
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1991-04

Toward Formal Models of Software
Engineering Processes

Kraemer, B.; Luqi
Elsevier

B. Kraemer and Luqi, ''Toward Formal Models of Software Engineering Processes",
Journal of Systems and Software, April 1991, Vol. 15, No. 1, pp. 63-74.
https://hdl.handle.net/10945/65708

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

J. SYSTEMS SOFTWARE 63
1991; 15: 63-74

Toward Formal Models of Software
Engineering Processes1

B e r n d K r a m e r 1 a n d L u q i
Computer Science Department, Naval Postgraduate School, Monterey, California

In this paper, a Petri net-based formal specification
method for distributed systems is applied to the do­
main of software process modeling. We introduce do­
main-specific concepts stressing the distributed and
dynamic nature of software processes. Development
states are viewed as distributed entities. Development
activities are characterized by their effects on soft­
ware objects, pertinent information exchange with hu­
man or technical participants involved, and local
changes to development states. These dynamic as­
pects of software processes are represented as labeled
Petri nets. Structuring mechanisms are sketched which
support hierarchical decomposition and systematic
combinations of separate views of a software engi­
neering process.

1. INTRODUCTION

Criticism of traditional life cycle models has been the
subject of many recent papers arguing for new ap­
proaches to software process modeling [1, 5, 7]. Rather
than paraphrasing their criticism, we cite evaluation
criteria reported in the literature to justify our own
approach of a Petri net-based process model (PNP
model).

Typical requirements for process models are ade­
quacy of the model, readability and ease of use,
hierarchical decomposability, and amenability to for­
mal analysis and reasoning. These requirements are
obvious, except for the notion of adequacy which is
difficult to grasp due to the numerous aspects of soft­
ware engineering processes. These include management
aspects concerning the optimal employment of people
and use of material resources, contractual matters,

Address correspondence to Luqi, Computer Science Dept.,
Naval Postgraduate School, Monterey, CA 93943.

+This research was supported in part by the National Science
Foundation under grant number CCR-8710737 and by the Naval
Ocean Systems Center under contract number N6600189WRB0355.

^his work was conducted while the author was on leave from
GMD, D-5205 Sankt Augustin 1, West Germany. Previous work of
this author was partially sponsored by the Commission of the Euro­
pean Communities under the ESPRIT project 125 GRASPIN.

© Elsevier Science Publishing Co., Inc.
655 Avenue of the Americas, New York, NY 10010

planning and cost issues, communication and synchro­
nization aspects and methodological concerns aiming at
effective development procedures and tool use.

As we can hardly imagine a homogeneous process
model capturing all these different aspects in an ade­
quate way, we first discuss the conceptual framework
which the PNP model covers. Basic concepts of the
PNP model are described in Section 3. We emphasize a
formal approach to specifying the dynamic behavior of
software engineering processes, characteristic attributes
of software objects, and tasks of human participants
involved. We claim that formalism in software process
modeling contributes to consistent and precise under­
standing of software processes, enables automated sup­
port to enhance the reliability and reusability of process
models, and opens ways to automate well-understood
parts of software processes. Our approach does not
address human factors and social processes which might
contribute to the software process dynamics [3]. An
illustrative example is given in Section 4 where we
present two views of a rapid prototyping process that
supports evolutionary software development by interac­
tive construction of executable prototypes from reusable
software components [12]. In Section 5 we illustrate
constructions that allow consistent combinations and
stepwise refinements of process model views. In Sec­
tion 6 the Petri net semantics underlying PNP models is
sketched and the potential of the model to formal
analysis and reasoning, verification, and symbolic sim­
ulation is outlined. Section 7 presents our conclusions
and discusses the planned extension of the PNP model
by a methodology for planning and scheduling the
evolution of a software system.

2 . B E HAVIOR-ORIE NT E D SOFTWARE PROCESS
MODELS

Software development is a dynamic and distributed
activity in which many cooperating participants may act
partially independently of each other to iteratively
transform an initial set of requirements into a validated

0164-1212/91/$3.50

64 J. SYSTEMS SOFTWARE
1991; 15: 63-74

B. Kramer and Luqi

operational system. Different participants usually have
different and selective knowledge about an evolving
software system. The software system is typically char­
acterized by a large set of software objects such as
requirements definitions, design documentation, speci­
fication and program modules, test protocols and the
like which coexist at designated development states.
Semantic relationships between these objects influence
the process dynamics and are themselves subject to
dynamic changes.

In this context an adequate model should capture the
distributed nature of information characterizing an ob­
ject system in its various development states and the
distributedness of the changes it undergoes. Once con­
currency has been identified as a central issue, a
process model is needed that is able to describe the
synchronization and communication necessary to co­
ordinate concurrent activities. Incomplete knowledge
introduces the need to cope with nondeterminism,
which may occur in different forms in the course of a
development process. For example, resource contention
is likely to arise due to the boundedness of resources
but often cannot be resolved as a process model is
designed; or it might be necessary to specify the "range
of alternative possibilities to pursue a process execution
without being able to provide a deterministic decision
procedure because it depends on information that can­
not be anticipated in sufficient detail.

The dynamic behavior of a process model strongly
depends on the structure of software components and
information provided by tools or human participants as
a process is executed. Therefore it is crucial to provide
abstraction mechanisms that allow the process designer
to define functional and structural properties of ob­
jects and of the information provided at execution time.
These aspects of software processes must be specified
at a level of detail that is sufficient to understand and
control a development process but still gives developers
a range of possibilities to make design decisions as
needs arise.

A suitable abstraction of a program module in the
context of version control, for example, might describe
its structure as consisting of the attributes author, inter­
face, body, and creation date. The functions performed
by the authors of such modules might be sufficiently
characterized by access rights determining who is al­
lowed to update which program modules. The behavior
of the version control model then would specify at this
abstraction level how and under which conditions these
attributes can be changed by processes but would not
refer to details of a module body, for instance. These
changes include update rights as the team of program­
mers involved in a project or their tasks may change
and new modules are constructed as the system evolves.

This information cannot be fully determined prior to
process execution, nor can it be derived from the
process history at a given development state. What we
might want to know, however, is the type of informa­
tion to be supplied and what constraints it might have to
satisfy.

3. BASIC CONCEPTS OF PNP MODELS

We describe functional, behavioral, and data aspects of
software processes by adapting the SEGRAS specifica­
tion method [9] to the conceptual framework discussed
previously. The PNP model extends this method by
introducing an object-oriented data abstraction facility
and a restricted form of behavior specifications to
enable domain-specific consistency, completeness, and
plausibility checks. The difference between data and
objects is that data values are immutable, while objects
can have states which are subject to change.

The object abstraction facility allows the process
designer to introduce different types of software ob­
jects, provide them with distinguishing attributes, and
describe functional relations between them. Labeled
Petri nets are used to specify the rules governing
dynamic changes to object attributes and relationships.
The combination provides a suitable notion of dis­
tributed development states and state-dependent and
state-changing actions that can dynamically create new
software objects, concurrently change their attributes,
and delete objects that are no longer needed.

3.1 Object and Data Definition

Software objects are treated as typed and uniquely
named entities whose structure and properties are ex­
pressed in terms of extensible lists of attributes. At­
tributes are either (references to) objects or data. Ob­
ject types are defined through a special form relating a
new type name with names and types of attributes
which all instances of that object type share. For exam­
ple, the form

object module : (author tname , spec : interface,

body:implementation)

defines objects of type module to have at least three
attributes whose values are of type name, interface,
and implementation, respectively. These attributes
might capture the properties of program modules rele­
vant for configuration management. Further attributes
can be added to an object during process execution as
defined by the process model.

Objects are represented by pairs. The first compo­
nent denotes a unique, system-provided object identifier
and the second is a list of terms defining an object's

Toward Formal Models

actual attribute values. The elements in the attribute list
are given in the order of attribute declarations. An
example is the following:
<module#263,

[torn, my - spec , my - body, unchecked] >

where term torn denotes the author, my - spec the
actual interface specification, and my - body the actual
implementation body of module M. Attribute unchecked
is an additional attribute value meant to express the
verification state of the module object. Attributes can
be accessed by pattern matching. For example, the
expression
<M, [A, S , B , unchecked] >

matches all objects of type module that are still
unchecked. To match a whole sublist of actual attribute
values, we provide the asterisk character *. This allows
us to use expressions like the following
<M, [don, *]>

which matches all module objects authored by don.
Declared attributes can also be accessed by using at­
tribute names like author, spec, and body as projec­
tion functions mapping the object type into the corre­
sponding attribute type. For example, if my-mod de­
notes the above module object, the term author (my-
mod) is equal to torn.

Similarly to objects, immutable data structures which
are composed of a specific list of data components or
have a variant type and value can easily be defined
using two forms that are inspired by the object-oriented
data model introduced in Kramer and Schmidt [10], An
example of the first kind is the data structure represent­
ing simplified module interfaces as two lists of facilities
that are exported and imported:
record interface:

(export, import: [facility])
where square brackets denote a list of items of the type
they enclose. A unique constructor function with name
mk - interface, arity types [facility] and [facil­
ity], and result type interface is automatically de­
rived from the type name. An example for a variant
type definition is the following:
variant verification - state : (unchecked,

statically - checked, verified: unit)
This variant data structure enumerates a finite set of
distinct constants used to record the evaluation status of
a software object of type unit. The injection functions
unchecked, statically - ckd, and verified:unit
are taken as the set constructor functions for variant
type verification - state. Boolean-valued inspec­
tion functions named is - unchecked, etc., and par-

J. SYSTEMS SOFTWARE 65
1991; 15: 63-74

tially defined selector functions named as - unchecked,
etc., are also provided automatically. User-defined ab­
stract types can also be specified using the algebraic
sub-language of SEGRAS [9].

3.2 Process Model Behavior

Objects are created dynamically during process execu­
tion. Most of the objects created persist as system
development proceeds and simply change their attribute
values. There may also be situations in which it is
useful to specify that objects are no longer needed and
should be discarded. For example, patches to certain
program modules can be deleted once a new system
version including the dynamically patched changes has
been released.

All dynamic aspects of objects are captured in a
graphical behavior specification given in terms of
marked high-level Petri nets. A Petri net can be viewed
as directed bipartite graph composed of two kinds of
nodes which are called S-elements and T-elements
(see Schmidt [16] for a formal definition). S-elements
represent local states and T-elements represent transi­
tions. In the PNP model, all S-elements are labeled
with names of unary predicates that are defined on
user-defined object types. T-elements are labeled with
action names. Arcs, which represent a causal flow
relation between S- and T-elements, and vice versa, are
labeled with sets of pairs of the form <Id, Attr -
list> where each pair denotes an instance of a defined
object type, Id is a unique object identifier and Attr -
list is a list of terms denoting attribute values of this
object. The attribute values are given in the order
determined by the corresponding object definition and
the causal order of supplementing add-on attributes.
The object identity is implicitly provided as an object is
created and can never be changed. It allows one to
trace the history of changes an object underwent.

The marking of a PNP net is given as a distribution
of sets of objects over the S-elements of the net.
Markings represent distributed development states.

A labeled S-element such as

p

denotes a component of a distributed development state
and can be viewed as the definition of a state dependent
predicate p which is true for precisely the set of objects
associated with the S-element by a marking. The values
of state-dependent predicates can be changed by pro­
cesses.

66 J. SYSTEMS SOFTWARE
1991; 15: 63-74

B. Kramer and Luqi

Labeled arcs express two types of atomic changes:

Q^XD

denotes the atomic change that object <id, v> begins
to satisfy the predicate p, while the form

denotes the atomic change that object <id, v> ceases
to satisfy p.

The form

constrain a by X<=Z end

defines the state change due to an action named a. It
describes a scheme of similar rules of changes ex­
pressed by using variables in arc labels. We use upper­
case symbols to denote variables, while function, at­
tribute, predicate, and action names begin with a lower
case letter. We call the set of variables occurring on the
arcs adjacent to the action a the environment variables
of a. The variables in name positions of object tuples
schematically describe which objects are affected by a
(here the objects named I, J, and K). Attribute values
on external arcs such as Z specify actual arguments
that must be provided when action a is about to happen.
All attribute values of objects on input arcs are avail­
able as outputs of an occurrence of a. Together with
the actual arguments of a they form the set of known
attribute values from which the attribute values of
objects on output arcs can be constructed.

An instance of action is obtained by consistently
substituting ground terms, i.e., terms containing no
variables, for environment variables (I, J, K, X, Y,
and Z) such that the activation constraint "constrain
a by X < Y end" is satisfied according to the specified
meaning of functions and predicates appearing in the
constraint. Note that activation constraints generally
need not be given.

The notation of objects allows us to determine for
each action whether an object is deleted, created, or
survives the changes it specifies. Deletion occurs when
an object on one of the incoming arcs does not occur on

any outgoing arc, while creation occurs when an object
on one of the output arcs does not occur on any
incoming arc of the action. To make object creation
and deletion explicit and to provide checking redun­
dancy, we append a plus (+) or a minus sign (-) to
the identifier of an object to be created or deleted,
respectively.

Objects are non-distributable entities but knowledge
about objects can be distributed in the form of object
names occurring as attribute values of other objects.
This may even lead to the situations where names of
objects that are already deleted are still known. Access
to an object's attributes, however, is only possible
through participation in the same action occurrences.

3 .3 An Example

To illustrate our concept of process model behavior,
Figure 1 depicts the behavior of a very simple version-
control system. This system provides two actions only.
Action establish - new - module serves to release
initial versions of modules and to assign the right to
update a new module to a specific programmer in the
development team. The initial versions have just an
interface specification but no implementation body. Ac­
tion update - module allows authorized programmers
to update public versions of modules by implementation
bodies of their private versions. In the given develop­
ment state, we have two public and three private mod­
ules, and three authors al, a2, a3, who are allowed
to update module ml, m2, and ml, respectively. As we
shall see in the following subsection, the specified
behavior allows concurrent updates, provided that they
involve different modules. Similarly, new modules with
update rights for different authors can be established
concurrently.

To keep the example simple we give only a partial
view of the version control system. This view, for
example, does not show how private versions are con­
structed and how update rights are modified indepen­
dently of establishing new modules. As we shall see
from later sections, this sort of constructing separate
and incomplete views of a process model is supported
by composition mechanisms that allow one to merge
simple views in a consistent way to form larger and
more complex ones. Further we assume the object- and
data-type specifications given in Section 3.1 are in­
cluded in the definition part.

In this example, we further use a special notation for
mutable side-conditions of actions by means of dashed
arcs (see Figure 1 and Figure 4) and for activation
constraints using the keywords constrain and end.
Side-conditions are just an abbreviation for inputs of
actions that are returned to the S-element when the

Toward Formal Models

action is completed, possibly with new attribute values.
Here the side-condition expresses the requirement that
only authorized authors may perform an update action.
The effect of this side-condition can be changed dynam­
ically by an occurrence of action establish - new -
module. The current distributed state of the version
control system is represented by markings of the places
with object instances whose attribute values are given
by ground terms. Markings are visually related to
specific state elements by dotted lines. The activation
constraint associated with the net constrains the set of
admissible instances of action update - module to those
authors A whose module update list ML contains the
identifier of the module to be updated (here M). In our
example, the identifier of a new module is appended to
the module update list of a specific author as the
module is established.

3.4 Process Model Dynamics

In a PNP model as shown in Figure 1, development
states are conceived of as distributed entities. Their
elements are derived from the state-dependent predi­
cates of a process model and the objects for which
those predicates are currently satisfied.

J. SYSTEMS SOFTWARE 67
1991; 15: 63-74

Each development state together with the rules of
change schematically defined by actions determines the
set of possible future states. Transitions between devel­
opment states are caused by occurrences of instances of
actions that are concurrently activated. Informally
speaking, an instance of an action a is activated in a
given development state if the instance satisfies the
activation constraint of a (if any), if all objects labeling
incoming arcs of that instance are in the marking of the
adjacent S-element, and if all objects labeling outgoing
arcs satisfy the predicate labeling the adjacent S-ele-
ment. The state change affected by an activated instance
of an action is determined as follows: from each incom­
ing arc, the object denoted by its labeling is removed
from the marking of the adjacent S-element and for
each outgoing arc the object in its labeling is added to
the marking of the adjacent S-element. All of the
changes to the markings associated with an instance of
an action are made as a single atomic action. In Kramer
[9], a formal definition of these concepts is given for
the high-level Petri net language used in SEGRAS.
Similar definitions apply in a formal framework for
PNP models.

In Figure 1, three instances of action update -
module resulting from the substitutions {al / A, ml /

record author: (authorized: [module]),
actions establish (module,interface,author),

update (author.module,module).
predicates may-update (author),

private(module), public (module).

i

c o n s t r a i n u p d a t e - n o d u 1 e b y M i n M L e n d

Figure 1. A simple process model controlling the release and update of public
versions.

68 J. SYSTEMS SOFTWARE
1991; 15: 63-74

B. Kramer and Luqi

< n i , [i i , *] > •
< n 2 J [i 2 , *] > +
< 0 3 , [1 3 , *] >

< p 3 , [i 1 , b l 2 , a 3] >

p u b 1 1 c ec < m , [i , * , f i] >
-M

< M , [I , B , R] >

n a y - u p d a t e

< R , [M L] >

u p d a t e - ^ < P - # [I , B , n j x /
n o d u l e i \
•

•

! < f l , [M L] >
i
i

< a l , [[n l]] > +

< a 3 , [[n l , n 3]] >

< f l , [C M | M L]] >

< n + , [i , * , R] >
e s t a b 1 i s h -
n e w - n o d u l e

Figure 2. A possible future development state of the process model in Figure 1.

M , p l / P } , { a 2 / A , m 2 / M , p 2 / P > , a n d { a 3 / A ,
ml / M, p3 / P> and infinitely many instances of action
establish - new - module are activated.

One of the possible future states of our example is
shown in Figure 2. It was caused by occurrences of the
first two instances of action update - module and the
instance of establish - new - module resulting from
the substitution {m3 / M, i3 / I>. These changes might
have happened concurrently according to the given
behavior specification. In contrast to this, two other
changes that were possible at the given state, namely
those affected by the first and last instance of update -
module mentioned above, mutually exclude each other
because they "fight" for the same object named ml.

4. FORMALIZING A RAPID PROTOTYPING
PROCESS

In this section we demonstrate how the PNP model can
be applied to describing a rapid prototyping process
that supports evolutionary software development by
interactive, computer-aided construction of executable
prototypes from reusable software components (see
Luqi [12]). The exercise makes previous informal de­
scriptions of this prototyping approach more formal,
concrete, and precise in that it supports suitable ab­
stractions of software objects and captures causal de­
pendencies and independencies among the actions of
the process model. Figure 3 shows a typical example of
this informal kind of process model description which
can be appealing simple and intuitive but also ambigu­
ous and imprecise.

We claim that the PNP model approach provides a
basis for increasing the effectiveness of the prototyping

methodology by better understanding and insight, im­
proving the functionality of the prototyping support
environment [13], providing better user guidance, and
controlling the application of its tools. Before we de­
velop a PNP model of Figure 3, we define some object
and data types.

The type definitions in Figure 5 refer to software
concepts presented in Luqi [12]. A major component of
this prototyping approach is the language PSDL used to
describe prototype designs as networks of operators
connected by data streams. These data-flow networks
are augmented with timing and control constraints.
Operator definitions consist of a name, a specification
of input/output data, internal state variables, and con­
straints, and it may contain an implementation which
refines an operator through a data-flow network of

'
p r o t o t y p e

r
1 n p 1 e n e n t

o b j e c t s y s t e m

Figure 3. A process model for software evolution through
prototyping.

Toward Formal Models J . S Y S T E M S S O F T W A R E
1991; 15: 63-74

69

a b b r e v i a t e s t o

• 0<'-"' >•

O >0

< i , u > " —
~ p

Figure 4. Abbreviations used in PNP models.

other operators. Our data specification below reflects
this structure of PSDL descriptions in a simplified form
and we assume some types like text and name to be
defined elsewhere. To simplify the graphical presenta­
tion of PNP nets, we use the abbreviations depicted in
Figure 4.

Figure 5 shows a PNP model corresponding to Fig­
ure 3. This model reveals the nondeterminism hidden in
the informal description in the form of conflicting
actions, explicates development states, and visualizes

the information flow and feedback between different
actions in the form of object schemes. It also shows
relations between the various types of documents and
how they are updated by development activities. In the
given process model, actions implement - object -
system and adjust - requirements are in conflict
with respect to prototype evaluation protocols because
there is no activation constraint associated with these
actions defining deterministically whether requirements
have to be adjusted using the evaluation protocol, pre­
vious requirements, and the evaluated prototype as
feedback information or whether the intended object
system can be implemented. The model just tells us that
there is this conflict and that it has to be resolved as the
model is refined or when it is executed.

At the given simplified abstraction level, we do not
want to formalize to what extent, for example, the text
describing the requirements for a specific system com­
ponent determines the interface specification S, the list
Rc of Ada packages providing reusable code used in
prototype construction, or the Ada code C of a newly
constructed prototype realizing these requirements. We
just want to make certain relationships between objects
and their attributes explicit. The actual arguments of
actions represent information which cannot be derived
from the history of the objects involved but has to be
supplied by their users. The information flow repre-

T h i s f o r n

P b
<1. \» . < 1 , 9 >

i (I)

o < i , v > < i , u > •O

Figure 5. PNP model of the software evolu­
tion process model.

T

i
d e t e r n i n e -
r e q u i r e n e n t s

i n i t i a l - r e q

S -

< R + , [T] > 1
c o n s t r u c t - I < R , [T , P] > < R , [T . P] > ^ | a d j u s t -
p r o t o t y p e I f H i r e r u ^ r - t r . t !

R c
u s e d - r e q i n p r o w e d - r e q < R , [T P] > f

< R , [T ' , P] >

e x e c u t a b 1 e - p t

n o d i f y -
p r o t o t y p e

, < P + , [R , s , c] > [R . s ' . c i '

i"

. S '
•c*

< P , [R . s . c] >

T p • e x e c u t e -
p r o t o t y p e

CR,
e v a l u a t i o n - / ^ ^
protocol V J

t e s t e d - p t < P , [R , S , C] >

T p] >

< E , [R , T p] >

< E , [R , T p] > 1
i n p 1 e n e n t

o b j e c t s y s t e n

70 J. SYSTEMS SOFTWARE
1991; 15: 63-74

B. Kramer and Luqi

sented by such variables allows us to deal with incom­
plete knowledge in such a way that at least its typical
structure and its effect on the behavior of a process
model can be fixed. Hence, the type of variable S in
action construct - prototype, for example, deter­
mines the structure of the data denoted by S, while the
net specifies the behavioral effect.

A record of the execution history of a process model
can again be represented by Petri nets. These nets turn
out to be unfoldings of PNP nets. They are acrylic and
unbranched in S-elements as each execution of a pro­
cess model resolves the nondeterministic choices possi­
bly contained in PNP nets. Moreover, their T-elements
are labeled with terms denoting the actual instances of
actions that were executed and their S-elements with
terms denoting the concrete objects involved. Figure 6
shows a record of the execution history of the PNP
model in Figure 5. In the recorded execution, the initial
requirements had to be adjusted twice and correspond­
ingly the prototypes constructed had to be modified
twice before the object system was implemented. The
final slice of S-elements depicts the final system state as
consisting of the requirements definitions that were
successfully evaluated and the final prototype.

5. HORIZONTAL AND VERTICAL
DECOMPOSITION OF PNP MODELS

One of the primary difficulties in modeling software
processes is conceptual complexity. Conceptual com­
plexity can be reduced if the modeling task can be
decomposed so that the dynamic behavior and the
objects of a software process can be composed from
independently constructed parts and be refined system­
atically. Decomposition and composition operations of
process models are also an important contribution to
reusing and tailoring processes to new projects.

Hierarchical process descriptions are supported by
most of the new process models. But horizontal compo­
sitions in the sense of combining the parts of a modular­
ized process model at the same level of abstraction are
still underdeveloped. The PNP model supports consis­
tent merging of process models that represent separate,

partially overlapping views of a larger development
process. The constructions provided allow the process
designer to

1. synchronize the merged views by identifying actions
with the same labels and close external information
flows, if possible,

2. combine behavioral alternatives covered in separate
views by identifying places with the same labels and
forming the union of their initial markings, and

3. define new functions operating on objects from dif­
ferent views.

The context conditions to apply these constructions and
their formal semantics have been formally defined for
the specification language SEGRAS in Kramer [8] and
can easily be adapted to PNP models. Intuitively, the
combination construction is a gluing of PNP nets in S-
or T-elements which requires that the S- or T-elements
to be identified have the same label and results in PNP
net that forms the union of the markings of common
S-elements and of labels of common arcs. The implicit
effect of the combination constructions on the behavior
of the merged parts is graphically depicted for T-ele-
ments below:

u • •••<

The PNP model also supports stepwise refinements
based on

• replacing actions by subnets whose border consists
only of actions,

• replacing places by subnets whose border contains
only places, and

• adding abstract implementations of object and data
types.

t < e w , [r , t p 3] >

q < r , [1] > e (p , t p l) n (p , s 2 J c 2) a (r , t 3)

c (r , s l , c l) a (r , t 2) e (p , t p 2) n (p , s 3 J c 3)

Legend :
a : a d j u s t - r e q u 1 r e n e n t s
n ' c o n s t i - u c t - p r o t o t v D e
e : e x e c u t e - p r o t o t y p e
i : 1 n p 1 e n e n t - o b j e c t - s y s t e n

u < r , [t 3 , p] >

n : r i o d l f y - p r o t o t y p e
q : 1 * i t i s1 - r a
t : t e s t e d - p t
u : u s e d - r e q

Figure 6. A record of an execution history
of the process model shown in Figure 5.

Toward Formal Models J. SYSTEMS SOFTWARE 71
1991; 15: 63-74

The process model presented in Figure 7 illustrates a
more detailed view of the rapid prototyping approach
by focusing on the iterative construction of prototype
designs and their mapping into reusable Ada compo­
nents. Technically speaking, the framed subnet is a
refinement of action construct - prototype in Figure
5. Such refinements and their well-formedness have
been studied in Schmidt [15] for the specification for­
malism underlying the semantics of SEGRAS. To im­
prove the readability of the specification, most arc
labels are made invisible.

The process model in Figure 7 abstracts from an
iterative process of constructing and modifying a design
in terms of PSDL until it can be validated. A valid
design can either be mapped to a list of reusable Ada
components Rc and then turned into an executable
prototype named P or no reusable component can be
identified and the given design has to be rerefined,
leading into another iteration circle. The operational
part of prototype P is Ada code denoted by attribute C.
However, at the given abstraction level, our process
model gives no answer how this code is determined as
it is neither (part of) an attribute value of PSDL
operator 0 or requirement R, nor is it an actual argu­

ment of action produce - prototype. In the PNP
model, this situation indicates a need for further re­
finement.

The refinement answering the question of how C is
constructed is given in Figure 8. It shows that the
action produce - prototype, which appeared in Fig­
ure 7, can be implemented by two actions working
concurrently on separate copies of a given PSDL de­
sign which is input to the abstract action. This refine­
ment reflects a part of the prototyping process which is
automated. This process takes a PSDL prototype as
input and produces an Ada implementation as output.
The Ada implementation results from linking reusable
Ada code identified in a software base with generated
code implementing the interconnection of operators
specified in the prototype. Once a reusable Ada compo­
nent has been identified, two different tools can be used
to generate Ada code from the given PSDL design. A
translator uses the data flow links in an operator speci­
fication S to implement the communication interfaces
c(S) embedding reusable components Rc, which im­
plement operators in S. A scheduler attempts to pro­
duce a feasible schedule s(S) for the execution of
time-critical operators. (The possibility that this attempt

<R, [t , P] > / \<P+ , [R , s , c] >

u sed- req f J f J execu tab le -p t

Figure 7. Constructing prototype designs from requirements definitions.

r eq - ro rna l ina

72 J. SYSTEMS SOFTWARE
1991; 15: 63-74

B. Kramer and Luqi

Figure 8 . Refining an action of the process model in Figure 7.

may fail is not shown in our example.) The generated
Ada packages c(S) and s(S) then are linked together
with the components Rc to form the executable Ada
code of prototype P. The meaning of the functions s, c,
and link and the type definitions for Ada components
are not given here but are straightforward.

6 . UNDERLYING SEMANTICS AND M ODEL
S U PPORT

Graphical representations of software concepts have
certain advantages in conveying information to human
readers but often lack sufficiently precise semantics to
be amenable to formal analysis, verification, and rea­
soning. One of the strengths of Petri nets is that they
provide a simple graphical notation which is easy to
comprehend even by inexperienced readers with a
strong mathematical background. This framework has
been particularly developed to deal with distributed and
concurrent systems and processes.

The PNP model presented in this paper was a first
attempt to exploit the abundance of descriptive and
analytical results of Petri net theory and related tech­
niques and support tools. Our software process model­
ing approach allows software objects and their static
and dynamic relationships to be represented at any
desired level of abstraction. It captures development
states as distributed entities which are characterized by
sets of objects satisfying variable predicates. Develop­
ment actions are specified in terms of their effect on
software objects they transform, local changes to devel­
opment states, and information exchange with human
or technical carriers of an action.

It is relatively easy and straightforward to define a
translation of PNP models into SEGRAS specifications
for which a formal Petri net semantics already exists

[8]. This semantic interpretation of PNP models makes
it easy to adapt the construction and analysis tools that
are provided by the Graspin environment [11], which
supports SEGRAS, to the level of PNP models. Cur­
rently, the Graspin environment supports

• interactive structure editing for graphic descriptions,
which was used to produce the illustrations in this
paper,

• syntax-directed editing for textual specifications,
• symbolic execution of specifications in terms of the

graphic representation of nets,
• liveness and safeness analysis for a restricted class of

SEGRAS nets [16],
• and verification of algebraic specifications with re­

spect to required properties formulated as theorems
about a specification [9].

The advantage of such tools is that they ease the
construction, reuse, tailoring, analysis, verification, and
symbolic execution of process models prior to their
enaction [4]. Analysis and verification serve to prove
certain desirable properties such as absence of dead­
locks, freedom of starvation, absence of overflow situa­
tions, logical consistency, or correctness of refine­
ments. Because of the restrictions we have sketched
concerning object identities and object manipulation,
our nets have the properties that would make the whole
class of PNP nets amenable to liveness and safeness
analysis developed in Schmidt [16]. Roughly speaking,
the technique described therein relies on state
machine-decomposable nets, i.e., nets that can be cov­
ered by strongly connected subnets which are only
branched in S-elements. But this requirement is an
inherent property of PNP nets because the behavior of
a process model is composed of the behaviors of sub-

Toward Formal Models

nets which describe the behavior of single objects.
Liveness and safeness analysis techniques, for example,
would help to ensure the continuity of development
activities and to prevent overload situations prior to
executing a given process model. Algorithms that gen­
erate and analyze the reachability structure of Petri nets
can also be adapted to support reasoning about behav­
ioral possibilities and inherent facts of a process model.

Animation of PNP models through symbolic execu­
tion allows demonstrations of process models to test
their adequacy, provide insight into the dynamic behav­
ior, and thus increase our trust in their design. Sym­
bolic execution can be used to investigate the effects of
alternative procedures prior to the application of the
process to a real software development project, thus
reducing development risks.

7 . CONCLUSIONS AND FURTHER RESEARCH

In this paper we have presented a Petri net-based
modeling approach for software engineering processes.
This approach has several advantages: The software
process description language has a formal syntax and
semantics which enables precise and unambiguous
communication about process models and has the ad­
vantage of potential automation including semantic tools
for prototyping, formal reasoning, program transforma­
tion, performance evaluation, and automatic documen­
tation. In fact, we argued that the proposed modeling
language can be considered as an application-oriented
variant of the formal specification language SEGRAS
[9] for which extensive tools support has been devel­
oped within the ESPRIT Project GRASPIN [11].

Another advantage of our approach is that the under­
lying mathematical theory, which integrates algebras
and elementary net systems, supports central concepts
of the application domain such as "true" concurrency,
synchronization, communication, conflict, causal de­
pendencies, structure, and type. On this formal basis
we have been developing structuring and composition
capabilities supporting hierarchical and vertical
(de)composition of process models for the purpose of
separation of concerns and reusability.

An important observation to note is that this work
should be seen as an exploratory attempt which needs
to be backed up by further applications and empirical
studies. This requires that the modeling approach is
embedded in a well-defined methodology and software
tools support is provided. The latter seems to have been
a feasible undertaking as the Graspin environment is
designed with the goal to facilitate extensions of its
functionality and support the systematic integration of
new tools [10].

Independently from this research, we have been

J. SYSTEMS SOFTWARE 73
1991; 15: 63-74

adapting Borison's Model of Software Manufacture [2]
and the Graph Transform Model for Configuration
Management described in Heimbigner and Krane [6] to
define a Model of Software Maintenance [14]. This
model views maintenance activities as multivalued
functions from configurations to configurations. In con­
trast to our approach, all software objects are consid­
ered immutable. Acyclic bipartite graphs are used to
model the relations between maintenance steps and the
objects in a configuration. To capture hierarchical de­
compositions of objects, a distinguished is-component-
of relationship is imposed on objects. This relationship
and the causal structure of maintenance graphs are used
to determine induced maintenance steps. Induced main­
tenance steps are additional steps necessary to preserve
the consistency of a configuration after a maintenance
charge was applied to an object in a configuration.

The dynamic (temporal) behavior of maintenance
models is defined by a local state transition diagram
associated with each maintenance step. Each state tran­
sition diagram consists of five states: invoked, pending,
implementing, completed, and abandoned. They de­
scribe the different phases a maintenance step under­
goes until it is finally completed or abandoned. The
maintenance graph and step states together are used to
compute priorities and precedence of maintenance steps
for the purpose of task scheduling and decision support.

A basic assumption of this model is that the decision
about changes, i.e., about maintenance steps to be
taken, is under centralized control. This assumption
relieves some of the severe problems which are in­
volved if the decision about maintenance steps to be
taken is decentralized, such as concurrency control and
configuration consistency. The restriction to centralized
decision competence seems adequate for maintenance
activities as they are usually performed in large admin­
istrations on mainframe computers, for which the model
was originally designed. But they fail to meet evolu­
tionary development activities to be observed in the
presence of personal computers and loosely coupled
networks of dedicated computers.

A future goal of our research in this area is to
combine the PNP model with the maintenance model to
extend the former by possibilities for computing far-re­
aching effects of changes and the latter by possibilities
to cope with concurrency and to handle the distribution
of decision competence.

REFERENCES

1. B. W. Boehm, A spiral model of software development
and enhancement, IEEE Computer, May 1988, pp.
61-72.

74 J. SYSTEMS SOFTWARE
1991; 15: 63-74

B. Kramer and Luqi

2. E. Borison, A model of software manufacture, in, Ad­
vanced Programming Environments, Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Heidelberg,
New York, 1986.

3. B. Curtis, H. Krasner and N. Iscoe, A field study of the
software design process for large systems, Communica­
tions of the ACM, 31, 1268-1287 (1988).

4. T. Colin (ed.), Representing and enacting the software
process, ACM SIGSOFT Software Engineering Notes,
14, June 1989.

5. A. Finkelstein, "Not waving but drowning": Represen­
tation schemes for modelling software development, in,
Proceedings of the 11th Annual International Confer­
ence on Software Engineering, Pittsburgh, Pennsylva­
nia, May 1989, pp. 402-404.

6. D. Heimbigner and S. Krane, A Graph transform model
for configuration management, in, Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Envi­
ronments, 1988.

7. W. S. Humphrey and M. I. Kellner, Software process
modeling: Principles of entity process models, in, Pro­
ceedings of the 11th Annual International Conference
on Software Engineering, Pittsburgh, Pennsylvania,
May 1989, pp. 331-342.

8. B. Kramer, Concepts, Syntax and Semantics of SEG-

RAS-A Specification Language for Distributed Sys­
tems, Oldenbourg Verlag, Miinchen, Wien, 1989.

9. B. Kramer, Introducing the GRASPIN specification lan­
guage SEGRAS, In this issue, 1991.

10. B. Kramer and H.-W. Schmidt, Object-oriented develop­
ment of integrated programming environments with
ASDL, IEEE Software, January 1989.

11. B. Kramer and H.-W. Schmidt, Architecture and func­
tionality of a specification environment for distributed
systems, in, G. Knafl (ed.), Procs. COMPSAC 90.
Computer Society Press, 1990.

12. Luqi, Software evolution via rapid prototyping, IEEE
Computer, May 1989, pp. 13-25.

13. Luqi and Y. Lee, Interactive control of prototyping
processes, in, Procs. COMPSAC 89, Orlando, Septem­
ber 1989.

14. I. Mostov, A model of software maintenance for large
scale military systems, Master's thesis, Naval Postgradu­
ate School, Computer Science Department, Monterey,
California, 1990.

15. H.-W. Schmidt, Specification and Correct Implemen­
tation of Non-Sequential Systems Combining Ab­
stract Data Types and Petri Nets, Oldenbourg Verlag,
Miinchen, Wien, 1989.

16. H.-W. Schmidt, Prototyping and verification of concur­
rently interacting objects, In this issue, 1991.

