
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1992

CAPS - A Tool for Real-Time System
Development and Acquisition

Luqi; Shing, M.
Naval Research Reviews

Luqi and M. Shing, "CAPS - A Tool for Real-Time System Development and
Acquisition", Naval Research Reviews, 1992, Vol. XLIV (44), pp. 12-16.
https://hdl.handle.net/10945/65713

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



CAPS - A Tool For Real-lime 
System Development and 
Acquisition 

Luqi and Man-Tak Shing 
Computer Science Department 

Introduction 
The Computer Aided Prototyping System (CAPS) is an 

integrated software development environment aimed at rap
idly prototyping hard real-time embedded software systems, 
such as missile guidance systems, space shuttle avionics sys
tems, and military Command, Control, Communication and 
Intelligence (C3I) systems. One of the major differences be
tween a hard real-time system and a conventional system is 
that the application software must meet its deadlines even 
under worst case conditions1. The process of design and de
velopment of these systems is often plagued with uncertainty, 
ambiguity and inconsistency. The timing requirements are 
difficult for the user to provide and for the analysts to deter
mine. It is also very difficult to determine whether a delivered 
system meets its requirements. 

Traditional software development methods conduct ex
tensive testing near the end of the project in an attempt to 
ensure proper functioning of the system. The major weakness 
of this approach is that there is no way to recover from major 
faults discovered at the end of the project, when available 
funds have been nearly exhausted. Furthermore, delivered 
systems that meet faulty requirements can satisfy a contract 
without being useful to the sponsor. The inadequacy of current 
software development methods is evident in high software 
costs and low programmer productivity. Recognizing the in
creased cost and importance of software development for 
Command and Control (C2) systems, the Secretary of Navy 
(SECNAV) promulgated an instruction addressing software 

development and acquisition2. This instruction documents 
SECNAV concern for defining a DoN acquisition policy for 
software-intensive systems and increasing user involvement 
during the design and development stages. The policy com
bining these two concerns states: 

"To promote effective interaction between the user and 
the developer, software prototyping methods shall be used in 
the design and construction of C2 information systems. Early 
delivery of software systems is emphasized through the use of 
prototyping methods"2. 

The rapid prototyping approach to software development 
provided by CAPS3 supports this policy. Rapid prototyping 
uses rapidly constructed prototypes to help both the develop
ers and their customers visualize the proposed system and 
assess its properties in an iterative process. A prototype is an 
executable pilot version of the intended system that accurately 
reflects chosen aspects of the system. Rapid prototyping may 
be used in conjunction with or as an alternative to the tradi
tional software development cycle. 

The Computer Aided 
Prototyping System 

The Computer Aided Prototyping System (CAPS) pro
vides facilities for computer-aided design, software compo
nent reuse, and automated Ada code generation. These tools 
are developed to help software engineers rapidly construct and 
adapt software, validate and refine user requirements, and to 

12 Naval Research Reviews 



check consistency of proposed design4. The process supported 
by CAPS provides requirements and designs in a form that is 
useful in the construction of the operational system, as well as 
in the acquisition process to assess optimized implementations 
delivered by contractors, and to integrate independently devel
oped subsystems. CAPS allows the user to specify the require
ments of a proposed system informally in a structured 
top-down fashion using easy-to-understand graphics, assists 
the designer in augmenting the informal specifications with 
formal annotations, and automatically translates the result into 
executable Ada code. 

The CAPS Method 
There are four major stages in the CAPS rapid prototyping 

process: software system design, construction, execution, and 
debugging/modification. 

The initial prototype design starts with an analysis of the 
problem and a decision about which parts of the proposed 
system are to be prototyped. Requirements for the prototype 
are then generated, either informally (e.g. English) or in some 
formal notation. These requirements may be refined by asking 
users to verify their completeness and correctness. After the 
requirements analysis is completed, the designer uses the 
CAPS graphic editor to draw dataflow diagrams with non
procedural control constraints as part of the specification of a 
hierarchically structured prototype, resulting in a preliminary, 
top-level design free from programming level details. The 
underlying computational model unifies dataflow and control 
flow, and provides a mechanism for developing top-down 
decompositions. The user may continue to decompose any 

Figure 1. 

Iterative Prototyping Process in CAPS 

Initial requirements 

changes 
i f 

Reusable Software 

Construct / modify 
prototype =F=: 

DBMS 
Software 

Base 
Design 

Database 

Translate / s.c! 
prototype in Ada 

I 
Demonstrate 

prototype 

Execution 
Support 
System 

software module until its components can be realized via 
reusable components drawn from the software base or new 
atomic components. The construction of the prototype is aided 
by the syntax-directed editor which helps the designer create 
syntactically correct timing and control constraints for the 
operators. This prototype is then translated into Ada for exe
cution and evaluation. Debugging and modification utilize a 
design database that assists the designers in managing the 
design history and coordinating changes as well as the other 
tools described above. 

The Prototype System Description 
Language 

The CAPS tools are based on the Prototype System De
scription Language (PSDL). PSDL is a high-level language 
designed specifically to support the specification of real-time 
software systems, as well as to organize and retrieve reusable 
components in the software base5. PSDL lets designers sketch 
a system using computation graphs, where the vertices are 
operators and the directed edges are data streams, and then 
refine the design by adding timing and control constraints in 
text form. 

Operators are state machines whose internal states are 
modeled by state variables. Operators with an empty variable 
set behave like functions. PSDL operators can be triggered by 
data {sporadic operators) or by periodic timing constraints 
(periodic operators). When triggered, an operator will produce 
output based on input values and values of internal state variables. 
There are two kinds of operators: atomic operators and composite 
operators. An atomic operator is one that can be realized by an 
implementation stored in the software base or supplied by the 
software engineers, and a composite operator is one that can be 
decomposed into a network of more primitive operators repre
sented as enhanced dataflow diagrams. 

Operators communicate via two kinds of data streams: 
dataflow streams and sampled streams. A dataflow stream can 
be thought of as a FIFO buffer of capacity one that connects 
synchronized operators. Data in dataflow streams represents 
discrete transactions, and is removed from the stream when 
read. A sampled stream can be thought of as a single memory 
cell and connects operators with uncoordinated rates. This type 
of data usually comes from a continuous data source and can 
be used many times or written over before use, depending on 
the rate of its input and use. 

Real-time applications motivate the timing and non-pro
cedural control constraints of PSDL. Each time critical oper
ator has a maximum execution time constraint, representing the 
maximum time the operator may need to complete execution 
after it is fired, given access to all required resources. In 
addition, each periodic operator has a period and a deadline. 
The period is the interval between triggering times for the 
operator and the deadline is the maximum duration from the 
triggering of the operator to the completion of its operation. 

One/1992 13 



Each sporadic operator has a maximum response time and a 
minimum calling period. The minimum calling period is the 
smallest interval allowed between two successive triggerings 
of a sporadic operator. The maximum response time is the 
maximum duration allowed from the triggering of the sporadic 
operator to the completion of its operation. To model distrib
uted systems, PSDL also provides the option of specifying the 
maximum delay associated with any data stream. Control 
constraints define data-triggered actions and provide condi
tional execution and output. 

The CAPS Tools 
The set of tools provided by CAPS includes the user 

interface, software database system, and execution support 
system. 

The user interface in CAPS includes a graphic editor, a 
syntax-directed editor, and a browser. The graphic editor and 
the syntax-directed editor together provide a user-friendly 
environment for the user/software engineer to construct a 
prototype using graphical and textual objects. The browser 
allows software engineers to view reusable components in the 
software database system. 

The software database system, which consists of a soft
ware base and a design database, provides facilities for soft
ware reusability, automated system management, and version 
control. The software base keeps track of the PSDL descrip
tions and Ada implementations for all reusable software com
ponents in CAPS. The design database coordinates the 
concurrent efforts of a team of software engineers and man
ages the different versions and alternatives of the design and 
documents they produce. 

The execution support system consists of a translator, a 
static scheduler and a dynamic scheduler. The translator gen
erates code that binds together the code supplied by the de
signer and the reusable components extracted from the 
software base. The static scheduler and the dynamic scheduler 
together create the real-time schedule and drivers needed for 
executing the prototype. 

Application of CAPS in 
Real-time Software 
Development and Acquisition 

Rapid prototyping under CAPS is a semi-formal approach 
to real-time software development. Like Structured Analysis6, 
it uses a structured approach to enforce modular design. How
ever, unlike Structured Analysis, CAPS provides tools which 
span the entire software development process, ranging from 
requirements analysis to system testing and integration. 

CAPS as a Requirements 
Engineering Tool 

The requirements for a software system are expressed at 
different levels of abstraction and with different degrees of 
formality. The highest level requirements are usually informal 
and imprecise, but they are understood best by the customers. 
The lower levels are more technical, precise, and better suited 
for the needs of the system analysts and designers, but they are 
further removed from the user's experiences and less well 
understood by the customers. Because of the differences in the 
kinds of descriptions needed by the customers and developers, 
it is not likely that any single representation for requirements 
can be the "best" one for supporting the entire software devel
opment process4. CAPS provides the necessary means to 
bridge the communication gap between the customers and 
developers. The Prototype System Description Language is 
designed specifically for specifying hard real-time systems. It 
has a rich set of timing specification features and offers a 
common baseline from which users and software engineers 
describe requirements. The PSDL descriptions of the proto
type produced by the graphic and syntax-directed editors are 
very formal, precise and unambiguous, meeting the needs of 
the system analysts and designers. The demonstrated behavior 
of the executable prototype, on the other hand, provides con
crete information for the customer to assess the validity of the 
high level requirements and to refine them if necessary. CAPS 
offers basic requirements traceability through the "by require
ments" statement of PSDL, allowing software engineers to 
link actual requirements to the modules that realize the re
quirements. Requirement traceability is essential in the devel
opment of hard real-time systems, where user requirements 
change often over the course of the software development. 

CAPS as a System Testing 
and Integration Tool 

Unlike throw-away prototypes, the process supported by 
CAPS provides requirements and designs in a form that can 
be used in construction of the operational system. The proto
type provides an executable representation of system require
ments that can be used for comparison during system testing. 
The existence of a flexible prototype can significantly ease 
system testing and integration. When final implementations of 
subsystems are delivered, integration and testing can begin 
before the completion of all the subsystems by combining the 
final versions of the completed subsystems with prototype 
versions of the parts that are still being developed. 

CAPS as an Acquisition Tool 
Decisions about awarding contracts for building hard 

real-time systems are risky because there is little objective 
basis for determining whether a proposed contract will benefit 

14 Naval Research Reviews 



the sponsor at the time when those decisions must be made. It 
is also very difficult to determine whether a delivered system 
meets its requirements. CAPS, besides being a useful tool to 
the hard real-time system developers, is also very useful to the 
customers. Acquisition managers can use CAPS to ensure that 
acquisition efforts stay on track and that contractors deliver 
what they promise. CAPS enables validation of requirements 
via prototyping demonstration, greatly reduce the risk of con
tracting for construction of systems that do not meet the 
sponsors' needs. The validated high-level designs resulting 
from prototyping can be used to formulate subcontracts for 
subsystems that prevent many system integration problems. 
Other problems can be detected earlier by testing interactions 
between delivered subsystems and prototypes of subsystems not 
yet complete. Prototypes generated by CAPS include structures 
for experimentally measuring whether critical components meet 
their timing requirements. These structures can be used to evalu
ate real-time performance of systems delivered by contractors. 
Automated functional testing can compare results or delivered 
systems to results produced by the prototype. 

Conclusions 
The capabilities provided by CAPS are essential to rapid 

prototyping. In particular, automatic code generation and in
strumentation let designers to try design variations quickly 
without cutting comers. The diagnostics provided by the auto
matic instrumentation helps to localize and fix bugs. Automated 
schedule construction and diagnostic information about timing 
constraints helps to navigate the maze of interacting resource 
constraints and evaluate the feasibility of the requirements. 

We have recently completed an experiment to evaluate 
our rapid-prototyping methods and computer-aided design 
environment7. Our experiment was to prototype a generic 
command, control, communications and intelligence (C3I) 
station and generate the Ada code from the prototype's speci
fications automatically. The results of the experiment show 
that it is feasible to use computer-aided prototyping for prac
tical, real-time Ada applications. Experience gained from the 
experiment also suggested many improvements to CAPS. Our 
long term plans include work on extending CAPS to a distrib
uted computing environment, improved computer aid for man
aging and retrieving reusable software, and computer-aided 
generation and optimization of production-quality im
plementation code from specifications. 

CAPS is unique in providing a computer-aided prototyp
ing capability for hard real-time systems. Current CASE tools 
only support the static aspects of software development, while 
CAPS supports the dynamic aspects of the software life cycle. 
It will help the contracting and acquisition process for hard 
real-time systems in establishing that the initial requirements 
correctly capture the problem, checking that delivered systems 

meet their requirements, and ensuring that independently de
veloped subsystems work properly when integrated together. 

The substantial investment in real-time embedded sys
tems in the Department of Defense (DoD) and the Department 
of Navy (DoN) points out the tremendous need for improved 
acquisition methods and supporting tools that can be used to 
test the design of a software system before coding. The Mili
tary Specification MIL-H-48655B calls for requirements anal
ysis, functional specification and verification before the actual 
coding of the system8. The work described in this paper 
supports these objectives and enables DoN to make better 
decisions in acquiring systems useful to the Navy. 

Biography 
Luqi is an associate professor of computer science at the 

Naval Postgraduate School. She has also worked on software 
research and development in academia and industry. Her re
cent work includes rapid prototyping, real-time languages, 
design methodology, and software development tools. She has 
received an Engineering Initiation Award and a Presidential 
Young Investigator Award from NSF. Her research has been 
supported by ONR, AFSOR, CNO, NAVSEA, Navy Labs and 
computer industry. Luqi has a BS in computational mathemat
ics from Jilin University, China, and an MS and a PhD in 
computer science from the University of Minnesota. 

Man-Tak Shing is an associate professor of computer 
science at the Naval Postgraduate School. He has also been on 
the faculty of the University of California at Santa Barbara. 
His recent work includes path planning, genetic algorithms, 
and scheduling real-time systems. Shing received his BS de
gree from the Chinese University of Hong Kong in 1976, and 
MS and PhD degrees from the University of California at San 
Diego in 1978 and 1980. 

Acknowledgment 
The research reported in this paper was sponsored in part 

by the Computer System Division of the Office of Naval 
Research through the direct funding program. 

References 
1. J.A. Stankovic and K. Ramamritham, Tutorial on Hard 

Real-Time Systems, IEEE Computer Society Press, Wash
ington, D.C., 1988. 

2. Department of Navy, SECNAV INSTRUCTION 
5200.37, "Acquisition of Software-Intensive C2 Informa
tion Systems," 5 January, 1988. 

3. Luqi, "Software Evolution via Rapid Prototyping," Com
puter, vol. 22, pp. 13-25,1989. 

One!1992 15 



4. Luqi, R. Steigerwald, G. Hughes, F. Naveda, and V. 
Berzins, "CAPS as Requirements Engineering Tool," 
Proc. Requirements Engineering and Analysis Workshop, 
Software Engineering Institute, Carnegie Mellon Univer
sity, Pittsburgh, Pennsylvania, 1991. 

5. Luqi, V. Berzins, and R.T. Yeh, "Prototyping Language 
for Real-Time Software," IEEE Transactions on Software 
Engineering, vol. 14, pp. 1409-1423,1988. 

6. D. Hatley and I. Pirbhai, Strategies for Real-Time Sys
tems, Dorset House Publishing Co., New York, NY, 1988. 

7. Luqi, "Computer-Aided Prototyping for Command-And-
Control Systems using CAPS/"IEEE Software, pp. 56-67, 
Jan 1992. 

8. Department of Defense, Military Specification MIL-H-
48655B, "Human Engineering Requirements for Military 
Systems, Equipment and Facilities," 31 January 1979. 

16 Naval Research Reviews 


