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ABSTRACT 

 Achieving low stall speeds is desired for military aircraft to allow for improved 

flight performance. The purpose of this study was to accurately characterize the inlet flow 

field of a transonic compressor’s inlet and observe if there were any flow field 

improvements due to rig modifications. Constant temperature hot-film anemometry was 

installed to obtain velocity measurements. Radial surveys were obtained at four separate 

azimuthal locations: 0°, -30°, 30°, and 120° to achieve an understanding of the flow field 

due to upstream components. Average turbulence intensity, flow field velocities, 

displacement thickness, momentum thickness, and shape factor were also computed and 

the experimental data was analyzed for compressor operations at 70%, and 85% power 

for near stall, intermediate, and choked conditions. A Computational Fluid Dynamic 

model was also created to compare the 85% choked simulation to the experimental 

results. This data set is essential for the evaluation of computational codes used for the 

simulation of transonic compressor rotors. These measurements will be utilized for future 

Computation Fluid Dynamic validation for separate work involving the redesign of the 

transonic compressor rig inlet as well as boundary and inlet conditions for ongoing 

simulation work. 
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I. INTRODUCTION

A. OVERVIEW

There has been much experimental research performed to better understand and

model turbulence inside a compressor. Transition of the flow’s boundary layer may occur 

over a wide range and depends on the degree of turbulence [1]. The transition region’s 

position has a direct influence on the compressor’s performance. Understanding the 

turbulence behavior is necessary for two main reasons. The first is that many compressor 

rigs desire to obtain similar flow characteristics at the inlet as in-service compressors. This 

ensures validity of the rest of the rig and engine analysis. Another motivator for turbulence 

modeling, as discussed extensively by Camp and Shin, is to apply experimental results to 

sophisticated and complex CFD programs which are widely used by the engineering 

community to model systems and perform design and analysis [1]. 

The overall goal of this study is to successfully and accurately measure the flow 

field characteristics of a transonic compressor test rig inlet. One method is accomplished 

by utilizing hot film anemometry. By inserting a hot wire probe and sensor into the test rig, 

and monitoring power to maintain temperature, flow velocity measurements are obtained. 

In addition, with the velocity measurements, turbulence intensities and kinetic energies are 

calculated as a function of the distance from the outer wall.  

B. AIRCRAFT ENGINE STALL AND SURGE IMPORTANCE

Today most large subsonic aircraft utilize turbine and turbojet engine principles.

The first jet engine was developed, tested, and flown in 1938 by Heinkel and Von Ohain 

[2]. The jet engine revolutionized the aircraft industry by permitting aircraft to fly at higher 

speeds, greater altitudes, and make flying more practical and affordable.  

Military aircraft engines are designed to operate at a specified flight envelope which 

allows for a small stall margin. By having a lower mass flow, engines would be capable of 

flying at lower speeds which would allow for more maneuverability and larger flight 

envelopes for landing and taking off. Papamarkos describes engine stall occurring when 

the demand for airflow exceeds the airflow being supplied by the compressor [3]. When 
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this occurs, the smooth air is disrupted causing turbulent flow and pressure fluctuations to 

occur within the turbine [3].  

C. FLOW DISTORTION 

Flow distortion is an important concept that aircraft engine designers must 

understand. Distorted flow occurs when an engine is subject to incoming flow that is 

nonuniform. Naval aircraft aboard aircraft carriers are subject to flow distortions that cause 

the aircraft’s compressor to operate with a decreased stall margin [4]. Currently steam 

catapults are used aboard aircraft carriers to allow for the launching of aircraft over a short 

distance. Catapult steam leaks out and is sometimes ingested by the engines during takeoff 

[4]. Lieutenant Payne investigated “pop stall” which is the ingestion of steam leading to 

compressor stall. To study the effects of “pop stall,” a steam boiler was utilized to simulate 

the catapult steam which was then introduced with the main air intake through a fast-acting 

solenoid valve. By relating the mass flows at steam induced stall and regular compressor 

stall, the stall margin decreased by 17% on the Sanger rotor [4]. 

Research has been conducted in the analysis of engine response to distorted flow 

fields due to the aircraft design. As aircraft continue to evolve and aircraft manufacturers 

continue to investigate methods for decreasing fuel consumption, many aircraft involve 

embedding the engine within the airframe which leads to a distorted flow. Modern military 

fighter aircraft, are fitted with turbofan engines which are embedded into the underbelly or 

sides of the aircraft fuselage. At Virginia Technical University, an inlet distortion 

generation program called a StreamVane was created to produce simultaneous pressure 

and swirl elements to create a desired inlet profile [5]. This profile is created by 

computational analysis of a boundary layer ingesting engine. The StreamVane creates this 

distorted field by creating a total pressure loss screen pattern and adjusting turning vanes 

which induce the swirl profile. A full-scale engine test was performed to compare the 

engine performance with and without flow distortion. It was concluded flow distortion 

caused a significant reduction in inlet mass flow rate and an increase in fuel consumption. 

Therefore, the engine experienced a decrease in performance and large efficiency impact 

[5]. Due to these adverse effects, developing and testing engines which can withstand flow 
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distortion and upstream turbulent sources will play a major role in future engine research 

and development. 

D. TURBULENCE 

Jet engines are also subject to turbulence which has been a difficult quantity to 

measure though there are some indications that it may be more systematic than previously 

indicated. Turbulent flow as described by Tennekes and Lumley is random, fluctuating, 

and disordered motion due to flow instabilities especially at larger Reynolds Numbers (Re) 

[6]. Turbulence is quantified by a simple mean value calculation as the Navier Stokes 

equations result in chaotic solutions. Though this is a practical way to perform turbulence 

analysis and provide an overall flow understanding, it is not the most accurate as every 

flow is unique and as a result variations in turbulence will exist [6].  

Turbulent flow requires production and dissipated energy from the flow to continue 

its existence, according to Tennekes and Lumley [6]. This energy comes from a shear force 

in the mean flow. If an environment of no shear exists, the flow will transition to laminar. 

The distance this occurs is knowns as the diffusion length. If the velocity of the flow is 

known, the time scale of diffusion can be related to the length scale. The diffusion rate of 

turbulent flow is much higher as opposed to molecular diffusion, therefore obtaining 

measurements at a high frequency is important to perform flow analysis in a turbulent flow 

environment [6]. According to Bradshaw, turbulence can also be viewed as motion as a 

result of vortex stretching which causes velocity fluctuations [7]. This stretching and 

turbulent wavelength is caused and limited by the frictional forces and flow boundary 

conditions [7]. 

There are several parameters which are used in the field of fluid mechanics to 

quantify turbulence as discussed by Goldstein [8]. A common parameter is the turbulent 

kinetic energy (TKE). This is calculated by first determining the root mean-square 

components of velocity. The root mean-square components are determined by summing 

the squares of the difference between the actual velocity and mean velocity and then taking 

the average. The turbulent kinetic energy per unit mass (k) can then be calculated using 
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equation 2 which requires a summation of the velocity component variances u’, v’, and w’ 

[8].  

 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐸𝐸𝑀𝑀 + 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  .5(𝑢𝑢 + 𝑢𝑢′)2 =  .5(𝑢𝑢 + 𝑢𝑢′)(𝑢𝑢 + 𝑢𝑢′) =  .5(𝑢𝑢2 + 𝑢𝑢′𝑢𝑢′) (1) 

 𝑘𝑘 = .5�𝑢𝑢′2 + 𝑣𝑣′2 + 𝑤𝑤′2�   (2) 

Another common parameter is the turbulent intensity (TI) [8]. This is related to the 

kinetic energy and the mean velocity (Umean) by 

 𝑇𝑇𝑖𝑖 =
�23∗𝑘𝑘�

.5

𝑇𝑇𝑚𝑚𝑚𝑚𝑇𝑇𝑚𝑚
   (3) 

This is a useful variable as it allows for a comparison of turbulence at different 

locations and times. In turbulent flows, it is expected that the intensity will decrease 

exponentially from the turbulent source. 

E. FLOW FIELD MEASUREMENT TECHNIQUES  

Several methods of capturing the flow field through an engine have been 

implemented. It is important for these measurements to be accurate as technologies have 

been advancing in aircraft engines and so it is important that the manufactures are provided 

with reliable and accurate data to evaluate their simulation codes with. One of the most 

common methods for obtaining flow characteristics in turbomachinery is to utilize 

pressure-based measurements. These pressure based methods require a pressure probe to 

be inserted into the flow field. A common probe used in the aircraft industry is a pitot probe 

that is capable of obtaining total and static pressure measurements. By obtaining a static 

and total pressure measurement, a subsonic velocity can be calculated by utilizing 

Bernoulli’s equation. If the flow upstream of the total pressure measurement is subsonic, 

fluid momentum and isentropic relations are used for calculations. However, in the case of 

supersonic flow, a normal shock will occur resulting in an entropy increase as the velocity 

decreases. This will result in a pressure increase and therefore this needs to be accounted 

for when performing flow analysis and calculations. Goldstein discusses several issues 

with this method due to the probe insertion which has the potential to influence the obtained 
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measurements [8]. One such effect could be caused by the proximity to a wall. As the 

pressure probe approaches a wall, streamlines are deflected by a probe-wall interaction. 

This is likely to occur when the distance between the probe and the wall is less than two 

times the diameter of the probe. Another issue is the wall of the instrument will create an 

asymmetrical flow around the tube leading to incorrect data. Also, the effective center of 

the tube will shift toward regions of higher velocity causing biased data to be obtained [8]. 

As a result, these devices are not optimal for high speed measurements especially in regards 

to turbulent flows and so other options are available and utilized for such flow analysis. 

This was especially apparent when performing a calibration and proof of concept in a small 

3D printed wind tunnel and larger low speed wind tunnel as it took some time for air to 

accumulate through the pressure instrument and tubing which was connected to a 

manometer. 

Sensitive pressure transducers, developed by Kulite Semiconductor Product, Inc 

are another method capable of obtaining flow measurements [9]. These sensors are more 

suitable for high frequency measurements as the senor is highly sensitive and located 

directly in the flow. The instrument consists of 3 layers. The first layer consists of 

monocrystalline N-type silicon which has a diaphragm machined within the layer. The 

diaphragm thickness depends on the maximum pressure and is designed to witness 350–

400 microinches per inch of strain at the maximum pressure. The second layer consists of 

silicon dioxide on top of the N-type diaphragm. This electrically isolated the N type 

material and P-type material. The final layer contains four strain gauges of P-type silicon 

organized in a Wheatstone bridge circuit. As the elements are exposed to a pressure force 

two of these strain gauges will see tension which causes the resistance to increase while 

the other two witness compression causing their resistance to decrease. The tension gauges 

are opposite of each other as are the compression ones. This causes the resistance change 

to be substantial which allows for a maximum output. The stress applied is directly 

proportional to the resistance imbalance across the Wheatstone circuit [9]. 

An additional measurement technique to counter undesired effects is Constant 

Temperature Anemometry (CTA) which was utilized in this research as it is robust, well 

understood, and trusted in the fluid mechanics field. A hot wire or film probe consisting of 
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a thin sensor aligned perpendicular to the direction of flow. This sensor is held in place 

between two prongs as seen in Figure 1. As air flows over the wire or film convection heat 

transfer occurs between the sensor and the flow as depicted in Figure 2. As the flow 

velocity increases more convection occurs causing the wire temperature to decrease [10]. 

The heat transfer can be described by the Nusselt Number (Nu) which is the ratio of 

convective heat transfer to conductive heat transfer resulting in being a function of the 

Reynolds Number (Re) and pressure ratio (Pr) as shown by equation 4. To keep the sensor 

at a constant temperature the current applied is balanced with the flow over the wire. This 

change in current is displayed as a voltage change which is recorded by Thermal Pro 

software [11]. Use of this experimental instrumentation has been proven in past research 

to include a ramjet engine by Ensign Alford at the Naval Postgraduate Turbopropulsion 

Laboratory (TPL) [12]. There are also more sophisticated hot wire probes which consist of 

multiple sensors at fixed angles. This allows for decomposition of the velocity components 

to allow for more accurate calculations and an improved understanding of the flow field as 

the velocity is composed of three directional components [11]. The single film sensor was 

utilized for this research as interest was in the axial flow direction. 

 
Figure 1. Hot Wire Probe. Adapted from [12]. 
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Figure 2. Cylinder in Cross Flow 

 𝑁𝑁𝑢𝑢 = ℎ𝐿𝐿
𝑘𝑘𝑓𝑓

= 𝑓𝑓(𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃)  (4) 

Particle Image Velocimetry (PIV) is a common imaging technique. Guimaraes 

describes this technique as small particles being introduced to the flow while ensuring a 

Stokes number of less than 1 exists [13]. This ensures that the particles will flow with the 

streamlines. A laser sheet is then used to illuminate the flow field with short pulses. Particle 

images are captured with a camera which is synchronized with the pulses. Images are then 

used to calculated the displacement of the particle which allows for a velocity to be 

calculated. Not only does PIV decrease the probe disturbance effect but it also allows for 

a large portion of the flow to be analyzed while a probe can only obtain measurements at a 

single location [13]. 

F. RESEARCH OVERVIEW 

The goal of this study was to model the turbulence of the Naval Postgraduate 

School’s (NPS) Transonic Compressor Rig’s (TCR) inlet. This was performed by using 

constant temperature anemometry. 

The Experimental Equipment section provides details of the hot film equipment 

which was necessary to obtain the required data. This equipment was used in both the TCR 

and a low speed wind tunnel. Information on the set up, integration, and operation of these 

devices is also provided. 

The procedure section contains the process for obtaining the data. This includes the 

calibration method which was required to calibrate the hot film sensor. Calibration was 

accomplished by obtaining voltage readings and correlating them to velocity measurements 



8 

from pressure instrumentation in the free stream. A density correction was also necessary 

for the TCR which required a density correction plot which utilized the pressure in the flow 

field. The density correction curve was constructed by correlating the velocity and static 

inlet pressure. With these curves, it was possible to convert raw voltages to corrected 

velocities at the compressor inlet. The equations to convert the raw voltage to a density 

corrected velocity are provided. In addition to obtaining real data, a computational 

simulation was performed to model the flow. The setup is also explained. 

Data was first obtained in the low speed wind tunnel. Afterwards, the equipment 

was transferred to the TCR. Measurements were taken at four separate locations for six 

flow field conditions at 70% and 85% power and repeated at two of these locations after 

removing the upstream bellmouth. Velocity and turbulence intensity plots were produced 

to compare the flow at the various locations. The computational results were also plotted 

against the experimental data for comparison.  

Conclusions and recommendations are also discussed to provide information on the 

success and areas of improvement for this research. Also, methods to further expand this 

research are also discussed. 
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II. EXPERIMENTAL EQUIPMENT  

A. OVERVIEW  

The Naval Postgraduate Turbopropulsion Lab (TPL) is a part of the Department of 

Mechanical and Astronautical Engineering; this is where testing of the transonic 

compressor, data collection, and analysis is performed.  

B. HOT FILM ANEMOMETRY 

TSI’s Intelligent Flow Analyzer (IFA) 300 Constant Temperature Anemometer and 

ThermalPro software were utilized to obtain hot film data. The IFA 300 was controlled by 

the ThermalPro software through a RS-232 connection and maintained the hot film sensor 

at a constant temperature by regulating the voltage. Voltage readings were sent through a 

terminal board and then to a data acquisition card which was installed within the computer. 

Figure 4 illustrates the schematic of this data acquisition system and the user interface of 

ThermalPro is shown in Appendices A and B which outline the procedures. The probe 

model utilized was TSI Model 1212–20, Regular Straight Probe, as shown in Figure 3, with 

a senor orientation of 0° relative to the probe connection. The probe was connected to the 

IFA 300 by a coaxial cable. The probe’s and sensor’s specifications are summarized in 

Table 1 [14]. The sampling frequency was 100 KHz which was chosen from the low speed 

wind tunnel testing which resulted in the TI 95% confidence interval to be within 1% in 

the freestream. 

Table 1. Hot Film Sensor Specifications [14] 

Temperature Coefficient of Resistance  .00024 °C 

Maximum Sustained Ambient Temperature  300oC 
Maximum Sensor Operating Temperature  425°C 
Material Platinum 
Sensor Area Width  25.4 umm 
Sensor Area Length  .51 mm 
Distance Between Supports  3.2 mm 
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Figure 3. Hot Film Probe 

 
Figure 4. IFA 300 Data Acquisition System 

A Velmex Motorized BiSlide traverse was mounted with a 2.5 VDC SLO-SYN 

Stepping Motor at a 90-degree offset to the outer casing and then connected to the probe 

holder by an aluminum arm so the hot film could be automatically repositioned by the 

Thermal-pro software. Traverse configuration can be observed in the proceeding sections. 

C. LOW SPEED TESTING  

A wind tunnel, Figures 5–7, was transferred from Watkins Hall to the Propulsion Lab 

to perform a proof of concept study for both the calibration and acquisition of hot film data. 

This allowed for insight in regards to noise levels and required frequency and sample size 

requirements. The tunnel was modified to hold the hot film probe and a pitot probe 
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simultaneously. The pitot probe was connected to an angled barometer along with a static 

pressure connection from the bottom of the tunnel. The wind tunnel was powered by an 

electrical motor which allowed for speed regulation and therefore acted as a throttle. The 

calibration began with the fan stationary to obtain a zero-velocity voltage reading and then 

voltage and differential pressure readings were taken at 70%, 80%, 90%, and 100% power. 

The differential pressure was converted to a velocity to be inputted to the ThermalPro 

software.  

 
Figure 5. Wind Tunnel 

 
Figure 6. Wind Tunnel Calibration Set Up 
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After performing a calibration, the traverse was incorporated by mounting it behind 

the hot film probe holder and connecting it by an aluminum arm. This allowed for testing 

the control of the traverse and integrating all of the hardware components through the 

ThermalPro software. 

 
Figure 7. Wind Tunnel with Mounted Traverse 

D. NPS TRANSONIC COMPRESSOR TEST RIG 

The Transonic Compressor Test Rig (TCR) at the Naval Postgraduate School 

(NPS) has been utilized as a test platform for pioneering flow measurements. It was 

designed by Dr. Vavra of the Aerospace department and is still being used today. This rig 

has been used to test real world flow fields and compare them to computer simulations 

[15]. The TCR is manually operated in a separate room outside the test area. Figure 8 shows 

the TCR. 
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Figure 8. Transonic Test Rig Diagram 

As described by Payne, the TCR is driven by compressed air, as seen on the right 

most part of Figure 8, from two opposing rotor turbine stages being driven by a 12-stage 

Allison-Chalmers axial compressor [4]. The compressor is capable of providing 

compressed air at 300 KPa at 5 Kilograms per second. An electric motor is used to adjust 

the turbine speed. A hydraulically actuated operating plate throttle controls the flow rate 

through the test compressor [4]. 

The traverse which was described previously was mounted to the outer casing. 

Figure 9 shows the equipment mounted to the TCR outer casing. 
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Figure 9. TCR Rig Configuration 

The hot film sensor was inserted through the TCR casing by a steel rod which had 

a coaxial connection at the top. The sensor location was rotated four times for separate 

measurement angles as the inlet contained six holes at 60 degree offsets which could 

potentially lead to a non-uniform flow. This was performed to be sure the flow was axi-

symmetric for future modeling and analysis purposes. Two pressure instruments which 

were at offsetting angles were used for calibration purposes. Figure 10 shows the pressure 

and hot film sensor locations and Figure 11 shows the four hot film locations relative to 

the upstream throttle. The 0 and 120 degree locations are situated between the throttle holes 

which allow air flow to enter while the 30 and -30 degree locations are exposed to the inlet 

holes.  
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Figure 10. Sensor Locations 

 

Figure 11. Hot Film Locations 



16 

THIS PAGE INTENTIONALLY LEFT BLANK  



17 

III. DATA COLLECTION AND ANALYSIS 

A. CALIBRATION 

With all of the hardware and software components set up properly, a calibration 

was performed. As the TCR was brought up to speed, several speeds were used to calibrate 

the hot film sensor while at a choked condition. By taking known velocity, pressure, and 

voltage readings calibration curves were constructed. A fourth-order curve was fitted using 

the velocity and voltage measurements to convert the raw voltage to velocity 

measurements. Pressure data was obtained to create a separate curve to calculate a 

corrected velocity, taking into account density changes. Table 2 provides calibration data 

which was then used to create a velocity calibration curve, Figure 12, and a density 

correction curve, Figure 13. Appendix A provides the detailed steps to perform the 

calibration through the ThermalPro software. 

Table 2. Hot Film Calibration Data 

Voltage [V] Velocity [m/s] Pressure [Pa] Temperature [K] 
2.92 41.73 98526.48 285.40 
3.10 56.27 96449.55 285.00 
3.23 71.39 93404.28 284.20 
3.43 105.40 85972.19 285.70 
3.47 113.63 83880.00 284.60 
3.49 123.00 81533.00 288.30 
3.53 132.38 79110.52 286.60 
3.54 135.95 78195.41 284.50 
3.54 137.93 77795.00 286.20 
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Figure 12. Hot Film Calibration Curve 

 
Figure 13. Density Correction Curve 
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An alternate method for calculating the velocity was also investigated as it allowed 

for a wider range of operating conditions to be used as the previous method only utilized a 

full open throttle. An additional intermediate and near stall point at 80% power were 

included. Voltage was plotted with the calibration velocity multiplied by the calibration 

pressure. This allowed the velocity to be calculated, from Figure 14, in a single step which 

produced near identical results as to the two step method.  

 
Figure 14. Alternate Calibration Method 

B. PROCEDURE 

After a calibration was performed, hot film data was acquired at predetermined 

locations with 6mm from the inner casing being used as a zero-reference point. Table 3 

provides the locations which were inputted to ThermalPro so the traverse could control the 

position of the hot film sensor automatically. The front of the nose cone was 145.6 mm 

from the inner casing so 139.6 mm was inputted for Run #30 to capture this location. 
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Table 3. Hot Film Data Locations 

Run # X [mm] Run # X [mm] Run # X [mm] 
2 0 12 2 22 30 
3 0.1 13 2.5 23 40 
4 0.2 14 3 24 50 
5 0.3 15 3.5 25 60 
6 0.4 16 4 26 75 
7 0.5 17 5 27 90 
8 0.75 18 7.5 28 105 
9 1 19 10 29 125 
10 1.25 20 15 30 139.6 
11 1.5 21 20 31 141 

 

For each location, hot film data was acquired at each predetermined position for the 

choked, an intermediate condition, and near stall for 70% and 85% power. Figure 15 

outlines the compressor operating conditions. Initially the probe was mounted from the top 

(0°) of the TCR. Once hot film data was taken for the above conditions the experimental 

rig was adjusted to 30, -30, and 120 degree offsets. Then, the upstream bellmouth was 

removed and the process was repeated for the 0 and 30 degree locations. This was necessary 

as the test rig will be upgraded and was desired to have a characterization of the flow before 

and after the upgrade. This will allow for a comparison of performance as future 

modifications are implemented. Appendix B provides a detailed procedure for using 

ThermalPro to acquire data for each condition. 
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Figure 15. Test Configurations 

After performing velocity calculations with the calibration curve, a density 

correction was required since the calibration curve was performed at the choked condition. 

Density correction was performed by using the density correction curve to determine the 

corresponding calibration pressure (Pcal). A corrected velocity (Vcor) was then calculated 

by equations 5–7 which also required the experimental pressure (Pexp) which was obtained 

from the static pressure ports during the traverse. Equation 5 was first used to convert the 

raw voltage (E) to a velocity (V). This velocity was corrected for density by extracting Pcal 

from equation 6 and then applying it to equation 7 along with V and Pexp.  

 𝑉𝑉 =  𝐴𝐴1𝐸𝐸4 + 𝐴𝐴2𝐸𝐸3 + 𝐴𝐴3𝐸𝐸2 + 𝐴𝐴4𝐸𝐸 + 𝐴𝐴  (5) 

 𝑃𝑃𝑐𝑐𝑇𝑇𝑇𝑇 =  𝐵𝐵1𝐸𝐸4 + 𝐵𝐵2𝐸𝐸3 + 𝐵𝐵3𝐸𝐸2 + 𝐵𝐵4𝐸𝐸 + 𝐵𝐵  (6) 

 𝑉𝑉𝑐𝑐𝑇𝑇𝑐𝑐 =  𝑉𝑉 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒

   (7) 
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C. COMPUTATIONAL SIMULATION 

The TCR inlet piping was modeled by use of ANSYS-CFX version 19.2. Drawings 

and physical measurements were utilized to create the nose cone, bell mouth, and 3 meters 

of upstream piping in SolidWorks. Then, the model was imported to generate a mesh in 

ANSYS-CFX. Table 4 provides the information in regards to the meshing of the tunnel and 

Figures 16 and 17 illustrate the resulting mesh. 

Table 4. Mesh Statistics 

Number of Nodes 3,257,155 
Number of Elements 7,488,427 
Number of Inflation Layers 33 
First Layer Thickness 1 micrometer 
Inflation Layer Expansion Ratio 1.2 
Element Size .01 meter 
Yplus .2 
Max Size .1 meter 

 
Figure 16. TCR CFX-Mesh 
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Figure 17. TCR Cross Section CFX-Mesh 

After completing the mesh, CFX-Pre was used to match the experimental 

conditions for the 85% power choked condition. This included matching the RPM, static P 

at the compressor inlet, and upstream total pressure. To model the turbulence the k-Epsilon 

(k-ε) model was chosen with an inlet intensity of 10% to match the experimental freestream 

TI as close as feasible. 
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IV. RESULTS 

A. WIND TUNNEL RESULTS 

A wind tunnel velocity profile and turbulence intensity was calculated along with 

95% confidence intervals. Figures 18 and 19 illustrate the velocity and turbulence intensity 

profiles and Table 6 provides the calculated numerical results. 

 
Figure 18. Wind Tunnel Velocity Profile 

 
Figure 19. Wind Tunnel Turbulence Intensity 
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B. TCR EXPERIMENTAL RESULTS 

Hot film measurements were obtained at 85% and 70% power for choked, an 

intermediate, and near stall conditions. This was repeated at four circumferential locations; 

0, -30, 30, and 120°. The normalized velocity, ratio of local velocity (u) to freestream 

velocity (UFS) which was corrected for TSI standard conditions as calculated by equations 

8 and 9, and turbulence intensity was calculated at each location and then plotted, Figures 

20 - 31, for comparison purposes. 

 𝑈𝑈𝐹𝐹𝐹𝐹 =  𝑈𝑈𝑀𝑀𝑚𝑚𝑇𝑇𝑀𝑀
𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴

273+21.1
101325
𝑃𝑃𝑜𝑜

  (8) 

 𝑁𝑁𝑁𝑁𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁𝑅𝑅𝑁𝑁 𝑉𝑉𝑅𝑅𝑁𝑁𝑁𝑁𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉 =  𝑢𝑢
𝑇𝑇𝐹𝐹𝐹𝐹

  (9) 
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Figure 20. Velocity Profile at 85% Power and Choked Condition 

Figure 21. Turbulence Profile at 85% Power and Choked Condition 
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Figure 22. Velocity Profile at 85% Power and Intermediate Condition 

Figure 23. Turbulence Profile at 85% Power and Intermediate Condition 
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Figure 24. Velocity Profile at 85% Power and Near Stall Condition 

 
Figure 25. Turbulence Profile at 85% Power and Near Stall Condition 
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Figure 26. Velocity Profile at 70% Power and Choked Condition 

 
Figure 27. Turbulence Profile at 70% Power and Choked Condition 
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Figure 28. Velocity Profile at 70% Power and Intermediate Condition 

 
Figure 29. Turbulence Profile at 70% Power and Intermediate Condition 
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Figure 30. Velocity Profile at 70% Power and Near Stall Condition 

 
Figure 31. Turbulence Profile at 70% Power and Near Stall Condition 
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Figure 32 shows an approximated velocity profile by fitting the experimental data 

points to allow for the displacement thickness (d*), momentum thickness (θ), and shape 

factor (H) to be tabulated. Since data was obtained starting at 6mm from the wall to protect 

the hot film sensor, the entire profile, from the wall to freestream, was approximated with 

the existing data by a power function. This was necessary as these values required 

integrating from the wall to the freestream location of 36mm achieved with equations 10–

12 which were obtained from Tennekes and Lumley [6]. By calculating d*, θ, and H, the 

nature of the flow can be characterized as turbulent or laminar [6]. These results are shows 

in Table 5.  

 𝑁𝑁∗ =  ∫ �1 − 𝑢𝑢
𝑇𝑇
�𝑁𝑁𝑉𝑉𝑑𝑑

0   (10) 

 𝜃𝜃 =  ∫ 𝑢𝑢
𝑇𝑇
�1 − 𝑢𝑢

𝑇𝑇
�𝑁𝑁𝑉𝑉𝑑𝑑

0   (11) 

 𝐻𝐻 =  𝑑𝑑
∗

𝜃𝜃
  (12) 

 
Figure 32. Approximated Velocity Profile  
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Table 5. Flow Characteristics 

Condition Position [deg] d* [mm] θ [mm] H 
85% Choked 0 1.064 0.987 1.078 
85% Choked 30 1.166 1.078 1.082 
85% Choked -30 1.854 1.659 1.118 
85% Choked 120 1.152 1.065 1.081 
85% Choked 30 (Bell removed) 1.110 1.028 1.079 
85% Choked 0 (Bell removed) 1.252 1.153 1.086 

85% Intermediate 0 1.257 1.157 1.086 
85% Intermediate 30 2.565 2.213 1.159 
85% Intermediate -30 2.122 1.873 1.133 
85% Intermediate 120 1.561 1.417 1.102 
85% Intermediate 30 (Bell removed) 1.779 1.598 1.113 
85% Intermediate 0 (Bell removed) 1.771 1.591 1.113 

85% Near Stall 0 2.830 2.407 1.176 
85% Near Stall 30 4.116 3.264 1.261 
85% Near Stall -30 2.304 2.015 1.144 
85% Near Stall 120 1.753 1.576 1.112 
85% Near Stall 30 (Bell removed) 2.236 1.962 1.140 
85% Near Stall 0 (Bell removed) 2.391 2.082 1.149 
70% Choked 0 0.694 0.651 1.066 
70% Choked 30 2.166 1.907 1.135 
70% Choked -30 1.010 0.939 1.075 
70% Choked 120 1.125 1.041 1.080 
70% Choked 30 (Bell removed) 1.377 1.261 1.092 
70% Choked 0 (Bell removed) 1.010 0.940 1.075 

70% Intermediate 0 1.931 1.721 1.122 
70% Intermediate 30 2.444 2.121 1.152 
70% Intermediate -30 1.987 1.766 1.125 
70% Intermediate 120 1.199 1.107 1.084 
70% Intermediate 30 (Bell removed) 1.852 1.657 1.117 
70% Intermediate 0 (Bell removed) 1.879 1.679 1.119 

70% Near Stall 0 1.940 1.729 1.122 
70% Near Stall 30 3.524 2.887 1.221 
70% Near Stall -30 2.219 1.949 1.139 
70% Near Stall 120 1.322 1.214 1.089 
70% Near Stall 30 (Bell removed) 1.791 1.608 1.114 
70% Near Stall 0 (Bell removed) 1.997 1.774 1.126 
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Power spectrum plots, Figures 33 and 34, and spatial contour plots, Figures 35 and 

36, were created through a Fast Fourier Transform. The blade passing frequency was 

observed as 9350 Hz corresponding to the blade passing frequency at 85% power and 7700 

Hz corresponding to 70% power. As the frequency increases, the magnitude decreases with 

the exemption of corresponding blade passing frequencies, indicating the signal is 

primarily composed of frequencies related to the rotor’s blades rotation. The spatial contour 

plots indicate a slight shift in magnitude near the blade passing frequencies as the probe 

traverses from the tip to the nosecone. 

 
Figure 33. Power Spectrum 85% Power 
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Figure 34. Power Spectrum 70% Power 

 
Figure 35. 85% Power Spatial Contour Plot 
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Figure 36. 70% Power Spatial Contour Plot 

The TI significantly increased at the nosecone for the 85% power choked condition. 

The Power spectrum, Figure 37, supported the presence of vortex shedding as the Strouhal 

number (St) was calculated to be .24 by using equation 13 [8]. A frequency (ω) of 5500 Hz 

was used since this is the first major spike from the power spectrum. A 4.6 mm diameter 

(D) was used as this is the width of the hot film probe which attaches to the steel rod and 

Umean of 105 m/s was obtained from the calculated velocity profile. 

 𝑆𝑆𝑉𝑉 =   ω𝐷𝐷
𝑇𝑇𝐴𝐴𝑒𝑒𝑐𝑐𝑀𝑀

  (13) 
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Figure 37. Power Spectrum at 85% Power at Nosecone 

Histogram plots were also created to illustrate the distribution of velocity. This was 

desired to show the velocity distribution for each location being symmetric about the mean 

value and demonstrate no presence of outliers. This also confirmed proper gain and offset 

settings within the ThermalPro software as gaps were absent from these plots. Figure 38 

shows a typical velocity profile at the 85% Power choked condition in the low turbulence 

intensity region of the radial survey. 
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Figure 38. 85% Power Choked Condition Velocity Histogram 

C. COMPUTATIONAL RESULTS 

CFD results were over plotted with the experimental data at 85% Power choked 

condition. Figures 39 and 40 show a cross sectional view of the model illustrating the 

pressure and axial velocity profile. Figure 41 shows the CFD velocity decreasing slightly 

more as the profile approaches the nose cone. The TI, plotted in Figure 42, demonstrates a 

slightly different TI profile than the experimental results. The CFD results are higher near 

the wall and lower in the free stream. The CFD does have a slight increase as it approaches 

the nose cone however it is not as pronounced. During the actual compressor run, vortex 

shedding was occurring at this location due to an extended steel rod in the flow field 

causing large velocity fluctuations and therefore a more pronounced TI increase. 
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Figure 39. CFD Velocity Distribution 

 
Figure 40. CFD Velocity Distribution near Traverse 
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Figure 41. Comparison of CFD and Experimental Velocity Profiles 

 
Figure 42. Comparison of CFD and Experimental TI Profiles 
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V. CONCLUSIONS 

Hot film data was successfully obtained at the desired power and various 

conditions. To accomplish this, a new data acquisition system was configured and 

integrated with a traverse which was tested on a small wind tunnel. After successful test 

runs, the system was transferred to the TCR. 

Hot film data was then obtained at the desired power and throttle configurations 

allowing for the analysis and computation of velocity and turbulence intensity profiles. 

These profiles all demonstrated similar characteristics, however there were slight 

variations in magnitude. The freestream TI calculations varied between 2 and 4 percent. It 

is suspected that this variance could be due to variance within the TCR due to the upstream 

throttle configuration. After, removing the upstream bellmouth, the TI had a noticeable 

decrease which is likely due the removal of a potential disturbance to the flow.  Voltage 

oscillations were also noticeable during the calibration procedure which could potentially 

lead to further error which should be investigated. Overall, the assumption of an 

axisymmetric inlet is reasonable as shown by the data. 

With velocity profiles for each location and condition, a velocity curve was fitted 

with the data. The curve allowed for the calculation of d*, θ, and H. Since the H values 

were between 1 and 1.2 the flow was concluded to be turbulent. 

In addition, a separate calibration method was introduced (equation 4). A single 

equation will help simplify the conversion of voltages to density corrected velocities.  

Computational results were also obtained and compared to the experimental results. 

The velocity profile illustrated a similar profile to the experimental profiles from the wall 

and most of the freestream at which point the velocity decreased slightly more than the 

experimental velocities. The TI was also compared and demonstrated a different profile. 

The actual TI near the nosecone was significantly higher due to vortex shedding as there 

was a noticeable increase in the signal’s magnitude at 5500 Hz whereas the rest of the flow 

field only had noticeable increases at blade passing frequencies. Additional, computational 

analysis will be required to improve the turbulence model. 
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VI. RECOMMENDATIONS 

Though the flow field and turbulence intensity was modeled successfully, there are 

several improvements and alternate methods which could be incorporated to improve this 

research and enhance the accuracy. The hot film data was only obtained from a single axial 

location; just in front of the inlet rotor. To achieve an improved understanding of the overall 

system, more turbulence data and information could be obtained from upstream of the inlet 

to observe the amount of turbulence decay. This would allow for a better understanding of 

any initial turbulence created by the inlet throttle and bell mouth pieces. 

Additionally, the hot film sensors used to analyze the flow field only allowed for 

the flow to be analyzed in one dimension. There do exist hot film sensors which contain 

multiple wires and at angled offsets to allow for the analysis of flow in all three dimensions.  

There are other methods which could also be explored to acquire additional 

turbulence information. These include PIV and Laser Doppler Velocimetry (LDV) 

experimental devices which would allow for the following of a particular particle which 

would allow for better understanding of flow direction while also obtaining information on 

upstream locations.  
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APPENDIX A. HOT FILM CALIBRATION PROCEDURE 

1. Turn on the IFA300 
2. Open the ThermalPro software. Once open the top of the screen should 

confirm the IFA 300 cabinet being connected and number of available 
channels. 

3. Select “Calibration” and then “Probe Data” from the pulldown menu. The 
Calibration screen as seen from Figure 43 should appear. 

 
Figure 43. ThermalPro Calibration Setup 

4. Then, select “Open Cal File.” 
5. Next enter and verify all applicable parameters on the screen to include IFA 

channel, probe type, resistance, and wire film. For the “Cal Method” select 
the third available option; “Acquire E & Type Velocity.” For the Cable 
Resistance, if not already performed, a shorting probe needs to be inserted 
in place of the sensor. Then, click READ to obtain a cable resistance which 
should then be used in the cable resistance block. The shorting probe should 
now be replaced with the hot film sensor. Input a gain of 3 and offset of 2.5. 

6. Next to the Cal Method window select “Manual” as the method for 
prompting the software to perform the calibration. 

7. In the lower left verify the following is selected in the IFA 300 window: Std 
Bridge, 30 Meter cable, and 50C for temperature. These are the default 
parameters. 
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8. Then click on “Save As.” Input the sensor serial number as the file name 
before saving. The Serial number should appear under Serial Number. 

9. Click on calibrate and the Conditions screen, Figure 44, should appear. 

 
Figure 44. ThermalPro Calibration Window 

10. Under the Conditions block type in the maximum expected velocity the 
probe to encounter and the sensor’s operating temperature.  

11. Under the Acquire Cal Point block, type in the number of calibration points. 
It is recommended to perform 17 points for calibration but 8 is sufficient if 
spaced correctly.  

12. Now if not already done, place the sensor in the flow field.  
13. For the first calibration point set the differential pressure and flow velocity 

to zero and type 0 into the Vel box. 
14. Click on Acquire to allow the system to acquire a voltage measurement. 
15. After the system acquires the first point, increase the velocity to the next 

value and type in the new velocity into the Vel box. 
16. Repeat steps 14 and 15 until all calibration points are obtained. 
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17. Click on Next Screen and a window with the resulting calibration data 
should appear. 

18. Click on Curves to perform and generate a polynomial curve fit. A screen 
with a graph should appear. 

19. Observe the graph and if the curve increases smoothly and monotonically, 
then the calibration process is successfully completed. If satisfied with the 
calibration record the polynomial coefficients and then click Close to save 
the calibration curve.  

20. If not satisfied with the calibration curve erroneous points may be removed 
by selecting delete line or modified by selecting edit line. 
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APPENDIX B. HOT FILM DATA ACQUISITION PROCEDURE 

1. Turn on the IFA300 
2. Open the ThermalPro software. Once open the top of the screen should 

confirm the IFA 300 cabinet being connected and number of available 
channels. 

3. If not already performed, perform a calibration of the sensor to be utilized. 
4. With a completed calibration, under the Acquisition list, select Probe Table 

which will open the Acquisition page, Figure 45, for the experiment. 

 
Figure 45. Acquisition Sensor Setup Window 

5. Click on Get File and type in a name for the raw data files which will be 
created later. Then click on OK. 

6. Then, click on Add Probe to add the probe which was most recently 
calibrated to the experiment. 

7. Double click on the probe added to set as the first probe. 
8. Press Edit Line and if needed make changes to any of the parameters 

pertaining to the sensor and once finished click Save Line. 
9. Once finished with adding and editing sensors click Next Screen which will 

allow for the conditions setup window, Figure 46, to appear as seen below. 
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Figure 46. Acquisition Conditions Setup 

10. On this screen verify the experiment name, next file, and conditions are as 
desired from previous steps.  

11. Select Internal Single from the Trig option list and set the sample rate to 
100 KHz and the size to 5.2 Kpts/ch. 

12. If it is desired to perform a verification of the sensors, click on Test to 
observe voltage readings for each channel. Once satisfied with all the 
parameters and a traverse will not be used click Next Screen to open the 
real-time display screen, Figure 47. If utilizing a traverse skip to step 15. 

13. To obtain data click the Trigger button. The sample rate and number of data 
points can also be modified on this screen before triggering an event. 

14. Once finished obtaining data, click Close. 
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Figure 47. Real-time display 

15. To obtain data with a traverse select traverse control from the IFA 300 drop 
down menu while still on the Conditions Setup Page. Then, select the 
traverse matrix to be used. Data will be automatically taken at each 
predetermined location once the trigger button is pressed. The real-time 
display will not be available and between each run the name of the 
experiment needs to be changed.  

16. To perform post analysis, select Velocity Analysis from the Post Analysis 
header which will open the Analysis – Velocity window, Figure 48. 

17. If the file to be analyzed is not displayed click on Get File and select the file 
from the list and then click OK. If there is more than one file, select the first 
file in the sequence and then search to display all the files. 

 
Figure 48. Velocity Analysis Window 

18. With check marks next to the files to be analyzed, select Text and Velocity 
as the files to be generated. The text file is a .WXX extension and contains 



54 

columns of time and velocity which can be imported via MATLAB coding 
to perform data analysis. If instead voltage files are desired select Bridge in 
replace of Velocity to generate .EXX files which have voltage in the second 
column. 

19. Click on Analyze files which will generate the files.  
20. To observe statistics of the files selected click on View Statistics which will 

open the Statistics window, Figure 49, with statistical information for the 
files. 

 
Figure 49. Velocity Analysis Statistics Window 

21. Once finished click Close to exit the Statistics and then Velocity Analysis 
pages. 
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APPENDIX C. DATA ANALYSIS CODE 

The following MATLAB script was utilized to perform the velocity calibration, 

density correction, analysis, and create plots from the text files created by the ThermalPro 

Post Analysis. 

 
%%Calibration Generator 
voltage=[2.864 3.035 3.170 3.286 3.382 3.418 3.442 3.452 3.432]; 
velocity=[41.9 56.3 71.99 104.18 113.19 123.7 132.67 135.77 136.84]; 
pressure=[98414 96302 93458 86364 84068 81396 79115 78270 78083]; 
filename=‘CALIBRATION.xlsx’; 
p=polyfit(voltage,velocity,4); 
p2=polyfit(voltage,pressure,4); 
PE=79228; 
A=[p(1) p(2) p(3) p(4) p(5) PE p2(1) p2(2) p2(3) p2(4) p2(5)]; 
writematrix(A,filename,”FileType”,”spreadsheet”,”Range”,’A1’,”Sheet”,’16APR85CHOKED’) 
 
%%%HOT FILM ANALYSIS CODE%%% 
%%Required input variables: f,l,y,file name, and ext (.E:voltage .W:velocity). Recommend 
commenting out undesired outputs after for loop calculations. Default is to create excel file, 
flow field plots, and sample PSD, raw data, Contour, Waterfall, Histogram, 
and, autocorrel plots for multiple files while displaying results and plotting raw data, PSD, 
and Histogram, for single file 
tic 
 
%Required User Inputs 
all={‘2APR85CHOKED’, ‘16APR85CHOKED’, 
‘8APR85CHOKED’,’142APR85CHOKED’,’10MAY85CHOKED’,’6MAY85CHOKED’,’2APR85I
NTERMED’,’16APR85INTERMED’,’8APR85INTERMED’,’14APR85INTERMED’,’10MAY85I
NTERMED’,’6MAY85INTERMED’,’2APR85STALL’,’16APR85STALL’,’8APR85STALL’,’14AP
R85STALL’,’10MAY85STALL’,’6MAY85STALL’,’2APR70CHOKED’,’16APR70CHOKED’,’8A
PR70CHOKED’,’14APR70CHOKED’,’10MAY70CHOKED’,’6MAY70CHOKED’,’2APR70INTE
RMED’,’16APR70INTERMED’,’8APR70INTERMED’,’14APR70INTERMED’,’10MAY70INTE
RMED’,’6MAY70INTERMED’,’2APR70STALL’,’16APR70STALL’,’8APR70STALL’,’14APR70
STALL’,’10MAY70STALL’,’6MAY70STALL’}; 
files={‘16APR85CHOKED’}; 
ext=‘.E’; 
f = 2;l = 31;%first and last file #  
 

%%Positions inputted to thermal pro traverse matrix  
% (for graphing and results purposes) 
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y=[6 6.1 6.2 6.3 6.4 6.5 6.75 7 7.25 7.5 8 8.5 9 9.5 10 11 13.5 16 21 26 36 46 56 66 81 96 
111 131 145.6 147]; 
 
%%Initializing zero vectors for values to be calculated in for loop 
N=1+l-f;%N: total files j: indexing results in case f not = 1. 
u=zeros(1,N);uprime=u;ke=u;TI=u; 
rmsconf=u;uconf=u;rootmean=u; 
 
for k=1:length(files) 
 filename=char(files(k)) 
 
%Obtaining velocity calibration and density correcting coefficients and experimental pressure 
(PE) 
calfile=‘CALIBRATION.xlsx’; 
file=[‘xlsread(‘‘‘ sprintf(calfile) ‘‘‘,’’’ ,sprintf(filename),’’’)’]; 
a = eval(file);j=1; 
 
for s = f:1:l 
  
%%Reading in raw voltage data files (.EXXXX) and converting to %velocity 1st column is 
time 2nd is voltage or (.WXXXX) for inputing %velocity directly 
 
if s>9 
 file = [‘dlmread(‘‘‘ sprintf(filename),sprintf(ext),sprintf(‘00’),num2str(s),’’’)’]; 
else 
 file = [‘dlmread(‘‘‘ sprintf(filename),sprintf(ext),sprintf(‘000’),num2str(s),’’’)’]; 
end 
 
data = eval(file); 
 
if ext == ‘.E’ 
 voltage=data(:,2); 
 avgvoltage=mean(voltage); 
 velocity=zeros(1,length(voltage)); 
 PE=a(6); 
  
velocity=a(1).*voltage.^4+a(2).*voltage.^3+a(3).*voltage.^2+a(4).*voltage+a(5); 
 PC=a(7).*avgvoltage.^4+a(8).*avgvoltage.^3+a(9).*avgvoltage.^2+a(10).*avgvoltage+a(11); 
 velocity=(PC/PE).*velocity; 
 %velocity=(a(7).*voltage.^4+a(8).*voltage.^3+a(9).*voltage.^2+a(10).*voltage+a(11))/PE; 
  
else 
 velocity=data(:,2); 
end 
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%%Mean Velocity, Turbulence, Confidence, FFT Calculations 
u(j)=a(1).*avgvoltage.^4+a(2).*avgvoltage.^3+a(3).*avgvoltage.^2+a(4).*avgvoltage+a(5); 
u(j)=(PC/PE)*u(j); 
 
uprime(j) = sqrt(sum((velocity-u(j)).^2)/length(velocity)); %%std [m/s] 
ke(j) = .5*uprime(j)^2 ;%Turbulence KE [m^2/s^2] 
TI(j) = uprime(j)/u(j)*100;%Turbulence Intensity [%] 
rootmean(j)=sqrt(uprime(j)^2+u(j)^2); 
uconf(j)=1.96*uprime(j);%95% Velocity Confidence Interval 
rmsconf(j)=1.96*sqrt(sum((velocity-u(j)).^2)/(2*length(velocity)));%95% RMD Confidence 
Interval 
Y = fft(velocity); Y(1) = []; 
n = length(Y)-1; 
P= (abs(Y(1:n/2)).^2)/n; 
W(j,:)=log10(P’); 
fs=1/data(2,1); 
fr = (1:n/2)*fs/(25500*n/60); 
 
j=1+j 
 
end 
 
%%Plotting Flow Field, TI, and Contour 
if N>1 
plot(y,u,’-’,y,u+uconf,’:’,y,u-uconf,’:’,”Color,” ‘b’) 
xlabel(‘Position [mm]’);ylabel(‘Mean Velocity [m/s]’);title(‘Velocity Profile’); 
 
figure 
plot(y,TI,’-’,y,TI+rmsconf,’:’,”Color,” ‘r’) 
xlabel(‘Position [mm]’);ylabel(‘TI [%]’);title(‘Turbulence Intensity’); 
 
figure 
contour(W’) 
xlabel(‘count’);ylabel(‘frequency [Hz]’);zlabel(‘log10(Power)’); 
 
end 
 
%Outputting Calculations to excel file if multiple files 
if N>1 
a=[‘Position [mm]’, ‘Umean [m/s]’, ‘TI[%]’, ‘STD’, ‘RMS’, ‘U 95% Confidence Interval’, ‘TI 95% 
Confidence Interval’]; 
A=[y’ u’ TI’ uprime’ rootmean’ uconf’ rmsconf’]; 
writematrix(filename,’TCR 
Results2APR’,”FileType”,”spreadsheet”,”Sheet”,filename,”Range”,’A1’) 
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writematrix(a,’TCR Results2APR’,”FileType”,”spreadsheet”,”Sheet”,filename,”Range”,’A2’) 
writematrix(A,’TCR Results2APR’,”FileType”,”spreadsheet”,”Sheet”,filename,”Range”,’A3’)  
end 
%%For single file displaying resulting calculations 
if N==1 
  
figure 
plot(data(:,1),voltage) 
xlabel(‘Time [sec]’);ylabel(‘Voltage [V]’);title(‘Raw Data’); 
 
%Power Spectrum 
Y = fft(velocity); Y(1) = []; 
n = length(Y)-1; 
P = (abs(Y(1:n/2)).^2)/n; 
fs=1/data(2,1); 
fr = (1:n/2)*fs/(n); 
figure 
loglog(fr,P); 
xlabel(‘Frequency [Hz]’);ylabel(‘Power’);title({‘Power Spectrum’,’’}); 
 
%Autocorrelation 
 
  lag=length(velocity)-1; 
  r=zeros(lag,1); 
  xmean=mean(velocity); 
  for k=1:1:lag 
  r(k)=sum((velocity(k+1:lag)-xmean).*(velocity(1:lag-k)-xmean))/sum((velocity(1:lag)-
xmean).^2); 
  end 
  t=1:1:lag; 
  fs=1/data(2,1); 
  t=t/fs; 
  figure 
  plot(t,r) 
  xlabel(‘time [sec]’);ylabel(‘autocorrelation’);title(‘autocorrelation’); 
   
%Histogram 
figure 
hist(velocity,1000) 
xlabel(‘Velocity [m/s]’);ylabel(‘Counts’);title({‘Velocity Distribution’,’’}); 
 
disp(‘Average Velocity [m/s] is: ‘);disp(u) 
disp(‘Tubulent Kinetic Energy is:’);disp(ke); 
disp(‘Turbulent Intensity is [%]:’);disp(TI); 
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disp(‘Standard Deviation is:’);disp(uprime); 
disp(‘95% Confidence Interval [m/s] is:’);disp(1.96*uprime); 
disp(‘Root Mean Square is:’);disp(rootmean); 
disp(‘RMS 95% Confidence [%] is:’);disp(1.96*rmsconf); 
end 
 
end 
toc 
 
%Approximating displacement thickness, momentum thickness, and shape 
tic 
clear all 
%Required User Inputs 
all={‘2APR85CHOKED’, ‘16APR85CHOKED’, 
‘8APR85CHOKED’,’142APR85CHOKED’,’10MAY85CHOKED’,’6MAY85CHOKED’,’2APR85I
NTERMED’,’16APR85INTERMED’,’8APR85INTERMED’,’14APR85INTERMED’,’10MAY85I
NTERMED’,’6MAY85INTERMED’,’2APR85STALL’,’16APR85STALL’,’8APR85STALL’,’14AP
R85STALL’,’10MAY85STALL’,’6MAY85STALL’,’2APR70CHOKED’,’16APR70CHOKED’,’8A
PR70CHOKED’,’14APR70CHOKED’,’10MAY70CHOKED’,’6MAY70CHOKED’,’2APR70INTE
RMED’,’16APR70INTERMED’,’8APR70INTERMED’,’14APR70INTERMED’,’10MAY70INTE
RMED’,’6MAY70INTERMED’,’2APR70STALL’,’16APR70STALL’,’8APR70STALL’,’14APR70
STALL’,’10MAY70STALL’,’6MAY70STALL’}; 
files=all;%{‘16APR85CHOKED’}; 
ext=‘.E’; 
f = 2;l = 22;%first and last file #  
 
%%Positions inputted to thermal pro traverse matrix  
% (for graphing and results purposes) 
y=[0 6 6.1 6.2 6.3 6.4 6.5 6.75 7 7.25 7.5 8 8.5 9 9.5 10 11 13.5 16 21 26 36]; 
 
%%Initializing zero vectors for values to be calculated in for loop 
N=l;u=zeros(1,l); 
 
for r=1:length(files) 
 filename=char(files(r)) 
 
%Obtaining velocity calibration and density correction coefficients and experimental pressure 
(PE) 
calfile=‘CALIBRATION.xlsx’; 
file=[‘xlsread(‘‘‘ sprintf(calfile) ‘‘‘,’’’ ,sprintf(filename),’’’)’]; 
a = eval(file);j=2; 
 
for s = f:1:l 
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%%Reading in raw voltage data files (.EXXXX) and converting to velocity  
%%1st column is time 2nd is voltage or (.WXXXX) for inputting velocity directly 
 
if s>9 
 file = [‘dlmread(‘‘‘ sprintf(filename),sprintf(ext),sprintf(‘00’),num2str(s),’’’)’]; 
else 
 file = [‘dlmread(‘‘‘ sprintf(filename),sprintf(ext),sprintf(‘000’),num2str(s),’’’)’]; 
end 
 
data = eval(file); 
voltage=data(:,2); 
avgvoltage=mean(voltage); 
PE=a(6); 
u(j)=a(1).*avgvoltage.^4+a(2).*avgvoltage.^3+a(3).*avgvoltage.^2+a(4).*avgvoltage+a(5); 
PC=a(7).*avgvoltage.^4+a(8).*avgvoltage.^3+a(9).*avgvoltage.^2+a(10).*avgvoltage+a(11); 
u(j)=(PC/PE)*u(j);  
j=1+j 
end 
 
[q s]=createFit(y/max(y),u/max(u)) 
yy=0:.001:1; 
uu=yy.^(1./q.k); 
 
%Flow Characteristics 
 
deltastar(r)=trapz(yy,1-uu/max(uu))*36 
theta(r)=trapz(yy,(uu/max(uu).*(1-uu/max(uu))))*36 
shape(r)=deltastar(r)/theta(r) 
 
figure  
hold on 
plot(y/maxy,u/max(u),’r’,yy,uu,’k’) 
xlabel(‘y/d’);ylabel(‘u/U’);legend(‘Experimental’,’Interpolation’); 
 
end 
flow2=[deltastar’ theta’ shape’]; 
writematrix(flow,’Flow Characteristics’, 
“filetype”,”spreadsheet”,”Sheet”,’flowcharacteristics’,”Range”,’B2’) 
toc 
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APPENDIX D. ADDITIONAL TABLES AND GRAPHS 

Table 6. Wind Tunnel Calculations 
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Table 7. Results for 85% Power Choked at 0° 
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Table 8. Results for 85% Power Intermediate Condition at 0° 
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Table 9. Results for 85% Power Near Stall at 0° 
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Table 10. Results for 70% Power Choked at 0° 
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Table 11. Results for 70% Power Intermediate Condition at 0° 
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Table 12. Results for 70% Power Near Stall at 0° 
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Table 13. Results for 85% Power Choked at -30° 
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Table 14. Results for 85% Power Intermediate Condition at -30° 
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Table 15. Results for 85% Power Near Stall at -30° 
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Table 16. Results for 70% Power Choked at -30° 
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Table 17. Results for 70% Power Intermediate Condition at -30° 
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Table 18. Results for 70% Power Near Stall at -30° 
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Table 19. Results for 85% Power Choked at 30° 
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Table 20. Results for 85% Power Intermediate Condition at 30° 
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Table 21. Results for 85% Power Near Stall at 30° 
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Table 22. Results for 70% Power Choked at 30° 
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Table 23. Results for 70% Power Intermediate Condition at 30° 
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Table 24. Results for 70% Power Near Stall at 30° 
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Table 25. Results for 85% Power Choked at 120° 
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Table 26. Results for 85% Power Intermediate Condition at 120° 
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Table 27. Results for 85% Power Near Stall at 120° 
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Table 28. Results for 70% Power Choked at 120° 
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Table 29. Results for 70% Power Intermediate Condition at 120° 
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Table 30. Results for 70% Power Near Stall at 120° 
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Table 31. Results for 85% Power Choked at 30° and Bellmouth Removed 
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Table 32. Results for 85% Power Intermediate Condition at 30° and 
Bellmouth Removed 
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Table 33. Results for 85% Power Near Stall at 30° and Bellmouth Removed 
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Table 34. Results for 70% Power Choked at 30° and Bellmouth Removed 
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Table 35. Results for 70% Power Intermediate Condition at 30° and 
Bellmouth Removed 
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Table 36. Results for 70% Power Near Stall at 30° and Bellmouth Removed 
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Table 37. Results for 85% Power Choked at 0° and Bellmouth Removed 
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Table 38. Results for 85% Power Intermediate Condition at 0° and 
Bellmouth Removed 
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Table 39. Results for 85% Power Near Stall at 0° and Bellmouth Removed 
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Table 40. Results for 70% Power Choked at 0° and Bellmouth Removed 
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Table 41. Results for 70% Power Intermediate Condition at 0° and 
Bellmouth Removed 
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Table 42. Results for 70% Power Near Stall at 0° and Bellmouth Removed 
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