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ABSTRACT 

 Blockchain technology has garnered significant attention for its disruptive 

potential in several domains of national security interest. For the United States 

government to meet the challenge of incorporating blockchain technology into its IT 

infrastructure and cyber warfare strategy, personnel must be educated about blockchain 

technology and its applications. 

 This thesis presents both the design and prototype implementation for a 

blockchain-mediated cyber-physical system called a BlockGrid. The system consists of a 

cluster of microcomputers that form a simple smart grid controlled by smart contracts on 

a private blockchain. The microcomputers act as private blockchain nodes and are 

programmed to activate microcomputer-attached circuits in response to smart-contract 

transactions. LEDs are used as visible circuit elements that serve as indicators of the 

blockchain’s activity and allow demonstration of the technology to observers. 

Innovations in networking configuration and physical layout allow the prototype to be 

highly portable and pre-configured for use upon assembly. Implementation options allow 

the use of BlockGrid in a variety of instructional settings, thus increasing its potential 

benefit to educators. 
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I. INTRODUCTION 

Blockchains are an emerging approach to decentralized trustless database 

implementation. A key feature driving their adoption is that they allow databases to support 

applications without requiring a trusted centralized authority to maintain them. This 

distributed quality of blockchains allows records to be updated simultaneously throughout 

a network, eliminating the need for intermediaries as well as lowering tracking and 

processing times for some applications [1]–[4]. Blockchain technology has been 

highlighted for its disruptive potential in multiple domains of national security interest 

including finance, trade, voting, health data management, and Internet of Things (IoT) 

network computing [5]–[11]. 

A. BLOCKCHAIN TECHNOLOGY USE CASES FOR THE UNITED 
STATES GOVERNMENT 

Within the national security sphere, blockchain technology has been envisioned for 

several use cases. One suggested application is to utilize blockchains to track inventory for 

military supply chain management and logistics [12], [13]. Another proposed concept is to 

utilize blockchains for Keyless Signature Infrastructure (KSI) to secure communications 

for critical weapons systems [14]. Blockchain technology has also been proposed for use 

within IoT networks, which are themselves a subject of active Department of Defense 

(DOD) research for applications such as deployed sensors [15]–[17].  

Across the United States Government (USG), agencies are currently using 

blockchain technology in a variety of ways. At the level of research, the Department of 

Homeland Security (DHS) Science and Technology Directorate and the Defense Advanced 

Research Projects Agency (DARPA) have sponsored multiple blockchain technology 

research grants for topics like forgery prevention, tracking of cross-border imports, and 

secure messaging [18]–[21]. The Food and Drug Administration (FDA), the Centers for 

Disease Control and Prevention (CDC), and Department of the Army also have blockchain 

proof-of-concept research projects underway [22].  
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Several agencies have blockchain projects in the pilot stage of development. The 

DOD, for instance, is piloting blockchain technology in its 3D Print File Security program 

[23]. DARPA uses pilot blockchain technology as part of its Supply Chain Hardware 

Integrity of Electronics Defense (SHIELD) initiative [24]. Additionally, the U.S. Treasury 

has piloted blockchain technology to track government-issued physical assets such as 

laptops and mobile phones [25].  

Two agencies are currently using blockchain technology as an integrated part of 

their production technology stack. The General Services Administration’s (GSA) FASt 

Lane program employs a prototype blockchain to track acquisition contracts [26]. The 

Department of Health and Human Services (HHS) uses blockchain technology to optimize 

grant and contract processing efficiency within both its GrantSolutions and HHS 

Accelerate programs [27], [28]. 

B. NATIONAL SECURITY IMPLICATIONS OF BLOCKCHAIN 
TECHNOLOGY ADOPTION 

As the adoption of blockchain technology has increased, so too has the USG’s 

interest in the national security implications of both domestic and adversarial deployment 

of the technology. For example, in the 2018 National Defense Authorization Act, the House 

Armed Services Committee called for a blockchain technology briefing from the Secretary 

of Defense. Requested in this briefing was, “a description of potential offensive and 

defensive cyber applications of blockchain technology,” “an assessment of efforts by 

foreign powers, extremist organizations, and criminal networks to utilize such 

technologies,” and “an assessment of the use or planned use of such technologies by the 

Federal Government and critical infrastructure networks [29].” While the contents of this 

briefing were not published, these congressional briefing subject requests underscore the 

perceived need for government personnel to understand blockchain technology and the 

consequences of its use for the United States.  
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1. Cybersecurity Implications of Domestic Blockchain Technology 
Adoption 

Domestic adoption of blockchain technology has been noted for both positive and 

negative cybersecurity implications. On the positive side, the 2019–2023 DOD Information 

Resource Management Strategic Plan’s DOD Modernization Strategy report noted that as 

a result of their fault tolerance, “blockchain networks not only reduce the probability of 

compromise, but also impose significantly greater costs on an adversary to achieve it.” [30] 

Authors from Pacific Northwest National Laboratory (PNNL) have proposed that 

blockchain technology may enable improved automated patching and auditing of critical 

infrastructure [31]. Additionally, the application of blockchains to supply chain 

management has been identified as a way to reduce supply chain risk in an environment 

where manufacturing supply chains cross national boundaries and include fabrication and 

assembly facilities within adversarial nation states [32]. 

Domestic adoption of blockchain technology may also pose some cybersecurity 

risks. One area of risk is the potential influence of adversarial nation states on domestically 

deployed global blockchain networks for which adversarial nation states possess a 

disproportionate share of network computing power. For example, presently over 50% of 

the mining nodes for both Bitcoin and Ethereum are located within China [33], [34]. 

Disproportionate control of a blockchain network’s computing power can enable attacks 

such as deanonymizing and censuring users as well as selectively dropping transactions. It 

can also allow a blockchain’s performance to be undermined through destabilization of 

network consensus [35].  

Another potential risk associated with domestic blockchain technology adoption is 

the increased challenge of securing private keys [36]. In systems secured by conventional 

public key cryptography, a trusted third party often generates and maintains private keys 

for users. However, with blockchain technologies the burden of securing private keys tends 

to fall to the end user. This creates a vulnerable point of failure which when compromised 

can lead to severe consequences for data integrity and availability [37]. Additionally, with 

blockchain technologies the compromise of an end user private key often not only affects 
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the individual user but also users with downstream dependencies on the compromised 

account [38]. 

Vulnerabilities in the code of public blockchain technologies are yet another area 

of concern associated with blockchain adoption. While the integrity of a blockchain’s data 

is secured through cryptography and network consensus algorithms, blockchain software 

vulnerabilities can enable exploitation of end user accounts and the computing devices that 

comprise a blockchain’s network [39], [40]. Unlike conventional technologies that can be 

placed behind network security infrastructure to defend proprietary data against 

vulnerability exploitation attempts, both the blockchain and the data stored in its ledger are 

often beyond the scope of an individual user or organization to secure due to the 

blockchain’s distributed nature [41]. In the case of smart contracts, source code is written 

to the blockchain and can be easily inspected, making vulnerability discovery easier for 

exploit developers [42]. Additionally, as access to many blockchain technologies is not 

purchased, patching incentives for developers of freely accessed blockchain technology 

may not be as security-aligned as they are for developers of licensed software [43].  

All of these cybersecurity risks not only have the potential to directly impact 

blockchain users, but may also have downstream risk effects through multi-party 

dependencies. For example, if a third-party service provider relies on blockchain 

technology and experiences an attack, users of its service could be affected as well. 

Downstream dependencies on blockchain technology for the USG and domestic users can 

be expected to grow as telecom, network, and cloud services providers move to adopt 

blockchain technology and offer more blockchain-based products [44]–[47]. 

2. Cybersecurity Implications of Foreign Threat Actor Blockchain 
Technology Adoption  

The adoption of blockchain technology by foreign threat actors has implications for 

national security as well. As an emerging technology front, blockchain technology offers 

adversaries an opportunity to compete with the United States for technological supremacy 

from a more even starting position. A 2018 whitepaper coauthored by representatives of 

the DOD, DHS, Director of National Intelligence (DNI), Federal Bureau of Investigation 
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(FBI), and industry partners titled “Blockchain and its Suitability for Government 

Applications” noted that Russia and China are investing heavily in blockchain  

technology [48]. In addition to providing greater opportunities to potentially influence and 

compromise blockchain technologies, these investments may position adversarial nation 

states to use blockchain technology to more effectively avoid sanctions and dependency on 

the U.S. financial system [49]. Additionally, the decentralized nature of blockchains may 

enable smaller adversaries like terrorist organizations to access and transfer financial assets 

in ways that have not been previously possible with state-controlled currencies [50], [51]. 

C. THE NEED FOR BLOCKCHAIN TECHNOLOGY EDUCATION  

While popular enthusiasm for blockchain technology is growing, it is not yet a 

mature technology and the merits of its application to many use cases is not yet proven. 

Under such conditions, there is an urgent need for relevant USG personnel to be educated 

about blockchain technology so that it can be appropriately incorporated into IT 

infrastructure and cyberwarfare strategy. With a proper approach to blockchain technology 

education, the DOD can take full advantage of blockchain-based tools as they become 

available, anticipate and account for the challenges posed by adversary adoption of 

blockchain technology, and avoid costly acquisition mistakes that could result from 

applying blockchain technology to inappropriate use cases.  

D. THESIS PROBLEM STATEMENT 

Despite the urgent need for blockchain technology to be incorporated into curricula 

for USG personnel, there is presently no convenient way to demonstrate the salient features 

of blockchain technology in an educational environment for beginning students. The 

purpose of this thesis, then, is to develop a cyber-physical system that enables concrete 

demonstration of blockchain technology in the classroom.  

The intended audience for this cyber-physical system includes both non-technical 

and technical students.  Demonstrations can be used with a non-technical audience to 

develop awareness and appreciation of blockchain technology.  For more technical groups, 

demonstrations can be used as a gateway to deeper technical discussions and the cyber-

physical system can be used to support hands-on exploration of the technology. 
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E. THESIS OBJECTIVES 

The principal objectives of this thesis are to (1) determine how a cyber-physical 

system could be constructed to enable demonstration of blockchain technology, (2) to 

construct a blockchain-controlled cyber-physical system as a demonstration platform 

prototype, (3) to generate the guidelines necessary for educators to assemble and use the 

blockchain technology demonstration platform.  

This thesis focuses on the creation of a cyber-physical blockchain demonstration 

prototype as well as supporting materials that enable users to reproduce and operate the 

system. The thesis introduces a model for a suitable cyber-physical demonstration 

platform, termed a “BlockGrid.” A BlockGrid is defined as a blockchain-controlled cyber-

physical system in which smart contracts on the blockchain control the behavior of a 

distributed set of isolated or cooperating circuits.  

The thesis also describes a BlockGrid prototype that was designed to optimize cost, 

portability, and ease-of-use. The prototype, which was inspired by the Chainskills tutorial 

series from Eloudrhiri, uses an internally networked cluster of Raspberry Pi 

microcomputers to run a private Ethereum blockchain [52]. The prototype uses a smart 

contract, SmartSwitch, to control light-emitting diodes (LEDs) attached to the Raspberry 

Pis in order to provide a visual demonstration of blockchain technology for observers. The 

prototype is available within the NPS Computer Science Department for demonstration, 

curriculum development, and research. 

F. ORGANIZATION OF THESIS 

This thesis is organized into six chapters. Beyond the present introduction chapter, 

Chapter II provides background that explains the foundations of blockchain technology 

required to understand a BlockGrid’s operation. Chapter III presents the concept of 

operations (CONOPS), which describes the general demonstration platform requirements 

for a BlockGrid and the envisioned operation environment for the platform. Chapter IV 

details the available options for BlockGrid system design and configuration as well as the 

rationale for the choices that were made in the BlockGrid prototype’s implementation. 
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Chapter V explains the prototype’s design, function, and operation. Chapter VI covers the 

conclusions of the project and explores possible topics for future work.  

This work also provides three appendices and supplemental materials. Appendix A 

lists all of the hardware and software technical specifications for the prototype, including 

code for the smart contract and script that run on the BlockGrid prototype. Appendix B 

provides links to the Eloudrhiri Chainskills tutorials and explains how they were adapted 

to create the prototype, creating a prototype reproduction guide. Appendix C provides a 

walk-through of how to set up and operate the prototype. The supplemental materials 

include mp4 file video walkthroughs of the BlockGrid prototype’s setup and operation that 

were prepared by the author. The supplemental materials also include PDF copies of the 

installation tutorials used to deploy the private blockchain and smart contract on the 

prototype’s hardware, and a cited conceptual diagram of the Ethereum blockchain’s 

structure that was too large to include as a figure. This thesis and the supplemental materials 

will be available upon publication through the Naval Postgraduate School’s “Calhoun” 

digital research and institutional materials repository [53]. 
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II. BACKGROUND 

This chapter provides a review of blockchain technology. The chapter begins by 

defining a blockchain and by providing a history of how blockchains were pioneered. It 

goes on to detail some of the key properties of blockchains that are central to their 

operation. A description of the salient and unique features of the Ethereum blockchain 

protocol that runs on the BlockGrid prototype is also provided. The chapter concludes with 

a review of several common cyberattacks against blockchains that may be relevant to a 

security-oriented blockchain curriculum making use of a BlockGrid as a demonstration, 

laboratory, or research platform. 

A. BLOCKCHAIN DEFINITION 

A blockchain can be understood as a decentralized peer-to-peer ledger data 

structure that is distributed across a network of nodes. Within a conventional blockchain 

network, each node maintains an identical copy of the distributed ledger. The ledger is 

cryptographically secured and can only be appended, making it an immutable and 

chronological record. The blockchain properties of decentralization and immutability are 

principal factors driving the adoption of blockchain technology. These properties allow 

blockchain-based applications to require neither a centralized governing authority nor trust 

between system users.  

B. BLOCKCHAIN HISTORY 

To understand the features of blockchain technology and its most high-profile 

implementations, it is helpful to understand how blockchains emerged as a technology. 

Blockchain technology was brought to popular attention with a 2008 paper written under 

the pseudonym Satoshi Nakamoto which described the Bitcoin cryptocurrency protocol 

[54]. In the decade since, numerous blockchain protocols have been authored and today 

nearly 7,000 blockchain-based cryptocurrencies are actively traded in addition to an ever-

growing number of non-currency blockchain applications [55]. However, approaches to 

decentralized and trustless control of computer systems by both computer scientists and 
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cryptographers have a rich history that predates Bitcoin’s invention by decades, and which 

created the foundation for blockchain technology as it is implemented today.   

A foundational theoretical description of how to approach decentralized trust in 

computer systems was given by Lamport, Shostak, and Pease in their 1982 paper describing 

the Byzantine General’s Problem and including several solutions [56]. In the Byzantine 

General’s Problem a scenario is presented in which multiple generals on different sides of 

a city must achieve consensus on how to coordinate an attack while accounting for the 

possibility that their communications or messengers have been compromised. The paper 

analogizes this scenario to a computer systems network in which accurate consensus must 

be achieved in order to correctly execute a task. Lamport, Shostak, and Pease showed in 

their paper as well as subsequent work that given a sufficient number of trusted generals, 

achieving consensus is possible given known bounds on the number of compromised 

messages or messengers [57]–[59]. One notable drawback of the solutions presented to the 

Byzantine General’s problem, however, was that they all required at least some number of 

the Generals to be trusted and could therefore not be extrapolated to trustless applications. 

In the same year, cryptographer David Chaum described a blockchain-like system 

in his doctoral dissertation “Computer systems established, maintained and trusted by 

mutually suspicious groups [60].” Chaum’s system made use of cryptographically secured 

communication records and distributed public ledgers to facilitate trust between untrusting 

parties within a network. The approach presaged several recognizable features of 

blockchains as we know them today, but it also relied upon both the physical security of 

the network nodes and the trustworthiness of communications to achieve consensus [61].  

Without a viable approach to trustless distributed computing, early applications of 

distributed computing were predominantly focused on environments in which a high 

degree of trust could be assumed amongst network nodes such as isolated industrial 

systems. Within the civilian sector, for example, distributed computing systems were 

explored for several applications in factory settings [62], [63]. In the military and aerospace 

domains, distributed computing approaches were adopted for applications within isolated 

systems like submarines and aircraft for purposes such as weapons system control and 
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avionics [64]–[66]. In both these early industrial and military technology implementations, 

distributed computing was primarily integrated to achieve improvements in fault tolerance.  

Parallel to these improvements and pioneering applications of distributed 

computing in the 1980s, a community of cryptography enthusiasts began to emerge that 

would later come to be known as cypherpunks in the following decade [67]. This 

community was ideologically rooted in opposition to classified sequestration of 

cryptographic technologies for military and intelligence purposes as well as opposition to 

cryptography patent restrictions and export controls [68], [69]. Seminal cypherpunk 

publications such as Chaum’s “Security without Identification: Transaction Systems to 

Make Big Brother Obsolete” and Eric Hughes’ “A Cypherpunk’s Manifesto” articulated a 

cypherpunk philosophy that would lead the community to advocate for globally 

decentralized electronic approaches to currency [70], [71].  

Throughout the 1990s cypherpunks explored and collaborated on approaches to 

decentralized electronic currencies. One such example came from the computer engineer 

and cypherpunk Wei Dai in 1998 with his paper “B-Money” that described many 

fundamental properties of a cryptocurrency but failed to articulate a viable consensus 

mechanism for real world implementation [72]. Indeed, the chief obstacle to creating a 

functional electronic currency during this period was the challenge of creating a consensus 

mechanism capable of preventing double-spending by bad-faith actors in the system [73].  

The answer to the consensus dilemma would ultimately come from efforts by 

cryptographers and computer scientists to combat email spam and denial-of-service (DoS) 

attacks. In 1992, Dwork and Naor proposed combatting email spam and DoS attacks by 

making system access conditional upon providing proof that a computationally expensive 

math problem had been successfully solved [74]. This approach, which was later described 

as Proof of Work by Jakobsson and Juels in their seminal 1999 paper “Proofs of Work and 

Bread Pudding Protocols,” uses the computational expense of achieving access to 

disincentivize participation by bad actors [75]. The Proof of Work approach laid out by 

Dwork and Naor was successfully implemented as an anti-spam and DoS consensus 

mechanism by prominent cypherpunk Adam Back in his Hashcash protocol in 1997 [76]. 

Hashcash derives its name from the concept of using proof of successfully calculating a 
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hash collision as the ‘cash’ required to gain system access. In 2004 cypherpunk Hal Finney 

created a “Reusable Proofs of Work (RPOW)” software protocol that tokenized Hashcash 

and allowed it to be transferred as an asset between system users [77]. RPOW was later 

incorporated into a Proof of Work based cryptocurrency concept called “Bit Gold” that was 

outlined by cypherpunk Nick Szabo in 2005 [78]. 

Several data structure innovations were also important in creating the foundations 

for blockchain technology. During the 1990s Haber and Stornetta pioneered mechanisms 

for linked timestamping of digital resources with several papers and patents [79]–[83]. 

Their approaches initially utilized linear hash chains to associate resources in chronological 

order and create a secure authenticated data structure that functioned as an unalterable 

digital timestamp ledger.  

A key innovation that allowed these timestamp data structures to be verified more 

efficiently and to be smaller was the introduction of Merkle trees into the linked timestamp 

data structures [84]. Merkle trees, which were introduced by Ralph Merkle in his 1979 

doctoral dissertation and later patented in 1982, are a hash tree structure in which every 

terminal leaf contains a label that is the hash of a data block, and every parent leaf contains 

a hash of all of its child leaf labels [85], [86]. Merkle trees allow for rapid verification of 

which tree branch contains a given data block. A conceptual diagram of a Merkle tree is 

given in Figure 1.  

Incorporation of Merkle trees for timestamping rather than relying solely on linear 

hash chains allowed for considerably faster traversing of the linked timestamp data 

structure to verify the presence of a given timestamp. It also reduced the amount of memory 

necessary to store timestamp ledgers. The Merkle tree data structure would later become 

central to the digital transaction ledger data structures that underpin blockchain technology.  
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Figure 1. A Conceptual Diagram of a Merkle Tree. Source: [87]. 

1. Bitcoin 

In 2008 these previously parallel and occasionally overlapping trajectories of 

cryptography innovation were combined by Satoshi Nakamoto into the Bitcoin 

cryptocurrency protocol. The features of the protocol were laid out in Nakamoto’s 

whitepaper [88]. Within the protocol the currency unit, or coin, is defined as a chain of 

digital signatures. Public Key Cryptography and the SHA-256 hashing algorithm are used 

to cryptographically secure transactions between parties.  

In order to prevent double-spending, transactions are timestamped in Bitcoin’s 

protocol using a linked timestamping distributed ledger approach inspired by Haber and 

Stornetta. Consensus on additions of timestamps to the distributed ledger is achieved using 

Hashcash-like protocol that incorporates a Proof of Work in which network participants 

find the correct nonce needed to match a provided SHA-256 hash. The transaction histories 

are stored in a Merkle tree data structure in each block’s header. This approach effectively 

uses economic resources to limit the number of user identities and prevent both takeover 

of the system and double spending activity. The implementation of the protocol also 

supports a non-Turing-complete scripting language called Script [89]. 
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Although Bitcoin was architected to support a digital currency, soon after its release 

a number projects began exploring use of Bitcoin’s blockchain as a basis for other digital 

applications. For example, Namecoin, a Bitcoin-based distributed Domain Name System 

(DNS), was launched in 2010 [90]. Efforts like Namecoin to utilize Bitcoin as the basis for 

new protocols centered on specific asset types were followed by attempts to use Bitcoin as 

the basis for protocols that supported multiple asset types.  

One such example was the MasterCoin project that launched in 2013. MasterCoin 

sought to create a Swiss Army Knife protocol that offered support for multiple different 

digital asset transactions, each with their own unique asset specifications [91]. While 

offering a much broader support for digital asset transactions than previous protocols, this 

approach had the drawback of not being generalizable and not allowing users to define 

their own assets [92]. Additionally, scaling difficulties were a persistent issue encountered 

by developers of Bitcoin-based blockchain applications [93]. For example, running 

applications on top of the Bitcoin blockchain can require computationally expensive back-

tracing of Merkle Trees to determine transaction histories [94]. 

2. Ethereum 

To escape the challenges of using the Bitcoin blockchain as a foundational layer 

for higher layer software, Vitalik Buterin created the Ethereum protocol in 2014 and 

launched it publicly in 2015 [95]. Ethereum supports Turing-complete scripting languages 

that generalize the possible interactions between digital assets defined by the user [96]. The 

code written to define assets and to govern the interaction between them is called a smart 

contract. These can be financial contracts but can more broadly include any blockchain-

based interaction between assets that is mediated by code [97]. Ethereum’s support for 

smart contracts has made possible the application of blockchain technology to the broad 

range of applications being explored today. The BlockGrid prototype runs an Ethereum 

blockchain, and the features of the Ethereum protocol necessary to understand its function 

are described in greater detail in Section H. 
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C. TYPES OF BLOCKCHAINS 

There are three fundamental types of blockchain with regard to restricting user 

access to the blockchain and applying different privileges for users. These three blockchain 

models are public, private, and permissioned. Some blockchain protocols support all three 

access models, while others support only one or two options. 

1. Public 

Public blockchains have no restrictions on user access and assume no trust between 

network participants. Any user with sufficient resources can participate in the consensus 

mechanism for adding blocks to the chain and any user can execute transactions [98]. 

Public blockchains can be accessed from the open internet as well. Perhaps the most 

recognizable example of a public blockchain is Bitcoin. 

2. Private  

A private blockchain is only accessible to a defined set of members. A centralized 

authority is required to maintain the access list [99]. Private blockchains are often adopted 

for internal applications specific to an organization. The network infrastructure for a private 

blockchain may therefore be isolated from the public internet, although it need not 

necessarily be.  

The access restriction making a blockchain private can be achieved in several ways. 

One way is through physical isolation within network hardware infrastructure. Another 

manner of achieving restricting blockchain access is through logical isolation within virtual 

network infrastructure, as is common in the cloud.  Access restriction can also be 

implemented in the blockchain protocol’s software. Many blockchain protocols known 

primarily for their widely used public chains also support creation of private blockchains 

for development purposes. Ethereum is one such protocol, and the BlockGrid prototype 

runs a private Ethereum blockchain on its network. 
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3. Permissioned  

Permissioned blockchains offer an intermediate level of access control. Typically, 

permissioned blockchains will allow any user to join. However, a permissioned blockchain 

supports the ability to engineer different user roles and assign them different permission 

levels [100]. The permission features can be applied to both public and private blockchains. 

One of the most well-known permissioned blockchain protocols is Hyperledger Fabric, an 

open source blockchain framework that allows for considerable customization in its 

blockchain implementations [101]. 

D. BLOCKCHAIN DATA STRUCTURE BASICS 

To appreciate how blockchains operate, an understanding of the basic features of a 

blockchain’s data structure is required. The Bitcoin data structure will be used as an 

example. Entries to a blockchain’s distributed ledger are cryptographically secured and 

added in cotemporal groupings called blocks. A block data structure typically consists of 

several header fields and a list of the encrypted ledger entries. Within a blockchain 

individual blocks are identifiable by a hash of the block’s header that is included as a header 

field. The linking of blocks into a chain, or blockchain, is accomplished by inclusion of 

another header field that contains the identifying hash of the previous block.  

In a conventional blockchain implementation such as Bitcoin, individual 

transactions within the block are also referenced by a Merkle tree that contains the hashes 

of all transactions in the block. As explained in Section B earlier in the chapter, a Merkle 

tree is a version of a tree data structure in which every node stores the hash of the hashes 

of its children, which enables searching and content verification. The hash of the Merkle 

tree’s root, or root hash, is usually included as a block header field. Block headers typically 

contain a timestamp field as well.  

A conceptual diagram of Bitcoin’s blockchain data structure is given in Figure 2. 

As Figure 2 shows, in addition to the previously mentioned header fields that are common 

to most blockchains, Bitcoin blocks also have header fields for a nonce and target difficulty 

value that are used for in Bitcoin’s Proof of Work consensus algorithm. The target 

difficulty is a four-byte value that sets a maximum length of the block’s header hash. This 
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in turn leaves a number of leading zeroes in the header field that sets the difficulty of the 

Proof of Work challenge for the protocol’s consensus mechanism. The nonce is an arbitrary 

number used to make a unique hash value for the Proof of Work challenge. The winner of 

Bitcoin’s Proof of Work challenge determines a nonce that yields a resultant hash less than 

or equal to the length of the target difficulty value; i.e., a hash with at least as many leading 

zeros as are present in the target difficulty value header field. 

 
Note: In the Merkle tree portion of the diagram (in the lower right-hand corner), H stands for Hash and Tx 
stands for transaction. For example, H12 stands for the hash of child node transaction values Tx1 and Tx2. 
The arrows indicate the direction of dependency, with parent hash values depending on the values of child 
nodes. 

Figure 2. A Conceptual Diagram of the Bitcoin Blockchain Data Structure. 
Adapted from [102]. 

E. APPROACHES TO BLOCKCHAIN CONSENSUS 

Updates to a blockchain require a consensus algorithm to ensure that all of the 

blockchain network’s nodes maintain identical copies of the distributed ledger. A 

consensus algorithm allows broadcasted ledger updates to be trusted as valid without the 

nodes of the blockchain network trusting one another. The three most common consensus 

algorithms are: 
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1. Proof of Work  

Proof of work was the initial basis for consensus used in blockchains and remains 

the most widely used type of consensus algorithm today. In a Proof of Work consensus 

algorithm, users are required to provide a solution to a computationally difficult math 

problem in order to have the right to commit new blocks to the blockchain [103]. Users 

that engage in this Proof of Work computation to gain block-committing privileges are 

called miners.  

Blockchain protocols that use Proof of Work typically have miners compete against 

one another for the right to append each new block. The competitions involve having the 

miners race to solve the same math problem, with the miner that can demonstrate Proof of 

Work the fastest winning the right to commit a new block. A financial reward in the form 

of the blockchain protocol’s cryptocurrency is typically given to the competition winner to 

incentivize participation. The newly appended block is then broadcast to the other nodes 

in the system that verify the addition and add it to their copy of the distributed ledger.  

a. Power Consumption Concerns 

As Proof of Work-based blockchain protocols like Bitcoin and Ethereum have 

grown in scale, the electrical power required to support the computation needed for Proof 

of Work challenges has grown to the point that it is now the subject of environmental 

concern [104]. Recently, for example, Bitcoin power usage reached the level of small 

industrialized nation states such as Switzerland [105]. With Ethereum usage growing as 

well, power consumption challenges are expected to continue to escalate [106]. This issue 

has inspired research into alternative consensus mechanisms that have a lower 

computational burden and environmental impact [107]. 

2. Proof of Stake 

Proof of stake is a type of consensus algorithm that has significantly lower 

computational costs than Proof of Work [108]. In Proof of Stake, proof of access to the 

cryptocurrency of the system is what confers power in the consensus-making process [109]. 

In a typical Proof of Stake approach, an account willing to dedicate a portion of its 
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cryptocurrency to acquiring mining capacity will be conferred a proportional opportunity 

to commit new blocks to the blockchain. The proportion of mining capacity granted usually 

translates to the frequency level at which the account is enabled to commit blocks to the 

chain [110]. For example, an account with twice the amount of cryptocurrency allocated 

for mining will be conferred the opportunity to commit blocks to the chain at double the 

frequency. 

While Proof of Stake is not yet widely adopted, some believe that it could become 

the predominant consensus mechanism for blockchains in the near future. Ethereum, for 

example, has announced plans to switch to Proof of Stake as its primary consensus 

mechanism [111]. In November 2020, Ethereum began allowing its mainchain users to 

purchase stakes in a new Ethereum Proof of Stake blockchain that is expected to initiate in 

December 2020 and run parallel to the Proof of Work main chain until a full switchover is 

made. The date of the full switchover that has yet to be determined [112]. 

3. Practical Byzantine Fault Tolerance  

Practical Byzantine Fault Tolerance (PBFT) is another type of consensus algorithm 

that avoids the computational costs of Proof of Work. First introduced by Liskov and 

Castro in 1999, PBFT optimizes for speed with an approach that has four basic phases of 

execution given a defined upper bound on the fraction of malicious nodes in the system 

[113]. In most blockchain implementations, this malicious node threshold is set at one third 

the number of nodes in the blockchain network. Consequently, consensus is considered 

achieved when there is agreement between greater than two thirds of the system’s  

nodes [114].  

In phase 1 of PBFT, a new block is submitted for validation to a node that has been 

assigned ‘primary node’ status within the network. In phase 2, the primary node broadcasts 

the validation request to the rest of the nodes in the system. In phase 3, all nodes perform 

the validation computation and return their output. In phase 4, the returned outputs are 

evaluated and a block is accepted as valid once the number of identical returned values is 

high enough to ensure the malicious node threshold has not been surpassed. Since for most 

PBFT protocols the malicious node threshold is one third of the total number of nodes in 
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the network, the number of identical replies required for validation is two thirds of the total 

number of nodes plus one [115]. 

While PBFT requires less computation than Proof of Work, it also has a large 

amount of communication overhead that can cause scaling issues [116]. Consequently, 

PBFT is most commonly used for custom blockchain implementations where the number 

of nodes is small, rather than global public blockchains such as Bitcoin or Ethereum. 

Examples of blockchain protocols that support PBFT are HydraChain, Hyberledger Fabric, 

and Corda [117]–[119]. 

F. ADDITIONAL BLOCKCHAIN FEATURES 

1. Smart Contracts 

Smart contracts are computer programs that govern interactions between digital 

assets on a blockchain. Digital assets can be anything described in code and assigned to a 

user [120]. Digital assets can range from purely digital constructs, like video game scores, 

to records of ownership for real-world items, like insurance policies and property deeds 

[121]–[123]. 

Smart contracts can be written to execute automatically in response to conditions 

prescribed in the smart contract’s code logic. For example, a smart contract could be 

written to execute a stock purchase every time the amount of currency in a blockchain 

account rises above a certain threshold. Smart contracts can also be written to have 

functions that blockchain users call via blockchain transactions to execute. The smart 

contract deployed on the BlockGrid prototype, which allows a user to increment and 

decrement token values for accounts, is a simple example of this style of smart contract. 

In most implementations, smart contract code resides as its own addressable entry 

on the blockchain’s distributed ledger and executes within a decentralized runtime 

environment supported by the blockchain protocol [124]. However, each blockchain 

protocol has its own method of implementing smart contracts and their associated 

execution environment. Ethereum’s approach is introduced in Section G.  
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2. Decentralized Applications 

Decentralized applications, or DApps, are software applications with a web-facing 

frontend and blockchain backend that leverages smart contracts for computation [125]. 

DApps allow users to interact with blockchain-based software without having a user 

identity within the blockchain network. Users merely have to interact with the web 

application frontend, with no obligatory participation in the blockchain that supports the 

application on the backend. 

While DApps can enable users to interact with blockchain-based digital assets, they 

can also utilize a blockchain backend for storage of conventional data. In such DApps, a 

blockchain’s distributed ledger replaces the data storage role that databases have in 

supporting conventional applications [126]. The blockchain backend of DApps also can 

confer resiliency and latency benefits to the application if deployed on a large public 

blockchain such as Ethereum [127]. Despite their potential benefits, DApps have not yet 

been widely adopted and are not presently a serious rival to conventional web application 

implementations.  

3. Forking 

Forking is a procedure in which the linear continuity of a blockchain is broken and 

two versions of the blockchain proceed from their departure point with different transaction 

histories and operational procedures. There are two types of forks that can be made: soft 

forks and hard forks. In a soft fork the changes that are made to a new branch of the 

blockchain are backwards compatible and historical continuity is maintained with the pre-

fork chain [128]. In a hard fork, however, a new branch has no backwards compatibility 

with the chain prior to the forking event. A new branch of a hard fork essentially starts the 

blockchain anew, with the forked chain’s first block serving as a new starting block [129]. 

To fork a blockchain a majority of the miners must consent to the forking 

procedure. A decision to fork will typically be made if a majority of the miners believe it 

is in their best interest to do so. For example, following a large-scale cyber attack in 2016 

the Ethereum blockchain issued a hard fork [130]. Forking can also be executed 
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maliciously as a type of cyberattack, but this requires the attacker to gain a majority of the 

system’s mining power first [131]. 

4. Scalability Issues and the Sharding Solution 

A persistent issue that threatens to limit the applicability of blockchains to real 

world use is scalability. A potential solution to the scalability issue is sharding. Sharding 

is a style of database architecture that takes inspiration from horizontal partitioning, in 

which either the rows or columns of a database are separated into different tables called 

partitions or shards [136]. In this approach, each partition contains the same scheme of row 

or column types, but contains a different and unique set of rows or columns. A conceptual 

diagram of partitions is given in Figure 3. 

The primary consequence of adopting a sharding approach to a blockchain’s 

distributed ledger is that not every node in the blockchain network is required to download, 

verify, and retain a full copy of the system’s ledger. Rather, each node gets a shard of  

the ledger and is only responsible for downloading and verifying a small subset of 

transactions [137].  

Sharding reduces both the memory usage and the computational load of updating a 

distributed ledger. This allows a blockchain to continue to operate efficiently at large scales 

and creates a lower energy consumption footprint for the network. Additionally, with 

sharding the workload is randomly distributed which supports system resilience in the face 

of node failures or compromises.  

However, sharding requires a much more complicated networking approach to 

support the consensus process. With a sharded distributed ledger, consensus algorithms 

require subnetworks and the ability to communicate and quickly switch between  

them [138]. Where conventional Proof of Work consensus approaches utilize broadcasting 

across a flat network of nodes to communicate updates everywhere, a sharding network 

approach requires broadcasting updates only to those subnets maintaining the portion of 

the ledger being appended. 
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Figure 3. Conceptual Diagram of Database Partitions Used in Sharding 

[139]. 

5. Directed Acyclic Graph (DAG) 

A DAG is a graph structure consisting of vertices connected by directional paths 

with no possible path combination that would create a cyclical route. DAG’s can be 

traversed without risk of falling into a perpetual looping behavior. This makes them 

convenient as a model for processes that require the property of guaranteed halting. Figure 

4 shows a conceptual diagram of a DAG.  
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Figure 4. A Conceptual Diagram of a DAG. Source: [140]. 

DAG’s have multiple applications in the context of blockchain technology. One, 

made use of by Ethereum, is as a fixed resource to facilitate Proof of Work challenges 

within a blockchain protocol’s consensus mechanism. In Ethereum’s Ethash consensus 

mechanism, miners are required to calculate a nonce-dependent subset of a DAG in order 

to show proof of work [141]. This Proof of Work mechanism was chosen to make Ethash 

more resistant to the advantages that miners can gain from using specialized mining 

hardware. 

Another increasingly common application of DAGs is as an alternative distributed 

ledger data structure. In contrast to the conventional linearly linked data structure of 

blockchains, in a DAG distributed ledger multiple network nodes can be connected to one 

another [142]. This can allow connected nodes to verify one another, increasing transaction 

speeds and eliminating the need for Proof of Work and its attendant transaction fees [143]. 

However, DAG distributed ledgers require implementation of some centralized authority 

features to achieve security and are therefore more susceptible to some types of 

cyberattacks [144].  

G. ETHEREUM PROTOCOL OVERVIEW 

In order to understand how the BlockGrid prototype functions, it is necessary to 

understand the unique features of the Ethereum protocol. Ethereum is a blockchain protocol 

centered around smart contracts. In Ethereum, blockchain accounts can hold assets and 
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memory as well as code. An account is considered to be a smart contract when it contains 

code that specifies the conditions of interaction between assets [145]. 

In Ethereum, smart contracts adhere to a composability property that allows other 

applications to reference their outputs without requiring approval or consent. This allows 

the output of one smart contract to be a term within another smart contract [146]. For 

example, if one smart contract defines a property title asset, another smart contract could 

be written that confers an insurance policy asset pending acquisition of a property title 

defined by the original contract. Decentralized financial applications on Ethereum such as 

digital currency exchanges make heavy use of this property.  

1. Ethereum Consensus 

The Ethereum protocol uses the Ethash consensus algorithm, which was initially 

called Dagger Hashimoto [147]. In addition to the DAG-based Proof of Work consensus 

mechanism described in Section F, Ethash requires that a tax, called Gas, be paid from a 

user’s account into the system whenever any transaction, whether an Ether currency 

transfer or a smart contract function, is carried out. This feature of the protocol 

disincentivizes users from running computationally expensive or non-halting programs that 

overwhelm the computational capacity of the devices in the network [148].  

The quantity of Ether currency that must be paid in the Gas tax by a user for a given 

transaction depends on the amount of computation required to complete the transaction. 

The Gas tax is then transferred to the mining node accounts as part of the compensation to 

the miners for performing the Proof of Work required to add new blocks to the chain. When 

the blockchain is instantiated, the miners are able to select an upper limit for the amount of 

Gas that can be charged per transaction [149]. Due to the manner in which the Ethereum 

protocol incentivizes miners, this declared upper Gas limit effectively determines the 

blockchain’s maximum block size [150]. Initiators of blockchain transactions are also able 

to specify the maximum amount of Gas that can be paid for their transaction to be computed 

[151]. This means that if the maximum amount to be paid is less than the minimum Gas a 

miner is willing to accept, the transaction will not go through. In other words, the higher 

the Gas paid by the transaction initiator, the greater the miner’s reward. This in turn means 
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that miners are incentivized to compute and add those transactions for which the transaction 

initiators have set the highest Gas limits. Transaction initiators that offer a low maximum 

Gas limit risk having miners refuse to add their transactions to the blockchain. 

a. Uncle Blocks 

Uncle blocks are created when two blocks are successfully mined and committed 

to the blockchain’s ledger at the same time [132]. This scenario is resolved in Ethereum’s 

protocol by adding the block submitted by the miner that won the harder Proof of Work 

competition for their block, known as POW share [133]. The losing block then becomes 

an ‘uncle block’ that is retained by the next seven blocks of the growing chain [134]. 

Ethereum confers an Ether currency reward on the miners of uncle blocks along with those 

that are added to the blockchain in order to incentivize miners to maximize their output and 

reduce block times for the system [135]. 

b. Miner Incentives and Downstream Consequences  

Another noteworthy feature of Ethash is that the protocol incentivizes miners to 

constantly compete with one another to add new blocks to chain irrespective of any 

transaction activity between users. As Ethash rewards winners of the Proof of Work 

competition with new Ether currency regardless of whether the blocks that winners add to 

the chain contain transaction data, the system’s mining nodes continually race to add to 

new blocks and grow the blockchain independent of transaction frequency [152]. In 

practice, this means that empty blocks are continually added approximately every twelve 

seconds to the system’s blockchain between transactions and that the size of the blockchain 

grows longer as the system continues to run.  

The mining of empty blocks and corresponding growth of the blockchain does not 

have implications for the system’s frequency of block mining, or block time. Ethash has a 

default automatic Proof of Work difficulty-adjustment feature that attempts to modulate 

algorithm difficulty so that new blocks are added every twelve seconds [153]. Additionally, 

when the blockchain is initiated, parameters for the blockchain’s block-size (the Gas level) 

and algorithm difficulty can be set during the initial deployment to affect block time as 

desired [154].  
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c. State Trie Updates and Downstream Consequences  

It should be noted that the increasing size of the blockchain and the unremittent 

addition of empty blocks do have significant implications for the node synchronization 

process time, which in turn influences the system-wide effective transaction time. In 

addition to updating their copy of the ledger’s new blocks with each addition, nodes must 

also perform a “state trie download,” which requires each node to update a state trie data 

structure that cryptographically links all data for the blockchain’s nodes [155].  

A trie is a form of tree data structure that is optimized for data retrieval in which 

connections between parent and child nodes form an associative data structure of their 

contents [156]. In the Ethereum protocol the state trie data structure is a combined form of 

a Merkle tree and a Patricia trie. A Merkle tree is a hash tree data structure in which each 

parent node contains a hash of its child nodes’ hashes. A Patricia trie (also known as a 

prefix or radix tree), is a trie structure in which the paths of the trie connect nodes with a 

common string prefix. An example Patricia tree is depicted in Figure 5.  

The Ethereum state trie is referred to as a Merkle Patricia trie because its nodes 

contain a sequence of child node hashes that are linked in the trie by a common hash prefix 

[157]. The hash component is reminiscent of a Merkle tree, but the hashes are linked in a 

Patria trie style rather than each node containing hash of the child node hashes.  

In Ethereum the state trie is used to validate that the blockchain’s account values 

have not been tampered with since the last update [158]. The longer the blockchain grows, 

and every time a blockchain update is required due to the addition of new empty blocks, 

the more computation and time is required for each node to synchronize with the most up 

to date copy of the ledger and the state trie. This leads to increases in the time required to 

complete a transaction on the blockchain, as the results of the new block additions are not 

visible to the nodes in the system until the node has fully verified the blockchain ledger’s 

updated version as part of consensus mechanism.  
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Figure 5. An Example Patricia Trie in Which the Paths through the Trie 

Connect Nodes with a Common Prefix. 

2. The Ethereum Virtual Machine  

To understand how smart contracts function within an Ethereum blockchain 

network, it is essential to understand some features of the Ethereum Virtual Machine 

(EVM). The EVM is a software-defined runtime environment conceptually similar to 

Java’s Java Runtime Environment (JRE) that allows nodes to execute the Ethereum 

bytecode of smart contracts. Both mining nodes and passive nodes process the smart 

contract code in their EVMs. The EVM allows the node to execute smart contract code 

independent of the node’s host OS and hardware [159]. A conceptual diagram of the EVM 

and its functionality is shown in Figure 6. More details regarding the EVM can be found 

in the book “Mastering Ethereum: Building Smart Contracts and Dapps” by Andreas 

Antonopoulos and Gavin Wood [160]. 
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Figure 6. The Ethereum Virtual Machine (EVM) Architecture and Execution 

Context. Source: [160]. 
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3. Ethereum Node Accounts 

Within the Ethereum protocol an account is fundamentally an allocation of memory 

within the state trie of the blockchain that is assigned an address and which links users with 

Ether currency balances and blockchain assets. Accounts are stored as a Recursive Length 

Prefix (RLP) data structure with four elements that represent an account state σ for a given 

address, a, or σ[a] as shown in Figure 7 [161]. As Figure 7 illustrates, an account is assigned 

a 20-byte address. Within the account data structure, the address is followed by a nonce, 

which is a scalar value equal to the number of Ether currency or smart contract transactions 

initiated by the account. The nonce is followed by the account’s Ether currency balance. 

The account balance is followed by a storageRoot Hash, which links to its associated assets.  

 
Figure 7. Ethereum Account Data Structure. Adapted from Wood [162]. 

Associated assets can be completely digital, such as identification records, or a 

digital record linked to ownership of an asset in the real word, such as a property deed 
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[163], [164]. These assets are encoded in a Merkle Patricia trie that is hashed to generate 

the storageRoot Hash [165]. The last element of an Ethereum account is the codeHash, 

which is a hash of the account’s EVM code. As the Ethereum Yellow Paper by Wood 

explains, the EVM code for an account is the code that is executed to return and adjust 

account information if the account’s address is referenced as part of a blockchain 

transaction [162]. 

Unlike the other elements of an account, the account’s EVM code cannot be 

changed so the codeHash for a given account is immutable. Within the complex structure 

of the Ethereum blockchain, accounts are linked by the state trie for the blockchain, which 

is downloaded by every node and hashed as part of each block’s header. A full diagram of 

the Ethereum blockchain structure attributed to Lee Thomas, which is too large to include 

in this document as a figure, is included within the CoinMonks’ online article on Ethereum 

primitives [166].1   

4. Sequence of Events in a Smart Contract’s Execution 

To execute a smart contract, the user must submit a blockchain transaction that 

includes the following elements: 

(1) the blockchain address of the smart contract  

(2) the requested smart contract function call and associated arguments 

(3) the blockchain address of the account making the function call (which also 
pays the associated Gas tax) 

(4) the blockchain address for the recipient account whose digital asset or 
currency amount is to be queried or modified. 

Once the smart contract transaction has been signed with the user’s private key, this 

transaction data is submitted to the blockchain’s transaction pool where it can be  

accessed by miners assembling the next block. 

 
1 A file copy of this diagram has been provided for reference in the supplemental materials for this 

thesis, which can be found along with the thesis in the Naval Postgraduate School’s “Calhoun” digital 
research and institutional materials repository [53]. 
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The mining nodes competing to add the next block to system’s blockchain execute 

the smart contract functions within their node’s Ethereum Virtual Machine (EVM) and 

update their copy of the blockchain ledger to reflect the outcomes of the function call that 

was made by the user in the smart contract transaction. When the mining nodes finish 

running all of the transactions in the transaction pool needed for the next block to be added 

to the system’s blockchain, all of the other nodes in the system execute the smart contract 

code within their respective EVMs as part of the block verification process in the Ethereum 

protocol’s consensus algorithm. The mining node that wins the Proof of Work competition 

then commits the new block to the blockchain, the Gas tax for the computation is assessed 

against the account that submitted the transaction, the Gas tax is used to compensate the 

miner’s account, and the new state of the smart contract is reflected on every copy of the 

blockchain’s ledger, which is duplicated on each node throughout the blockchain network.  

5. Future of Ethereum 

Ethereum is currently the second most widely used blockchain protocol behind 

Bitcoin. It is presently undergoing development for several major upgrades with the 

gradual deployment of Ethereum 2.0, which will implement Proof of Stake and sharding 

[167]. The deployment of Ethereum 2.0 is set to take place over three phases [168]. While 

the plan for Ethereum 2.0’s rollout has been in place since shortly after Ethereum’s initial 

launch in 2015, it has taken years to implement the desired protocol changes [169]. As of 

October 2020, the first phase of Ethereum 2.0, phase 0, is still in testing and yet to be fully 

deployed [170]. Once Ethereum 2.0 is fully available, it may be preferable to deploy on 

future BlockGrids as its Proof of Stake consensus algorithm and sharding implementation 

will likely lead to faster transactions on a BlockGrid’s private Ethereum chain. Using 

Ethereum 2.0 may also have greater educational value and relevance for students once the 

public global Ethereum blockchain is running Ethereum 2.0. 

In phase 0 of the Ethereum 2.0 rollout, a Proof of Stake network is established and 

users are provided with the option to utilize Proof of Stake. This Proof of Stake network 

makes use of the Casper FFG consensus algorithm. Casper FFG combines the two most 

common approaches to consensus algorithm design, 50% fault tolerance but dependent on 
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network synchrony and 33% fault tolerance but capable of handling asynchrony [171]. 

Casper FFG utilizes a combined approach in which if conditions are such that there is 

greater than 50% node fidelity and adequate network synchrony, a chain consensus 

approach is taken. However, if network synchrony is compromised, the last few blocks in 

the chain prior to the compromise are replaced, but anything finalized by the asynchronous 

parallel protocol is added [172]. This creates a best-of-both-worlds scenario in which the 

consensus algorithm is able to handle a broader range of network conditions and optimize 

its performance.  

 In Ethereum 2.0 phase 1, sharding is added to data storage within the Proof of 

Stake network. Phase 1 does not implement sharding of computation, so during this period 

smart contracts will continue to operate on the Proof of Work Ethereum 1.0 blockchain. 

During phase 1 users will be able to be Proof of Stake validators and to store data needed 

for other blockchain applications within the Proof of Stake network [173]. 

In Ethereum 2.0 phase 2, a switchover to the Proof of Stake network is made and 

the Proof of Work blockchain is deprecated. As of 2020, phase 0 is nearly fully 

implemented and is actively undergoing security auditing and testing [174]. 

H. COMMON BLOCKCHAIN CYBER ATTACK SCENARIOS 

Despite their cybersecurity features, there are many ways that a blockchain can be 

compromised. Saad et al. provide an extremely thorough review of the full spectrum of 

currently known attacks against blockchains [175]. Three of the most well-known attacks 

against blockchains are described below. An understanding of these attacks is foundational 

to understanding the national security implications of blockchain technology. A review of 

these attacks may be usefully incorporated into a course curriculum on blockchains.  

1. 51% Takeover Attack (n/2 attack) 

Perhaps the most feared and consequential attack scenario for blockchains is one in 

which an adversary gains control of greater than 50% of the mining power in a blockchain 

network [176]. As described in Chapter 1, the asymmetrical global distribution of mining 

power for the most widely used public blockchains has elevated concerns about the 
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potential for these types of attacks. Successful n/2 attacks have already occurred several 

times within less widely used public blockchains such as GHash.IO and Bitcoin Gold 

[177], [178]. Once the 50% threshold of mining power is exceeded, there are a number of 

destructive things that the adversary is empowered to do [179]. 

First, the attacker may arbitrarily block undesired transactions from being verified 

and added to the blockchain [180]. Second, majority control allows transactions to be 

reversed. This, in turn, can enable double spending. Third, and perhaps most critically, the 

attacker can execute a fork of the blockchain and only add new blocks that the attacker 

approves of [181].  

2. Selfish Mining Attack 

Selfish Mining is an attack approach in which miners try to increase their mining 

power rewards by refusing to publish the blocks that they mine [182]. Taking this approach 

allows a group of selfish miners to create a parallel branch of the blockchain containing 

only the transactions they wish to include [183]. If the selfish miners are able to achieve a 

chain length that exceeds the chain forged by the network’s honest miners, they can attempt 

a hostile fork of the blockchain. If a group of bad actors have already successfully executed 

an n/2 attack, it is trivial for selfish mining and a subsequent hard fork to be carried out. 

Even if a pool of selfish miners is unable to achieve a hard fork, they can still disrupt 

network performance by attempting to invalidate block additions from honest miners [184]. 

3. Eclipse Attacks 

An eclipse attack allows an attacker to abuse the peer-to-peer features of the 

blockchain network to exclude or mislead targeted victim nodes that accept incoming 

connections [185]. The attack is carried out by an adversary that controls a sufficient 

number of IP addresses within the network. The adversary monopolizes all connections to 

and from the targeted node, in effect ‘eclipsing’ it [186]. It is effectively a Man-in-the-

Middle (MITM) attack within a blockchain network. While the level of control imparted 

to a successful attacker also allows for DoS attacks, typically an attacker will maximize the 

benefit of an eclipse attack with MITM manipulations of data within the blockchain 

network. 
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Eclipsing a victim node is most commonly achieved by maliciously filling the 

victim node’s peer tables with IP addresses controlled by the attacker through repetitive 

connection attempts to the victim node [187]. Once the peer tables are full of attacker IPs, 

if the victim node restarts, it will connect to only the attacker’s IPs. Attackers can try to 

force restarts with other attacks or simply wait for a node to restart of its own volition. 

Once the eclipse is achieved, the attacker can then either exclude the victim node from 

participation in the network or feed the victim node misleading information. This can be 

carried out discretely so that the victim node is unaware it has been eclipsed. Eclipse attacks 

can also be carried out on multiple victim nodes simultaneously if the attackers control a 

sufficient number of IP addresses within the network.  

A successful eclipse attack can enable further attacker capabilities. For example, if 

enough eclipsed nodes are effectively taken out of the mining pool, an eclipse attack can 

be leveraged to carry out an n/2 attack. This can occur even if the attacker possesses less 

than half of the mining power initially because, once a sufficient number of eclipsed nodes 

are unable to mine, the attacker’s percentage of remaining mining power can be above 

50%, thus providing effective majority control. An eclipse attack can also allow the 

attacker to effectively partition the blockchain network [188]. This, in turn, can allow the 

attacker to engage in double-spending, as some parties are blocked by the effective 

partitioning from seeing the double spending activity. 

I. CHAPTER SUMMARY 

This chapter provided a background on blockchain technology. The definition of 

blockchain, as well as the history of blockchains were reviewed. Key blockchain 

components and concepts were detailed, including features of the Ethereum protocol used 

for the BlockGrid prototype. The chapter also described several types of known blockchain 

cyberattacks. The next chapter provides the system requirements, CONOPS, and an 

overview of the BlockGrid demonstration. 
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III. SYSTEM REQUIREMENTS, CONOPS, AND USE CASES 

This chapter defines a cyber-physical blockchain technology demonstration 

platform called a BlockGrid and provides an overview of its intended functionality. The 

chapter describes high-level system requirements, fundamental system components, and 

the system’s intended use.  

A. BLOCKGRID—A DEFINITION 

A BlockGrid is defined here as a blockchain-controlled cyber-physical system in 

which smart contracts on the blockchain control the behavior of a distributed set of isolated 

or cooperating circuits. This concept takes inspiration from the large number of available 

tutorials describing how to implement blockchain nodes on microcomputers [189]–[192]. 

To meet the need for a cyber-physical blockchain demonstration platform, a BlockGrid 

creates a private blockchain system out of these microcomputer-blockchain 

implementations and leverages attached electrical circuits with visual elements to visualize 

the steps involved in the blockchain’s operation for observers. 

B. SYSTEM REQUIREMENTS 

The purpose of a BlockGrid is to enable demonstration of blockchain technology 

as applied to physical systems in educational environments. A BlockGrid achieves this 

purpose by using smart contracts to manipulate the platform’s circuits in a manner that 

creates a visual demonstration of blockchain technology for observers. The smart contracts 

on the BlockGrid’s blockchain control the flow of power from an external power source, 

such as a wall outlet, to this “grid” of circuits, which consume the electrical power required 

to perform a physical task (i.e. “smartgrid function”) such as lighting, mechanical 

movement, or multi-media playback. The distributed nature of a BlockGrid’s blockchain 

allows a system operator to activate smartgrid functions from anywhere in the network, 

creating a blockchain-mediated smartgrid or “BlockGrid.” General system requirements 

are described here.  
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(1) Small Physical Footprint 

The system should be small enough in scale that it can be used in a classroom and 

transported between different teaching locations. Ideally, the entire system should be run 

locally so that students can observe all system components during a demonstration. The 

equipment required for the system should be small enough to fit on a desk.  

(2) Cyber-Physicality 

To facilitate concrete demonstration of blockchain technology, the BlockGrid 

should be associated with a cyber-physical system, in contrast to a purely digital one. 

Transactions that take place on a BlockGrid should have physical consequences that are 

visible to observers during demonstrations.  

(3) Network Functionality 

A BlockGrid must be compatible with the local network infrastructure at the 

demonstration site. Depending on facility conditions such as WLAN access, broadband 

access, and facility IT-security policies, different approaches can be taken to networking a 

BlockGrid. However, one way to avoid any possible incompatibility with local network 

infrastructure and to and maximize system portability between different demonstration 

environments is to run a BlockGrid on a totally isolated network.  

(4) Physical Durability 

As a system intended for use in classroom and laboratory environments, a 

BlockGrid should be resilient to common operational hazards as well as wear-and-tear. The 

system should be configured to be physically stable and its components minimally fragile. 

Durability should also inform choices of electronics, casing, and wiring.  

(5) Adaptability 

For optimal use as a demonstration platform, BlockGrid should be adaptable. It 

should be possible to modify a BlockGrid beyond its default configuration so the system 

can be used for alternative applications and demonstrations. To enable this, it is important 
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that the system permit incorporation of software and hardware elements suited to these new 

configurations. 

(6) Low Cost 

As the goal of a BlockGrid is to enable educators to demonstrate blockchain 

technology, the cost of the system should be kept as low as possible. Costs can be 

minimized through the use of inexpensive microcomputers as system nodes and by 

constructing the smartgrid from low-cost circuits. 

(7) User-Friendliness 

As some educators and students may be unfamiliar with one or more BlockGrid 

system components, the system should be as easy as possible for a novice to assemble and 

operate. This can be achieved through appropriate system design choices, as well as easy-

to-follow user guides. Constructing the system with widely used commercial off-the-shelf 

(COTS) hardware and software can also help in this regard.  

C. SYSTEM COMPONENTS 

The fundamental BlockGrid system components can be broken down into three 

main categories: hardware, software, and users. There are lots of potential choices to suit 

different environments and applications, many of which are detailed in Chapter IV. 

However, there are several key types of components common to all implementations.   

1. Hardware 

The first key hardware component for a BlockGrid is the system control unit (SCU). 

This is the device through which the user interfaces with the blockchain and executes smart 

contract transactions. It is also likely to be the device that performs the blockchain’s 

consensus algorithm, depending on the node devices chosen.  

The next most significant hardware components of a BlockGrid are the 

microcomputer network nodes. These computational devices act as nodes for the 

blockchain network. In order to create a cyber-physical system, these nodes must also run 
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the scripts that control the circuits of the smartgrid. Controlling the circuits of the smartgrid 

may also require that the nodes generate or gate the current that powers the circuits. 

Another hardware element of the system is its networking equipment. Depending 

on the network configuration, the type of equipment required can vary. For example, if the 

devices in the system can associate directly with local facility network, the system may not 

require any additional hardware to set up the blockchain network. Alternatively, if local 

hotspots are permitted at the demonstration facility, a network could be set up with only a 

laptop, a router, or cell phone. A fully isolated network, by contrast, might require Ethernet 

cables, a router, and a switch to connect all the system nodes. 

Finally, the system has microcomputer-attached circuits. These connect to the 

blockchain nodes and are controlled by smart contract transactions on the system. The 

microcomputer-attached circuits are vital for effective demonstrations as they contain 

visual elements that observers can witness changing in response to transactions on the 

blockchain during a demonstration. A conceptual depiction of all these hardware elements 

is provided in Figure 8. 

 
Figure 8. Illustration of BlockGrid Hardware Components. 
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2. Software 

There are several important software components of a BlockGrid. The most 

significant is its blockchain software. This software is installed on both the SCU and the 

system microcomputer nodes along with relevant application programming interfaces 

(APIs) to create the blockchain network.  

The SCU also relies on several other software components such as the SCU’s 

operating system (OS) and the smart contract development software. The latter includes 

the compiler for the programing language in which the smart contracts are written. 

Software is also installed within the SCU OS that interfaces with the blockchain and its 

smart contracts through APIs to monitor and execute transactions on the network.  

The system microcomputer nodes have software components as well. As with the 

SCU, each node has an OS. The nodes also run software that interfaces with the blockchain 

and its smart contracts through APIs. This software allows the nodes to respond to smart 

contract transactions on the blockchain network when they occur. Scripts that run locally 

on the node are also required to control the attached circuits. 

3. Users 

In a BlockGrid system, three user roles are envisioned. These are the administrator, 

instructor, and student.  

a. Administrator 

The system administrator configures and maintains a BlockGrid. Administrators 

assemble the system for use by instructors as well as students and provide technical support 

for system operation.  

b. Instructor 

Instructors teaching about blockchain technology may illustrate its application to 

cyber-physical systems by incorporating simple BlockGrid demonstrations or introductory 

lab exercises that use a BlockGrid. Instructors may also modify a BlockGrid for more 
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advanced demonstrations or guide students to use the BlockGrid as part of more complex 

laboratory exercises.   

c. Student 

Students use a BlockGrid to learn about blockchain technology. This may consist 

of observing the demonstrations provided by the instructor. Students may also set up their 

own BlockGrid, modify it, or use a BlockGrid for smart contract development as part of a 

course laboratory sessions or research.  

4. Definition of Active Entities within the BlockGrid Prototype  

As the BlockGrid Prototype is a simple implementation meant to be a starting point 

for the discussion of blockchain technology, it is important to clarify some features of the 

system.  

There are three fundamentally active entities within the BlockGrid prototype 

system. These are the user, the smart contract data structure, and the Raspberry Pi node 

LEDs. Their roles are clarified here. 

a. Operator 

The operator is the human user of the BlockGrid prototype. This can be an 

instructor giving a demonstration, a student using the prototype for lab work or research, 

or an administrator servicing the device. The BlockGrid prototype has been designed so 

that all blockchain and node activity is controlled and initiated by the operator. For 

example, the operator initiates all smart contract and blockchain transactions between node 

accounts. While the prototype contains two mining nodes and six non-mining nodes, all of 

the prototype’s nodes are controlled by the operator via the SCU VM.   

b. SmartSwitch Smart Contract Data Structure 

The SmartSwitch smart contract data structure is created by the source code of the 

the SmartSwitch smart contract. It is essentially a two-dimensional array of blockchain 

node account addresses and an associated integer representing the account’s SmartToken 
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balance. This data structure resides within the smart contract’s entry on the blockchain’s 

ledger. 

c. Raspberry Pi Node LEDs 

The BlockGrid Prototype’s Raspberry Pi node LEDs are pairs of red and green 

LEDs attached to each the system’s six Raspberry Pi nodes as part of a breadboard circuit 

powered and controlled by the Raspberry Pi’s GPIO (General Purpose Input Output) unit.  

D. CONOPS 

This section describes the conditions of operation for the BlockGrid prototype. 

1. Cyber-Physical Node States 

Within the BlockGrid Prototype there are two node types, mining nodes and passive 

nodes. The mining nodes reside within the SCU’s VM and perform the Proof of Work for 

the blockchain. The passive nodes reside on the prototype’s Raspberry Pi microcomputers. 

They update and maintain a copy of the blockchain’s ledger. The accounts for all nodes in 

the system, however, have equivalent ability to engage in blockchain transactions. While 

only the mining nodes accrue Ether currency independent of currency transfers, all node 

accounts can send and receive currency as well as participate in smart contract transactions. 

a. System Control Unit (SCU) 

The SCU runs two virtual mining nodes that compete with one another to perform 

the blockchain’s Proof of Work consensus algorithm. As the Ethereum blockchain protocol 

permits transaction-less empty block generation to incentivize miners on the main chain, 

these virtual miners are always working and adding new blocks to the blockchain whether 

or not the system operator initiates any transactions on the BlockGrid Prototype’s private 

chain. The SCU node accounts, therefore, experience a regular accrual of Ether currency 

with which they can engage in transfers to other node accounts. 

However, aside from mining role of the nodes it hosts, the SCU only facilitates user 

control of the system and does not have any smart contract-mediated cyber-physical state 

changes. The SCU allows the user to perform setup, perform administrative functions, and 
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to execute Ether currency and smart contract transactions from one interface. It does not, 

however, power LEDs as the Raspberry Pi’s do. Consequently, the SCU has no other 

defined cyber-physical states within the BlockGrid Prototype network as the default 

configuration prototype does not give the SCU any defined smartgrid functionality. 

b. Microcomputer Nodes 

The Raspberry Pi nodes in the BlockGrid Prototype have only two possible cyber-

physical states in the default configuration. These are the “red LED” state and the “green 

LED” state. Within the prototype each node functions independently; i.e., the cyber-

physical state of one Raspberry Pi node has no inherent consequence for the status of any 

other Raspberry Pi node within the system. However, the Raspberry Pi nodes can affect 

one another via blockchain transactions at direction of the SCU system operator. For 

example, the operator can execute Ether currency transfers between node accounts. The 

operator can also initiate SmartSwitch contract function calls from any Raspberry Pi node 

account that modify the SmartToken balance for other accounts, changing the recipient 

node’s red LED or green LED status. Aside from these blockchain transactions, the 

prototype’s default configuration does not establish any physical node interdependency. 

2. Node Events 

The only node events possible with the BlockGrid Prototype’s default configuration 

are the switching of power between the nodes’ red and green LEDs. These node events 

result from changes in the nodes’ SmartToken balance within the SmartSwitch contract 

residing on the system’s blockchain. These changes in SmartToken balance are created by 

the SCU operator via depositToken() and withdrawToken() SmartSwitch function calls. In 

future work more smartgrid functionality could be engineered into the nodes through the 

creation of more complex smart contracts or the construction of more advanced circuits 

attached to the Raspberry Pis. 

3. System Control 

The BlockGrid Prototype is controlled completely by the operator from the SCU 

interface. Changing node states can only be accomplished via transactions initiated 



45 

manually by the operator. The timing of these state changes is governed by the timing of 

system operator’s function calls.  

The timing is also affected by the size of the system’s blockchain. Due to the 

manner in which Ethereum protocol’s Proof of Work consensus algorithm incentivizes 

constant mining irrespective of transaction frequency, the size of the chain grows quickly. 

As this growth in the chain occurs, so too does the computational demand of node syncing. 

Since the Raspberry Pi’s have limited computational power, this can introduce fairly long 

delays once the number of blocks in the chain grows to order of thousands. With the 

Ethereum protocol automatically adjusting its difficulty to allow a block to be added 

approximately every 15 seconds, the blockchain length can cross the thousand block 

threshold at which the transaction delays become cumbersome in about 4 hours. From 

observation, a BlockGrid that has been running for over four cumulative hours can 

experience transaction delays of up to 2–3 minutes. Consequently, the blockchain has to 

be reset after every few uses to maintain demonstration-friendly transaction times. 

4. Power Flow within the BlockGrid Prototype 

The BlockGrid Prototype is fundamentally a blockchain-mediated grid of LEDs 

connected to Raspberry Pis. A blockchain-mediated system is one in which blockchain 

technology plays a controlling role in the system’s function. In the BlockGrid prototype, a 

blockchain is used to control the system’s LEDs through smart contract functions executed 

by the user. 

Given the role of decentralized computing in controlling the electricity flow to the 

prototype’s LEDs, the prototype can be considered an extremely simple form of 

blockchain-controlled smart grid (hence the name ‘BlockGrid’). However, unlike a real-

world smart grid, the microcomputer nodes of the system do not generate power or 

consume power from one another. Rather, all the microcomputer nodes of the prototype 

are powered by a conventional wall outlet. A smart contract on the prototype’s blockchain, 

called SmartSwitch, allows the user to control power flow to the prototype’s LEDs. 

This control results from SmartSwitch defining a SmartToken that can be deposited 

to or withdrawn from a node’s account. The number of SmartTokens in a node’s account 
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determines whether a red or green LED is powered on the node. If the number of 

SmartTokens for a node’s account is 0, the node’s red LED is powered on. If the number 

of SmartTokens for a node’s account is greater than 0, the node’s green LED is powered 

on. 

A flow chart explaining the control sequence governing power flow to LEDs of the 

prototype is provided in Figure 9. As shown in Figure 9, to start the power flow control 

sequence the user executes the SmartSwitch contract functions depositToken() or 

withdrawToken() to adjust the number of SmartTokens in a Raspberry Pi node’s account. 

A script runs that runs locally on the Raspberry Pi watches for any changes in the 

SmartSwitch contract and calls the SmartSwitch getToken() function when a change occurs 

to determine the updated number of SmartTokens in the node’s account. This process is 

event driven. If the number of SmartTokens is 0, the script directs power flow out through 

the Raspberry Pi’s GPIO pin that is connected to the red LED on the attached circuit board. 

If the number of SmartTokens is greater than 0, the script directs power flow out through 

the Raspberry Pi’s GPIO pin that is connected to the green LED on the attached circuit 

board.  

Within the LED control function of the prototype, the system’s blockchain 

functions to create a distributed ledger that reflects the SmartToken balance of each of the 

system’s nodes. This allows for the node balances to be adjusted in a decentralized way via 

the SmartSwitch contract’s functions. The BlockGrid Prototype therefore demonstrates 

merely how smart contracts can “gate” access to resources within a cyber-physical system 

rather than directly managing the generation or consumption of power. It does not facilitate 

any smart grid functionality beyond the blockchain-mediated control of power flow to its 

LEDs. 
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Figure 9. Smart Contract-Mediated Power Flow Control in the BlockGrid 

Prototype. 

5. Role of SmartTokens in the BlockGrid Prototype 

The SmartTokens defined by the SmartSwitch contract are not used in the 

BlockGrid Prototype for the direct purchase of resources within the system. They only 

function as an arbitrary unit that can be counted and analyzed by scripts that run on each 

of the nodes. Within the SmartSwitch contract they are just integer values associated with 

a node account’s address via a two-dimensional array data structure. Essentially, 

SmartTokens allow the system operator to assign zero; i.e. “red light,” and nonzero; i.e. 

“green light,” values to each node’s account. The SmartSwitch contract is coded not to 

allow a SmartToken balance to go below zero.  

E. OVERVIEW OF SYSTEM OPERATION 

Three use cases are envisioned for a BlockGrid. The first is in classroom 

demonstrations. Another is to explore alternative system configurations, possibly for new 
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classroom demonstrations or research. Finally, the system may be used for smart contract 

development.  

1. Classroom Demonstrations 

To carry out a BlockGrid demonstration, the system can be set up on a table in the 

demonstration environment. The SCU can be connected to a projector so that students can 

observe the actions taken by the instructor to manage the system in addition to the 

observable physical effects of the blockchain’s activity on the system’s microcomputer-

attached circuits. A photo from a BlockGrid demonstration given at Discover NPS Day 

2019 using such a setup is shown in Figure 10. 

 
Figure 10. A BlockGrid Demonstration at Discover NPS Day 2019. 

2. Modifications to Default Configurations 

Once the default configuration and initial demonstration have been fully utilized, it 

is anticipated that BlockGrid users may explore modifying the system. This could involve, 
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for example, attaching different nodes and circuits to create a more complex smartgrid. 

Alternative blockchain demonstrations could be created for class assignments, or for 

blockchain-based physical computing research.   

3. Smart Contract Testing 

The third envisioned application of a BlockGrid is as a test bed for smart contract 

development. Use of a BlockGrid for this purpose could take place as part of class-related 

projects or research. The cyber-physical nature of the system permits convenient 

experiments on smart contract functionality and the system contains all of the software 

required for smart contract generation.  

F. CHAPTER SUMMARY 

This chapter has provided a description of the requirements, components, and 

applications of the BlockGrid. The next chapter will review currently available hardware 

and software options for BlockGrid system design. The rationale behind the specific 

implementation choices for the BlockGrid prototype is also explored.  
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IV. CONFIGURATION RATIONALE 

A blockchain-mediated smartgrid can be constructed in a variety of ways to meet 

the BlockGrid system requirements outlined in the previous chapter. This chapter is 

intended to provide readers with sense of the possible options for each of the system’s 

components should they wish to design their own BlockGrid. The chapter also details the 

rationale for the choices that were made in BlockGrid prototype’s implementation. 

This chapter begins with a description of the system hardware implementation 

options. These include the SCU, the system node microcomputers, the networking 

configuration, and the smartgrid circuits. Each section reviews the system subunit 

requirements, options available for users, and the rationale for the choice made in the 

BlockGrid prototype’s implementation. 

The hardware section is followed by a description of the software implementation 

options. These include the SCU OS, the node microcomputer operating system, and the 

blockchain software. Each of these sections also details the software requirements, choices 

available for users, and the rationale for the selection made in the BlockGrid prototype’s 

implementation.  

A. METHODS OF EVALUATION 

When evaluating the available options for each BlockGrid system requirement, the 

options were ranked against one another on several relevant evaluation criteria with the 

ranking of 1 being the best. Each option’s ranks were summed across the evaluation criteria 

to create an aggregate score. In this system requirement option with the lowest aggregate 

score was considered the best-performing choice. Generally, the best-performing option 

was selected for the BlockGrid prototype’s implementation. However, in some cases a 

lower-performing option was chosen because it was easier to obtain, more user-friendly, 

or had more extensive supporting documentation.  
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B. SYSTEM HARDWARE 

The BlockGrid’s fundamental hardware components are the SCU, the 

microcomputer nodes, the networking equipment, and the smartgrid circuits. For each of 

the system hardware components there are several options available, and their respective 

desirability may vary depending on the overall desired system configuration. This section 

outlines the most common options that are currently available and explains the choices that 

were made for the BlockGrid’s default configuration.  

1. System Control Unit (SCU) 

The most important hardware component for the BlockGrid is the SCU. Depending 

on the desired system configuration, there are several different suitable hardware platforms. 

For instance, the SCU could be a desktop or a powerful microcomputer. However, the most 

easy-to-use and versatile platform for the SCU is a laptop. This section evaluates the 

available SCU laptop configuration options. 

a. Criteria 

There are several important criteria for a laptop-based SCU. First, it must have 

sufficient computational power to perform the consensus algorithm operations for the 

blockchain software. It should also be easy to operate for the user. As the intended use 

environment is an educational setting, cost should be minimized. Additionally, portability 

is an important consideration as the BlockGrid may need to be transferred to different 

demonstration locations. Finally, the SCU configuration should have robust user support 

materials that can be referenced for troubleshooting. 

b. Available Choices 

Among possible laptop configurations there are several options. These include 

using a designated laptop with its native OS, having the system operator use their own 

laptop with its native OS, using the operator’s laptop to run a cloud-based virtual machine 

instance, and having the user run a provided virtual machine (VM) on their own laptop. 

Each option has benefits and disadvantages that might make it an ideal choice depending 
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on the what the BlockGrid architect is optimizing for. For the BlockGrid prototype, user-

friendliness and low cost were the highest-priority SCU traits. 

(1) Designated laptop computer with native OS 

In this approach, the BlockGrid is controlled by an administrator-owned laptop that 

is designated for the system. The biggest benefit of this approach is that the user can simply 

log on and follow operation instructions to run the system with no installations or setup 

required. This option also allows the administrator to select a laptop with hardware 

specifications ideally suited to run the BlockGrid.  

This approach, however, has several downsides. First, it negatively impacts the 

system’s portability. If the system needs to be moved to different locations or reproduced 

at an alternative site, the designated laptop has to be transported or acquired. This approach 

may also constrain potential modification of the system, with installs on the designated 

system requiring administrator privileges and close oversight. System resiliency in the 

event of a hardware error is also a concern. If a problem occurs with the designated laptop, 

it has to be replaced rather than merely switched out for a different laptop onsite. 

(2) User laptop with native OS 

An alternative but similar approach is to utilize the user’s laptop with its native OS. 

With this approach, the user must install the required SCU software on their own system 

to operate the BlockGrid. The user must also configure their laptop to interface with the 

rest of the BlockGrid system hardware.  

This option maximizes portability and flexibility for the user. It may be especially 

useful in educational settings where students create their own BlockGrid system or develop 

smart contracts as part of class assignments. This approach may also offer a better user 

experience because it allows BlockGrid operation with an OS familiar to the user. 

However, there is a significant downside for both the user and the system 

administrator with this option. Since users may differ substantially from one another in 

their host operating system environments, it is infeasible for system administrators to 

develop user support materials that cover all of the possible user laptop environments. 
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Consequently, users may face greater troubleshooting difficulties and are likely to have 

disparate user experiences with the system. 

(3) User laptop with cloud instance 

Another approach is to have the user’s laptop launch a cloud VM instance that acts 

as the SCU. A cloud VM instance is a virtual machine hosted by a cloud services provider 

(CSP). Administrators using this approach could allow users to install the SCU software 

on their own instance or provide a customized cloud-hosted image with the SCU software 

pre-installed. 

The biggest upside to this cloud-based approach is that it offers maximal 

computational resource flexibility. With a cloud VM instance, users and administrators can 

choose the SCU processing power most appropriate for their BlockGrid system. In an 

educational setting this option also allows students to gain experience with cloud 

computing, allowing the BlockGrid to be a curricular vehicle for exploring possible 

integration of blockchain, IoT, and cloud computing technology. The pay-as-you-go model 

of cloud computing can also be less expensive than buying dedicated SCU hardware with 

the desired capabilities. 

However, requiring users to access and use cloud resources has several drawbacks. 

In order to access a cloud VM instance, users must first set up a billable account with a 

CSP. This process takes time requires users to provide personally identifiable information 

(PII) which creates an additional logistical burden in an educational setting. This approach 

also requires users to monitor the charges they generate once they set up a billable account 

with a CSP and to take appropriate action to curtail excessive charges.  

Running a cloud VM instance also requires that users have reliable internet access 

and that they are operating the BlockGrid on a network that allows blockchain applications 

to run from the cloud and communicate with devices that may be behind local firewalls. 

This approach could therefore be challenging to implement an environment with 

heightened security infrastructure such as a DOD facility.  
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(4) User laptop with provided VM 

The final option is to control the BlockGrid from a VM installed on the user’s 

laptop. In this approach the system administrator preinstalls all SCU software and 

configuration settings on a disc image that is made available for users to install on their 

laptop.  

This approach has several advantages. Using an administrator-provided VM allows 

many of the factors that affect user experience to be held constant. This SCU configuration 

also makes troubleshooting problems that arise in an educational setting with many users 

much easier to resolve because all users operate the system within the same SCU 

environment. Furthermore, this approach also removes the burden of multiple software 

installs on the user. With this option only the installation of VM management software and 

the provided VM is required to make their laptop an operational SCU.  

The chief disadvantage of the administrator-provided VM is that it requires the user 

to be proficient in setting up and troubleshooting the network connections from SCU to the 

rest of the prototype through a VM on their laptop. While students are likely proficient at 

installing and utilizing VMs, depending on the pre-existing configuration of the SCU 

laptop some adjustments to the laptops network settings may be required to connect the 

VM to the prototype’s network. Particularly if the administrator-provided VM uses an 

operating system that is unfamiliar to the user, this approach may introduce an unavoidably 

steep learning curve for the user to become proficient setting up the SCU and using it to 

control the BlockGrid. This option also requires that the user possess a laptop powerful 

enough to allocate sufficient RAM (Random Access Memory) and hard drive space for the 

VM to perform efficiently as a BlockGrid SCU. A preconfigured VM may require multiple 

GB (Gigabytes) of hard drive space to install, and multiple GB of RAM may be required 

to run the desired blockchain protocol effectively. 

(5) BlockGrid Prototype implementation choice 

For the BlockGrid prototype’s default SCU configuration, the “user laptop with a 

provided VM” option was selected. As shown in Table 1, each of the four options were 

ranked against one another with 1 being the best and 4 being the worst on the criteria of 
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computational power, ease of operation, cost, portability, and user support materials. The 

rankings for each criterion were added for each option to create a composite score. In this 

scoring system, the SCU option with the lowest composite score is considered the best 

choice. Using this scoring method, the designated laptop and the administrator-provided 

VM are tied for the lowest composite score with 12. Despite the tie score, the administrator-

provided VM option was chosen for the BlockGrid due to its substantial advantages for 

low cost and high portability. 

Table 1. Ranking of System Control Laptop Options 

 
 

2. System Node Microcomputers 

The next hardware elements to implement for a BlockGrid are the system’s 

microcomputer nodes. These devices can vary in their roles within the system depending 

on the system’s smartgrid design, but at minimum they function as nodes for the blockchain 

and hosts of scripts that control the smartgrid’s circuits. They likely also generate or gate 

the current that powers the smartgrid’s circuits.  
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a. Criteria 

For the BlockGrid to function effectively as both a blockchain network and a 

smartgrid, the system node microcomputers need to have several important traits. First, the 

microcomputers must have sufficient computational power to support both the system’s 

blockchain protocol and local smartgrid applications. To support smartgrid computing, the 

devices should have adequate General Purpose Input/Output (GPIO) interfaces with 

accompanying programming libraries. Additionally, the devices should be easy for a 

beginner to use. User support resources for the microcomputers should also be well-

developed. As the BlockGrid is intended for use in an educational setting, cost should also 

be minimized. For the BlockGrid prototype implementation, minimizing microcomputer 

cost was an especially high priority.  

b. Available Choices 

Recent years have seen a dramatic increase in the number of microcomputers on 

the market as chip sizes and manufacturing costs decrease [193], [194]. Increasingly, 

microcomputers are being designed for specific applications with a range of different 

specifications and capabilities [195]. The following are the most common general-purpose 

microcomputer options available at the time of this writing. 

(1) Arduino Due 

Arduino is one of the most popular commercial makers of microcomputers for 

physical computing [196]–[198]. They offer several different models, with the Due model 

having the most computational power by a significant margin. The Due runs on a 32-bit 

ARM processor with the custom Arduino RIOT OS, making it serviceable as a low-end 

microcomputer that can run full-scale software rather than merely physical computing 

scripts. It also has a 54-pin GPIO and a 12-pin analogue input unit. Presently, the device 

costs approximately $40 [199].  

The Arduino Due is a compelling option for the BlockGrid because it has 

unparalleled physical computing attributes and support resources. The 54-pin GPIO offers 

the most surface area for smartgrid connections of any microcomputer available. Extensive 
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script libraries exist for a wide range of physical computing applications. There are also 

extensive tutorials and user support forums available [200]–[202].  

The main drawback to using the Arduino Due is that while it the most 

computational power of any Arduino product, it has limited computational power 

compared to other microcomputer alternatives. It also runs an unusual OS, which would 

make it difficult to run blockchain software on the devices. The Arduino-specific OS also 

creates a steep learning curve for users who have not used an Arduino before.  

(2) Orange Pi PC2 

The Orange Pi PC2 is one of the least expensive general-purpose microcomputers 

available. It features a quad-core 64-bit ARM processor, a hexa-core Mali GPU, a 40-pin 

GPIO, and 1GB DDR3 (Double Data Rate 3) RAM. The device can run an Android, 

Ubuntu, Debian, or Raspbian OS. Presently, the device costs approximately $20 [203].  

The most significant upside to using the Orange Pi PC2 is its combination of 

relatively high computational power and low price. Though its 1GB of RAM likely does 

not allow the device to handle Proof of Work consensus algorithm computations, its CPU 

and GPU make relatively sophisticated smartgrid applications possible. It also has a variety 

of memory storage interfaces that could make it well suited to smartgrid applications with 

higher data storage requirements.  

The most significant drawback to the Orange Pi PC2 its dearth of user support 

materials. The board is primarily sold in China, and English is not the default language for 

many of the available support materials and documentation [204]. For users at USG 

facilities that block web access to sites hosted at Chinese IP addresses, it may be 

challenging to access software and user support resources. 

(3) NanoPi A64 

The NanoPi A64 from FriendlyARM is another inexpensive microcomputer. It has 

a quad-core 64-bit ARM processor, a 40-pin GPIO, and 1GB DDR3 RAM. There are 

Ubuntu Core and Ubuntu MATE OS images available for the device. Presently, the device 

costs approximately $20 [205]. 
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The biggest upside to the NanoPi A64 is its low cost. It has computational power 

that exceeds that of the more common Raspberry Pi 3B for an even lower price [206]. The 

device also has one of the smallest microcomputer boards available and is therefore well 

suited for smartgrid applications in which system nodes need to be attached to larger IoT 

devices.  

The biggest downside to using this device is the minimal user support resources 

available. The manufacturer provides a Wiki page for the device and a general English 

language forum for their product line as a whole, but at the time of this writing there are 

no user support forums specific to the A64 model. There are also only two Linux images 

currently available for the NanoPi A64, which may constrain the types of applications that 

could be developed for a BlockGrid using these devices.  

(4) Raspberry Pi 3B 

The Raspberry Pi 3B is one of the most popular microcomputers available [207]–

[209]. It features a 32-bit ARM v7 chip, 1GB DDR2 RAM, and a 40-pin GPIO. The 

manufacturer offers two Linux OS distributions, and the device is compatible with 

numerous third-party OS options. Presently the device costs approximately $35 [210].  

The biggest upside of the Raspberry Pi 3B is that it has robust user support materials 

[211]–[213]. Troubleshooting forums and tutorials for software installations, physical 

computing, and IoT computing are widely available [214]–[216]. There are a large number 

of tutorials available for implementing blockchain protocols on Raspberry Pis [217]–[219]. 

There are also precedents for Raspberry Pis being explored for smart grid applications 

[220]. 

The main drawback to using the Raspberry Pi 3B is its low computational power. 

The device cannot handle rigorous computing applications like Proof of Work blockchain 

consensus algorithms. It can therefore only act as a passive node on the blockchain network 

that retains copy of the distributed ledger but does no mining. Even in a passive node role, 

it may also struggle to perform the computation required to sync the large data trie 

structures common to some protocols [221]. Consequently, the transaction speed for a 

BlockGrid running blockchain protocol with a Proof of Work consensus algorithm with 
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Raspberry Pi 3B nodes will be dependent on the computational power of the SCU for 

mining and the Raspberry Pi 3B nodes for updating their copies of the ledger. This may 

cause a BlockGrid to execute its software functions slowly. 

(5) Banana Pi M64 

The Banana Pi M64 is a microcomputer with intermediate computational power 

and an intermediate price. It has a quad-core 64-bit ARM processor, 2GB DDR3 RAM, 

and a 40-pin GPIO. It can run a wide variety of OS options. Presently its price is 

approximately $50 [222]. 

The advantage of using the Banana Pi M64 is that it offers slightly higher 

computational power than the Orange Pi PC2, Nano Pi A64, and Raspberry Pi 3B. 

Although the major hardware difference between the device and its cheaper alternatives is 

only an extra GB of RAM, this can enable the device to run more demanding software. It 

also has a battery power interface that allows it to be used with portable IoT devices. 

There are two main downsides to the Banana Pi M64. First, it is notably more 

expensive than its cheaper alternatives while providing only marginally more 

computational power [223]. The manufacturer also offers limited user support for the 

device. The manufacturer hosts a GitHub page and a user support forum for the device, but 

these have far fewer resources than exist for more widely used devices such as the 

Raspberry Pi 3B. Consequently, troubleshooting problems with the Banana Pi M64 may 

be challenging for users. 

(6) ROCKPro64  

The ROCKPro64 from Pine64 is a fairly expensive but very powerful 

microcomputer. It features a hexa-core ARM processor, a quad-core Mali GPU, 4GB of 

DDR4 RAM, and a 40-pin GPIO. It also supports a wide variety of Linux operating 

systems. Presently, the device costs approximately $80 [224].  

The biggest advantage of using the ROCKPro64 is its combination of outstanding 

computational power and relatively modest price. In a BlockGrid implementation these 

devices could likely function as mining nodes on the system rather than just passive updater 
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nodes in the blockchain network. If a blockchain protocol with a Proof of Work consensus 

algorithm is run on the BlockGrid, using these devices could improve block commit times 

and help the system function more smoothly.  

The impressive computational resources of the device are offset, however, by 

comparatively limited user support resources. Pine64 offers a Wiki and community forums 

for its line of products as a whole, but little content is specific to the ROCKPro64 model. 

Additionally, at his time there is not a complete GPIO programming library currently 

available for the platform, which complicates programming smartgrid applications [225]. 

(7) Odroid XU4 

The Odroid XU4 is one of the most powerful ARM chip microcomputers available. 

It has an octa-core 64-bit ARM CPU, a hexa-core Mali GPU, 2GB DDR3 RAM, and 

separate 12-pin and 30-pin GPIO units. The manufacturer offers a variety of Linux and 

Android OS options. Presently, the device costs approximately $60 [226]. 

The Odroid XU4 is an appealing choice because of its impressive computational 

power and relatively low cost. The device is powerful enough to run laptop applications. 

If a blockchain protocol with a Proof of Work consensus algorithm is chosen for the 

BlockGrid, using these devices could reduce block commit times and improve system 

performance.  

However, there are several disadvantages to the Odroid XU4. It lacks onboard WIFI 

and Bluetooth capabilities, which could complicate BlockGrid implementations that are 

wirelessly networked. It also lacks an audio codec, so sound output is only possible through 

HDMI or a USB adapter [227]. And while the manufacturer offers a Wiki and user forum 

site for their line of products, the user support materials for the XU4 are sparse compared 

to more widely used options like the Raspberry Pi 3B [228]. 

(8) UP Board 

The UP Board is a powerful 64-bit microcomputer with a quad-core x86 intel atom 

processor. It has a 40-pin programmable GPIO, 4GB DDR3 RAM, a 64 GB flash drive, 
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and a battery interface. It can run a desktop version of Windows 10 and the manufacturer 

also offers other OS options. Presently, the device costs approximately $170 [229]. 

The biggest advantage of the UP Board is that with an x86 chip it can run a 

conventional OS. This makes a much broader range of software available for the device. 

With its chip and RAM specifications, the UP board has the computational capacity of a 

small laptop. It is therefore likely capable of performing Proof of Work consensus 

algorithms for the blockchain and advanced IoT applications. The manufacturer also 

provides robust and user-friendly support materials [230]. 

There are only two significant drawbacks to the UP Board. Despite its advanced 

computational capacity, it lacks onboard WIFI and Bluetooth capabilities. As with the 

Odroid XU4, this could complicate wireless BlockGrid implementations and IoT smartgrid 

applications. The other drawback is the high price of the device. This high device cost 

reduces the feasibility of acquiring enough Up Board devices for multi-device BlockGrid 

implementations and creates challenges with replacing devices should they break. 

(9) LattePanda 4G/64GB 

The LattePanda is another powerful Windows microcomputer. It has a quad-core 

64-bit intel processor, 4GB DDR3 RAM, and an onboard 64GB flash drive. It has 32 GPIO 

pins in total, comprised of a 20-pin Arduino Leonardo GPIO unit, 6 gravity sensor 

connectors, and 6 processor chip pins. The device comes preinstalled with 64-bit Windows 

10 operating system as well as Arduino’s physical computing software. The manufacturer 

provides an Ubuntu image for download. It is also among the few high-power 

microcomputers with both onboard WIFI and Bluetooth. The device presently costs 

approximately $150 [231]. 

The LattePanda is a compelling choice for the BlockGrid for several reasons. First, 

it is powerful enough to do Proof of Work algorithms for the blockchain. As a native 

Windows computer, it can also run a wide variety of software [232]. Additionally, its 

Arduino GPIO unit allows the device to make full use of the vast existing script libraries 

and tutorials available for Arduino devices [233]. 
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However, there are two significant downsides to the LattePanda. The first is there 

are not many user-support materials for the device. The manufacturer provides a user 

community forum on its website along with fairly good device documentation, but the user 

base for the device is small and there are few preexisting guides for physical computing 

applications or troubleshooting [234]. The second disadvantage of the LattePanda is that 

the high price of the device. As noted with other expensive microcomputers, the high 

device cost reduces the feasibility of acquiring enough devices for multi-device BlockGrid 

implementations and creates challenges with replacing devices should they break. 

(10) UDOO x86 II ULTRA 

The UDOO x86 II ULTRA is the most powerful microcomputer currently 

available. It has a 64-bit 2.56 GHz Intel Pentium CPU, 8GB DDR3 RAM, a 32GB flash 

drive, and an Intel HD 405 graphics card. It also runs a separate onboard 32MHZ dual-core 

SE/ARC microcontroller and has a full Arduino 101-compatible GPIO with programmable 

5V output pins and the Arduino 101 IDE. Presently, the device costs approximately $250 

[235].  

The UDOO x86 II Ultra is an excellent choice for a BlockGrid. Its powerful CPU 

likely allows it to perform blockchain protocol Proof of Work algorithms. As a fully-

fledged Windows x/86 computer, it has a wide variety of available software along with the 

hardware capacity to run full-scale computer applications [236]. The Arduino GPIO unit 

and IDE provide access to the full range of existing Arduino physical computing software 

[237]. Additionally, the separate onboard microcontroller unit minimizes the 

computational load of GPIO programming on the device [238]. 

Despite its impressive features, there are two significant drawbacks to the UDOO 

x86 II Ultra. The first potential issue is the device’s size. It is roughly twice the size of the 

other microcomputer options, which could limit its utility for some smartgrid applications 

[239]. The other significant drawback to this board is its high cost. As noted with other 

expensive microcomputers, the high device cost reduces the feasibility of acquiring enough 

devices for multi-device BlockGrid implementations and creates challenges with replacing 

devices should they break. 
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c. Selection For Default Configuration 

The Raspberry Pi 3B was chosen to be the microcomputer model for the BlockGrid 

prototype. As shown in Table 2, all ten microcomputer options were ranked against one 

another one with 1 being the best and 10 being the worst on the criteria of computational 

power, GPIO functionality, ease of operation, user support resources, and cost. In this 

scoring system the lowest aggregate score across all criteria corresponds to the best option. 

Table 2. Ranking of Microcomputer Node Options 

 
 

 

 

 

 

 

 

 

The UDOO X86 ULTRA had the lowest aggregate score of all the microcomputer 

options at 18. However, it was not selected for the BlockGrid prototype implementation 

due to its high cost. Although the Raspberry Pi 3B had a higher composite score at 21 and 

considerably less computational power, its combination of robust user support materials 

and low cost made it the most feasible option to implement for the prototype.  

Indeed, Raspberry Pi user support materials proved to be extremely useful in the 

construction of the BlockGrid prototype. The Chainskills tutorial series by Eloudrhiri 

referenced in Appendix B explains how to implement Ethereum on a Raspberry Pi and use 

a smart contract to control an attached circuit. As described in Appendix B, these tutorials 
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were used as a guide for the prototype’s node design and can be used with a few 

modifications to reproduce the BlockGrid prototype. The low device cost of the Raspberry 

Pi 3B also allowed for the creation of a BlockGrid prototype with many nodes, which 

enhances its utility as a demonstration platform.   

3. Networking Configuration 

Another necessary hardware implementation decision for a BlockGrid is the 

system’s network configuration. This decision has a significant impact on the portability 

of the system. For a networking configuration to be viable in a demonstration setting, there 

are several criteria that it must meet.  

a. Criteria 

First, the network setup has to be amenable to the BlockGrid’s blockchain software. 

This requires the networking configuration to support blockchain network communications 

between nodes and the SCU. It also requires that the networking configuration be 

compatible with local facility requirements at the demonstration site. For example, if the 

local facility WLAN does not permit blockchain software to run on its network, the 

BlockGrid’s networking configuration must support an isolated network.  

Second, the network setup must be amenable to the BlockGrid’s intended smartgrid 

functionality. For example, a smartgrid implementation that uses smart contracts to power 

mobile IoT devices like model trains would require a wireless network. Additionally, for 

management of both the blockchain and smartgrid system elements, the system nodes need 

to be identifiable by an IP address. This is most easily accomplished if the networking 

approach allows IP addresses to be statically defined, such as with a programmable COTS 

router.  

The networking configuration should also be as user-friendly as possible. For a 

BlockGrid to be a user-friendly demonstration platform, the system’s network must also 

be reliable, easy to set up, and possible to troubleshoot if something goes wrong. As the 

BlockGrid is intended for an educational setting, minimizing cost should also be a high 

priority.  



66 

To evaluate the best networking implementation for the BlockGrid prototype, the 

options were ranked against one another on the criteria of blockchain compatibility, 

smartgrid compatibility, setup difficulty, network reliability, troubleshooting difficulty, 

and cost with 1 being the best. The rankings for each option were summed to create a 

composite score. In this scoring system the lowest composite score corresponds to the best 

option. 

b. Available Choices 

There are five main network configuration options that can be implemented on a 

BlockGrid. Each option has its own advantages and disadvantages. The best option 

depends on the intended demonstration environment and envisioned smartgrid 

functionality. As the BlockGrid prototype is intended for use at the Naval Postgraduate 

School and other DOD environments, minimizing the need for network connectivity was a 

high priority in the design choice.  

(1) Facility WLAN 

Perhaps the most straight-forward networking arrangement for the BlockGrid is to 

have each system node connect to the local facility WLAN. This option has several 

advantages. First, it eliminates the need for the user to go through an extensive networking 

setup. Each node merely needs to authenticate to the local facility WLAN. Once each 

node’s assigned IP has been noted, any further intra-node transfers or connections can be 

established as necessary. This option also allows the microcomputer nodes to have 

maximum freedom in their physical positioning as well as their computational role. This 

setup could, for example, allow nodes to independently access cloud or internet-based 

resources to carry out more elaborate smartgrid functionalities. A conceptual diagram of 

this networking approach is shown in Figure 11. 
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Figure 11. Networking Configuration with All Nodes Connected on Local 

WLAN. 

The chief drawback to this networking approach is that its success depends 

crucially on the system having access to an environment in which blockchain applications 

and microcomputers are permitted to run on the local facility WLAN. Some USG facilities 

prohibit microcomputers from authenticating to networks because they typically have poor 

cybersecurity features and have led to high profile compromises in the past [240]. It is also 

increasingly feasible for facility networks to detect and block execution of blockchain 

applications [241]. This is commonly done as the execution of blockchain software, 

particularly cryptocurrency mining, can be an indicator of a compromised device [242]. 

This wireless networking approach also requires node IP addresses to be updated in the 

blockchain software configuration tables after each new network authentication by a 

microcomputer node. The frequent configuration table updates are necessary because many 

facility wireless networks utilize the dynamic host configuration protocol (DHCP) in which 

nodes can potentially be assigned a new IP address every time they authenticate.  

(2) WLAN with Software Router 

Another BlockGrid networking approach that requires no extra hardware is to run 

a wireless access point (WAP) using a software defined router on the SCU. In this 

configuration all the nodes are connected to the blockchain wirelessly. This arrangement 

can also be configured to provide the system nodes internet access through the local facility 

network if the WAP is set up as a new node for the local facility WLAN. Optionally, users 

may wish to attach an external antenna to their SCU laptop to boost the WAP signal.  

This option makes the system maximally portable and lightweight. It also frees up 

the system nodes to be positioned in whatever physical orientation is optimal for the 
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smartgrid design. The use of a software defined router also permits the assignment of static 

IP addresses for the microcomputer nodes. Additionally, it enables implementation of 

firewall features, if desired, to control traffic to and from the blockchain network. A 

conceptual diagram of this networking approach is shown in Figure 12. 

 
Figure 12. Networking Configuration with WLAN through a Software 

Router. 

There are several downsides, however, to this SCU software router approach. First, 

of all of the possible options this network requires the most expertise to set up. Instructions 

can be provided but there are numerous points along the software router setup process 

where differences in hardware, network cards, and operating systems can result in different 

responses to the administrator-provided setup commands. This can result in 

troubleshooting difficulties and disparate user experiences.  

Another issue with this option is that the software router must be established in an 

environment that permits unofficial WAPs at the facility or on the facility network [243]. 

It is increasingly common for local IT-Security defense tools to scan for unauthorized 

access points and to shut them down upon discovery, as rogue WAPs can be an effective 

tool for cyberattacks [244], [245]. Additionally, if internet connectivity is desired on the 

WLAN, this setup requires that the facility permit running of blockchain applications on 

the facility network which, as previously noted, is often prohibited.  

Finally, there is the problem of network reliability that is common to all WLAN 

options. Wireless networks are vulnerable to interference from materials in the 

environment and antennas can drop connections. WLAN operations also involve an 
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interdependence of authentications, credentials, protocols, and software interactions that 

can fail and which can be difficult to troubleshoot when errors occur.  

(3) WLAN with COTS Router 

A third BlockGrid network configuration option is to use a COTS wireless router 

to set up a WAP for the blockchain. As with the other WLAN options, this allows the 

system nodes to connect to the blockchain wirelessly. It also allows maximal freedom for 

the physical orientation of the nodes in the smartgrid design.  

There are also some COTS router features that can be an advantage. First, the COTS 

router setup is much less complicated than the software router setup. Many COTS routers 

also have an HTML (Hyper Text Markup Language) configuration GUI accessible at the 

default router IP address of 192.168.1.1. This can enable straightforward assignment of 

static IPs for the system’s microcomputer nodes. Additionally, many COTS routers have 

comprehensive troubleshooting guides and technical support/customer service options for 

troubleshooting. A conceptual diagram of this networking approach is shown in Figure 13. 

 
Figure 13. Networking Configuration with WLAN Through a COTS Router. 

The disadvantages for this approach are similar those of the software router setup 

mentioned previously. For this configuration to work, the BlockGrid must be set up in an 

environment which permits the operation of non-facility WAPs. Further, if internet access 

is desired on the WLAN the local facility must permit operation of blockchain software. 

Additionally, there are a number of reasons why the WLAN may not be reliable such as 
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signal interference, antenna issues, and operating system complications. All of these can 

be challenging for users to troubleshoot should they arise. 

(4) WLAN via Broadband Hotspot 

One networking option that can allow circumvention of local facility network 

prohibitions on blockchain software is to set up a WLAN through a broadband-connected 

wireless hotspot. This could be accomplished with a cellular phone, a broadband-connected 

computer, or a COTS broadband hotspot router. By securing internet access from a 

broadband provider, the system can avoid direct interaction with the facility’s network 

infrastructure and the facility’s IT-security controls. A conceptual diagram of this 

networking approach is shown in Figure 14. 

 
Figure 14. Networking Configuration with WLAN Through a Broadband 

Hotspot. 

Though this approach may solve some issues, there are also several potential 

drawbacks. One issue is that the WAP may still be detected by network security tools as a 

rogue WAP and flagged as unauthorized. Some DOD facilities may prohibit any cell phone 

or broadband access technology altogether for security reasons. Network viability with a 

broadband hotspot is also dependent on the strength of the broadband signal at the 

demonstration site. Finally, the router configuration required with this approach may be 

technically challenging for users, particularly if the hotspot is being generated by a phone 

or broadband-enabled computer. 



71 

(5) Offline Internal Ethernet Network 

The fifth BlockGrid networking configuration option is to create an isolated 

network by connecting all of the microcomputer nodes to a COTS router with Ethernet 

cables. If the BlockGrid system has more microcomputer nodes than the router has ports, 

an additional COTS Ethernet switch can be used. This configuration establishes an Ethernet 

LAN with no external internet access dependencies and no wireless networking features.  

This networking approach has several advantages. Most notably, once assembled 

the Ethernet LAN is extremely reliable and fast. Despite requiring the most networking 

hardware to implement, this configuration is highly portable due to its lack of dependence 

on a pre-existing facility or ISP network. With a private Ethernet LAN, the BlockGrid can 

be deployed anywhere that the microcomputer nodes, router, and switch have access to a 

sufficient power source. With this isolated network there is no interaction required with 

local facility IT infrastructure and therefore no likely conflict with local facility security 

controls.  

Another considerable advantage of this option is that the network only needs to be 

configured once since it is totally isolated. Once the router is configured with all of the 

appropriate static IP addresses for the microcomputer and SCU devices in the BlockGrid’s 

network, the corresponding network settings for the blockchain can be pre-installed on the 

VM. This requires users to simply connect the SCU device and microcomputer nodes to 

the router vis Ethernet cables in order to run the BlockGrid. A conceptual diagram of this 

networking approach is shown in Figure 15. 

Despite its numerous advantages, there are a few drawbacks to the isolated network 

approach. As previously mentioned, this approach introduces additional equipment 

requirements. A wired Ethernet network also physically constrains the position of the 

microcomputer nodes. This creates some significant constraints on possible smartgrid 

physical layouts. This type of network may also be more challenging for users to set up 

and troubleshoot as Ethernet networks are less commonly used today and could be 

unfamiliar to some users.  
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Figure 15. Networking Configuration with an Internal Ethernet Connection. 

c. Selection for Default Configuration 

The offline Ethernet network configuration illustrated in Figure 15 was selected for 

the BlockGrid prototype. As shown in Table 3, all five network design options were ranked 

against one another with 1 being the best and 5 being the worst on the following criteria; 

blockchain compatibility, smartgrid compatibility, setup difficulty, network reliability, 

troubleshooting difficulty, and cost. In this scoring system, the option with the lowest 

composite score is the best option. The offline internal Ethernet network had the lowest 

aggregate score of 14 and was chosen for the BlockGrid prototype’s implementation. 

Although the Ethernet network option placed the most constraint on possible 

smartgrid designs and had the highest cost due to its additional network hardware 

requirements, it was by far the most user-friendly and compatible with blockchain 

software. Additionally, while the Ethernet network configuration is less portable in one 

sense due to its larger footprint, the fact that it allows the BlockGrid to be run on an isolated 

network means that it is arguably the most portable option because it can be set up in a 

wider variety of environments.  
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Table 3. Ranking of Networking Configuration Options 

 
 

4. Smartgrid Circuits 

The final hardware elements to be implemented for a BlockGrid are the smartgrid 

circuits that are powered by the system’s microcomputer nodes. These circuits create 

visible consequences to the smart contract transactions taking place on the blockchain. 

When chosen appropriately, these can clarify to observers what is happening on blockchain 

and how the system works. In order for the circuits to function in the BlockGrid, they must 

have several attributes. 

a. Criteria 

First, the circuits must physically interface well with the microcomputer nodes. 

This likely requires a physical connection to and a compatibility with the microcomputer’s 

power output. It is possible in some BlockGrid configurations that the circuits could be 

manipulated over wireless connections such as Bluetooth or WIFI networks, but a standard 

implementation such as that used in the BlockGrid prototype requires a hardwired 
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connection. For example, the Raspberry Pi 3B, the microcomputer chosen for the 

BlockGrid prototype’s implementation, only has 3.3V programmable output pins. The low 

voltage programmable output does not permit the Raspberry Pi to power circuits that 

require a high amount of current. However, if the 3.3V programmable output is used to 

control a current gate rather than directly power the external circuit, a power source with 

voltage to drive current through the desired circuit can be used.  

Second, the circuit should have interesting visible elements such as lights or moving 

parts that clearly demonstrate to an observer that they have been activated. The circuits 

should also be user-friendly to operate. This requires that they be easy to set up, modify, 

and troubleshoot. The circuits also should also be as durable as possible as the BlockGrid 

is intended to be demonstration platform requiring frequent setup and disassembly as well 

as handling by potentially high number of inexperienced users. For the BlockGrid 

prototype’s implementation, minimizing cost was also a high priority. 

b. Available Choices 

There are three principal types of circuits that can be considered for a BlockGrid 

implementation. These are a COTS electronic device, a customized fully soldered circuit, 

and a customized circuit implemented on a breadboard. Within each of these broad 

categories there are innumerable individual options. However, each category has its own 

advantages and disadvantages that make the optimal solution dependent on the use case.  

(1) COTS Electronic Device 

One circuit option is to connect the microcomputer nodes to COTS electronic 

devices. These devices could be as simple as a lightbulb or as complicated as an LED 

screen, a piece of an industrial control unit, or a model train set. If the BlockGrid controls 

electronic devices that observers are familiar with, the clarity of the blockchain technology 

demonstration can been enhanced. COTS circuits can also simplify BlockGrid operation 

for the user, as all that is required with the circuits on system setup is to plug the devices 

in. COTS circuits are also likely to be more user-friendly and durable, as their commercial 

design and manufacturing quality have already been optimized for positive user experience 

and durability. 
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There are several drawbacks to the COTS circuit option, however. One issue is that 

COTS devices tend to be much larger than the microcomputer nodes that control them, 

which can complicate the physical interface between them. These devices can also 

significantly increase the overall size of the demonstration apparatus. Another challenge is 

that most COTS devices require more voltage than the 3.3V that the Raspberry Pi 3B can 

directly provide. This necessitates a more complicated gating mechanism to control the 

circuits’ power, which can introduce troubleshooting difficulties and negatively impact 

user experience.   

(2) Customized Fully Soldered Circuit 

An alternative to using COTS devices for the BlockGrid’s circuits is to create a 

customized electronic circuit. This could be done using a kit or through prototyping with 

electronics components, printed circuit boards, and 3D printed materials. These approaches 

can generate unique circuits for desired smartgrid applications that are fully soldered and 

assembled.  

The benefit of this customized approach is that it allows circuits to be designed 

exactly for the application envisioned by the operator. Well-designed custom circuits can 

maximize the uniqueness and visual effectiveness of the demonstration apparatus to 

observers. This approach also provides student users with an opportunity to gain hardware 

design skills.  

The most significant downside to customized circuits is that they are very difficult 

to troubleshoot when not performing properly. Since the circuits are unique, they can be 

difficult to fix or replace if they fail. The challenges of the circuit design process can also 

introduce a level of complication and difficulty beyond what is constructive for a novice 

user. For users involved in the system design process such as administrators or students, 

the additional burden of circuit design may negatively impact user experience.  

(3) Customized Circuit Implemented on Breadboard 

A third option for the BlockGrid’s circuits is to create customizable circuits on a 

breadboard that are powered by the microcomputer nodes. Such circuits can be designed 
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with simple electronics parts such as LEDs, resistors, and electrical switches. With this 

approach, the user can quickly design and implement a smartgrid circuit. 

The biggest upside to breadboard smartgrid circuits is that they give users 

maximum control of the BlockGrid during operation. With breadboards, users can make 

real-time adjustments to their circuits and easily diagnose and troubleshoot problems 

circuits that malfunction. The simple circuits can be implemented with breadboards in this 

approach also allow student users to engage in circuit design at a more beginning level. 

This approach is also very low cost, with the electronics parts being both inexpensive and 

re-usable. Taking this approach minimizes the difficulty in creating, maintaining, and 

replace the circuits for a BlockGrid. 

The chief drawbacks to this approach are that the circuits are more fragile and 

consequently less portable. Once a breadboard circuit is set up, it can be very easily 

disturbed by environmental factors. This makes moving the circuits between locations 

without disruption them challenging and requires the BlockGrid system to be handled more 

delicately during use. The breadboard circuits also limit the scale and complexity of the 

possible smartgrid designs, which may reduce the impressiveness of the demonstration to 

some extent. 

c. Selection for Default Configuration 

For the BlockGrid prototype, the customized circuit implemented on a breadboard 

option was chosen. As shown in Table 4, the three circuit types were ranked against one 

another with 1 being the best and 3 being the worst on the following criteria; 

microcomputer interface, visibility for demo, setup difficulty, adaptability, troubleshooting 

difficulty, durability, and cost. In this scoring system, the option with the lowest aggregate 

score is the best choice. The customized circuit implemented on a breadboard option had 

the lowest composite score, 11, and was chosen for the BlockGrid prototype’s 

implementation. 

Although the breadboard circuits were more fragile  than other choices, they 

allowed easy troubleshooting and modification. If LEDs or jumper cables became 

detached, they could easily be repositioned or replaced. The low cost of the breadboard 
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option also allowed a wide range of smartgrid designs to be tested during the development 

of the prototype.  

Table 4. Ranking of Smartgrid Circuit Options 

 
 

 

 

 

 

 

 
 

Additionally, though the breadboards do not allow for construction of large high-

visibility circuits, individual LEDs were found to work well for simple applications like 

demonstrating the BlockGrid prototype’s SmartSwitch smart contract. LEDs can easily 

turn off and on or change colors to signify the result of smart contract transactions. And in 

the event that incorporation of a higher voltage COTS device into the smartgrid is desired, 

the breadboard circuits can be easily converted to switches that allow the BlockGrid’s 

smart contracts to gate the power flow to the larger devices. 

C. SYSTEM SOFTWARE 

The BlockGrid’s fundamental software system elements are the system’s 

blockchain software, the SCU OS, and the OS of the microcomputer nodes. There are a 

wide variety of choices for each element, and each has its own potential benefits and 

drawbacks. This section describes the most common software options currently available 

and explains the rationale for the choices that were made for the BlockGrid prototype’s 

implementation.  
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1. Blockchain Software 

The most fundamental software component of a BlockGrid is the blockchain 

protocol. This implementation choice has implications for the other system software and 

hardware elements, as all other system components must be compatible with the blockchain 

software selected. In order for the BlockGrid to meet system requirements, the chosen 

blockchain protocol must exhibit several important attributes.  

a. Criteria 

First, the blockchain protocol must run sufficiently fast on the platform to enable 

real-time demonstration of smartgrid transactions. To maximize transaction speeds, the 

blockchain protocol should allow parameters such as consensus algorithm difficulty to be 

changed. Additionally, as the BlockGrid system should be adaptable, the blockchain 

protocol should scale well to accommodate inclusion of more nodes. Finally, the protocol 

should support deployment of smart contracts and decentralized applications (DApps). 

b. Available Choices 

As the number of applications for blockchain technology has continued to grow, so 

too have the number of blockchain protocols. Increasingly, blockchain software is being 

designed for specific applications such as micropayments, IoT networks, and large-scale 

DApps. Consequently, each blockchain protocol option has its own benefits and 

drawbacks. The following are the most common protocols available at the time of this 

writing. 

(1) Bitcoin 

As the most established cryptocurrency in the world, Bitcoin is one of the most 

widely used blockchain protocols. To achieve consensus in the network, mining nodes 

validate blocks of transactions using the “Hashcash” Proof of Work algorithm. In addition 

to its primary cryptocurrency function, Bitcoin supports smart contracts written in its own 

programming language, Script [246]. 
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Using Bitcoin as the blockchain protocol for the BlockGrid has several potential 

advantages. The protocol’s primary utility as a cryptocurrency makes it well suited to a 

BlockGrid implementation with a transaction-based smartgrid. Permissions in the system 

could be granted with Bitcoin payments, as has already been envisioned on a larger scale 

[247]. Due to its very large developer base Bitcoin also has extensive developer support 

materials, which could ease implementation and troubleshooting of the system [248]–

[250].   

The biggest drawback to using Bitcoin is that it wasn’t designed to support smart 

contracts. Bitcoin’s chief programming language, Script, is not Turing-complete and does 

not allow for storage of system state [251]. Consequently, programming complex smart 

contacts for a smartgrid system with Bitcoin would be difficult. Additionally, Bitcoin faces 

throughput issues when scaling due to block size increases [252]. It might therefore be 

challenging to keep block commit times consistently low for a BlockGrid system.  

(2) Ethereum 

Ethereum is perhaps the most widely used blockchain protocol for smart contract, 

DApp, and custom coin deployment. The protocol currently runs its own custom “Ethash” 

Proof of Work consensus algorithm. There are several Ethereum blockchain interface 

clients available. Smart contracts for Ethereum are commonly written in the Solidity 

language, but can also be written in several other languages [253]. The protocol also has a 

JavaScript API, Web3, which can be called by locally running programs to query smart 

contract transaction results [254].  

There are several advantages to using Ethereum as the blockchain protocol for a 

BlockGrid. The biggest is that Ethereum is designed specifically to support smart contracts. 

Solidity is a Turing-complete language, so any smart contract can be programmed for the 

Ethereum blockchain [255]. As Ethereum is so widely used, there are also extensive user 

support materials available [256]–[258]. There are a wide variety of example smart 

contracts and smart contract tutorials that can be used to guide beginners [259], [260]. 

There are also tutorials available for implementing Ethereum on a private network [261], 
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[262]. Additionally, on a private network it is possible to set the consensus algorithm 

difficulty to a desired level to optimize transaction speeds [263]. 

The biggest drawback to Ethereum is the difficulty in making the block commit 

times consistent and low enough to run a smartgrid. As the protocol currently runs a Proof 

of Work consensus algorithm, the speed of transaction validation is dependent on the 

computational power of the mining nodes on the network. Additionally, as the size of the 

distributed ledger grows, more time is required to update the nodes in the network. It might 

therefore be challenging to run an Ethereum blockchain on which block commit times were 

consistently and sufficiently low enough to be effective on a real-world smartgrid 

application. Another issue is that while it is possible to run a private Ethereum blockchain, 

the common blockchain interface software for Ethereum is designed to interface with the 

main public Ethereum blockchain. Consequently, it can be challenging to run some 

Ethereum interface software on a private chain, particularly if the system has no internet 

access.  

(3) HydraChain 

HydraChain is a blockchain protocol based on Ethereum that is focused on enabling 

development with permissioned private chains. HydraChain runs a Practical Byzantine 

Fault Tolerance (PBFT) consensus algorithm, as opposed to Ethereum’s Proof of Work 

Ethash algorithm. It has full compatibility with Ethereum’s development and interface 

tools. The protocol is also focused on smart contract development in Python [264]. 

There are several reasons that HydraChain would make a good choice for the 

BlockGrid’s blockchain protocol. First, HydraChain’s focus on permissioned private 

blockchains provides more development support for implementing a private blockchain on 

a BlockGrid system [265]. The PBFT consensus algorithm may also be better suited to run 

the BlockGrid’s smartgrid than a Proof of Work protocol, as it is faster and would require 

less computational power to run on microcomputer nodes [266]. Additionally, the 

protocol’s support of smart contracts written in Python might put less of a burden on 

students tasked with writing their own smart contracts than blockchain software that 

requires learning a new programming language.  
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The main drawback to using HydraChain is that it is not yet widely used. As such 

there are very few user support resources or troubleshooting guides available for the 

protocol. Consequently, it may be challenging for beginners to successfully implement a 

BlockGrid with this software, even though upon implementation this protocol offers 

significant performance and development benefits.  

(4) Qtum 

Qtum is a blockchain oriented toward business applications that is compatible with 

both the Bitcoin and Ethereum blockchains. The protocol runs Bitcoin’s blockchain 

software with a Proof of Stake consensus algorithm along with the Ethereum Virtual 

Machine (EVM) to support smart contracts [267]. A Qtum x86 VM is currently being 

developed that will enable smart contract development in any language with an x86 

compiler, but at the time of this writing has not been released [268]. Presently, Qtum smart 

contracts are mostly written in the Solidity programming language, although they can also 

be implemented with Bitcoin’s Script language.  

There are several potential advantages to running Qtum on a BlockGrid. The most 

significant advantage is that due to its use of Bitcoin and Ethereum software, a Qtum 

blockchain can run existing smart contracts for those platforms while also benefitting from 

the potentially faster performance of a Proof of Stake protocol. Qtum also offers 

lightweight mobile device-friendly chain interface software that could work well for an 

IoT-based BlockGrid [269]. Additionally, as Qtum combines the two most widely used 

blockchain technologies with an increasingly popular alternative to achieving distributed 

consensus via Proof of Work, its use provides an educational opportunity to cover the 

salient differences between blockchain protocols and consensus algorithms in the 

classroom.  

The largest downside to using Qtum is that there are comparatively few user support 

resources available. It is still a fairly new platform, and there are not many guidelines or 

tutorials available that could help beginners implement the protocol on a BlockGrid. 

Additionally, as the protocol is new there may be major updates to the protocol before it 
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becomes fully mature, and these might introduce backwards compatibility issues or require 

inconvenient updates to a BlockGrid.  

(5) Hyperledger Fabric 

Hyperledger Fabric is a versatile open source blockchain platform that specializes 

in the development of applications for permissioned blockchains [270]. As one of the five 

Hyperledger Business Blockchain Technologies, it is distinguished by its modularity. With 

Hyperledger Fabric developers can choose their desired consensus and permissioning 

mechanisms [271]. Smart contracts for Hyperledger Fabric can be written in Go, 

JavaScript, or Java [272]. 

There are several reasons why Hyperledger Fabric would make a good choice for a 

BlockGrid’s blockchain. First, the system offers choice of consensus algorithm, which 

allows choice of a faster option such as Proof of Stake or PBFT to optimize block commit 

times for the system [273], [274]. The protocol’s focus on supporting isolated permissioned 

chains also makes it easier to implement for an isolated BlockGrid system [275]. 

Additionally, Hyperledger Fabric’s modularity allows a system to be modified more easily 

after implementation to accommodate changes to a BlockGrid’s configuration.  

The most significant drawback to using Hyperledger Fabric is that it is still a fairly 

new platform. As such there are not many user support resources available and 

troubleshooting may be challenging for beginning students. Additionally, as the blockchain 

software is coinless, there is no built-in mechanism for smartgrid transactions or 

permissions. Consequently, the smart contracts for the system may need to be more 

comprehensive to achieve the desired smartgrid functionality.  

(6) Corda 

Corda is an open-source blockchain protocol focused on supporting financial 

services and enabling blockchain-based financial contracts. Like Hyperledger Fabric, it is 

also focused on supporting permissioned blockchains. Corda is distinguished by its point-

to-point architecture, in which transaction participants only store and view transaction 

records for the transactions they have participated in to create a multilateral ledger within 
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the network. The protocol allows developers to choose the consensus algorithm for their 

network. Additionally, Corda offers the ability to run multiple “notary pools,” or 

subnetworks, within a network that each run their own consensus algorithm. Corda runs on 

the Java Virtual Machine and smart contracts are written in Java or Kotlin programming 

languages [276].  

There are several reasons that Corda would be a good choice as the blockchain for 

a BlockGrid system. With its multilateral ledger, Corda minimizes the size of the 

blockchain that the individual nodes in the system have to update. This combined with the 

choice of a fast consensus algorithm like PBFT could minimize smart contract transaction 

times and improve smartgrid performance [277]. Programming smart contracts in Java may 

also be easier for students than having to learn a new language. 

There are several disadvantages, however, to selecting Corda as the blockchain 

protocol for a BlockGrid. One issue is that Corda’s smart contract framework is designed 

to support industry financial transactions, and as such includes legal prose and contract 

formatting that is unnecessary for most BlockGrid smart contracts and may be confusing 

for students. Another issue is that the notary pool and point-to-point features of Corda 

network architecture require more work to configure and also require more intricate smart 

contracts, increasing the difficulty of implementation. Finally, Corda does not have many 

user support resources for small scale private chain implementation.  

(7) Openchain 

Openchain is a blockchain protocol that is designed to maximize scalability and 

support digital asset management. With the Openchain protocol, an administrator approves 

network nodes, or “accounts,” to form a “closed-loop” ledger within the administrator’s 

permissioned account. The protocol allows for hierarchical relationships between accounts 

that create a “ledger tree” that resembles an OS directory hierarchy in structure. Openchain 

uses a miner-less partitioned consensus mechanism that assigns only one validation 

authority, or “server,” to each node on an account. Servers can insert pointers within their 

ledgers to Bitcoin’s blockchain, also described as “pegging” the blockchain to Bitcoin, to 

achieve immutability. Smart contracts within the Openchain framework therefore function 
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like their own server accounts and execute logic in response to payments. Smart contracts 

for the protocol can be programmed in any language [278]. 

There are several upsides to using Openchain as the blockchain software for a 

BlockGrid. The biggest advantage to using Openchain is that transactions are completed 

quickly and can trigger smart contract execution with minimal latency. This could allow 

for smart contract management of a smartgrid in close to real time. Another significant 

advantage of Openchain is that it is very fast and straightforward to implement accounts. 

Openchain provides Git repositories with preconfigured software, allowing network setup 

with a few simple downloads. Additionally, Openchain’s software is sufficiently 

lightweight that it can be run in a Docker container [279]. While running a node in a Docker 

container has an associated computational overhead, far less RAM, CPU cycles, and hard 

drive space are required for Docker containers compared to a VM running a full operating 

system. This could allow microcomputer nodes to allocate more computation resources 

toward more advanced smartgrid functionality. The ability within the protocol to 

hierarchically organize different accounts could also allow for more complex smartgrid 

implementations in which nodes have different and overlapping subgrids.  

The biggest downside to using Openchain as the blockchain protocol for a 

BlockGrid is that there are minimal user support resources for smart contract 

implementation. Since smart contracts in the Openchain framework apply only to those 

accounts that have been permissioned to access the contract, the contracts themselves are 

essentially local scripts that interface to the permissioned accounts via the Openchain API. 

Consequently, Openchain does not provide any smart contract development guidelines. 

Another result of this feature of the Openchain framework is that the smart contracts are 

not really decentralized. If the node upon which a smart contract runs is taken offline, the 

smart contract is no longer available to the accounts in the system that have been 

permissioned to access it.  

(8) BigchainDB 

BigchainDB (DB stands for Data Base) is an open-source blockchain technology 

that combines the features of blockchains and conventional database software. BigchainDB 
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uses the Proof of Stake Tendermint blockchain protocol to generate a network of linked 

conventional database nodes [280]. Each node in the network runs its own MongoDB 

instance, giving the network as a whole the query and data organization features of a 

conventional database along with the decentralization, immutability, and fault tolerance of 

a blockchain network [281]. The protocol emphasizes low transaction latency, lots of 

permissioning options, and easy private network configuration. BigchainDB can store 

smart contract code but does not directly execute smart contracts. Smart contracts must be 

invoked by locally running scripts that query and then execute the stored code [282]. 

There are several reasons that BigchainDB might be useful to implement on a 

BlockGrid. First, the protocol permits easy setup of a private BigchainDB network [283]. 

BigchainDB allows users considerable freedom to define digital assets that are stored on 

the chain, which might be useful for research efforts aimed at exploring what types of 

information blockchains can hold. The protocol’s Proof of Stake consensus mechanism 

could also lower transaction and data update times and thereby improve BlockGrid system 

performance. Finally, the robust database query functionality of BigchainDB might make 

it especially well-suited to efforts to model and demonstrate the application of blockchain 

technology to supply chain logistics in the classroom. 

The most significant drawback of BigchainDB is its lack of smart contract support. 

While it is possible to implement smart contract functionality in a BigchainDB system, this 

is much more difficult to do with BigchainDB than it is for other blockchain protocols. 

Consequently, while BigchainDB may be very well-suited for digital asset management 

and supply chain applications, it is not particularly well suited for smart contract-mediated 

cyber-physical systems. If adopted for a BlockGrid, a beginning user might need to forgo 

smart contracts altogether and instead utilize local query scripts to activate smartgrid 

circuits rather than code stored on the chain.  

(9) IOTA 

IOTA is a distributed ledger technology (DLT) that utilizes a “tangle” architecture 

rather than a blockchain. Within the tangle architecture, system nodes are connected to one 

another as a directed acyclic graph (DAG) [284]. Distributed consensus is achieved in this 
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protocol by having each node validate two previous transactions via a low-difficulty 

“Hashcash” Proof of Work algorithm prior to initiating transactions of their own. IOTA 

has recently begun supporting smart contracts, termed “Qubics,” to enable computation 

using data acquired from external sources, termed “Oracles,” as well as to enable nodes in 

the tangle to perform outsourced computation. Qubics are programmed in the Abra 

language and are run in duplicate by an “assembly” of validators so that the results 

confirmed via a quorum consensus mechanism that requires agreement among a minimum 

of two thirds of the validators. IOTA is distinguished by its scalability and low transaction 

times and is specialized for IoT implementations [285]. 

There are several potential upsides to utilizing IOTA as the DLT protocol for a 

BlockGrid. As IOTA is specialized to support IoT networks with its low latency 

architecture and minimal Proof of Work consensus mechanism, it could be an excellent 

choice for BlockGrid systems that feature IOT devices. IOTA can also be run in Dockers, 

which could maximize the amount of microcomputer node resources devoted to smartgrid 

functionality. As an avant-garde DLT architecture, IOTA also offers an opportunity to 

explore DLT alternatives to blockchain technology in the classroom and could be used in 

demonstrations to illustrate performance differences from conventional blockchain 

protocols.  

The biggest drawback to IOTA is that it does not currently support private tangles. 

Consequently, internet access would be required to run IOTA on a BlockGrid system. In 

this case the Qubics for a BlockGrid would likely need to be implemented on the Testnet 

tangle that IOTA provides [286]. Another potential issue is that while IOTA’s tangle 

architecture is scalable due to the increases in transaction speed as more nodes join the 

tangle, running a small number of nodes within a tangle may not yield good results.  

(10) Lisk 

Lisk is a new blockchain technology focused on enabling DApp development. The 

protocol uses a delegated Proof of Stake (DPOS) consensus algorithm in which a pool of 

101 elected nodes validate blocks using a “broadhash” algorithm [287]. Owners of the Lisk 

mainchain currency LSK, i.e. “stake holders,” vote to elect the validation nodes. Their vote 
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has a value proportional to the amount of LSK currency in their account. The Lisk protocol 

is set up for programmers to develop and deploy DApps with permissioned sidechains. 

With Lisk the front-end of DApps can be programmed in any language, and DApp back-

ends are programmed in JavaScript [288]. 

There are several advantages to using Lisk as the blockchain protocol for a 

BlockGrid. One significant advantage is due to its central focus on DApp development, the 

protocol is designed for rapid and straightforward setup of permissioned sidechains. This 

could allow a permissioned sidechain to be quickly implemented as the BlockGrid’s 

network. Lisk also offers a suite of tools for DApp development which would be useful for 

a BlockGrid featuring DApps [289]. DApps could allow, for example, smartgrid functions 

to be executed from a web app. Another advantage to Lisk is that the back-end 

programming is done in JavaScript, a widely used language for web app development, 

which could save BlockGrid users from having to learn a new protocol-specific 

programming language. Additionally, the speed of the DPOS consensus algorithm could 

improve BlockGrid transaction times and system performance.  

There are, however, a few disadvantages to running Lisk. One disadvantage is that 

implementing a fully functional DApp on a BlockGrid requires that the BlockGrid have 

internet access. Another issue is that is that at the time of this writing Lisk is not a fully 

mature platform. The protocol underwent a relaunch in 2018 and anticipated updates and 

upgrades to the Lisk software suite could cause backward compatibility issues and require 

inconvenient re-installs if implemented today on a BlockGrid. Moreover, the Lisk platform 

software development kit (SDK), which should simplify DApp development, has not been 

released at the time of this writing. There is also a dearth of user-support materials 

available. Lisk does have a dedicated documentation and academy section on their website, 

but the resources presently available in those sections are minimal [290]. 

c. Selection for Default Configuration 

Ethereum was chosen as the blockchain protocol for the BlockGrid prototype. In 

Table 5 the ten blockchain protocols surveyed in this section are ranked against one another 

on the categories of speed, scalability, adaptability, smart contract support, and user 
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support materials with 1 being the best score and 10 being the worst. Each protocol is given 

a composite score that is the sum of their rankings for each category, making the protocol 

with the lowest total score the “best” option.  

Table 5.  Ranking of Blockchain Protocol Options 

 

 

With this scoring methodology, Ethereum only ranked as the 5th best protocol 

overall. However, Ethereum has, at present, the best smart contract support and user 

support materials by a significant margin. With Ethereum there many resources available 

that guide beginners through writing, compiling, and operating smart contracts [291]–

[293]. There are also a significant number of companies that currently utilize smart 

contracts that run on the Ethereum mainchain [294]–[296]. These examples provide 

opportunities to explore real world applications of blockchain technology. Consequently, 

Ethereum is presently the best suited protocol for use in a classroom environment. 
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An additional benefit to using Ethereum is that there are tutorials available for how 

to implement a private Ethereum network on Raspberry Pi 3B microcomputers [297]. The 

Chainskills tutorials by Eloudrhiri also provide sample smart contracts and chain 

monitoring scripts [298]. These tutorials and software were heavily utilized in the 

implementation of the BlockGrid prototype. 

2. System Control Unit OS 

The second software element to implement for a BlockGrid is the OS for the SCU. 

The choice in OS can have implications for compatibility with software running on the 

system and the overall user experience. In order for a BlockGrid to function, the SCU OS 

must meet several criteria.  

a. Criteria 

For the SCU OS to be suitable, it must be compatible with the chosen blockchain 

protocol. The OS must also be compatible with any blockchain interfacing software such 

as blockchain wallets and smart contract compilers. Additionally, the OS should be easy to 

set up, operate, and troubleshoot.  

b. Available Choices 

With the proliferation of VM technology, it is easier than ever to select an OS with 

the attributes ideally suited to a particular application. Many operating systems today come 

preinstalled with software for specific tasks such as penetration testing or server hosting 

[299], [300]. There are benefits and drawbacks to using a given OS for a BlockGrid SCU. 

The following are the most common OS options that could be run on an SCU for a 

BlockGrid. 

(1) Windows 10 VM 

One option is to run a BlockGrid’s SCU from a Windows 10 VM. While many 

users could configure a SCU on their own Windows 10 laptop, using a Windows 10 VM 

would allow administrators to preconfigure all system software and networking parameters 

on a disc image and distribute an identical SCU environment to users. This approach also 
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provides the same OS environment for users who have laptops that natively run MAC 

(Macintosh) or Linux operating systems. Microsoft currently offers a 20 GB Windows 10 

Enterprise disc image for developers with a free 90-day license [301]. A Windows 10 disc 

image can also be created with an active Windows license. Presently the Windows 10 

Professional license costs approximately $200 [302]. 

Running a Windows 10 VM for the BlockGrid’s SCU could have several benefits. 

As Windows is a widely used laptop OS, the OS environment would be familiar to a large 

percentage of users. Since most available blockchain software has been widely run on 

Windows, a Windows 10 SCU would also allow users to run some of the most user-tested 

versions of blockchain software. This could have positive effects for user experience. 

Additionally, having a Windows 10 SCU offers the opportunity to have more streamlined 

interfacing between all of the nodes in the BlockGrid if partnered with Windows IoT-Core 

for the OS of the system’s microcomputer nodes. This could be especially helpful for a 

BlockGrid focused on DApp development or a BlockGrid that incorporates IoT devices in 

its smartgrid. 

However, there are several disadvantages to running a Windows 10 VM as the OS 

for a BlockGrid SCU. The most notable drawback is the potential cost of the OS license 

compared to the free Linux alternatives. Avoiding the Microsoft license fee by using the 

free image offered by Microsoft for developers requires re-downloading and reconfiguring 

a Windows 10 Enterprise VM every 90 days. Also, Windows 10 is not a lightweight 

operating system so VM performance could be an issue.  

(2) Linux VM 

Another option is to run the BlockGrid’s SCU through a Linux VM on the user’s 

host computer. Linux operating systems are more commonly used to support virtualized 

applications and may therefore result in a more user-friendly virtualization experience than 

the Windows VM option. There are several different distributions of Linux that could be 

considered. Discussion of specific Linux variants follow. 
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(3) Kali Linux 

Kali Linux is a Debian-based Linux distribution designed for penetration testing, 

digital forensics, and reverse engineering. Presently, it runs Linux Kernel v. 4.14. It is 

distinguished by its “single, root user” implementation in which the default user has root 

privileges. The OS comes packaged with a suite of 600 cybersecurity software tools. Kali 

also has a noteworthy focus on supporting wireless interfaces [303]. 

Using Kali Linux as the SCU OS might be useful for BlockGrid applications that 

are cybersecurity focused. For example, if the BlockGrid’s microcomputer nodes ran Kali 

ARM, it would be possible to use the Kali framework to test blockchain security on any 

node within the BlockGrid system. Additionally, Kali comes with the software required to 

create a software defined router and WAP should a BlockGrid need to deploy those features 

in its network implementation. Additionally, the default root user privileges in Kali could 

make BlockGrid installation and network management slightly less cumbersome for users.  

The most significant disadvantage to running Kali as the SCU OS is that the OS is 

not widely used outside of the cybersecurity community. It may therefore be unfamiliar to 

beginning students and introduce an additional learning curve that negatively impacts the 

user experience. Additionally, few Linux OS-focused tutorials and troubleshooting guides 

for blockchain applications focus on Kali distributions.  

(4) CentOS 

CentOS is a free open-source Linux OS modeled from the Red Hat Enterprise Linux 

distribution. It comes installed with Linux Kernel version 4.11. The OS comes with a robust 

firewall and a suite of server software. CentOS is noted for its stability and it has a fairly 

long release cycle. It is widely used for enterprise and web hosting applications [304]. 

There are several potential benefits to running CentOS as the SCU OS for a 

BlockGrid. The features of the OS focused on server hosting could be advantageous for a 

BlockGrid running DApps that require a web server. The OS could also work well for 

administrators as its stability and long release cycle require comparatively few updates. 

Additionally, the enterprise-focused features of the OS such as its firewall might work well 
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for a larger BlockGrid that incorporates subnets or a BlockGrid that needs to interface with 

other IT infrastructure.  

There are several likely drawbacks, however, to using CentOS as the SCU OS for 

a BlockGrid. One disadvantage is that due to its long release cycle, CentOS can experience 

software compatibility issues when applications update for compatibility with more recent 

Linux OS versions. Another potential issue is that CentOS is a less commonly used Linux 

distribution. As with Kali Linux, it may introduce an additional learning curve for 

beginning students that negatively impacts user experience. Most Linux OS tutorials and 

troubleshooting guides are also not focused on CentOS distros.   

(5) Ubuntu 18.04 

Ubuntu version 18.04, aka Bionic Beaver, is the most current version of the Debian-

based general-purpose Ubuntu Linux OS. It runs Linux kernel v 4.15. The OS is 

noteworthy for its security features, support of NVIDIA GPUs, and Bluetooth 

functionality. It also comes with OpenJDK installed. Ubuntu 18.04 only is only available 

in a 64-bit version and can only run 64 bit-compatible software [305]. 

There are several reasons why using Ubuntu 18.04 as the SCU OS could be 

beneficial. One advantage is that Ubuntu 18.04’s 2018 release coincided with the 2018 

release of many blockchain protocols, and much of the current blockchain software 

designed for Linux operating systems has documentation focused on Ubuntu 18.04. For 

this reason, Ubuntu 18.04 might be a good choice for a BlockGrid running recently released 

blockchain software. Ubuntu 18.04 may also be preferable for BlockGrid administrators 

because the OS will be supported until 2023. Additionally, Ubuntu is a widely used Linux 

distribution and may be more familiar to users, possibly lessening the learning curve 

required to operate the BlockGrid. 

The most significant disadvantage to the Ubuntu 18.04 OS is that as the most recent 

Ubuntu distribution it is not yet widely adopted. Consequently, while much of the official 

developer-generated documentation for new blockchain software focuses on Ubuntu 18.04, 

most of the user community-generated tutorials and support forums that exist for 

blockchain software implementation address older versions of blockchain software and 
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earlier Linux distributions. Ubuntu 18.04 is therefore less likely to be familiar to most users 

than an previous and more widely disseminated Ubuntu versions. 

(6) Ubuntu 16.04 

Ubuntu 16.04, also known as Xenial Xerus, is a widely used version of the Ubuntu 

OS that was released in 2016. It runs Linux Kernel 4.4. The OS also includes the “Snap” 

universal package manager for application downloads. Additionally, Ubuntu 16.04 comes 

with a large suite of desktop software [306]. 

The best attribute of the Ubuntu 16.04 OS is that it is very widely used. As a result, 

there are extensive tutorials and user support resources that make use of this Linux 

distribution. There are numerous resources for Linux implementations of Ethereum 

blockchain software hosted on this version of Ubuntu [307], [308]. Ubuntu 16.04 is also 

likely to be familiar to users and may reduce the learning curve for installing and operating 

the system. 

The most significant disadvantage of Ubuntu 16.04 is it isn’t the most current 

version of Ubuntu. Consequently, newly released user support resources for blockchain 

protocols, especially the newest blockchain protocols, are likely to focus on the more 

current versions of the Ubuntu OS moving forward. Additionally, Ubuntu 16.04 is only 

scheduled to receive maintenance updates until 2021 and no longer receives hardware 

updates, potentially requiring an administrator to install a new SCU OS before long. 

c. Selection for Default Configuration 

Ubuntu 16.04 VM was selected as the SCU OS for the BlockGrid prototype. As 

shown in Table 6, the operating systems were ranked against one another on the categories 

of blockchain software compatibility, smartgrid script compatibility, VM performance, and 

user support resources with 1 being the best and 5 being the worst. In this scoring system, 

the OS with the lowest total score is the best option. 

Using this scoring system, Ubuntu 16.04 had the best score of all five operating 

systems. Although the scores were close between the two Ubuntu operating systems, 

Ubuntu 16.04 had significantly better user support resources. In particular, the user 
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resources for implementing Ethereum blockchain software on Ubuntu 16.04 were much 

better than they were for Ubuntu 18.04. As a result, Ubuntu 16.04 was chosen.  

Table 6. Comparison of SCU Operating Systems 

  

 

3. System Node Microcomputer OS 

The last software element for a BlockGrid is the OS for the microcomputer nodes. 

As the number of microcomputers and IoT devices available have continued to grow, 

operating systems have been created with characteristics suited to diverse applications such 

as programming electronics, embedded systems, multimedia playback, and IoT networks. 

In order for a microcomputer OS to work for a BlockGrid, it must meet several criteria.  

a. Available Choices 

There are a number of OS options available for microcomputers. Each has 

advantages and disadvantages when applied to a BlockGrid. The optimal microcomputer 

OS choice likely depends on the type of smartgrid functionality that a BlockGrid architect 

seeks to achieve. The following are several OS options with unique features that may be 

useful for different types of BlockGrid implementations.  
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b. Criteria 

First, the OS must be compatible with the blockchain protocol for the system. The 

OS should also be compatible with the smartgrid functionality desired for the 

microcomputer and the locally run scripts necessary to support the smartgrid. To optimize 

the user experience, the OS should also be stable, easy to operate, and have sufficient user 

support resources.  

(1) Android  

Android is the most widely used OS in the world due to the high volume of Android 

mobile devices in use [309]. There are several versions of the OS available that might be 

useful for devices in a BlockGrid. The most current version of the OS for general purpose 

mobile devices like tablets and phones is Android Oreo. There are also Android OS 

versions for other device categories such as Android Wear OS for wearables and Android 

Things for IoT devices. All of these Android versions have APIs that allow them to run 

Android software [310]. 

Running Android OS on the nodes of a BlockGrid has several potential advantages. 

As many mobile devices natively run Android OS, using the OS for all system nodes could 

help achieve uniformity for a BlockGrid that incorporates COTS mobile devices in an IoT 

network. Android could also be a useful OS for a BlockGrid running DApps. Another 

advantage is that Android development is done in Java, which is a widely known language. 

Presently, Android cannot support a full node implementation of Ethereum, but a mobile 

app wallet could run in an Android OS and monitor smart contract transactions. 

There are several disadvantages, however, to using Android OS. The most 

significant drawback is that it is not possible to implement a full node for most blockchain 

protocols on an Android device due to both the comparatively low processing power and 

memory for most mobile devices, as well as the lack of blockchain software designed for 

Android OS. This likely significantly limits the ability of a BlockGrid with Android 

microcomputers to fully explore and demonstrate features of blockchain technology. 

Another issue is that Android devices have limited ability to run software designed for 

desktop systems. This in turn likely limits the type of smartgrid functionality that 
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microcomputers running Android can support. The OS may also be unfamiliar to users on 

non-mobile devices, potentially steepening a BlockGrid’s learning curve.   

(2) Windows IoT Core 

Windows IoT Core is a lightweight implementation of Microsoft Windows 10 for 

embedded systems and IoT devices. It comes with a suite of IoT development software and 

specializes in supporting programming access to hardware. Apps in Windows IT Core are 

written in C# and can run on any Windows 10 device [311]. 

Running IoT Core on the BlockGrid’s microcomputer nodes could have several 

advantages. For a BlockGrid running a Windows 10 OS on the SCU, running IoT Core 

would allow seamless interfacing and networking of the BlockGrid’s nodes [312]. The IoT 

development software that comes with IoT Core could also be useful for programming 

smartgrid functionality. Windows may also be a more familiar OS environment for 

students. 

The biggest downside of running Windows IoT Core is that it does not support full 

node implementation of most blockchain protocol software. Consequently, microcomputer 

node devices on the BlockGrid would need to run blockchain interface software to monitor 

and react to blockchain transactions. This would likely complicate operation of the 

BlockGrid and could negatively impact user experience with the platform.  

(3) Armbian 

Armbian is a minimalist Debian-based Linux distribution optimized for ARM 

board applications. It is distinguished by its modularity and shares a code base with the 

Ubuntu OS. Armbian offers a suite of OS customization and developer tools to enable 

customization of the OS for specific microcomputer applications. There are customized 

versions of the OS available for many common microcomputers [313]. 

There are several potential advantages to using Armbian as the microcomputer OS 

for a BlockGrid. First, Armbian’s minimal size could improve speed of operation and 

system performance for a BlockGrid. For a BlockGrid running an Ubuntu OS for the SCU, 

running the Ubuntu-based Armbian OS on the microcomputer nodes might help with 
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interfacing and software portability within the system. For a BlockGrid utilizing non-

Raspberry Pi microcomputers it may be beneficial to run the customized Armbian OS 

offered for that specific device. Armbian might also be a good choice for a BlockGrid that 

incorporates nodes with customized hardware, as the OS could then be customized for 

those devices.  

The largest drawback to using Armbian is that the OS is best used by experienced 

developers. Most user support resources are targeted toward experts seeking to customize 

the OS rather than beginners trying to set up systems for the first time. This may make the 

OS less ideal for use with inexperienced students. 

(4) Moebius 

Moebius is a lightweight Debian-based Linux distribution for the Raspberry Pi. It 

requires only 128MB to install and only 20 MB of RAM to run. In its default state the OS 

has no GUI and can only be controlled from the command line [314]. 

The most significant advantage to using Moebius as the microcomputer OS for a 

BlockGrid is how few computational resources it requires. This small size could make the 

OS well suited for IoT devices. Users may also find it familiar to use as a GUI-less OS 

because the OS is Debian-based. 

The chief drawback to using Moebius is that it’s not widely used. There are minimal 

user support resources. The documentation that does exist is aimed at experienced 

developers and does not provide tutorials for beginners. Additionally, students used to 

working with a GUI-based OS may also find it challenging to work entirely from the 

command line. 

(5) Raspbian Stretch 

Raspbian Stretch is a Debian-based Linux distribution that is the standard OS for 

the Raspberry Pi devices. It comes with a suite of software to support use of the Raspberry 

Pi as a fully functional computer. The OS can be run from an SD Card, onboard memory, 

an external disk, and over an Ethernet connection [315]. 
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The biggest advantage to using Raspbian as the OS for the microcomputer nodes 

of a BlockGrid is that there are lots of user support resources [316], [317]. Due to the 

widespread use of the Raspberry Pi devices and the abundance of associated 

documentation, this operating system is comparatively user-friendly. The troubleshooting 

resources available for Raspbian are the most robust for any ARM operating system. There 

are physical computing libraries focused on Raspbian that enable the user to interface smart 

grid circuits more easily than with any other OS [318]. There are also numerous helpful 

Raspbian-focused blockchain tutorials [319], [320]. 

However, there are some disadvantages to the Raspbian OS. The biggest drawback 

is that Raspbian is not as modular as some of its alternatives. The OS also comes with a 

considerable amount of bloatware that is not likely to be useful for a BlockGrid node 

microcomputer [321]. Raspbian may therefore not be ideal for advanced smartgrid 

implementations or for use with experienced students.  

(6) Kali ARM 

Kali ARM is a version of the popular Linux penetration testing distribution Kali 

Linux for ARM processors. Like its pc counterpart, Kali Linux is a Debian-based Linux 

distribution designed for penetration testing, digital forensics, and reverse engineering. 

Presently, it runs Linux Kernel v. 4.14. Kali Linux comes with a suite of 600 cybersecurity 

software tools. The OS has a focus on supporting wireless interfaces. It is also a “single, 

root user” implementation in which the default user has root privileges [322]. 

Kali ARM could make a good choice as the microcomputer OS for a BlockGrid set 

up to explore blockchain cybersecurity. For a BlockGrid running Kali Linux as the SCU 

OS, the choice of Kali ARM for the microcomputer nodes would allow the Kali tool suite 

to be used for penetration testing from every node on the network. The preinstalled 

software tools for setting up WAPs could also be leveraged to support complex smartgrid 

implementations with subnets. 

The chief disadvantage of running Kali ARM is that it is not widely implemented. 

Consequently, the user support resources are not well developed. The OS is also not 

familiar to many users and could introduce a steep learning curve for beginning students. 
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c. Selection for BlockGrid Prototype 

Raspbian Stretch was the microcomputer OS selected for the BlockGrid prototype 

implementation. As shown in Table 7, the six OS options were graded against one another 

in the categories of blockchain compatibility, smartgrid script compatibility, and user 

resources with 1 being the best score and 6 being the worst. In this scoring system, the OS 

with the lowest total score is the best option. 

Of the six OS options considered, Raspbian had the lowest total score. In 

comparison to the other options, Raspbian offered considerably more user-support 

resources. As the most commonly used OS for the Raspberry Pi, Raspbian offers the best 

opportunity for a familiar and positive user experience operating a BlockGrid. 

Table 7. Comparison of Microcomputer Operating Systems 

 
 

D. CHAPTER SUMMARY 

This chapter reviewed many of the available implementation options for BlockGrid 

system features. The rationale for the choices that were made in the BlockGrid prototype’s 

implementation was also given. The next chapter provides a description of the prototype’s 

design, function, and operation.  
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V. BLOCK GRID PROTOTYPE OVERVIEW 

The BlockGrid prototype is a simple implementation of the BlockGrid 

requirements laid out in Chapter III that is optimized for portability and low cost. The 

prototype empowers an instructor to introduce blockchain technology in the classroom and 

to demonstrate smart contract functionality by using smart contracts to control a cyber-

physical system. The goal of this chapter is to provide an overview of how the prototype 

works. The prototype’s design, function, and operation are described in this chapter, and 

the technical details of the prototype’s implementation are provided in Appendices A and 

B.  

The user; i.e., the instructor, is in complete control of and initiates all BlockGrid 

events. The user interface is the System Control Unit (SCU). The BlockGrid Prototype’s 

Ubuntu Linux VM runs on a laptop and acts as the SCU.  The prototype is designed so that 

all user interactions with the system, including those with the Raspberry Pi nodes, are 

carried out through the SCU.  This single-interface approach simplifies operation of the 

prototype and makes it suitable for demonstrations. 

A. PROTOTYPE LAYOUT 

The BlockGrid Prototype has a seven-node hardware layout consisting of six 

Raspberry Pi microcomputer nodes and an Ubuntu Linux VM running on the user’s laptop 

that serves as the System Control Unit (SCU). Each of the six Raspberry Pi nodes is 

attached by electrical jumper cables from its General Purpose Input/Output (GPIO) unit to 

its own breadboard circuit. Each of these breadboard circuits powers a pair of LEDs, one 

red and one green. The Raspberry Pi nodes and adjoined circuit boards are stacked 

vertically in two display towers with three Raspberry Pi’s and three circuit boards each to 

minimize desktop surface area. The Raspberry Pi nodes and the laptop-residing VM are 

connected to one another on an isolated network using ethernet cables, a COTS router, and 

a multi-port ethernet switch.  
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16a. BlockGrid Prototype Network Scheme 

 
16b. BlockGrid Prototype Layout 

 
16c. Photo of BlockGrid Prototype 

Figure 16. BlockGrid Prototype Network Scheme, Layout, and Photo. 
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Figure 16 provides three visual depictions of the prototype’s hardware 

configuration. In the diagram in Figure 16a a conceptual scheme of the hardware layout is 

given. Figure 16b shows how the hardware elements are arranged. In Figure 16c a 

photograph of the assembled prototype is shown. 

Within this hardware layout the BlockGrid Prototype runs a private, isolated, eight-

node Ethereum blockchain. The blockchain’s network consists of two mining nodes and 

six non-mining nodes. The two mining nodes, which execute the Proof of Work algorithm 

for the prototype’s blockchain, are virtual and run on the laptop-hosted Ubuntu Linux VM. 

The six non-mining nodes, which maintain an updated copy of the blockchain’s ledger but 

do no mining themselves, are each run from one of the prototype’s six Raspberry Pi 

microcomputers. 

The BlockGrid Prototype’s layout has several features that are optimized for 

portability and classroom use: self-contained and isolated, portable, and sufficient for a 

variety of demonstrations. The prototype’s isolated network ensures that it has no external 

network connection dependencies. This allows it to be easily used in classroom or 

demonstration environments that lack internet access. The prototype’s relatively compact 

physical layout allows it to be set up in any location with at least 6 ft2 of flat space and a 

nearby power supply. Additionally, the number of nodes is large enough to allow a variety 

of interactions between nodes to be demonstrated, including the resiliency of the 

blockchain when nodes are compromised or taken down. The number of nodes is still small 

enough, however, for information about the entire system to be easily displayed on a single 

Ethereum Wallet web application interface. When this interface is displayed via a screen 

projector, this allows currency transfers and smart contract transactions between the 

blockchain node accounts to be easily seen by large groups. 

B. PROTOTYPE SYSTEM CONTROL UNIT OVERVIEW AND FUNCTION 

The BlockGrid Prototype’s Ubuntu Linux VM runs on a laptop and acts as the 

System Control Unit (SCU). The prototype is designed so that all user interactions with the 

system, including those with the Raspberry Pi nodes, are carried out through the SCU. This 
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single-interface approach simplifies operation of the prototype and makes it suitable for 

demonstrations. 

1. SCU Control Mechanisms 

Control of the BlockGrid Prototype through the SCU is achieved primarily using 

three tools. The first tool is Secure Shell (SSH), a cryptographic network protocol used for 

remotely administering networks [323]. With SSH, the operating systems of the 

prototype’s Raspberry Pi nodes can be accessed from the SCU via the command line 

interface (CLI) of the Ubuntu Linux VM’s native Terminal application.  

This access is necessary for a variety of setup, demonstration, and system 

administration tasks. For example, during the prototype’s setup SSH connections are 

required to issue Linux terminal commands that synchronize the Raspberry Pi nodes’ 

clocks with the mining nodes that run on the SCU. SSH connections are also required to 

initialize the Ethereum nodes hosted on each Raspberry Pi to establish the blockchain’s 

network. During demonstrations, SSH connections from the SCU to the Raspberry Pi nodes 

allow the Ethereum blockchain to be showcased from each node’s perspective. This can be 

used to illustrate blockchain technology principles such ledger redundancy, blockchain 

network resiliency, and n/2 attacks [324]–[326]. For system administration purposes, SSH 

connections allow the user to update, patch, and troubleshoot the Raspberry Pi nodes from 

the SCU.  

The second tool used to control the BlockGrid Prototype from the SCU is 

Ethereum’s Geth client. Geth is an implementation of the Ethereum protocol written in the 

Go language that enables blockchain operation and administrative functions from the 

command line [327]. Once the prototype’s blockchain is up and running, Geth can be used 

to execute transactions of Ethereum’s ‘Ether’ cryptocurrency between blockchain node 

accounts, as well as smart contract transactions. If a BlockGrid requires maintenance or 

augmentation, Geth can also be used to deploy and alter configurations for blockchain 

nodes and smart contracts. 

The third tool for prototype control from the SCU is the Ethereum Wallet web 

application. Ethereum Wallet is a browser-hosted web application that enables blockchain 
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operation and administrative activities via a GUI interface [328]. Ethereum Wallet has 

much of the same functionality as the Geth client, but its GUI interface is more intuitive 

for less technical observers, thus making it more suitable for demonstrations than the Geth 

CLI. 

In the BlockGrid Prototype, Ethereum Wallet is run in the SCU VM’s native 

Firefox web browser. The Ethereum Wallet GUI allows observers to see what is happening 

in all nodes in the system during transfers of the Ethereum blockchain’s Ether 

cryptocurrency between node accounts or as a result of smart contract transactions. By 

using the GUI as a visual reference for the audience, a presenter can more clearly explain 

concepts like Proof of Work, account addresses, and transaction mechanics as the 

blockchain operates in real time. A screenshot of the interface is shown in Figure 17. 

 
Figure 17. Ethereum Wallet Interface Screenshot. 

2. Operating the SCU  

During setup of the BlockGrid prototype the user can initialize the Ethereum 

blockchain across all of the prototype’s nodes via the SCU. Once the system is running, 

the operator can use the SCU to execute Ether currency transfers between the blockchain 
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node accounts. These transactions can be visualized for demonstration purposes using the 

Ethereum Wallet web app installed on the VM. Through the Ethereum Wallet web app the 

operator is also able to execute smart contract transactions between the blockchain node 

accounts. The outcomes of these smart contract transactions in well-defined cases are 

reflected in state changes of the affected nodes’ LEDs. From the SCU, the operator can 

also perform any required system administration functions while the blockchain is running. 

3. SCU in BlockGrid Architecture 

The VM also runs the blockchain’s two mining nodes, which compete with one 

another to perform the Proof of Work calculations for the blockchain’s Ethereum protocol. 

Since only the SCU VM has the computational power within the BlockGrid prototype to 

perform the Proof of Work algorithm for the system, these mining nodes are fixed in their 

role and do not change their miner-status during the lifetime of the blockchain’s operation. 

Additionally, since the only way to gain Ether currency within the system is through mining 

and transactions, when the BlockGrid prototype is initialized, and  prior to any transactions, 

only the miners accrue Ether currency. This Ether currency accumulates in the miner’s 

blockchain accounts, or “wallets.”2  

A minimum of two mining nodes is required for the Ethereum protocol to run, even 

on a private network. Although the nodes run within the same VM, they are able to compete 

with each other, as the processing power allocated to each node is unequal and varies with 

each Proof of Work algorithm attempt. Over time, this results in a difference in the number 

of blocks added and Ether currency earned by each node.  

While running the mining nodes on separate VM’s or separate hardware would 

perhaps better simulate the distributed nature of real-world blockchains, running the 

mining nodes on the same VM allows for setup, maintenance, and troubleshooting of the 

blockchain network to take place from one central location during operation of the 

 
2 These accounts are indistinguishable from the accounts of conventional Ethereum blockchain users.  

They can transact Ether currency and participate in smart contract executions. Unlike conventional users, 
they can also accrue increasing amounts of Ether currency as they mine blocks successfully. In contrast, the 
accounts for non-mining nodes in the BlockGrid Prototype can only initially receive Ether currency via 
Ether transfer transactions from miner accounts as they generate no Ether currency independently. 
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prototype. Furthermore, running each mining node on a concurrently executing VM would 

overburden conventional user laptops, because multi-GB host RAM allocations were 

necessary. Alternatively, separating the mining nodes physically would require adding 

mining-capable hardware, such as another laptop, to the prototype. This would likely 

complicate the logistics and space required to use the prototype in demonstrations.  

C. PROTOTYPE RASPBERRY PI NODE OVERVIEW 

Each Raspberry Pi node has two electrical output cables that separately power a red 

and a green LED mounted on a breadboard. Every Raspberry Pi node is therefore capable 

of ‘switching’ a red or green LED on and off, in addition to performing other computing 

functions. Each Raspberry Pi node also serves as a non-mining node for the BlockGrid 

prototype’s Ethereum blockchain and maintains a full copy of the blockchain’s ledger. In 

addition to maintaining a full copy of the ledger every Raspberry Pi’s blockchain node has 

an account, also referred to as a “wallet,” on the blockchain. Through its account, each 

node can participate in Ether currency and smart contract transactions like any 

conventional Ethereum user.  

As the Raspberry Pi nodes do not participate in the system’s Proof of Work mining 

competitions, they are unable to add new blocks to the blockchain and earn Ether currency. 

Consequently, when the system is initialized the Raspberry Pi node accounts have a starting 

value of zero Ether currency. As the prototype’s mining nodes have the only currency-

accruing accounts in the system, the Raspberry Pi nodes can only acquire Ether currency 

initially through transfers from the mining node accounts. Furthermore, the Raspberry Pi 

node accounts are unable to participate in smart contract transactions until they possess 

enough Ether currency to pay the smart contract transaction fees required by the Ethereum 

protocol [329]. In the BlockGrid prototype’s default configuration, these transfers from the 

mining node accounts to the Raspberry Pi node accounts are not scripted and must be 

manually executed by the system’s operator after the system is initialized. If the prototype 

operator is an instructor giving a demonstration, this required initial task provides an 

opportunity to demonstrate the steps involved with blockchain cryptocurrency transactions. 
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Once Ether currency has been transferred by the BlockGrid prototype operator to 

the Raspberry Pi node accounts, these nodes can participate in smart contract transactions. 

The blockchain maintains a record of each node account’s Ether currency balances and any 

account’s associated smart contract data. In the BlockGrid prototype, scripts run locally on 

each Raspberry Pi that monitor the node account’s smart contract data and execute 

functions that turn the node’s attached LEDs on and off when specified smart contract 

conditions are met. 

D. PROTOTYPE SMART CONTRACT OVERVIEW 

The BlockGrid prototype operates a basic smart contract, called “SmartSwitch,” on 

the system’s blockchain. The purpose of the SmartSwitch contract is to empower an 

instructor to easily demonstrate how smart contracts work by using a smart contract to 

control a cyber-physical system. Consequently, the BlockGrid prototype’s SmartSwitch 

contract was designed to be as simple as possible, while enabling control of the LEDs 

attached to the prototype’s Raspberry Pi nodes. Using the SmartSwitch contract to turn the 

red and green LEDs on and off in response to smart contract transactions executed on the 

blockchain provides a compelling visual aide to demonstrate how smart contracts work. 

1. Structure of the SmartSwitch Smart Contract  

The SmartSwitch contract achieves cyber-physical control of the BlockGrid 

prototype by issuing a “SmartToken” that can be used to turn the Raspberry Pi nodes’ red 

and green LEDs on and off. A SmartToken can be abstractly conceived of as a unit of 

currency used in the context of a smart contract. Only one LED will be lit at any time. 

When the SmartToken balance in a node’s account is greater than zero, the node’s green 

LED is on. When a node’s SmartToken balance is zero, the node’s red LED is on. This 

smart contract implementation is intentionally simple to allow for easy demonstrations and 

avoids any of the complexities that are often incorporated into smart contract-defined 

tokens in real-world applications.  

To implement the SmartToken concept, the SmartSwitch contract creates a two-

dimensional array that links node account addresses with integer values. Within the array, 

integer values represent the number of SmartTokens possessed by a corresponding account. 
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The integer values associated with each Raspberry Pi node’s account are analyzed to direct 

power flow to either the node’s green or red LED. A conceptual example of the 

SmartSwitch contract’s data structure is given in Figure 18.  

 
SmartSwitch data structure initial state: SmartSwitch contract data structure after initialization showing 
a SmartToken balance of 0 for each node account. As all the SmartToken balances are 0, all of the Raspberry 
Pis’ red LEDs are powered on in this state. 

 
SmartSwitch data structure after depositToken() transaction - SmartSwitch contract data structure after 
a depositToken() smart contract transaction function call is made for the account address 
0xd680c124f551595738ed651fa324ff06a4262dc2, raising the SmartToken balance from 0 to 1 for Raspberry 
Pi Node 2. A transaction like this can be initiated by any node account in the system. After the transaction is 
processed, the green LED for Raspberry Pi Node 2 is powered on, while the remaining Raspberry Pi nodes 
still have their red LEDs powered on. 

Figure 18. Conceptual Model of the SmartSwitch Contract Data Structure 
Before and After a depositToken() Smart Contract Transaction Function 

Call. 

The SmartSwitch contract contains three functions that the prototype operator can 

execute to modify values within the contract’s array data structure. The Solidity code for 

the SmartSwitch smart contract consists of three functions and is shown in Figure 19. The 



110 

first function, depositToken(), increments the value of an account’s associated integer; i.e., 

its number of SmartTokens, by an amount specified by the operator. The second function, 

withdrawToken(), decrements an account’s SmartToken total by an amount specified by 

the operator. As written, withdrawToken() will not decrement the SmartToken value below 

zero, so there is no concept of SmartToken debt within the system. The third function, 

getTokens(), returns the number of SmartTokens currently in an account, allowing the 

prototype operator to query that value. 

 
Figure 19. SmartSwitch Smart Contract Source Code. Adapted From the 

Eloudrhiri Chainskills Smart Contract Tutorial [330].  

a. Distinguishing Between Different SmartTokens and Ether Currency   

It is important to note that the SmartSwitch contract operates almost entirely 

separately and independent from the Ethereum blockchain’s native Ether currency. 

SmartTokens are an arbitrary value created by the SmartSwitch contract, whereas Ether 

currency is the native cryptocurrency for the Ethereum protocol. While both SmartToken 
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and Ether balances are tracked for each node on the Ethereum blockchain’s ledger, they 

are not related to one another and are stored in different locations on the blockchain.  As 

described in Section G of Chapter II, each node account’s Ether currency balance is stored 

as its own field in the header of the account’s data structure. By contrast, each node’s 

SmartToken balance is stored within the data structure created by the SmartSwitch contract 

within the SmartSwitch contract’s account. SmartToken balances are accessible to every 

node via the state trie stored along with each node’s copy of the distributed ledger.  This 

means that every node can see every other node’s SmartToken balance, not just its own. 

Executing the functions of the SmartSwitch contract to adjust SmartToken balances 

for node accounts does not involve use of Ether currency. Consequently, there is no 

required Ether currency exchange or interaction between the account initiating the 

transaction and the node that will process it. The only area of overlap between Ether 

currency and SmartTokens is that the account making a SmartSwitch contract function call 

to adjust the SmartToken balance for an particular account must pay the Gas tax for the 

transaction in Ether currency.   

2. Deploying and Executing the SmartSwitch Smart Contract 

Before the operator can make SmartSwitch contract function calls that are 

computed and updated throughout the blockchain network, a number of steps must be taken 

to deploy the smart contract and enable its execution. As shown in Figure 20, the 

SmartSwitch contract is initially written in the Solidity programming language. Then the 

code is compiled into Ethereum bytecode using the Truffle SDK. Many open-source 

compilers are available for Solidity, and Truffle is one of the most popular [331]. Once 

compiled, the contract’s bytecode is submitted as a new account transaction to the 

blockchain, written into the blockchain’s ledger, and given a corresponding address. At 

this point the SmartSwitch contract is fully deployed on the blockchain system and a node 

account can call its functions for execution. 

Any node account in BlockGrid prototype can execute a SmartSwitch function call 

against any other node’s account. Typically, these transactions are initiated by the 

prototype operator from the SCU VM but they may also be initiated by the operator from 
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any of the Raspberry Pi nodes via an SSH connection from the SCU VM or directly from 

a Raspberry Pi itself. SmartTokens are not transferred between accounts and are not a fixed 

quantity within the system. There is no predeermined upper bound on the maximum 

number of SmartTokens that can be deposited within node’s account, or that can exist 

within the system overall. The only upper bound is the maximum integer value permitted 

on the SmartToken contract’s block in the blockchain’s ledger, which is determined by the 

block’s size. In the Ethereum protocol, block sizes can vary and the maximum size is 

ultimately governed by the Gas limit set by the system’s miners [332]. In the BlockGrid 

prototype, the Gas limit is set to the maximum, which is 0xffffffff.The SmartToken is not 

like a currency in which there is a fixed number of tokens in circulation within the system. 

SmartTokens are not circulated between node accounts. They are simply integer values 

associated with an account address that can only be modified through the depositToken() 

or withdrawToken() function calls for a specific account.  

To operate the system, the miner nodes must first be initialized within the SCU 

VM. The operator must then manually initialize the Raspberry Pi nodes and synchronize 

their system clocks to the SCU VM via SSH connections to get the entire blockchain 

network up and running. The operator can then open the Ethereum Wallet web application 

within the SCU VM’s native Firefox browser to control the system.  

Once the SmartSwitch contract is deployed, the operator can make a smart contract 

function calls to a blockchain API that allows transactions to read from and write to the 

blockchain. Within the BlockGrid prototype this is done using the Ethereum Wallet web 

application’s built-in smart contract interface. These calls can also be made at the command 

line using the Geth command line tool by using Geth’s JavaScript Web3 API [333]. 
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The term nodes in the flowchart refers to both the virtual mining nodes on the SCU VM and the non-mining 
Raspberry Pi nodes. Both run the smart contract code in their respective EVMs to update the SmartSwitch 
state in their ledger copy. Once the updated smart contract values are accepted and new transaction block is 
added to the chain by the miner, the new SmartToken balance is assessed by the script on the Raspberry Pi 
nodes. 

Figure 20. SmartSwitch Contract Build and Execution Sequence.  
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The Ethereum Wallet web application offers the advantage of a GUI that showcases 

each step in the smart contract execution in a demonstration-friendly manner. It also offers 

conveniently stored smart contract addresses upon their initial deployment so that they can 

be referenced by clicking on the smart contract’s name within the GUI rather than its 

lengthy blockchain address.  

Once the blockchain API has been selected, the operator must submit a blockchain 

transaction providing several data elements. 

These are: 

(1) the address of the SmartSwitch contract (this is done automatically when 
the smart contract is selected), 

(2) the requested function call and associated arguments,  

(3) the address of the account making the function call (and paying the 
associated Gas tax), and  

(4) the address of the account containing the SmartToken value to be queried 
or modified. 

Once the smart contract transaction has been signed with the initiating account’s private 

key, this transaction data is submitted to the blockchain’s transaction pool where it can be 

accessed by miners assembling the next block. 

The mining nodes competing to add the next block to the system’s blockchain 

execute the smart contract functions within their node’s Ethereum Virtual Machine (EVM) 

and update their copy of the blockchain ledger to reflect the outcomes of the function call 

made by the operator. For the SmartSwitch contract any of the contract’s three functions 

can be used: getToken(), depositToken(), or withdrawToken(). Both mining nodes and non-

mining nodes process the smart contract code in their EVMs. This means that within the 

BlockGrid prototype both the virtual mining nodes on the SCU VM and the Raspberry Pi 

nodes run the SmartSwitch code in their respective EVMs to update their  respective copies 

of the system’s ledger. When the mining nodes finish running all of the transactions in the 

transaction pool needed for the next block to be added to the system’s blockchain, all of 
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the other nodes in the system execute the smart contract code within their respective EVMs 

as part of the block verification process in the Ethereum protocol’s consensus algorithm.  

Once a block has been verified, additional steps are required to complete the 

transaction process. The mining node that ultimately wins the Proof of Work competition 

commits the new block to the blockchain. The Gas tax for the computation is assessed to 

the account that submitted the transaction by the Ethereum protocol. This Gas tax is then 

used by the protocol to compensate the miner’s account. Finally, the new state of the smart 

contract is updated onto every copy of the blockchain’s ledger duplicated throughout the 

system.  

3. Monitoring SmartToken Balances from the Raspberry Pi Nodes 

While the SmartSwitch contract operates on the BlockGrid prototype’s Ethereum 

blockchain, a JavaScript program called smart_token.js runs continuously on each 

Raspberry Pi node to monitor for an interrupt signal indicating any change in the number 

of SmartTokens in that node’s account. Whenever a change in the state of the SmartSwitch 

contract occurs as a result of a smart contract transaction executed by one of the system’s 

node accounts, an interrupt signal is generated that is detected by smart_token.js and 

prompts smart_token.js to count the number of SmartTokens in the node’s account. If the 

number of SmartTokens in the node’s account is 0, the smart_token.js directs the Raspberry 

Pi to send power to the node’s red LED through the Raspberry Pi’s appropriate GPIO pin. 

If the number of tokens is found to be any value greater than 0, the program directs the 

Raspberry Pi to send power to the green LED through its associated GPIO pin.  

With this simple functionality every Raspberry Pi node in the BlockGrid prototype 

system essentially functions as a smart contract-controlled power switch, or “smart 

switch.” By depositing and withdrawing SmartTokens from the nodes’ accounts via the 

SCU VM’s Ether Wallet smart contract interface, the system operator can make the red 

and green LEDs of the system turn on and off. This visually demonstrates the effect of a 

smart contracts in operation. It opens the door for discussion of the use of smart contracts 

to operate logical gates or grant permissions for cyber-physical systems within a smartgrid 

or IoT network. 
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A detailed walkthrough of how to set up and operate the prototype is provided in 

Appendix C. Video walkthroughs of the setup and operation of the prototype are also 

provided as supplemental materials. 

E. OPPORTUNITIES FOR INSTRUCTION 

At every stage in the BlockGrid prototype operation workflow, there are 

opportunities to demonstrate key aspects of blockchain technology for observers. When 

the display of the laptop running the SCU VM is connected and duplicated to a projector, 

observers can see important aspects of system function in addition to observing the power 

switch between system nodes’ red and green LEDs. 

1. Miner Initialization on the SCU VM 

Upon initialization, the miners on the SCU VM generate a continuous stream of 

system state output reports containing data such as blockchain size, time required to add 

the most recent block, and Proof of Work algorithm phase. The Proof of Work algorithm 

phases reported are high-level descriptions such as “mined potential block,” “Commit new 

mining work,” and “Successfully sealed new block.” This information is displayed by the 

SCU VM’s Terminal application.  

Within the Terminal application window, each status report line in the stream 

includes several fields of information. The fist field is a timestamp. The second field is the 

Proof of Work algorithm phase. The third field is the block number, which defines the 

position of the block within the sequence of the blockchain (as in the first block would 

have block number 1 and the 7th in the blockchain would have block number 7). The fourth 

field is the number of transactions recorded in the block. The fifth field is the number of 

uncle blocks present in the current block’s subtree of the growing blockchain. (Uncle 

blocks are discussed in Section G of Chapter II.) The sixth and final field is a another 

timestamp that reflects the time elapsed since the last Proof of Work status report.  
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Figure 21. Example Stream of Miner State Reports. 

Two screenshots of the system state output report from a mining node upon startup 

and from a mining node that is fully operational are provided in Figure 21. The output 

shown in the first startup screenshot of Figure 21 shows 21 steps taken by the miner2 node 
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to initialize the blockchain as well as several security advisory warnings about the 

blockchain’s configuration. These steps and warnings are described in the white text of the 

left column. The second screenshot shows the status reports when the blockchain is up and 

running. A close examination of the sequence of block numbers in the left column of the 

second screenshot shows several gaps. These block number sequence gaps reflect instances 

in which the miner lost the Proof of Work competition for a block and a different miner 

added the block to the blockchain. 

The Terminal output during the miner initialization provides an opportunity to 

discuss the fundamental features of blockchain protocols and consensus algorithms as these 

features are referenced in the system state output reports [334]–[336]. Launching the 

miners can also be a starting point from which to explore the specifics of Proof of Work 

consensus algorithms as well as the specific features of the Ethereum blockchain protocol 

such as the Ethash consensus algorithm, the role of the Ethereum Virtual Machine, and the 

state trie download [337]–[339]. 

2. Ethereum Node Initialization on the Raspberry Pis 

After the Ethereum nodes on the BlockGrid prototype’s Raspberry Pis are 

initialized during system setup, they too generate a constant stream of system state output 

reports. The state output information reported upon initialization includes descriptions of 

the steps the Ethereum node takes to prepare and sync with the blockchain such as “Starting 

peer-to-peer node,” “Allocated cache and file handles,” and “Disk storage enabled for 

ethash DAGs [340].” Once the node is fully operational the status reports alternate between 

states like “Imported new block headers,” “Imported new state entries,” and “Imported new 

block receipts” along with a timestamp, a count of the newly imported items, the time 

elapsed to perform the action, the block number, and the block’s hash [341]. An example 

screenshot of the output data of a node upon startup is provided in Figure 22.  

Initializing the Raspberry Pi nodes provides an opportunity to discuss fundamentals 

of blockchain architecture. It can also be a starting point for discussions of possible 

blockchain-connected devices. For example, one could discuss the suitability of turning 

sensors or ICS infrastructure to blockchain nodes [342], [343]. Launching the nodes may 



119 

further provide an opportunity to discuss the potential applications of smart contracts in 

facilitating interactions within IoT networks and cyber-physical systems [344], [345].  

 
Figure 22. Example Stream of Raspberry Pi Node State Reports. 

3. Ethereum Wallet Node Account Interface 

When the system operator opens the Ethereum Wallet web browser application, a 

user interface shows all the node accounts on the system and their respective account 

balances for the blockchain protocol’s Ether currency. An example screenshot of the 

interface is provided in Figure 23. In this screenshot within the “Accounts” view all the 

account names within the prototype are listed along with their corresponding Ether 

currency balances. This view reflects the conditions upon system initialization, as only a 

miner node has a positive account balance. 

When the system is initialized, only the miner accounts have non-zero balances, as 

they are the only nodes that accrue Ether currency as compensation for their mining work. 

However, the operator can manually execute Ether currency transfers from the mining node 

accounts to the Raspberry Pi node accounts using the Ethereum Wallet interface.Initial 

transfers to the Raspberry Pi node accounts from the miner accounts are necessary to 

provide the Raspberry Pi node accounts with enough Ether currency to pay the Gas tax 

required to execute subsequent smart contract transactions. 
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Navigating the Ethereum Wallet interface provides an opportunity to explain how 

the Ethereum protocol works, including the role of the protocol’s currency in incentivizing 

miners and in the Gas tax applied to all Ethereum transactions. Exploring the Ethereum 

Wallet interface also provides an opportunity to discuss the nature of private chains for 

development and research purposes as well as the benefits of the prototype’s internally 

networked system. In a classroom context it can also be a springboard for discussion on 

the role of blockchain technology in cryptocurrencies and other potential financial 

applications such as inter-bank transfers, currency exchange, financial regulations, and 

taxation [346]–[350]. 

 
Figure 23. Ethereum Wallet Interface Screenshot. 

4. Smart Contract Transactions 

From the Ethereum Wallet interface, the operator can switch the display to show a 

separate smart contract interface. The Ethereum Wallet web app displays the functions of 

the SmartSwitch contract and allows the operator to manually call those functions to 

execute smart contract transactions. Example screenshots of the Ethereum Wallet smart 

contract interface are given in Figure 24.  
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Figure 24. SmartSwitch Contract Interface for a withdrawToken() Function 

Call Decrementing an Account’s SmartToken Balance. 

On the left in Figure 24, the smart contract interface shows the SmartSwitch 

contract name and address and lists the smart contract’s functions for the operator. Having 

selected a function to execute and provided the recipient node account’s address and the 

initiating node account’s address, the operator is then prompted to enter the initiating node 

account’s private key to execute the transaction and pay the associated Gas tax. On the 

right, the interface shows the withdrawToken() function call transaction execution that 

takes place immediately following the entry of the initiating node account’s private key.  

Navigating the Ethereum Wallet’s smart contract interface to execute a smart 

contract transaction provides an opportunity to discuss the fundamental features of smart 

contracts: how they are developed and how they work. For example, the source code of the 

SmartSwitch contract can be analyzed concurrently with its execution on the prototype. 

This provides observers with the opportunity to learn how the smart contract is structured, 

as well as some of the syntax of Ethereum’s Solidity programming language [351].  

Another instructional possibility is to execute successive smart contract 

transactions from the Ethereum Wallet GUI and the command line Web3 API. This can 
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demonstrate the crucial role of APIs in allowing individual nodes to communicate with the 

blockchain [352]. A third option is to walk through the steps involved in executing a smart 

contract transaction on the blockchain, from the smart contract function call to the 

execution of the code within every nodes’ EVM [353]. 

Although the SmartSwitch contract does not create any dependencies between the 

nodes or utilize multi-node conditional logic to control the Raspberry Pi nodes’ LED 

output, the BlockGrid prototype highlights several distributed computing attributes of 

blockchain technology, which can be demonstrated during smart contract executions. As 

explained previously, smart contract code is run by every node, both mining and non-

mining, and is used to create consensus about the validity of the newly mined block 

containing the smart contract transaction. Additionally, the functions of the SmartSwitch 

contract can be invoked by any node’s account to modify the SmartToken balance in any 

other node’s account. Both mining nodes and non-mining nodes have accounts, and 

consequently both the virtual mining nodes and the non-mining Raspberry Pi nodes have 

accounts that can execute smart contract transactions. An instructor can therefore 

demonstrate that control of the LEDs in the BlockGrid prototype is distributed as they can 

be switched on and off by any node account and from either the SCU VM or any Raspberry 

Pi node’s operating system. 

For convenience, the BlockGrid prototype is designed so that SmartSwitch function 

calls can be made from different node accounts using a single interface: the smart contract 

interface of the SCU VM Ethereum Wallet web application. Initiating a function call from 

a specific node account anywhere in the system only requires providing the source 

account’s blockchain address when the transaction is initiated and signing the transaction 

with transaction-initiating node account’s private key. However, the distributed nature of 

the blockchain can also be demonstrated by executing the smart contract transaction from 

any of the system’s Raspberry Pi nodes. The prototype does not automate this, but an 
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operator can manually execute a smart contract transaction from any Raspberry Pi node in 

the system.3   

Additionally, due to the distributed properties of the blockchain, the state of the 

SmartSwitch contract is accessible to all of the system’s nodes independent of the status of 

the nodes that initiated or received the transaction. This has noteworthy cybersecurity 

implications that positively impact the availability and integrity of the smart contract data. 

For example, if a node that increments the SmartToken balance of a target node and is 

subsequently taken offline by a DDoS attack, there is no consequence to the target node 

and its LED status remains the same. If a node in the system is compromised by an attacker 

who corrupts or changes the SmartToken balances for all the node accounts within the local 

copy of the blockchain ledger, the distributed nature of the blockchain and the consensus 

algorithm of the blockchain protocol do not allow the attacker’s actions to compromise the 

system. As described previously in Section H of Chapter II, to succeed in an attempt to 

control or DDoS the system, an attacker would need to launch an n/2 eclipse attack to gain 

control of more than half of the system’s mining nodes. These availability and integrity 

issues can be effectively explored in demonstrations to address the security benefits of 

blockchains and how they impact potential applications of smart contracts. 

Distributed computing features of blockchain technology can also be demonstrated 

with the prototype though Ether currency transactions between node accounts. The 

transaction history inscribed in the ledger can be examined from the perspective of each 

node to showcase how the ledger is distributed throughout the network. The transfers of 

Ether currency between accounts can also be executed from any node in the network 

provided that the sender and recipient addresses and their respective private keys are 

known. 

Launching the smart contract interface can also provide a starting point for a 

discussion of the potential scope of smart contract functionality for different blockchain 

applications. Example smart contract applications for discussion could include voting 

 
3 This can be done using the Web3 API via the Geth CLI installed on the Raspberry Pi’s OS, which, in 

turn, can be accessed directly by attaching a monitor and keyboard to the Raspberry Pi or from the SCU 
VM via an SSH connection. 
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systems, personnel records, insurance, healthcare records, and supply chain management 

[354]–[358]. 

5. LED color changes 

As the system operator executes SmartSwitch transactions that make SmartSwitch 

function calls to modify node account SmartToken balances, the prototype’s LEDs are 

powered on and off according to the conditional logic in the smart_token.js scripts that run 

on each Raspberry Pi. The smart_token.js scripts watch for any SmartSwitch transactions 

that change the SmartToken balance for the node’s account. The conditional logic in the 

script directs power to the red LED whenever the Raspberry Pi’s SmartToken balance is 0. 

When the account balance is greater than 0, power is directed to the green LED. When the 

‘smart switch’ is thrown and power flow switches between the LEDs, the change is visible 

to observers and provides a concrete demonstration of the smart contract transaction 

process. Figure 25 shows a lighted red LED for one of the BlockGrid prototype’s Raspberry 

Pi nodes. 

 
Figure 25. A Red LED Powered on for a BlockGrid Prototype Node. 

Executing SmartSwitch transactions to switch the power flow between red and 

green LEDs provides an opportunity to discuss the consequences of blockchain features 
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for smart contract functionality. Issues such as transaction times, n/2 attacks, and 

transaction cost can be explored. (In Chapter II, n/2 attacks are discussed in detail.) LED 

switching can also provide a starting point for discussions about the applicability of 

blockchain technology for cyber-physical systems generally. Examples include ICS 

applications, energy grids, satellite systems, and warfighting technology [359]–[363]. 

F. CHAPTER SUMMARY 

This chapter described the BlockGrid prototype’s layout, components, and function 

in detail. Opportunities for instruction during the setup and operation of the prototype were 

also covered. The next chapter will address conclusions of the work and opportunities for 

future research. 
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VI. CONCLUSIONS AND FUTURE WORK 

This chapter discusses the conclusions of the thesis project and identifies 

opportunities for future work. 

A. CONCLUSIONS 

Chapter I outlined three principal goals for this work:   

1. To determine how a cyber-physical system could be constructed to enable 
demonstration of blockchain technology. 

2. To construct a blockchain-controlled cyber-physical system that could 
function as a demonstration platform prototype.  

3. To generate the guidelines necessary for educators to assemble and use the 
prototype as a blockchain technology demonstration platform.   

The first goal was met through the research and testing conducted during the 

BlockGrid prototype’s development.  In Chapter II, the concept of a BlockGrid 

demonstration platform was defined and its system requirements were enumerated.  

Chapter III detailed the implementation options for each system feature were evaluated and 

system features options most consistent with portability, durability, low-cost, and ease-of-

use were identified. 

The second goal was accomplished through successful implementation of the 

BlockGrid prototype.  Chapter V described how the BlockGrid prototype allows an 

instructor to demonstrate blockchain principles at a fundamental level for beginning 

students using a private Ethereum blockchain run on a cluster of Raspberry Pi’s and a VM 

running on a user-provided laptop. The prototype provides observers with a visual 

demonstration of the steps involved in smart contract execution by allowing an operator to 

use a smart contract to control LEDs attached to the Raspberry Pis.   

The BlockGrid prototype has been successfully demonstrated in several 

environments, including RIMPAC (Rim of the Pacific, a U.S. and Pacific allies annual 

naval exercise) 2018 and Discover NPS Day 2019.  The prototype has also been used as a 

research tool for students within the NPS Computer Science Department.   
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The final goal will be accomplished through publication of this thesis and the 

included supporting materials.  This thesis has been structured through its chapters to:  

(1) present the motivation for creating an effective blockchain technology 
demonstration platform;  

(2) define a BlockGrid as a suitable model to meet the demonstration platform 
need;  

(3) explain the currently available implementation choices to consider when 
constructing a BlockGrid and why specific implementation choices were 
made for the BlockGrid prototype; and  

(4) describe the prototype’s design, function, and operation.   

This thesis, its appendices, and supplemental materials, provide educators, students, 

and researchers the information and tools necessary to pursue instruction and 

experimentation on the application of blockchain technology to cyber-physical systems.  

B. FUTURE WORK 

There are several opportunities for future work to extend the effort described here. 

The first is to investigate the BlockGrid prototype’s effectiveness as a teaching tool using 

quantifiable methods. For example, a pedagogical experiment could be constructed in 

which similar lessons on blockchain technology were delivered to student groups with and 

without a prototype demonstration component. Students could be assessed on their 

knowledge of blockchain technology before and after each lesson and the difference in the 

assessment results for lessons delivered with and without the use of the demonstration 

prototype could be compared. Such an experiment could yield evidence metrics regarding 

the efficacy of the prototype as a teaching tool. It could also yield insights into how the 

prototype could be improved to increase its effectiveness as a demonstration platform. 

Second, ways to augment and revise the prototype or to construct new BlockGrid 

prototypes with different feature implementations could be explored. One design choice 

for the prototype worth considering, should the cost of high-performance microcomputers 

decrease, is deployment of more powerful microcomputer nodes in the BlockGrid network.  

All nodes could perform mining functions and system performance may be increased.  
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Such an upgrade might also provide a more compelling demonstration of the distributed 

features of blockchain technology. 

Other work could develop blockchain course materials that incorporate the 

BlockGrid prototype and leverage its potential to make the course more interactive.  Thus, 

the Blockgrid prototype could be used either for demonstrations, or for interactive 

laboratory lessons and small research projects.    

In summary, this work has resulted in the successful creation of a cyber-physical 

system that enables concrete demonstration of blockchain technology.  It provides tools to 

meet the need for USG personnel to learn about blockchain technology. This will help USG 

personnel effectively apply blockchain technology and incorporate it into the nation’s 

cyber defense mechanisms and IT infrastructure.    
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APPENDIX A. BLOCKGRID PROTOTYPE HARDWARE AND 
SOFTWARE TECHNICAL DETAILS 

A. BLOCKGRID PROTOTYPE HARDWARE COMPONENTS 

1. User-Provided Laptop  
To ensure high performance, it is recommended that a laptop with at least 16 GB 

of RAM be used to host the SCU VM so that a minimum of 12GB of RAM can be allocated 

to the SCU VM. 

2. Microcomputer Nodes  
Six Raspberry Pi 3B microcomputers were used in the BlockGrid prototype.  

Available at: https://www.adafruit.com/product/3055 

3. Electrical Circuit Components  

(1) Breadboards  

Six eBoot 400-Point Solderless Circuit Breadboards were used in the BlockGrid 

prototype. One was used for each Raspberry Pi node.  

Available at: https://www.amazon.com/gp/product/B071D7V9HD/ 

(2) Jumper Cables  

RGBZONE Multicolored Dupont Wire Male-to-Female and Male-to-Male jumper 

cable were used to connect the GPIO units of the Raspberry Pis to their attached breadboard 

circuits (Female-to-Male) and to connect the ground lanes of the breadboard (Male-to-

Male). 

Available at: https://www.amazon.com/gp/product/B01M1IEUAF/ 

(3) Resistors  

220 Ω Adafruit Through-Hole Resistors were used to control the current through 

the breadboard circuit and were placed between the LEDs and the grounding lane of each 

breadboard.  
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Available at: https://www.amazon.com/Adafruit-Through-Hole-Resistors-Pack-

ADA2780/dp/B01GQFV79K/ 

(4) LEDs  

One Red and one green GikFun 5mm LED was used for each of the six Raspberry 

Pi-attached breadboard circuits in the BlockGrid prototype.  

Available at: https://www.amazon.com/gp/product/B01ER728F6/ 

(5) Circuit Diagram for Raspberry Pi-attached Breadboard Circuits  

 
On the above pinout diagram, the abbreviations stand for the following: 

BCM - Broadcom Mode                             Ω – Ohm (resistance unit)                             v – Volt   

CE0 - Chip Select 0                                    PWM0 - Pulse Width Modulation 0   

CE1 - Chip Select 1                           PWM1 - Pulse Width Modulation 1 

GPCLK0 - General Purpose Clock 0          RXD - Receive Data 

IDSD - Internal Data Serial Data                SCA - Single Connector Attachment  

IDSC - Internal Data Serial Control            SCLK - Serial Clock  

MOSI - Master Out Slave In                       SD - Secure Digital 

MISO - Master In Slave Out                       SDA - Serial Data 

nm – nanometers (10-9 meters)                    TXD - Transmit Date    

Figure 26. Circuit Diagram For the RPI-attached Circuits in the BlockGrid 
Prototype. Adapted From [364] and [365]. 
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4. Networking Hardware 

(6) Router  

A NetGear RangeMax N600 Dual Band Wi-Fi Router was used to route Ethernet 

traffic between the Raspberry Pi and SCU VM miner nodes in the prototype. The wireless 

functionality of the router was not used for the prototype. 

Available at: https://www.bestbuy.com/site/netgear-rangemax-n600-dual-band-

wi-fi-router-black/1208844.p? 

(7) Switch  

A NetGear 8-Port 10/100/1000 Mbps Gigabit Unmanaged Ethernet switch was 

used to connect the Raspberry Pi Nodes and SCU laptop to the router. 

Available at: https://www.bestbuy.com/site/netgear-8-port-10-100-1000-mbps-gigabit-

unmanaged-switch-white/7451964.p?  

(8) Cables  

· 1.5 ft CAT6 Ethernet Cables were used to connect the RPIs to the switch and 

to connect the switch to the router.  

Available at: https://www.amazon.com/gp/product/B01F3CSJ3E/ 

· A 3ft CAT6 Ethernet Cable was used to connect the SCU laptop to the router. 

Available at: https://www.amazon.com/StarTech-com-Yellow-Snagless-Patch-

N6PATCH3YL/dp/B003TSTDIA/ 

· An Insignia USB 3.0-toGigabit Ethernet Adapter was used to connect the 

Ethernet cable to laptops lacking an Ethernet port. 

Available at: https://www.insigniaproducts.com/pdp/NS-PU98635/3510527  
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5. Additional Hardware  

(9) Power Tower  

The BlockGrid prototype incorporates nine devices that require power from a wall 

outlet. These are the six Raspberry Pi nodes, the router and switch, and the user-provided 

laptop. In order to provide the required number of outlets for all of the BlockGrid 

prototypes devices, a LidLife Power Strip, Tower 12 Surge Protector Electric Charging 

Station with 5 USB ports was used. This Power Tower allows all of the BlockGrid 

prototype hardware to be powered from one wall outlet and to fit conveniently on a 

tabletop. 

Available at: https://www.amazon.com/gp/product/B073S6SKDF/ 

(10) Raspberry Pi/Breadboard Scaffold  

In order to enable the BlockGrid prototype’s six Raspberry Pi nodes and attached 

breadboard circuits to be arranged conveniently on a conventional table top, two 

GeauxRobot 6-Layer Dog Bone Stack Clear Case Box Enclosures were used to stack the 

Raspberry Pi’s and breadboard circuits vertically.  

Available at: https://www.amazon.com/gp/product/B01D9130QC/ 

(11) Pelican Cases  

To allow the BlockGrid prototype to be safely and conveniently transported 

between demonstration locations, two Pelican-style SRA 37–6-BK Watertight Cases with 

Foam 18 x 13 x 7 inches were customized to fit the BlockGrid protype’s hardware 

components.  

Available at: https://www.amazon.com/gp/product/B01MZ75AUW/ 

(12) Micro SD Memory Cards 

To store the Raspberry Pi nodes’ operating systems and the blockchain software 

stored therein, each Raspberry Pi node was provisioned an SD memory card. SanDisk Ultra 

16GB Class 10 SDHC UHS-I Memory Card up to 80MB/s (SDSDUNC-016G-GN6IN) 

memory cards were used. 
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Available at: https://www.amazon.com/SanDisk-Class-UHS-I-Memory-

SDSDUNC-016G-GN6IN/dp/B0143RTB1E/  

 

B. BLOCKGRID PROTYPE SOFTWARE COMPONENTS 

1. Blockchain Software  
Ethereum was selected as the blockchain protocol for the BlockGrid prototype. 

Geth, the Go language implementation of Ethereum, was used for the prototype’s private 

blockchain. 

Available at: https://geth.ethereum.org/install/ 

It may also be convenient to perform the installation from device command line 

using a package manager such as Brew [52]. If using Brew, Ethereum can be installed with 

the following command: 
brew install ethereum 

2. System Control Unit OS  
Ubuntu 16.04 (Xenial Xerus) was used as the OS for the SCU in the BlockGrid 

prototype. The SCU was run as a VM on the user-provided laptop. A copy of the VM used 

for the prototype is provided in the supplemental materials section for this thesis. The 

Ubuntu 16.04 OS can be downloaded directly as well. 

Available at: https://releases.ubuntu.com/16.04/ 

3. Blockchain API Software 
Two Blockchain APIs are available on the BlockGrid prototype through which 

Ether currency and smart contract transactions can be executed. 

(1) Web3 

Web3 is a Javascript API that can be conveniently used from the command line. 

Web3 came pre-installed with Geth on the SCU VM.  It was installed manually on the 

Raspberry Pi nodes. 

Available at: https://web3js.readthedocs.io/en/v1.2.7/getting-started.html 
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The installation is easiest to perform with a package manager such as NPM (Node 

Package Manager) with the following command: 

npm install web3 

The specific web3 version used in the BlockGrid prototype was 0.20.1 and can be 

installed from the command line with the following command [365]: 

npm install web3@0.20.1 

(2) Ethereum Wallet 

 Ethereum Wallet is a GUI-based API that provides easy-to-interpret visual 

displays of the steps involved in blockchain transactions. Ethereum Wallet was installed 

on the SCU VM. 

Available at: https://github.com/ethereum/mist/releases 

4. Smart Contract Development Software  
The Truffle SDK was used to compile the Solidity-language SmartSwitch smart 

contract. It was installed on the SCU VM [365]. 

Available at: https://www.trufflesuite.com/  

Truffle can also be installed from the command line with a package manager such 

as NPM with the following command: 
npm install -g truffle 

5. SmartSwitch Smart Contract  
The SmartSwitch smart contract for the BlockGrid prototype was taken from the 

“Create and Deploy a Smart Contract” Chainskills tutorial by Said Eloudrhiri referenced 

in Appendix B [330].  In the Tutorial the smart contract is given the name SmartToken, 

and was renamed SmartSwitch in the BlockGrid prototype to more clearly convey the 

intention to use the smart contract’s functions to turn the prototype’s LEDs on and off. 

Available at: https://chainskills.com/2017/04/03/create-and-deploy-a-smart-

contract-66/ 
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SmartSwitch Code (from Eloudrhiri tutorial): 
 

pragma solidity ^0.4.0;  
 

contract SmartSwitch {  
mapping(address => uint) tokens;  
event OnValueChanged(address indexed _from, uint _value);  
   
function depositToken(address recipient, uint value) returns 
(bool success) {  

tokens [recipient] += value;  
     OnValueChanged(recipient, tokens [recipient]);  
     return true;  
} 
   
function withdrawToken(address recipient, uint value) returns 
(bool success) {  

if (int(tokens [recipient] - value) < 0) {  
       tokens [recipient] = 0;  
     } else {  
       tokens [recipient] -= value;  
     }  
     OnValueChanged(recipient, tokens [recipient]);  
     return true;  
}  
   
function getTokens(address recipient) constant returns (uint 
value) {  

return tokens [recipient];  
}  

} 

6. Microcomputer Software  

(3) Raspberry Pi Operating System 

Raspbian was chosen to be the OS for the Raspberry Pi nodes. 

Available at: https://www.raspberrypi.org/downloads/raspberry-pi-os/ 

(4) Additional Software 

· Node.js – Node.js is a Javascript Runtime Environment that was installed so 

that the smart_token.js script could run on the Raspberry Pi nodes. 

Available at: https://nodejs.org/en/ 
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Node.js can be installed from the Raspbian Terminal Application command line 

with the following command [365]: 

sudo apt-get install nodejs 

· onoff – onoff is a Node.js module that was installed on the Raspberry Pi nodes 

to allow the smart_token.js script to control the Raspberry Pi’s GPIO pins. 

Available at: https://www.npmjs.com/package/onoff 

onoff can be installed from the Raspbian Terminal Application command line using 

a package manager such as npm with the following command [365]: 
npm install onoff 

b. smart_token.js script  

The smart_token.js script for the BlockGrid prototype was adapted from the 

“Raspberry Pi and Ethereum: The Epilogue” Chainskills tutorial by Said Eloudrhiri 

referenced in Appendix B [365]. The script was copied to every Raspberry Pi node’s home 

directory. 

Available at: https://chainskills.com/2017/04/10/raspberry-pi-and-ethereum-the-

epilogue/ 

 
smart_token.js script code (adapted from Eloudrhiri tutorial): 
 
// Interaction with Raspberry Pi GPIO 
var Gpio = require(‘onoff’).Gpio 
 
// Interaction with Ethereum 
var Web3 = require(‘web3’) 
var web3 = new Web3() 
 
// connect to the local node 
web3.setProvider(new 
web3.providers.HttpProvider(‘http://localhost:8042’)) 
 
// SmartSwitch Smart Contract Address 
var contractAddress = ‘0xc1be8139ae33eb8f4e624e3a239077510eeb83f2’ 
 
// Define the ABI (Application Binary Interface) 
var ABI = JSON.parse(‘[{“anonymous”:false,”inputs”: 
[{“indexed”:true,”name”:”_from”,”type”:”address”}, 
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{“indexed”:false,”name”:”_value”,”type”:”uint256”}], 
“name”:”OnValueChanged”,”type”:”event”}, 
{“constant”:false,”inputs”:[{“name”:”recipient”,”type”:”address”}
, 
{“name”:”value”,”type”:”uint256”}], 
“name”:”depositToken”,”outputs”:[{“name”:”success”,”type”:”bool”}
], 
“payable”:false,”stateMutability”:”nonpayable”,”type”:”function”}
, 
{“constant”:false,”inputs”:[{“name”:”recipient”,”type”:”address”}
, 
{“name”:”value”,”type”:”uint256”}],”name”:”withdrawToken”, 
“outputs”:[{“name”:”success”,”type”:”bool”}], 
“payable”:false,”stateMutability”:”nonpayable”,”type”:”function”}
, 
{“constant”:true,”inputs”:[{“name”:”recipient”,”type”:”address”}]
, 
“name”:”getTokens”,”outputs”:[{“name”:”value”,”type”:”uint256”}], 
“payable”:false,”stateMutability”:”view”,”type”:”function”}]’) 
 
// Create a contract object 
var contract = web3.eth.contract(ABI).at(contractAddress) 
 
// components connected to the RPI 
var redLed = new Gpio(8, ‘out’) 
var greenLed = new Gpio(10, ‘out’) 
 
 
// display initial state 
showStatus() 
 
// wait for an event triggered on the Smart Contract 
var onValueChanged = contract.OnValueChanged({_from: 
web3.eth.coinbase}); 
 
onValueChanged.watch(function(error, result) { 

if (!error) { 
showStatus() 

 } 
}) 
 
// power the LED according the value of the token  
function showStatus() { 
 

// retrieve the value of the token 
var token = contract.getTokens(web3.eth.coinbase) 

 
// display the LED according the value of the token 
if (token > 0) { 

// Green: you have enough token 
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redLed.writeSync(0) 
greenLed.writeSync(1) 

 
} else { 

// Red: not enough token 
greenLed.writeSync(0) 
redLed.writeSync(1) 

} 
} 
 
// release process 
process.on(‘SIGINT’, function () { 

greenLed.unexport() 
redLed.unexport() 
button.unexport() 

}) 
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APPENDIX B. BLOCKGRID PROTOTYPE INSTALLATION AND 
CONFIGURATION GUIDE 

To install and configure the BlockGrid Prototype, the Chainskills tutorial series 

“Create a private Etheruem blockchain with IoT devices” by Said Eloudrhiri was followed 

with some deviations and adaptions to suit the BlockGrid prototype’s software and physical 

requirements [52], [298], [330], [365]–[368]. The deployment of the Ethereum blockchain, 

smart contract, and attached circuit described in these tutorials should allow a reader to 

generate a BlockGrid of their own preference or reproduce the BlockGrid prototype. 

The Chainskills course consists of a series of 7 tutorials that walk through how to 

deploy a private Ethereum blockchain using a laptop and a Raspberry Pi. The course 

provides a sample smart contract SmartToken, a script smart_token.js, and a circuit 

schematic that were all adapted with minor changes for use in the BlockGrid prototype.  

The deviations from each tutorial necessary to construct the BlockGrid protype are 

described in this Appendix. PDFs of the tutorials have also been included in the 

supplemental materials. 

1. “Create a private Etheruem blockchain with IoT devices” [298] 

Available at: https://chainskills.com/2017/02/24/create-a-private-ethereum-blockchain-
with-iot-devices-16/ 

While the BlockGrid prototype makes no use of internet connections once 

assembled, during the initial setup of prototype it is necessary to download software 

components for Raspbian and Ethereum from the internet during installations. If internet 

access is restricted at the assembly site, the necessary software can be installed from a USB 

drive or SD card on the Raspberry Pi, with acquisition of the necessary software following 

facility protocols. If a USB drive or SD card is used, Step 5 of the tutorial “Setup Wi-Fi” 

may be skipped. 

If replicating the prototype with its isolated Ethernet Network, Step 6 will also 

differ from the tutorial.  To replicate the prototype the COTS router described in Appendix 

A must be configured to assign a static IP address to each port.  For the BlockGrid 
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prototype, these were assigned 192.168.1.1 through 192.168.1.9. SSH will still be used to 

connect the Nodes to the SCU as described in Step 6, but this will happen across an Ethernet 

connection rather than WiFi.  

To fully replicate the prototype, repeat the installation steps to install Ethereum on 

all six Raspberry Pi nodes. 

2. “Install an Ethereum node on a computer” [52]  

Available at: https://chainskills.com/2017/03/03/install-a-ethereum-node-on-a-computer-
26/ 

If using the SCU VM provided, the Ethereum installation is already complete and 

this tutorial does not need to be followed.  If not, the tutorial can be followed step for step 

as no deviations are required to install Ethereum on a BlockGrid SCU. 

3. “Set up the private chain - miners” [366] 

Available at: https://chainskills.com/2017/03/10/part-3-setup-the-private-chain-miners/ 
If using the SCU VM provided, the miners installation is already complete and this 

tutorial does not need to be followed.   Note the password for the miner node accounts on 

the SC VM is “password.” 

If running through the tutorial, omit the ending “--ipcpath 

"~/Library/Ethereum/geth.ipc" of the miner setup command and the 

startminer1.sh script to ensure proper initiation of the miners. 

4. “Pair the miners” [367] 

Available at: https://chainskills.com/2017/03/17/pair-the-miners-46/ 
If using the SCU VM provided, the miner pairing installation is already complete 

and the installations in this tutorial are unnecessary. However, even though the installation 

is unnecessary if using the SCU VM, it is important to do steps 1.1-1.3 to “Clean your 

miners” periodically to synchronization and  transaction times for the prototype. 

If following the tutorial to create a BlockGrid, it is necessary to add “admin” and 

“personal” to the –rpcapi flag list in the startminer.sh scripts in order to successfully run 
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the suggested admin.nodeInfo.enode and personal.unlockAccount commands.  The list 

should read: 

 –rpcapi "admin,personal,db,eth,net,web3,miner" 

5. “Synchronize the Raspberry PI with the Private Blockchain” [368] 

Available at: https://chainskills.com/2017/03/27/synchronize-the-raspberry-pi-with-the-
private-blockchain-56/ 

Some minor deviations were made in the instructions for this tutorial to set up the 

BlockGrid prototype.  To initialize a BlockGrid node, run a “geth --datadir ~/node 

init ChainSkills/genesis.json” command rather than the “geth --datadir 

~/ChainSkills/node init ../genesis.json” command recommended by the 

tutorial.  Additionally, use this this version of startnode.sh script rather than the one 

recommended by the tutorial: 
#!/bin/bash 
geth --identity "node3" --fast --networkid 4533 --datadir 
/home/pi/node --nodiscover --rpc --rpcport "8042" --rpcapi 
"personal,admin,db,eth,net,web3,miner" --port "30303" --
unlock 0 --password "/home/pi/node/password.sec" --ipcpath 
/home/pi/.ethereum/geth.ipc  

 
Also note that to sync multiple nodes to the chain the clocks on all nodes have to 

be synchronized. This can be achieved with the following command: 

ssh pi <ip addr> sudo date – set \”$(date)\” 

6. Tutorial 6- “Create and deploy a Smart Contract” [330] 

https://chainskills.com/2017/04/03/create-and-deploy-a-smart-contract-66/ 
If using the SCU VM provided, the installation of the SmartSwitch smart contract 

is already complete and the installations in this tutorial are unnecessary.   

If following the tutorial to deploy a smart contract, several deviations from the 

tutorial are recommended. First, it is recommended to define and lower both Gas and 

gasPrice in order for the “truffle migrate –reset” command to work.  The truffle.js file 

should look something like this: 
module.exports = { 
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  networks: { 
 development: { 
   host: "127.0.0.1", 
   port: 8042, 
   network_id: "4533", // Match this to the network id 
   gas: 1000000, // this can be adjusted 
   gasPrice: 1 // this can be adjusted 
 } 
  } 
}; 

 
Another recommended deviation is to install Ethereum Wallet chain-monitoring 

GUI software rather the Mist software recommended by the tutorial.  To migrate raw keys 

to enable Ethereum Wallet to interface with the blockchain, use myEtherWallet software 

to generate the needed keys.  Once generated, they can be migrated into the blockchain 

using the following command: 

web3.personal.importRawKey("<private key from 

myEtherWallet>","<password>") 

7. “Raspberry Pi and Ethereum: The Epilogue” [365] 

Available at: https://chainskills.com/2017/04/10/raspberry-pi-and-ethereum-the-epilogue/ 
To replicate the BlockGrid Prototype, a circuit will need to be created for each of 

the six Raspberry Pi Nodes.  The supplies required to build the BlockGrid Prototype circuit 

apparatus are detailed in Section A of Appendix A. 

To create circuit layouts like those found on the BlockGrid prototype, some 

deviations need to be made from the tutorial.  For example, the prototype Raspberry Pi 

nodes utilize GPIO pins 8 and 10 on the Raspberry Pi nodes rather than those specified by 

the tutorial.  Additionally, the tutorial incorporates a switch element into the breadboard  

circuit that was not used with the BlockGrid prototype.   

For software, the smart_token.js script used for the prototype, given in section B of 

Appendix A, differs from the script presented in the tutorial.  For example, the ABI 

definition in the script used for the prototype is: 
var ABI = JSON.parse(‘[{“anonymous”:false,”inputs”: 
[{“indexed”:true,”name”:”_from”,”type”:”address”}, 
{“indexed”:false,”name”:”_value”,”type”:”uint256”}], 
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“name”:”OnValueChanged”,”type”:”event”},{“constant”:false,”
inputs”:[{“name”:”recipient”,”type”:”address”},{“name”:”val
ue”,”type”:”uint256”}],“name”:”depositToken”,”outputs”:[{“n
ame”:”success”,”type”:”bool”}],“payable”:false,”stateMutabi
lity”:”nonpayable”,”type”:”function”},{“constant”:false,”in
puts”:[{“name”:”recipient”,”type”:”address”},{“name”:”value
”,”type”:”uint256”}],”name”:”withdrawToken”,“outputs”:[{“na
me”:”success”,”type”:”bool”}],“payable”:false,”stateMutabil
ity”:”nonpayable”,”type”:”function”},{“constant”:true,”inpu
ts”:[{“name”:”recipient”,”type”:”address”}],“name”:”getToke
ns”,”outputs”:[{“name”:”value”,”type”:”uint256”}],“payable”
:false,”stateMutability”:”view”,”type”:”function”}]’) 

Rather than the ABI given by the tutorial: 
var ABI= JSON.parse('[{"constant":false,"inputs":[{"name": 
"recipient","type":"address"},{"name":"value","type":"uint2
56"}],"name":"depositToken","outputs":[{"name":"success","t
ype":"bool"}],"payable":false,"type":"function"},{"constant
":true,"inputs":[{"name":"recipient","type":"address"}],"na
me":"getTokens","outputs":[{"name":"value","type":"uint256"
}],"payable":false,"type":"function"},{"constant":false,"in
puts":[{"name":"recipient","type":"address"},{"name":"value
","type":"uint256"}],"name":"withdrawToken","outputs":[{"na
me":"success","type":"bool"}],"payable":false,"type":"funct
ion"},{"anonymous":false,"inputs":[{"indexed":false,"name":
"status","type":"uint256"}],"name":"OnStatusChanged","type"
:"event"},{"anonymous":false,"inputs":[{"indexed":true,"nam
e":"_from","type":"address"},{"indexed":false,"name":"_valu
e","type":"uint256"}],"name":"OnValueChanged","type":"event
"}]') 

The prototype script also uses GPIO pins 8 and 10 rather than the 14, 15, and 18 pins in 

the tutorial script.  The following switch button logic is omitted from the prototype script 

as well: 
// watch event on the button 
button.watch(function (err, value) { 
  if (err) { 
   throw err 

 } 
showStatus() 
}) 



146 

THIS PAGE INTENTIONALLY LEFT BLANK 



147 

APPENDIX C.  BLOCKGRID SETUP AND OPERATION 
INSTRUCTIONS 

This appendix is intended to serve as an instructor’s manual to enable setup and 

operation of the BlockGrid prototype. Detailed instructions for the physical setup and 

software instructions are provided, along with accompanying video files that walk through 

each step. Links to YouTube-hosted copies of the videos are provided. Mp4 files of the 

video walkthroughs are also included as supplemental materials within the online thesis 

repository.  

A. BLOCKGRID SETUP INSTRUCTIONS 

A video of the setup instructions, prepared by the author, is viewable available at: 

https://www.youtube.com/watch?v=jCZKYr2eoeE&t=4s) 

An mp4 file of the setup instructions video has also been included in the 

supplemental materials for this thesis.  

 
The BlockGrid prototype comes stored in two Pelican cases, as shown in Figure 27: 

 
Figure 27. Screenshot From Prototype Setup Instructional Video of 

BlockGrid Prototype Pelican Cases  
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One case contains two Raspberry Pi (RPI)/breadboard towers, an Ethernet switch, and 

power adapters. See Figure 28 and 00:07 through 00:10 of the BlockGrid Setup Instructions 

video for guidance. Figure 28 shows the contents of the first case. 

 
Figure 28. Screenshot from Prototype Setup Instructional Video of Pelican 

Case Interior Showing RPi Tower and Router Equipment.  

The other case contains Raspberry Pi power adapters and spare parts. See Figure 29 and 

00:12 through 00:15 of the BlockGrid Setup Instructions video for guidance. Figure 29 

shows the contents of the second case. 

Connect the BlockGrid Prototype Hardware 
Step 1 - After unpacking, position the power tower and plug in the Raspberry Pi and 

Router/Switch power adapters. See Figure 30 and 00:17 through 00:45 of the BlockGrid 

Setup Instructions video for guidance.  Figure 30 shows Raspberry Pi power adapters being 

plugged into the power tower. 
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Figure 29. Screenshot from Prototype Setup Instructional Video of Pelican 

Case Interior Showing Power Adapters and Spare Parts.  

 
Figure 30. Screenshot from Prototype Setup Instructional Video Showing 

how to position RPi Tower and Router Equipment.  
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Step 2 - Plug in Router/Switch and connect Ethernet cables. See Figure 31 and 00:45 

through 01:20 of the BlockGrid Setup Instructions video for guidance.  Figure 31 shows 

Ethernet cables being connected from the Raspberry Pi nodes to the Ethernet switch. 

 
Figure 31. Screenshot from Prototype Setup Instructional Video Showing 

How to Connect Ethernet Cables to Create Internal Network.  

 

Step 3 - Plug in the Raspberry Pi power adapters to the Raspberry Pis. See Figure 32 and 

01:21 through 01:43 of the BlockGrid Setup Instructions video for guidance. Figure 32 

shows Raspberry Pi power adapters being plugged into the Raspberry Pis. 

 

Step 4 - Plug in the Ethernet cable to laptop. See Figure 33 and 01:43 through 01:48 of the 

BlockGrid Setup Instructions video for guidance.  Figure 33 shows an Ethernet cable 

connecting the COTS router to the SCU laptop being plugged in. 
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Figure 32. Screenshot from Prototype Setup Instructional Video Showing 
How to Power on Raspberry Pis. 

 
Figure 33. Screenshot from Prototype Setup Instructional Video Showing 

How to Connect Ethernet Cables to User Laptop to Complete Internal 
Network.  
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Initialize the Ethereum Blockchain from within the SCU VM 
Step 1 – From within the SCU VM’s Terminal Application, synchronize RPI clocks to the 

mining VM. See Figure 34 and 01:49 through 02:23 of the BlockGrid Setup Instructions 

video for guidance. Figure 34 shows a screenshot of the time syncing commands being 

entered into the SCU VM. Perform the sync with the following command: 

ssh pi <ip addr> sudo date – set \”$(date)\” 

The IP addresses for the Raspberry Pi nodes within the prototype’s internal network are as 

follows (default password for all BlockGrid RPI’s is “password”): 

 

Raspberry Pi Node IP Address Login Password 

Node 1 192.168.1.1 password 

Node 2 192.168.1.2 password 

Node 3 192.168.1.3 password 

Node 4 192.168.1.4 password 

Node 5 192.168.1.5 password 

Node 6 192.168.1.6 password 

 

Step 2 - Start the miner nodes. See Figure 35 and 02:24 through 02:35 of the BlockGrid 

Startup Instructions video for guidance. Figure 35 shows a screenshot of miner2 being 

initialized in the SCU VM. To start the miner nodes, navigate to the ~/miner<#> directory 

and run the following commands: 

cd miner<#> 

./startminer<#>.sh 
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Figure 34. Screenshot from Prototype Setup Instructional Video Showing 

How to Synchronize RPI clocks.  

 
Figure 35. Screenshot from Prototype Setup Instructional Video Showing 

How to Start Miner Nodes. 
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Step 3 - Start the RPI nodes. See Figure 36 and 02:36 through 03:20 of the BlockGrid 

Startup Instructions video for guidance. To start the RPI nodes, connect via SSH to the 

nodes from the SCU VM Terminal application with the following command: 

ssh pi@<ip_addr> 

Once logged into the pi (recall the login password is “password for all prototype RPIs), 

navigate to the node directory with the following command: 

cd node 

Once in the node’s ~/node directory, run the startup script with the following command: 

./startnode.sh 

Step 4 – Initiate the local smart_token.js scripts on the RPI nodes to begin watching 

SmartSwitch. See Figure 37 and 03:23 through 03:53 of the BlockGrid Startup Instructions 

video for guidance. Figure 37 shows a screenshot of the steps required to initialize the 

smart_token.js scripts on the Raspberry Pi nodes from the SCU VM. To initiate the scripts, 

fist connect via SSH to the nodes with the following command: 

ssh pi@<ip_addr> 

Once logged into the pi (recall the login password is “password for all prototype RPIs), run 

the following command from each RPI node’s home directory: 

node smart_token.js 

Step 5 – Launch the Ethereum Wallet chain-monitoring GUI software. See Figure 38 and 

03:54 through 04:54 of the BlockGrid Startup Instructions video for guidance. Figure 38 

provides two screenshots showing how to launch Ethereum Wallet from the SCU VM.  The 

first screenshot shows the command required launch the software.  The second screenshot 

shows the delay encountered as Ethereum Wallet initializes. Launch Ethereum Wallet by 

running the following command from the SCU VM’s home directory (This takes a very 

long time to load, approximately 3 minutes): 

./ethereumwallet --network 1 –rpc ~/miner1/geth.ipc 
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Figure 36. Screenshot from Prototype Setup Instructional Video Showing 

How to Start Raspberry Pi nodes. 

 
Figure 37. Screenshot from Prototype Setup Instructional Video Showing 

How to Start SmartSwitch-watching Local Script. 



156 

 

 
Figure 38. Screenshots from Prototype Setup Instructional Video Showing 

How to Launch Ethereum Wallet Web App. 

Once the Ethereum Wallet GUI has successfully launched, the BlockGrid prototype is fully 

operational. Figure 39 shows the Ethereum Wallet interface once the BlockGrid Prototype 

is operational. 
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Figure 39. Screenshot from Prototype Setup Instructional Video Showing 

Ethereum Wallet Web App GUI interface. 

B. BLOCKGRID PROTOTYPE OPERATION  

A video of the prototype operation instructions, prepared by the author, is viewable 

available at: https://www.youtube.com/watch?v=8-lMhEzy2tc 

An mp4 file of the prototype operation instructions video has also been included in 

the supplemental materials for this thesis. 

How the SmartSwitch smart contract works 
When a function from the SmartSwitch contract is executed to add or withdraw 

SmartTokens from an RPI node’s account on the blockchain, the smart_token.js script 

running on the node observes the change and switches the power output to a different GPIO 

output pin on the node (causing the light to switch between RED and GREEN) 

How to Execute a SmartSwitch Smart Contract Transaction 
Step 1 - Obtain a node account’s address from the BLOCKGRID_ACCOUNTS 

_AND_ADDRESSES.txt file in the SCU VM’s home directory so that it can be entered 

into the SmartSwitch function input fields in the Ethereum Wallet GUI to execute a 

transaction.  See 00:21 through 01:01 of the prototype operation instructions video and 
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Figure 40 for guidance.  Figure 40 provides a screenshot showing how to locate a node 

address for smart contract execution. 

Figure 40. Screenshot from Prototype Setup Instructional Video Showing 
How to Access Blockchain Account Addresses. 

Step 2 - From within the Ethereum Wallet GUI, open the SmartSwitch contract.  See 01:04 

through 01:18 of the prototype operations instruction video and Figure 41 for guidance. 

Figure 41 gives a screenshot showing how to select the SmartSwitch contract from the 

Ethereum Wallet GUI. 
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Figure 41. Screenshot from Prototype Setup Instructional Video Showing 

How to Access the SmartSwitch Contract. 

Step 3 – Enter the address for a desired account to the Get tokens field to see the account’s 

current SmartToken Balance. See 01:18 through 01:28 of the prototype operations 

instructional video and Figure 42 for guidance.  Figure 42 gives a screenshot that shows 

Get tokens being invoked for account 0x450cc1b347c534d2f307c043a4941a6280bea212 

and returning a SmartToken balance of 1. 

 

Step 4 – Select the desired SmartToken balance adjustment function, either Deposit Token 

or Withdraw Token, from the Select Function pulldown menu. Then enter the desired 

node’s blockchain account address into the Recipient address field and enter the desired 

SmartToken balance adjustment in the Value field. See 01:37 through 01:43 of the 

prototype instructional video and Figure 43 for guidance. Figure 43 gives a screenshot 

showing Withdraw Token being invoked for account 

0x450cc1b347c534d2f307c043a4941a6280bea212 with an adjustment value of 1. 
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Figure 42. Screenshot from Prototype Setup Instructional Video Showing 

How to Assess an Account’s SmartToken Balance. 

 
Figure 43. Screenshot from Prototype Setup Instructional Video Showing 

How to Select a SmartSwitch Function to Execute and With the 
Appropriate Value. 
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Step 5 - Initiate the SmartSwitch transaction by clicking the Execute button and entering 

in the node account password “password.”  See 01:43 though 02:00 of the prototype 

instructional video and Figure 44 for guidance.  Figure 44 gives two screenshots that show 

the Ethereum Wallet GUI during a Withdraw Token execution for account 

0x450cc1b347c534d2f307c043a4941a6280bea212 with an adjustment value of 1.  The 

first screenshot shows how to initiate the smart contract transaction within the Ethereum 

Wallet GUI.  The second screenshot shows the verification pop-up window that auto-

generates following execution initiation, and which requires entry of the node password 

“password” to complete the transaction. 

  

Step 6 – Observe the change in the SmartToken balance for the account and the 

corresponding change in LED color. See 02:01 through 03:27 of the prototype instructional 

video and Figure 45 for guidance. Figure 45 gives two screenshots showing the decrement 

in SmartToken balance for account 0x450cc1b347c534d2f307c043a4941a6280bea212 

from 1 to 0 as a result of the Withdraw Token smart contract execution and the 

corresponding rerouting of LED current from the Raspberry Pi node’s green LED to the 

red LED. The first screenshot shows the node’s SmartToken balance to be 1 and the green 

LED powered on.  The second screenshot shows the node’s SmartToken balance to be 0 

and the red LED powered on. 
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Figure 44. Screenshots from Prototype Setup Instructional Video Showing 

How to Execute a SmartSwitch Function. 
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Figure 45. Screenshots from Prototype Setup Instructional Video Showing 

SmartSwitch Contract Execution. 
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SUPPLEMENTAL MATERIALS 

(1) Ethereum Blockchain Data Structure Diagram – PDF document file 

As noted in Section G of Chapter 2 and Reference [166], the Coinmonks article 

“Ethereum Primitives #1.2” includes a link to a diagram of the Ethereum Data Structure 

attributed to Lee Thomas that is too large to include in the document.  A PDF file of the 

diagram is provided as a supplemental material and can be retrieved by contacting the NPS 

Dudley Knox Library directly, or by checking the supplemental materials link posted along 

with this thesis in the Calhoun NPS Institutional Archive [53]. 

(2) BlockGrid Prototype VM – VirtualBox Image file 

As detailed in Chapter V and listed in Appendix A, a VM was used for the 

BlockGrid prototype’s SCU. A copy of this VM in VirtualBox Image file form is included 

in this supplemental materials section to enable reconstruction of the prototype. The VM 

runs an Ubuntu 16.04 OS and is preconfigured with the requisite network settings and 

installed scripts necessary to run the BlockGrid prototype. The VM image file can be 

retrieved by contacting the NPS Dudley Knox Library directly or by checking the 

supplemental materials link posted along with this thesis in the Calhoun NPS Institutional 

Archive [53]. 

(3) Eloudrhiri Tutorials for Deploying Ethereum, a Smart Contract, and Cyber-
Physical LED system on a Raspberry Pi – PDF document files 

As described in Appendix B and throughout the thesis, the Chainskills tutorials by 

Eloudrhiri for deploying Ethereum on a Raspberry Pi were central to creation of the 

BlockGrid prototype [52], [298], [330], [365]–[368]. There seven tutorials in the series, 

and PDF files of all seven tutorials are provided to give guidance for building the 

fundamental elements of a BlockGrid. The PDF files can be retrieved by contacting the 

NPS Dudley Knox Library directly or by checking the supplemental materials link posted 

along with this thesis in the Calhoun NPS Institutional Archive [53]. 
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(4) BlockGrid Prototype Setup Instructions Video Walk-Through - mp4 video 
file 

As described in Section A of Appendix C, this mp4 video file walks through the 

steps necessary to assemble both the hardware and software of the BlockGrid prototype to 

enable operation. The mp4 file can be retrieved by contacting the NPS Dudley Knox 

Library directly or by checking the supplemental materials link posted along with this 

thesis in the Calhoun NPS Institutional Archive [53]. 

(5) BlockGrid Prototype Operation Instructions Video Walk-Through – mp4 
video file 

As described in Section B of Appendix C, this mp4 video file walks through the 

steps necessary to operate the BlockGrid prototype and execute a SmartSwitch function to 

demonstrate blockchain technology through cyber-physical control of the prototype. The 

mp4 file can be retrieved by contacting the NPS Dudley Knox Library directly or by 

checking the supplemental materials link posted along with this thesis in the Calhoun NPS 

Institutional Archive [53]. 
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