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ABSTRACT 

 Characterizing the underwater environment can be approached directly by taking 

measurements or by inversion, where geoacoustic properties of the environment are 

derived from the way sound interacts with it. Single-element time-reversal mirror was 

proposed as a physics-motivated, data processing technique, utilizing inputs from either a 

controlled source or noise interferometry. Once completed, the same technique can be 

used to detect and track quiet underwater targets, maximizing naval application by 

allowing surreptitious monitoring, especially in denied areas, with single receivers that 

are easier to deploy than arrays. 

 Solving the inverse problem with this technique results in ambiguous solutions, 

however. When a single metric of spatial focus is used, multiple combinations of 

geoacoustic parameters are able to meet the criteria set. In this work, we propose and 

evaluate additional metrics, based on temporal focus expected from the time-reversal 

mirror process, to evaluate the different combinations and arrive at the unique solution, 

with parameters that match the environment. Using numerical simulations, in the cases 

examined, this was achieved with a subset of the proposed metrics, thereafter applied in a 

specific sequence, to arrive at the unique solution. 

 Having completed analysis via numerical simulations, our recipe of metrics is 

ready to be assessed with real-world data. 
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I. INTRODUCTION 

A. THE UNDERWATER ENVIRONMENT 

Understanding the battlespace is fundamental in warfare as it allows us to exploit 

the natural environment, as well as to avoid disadvantages. In the maritime above-water 

warfare environment, sensors primarily use electromagnetic waves for detection and 

tracking. Unfortunately, their high attenuation underwater limits their use to short ranges. 

Underwater, acoustic waves reign supreme. 

B. SOLVING THE INVERSE PROBLEM 

Low frequency acoustic wave propagation in the ocean is affected predominantly 

by sound speed in the water column and geoacoustic parameters of the seabed. The former 

can be calculated using measurements of temperature, salinity, and pressure, by way of 

sensors such as bathythermographs and Conductivity, Temperature, and Depth sensors. 

More arduous to measure are the parameters concerning the sea floor, comprising one or 

more layers of varying materials, each with their own geoacoustic properties, such as sound 

speed and density. Water column and seabed parameters are necessary in order to model 

the acoustic propagation environment, whether for campaign planning purposes, to predict 

sonar detection ranges and performance, or to anticipate locations of shadow zones.  

This approach begins with environmental parameters and ends with understanding 

how sound waves propagate underwater. The inverse problem, as the name suggests, 

begins at the opposite end and uses acoustic propagation to retrieve the environmental 

parameters. While this method requires computational resources to obtain the desired 

information, it reduces the need for sensors and challenging procedures, such as retrieving 

sea floor samples, some from thousands of meters below the surface. Contact methods are 

also not able to provide the spatial resolution required for accurate representation. 

C. THESIS ORGANIZATION 

The remainder of this thesis first details relevant background and theory in Chapter 

II, as well as introducing the problem of ambiguous solution that our research aims to 
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address. In Chapter III, we introduce metrics that form the basis of our methodology to 

solve this problem. Chapter IV presents our tests, evaluations, and analysis of the efficacy 

of our methodology in various underwater environments. Chapter V wraps up our research 

with conclusions drawn as well as recommendations for future study. 
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II. BACKGROUND AND THEORY 

A. ACOUSTIC REMOTE SENSING 

Described by Dowling and Sabra in 2015 [1], as acoustic waves travel through a 

medium, in this case the ocean, they carry information from both their source and the 

environment via the routes taken. Analyzing them can provide valuable insights into their 

source and the environment along the paths that the waves travelled. In a waveguide 

bounded by the water surface above and the sea floor below, multiple paths traversed by 

these waves cover almost the entire water column, between the source and receivers. Figure 

1 shows a generic underwater acoustic remote sensing scenario and the various processes 

affecting the waves.  

 
Figure 1. Underwater Acoustic Remote Sensing scenario. Source: [1]. 

At the destination (made up of one or more receivers), sound is analyzed to extract 

the relevant information. These sounds can comprise known or unknown origins, like a 

source or ambient noise from shipping and marine life in the ocean. Acoustic remote 

sensing is categorized into four broad functions [1]:  
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1. Detection, or determining if a source is present 

2. Localization, or finding spatially where a source is 

3. Source signal recovery, or reconstructing the original waveform 

4. Environmental characterization, or determining one or more parameters of 

the environment 

Our research focuses on the aforementioned fourth task, which can be further 

broken down into two categories: (1) making use of a known source, with information such 

as location and transmitted signal, and (2) leveraging ambient noise recorded at the same 

time but at spatially different positions in the ocean. 

B. TIME-REVERSAL MIRROR 

Time-reversal mirror (TRM) traditionally refers to the process of utilizing an array 

of receivers to detect signals in the forward propagation, reversing them in time and 

transmitting using backward propagation to focus the signal both spatially and temporally. 

This process is based on waves being reciprocal in a stationary medium, where they 

propagate and take equivalent routes even if the source and receiver are interchanged [2]. 

Parvulescu and Clay first demonstrated temporal focus in 1965 [3], followed by Kuperman 

et. al exemplifying the full spatial and temporal focusing of a TRM in the ocean in 1998, 

using vertical arrays or acoustic transceivers [4]. TRM was illustrated as a physical process, 

where a pulse from a transponder was transmitted to a vertical source-receiver array, 

digitized, and retransmitted to a vertical receiver array collocated with the transponder. 

More recently, TRM can also be numerically simulated, making it a physics-motivated 

processing technique. The time-reversal and back propagation steps are conducted 

numerically, and with the correct environmental parameters, a focus would be obtained 

with properties similar to observations in field experiments. If the parameters are incorrect, 

the focus may not occur, be positioned at a different location, or may not have 

characteristics that are expected. 

For the purpose of characterizing the environment, in order to obtain the acoustic 

field, the input for the TRM process can be from a compact, controlled source, or equivalent 



5 

data can be retrieved using noise interferometry from cross correlation of signals received 

at two points. While the latter input inherently results in a more challenging process, the 

benefit of being able to surreptitiously complete the TRM process and characterize the 

underwater environment would be greatly advantageous. 

In 2017, Godin et al. investigated a new approach to passive acoustic remote 

sensing of the ocean, combining noise interferometry and the TRM concept to solve the 

inverse problem in the absence of a known source. Single receivers were also positioned 

spatially apart at two points as compared to a vertical array, further differentiating from 

earlier studies [5]. 

TRM foci are usually poorly defined unless back-propagated waves converge at the 

focus from different directions. To improve accuracy, multiple paths taken by the signal 

are consequently desired. Using an array of receivers, the geometry of the ocean 

environment becomes less of a factor as received signals from multiple paths can be 

obtained. In a shallow water environment, where the range-to-depth ratio is large, path 

diversity can also be obtained by leveraging reflections off the surface and bottom in the 

waveguide. 

In the first part of their range-independent studies, using numerical simulations, 

Godin et al. were able to retrieve estimates of the unknown physical parameters of the 

waveguide (bottom sound speed and density ratio) in a shallow water, homogeneous, fluid 

bottom half space. They also demonstrated the possibility of obtaining a robust focus using 

a single-element TRM and acoustically characterized the seabed in the model, where the 

unknown geoacoustic parameters were thickness of a sediment layer, sediment sound speed 

and density, and sub-bottom sound speed and density. Thereafter, in the second part of 

their study, they applied this new technique to data from the Florida Strait noise 

interferometry experiment in 2012, obtaining geoacoustic parameter values consistent with 

those evaluated via other independent methods. 

Qin et al. conducted further research in 2017 using the same approach to solve the 

inverse problem with noise interferometry and TRM, applying the techniques to data from 

the Shallow Water 2006 experiment, conducted off the New Jersey coast [6]. They 
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considered the range-dependent environment and successfully estimated the sound speed 

and density ratio of a homogeneous, fluid bottom half space. In the aforementioned two 

studies, the criterion used to find the true solution of the inverse problem, matching 

geoacoustic parameters, was correct geometric position of the focus. It was subsequently 

realized that a problem of ambiguity in the solutions occurs when a finer grid search is 

utilized, or when a wider range of geoacoustic parameters are allowed to compete. This 

issue of ambiguous solutions will be further expounded later in this chapter. 

Subsequently, in his 2019 Naval Postgraduate School thesis, McMullin further 

examined this issue of ambiguity, also using data from the Shallow Water 2006 experiment 

[7]. McMullin attempted to resolve the ambiguity in the solutions from noise 

interferometry and TRM by studying the feasibility of three metrics to characterize the 

TRM focus. He discovered that in the simplified environmental model of a coastal ocean 

considered, the metrics studied individually yielded different sets of possible solutions. 

When combined and analyzed together, the metrics could be used to identify the true 

solution. 

The goal of this work is to explore other, more widely applicable, ways to resolve 

these ambiguous solutions to the inverse problem of characterizing the acoustic 

environment in a littoral ocean, using the concept of a single-element TRM. 

C. PARABOLIC EQUATION AND RANGE-DEPENDENT ACOUSTIC 
MODEL 

We modelled our environments’ acoustical fields using the Parabolic Equation (PE) 

approximation, which was first developed for electromagnetic wave propagations, then 

adapted for acoustic waves [8]. Specifically, we utilized Dzieciuch’s MATLAB package 

[9] that was adapted from the finite-element approach Range-Dependent Acoustic Model 

(RAM) developed by Collins [10]. 

PE, and RAM in particular, compute the underwater acoustic field by marching in 

range and calculating the acoustical pressure at all points between the source and receiver. 

In this manner, we modelled the forward propagation of our source signal, receiving it at 

the receiver. The received signal is then reversed in time, which is equivalent to complex 
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conjugation in the frequency domain, and back propagated in the environment as the TRM 

signal. The focus obtained from this back propagation would indicate the estimated 

source’s position, which is dependent on the geoacoustic parameters inputted [5]. 

1. Application of TRM Processing to Models with Homogeneous Fluid 
Bottom 

In order to verify that our code was accurate, we first attempted to reproduce the 

numerical simulations of a single-element acoustic TRM in a shallow water waveguide 

with a homogeneous fluid bottom from [5]. Four models present different ranges between 

source and receiver and source signal bandwidths. Across the four models, common 

geoacoustic parameters are as follows in Table 1, and differing parameters are in Table 2.  

Table 1. Common parameters in homogeneous fluid bottom models 

Depth of water 100 m 
Depth of source and receiver 95 m 

Bottom sound speed, cb 1750 m/s 
Bottom density ratio, ρb (relative to the density of water) 1.9 

Bottom attenuation, αb (λ is the wavelength of sound) 0.3 dB/λ 

Table 2. Differing parameters in homogeneous fluid bottom models 

Panel (a) 
Range from source to receiver: 5015 m 

Source signal frequency: 20–200 Hz 

Panel (b) 
Range from source to receiver: 5015 m 

Source signal frequency: 20–70 Hz 

Panel (c) 
Range from source to receiver: 9760 m 

Source signal frequency: 20–200 Hz 

Panel (d) 
Range from source to receiver: 9760 m 

Source signal frequency: 20–70 Hz 

 

Reproduced in Figure 2, from [5], are the results of the four models, where the 

normalized peak intensities of the back-propagated acoustic field are shown in the vertical 

cross section of the waveguide, depicting the TRM focus. The white circle represents the 

source position.  
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(a) 5015 m range, 20–200 Hz signal; (b) 5015 m range, 20–70 Hz signal; (c) 9760 m range, 
20–200 Hz signal; (c) 9760m range, 20–70 Hz signal. 

Figure 2. Numerical simulations of a single-element TRM in homogeneous 
fluid bottom models. Source: [5]. 

Utilizing our code, we reproduced these four models, presented in Figure 3. We 

also calculated the horizontal range difference between the TRM focus and the source 

position. 
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(Top-left) 5015 m range, 20–200 Hz signal; (Top-right) 5015 m range, 20–70 Hz signal; 
(Bottom-left) 9760 m range, 20–200 Hz signal; (Bottom-right) 9760m range, 20–70 Hz 
signal. 

Figure 3. Reproduced numerical simulations of a single-element TRM in 
homogeneous fluid bottom models 

The plots are similar, and with the calculated ranges we were able to determine that 

the TRM foci matched up with the source position horizontally. In our plot, the range 

dimension (along the x-axis) represented the range of the TRM focus away from the 

receiver as we examined the backward propagation. This was in contrast to the original 

results, where the plots showed range as an absolute, with 0 m where the source was and 

5015 m (or 9760 m) where the receiver was. 

2. Application of TRM Processing to Models with Sediment Layer 
Seabed 

Next, we attempted to reproduce the numerical simulations of a single-element 

TRM in a seabed with sediment layer waveguide from [5]. Above the homogeneous fluid 

bottom, we added a sediment layer with a specific thickness, sound speed, and density. 

Here, the intent was to display the effects that these additional geoacoustic parameters had 
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on the TRM focus of the back propagation. Common parameters of the waveguide are in 

Table 3, and differing parameters are in Table 4. 

Table 3. Common parameters in seabed with sediment layer models 

Depth of water 100 m 
Depth of source and receiver 95 m 

Range from source to receiver 5015 m 
Source signal bandwidth 20–70 Hz 
Sediment thickness, H 20 m 

Sediment attenuation, αb (λ is the wavelength of sound) 0.1 dB/λ 
Bottom sound speed, cb 1800 m/s 

Bottom density ratio, ρb (relative to the density of water) 2.2 
Bottom attenuation, αb (λ is the wavelength of sound) 0.1 dB/λ 

Table 4. Differing parameters in seabed with sediment layer models 

 
Panel (a) 

Sediment sound speed cs: 1550 m/s 
Sediment density ratio, ρs: 1.3 

 
 

Panel (b) 
Sediment sound speed cs: 1540 m/s 

Sediment density ratio, ρs: 1.3 
 

 
Panel (c) 

Sediment sound speed cs: 1560 m/s 
Sediment density ratio, ρs: 1.3 

 
 

Panel (d) 
Sediment sound speed cs: 1550 m/s 

Sediment density ratio, ρs: 1.2 
 

 
Panel (e) 

Sediment sound speed cs: 1550 m/s 
Sediment density ratio, ρs: 1.4 

 

 

Figure 4, reproduced from [5], shows the five different seafloor models with the 

control environment in panel (a). Panels (b) and (c) altered sediment sound speed lower 

and higher, respectively, and plotted the calculated TRM focus against the source position. 

Panels (d) and (e) presented changes for sediment density ratio similarly. 
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The sediment sound speed cs and density ratio ρs are: (a) 1550 m/s and 1.3; (b) 1540 m/s 
and 1.3; (c) 1560 m/s and 1.3; (d) 1550 m/s and 1.2; (e) 1550 m/s and 1.4. 

Figure 4. Effects of mismatched geoacoustic parameters on TRM focus. 
Source: [5]. 

Figure 5 shows our reproduction of the models showing the effects of mismatched 

geoacoustic parameters on the TRM focus, and a glimpse of the sensitivity that the 

parameters have on the position of the foci. 
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The sediment sound speed cs and density ratio ρs are: (1st row-center) 1550 m/s and 1.3; 
(2nd row-left) 1540 m/s and 1.3; (2nd row-right) 1560 m/s and 1.3; (3rd row-left) 1550 m/
s and 1.2; (3rd row-right) 1550 m/s and 1.4. 

Figure 5. Reproduced effects of mismatched geoacoustic parameters on 
TRM focus 

In our reproduction, the range dimension (along the x-axis) again referenced to the 

backward propagation. Thus, it appeared as a mirror image of the original. Otherwise, our 

reproduction accurately reflected the effects of mismatch geoacoustic parameters on the 

backward propagation and showed how the TRM focus was shifted. As documented by 

Godin et al. in [5], the TRM process is robust and focusing is possible with a single-element 

TRM. Additionally, position of the foci is more sensitive to sediment sound speed than 

sediment density. 
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3. Signals in the Time Domain 

In the forward propagation, we plotted the source signal in the time domain arriving 

at the receiver, as a means to observe and compare the forward propagations in the various 

models studied in this research. Through inverse Fourier Transform, we converted the 

acoustical pressure from the frequency domain into the time domain, showing this in Figure 

6 for the four homogeneous fluid bottom models and Figure 7 for the seabed with sediment 

layer model. 

 
(Top-left) 5015 m range, 20–200Hz signal; (Top-right) 5015 m range, 20–70Hz signal; 
(Bottom-left) 9760 m range, 20–200Hz signal; (Bottom-right) 9760 m range, 20–200Hz 
signal. 

Figure 6. Received signals for homogeneous fluid bottom models 
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5015 m range, 20–70 Hz signal. 

Figure 7. Received signal for seabed with sediment layer model 

We observed that the causality of the received signal was reproduced accurately, 

which was unexpected from Fourier synthesis. There was a sharp response to the first 

arrival of the signal at the receiver, occurring at the expected time and producing a 

reasonable structure. 

Subsequently, after computing the backward propagation and TRM foci, we took 

the respective acoustical pressures in the time domain and plotted the TRM signal. This 

was crucial as, subsequently, we established the use of the temporal focus as a metric for 

verifying the accuracy of our inverse problem solution. Figure 8 shows the TRM signal 

plotted in the time domain for the homogeneous fluid bottom models, and Figure 9 shows 

the TRM signals from the seabed with sediment layer model with different geoacoustic 

parameters used in the backward propagation. 
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(Top-left) 5015 m range, 20–200Hz signal; (Top-right) 5015 m range, 20–70Hz signal; 
(Bottom-left) 9760 m range, 20–200Hz signal; (Bottom-right) 9760 m range, 20–200Hz 
signal. 

Figure 8. TRM signals for homogeneous fluid bottom models 



16 

 
The sediment sound speed cs and density ratio ρs are: (1st row-center) 1550 m/s and 1.3; 
(2nd row-left) 1540 m/s and 1.3; (2nd row-right) 1560 m/s and 1.3; (3rd row-left) 1550 m/
s and 1.2; (3rd row-right) 1550 m/s and 1.4. 

Figure 9. TRM signals for seabed with sediment layer model with 
mismatched geoacoustic parameters 
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Expectedly, the waveforms of the TRM signals differ significantly from the 

forward-propagated signals. They are compressed in time and symmetric as compared to 

the sharp onset observed in the forward-propagated signals. This is because the TRM 

signals represent the time-reversed focus, comprising the forward-received signals and the 

time-reversed signals [11]. 

By being able to successfully reproduce the single-element TRM in a homogeneous 

fluid bottom and replicate the effects of mismatched geoacoustic parameters, we were 

confident that our MATLAB RAM code was able to accurately model environments for 

our research. 

D. AMBIGUOUS SOLUTIONS 

Subsequent investigations revealed that while TRM was able to solve the inverse 

problem and obtain the unknown physical parameters of the ocean, a grid search invariably 

produced more than one possible combination of said unknown physical parameters. We 

concentrated on the two models that comprised a range of 5015 m between the source and 

receiver, with source signal bandwidths 20–200 Hz and 20–70 Hz, respectively, and 

conducted a grid search for parameters of bottom sound speed cb and density ratio ρb.  

To do this, we first numerically simulated the forward propagation, by setting cb = 

1750 m/s, density ratio ρb = 1.9, our true solution. Next, using ranges of values for each 

parameter, we calculated the backward propagation and applied TRM to arrive at the 

spatial focus. Table 5 shows the boundaries and steps of our grid search for the unknown 

parameters. We ensured that the true solution was one of the combinations of parameters 

for proper representation. 

Table 5. Grid search settings for homogeneous fluid bottom models 

 Range from To In steps of 
Bottom sound speed, cb (m/

s) 1600 1800 10 

Bottom density ratio, ρb 1.1 2.7 0.2 
 

Total Number of Combinations 189 
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For each combination, we zoomed in to the vicinity of the source’s spatial position, 

as the high intensity associated with a TRM focus need not necessarily be the global 

maximum, but would categorically be a local maximum. These local maxima (for each 

combination of parameters) would be our respective TRM foci.  

From there, we found the minimum range discrepancy (RD), defined as the 

horizontal distance between the TRM focus and the exact source position, and retrieved all 

the corresponding combinations. Table 6 presents the results. 

Table 6. Ambiguous solutions from a grid search of the 5015 m 
homogeneous fluid bottom model 

Source signal: 20–200 Hz 
Minimum RD: 0.0 m 

No. of combinations: 3 
cb (m/s) ρb 

1720 1.7 
1750 1.9 
1780 2.1 

 

Source signal: 20–70 Hz 
Minimum RD: 0.0 m 

No. of combinations: 4 
cb (m/s) ρb 

1630 1.1 
1710 1.5 
1750 1.9 
1780 2.3 

 

 

We saw that geoacoustic parameters are interrelated and that their effects on the 

position of the TRM focus resulted in multiple possible combinations of parameters that 

still gave the minimum RD. Figure 10 graphically shows this ambiguity by plotting RD as 

a function of the two unknown parameters.  
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Blue circles represent combinations of unknown parameters; red circles represent 
combinations that result in a minimum RD; red asterisks signify the true solutions. (Left) 
20–200 Hz signal; (Right) 20–70 Hz signal. 

Figure 10. Ambiguous solutions in homogeneous fluid bottom models 

The majority of the geoacoustic parameter combinations end up with large RD 

values, as evident in the many blue circles in the upper half of each plot (and many more 

beyond the visible axes of the plot). The colored gradient surface was added to provide a 

clearer representation of the valley produced by these combinations, culminating at the 

bottom with those that produced the minimum RD, as depicted by the red circles. 

We observed that by filtering TRM foci based on RD, we arrived at ambiguous 

solutions. In the above two cases, there were multiple solutions that fit the criteria of 

minimum RD (0.0 m), and thus, the question was how to retrieve the true combination 

from among these ambiguous solutions. 
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III. METHODOLOGY: METRICS 

A. PARAMETERS FOR METRIC PRESENTATION 

In this chapter, we describe the various metrics in consideration and detail how we 

expected them to sieve out the true combination from among the ambiguous solutions. We 

also anticipated being able to understand how the true solution and mismatched parameters 

would differ in their effects on the metrics. For illustrations, we used the homogeneous 

fluid bottom model from Chapter II, with parameters as shown in Table 7. 

Table 7. Parameters of homogeneous fluid bottom models 

Depth of water 100 m 
Depth of source and receiver 95 m 

Range from source to receiver 5015 m 
Source signal bandwidth 20–200 Hz 
Bottom sound speed, cb 1750 m/s 

Bottom density ratio, ρb (relative to the density of water) 1.9 
Bottom attenuation, αb (λ is the wavelength of sound) 0.3 dB/λ 

 

To demonstrate suitability of the respective metrics, we first established how they 

work by calculating the back propagation and time-reversal mirror (TRM) process for two 

combinations of parameters, one that matched the forward propagation (cb = 1650 m/s, ρb 

= 1.3) and the other with mismatched parameters (cb = 1650 m/s, ρb = 1.3). 

In the figures for this section, matched parameters are displayed on the left, and 

mismatched parameters are displayed on the right. 

B. RANGE DISCREPANCY: MINIMUM 

As detailed in the previous chapter, after solving the inverse problem using TRM, 

we established the first metric as minimum range discrepancy (RD) based on the position 

of the TRM focus. Figure 11 shows the example when the parameters matched the 

environmental conditions and when the parameters were mismatched. 
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Figure 11. Spatial focus with matched and mismatched parameters 

We soon realized that while useful in narrowing down the possibilities of suitable 

combinations, minimum RD alone was not sufficient to retrieve the true solution. While 

the above model and grid search resulted in two possible combinations, of which one is the 

true solution, given the relatively simple conditions, when numerical simulations 

increasingly reflect real world conditions, we expected the possibilities of suitable 

combinations to increase. Additionally, the choice of step size in the grid search also affects 

the number of ambiguous solutions obtained. This will be further discussed in Chapter IV. 

Thus, we would need more metrics to filter the mismatching parameters. 

C. PEAK TIME: MINIMUM DEVIATION FROM ZERO 

Returning to the theory of TRM, the process focuses the signal back both spatially 

and temporally [11]. With this, we hypothesized that another suitable metric, called peak 

time (PT), was determining that the signal was focused temporally, where in the time 

domain, it occurs closest to zero time [11]. To do this, we plotted the calculated TRM 

signals in the time domain and measured its proximity to zero time, the example shown in 

Figure 12. We observed that when mismatched parameters were used, the TRM signal did 

occur away from zero time. 
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Figure 12. Temporal focus with matched and mismatched parameters 

D. TIME WIDTH AT HALF HEIGHT: MINIMUM 

Building on the concept of temporal focus, a proposed metric that exhibited 

potential was to measure the time width of the signal. We termed this metric time width at 

half height (TWHH). As the waveguide accommodates the various paths of the acoustic 

wave propagating through the environment, a compact TRM signal would mean higher 

likelihood of matching parameters as all the paths arrive closely. Conversely, a broad peak 

would mean that the energies of the signal were spread out over a longer time period. 

We hypothesized that a suitable time width to measure should be interpolated 

between the time steps in our numerical simulation. Hence, we factored the height of the 

peak by half and noted the corresponding times to measure this width in time. Figure 13 

demonstrates this for the example pair of parameter combinations, zooming in on the main 

peaks. 
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Figure 13. Time width of TRM signal at half peak height, matched and 

mismatched parameters 

We plotted the TRM signal in blue, with data points represented by circles. The 

main peak was highlighted in red while the horizontal line (other than at zero amplitude) 

denoted half peak height. As previously described, the selection of time width was shown 

to be between data points.  

The corresponding vertical dashed line represented the associated time value and 

this width formed the basis of this metric. Comparing the two combinations, with similar 

scales on the x-axis, the time width of true solution was narrower than with the mismatched 

parameters. 

E. PEAK MAGNITUDE: MAXIMUM 

For our plots in the time domain, peak magnitude (PM) represents the acoustical 

pressure at the TRM focus over time. Using an extension of the TWHH metric, we 
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hypothesized that only with the matched parameters will the peak be at a maximum due to 

the convergence of the different paths taken by the signal. When parameters are 

mismatched, the energy is spread out over time, lowering the magnitude of the peak. 

Referencing Figures 12 and 13, we observed the differences in the peaks when the matched 

and mismatched parameters were used. 

F. SYMMETRY RATIO: MINIMUM 

While studying the many plots of the TRM signals in the time domain, we made a 

visual observation that led to a possible new metric: when the parameters were matched, 

the TRM signal appeared symmetric about the main peak at zero time. We did not observe 

this symmetry when mismatched parameters were applied. Reference Figure 12 for 

depiction of this symmetry and its absence. 

Anticipating that symmetry could be subjective and time consuming to identify 

among all the possible ambiguous solutions while solving an inverse problem, we 

attempted to find a way to be able to quickly and automatically analyze the TRM signals 

and compute a way of quantifying this symmetry. We proposed the following, comparing 

the odd and even functions of time. RHS and LHS refer to the right- and left-hand sides, 

respectively, of zero time. 

 ( )
( )

2

2Symmetry Ratio (SR) = 
RHS LHS

RHS LHS

−

+
∑
∑

 

This quantification resulted in a value that could be calculated rapidly and easily 

compared between TRM signals: the more symmetrical the peak, the smaller the value. For 

the examples referenced in this section, the two SR values were (1) 1.1700 x 10-32, and (2) 

0.6731, respectively. Visually, the plot on the left in Figure 10 shows symmetry as 

compared to the plot of the right (mismatched parameters). Our SR metric reflected this 

adequately. By our definition, it means that should the peak not be at zero time, the SR 

value will be significantly higher due to considerable asymmetry. 
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G. DEVELOPING THE SEQUENCE: RECIPE 

We thus turned our attention towards developing a recipe, sequencing some or all 

of the metrics, to sieve through the various combinations efficiently and effectively, and 

arrive at the true solution. 
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IV. TEST AND EVALUATION 

A. OVERVIEW 

Using simulations of forward-propagated signals from various range-independent 

environmental models, we tested out the effectiveness of the individual metrics and applied 

them in a specific sequence to solve the inverse problem, through time-reversal mirror 

(TRM). We planned these increasingly realistic environmental models, each a step up from 

the previous, though not in chronological order of testing: 

1. Homogeneous fluid bottom models, coarse grid search 

2. Homogeneous fluid bottom models, fine grid search 

3. Seabed with sediment layer models 

4. Effects of noise (on models with sediment layer seabed) 

In the grid search, our method of testing the metrics’ suitability is by exploiting our 

knowledge of the true solution in our numerical simulations and ensuring that the true 

solution is one of the combinations tested. This allowed us to compare the metric values of 

ambiguous solutions and determine if the true solution has the best metric values. We list 

down the metrics and their criteria for reference in Table 8. 

Table 8. Metrics and their criteria 

Range Discrepancy (RD) Minimum 
Peak Time (PT) Minimum deviation from zero 

Symmetry Ratio (SR) Minimum 
Peak Magnitude (PM) Maximum 

Time Width of Half Height (TWHH) Minimum 

 

B. HOMOGENEOUS FLUID BOTTOM MODELS, COARSE GRID SEARCH 

We first introduced the homogeneous fluid bottom models earlier in Chapter II, as 

both a reproduction of prior investigations as well as the introduction of the problem faced 
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that forms the basis of this thesis. Parameters of the homogeneous fluid bottom models are 

in Table 9, and the grid search settings are in Table 10. 

Table 9. Parameters of homogeneous fluid bottom models 

Depth of water 100 m 
Depth of source and receiver 95 m 

Range from source to receiver 5015 m 

Source signal bandwidth 20–200 Hz 
20–70 Hz 

Bottom sound speed, cb 1750 m/s 
Bottom density ratio, ρb (relative to the density of water) 1.9 

Bottom attenuation, αb (λ is the wavelength of sound) 0.3 dB/λ 

Table 10. Coarse grid search settings for homogeneous fluid bottom models 

 Range from To In steps of 
Bottom sound speed, cb (m/

s) 1600 1800 10 

Bottom density ratio, ρb 1.1 2.7 0.2 
 

Total Number of Combinations 189 

 

Using the process of simulating the forward-propagating signal and processing it 

with TRM, Table 11 presents our metrics analysis, the true solutions highlighted in yellow. 

Table 11. Metrics results for homogeneous fluid bottom models, coarse grid 
search 

Combination cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 1720 1.7 0.0 0.0 0.013260 0.004086 0.002645 
A2 1750 1.9 0.0 0.0 8.88 x 10-26 0.004520 0.002646 
A3 1780 2.1 0.0 0.0 0.012487279 0.004733 0.002703 

Source signal bandwidth 20–70 Hz 
B1 1630 1.1 0.0 -0.002 0.514335 0.000775 0.007235 
B2 1710 1.5 0.0 -0.002 0.483453 0.001536 0.007297 
B3 1750 1.9 0.0 0.0 2.53 x 10-3 0.002024 0.007291 
B4 1780 2.3 0.0 0.002 0.393816 0.002279 0.007303 
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Combination A1 could be eliminated by PM, having the lowest value. Combination 

A3 could be eliminated by TWHH, having the highest value. Both would be eliminated by 

SR, with the true solution (A2) clearly identified. Combinations B1, B2, and B4 would be 

eliminated by PT. They would also be eliminated by SR, with the true solution, B3, clearly 

identified. We also observed that as per our definition of SR, when the TRM signal peak 

occurs away from zero time, the value of SR is substantially higher. 

With the simplicity of this homogeneous fluid bottom environment and the 

relatively large step setting for the grid search, the ambiguous solutions were not very 

numerous. From the metrics and criteria set out in Chapter III, we found that in both cases, 

we were able to arrive at the true solution. Individually, the differences between PM and 

TWHH values appeared too close to be able to conclusively tell them apart. This is 

expected and hence the metrics are not expected to function alone but should be combined 

in a more sophisticated selection rule that we refer to as a recipe. 

C. HOMOGENEOUS FLUID BOTTOM MODELS, FINE GRID SEARCH 

Building on the previous case study, we use the same environmental model with 

parameters in Table 9 and apply a finer grid search with the settings shown in Table 12. 

Table 12. Fine grid search settings for homogeneous fluid bottom models 

 Range from To In steps of 
Bottom sound speed, cb (m/

s) 1600 1800 5 

Bottom density ratio, ρb 1.5 2.5 0.1 
 

Total Number of Combinations 451 

 

Figure 14 graphically depicts the ambiguity of our solutions, and Table 13 then 

consolidates the results for this case study. 
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Blue circles represent combinations of mismatched parameters; red circles represent 
combinations that result in a minimum RD; red asterisks signify the true solution. (Left) 
20–200 Hz signal; (Right) 20–70 Hz signal. 

Figure 14. Ambiguous solutions in homogeneous fluid bottom models, fine 
grid search 

Table 13. Metrics results for homogeneous fluid bottom models, fine grid 
search 

Combination cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 1720 1.7 0.0 0.0 1.28 x 10-2 0.004416 0.002510 
A2 1730 1.8 0.0 0.0 0.004403 0.004613 0.002501 
A3 1735 1.8 0.0 0.0 0.003066 0.004673 0.002509 
A4 1740 1.8 0.0 0.0 0.013583 0.004692 0.002559 
A5 1745 1.9 0.0 0.0 0.005272 0.004813 0.002534 
A6 1750 1.9 0.0 0.0 1.58 x 10-32 0.004872 0.002518 
A7 1755 1.9 0.0 0.0 5.11 x 10-3 0.004893 0.002538 
A8 1760 2.0 0.0 0.0 0.012042 0.004952 0.002578 
A9 1765 2.0 0.0 0.0 0.002985 0.005011 0.002538 
A10 1770 2.0 0.0 0.0 0.002995 0.005037 0.002531 
A11 1775 2.0 0.0 0.0 0.011497 0.005029 0.002555 
A12 1780 2.1 0.0 0.0 0.012094 0.005096 0.002573 
A13 1785 2.1 0.0 0.0 0.007146 0.005128 0.002541 
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Combination cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–70 Hz 

B1 1710 1.5 0.0 -0.002 0.463423 0.000724 0.006761 
B2 1745 1.9 0.0 0.0 0.007878 0.000932 0.006827 
B3 1750 1.9 0.0 0.0 0.001710 0.000947 0.006798 
B4 1760 2.2 0.0 0.002 0.496349 0.001011 0.006814 
B5 1765 2.2 0.0 0.002 0.360956 0.001023 0.006821 
B6 1775 2.3 0.0 0.002 0.536868 0.001051 0.006833 
B7 1780 2.3 0.0 0.002 0.402528 0.001061 0.006761 

 

In this case study, the finer-grid search produced a significantly higher number of 

possible combinations from minimum RD. In combination set A, all possibilities had PT 

at zero time, and SR clearly indicated the true solution. We noted, however, that the true 

solution did not exhibit the highest PM or the smallest TWHH. 

For combination set B, PT quickly narrowed down the list to two and showed the 

true solution with the higher PM and smaller TWHH, albeit by only a small margin. While 

the difference in SR was not as striking, the true solution was about 4.5 times smaller than 

the other possible combination and could still be considered sufficiently significant to 

identify the true solution. Delving further into this, Figure 15 plots these two TRM signals 

in the time domain, for a visual analysis. 

 
Figure 15. Visual analysis of TRM signals for combinations B2 and B3 
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Upon visual inspection, specifically looking at the two minima and two adjacent 

peaks on either side of the main peak, the plot on the left (with mismatched parameters) 

demonstrates slight asymmetry while the plot with the true solution (right) appears quite 

symmetrical, and this concurred with the conclusion drawn from the SR values.  

With these observations, we inferred that the metrics used in the particular sequence 

of RD, PT, and SR works reasonably well to sieve out the true solution. 

D. SEABED WITH SEDIMENT LAYER MODELS 

Increasing the complexity and realism, we added a sediment layer into our 

environmental model. The parameters are shown in Table 14. Stepping up from the 

homogeneous fluid bottom models with two unknown parameters, our sediment layer models 

have five unknown parameters, which are reflected in the grid search settings in Table 15. 

Table 14. Parameters of seabed with sediment layer models 

Depth of water 100 m 
Depth of source and receiver 95 m 

Range from source to receiver 5015 m 

Source signal bandwidth 20–200 Hz 
20–70 Hz 

Sediment thickness, H 20 m 
Sediment sound speed, cb 1550 m/s 

Sediment density ratio, ρb (relative to the density of water) 1.3 
Sediment attenuation, αb (λ is the wavelength of sound) 0.1 dB/λ 

Bottom sound speed, cb 1800 m/s 
Bottom density ratio, ρb (relative to the density of water) 2.2 

Bottom attenuation, αb (λ is the wavelength of sound) 0.1 dB/λ 

Table 15. Grid search settings for seabed with sediment layer models 

 Range from To In steps of 
Sediment thickness, H (m) 10 30 10 

Sediment sound speed, cs (m/s) 1510 1590 20 
Sediment density ratio, ρs 1.0 1.9 0.3 

Bottom sound speed, cb (m/s) 1740 1830 30 
Bottom density ratio, ρb 1.9 2.5 0.3 

 
Total Number of Combinations 720 
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With five independent variables in our unknown parameters, it was no longer 

feasible to present graphically our dependent variable, RD, as a function of the independent 

variables. The grid search, however, systematically tested out every combination of 

unknown parameters. Applying the first metric of RD, the list of possible combinations are 

presented in Table 16.
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Table 16. Metrics results for seabed with sediment layer models 

Combination H cs rhos cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 10 1530 1.0 1830 2.2 0.0 0.0 0.182749 0.002384 0.002769 
A2 20 1550 1.3 1770 1.9 0.0 0.0 0.011686 0.003021 0.002817 
A3 20 1550 1.3 1800 2.2 0.0 0.0 8.54 x 10-26 0.003122 0.002840 
A4 20 1550 1.3 1830 2.5 0.0 0.0 0.009208 0.003067 0.002833 
A5 30 1550 1.3 1830 1.9 0.0 0.0 0.107060 0.002467 0.002725 

Source signal bandwidth 20–70 Hz 
B1 20 1550 1.3 1740 1.9 0.0 0.0 0.011993 0.000749 0.007020 
B2 20 1550 1.3 1800 2.2 0.0 0.0 9.55 x 10-25 0.000800 0.006951 
B3 30 1530 1.3 1770 1.9 0.0 0.0 0.282985 0.000449 0.041997 
B4 30 1550 1.9 1830 1.9 0.0 0.004 4.819642 0.000814 0.008005 
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We initially expected that the introduced complexity and realism from the seabed 

with sediment layer would pose challenges for our metrics. The results showed that in both 

models, however, the true solution was still identified with a high degree of confidence. 

The following observations were made: 

1. There was one mismatched combination that peak time was not at zero 

time for source signal 20–70 Hz. 

2. In both cases, SR confidently identified the true solution. 

3. In both cases, the true solution had the highest PM. 

4. In both cases, the true solution did not have the smallest TWHH. 

E. EFFECTS OF NOISE 

With increased confidence in our recipe, we next moved to introduce random noise 

into our signal. Stochastic noise is omnipresent in the real world, from manmade sources 

such as shipping, to marine life and biologics, even natural phenomena such as 

precipitation and bubbles; these all produce sound and could potential affect our TRM 

process with their varied intensities.  

Our method of evaluation was to insert in the forward-propagating signal, white 

Gaussian noise with decreasing signal-to-noise ratios (SNR) in order to simulate a realistic 

environment, while evaluating the robustness of our metrics to cope. In our code, our 

simulated signal was measured for its power and thereafter noise corresponding to the 

respective SNR was added. 

Our random white noise was added in the following sequence: 

1. SNR = 40 dB 

2. SNR = 20 dB 

3. SNR = 10 dB 

4. SNR = 5 dB 

5. SNR = 0 dB 
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Noise was added in the forward propagation to our simulated signal as it reached 

our TRM. We anticipated that white noise corresponding to SNR = 40 dB would have 

minimal effects as compared to the noiseless environment, but it would provide the 

baseline for comparison of the models in this section. 

The models in this section have similar parameters as those without noise added. 

Table 17 recaps these parameters, and Table 18 shows the enacted grid search settings. 

Table 17. Parameters of seabed with sediment layer models 

Depth of water 100 m 
Depth of source and receiver 95 m 

Range from source to receiver 5015 m 

Source signal bandwidth 20–200 Hz 
20–70 Hz 

Sediment thickness, H 20 m 
Sediment sound speed, cb 1550 m/s 

Sediment density ratio, ρb (relative to the density of water) 1.3 
Sediment attenuation, αb (λ is the wavelength of sound) 0.1 dB/λ 

Bottom sound speed, cb 1800 m/s 
Bottom density ratio, ρb (relative to the density of water) 2.2 

Bottom attenuation, αb (λ is the wavelength of sound) 0.1 dB/λ 

Table 18. Grid search settings for seabed with sediment layer models 

 Range from To In steps of 
Sediment thickness, H (m) 10 30 10 

Sediment sound speed, cs (m/s) 1510 1590 20 
Sediment density ratio, ρs 1.0 1.9 0.3 

Bottom sound speed, cb (m/s) 1740 1830 30 
Bottom density ratio, ρb 1.9 2.5 0.3 

 
Total Number of Combinations 720 

 

First, we demonstrated the effects of noise on the received signals. In Figure 16, we 

plotted the received signals, with source bandwidth 20–70 Hz, in the forward propagation. 

For comparison, we also included the signal with no added noise. As predicted, the plots 

of the noise-less signal and the model with noise corresponding to SNR = 40 dB were 
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almost identical. As SNR decreased, the presence of noise became increasingly apparent 

in the plots of received signal. 

 
(1st row-left) With no added noise; (1st row-right) With noise of SNR = 40 dB; (2nd row-
left) With noise of SNR = 20 dB; (2nd row-right) With noise of SNR = 10 dB; (3rd row-
left) With noise of SNR = 5 dB; (3rd row-right) With noise of SNR = 0 dB. 

Figure 16. Received signals with noise of increasing SNR, signal bandwidth 
20–70 Hz 
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As a check, we subtracted the received signal without noise from the signal with 

noise corresponding to SNR = 40 dB added. Figure 17 shows the realization of the added 

random noise. 

 
Figure 17. Verification of noise added, difference between signals with and 

without noise 

We were now confident of simulating environments with white Gaussian noise and 

were ready to proceed with analyzing our metrics’ performance. 

1. SNR = 40 dB 

Organized in Table 19 are the metrics results from the seabed with sediment layer 

models with added noise corresponding to SNR = 40 db. 
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Table 19. Metrics results for seabed with sediment layer models with added noise, SNR = 40 dB 

Combination H cs rhos cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 10 1530 1.0 1830 2.2 0.0 0.0 0.183065 0.002384 0.002770 
A2 20 1550 1.3 1770 1.9 0.0 0.0 0.011657 0.003022 0.002817 
A3 20 1550 1.3 1800 2.2 0.0 0.0 6.84 x 10-6 0.003123 0.002840 
A4 20 1550 1.3 1830 2.5 0.0 0.0 0.009245 0.003067 0.002834 
A5 30 1550 1.3 1830 1.9 0.0 0.0 0.107179 0.002468 0.002725 

Source signal bandwidth 20–70 Hz 
B1 20 1550 1.3 1740 1.9 0.0 0.0 0.004855 0.002455 0.007621 
B2 20 1550 1.3 1800 2.2 0.0 0.0 2.22 x 10-6 0.002557 0.007605 
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As all combinations had PT at zero time, this metric was unable to narrow the 

possibilities. By the time we used the metric SR, we were able to identify the matched 

combination with a high degree of confidence. The difference between SR values from 

matched and mismatched combinations was less apparent (four orders of magnitude, 

compared to 25 orders of magnitude in the noiseless environment) and this was expected 

as the random noise in the received signal would reduce the symmetry of the TRM signals. 

Other observations are as follows: 

1. PM for the true solution was the highest among the combinations. 

2. TWHH was not the lowest for the test involving the 20–200 Hz source 

signal; the lowest was in combination set B (20–70 Hz), which had two 

possibilities. 

2. SNR = 20 dB 

Next, we increased the noise in the environment, such that the signal received 

contained noise corresponding to SNR = 20 dB. Table 20 displays the metrics results. 
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Table 20. Metrics results for seabed with sediment layer models with added noise, SNR = 20 dB 

Combination H cs rhos cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 10 1530 1.0 1830 2.2 0.0 0.0 0.186712 0.002383 0.002775 
A2 20 1550 1.3 1770 1.9 0.0 0.0 0.012051 0.003027 0.002822 
A3 20 1550 1.3 1800 2.2 0.0 0.0 0.0006811 0.003127 0.002845 
A4 20 1550 1.3 1830 2.5 0.0 0.0 0.010201 0.003069 0.002838 
A5 30 1550 1.3 1830 1.9 0.0 0.0 0.108947 0.002468 0.002731 

Source signal bandwidth 20–70 Hz 
B1 20 1550 1.3 1740 1.9 0.0 0.0 0.004992 0.002459 0.007621 
B2 20 1550 1.3 1800 2.2 0.0 0.0 0.0002211 0.002562 0.007603 
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In what continued to be a trend as we increased the random noise in the environment 

and the signal, we again see that while SR was able to identify conclusively the true 

solution, the difference between values from matched and unmatched parameters was now 

one order of magnitude. This was as compared to four orders of magnitude in the case of 

added noise corresponding to SNR = 40 dB. 

Other observations are as follows: 

1. PM for the true solution was the highest among the combinations. 

2. TWHH was not the lowest for the test involving the 20–200 Hz source 

signal; the lowest was in combination set B (20–70 Hz), which had two 

possibilities. 

These observations were similar to the tests with the seabed with sediment layer 

models, in both environments without noise and with noise corresponding to SNR = 40 dB, 

and we noted the trend regarding the effectiveness of PM and TWHH. 

3. SNR = 10 dB 

The next model analyzed had noise added corresponding to SNR = 10 dB. 

Displayed in Table 21 are the metrics results of this test. 

 

 



43 

Table 21. Metrics results for seabed with sediment layer models with added noise, SNR = 10 dB 

Combination H cs rhos cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 10 1510 1.9 1800 2.5 0.0 0.004 1.202084 0.002476 0.007600 
A2 10 1530 1.0 1830 2.2 0.0 0.0 0.201235 0.002382 0.002786 
A3 20 1550 1.3 1770 1.9 0.0 0.0 0.017673 0.003038 0.002833 
A4 20 1550 1.3 1800 2.2 0.0 0.0 0.006701 0.003137 0.002857 
A5 20 1550 1.3 1830 2.5 0.0 0.0 0.017057 0.003075 0.002849 
A6 30 1550 1.3 1830 1.9 0.0 0.0 0.118173 0.002468 0.007600 

Source signal bandwidth 20–70 Hz 
B1 20 1550 1.3 1740 1.9 0.0 0.0 0.006773 0.002469 0.007618 
B2 20 1550 1.3 1800 2.2 0.0 0.0 0.002193 0.002573 0.007598 
B3 30 1550 1.9 1830 1.9 0.0 0.004 4.827056 0.002678 0.008586 
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In these models, our SR metric faced even greater obstacles in identifying the true 

solution. The difference between values from matched and unmatched parameters was now 

only a factor of 2.5 in set A combinations, and three in set B combinations. While still 

possibly sufficient to identify the true solution with confidence, the decrease in difference 

as SNR increased was a trend to take note of. 

For reference, we plotted the TRM signals for combinations A4, A5, B1, and B2 in 

Figure 18. 

 
(Left) TRM signals of combination A4 (top) and A5 (bottom); (Right) TRM signals of 
combination B1 (top) and B2 (bottom) 

Figure 18. TRM signals, combinations A4 and A5, B1 and B2 

We verified visually and observed that in the left plots of A4 and A5, asymmetry 

was slight but present in A5 (bottom) by focusing on the two minima on either side of the 

main peak. Similarly, in the right pair of B1 and B2, the asymmetry in B1 (top) is 
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observable in the two minima and two adjacent secondary peaks on either side of the main 

peak. 

Other observations are as follows: 

1. PM for the true solution was the highest among the combinations. 

2. TWHH was not the lowest for the test involving the 20–200 Hz source 

signal; the lowest was in combination set B (20–70 Hz), which had two 

possibilities. 

4. SNR = 5 dB 

In our penultimate test for the environments with noise added, we analyzed the 

signal with noise corresponding to SNR = 5 dB added. Table 22 documents our results. 
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Table 22. Metrics results for seabed with sediment layer models with added noise, SNR = 5 dB 

Combination H cs rhos cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 10 1510 1.9 1800 2.5 0.0 0.004 1.185846 0.002505 0.007616 
A2 20 1550 1.3 1770 1.9 0.0 0.0 0.031608 0.003051 0.002845 
A3 20 1550 1.3 1800 2.2 0.0 0.0 0.020651 0.003149 0.002870 
A4 20 1550 1.3 1830 2.5 0.0 0.0 0.032194 0.003081 0.002861 
A5 30 1550 1.3 1830 1.9 0.0 0.0 0.136687 0.002469 0.002762 

Source signal bandwidth 20–70 Hz 
B1 20 1550 1.3 1740 1.9 0.0 0.0 0.011231 0.002479 0.007616 
B2 20 1550 1.3 1800 2.2 0.0 0.0 0.006853 0.002585 0.007592 
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SR was still able to identify the true solution as they were the combinations with 

the lowest values. The difference between the SR values of matched and mismatched 

parameters was now a factor of 1.5. We thus expected to have difficulties differentiating 

symmetry and asymmetry from the plots. 

Figure 19 shows the TRM signals comparing combinations A2 and A3 (the two 

combinations in set A with the closest SR), and combinations B1 and B2. 

 
(Left) TRM signals of combination A2 (top) and A3 (bottom); (Right) TRM signals of 
combination B1 (top) and B2 (bottom) 

Figure 19. TRM signals, combinations A2 and A3, B1 and B2 

Visually, slight asymmetry is observed in A2, in the left pair, between the two 

minima on either side of the main peak. On the right pair, TRM signals from B1 and B2 

appear equally symmetrical. Noise corresponding to SNR = 5 dB seemed to be the cutoff 

where visual assessment was no longer reliable. 

Other observations are as follows: 

1. PM for the true solution was the highest among the combinations. 
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2. TWHH was not the lowest for the test involving the 20–200 Hz source 

signal; the lowest was in the two-possibility combination set B (20–70 

Hz). 

3. After classification by SR, PM can be used to reinforce identification of 

the true solution. 

5. SNR = 0 dB 

For completeness, the signal was simulated with noise corresponding to SNR = 0 

dB and the metrics were put through their paces to assess their effectiveness. Table 23 

documents the results. 
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Table 23. Metrics results for seabed with sediment layer models with added noise, SNR = 0 dB 

Combination H cs rhos cb rhob RD PT SR PM TWHH 
Source signal bandwidth 20–200 Hz 

A1 10 1510 1.9 1800 2.5 0.0 0.004 1.144261 0.002556 0.007644 
A2 20 1550 1.3 1770 1.9 0.0 0.0 0.073189 0.003073 0.002868 
A3 20 1550 1.3 1800 2.2 0.0 0.0 0.061317 0.003170 0.002894 
A4 20 1550 1.3 1830 2.5 0.0 0.0 0.075496 0.003093 0.002883 

Source signal bandwidth 20–70 Hz 
B1 20 1550 1.3 1740 1.9 0.0 0.0 0.025154 0.002499 0.007612 
B2 20 1550 1.3 1800 2.2 0.0 0.0 0.021061 0.002607 0.007582 
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As expected, while the true solution still exhibited the lowest SR value, the difference 

between SR values for matched and mismatched parameters was even closer. The random 

nature of the added noise had made the TRM signal with matched parameters equally 

asymmetrical as the signal with mismatched parameters.  

Figure 20 shows the TRM signals comparing combinations A2 and A3 (the two 

combinations in set A with the closest SR) and combinations B1 and B2. 

 
(Left) TRM signals of combination A2 (top) and A3 (bottom); (Right) TRM signals of 
combination B1 (top) and B2 (bottom) 

Figure 20. TRM signals, combinations A2 and A3, B1 and B2 

As anticipated from the trending thus far (of the effects of increasing noise), we were 

unable to visually identify which signal was symmetrical and which was not. 

Other observations are as follows: 

1. PM for the true solution was the highest among the combinations. 
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2. TWHH was not the lowest for the test involving the 20–200 Hz source 

signal; the lowest was in the two-possibility combination set B (20–70 Hz). 

3. After classification by SR, PM can be used to reinforce identification of the 

true solution. 

F. DISCUSSION 

Throughout our tests, we observed that the TRM process was able to produce a 

focus with the various input geoacoustic parameters tested. This robustness with respect to 

the mismatch in environmental parameters underlies the applicability of TRM to solve the 

inverse problem. The location of the focus and its proximity to the true position varies 

according to whether the parameters were matched or mismatched. The number of 

ambiguous solutions increased when there were greater numbers of geoacoustic parameters 

under consideration. It also increased when the grid search was conducted at finer steps. 

RD was efficacious as the first metric to narrow all tested combinations to a list of 

possible solutions. PT appeared less effective (when applied for selection after RD), but 

this was likely due to the overlapping efficacy of RD and PT. Before embarking on our 

tests and evaluations, we had hypothesized that PT would be a very good metric. Based on 

our definition and calculation of SR, however, we had incorporated PT within: if the signal 

does not peak at zero time, SR will be very high due to the asymmetry. This made PT 

redundant. SR was extremely selective in identifying the true solution from the 

possibilities, and for all the tests, SR was the lowest for the true solution. In the noisy 

environments, however, there was a decreasing contrast between values from matched and 

mismatched parameters as noise was increased. 

We propose for PM to be utilized less as a main metric for classification, and more 

as a tiebreaker, or for confirmation of the true solution. This was inferred from the lack of 

consistent performance by the metric in the fine-grid search test. There was also the issue 

of low contrast in values when comparing matched and mismatched parameters. Using PM 

as a tiebreaker could be essential when SR encounters challenges in noisy environments. 

We noted PM performed more consistently than TWHH: in all the seabed with sediment 

layer models, both with and without added noise, PM was highest for the true solution. 
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When the TRM process is inputted with a signal of wider bandwidth, it produces a 

tighter focus, both spatially and temporally. This was evident in Figures 3 and 8 

respectively, where two signals of different bandwidths were contrasted. We continued 

conducting our tests with two signals, one with a wider bandwidth (20–200 Hz) and another 

with a narrower bandwidth (20–70 Hz). We observed that the signal with the wider 

bandwidth generally produced higher numbers of ambiguous solutions when RD was 

applied, especially when brought about by a finer grid search. This was a consequence of 

the finer resolution brought about by broadband input and, even though more possibilities 

were observed, the various metric values showed more contrast between matched and 

mismatched parameters with the signal with wider bandwidth. 

In the homogeneous fluid bottom models, SR performed significantly better with 

the wider broadband signal. When a sediment layer was introduced into the seabed, this 

advantage was no longer present. Other metrics performed equally well with signals of 

either bandwidth. There were similar contrasts between metric values when comparing 

combinations with matched and mismatched geoacoustic parameters.  

After we analyzed our results, we propose that in solving the inverse problem and 

obtaining the true solution, the metrics would be most efficiently utilized in the following 

recipe, consecutively in the following order: 

1. RD 

2. SR 

3. PM, as verification if necessary 

When grid search is employed, we also propose to apply our recipe on a coarse grid 

search to first narrow down the vicinity of the true solution. This is to be followed with a 

fine grid search to obtain the accurate values of the geoacoustic parameters. This will 

optimally balance computation time and accuracy of the parameters. While discussed here 

in the context of grid search, our recipe is not tied to any particular search technique and is 

expected to be equally effective with more advanced optimization techniques, such as 

genetic algorithm. 
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V. CONCLUSION 

A. SUMMARY AND CONCLUSIONS 

There are various inverse problems that can be solved with time-reversal mirror 

(TRM), one of which is characterizing the underwater environment as researched for this 

thesis. Another important application of solving an inverse problem with the TRM process 

is the detection of underwater contacts, especially quiet targets, surreptitiously using 

received noise. To do that, with the correct environment parameters derived and inputted, 

the similar TRM process can then be used on a signal of interest to find its focus, localizing 

it and obtaining the location of the source of that signal.  

The application of TRM in these two scenarios, first to obtain the unknown 

parameters of the ocean and second to localize and track a target, has enormous potential 

in the underwater battlespace. We also concentrated on the single-element TRM for the 

advantages it provides in naval applications, as a single receiver is more suitable to deploy 

than a vertical array of receivers.  

In solving our inverse problem of characterizing the underwater environment with 

the concept of TRM as a signal processing technique, we demonstrated ambiguity in the 

solutions when only a single criterion of spatial focus was used. To be able to isolate the 

true solution from the range of possibilities became paramount. We hypothesized that a 

unique solution can be obtained by introducing additional selection criteria, investigated 

suitable metrics, and tested them in numerical simulations.  

Based on expected properties of focus in the back-propagated field with our 

physics-motivated data processing technique, we identified additional metrics on the basis 

of the TRM signal’s temporal focus, specifically accuracy, compactness, and symmetry. 

We also expected magnitude of the signal to be suitable.  

We conclude that in the bid to obtain the true solution accurately and efficiently, 

the best performing metrics are as follows, to be applied in the following sequence: 

1. Range Discrepancy, the range between the TRM-processed focus and true 

location 
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2. Symmetry Ratio (SR), characterizing the symmetry of the TRM-processed 

signal  

3. Peak Magnitude, representing the acoustical pressure at the TRM-

processed focus, as verification if necessary 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

With our formulation of the metric SR, we observed possible improvements to 

enhance its performance. One possibility is to fine-tune the calculation, to focus on the 

vicinity of the main peak rather than the entire TRM-processed signal. This should suppress 

the effects of noise on the symmetry and provide greater contrast between values from 

matched and mismatched geoacoustic parameters. 

Most importantly, the sequence of applying these metrics, our recipe, is ready for 

verification with real world data, to demonstrate its robustness and efficiency in identifying 

the true parameters from possible solutions. 
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