R , S , C ] >  

T p ]  >  

< E ,  [ R , T p ] >  

< E ,  [ R , T p ] >  1 
i n p 1 e n e n t  

o b j e c t  s y s t e n  
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sented by such variables allows us to deal with incom­
plete knowledge in such a way that at least its typical 
structure and its effect on the behavior of a process 
model can be fixed. Hence, the type of variable S in 
action construct - prototype, for example, deter­
mines the structure of the data denoted by S, while the 
net specifies the behavioral effect. 

A record of the execution history of a process model 
can again be represented by Petri nets. These nets turn 
out to be unfoldings of PNP nets. They are acrylic and 
unbranched in S-elements as each execution of a pro­
cess model resolves the nondeterministic choices possi­
bly contained in PNP nets. Moreover, their T-elements 
are labeled with terms denoting the actual instances of 
actions that were executed and their S-elements with 
terms denoting the concrete objects involved. Figure 6 
shows a record of the execution history of the PNP 
model in Figure 5. In the recorded execution, the initial 
requirements had to be adjusted twice and correspond­
ingly the prototypes constructed had to be modified 
twice before the object system was implemented. The 
final slice of S-elements depicts the final system state as 
consisting of the requirements definitions that were 
successfully evaluated and the final prototype. 

5. HORIZONTAL AND VERTICAL 
DECOMPOSITION OF PNP MODELS 

One of the primary difficulties in modeling software 
processes is conceptual complexity. Conceptual com­
plexity can be reduced if the modeling task can be 
decomposed so that the dynamic behavior and the 
objects of a software process can be composed from 
independently constructed parts and be refined system­
atically. Decomposition and composition operations of 
process models are also an important contribution to 
reusing and tailoring processes to new projects. 

Hierarchical process descriptions are supported by 
most of the new process models. But horizontal compo­
sitions in the sense of combining the parts of a modular­
ized process model at the same level of abstraction are 
still underdeveloped. The PNP model supports consis­
tent merging of process models that represent separate, 

partially overlapping views of a larger development 
process. The constructions provided allow the process 
designer to 

1. synchronize the merged views by identifying actions 
with the same labels and close external information 
flows, if possible, 

2. combine behavioral alternatives covered in separate 
views by identifying places with the same labels and 
forming the union of their initial markings, and 

3. define new functions operating on objects from dif­
ferent views. 

The context conditions to apply these constructions and 
their formal semantics have been formally defined for 
the specification language SEGRAS in Kramer [8] and 
can easily be adapted to PNP models. Intuitively, the 
combination construction is a gluing of PNP nets in S-
or T-elements which requires that the S- or T-elements 
to be identified have the same label and results in PNP 
net that forms the union of the markings of common 
S-elements and of labels of common arcs. The implicit 
effect of the combination constructions on the behavior 
of the merged parts is graphically depicted for T-ele-
ments below: 

u • •••< 

The PNP model also supports stepwise refinements 
based on 

• replacing actions by subnets whose border consists 
only of actions, 

• replacing places by subnets whose border contains 
only places, and 

• adding abstract implementations of object and data 
types. 

t < e w , [ r , t p 3 ] >  

q  < r ,  [ 1  ]  >  e ( p , t p l )  n ( p , s 2 J c 2 )  a ( r , t 3 )  

c ( r , s l , c l )  a ( r , t 2 )  e ( p , t p 2 )  n ( p , s 3 J c 3 )  

Legend :  
a :  a d  j  u s  t - r  e q  u  1  r  e n  e n  t  s  
n '  c o n s t i - u c t - p r o t o t v D e  
e :  e x e c u t e - p r o t o t y p e  
i :  1 n p 1 e n e n t - o b j e c t - s y s t e n  

u < r , [ t 3 , p ] >  

n :  r i o d l f y - p r o t o t y p e  
q :  1  *  i  t i  s1 - r a  
t :  t e s t e d - p t  
u  :  u s e d - r e q  

Figure 6. A record of an execution history 
of the process model shown in Figure 5. 
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The process model presented in Figure 7 illustrates a 
more detailed view of the rapid prototyping approach 
by focusing on the iterative construction of prototype 
designs and their mapping into reusable Ada compo­
nents. Technically speaking, the framed subnet is a 
refinement of action construct - prototype in Figure 
5. Such refinements and their well-formedness have 
been studied in Schmidt [15] for the specification for­
malism underlying the semantics of SEGRAS. To im­
prove the readability of the specification, most arc 
labels are made invisible. 

The process model in Figure 7 abstracts from an 
iterative process of constructing and modifying a design 
in terms of PSDL until it can be validated. A valid 
design can either be mapped to a list of reusable Ada 
components Rc and then turned into an executable 
prototype named P or no reusable component can be 
identified and the given design has to be rerefined, 
leading into another iteration circle. The operational 
part of prototype P is Ada code denoted by attribute C. 
However, at the given abstraction level, our process 
model gives no answer how this code is determined as 
it is neither (part of) an attribute value of PSDL 
operator 0 or requirement R, nor is it an actual argu­

ment of action produce - prototype. In the PNP 
model, this situation indicates a need for further re­
finement. 

The refinement answering the question of how C is 
constructed is given in Figure 8. It shows that the 
action produce - prototype, which appeared in Fig­
ure 7, can be implemented by two actions working 
concurrently on separate copies of a given PSDL de­
sign which is input to the abstract action. This refine­
ment reflects a part of the prototyping process which is 
automated. This process takes a PSDL prototype as 
input and produces an Ada implementation as output. 
The Ada implementation results from linking reusable 
Ada code identified in a software base with generated 
code implementing the interconnection of operators 
specified in the prototype. Once a reusable Ada compo­
nent has been identified, two different tools can be used 
to generate Ada code from the given PSDL design. A 
translator uses the data flow links in an operator speci­
fication S to implement the communication interfaces 
c(S) embedding reusable components Rc, which im­
plement operators in S. A scheduler attempts to pro­
duce a feasible schedule s(S) for the execution of 
time-critical operators. (The possibility that this attempt 

<R,  [ t ,  P]  > /  \<P+ ,  [R , s , c ]  > 

u sed- req  f  J  f  J  execu tab le -p t  

Figure 7. Constructing prototype designs from requirements definitions. 

r eq - ro rna l ina  
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Figure  8 .  Refining an action of the process model in Figure 7. 

may fail is not shown in our example.) The generated 
Ada packages c(S) and s(S) then are linked together 
with the components Rc to form the executable Ada 
code of prototype P. The meaning of the functions s, c, 
and link and the type definitions for Ada components 
are not given here but are straightforward. 

6 .  UNDERLYING SEMANTICS AND M ODEL 
S U PPORT  

Graphical representations of software concepts have 
certain advantages in conveying information to human 
readers but often lack sufficiently precise semantics to 
be amenable to formal analysis, verification, and rea­
soning. One of the strengths of Petri nets is that they 
provide a simple graphical notation which is easy to 
comprehend even by inexperienced readers with a 
strong mathematical background. This framework has 
been particularly developed to deal with distributed and 
concurrent systems and processes. 

The PNP model presented in this paper was a first 
attempt to exploit the abundance of descriptive and 
analytical results of Petri net theory and related tech­
niques and support tools. Our software process model­
ing approach allows software objects and their static 
and dynamic relationships to be represented at any 
desired level of abstraction. It captures development 
states as distributed entities which are characterized by 
sets of objects satisfying variable predicates. Develop­
ment actions are specified in terms of their effect on 
software objects they transform, local changes to devel­
opment states, and information exchange with human 
or technical carriers of an action. 

It is relatively easy and straightforward to define a 
translation of PNP models into SEGRAS specifications 
for which a formal Petri net semantics already exists 

[8]. This semantic interpretation of PNP models makes 
it easy to adapt the construction and analysis tools that 
are provided by the Graspin environment [11], which 
supports SEGRAS, to the level of PNP models. Cur­
rently, the Graspin environment supports 

• interactive structure editing for graphic descriptions, 
which was used to produce the illustrations in this 
paper, 

• syntax-directed editing for textual specifications, 
• symbolic execution of specifications in terms of the 

graphic representation of nets, 
• liveness and safeness analysis for a restricted class of 

SEGRAS nets [16], 
• and verification of algebraic specifications with re­

spect to required properties formulated as theorems 
about a specification [9]. 

The advantage of such tools is that they ease the 
construction, reuse, tailoring, analysis, verification, and 
symbolic execution of process models prior to their 
enaction [4]. Analysis and verification serve to prove 
certain desirable properties such as absence of dead­
locks, freedom of starvation, absence of overflow situa­
tions, logical consistency, or correctness of refine­
ments. Because of the restrictions we have sketched 
concerning object identities and object manipulation, 
our nets have the properties that would make the whole 
class of PNP nets amenable to liveness and safeness 
analysis developed in Schmidt [16]. Roughly speaking, 
the technique described therein relies on state 
machine-decomposable nets, i.e., nets that can be cov­
ered by strongly connected subnets which are only 
branched in S-elements. But this requirement is an 
inherent property of PNP nets because the behavior of 
a process model is composed of the behaviors of sub-
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nets which describe the behavior of single objects. 
Liveness and safeness analysis techniques, for example, 
would help to ensure the continuity of development 
activities and to prevent overload situations prior to 
executing a given process model. Algorithms that gen­
erate and analyze the reachability structure of Petri nets 
can also be adapted to support reasoning about behav­
ioral possibilities and inherent facts of a process model. 

Animation of PNP models through symbolic execu­
tion allows demonstrations of process models to test 
their adequacy, provide insight into the dynamic behav­
ior, and thus increase our trust in their design. Sym­
bolic execution can be used to investigate the effects of 
alternative procedures prior to the application of the 
process to a real software development project, thus 
reducing development risks. 

7 .  CONCLUSIONS AND FURTHER RESEARCH 

In this paper we have presented a Petri net-based 
modeling approach for software engineering processes. 
This approach has several advantages: The software 
process description language has a formal syntax and 
semantics which enables precise and unambiguous 
communication about process models and has the ad­
vantage of potential automation including semantic tools 
for prototyping, formal reasoning, program transforma­
tion, performance evaluation, and automatic documen­
tation. In fact, we argued that the proposed modeling 
language can be considered as an application-oriented 
variant of the formal specification language SEGRAS 
[9] for which extensive tools support has been devel­
oped within the ESPRIT Project GRASPIN [11]. 

Another advantage of our approach is that the under­
lying mathematical theory, which integrates algebras 
and elementary net systems, supports central concepts 
of the application domain such as "true" concurrency, 
synchronization, communication, conflict, causal de­
pendencies, structure, and type. On this formal basis 
we have been developing structuring and composition 
capabilities supporting hierarchical and vertical 
(de)composition of process models for the purpose of 
separation of concerns and reusability. 

An important observation to note is that this work 
should be seen as an exploratory attempt which needs 
to be backed up by further applications and empirical 
studies. This requires that the modeling approach is 
embedded in a well-defined methodology and software 
tools support is provided. The latter seems to have been 
a feasible undertaking as the Graspin environment is 
designed with the goal to facilitate extensions of its 
functionality and support the systematic integration of 
new tools [10]. 

Independently from this research, we have been 
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adapting Borison's Model of Software Manufacture [2] 
and the Graph Transform Model for Configuration 
Management described in Heimbigner and Krane [6] to 
define a Model of Software Maintenance [14]. This 
model views maintenance activities as multivalued 
functions from configurations to configurations. In con­
trast to our approach, all software objects are consid­
ered immutable. Acyclic bipartite graphs are used to 
model the relations between maintenance steps and the 
objects in a configuration. To capture hierarchical de­
compositions of objects, a distinguished is-component-
of relationship is imposed on objects. This relationship 
and the causal structure of maintenance graphs are used 
to determine induced maintenance steps. Induced main­
tenance steps are additional steps necessary to preserve 
the consistency of a configuration after a maintenance 
charge was applied to an object in a configuration. 

The dynamic (temporal) behavior of maintenance 
models is defined by a local state transition diagram 
associated with each maintenance step. Each state tran­
sition diagram consists of five states: invoked, pending, 
implementing, completed, and abandoned. They de­
scribe the different phases a maintenance step under­
goes until it is finally completed or abandoned. The 
maintenance graph and step states together are used to 
compute priorities and precedence of maintenance steps 
for the purpose of task scheduling and decision support. 

A basic assumption of this model is that the decision 
about changes, i.e., about maintenance steps to be 
taken, is under centralized control. This assumption 
relieves some of the severe problems which are in­
volved if the decision about maintenance steps to be 
taken is decentralized, such as concurrency control and 
configuration consistency. The restriction to centralized 
decision competence seems adequate for maintenance 
activities as they are usually performed in large admin­
istrations on mainframe computers, for which the model 
was originally designed. But they fail to meet evolu­
tionary development activities to be observed in the 
presence of personal computers and loosely coupled 
networks of dedicated computers. 

A future goal of our research in this area is to 
combine the PNP model with the maintenance model to 
extend the former by possibilities for computing far-re­
aching effects of changes and the latter by possibilities 
to cope with concurrency and to handle the distribution 
of decision competence. 
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