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Abstract 
To better understand the implosion and the resultant shock wave, a series of numerical modeling and simulations were 
undertaken for the buckling and collapse of spherical and cylindrical shell structures. The shells were assumed to be made 
of steel, aluminum, and laminated fibrous composites, respectively. First, the buckling was examined for the shell structures 
subjected to external pressure loading without any contact with fluid media. Both static and dynamic buckling was studied. 
For the dynamic buckling, the speed of collapse was controlled to investigate its effect on the buckling characteristics such 
as buckling mode. This was achieved by decreasing the internal pressure at different rates as the structures were subjected to 
a constant external pressure. Then, the full implosion process associated with the collapse of shell structures was modelled 
and studied to understand \he shock wave propagation radiated from the collapsing shell structures. The structures were 
initially subjected to an external water pressure equivalent to a specified water depth. Then, the collapse speed of the shells 
was controlled, too. Finally, the effect of an initial defect on the buckling and implosion of cylindrical shells was examined. 
The numerical study compared the implosion characteristics resulting from spherical and cylindrical shells, different material 
properties, and various controlled collapse speeds. The results suggested that there were optimal parameters which generate 
the maximum peak pressure during the implosion process. 

Keywords Implosion • Buckling • Shock wave • Metals and composites • Initial defect 

1 Introduction 

When a structure buckles suddenly under a high exter
nal water pressure, the collapsing structure produces shock 
waves propagating back into the surrounding water. The 
resultant shock wave can be detrimental to any neighbor
ing structure. As a result, research has been conducted to 
understand and predict the implosion process. 

A sudden collapse of a cavity (or bubble) also produces 
high shock wave back into the surrounding water medium. 
Therefore, much research has been also conducted for the 
collapsing bubbles. When a structure has very negligible 
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strength and stiffness, its collapse can be approximated as 
the collapse of a bubble of the equivalent geometric shape. 
Thus, the bubble collapse can be considered as an extreme 
case of implosion. 

One of the early studies on the bubble dynamics was 
conducted by Rayleigh (1917). He dev~loped an analytical 
solution of a spherical bubble collapsing under an external 
pressure. The spherical bubble was assumed to have a con
stant or isothermally changing internal pressure. However, 
compressible air pressure inside the bubble was not prop
erly considered. Plesset (1949) and Gilmore (1952) further 
developed the mathematical models for the spherical cav
ity including compressible air inside the cavity. When the 
dynamic motion of the cavity boundary was compared, the 
analytical equations by Plesset and Gilomre agreed well with 
the numerical solution as the compressible air was modelled 
inside the cavity (Sugimoto and Kwon 2020). More recently, 
Kedrinskii (2005) generalized the Gilmore type equation 
for bubbles of cylindrical or spherical shapes with a com
pressible liquid. A recent study (Ilinskii 2012) examined the 
cylindrical bubble pulsation. 
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Early studies of structural implosion were conducted in 
1950's and 1960's (Isaacs and Maxwell 1952; Urick 1963). 
Both studies used the implosion as a source for underwater 
acoustic signals. Another implosion study (Orr and Schoen
berg 1976) was also conducted for the acoustic signal. Later, 
a series of studies were conducted to examine the shock 
pressure wave resulting from implosion. Turner and his col
league (Turner 2007; Turner and Ambrico 2012) conducted 
experimental studies on implosion of a spherical glass and an 
aluminum cylindrical tube. They measured the shock pres
sure time-history during the implosion process. A numerical 
study was conducted for implosion of a cylindrical shell, 
which was pressurized just below the buckling pressure of the 
cylinder and a nearby underwater explosion was simulated to 
initiate the collapse of the cylinder (Krueger 2006). Another 
numerical study was conducted to validate the numerical 
model to experimental results (Farhat et al. 2013). More 
recently, Shukla and his group (Gupta et al. 2014; Pinto et al. 
2015, 2018) conducted experiments of composite cylinders 
as conducted by the numerical study by Krueger (2006). They 
measured the deformation of collapsing composite cylinders 
using the digital image correlation technique and measured 
the shock pressure using the pressure gage, too. 

The previous studies provided understanding of the implo
sion process and its characteristics. The objective of this 
study was to investigate what parameter and/or condition pro
duced the greatest shock pressure and energy under the same 
external water pressure. To this end, a series of numerical 
modeling and simulations were conducted. Three different 
material such as steel, aluminum, and a laminated compos
ite were studied. Both spherical and cylindrical shells were 
examined. The buckling/collapse speeds of the shell struc
tures were also varied to determine its effect on the shock 
pressure wave. 

The next section described the computer modeling, and 
the subsequent two sections presented the numerical results 
of the spherical and cylindrical shells, respectively. Then, 
conclusions were followed. 

2 Numerical modeling 

Implosion of both spherical and cylindrical shells were ana
lyzed numerically using LS-DYNA (LST 2019). Before the 
implosion study, buckling of the dry shells were investigated 
without Fluid-Structure Interaction (FSI) to understand the 
buckling pressure and the buckling characteristics such as 
buckling modes. After that, the implosion studies were under
taken with FSI. 

The nominal internal radius of all shell models was I m, 
and the cylindrical shells had rigid plates at both ends. The 
materials considered in this study were steel, aluminum, and 
a carbon fiber composite, respectively. Both steel and alu-
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Table 1 Material properties of steel and aluminum 

Material Steel 

Young's modulus, E 206 GPa 

Poisson' ratio, v 0.3 

Critical buckling pressure, Per 0.997 MPa 

Critical stress, rrcr 249 MPa 

Yield stress, ay 350MPa 

Table 2 Material properties of fibrous composite lamina 

Material 

Density 

Young's modulus of the longitudinal fibers, El 

Young's modulus of the transverse fibers, E2 

Shear modulus, Gl2 

Shear modulus, G23 

Major poisson 's ration, v12 

Poisson's ration, v23 

Ultimate tensile strength 0°, XT 

Ultimate comp. strength 0°, XC 

Ultimate tensile strength 90°, YT 

Ultimate comp. strength 90°, YC 

Ultimate in-plane shear strength., SC 

Aluminum 

68.9 GPa 

0.3 

0.334 MPa 

83.4 MPa 

276 MPa 

CFRP 

1304kg/m 3 

139 GPa 

7.2 GPa 

3.5 GPa 

2.4 GPa 

0.235 

0.500 

1500 MPa 

1200MPa 

50MPa 

250 MPa 

70MPa 

minum were assumed to be elastic and perfectly plastic, 
whose material properties are listed in Table 1. As a result, the 
straining hardening was neglected for both materials for con
servative modelling and simplicity. The composite cylinders 
were modelled as a laminated composite. The material prop
erty of the lamina is shown in Table 2. The Chang-Chang 
failure criteria were used for the failure of the composite 
material, and their failure strengths were also given in Table 
2. 

The four-node shell elements called thin shell elements 
were used for all analyses, which have three displacements 
and three rotations at every node. The solid-like shell ele
ments called thick shell elements were also considered, 
which has the nodal degrees of freedom like a 3-D solid ele
ment. This type of element is easier for coupling with the fluid 
elements on the inner and outer surfaces of the shell element. 
The solid-like shell elements gave very close solutions to the 
standard shell elements, but it took much longer computa
tional times for the former elements. Therefore, the standard 
shell elements were used throughout the study unless men
tioned otherwise. 

Structured Arbitrary Lagrange Euler (S-ALE) solver in 
LS-DYNA was used in the water and air regions for all FSI 
analyses. The S-ALE solver is recently added into LS-DYNA 
and has several advantages over the generic ALE solver. 
It runs faster and uses less memory and more stable. Bi-
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directional FSI coupling of water and air was used for all FSI 
problems. 

As a parametric study, the speed of the buckling/collapse 
was controlled. This was conducted by applying internal 
pressure to the shell and decreasing the internal pressure at 
different rates. Another simulation was the change of the 
mass density of the material. This was an arbitrary increase 
of the density up to five times from its nominal values. The 
main purpose of these studies was to determine how the buck
ling/collapse speed influenced the buckling characteristics 
and the resultant shock wave propagation during the implo
sion process. For example, strain hardening of the materials 
as well as other possible internal structures could delay the 
buckling/ collapse speed. Thus, the parametric study was to 
simulate those situations. 

For the dry shell structures, both external and internal 
pressures were applied using the external loading option. 
However, for the structures with FSI, pressure loading was 
applied through the fluid media in contact with the struc
ture. The external fluid was water, while the internal fluid 
was air. The water pressure was assumed such that the shell 
structure was placed in a certain water depth with the proper 
hydrostatic pressure. The air pressure was assumed at the 
atmospheric pressure condition. 

The Gruneisen equation of state was used to model the 
water medium. The equation of state is expressed as below: 

p0 C2µ[1 + (l - ~ )1-' - ~1-'2] [ ] 
p = [ 2 3 ] + Yo+ aµ E . 

1 - (S1 - I )1,t - S2 ..I:!::... - S3 ___E_ µ+ I ~ 

(1) 

In this study, the following material constants were used. 
Water was assumed to have the mass density p0 = l 000 kg/m 3 

and the speed of sound C = 1490 mis. Other constants for 
the equation of state were assumed S1 = 1.79, S2 = S3 = 0, 
yo = 1.65, a = 0. Furthermore, the ratio of density change 
was expressed as µ, = .!!_ - 1 with the present density p, 

Po 
and E is the internal energy which is dependent on the water 
depth. 

The polynomial equation of state was used to model the 
air inside the shell structure, and it is given as below: 

p =Co+ Ciµ+ C2µ,2 + C3µ,3 + ( C4µ,4 + Csµ,5 + C6µ,6) E . 

(2) 

The material constants for this equation of state were 
assumed such that Co= C1 = C2 = C3 = C6 = 0.0, and C4 
= Cs = 0.403. In addition, the density of air was assumed 
1.293 kg/m3, E is the internal energy andµ, = i - 1 where 
Vis the relative volume. 

3 Spherical shell 

This section studied the implosion characteristics resulting 
from the collapse of spherical shells. Collapse of shell struc
tures can be initiated from different failure modes, which 
could be elastic buckling or plastic deformation depending 
on which failure mode occurs at the lower load level. 

The spherical shell was made of either steel or aluminum 
materials whose properties were provided in Table I. Both 
materials were assumed to be perfect plastic without strain 
hardening. The surrounding water was modeled using the 
Gruneisen equation as stated previously. Inside of the shell 
was assumed to have atmospheric pressure. 

First, the critical bucking pressure Per of a dry thin-walled 
spherical shell was computed using the following equation 
(Timoshenko and Gere 1961): 

2£ ( t )
2 

Per = J3( I - v2) R ' (3) 

where E and v are elastic modulus and Poisson's ratio, and 
R and t are the shell inner radius and thickness, respectively. 
The elastic critical stress O'er for a thin spherical shell is com
puted from 

(4) 

Based on the von Mises yield criterion, the spherical shell 
does not yield if the critical stress O'er is less than the yield 
strength of the material. In that case, elastic buckling is the 
initiation of the collapse followed by plastic deformation. 

The shell thickness was 2 mm. In this case, the criti
cal buckling stress was less than the yield strength of each 
material. Therefore, the shell will collapse through elastic 
buckling rather than plastic deformation. To confirm the 
critical buckling load, finite element analyses were also con
ducted using the mesh of a half spherical shell with symmetric 
boundaries as sketched in Fig. I. The numerical buckling 
pressure agreed very well with the analytical solutions for 

Fig. 1 A half model of spherical shell with symmetric plane 
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Fig. 2 Buckling pressure of spherical shells 
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Fig. 3 Overall sketch for implosion study of spherical shell 
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40m 

Fig. 4 Finite element meshes of water domain and spherical shell 

both aluminum and the steel spherical shells for various thick
nesses as shown in Fig. 2 (Timoshenko and Gere 1961). 
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Fig. 5 Numerical probe locations around the spherical shell 

Figure 3 shows the sketch of the implosion study of the 
spherical shell. The finite element meshes of the fluid (water) 
domain and the spherical shell are shown in Fig. 4 The loca
tion of the numerical pressure probe for the spherical shell 
model is shown in Fig. 5, and the detailed locations of all 
the probes are listed in Tables 3 and 4 . In addition, Table 5 
shows the geometric properties of both steel and aluminum 
spherical shells of 2 mm thick as well as the buckling pres
sure, critical buckling stress, and both external and internal 
pressure of the spherical shells. Internal pressure was applied 
to the spherical shells as an external loading so that the buck
ling and collapse could be controlled as explained in the last 
section. The internal pressure was decreased as a function of 
time, and the reduction rate of the internal pressure was con
trolled to determine its effect of the implosion characteristics. 

The external pressure was decided as one and a half times 
of the critical buckling pressure of spherical shell made of 
steel. The rate of reduction of the internal pressure was varied 
by deciding the final time to reach the zero applied internal 
pressure as sketched in Fig. 6. The applied internal pressure 
became zero at Dt = 0.1 ms, 5 ms, 10 ms, and 15 ms, respec
tively. 

As the spherical shell collapsed significantly, the 
deformed shape became so complicated with buckling, plas
tic deformation, and potential self-contacts of the collapsed 
surface. As a result, when the collapsing process continued 
before reaching the final collapsed geometry, the analysis 
program was terminated with an error message stating too 
much distortions of some finite elements. Unfortunately, 
remeshing was not possible for this situation. Therefore, one 
option was to use the element erosion option, i.e., an element 
was removed when the strain of the element exceeded any 
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Table 3 Locations of numerical probes outside the spherical shell Table 4 Locations of numerical probe in and near the spherical shell 

No. Probe Radial X (m) Y(m) Z (m) No. Probe Radial X(m) Y(m) Z (m) 
distance (m) distance (m) 

PA2 2.00 0.00 0.00 2.00 45 Pl 0.01 0.01 0.00 0.01 

2 PB2 2.00 1.41 0.00 1.41 46 Pll 0.14 0.10 0.00 0.10 

3 PC2 2.00 2.00 0.00 0.00 47 P12 0.21 0.15 0.00 0.15 

4 PD2 2.00 1.41 0.00 - 1.41 48 P13 0.28 0.20 0.00 0.20 

5 PE2 2.00 0.00 0.00 - 2.00 49 P14 0.42 0.30 0.00 0.30 

6 PF2 2.00 1.00 1.00 1.41 50 Pl5 0.57 0.40 0.00 0.40 

7 PG2 2.00 1.41 1.41 0.00 51 P16 0.71 0.50 0.00 0.50 

8 PH2 2.00 1.00 1.00 - 1.41 52 Pl7 0.85 0.60 0.00 0.60 

9 PI2 2.00 1.00 - 1.00 1.41 53 P18 0.99 0.70 0.00 0.70 

10 PJ2 2.00 1.41 - 1.41 0.00 54 P19 1.13 0.80 0.00 0.80 

11 PK2 2.00 1.00 - 1.00 - 1.41 55 P20 1.27 0.90 0.00 0.90 

12 PA3 3.00 0.00 0.00 3.00 56 P21 1.41 1.00 0.00 1.00 

13 PB3 3.00 2.12 0.00 2.12 

14 PC3 3.00 3.00 0.00 0.00 

15 PD3 3.00 2.12 0.00 - 2.12 
Table 5 Material and geometric properties of metallic spherical shells 

16 PE3 3.00 0.00 0.00 - 3.00 Material Steel Aluminum 

17 PF3 3.00 1.50 1.50 2.12 Radius, Ro I.Om 1.0 m 
18 PG3 3.00 2.12 2.12 0.00 Thickness, t 2mm 2mm 
19 PH3 3.00 1.50 1.50 - 2.12 Critical buckling 0.997 MPa 0.334MPa 
20 PB 3.00 1.50 - 1.50 2.12 pressure, Per 

21 PB 3.00 2.12 - 2.12 0.00 Critical stress, aer 249MPa 83.4 MPa 

22 PK3 3.00 1.50 - 1.50 - 2.12 Yield stress, ay 350 MPa 276MPa 

23 PA4 4.00 0.00 0.00 4.00 Pressure at yield of 1.4 MPa 1.1 MPa 

24 PB4 4.00 2.83 0.00 2.83 material, Py 

25 PC4 4.00 4.00 0.00 0.00 Buckling mode Elastic buckling Elastic buckling 

26 PD4 4.00 2.83 0.00 -2.83 
(Pc,< Py) (Per< Py) 

27 PE4 4.00 
External pressure, 1.5 MPa 1.5 MPa 

0.00 0.00 -4.00 
Po 

28 PF4 4.00 2.00 2.00 2.83 Initial internal 1.4 MPa 1.4 MPa 
29 PG4 4.00 2.83 2.83 0.00 pressure, Pin 

30 PH4 4.00 2.00 2.00 -2.83 (Load) 

31 PI4 4.00 2.00 - 2.00 2.83 

32 PJ4 4.00 2.83 -2.83 0.00 pin 
33 PK4 4.00 2.00 -2.00 -2.83 

34 PA5 5.00 0.00 0.00 5.00 Dt=O.lms, Sms, lOms and lSms 
35 PB5 5.00 3.54 0.00 3.54 

36 PC5 5.00 5.00 0.00 0.00 

37 PD5 5.00 3.54 0.00 -3.54 

38 PE5 5.00 0.00 0.00 -5.00 

39 PF5 5.00 2.50 2.50 3.54 
0 Dt time 

40 PG5 5.00 3.54 3.54 0.00 Fig. 6 Pressure time history at different locations of the spherical cavity 

41 PH5 5.00 2.50 2.50 - 3.54 

42 PI5 5.00 2.50 -2.50 3.54 

43 PJ5 5.00 3.54 - 3.54 0.00 specified value, typically the failure strain. When the element 

44 PK5 5.00 2.50 -2.50 -3.54 erosion option was used, the analysis continued beyond the 
complete collapse of the shell structures. 

Figure 7 shows the normalized pressure for the spheri-
cal steel shell with the initial inner radius 1 m and the wall 
thickness 2 mm. The applied internal pressure was reduced 

~ Springer 



318 Multiscale and Multidisciplinary Modeling, Experiments and Design (2020) 3:313-336 

4 ,-----,------,------.---,------,----, 
Average (Radlal dlstance=2m, Dt=Sms) --

3 

0 
a.. 2 
ii: 

1 

o~------------~-----~ 
0 0.01 0.02 0.03 0.04 0.05 0.06 

Time (s) 

Fig. 7 Normalized pressure time-history of a spherical steel shell with 
inner radius I m, thickness 2 mm and Dt = Smsec at 2 m of radial 
distance 
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Fig. 8 Comparison of the normalized pressure time-histoies for four 
different reduction rates of internal pressure as shown in Fig. 6 for 
spherical steel shell with inner radius 1 m, thickness 2 mm at 2 m of 
radial distance 

linearly to zero with Dt = 5 ms. The pressure was normalized 
with respect to the initial external pressure in the surrounding 
water and the pressure shows an average of pressure probes 
which are located at the same radial distance. The pressure 
remained relatively the same until around 7 ms and the pres
sure decreased for a while, which was followed by almost 
a constant pressure as the shell collapsed with moderate 
amounts until around 23 ms. As the collapse continued fur
ther, the pressure increased in the exponential curve with the 
maximum pressure just before 40 ms. The peak pressure was 
approximately 2.2 times the initial water pressure. Before 
reaching the peak pressure, some elements were deleted with 
the erosion option. The collapsed shell at the peak of the pres
sure shows some deleted elements in Fig. 7. Once the peak 
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Shell deformation at peak 

pressure of Dt=O.lms 

Shell deformation at peak 
pressure of Dt=lOms 

Shell deformation at peak 

pressure of Dt=Sms 

Shell deformation at peak 
pressure of Dt=lSms 

Fig. 9 Comparison of collapsed shapes of the spherical steel shell with 
inner radius I m and thickness 2 mm for three different reduction rates 
when the pressure at gage PA2 reached the maximum 

pressure reached, the pressure also decreased in the negative 
exponential curve shape. 

Figure 8 compares the pressure time-histories for four dif
ferent reduction rates of the internal pressure applied to the 
same steel shell as discussed above. Figure 9 shows the col
lapsed shapes of the spherical steel shell with inner radius 1 m 
and thickness 2 mm for three different reduction rates when 
the pressure reached the maximum value. The pressure plots 
in Fig. 8 clearly show the delay of the buckling as the reduc
tion rate of the applied internal pressure becomes slower, 
as expected. The peak pressure also occurred later with the 
slower reduction rate of the internal pressure. However, the 
peak pressure was higher as the reduction rate of the internal 
pressure became slower. This was unexpected initially. The 
faster collapse of the spherical shell structure was expected 
to result in greater pressure. However, as shown later, other 
shells also showed that there was an optimal buckling speed 
to result in the greatest shock pressure radiated from the col
lapsing shell. 

A spherical aluminum shell was studied next. The nor
malized pressure time-history was plotted in Fig. 10 for the 
spherical aluminum shell with inner radius 1 m and thickness 
2 mm. The general trend of the pressure time-history was 
similar between the spherical aluminum and steel shells. 

Figure 11 shows comparison of normalized pressure time
history between spherical steel shell and spherical aluminum 
shell with 5 ms of reduction rates. As expected, the peak 
pressure of spherical aluminum shell was higher than one of 
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Fig. 10 Normalized pressure time-history of spherical aluminum shell 
with inner radius 1 m and thickne ss 2 mm for different reduction rates 
of applied internal pressure at 2 m of radial distance 
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Fig. 11 Comparison of Normali zed_ pressure time-history between 
spherical steel shell and spherical aluminum shell with 5 ms of reduction 
rates 

spherical steel shell and occurred earlier. This result shows 
that strength and stiffness of shell affect pressure character 
resulted from implosion. 

4 Cylindrical shells 

4.1 Buckling study 

The nominal cylindrical shell was 4 m long with the inner 
radius 1 m and thickness 20 mm. Table 6 lists all the geo
metric properties and various pressures of the nominal steel 
and aluminum cylindrical shells . Table 2 shows the mate
rial properties of the composite lamina which was used for 
the composite cylinder with the layup orientations [(± 85°), 
(±45°), (± 15°)]. All the cylindrical shells were assumed 

Table 6 Material and geometric properties of metallic cylindrical shells 

Material Steel Aluminum 

Radius, Ro I.Om I.Om 

Length , L 4.0m 4.0m 

Thickness , t 20mm 20mm 

Yield stre ss, <ry 350 MPa 276 MPa 

Critical buckling pressure , Per 4 .08MPa 1.36 MPa 

Circumferential wave number, n 4 4 

Pressure at yield of material, Py 7.0MPa 5.52 MPa 

External pressure, Po 6.1 MPa 6.1 MPa 

Initial internal pressure, P.n 6.0MPa 6.0MPa 

to have rigid end plates such that only the side wall would 
buckle and collapse. Because there was no theoretical solu
tion to the buckling pressure of the cylindrical shell with 
rigid end plates, the finite element analysis was conducted to 
determine the critical pressure for buckling. 

The analytical solution for a cylindrical metallic shell with 
simply supported edges was given as below (Windenburg and 
Trilling 1934 ): 

Eta 4 

Per = -R- (-112_ +_0-.5-a-2--- , )_{_11_2 -+-a-2)~2 

£ ( I )J (11
2 + a2 

- 1)2 
+ 12 (1 - 112) R 112 + 0.5a2 - I ' (5) 

where E is the elastic modulus, R is the radius, t is the 
thickness, vis Poisson's ratio, n is the circumferential wave 
number, and a is the nondimensional parameter related to the 
ratio of the radius R to the length L of the cylinder as defined 
below: 

rrR 
a=T · (6) 

Figure 12 shows the critical buckling pressure of the 
simply supported steel and aluminum cylinders with the nom
inal dimensions for different circumferential wave numbers. 
Those buckling pressures were computed using Eq. (5). The 
results indicated that the lowest critical buckling pressure 
occurred with n equal to 4. Therefore, the buckling pressure 
of the cylindrical shells with simply supported edges was 
compared to the same cylinders with rigid end plates, which 
represents clamped edged. Table 7 shows the comparison 
of the critical buckling pressures of the steel and aluminum 
cylinders with simply supported and clamped edges. The 
solutions for the former boundary condition was computed 
using Eq. (5), while the solutions for the latter boundary con
dition were computed using the finite element analysis. The 
steel cylinder had an increase in the critical buckling pres
sure by around 50% as the boundary condition changed from 
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Fig. 12 Buckling pressure of steel and aluminum cylinders with simply 
supported edges 

Table 7 Comparisons of critical buckling pressure for two different 
boundary conditions 

Steel Aluminum 

LS-DYNA Theoretical LS-DYNA Theoretical 
(cylinder solution (cylinder solution 
with rigid (simply with rigid (simply 
lids) supported lids) supported 

cylinder) cylinder) 

Per 4.08 MPa 2.77MPa 1.36 MPa 1.17 MPa 

n 4 4 4 4 

the simply supported to clamped edges. On the other hand, 
the aluminum cylinder showed about 15% increase with the 
change of the edge condition. Furthermore, the ratio of the 
critical buckling pressure of the steel cylinder to the alu
minum cylinder was greater for the clamped edges than for 
the simply supported edges. The former had the ratio of 3 
and the latter had the ratio of 2.4. The elastic modulus of 
the steel is about 3 times greater than that of the aluminum. 
Therefore, the ratio of the buckling pressure of the clamped 
steel and aluminum cylinders was the same as the ratio of 
elastic modulus. 

The buckling pressure of the composite cylinder of the 
same geometric dimensions with clamped ends was com
puted using the finite element analysis. The critical buckling 
pressure was 0.63 MPa. This value was much lower than 
those of the steel and aluminum cylinders. 

The previous buckling study was for the static buckling. 
To investigate the dynamic buckling of the cylindrical shells, 
they were subjected to both external and internal pressure ini
tially using the external loading option. The external pressure 
remained the same, while the internal pressure was reduced 
in terms of time as sketched in Fig. 6. As the reduction rate 
of the internal pressure was varied, the buckling mode also 
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Dt=0.lms Dt=l.0ms 

Dt=S.0ms Dt=lO.0ms 

Dt=15.0ms Dt=20.0ms 

Fig. 13 Buckling shapes of steel cylinder as the internal pressure 
decreased in different rates without FSI 

changed. Figure 13 shows the cross sections atthe mid-length 
of the steel cylinder as the reduction rate of internal pressure 
was varied. When the internal pressure was reduced very 
quickly (Dt = 0.1 ms), the buckling mode was n = 6, i.e., 
wave number of six. When Dt = 1.0 ms or 5.0 ms, the mode 
shape was changed to n = 5. As the reduction rate was further 
decreased, the mode shape became n = 4. In other words, the 
buckled mode shape became the same as the static bucked 
mode shape as the internal pressure reduced slowly. 

Because the reduction rate of the internal pressure controls 
the speed of the buckling, the mass of the cylinder was varied 
to determine whether the change in mass had similar effect 
like the change in the internal pressure. As a result, the mass 
density of the steel cylinder was varied arbitrarily up to five 
times of its original density. The change in the density slowed 
the buckling but did not change the mode shapes as shown 
in Fig. 14. All the cases showed the buckling mode of n = 
6. Thus, the change in the mass density did not produce the 
same effect as the control of internal pressure. 

Figure 15 shows the average velocity in the radial direction 
as the mass density was varied up to five times of the orig-
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Po = 7850kg /m3 p = 2po 

Fig. 14 Buckling shapes of steel cylinder with different assumed den
sities without FSI 
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Fig. 1 S Average radial velocity of the mid-section of the steel cylinder 
with arbitrarily assumed mass densities 

inal density. The average velocity was computed using the 
nodal velocities along the circumference at the mid-section 
of the cylinder. When the cylinder had the original mass, the 
velocity was very small until around 15 ms, and the velocity 

Po = 2700kg /m3 

Fig. 16 Cross-sectional shapes of aluminum cylinders with different 
mass densities without FSI 

increased very rapidly until it reached the maximum value 
which was followed steep drop. Before reaching the max
imum average velocity, there was a very small temporary 
decrease. The maximum velocity occurred at around 22 ms. 
As the mass density increased, the steep increase of the veloc
ity was further delayed with a lower maximum velocity. Thus, 
the mass density influenced the radial velocity of the shell 
motion. Even though the increase of the mass density delayed 
the buckling speed like the controlling the internal pressure, 
the former did not affect the buckling mode shape, while the 
latter did. 

The aluminum cylinder showed no major change in its 
buckling shape as its density was arbitrarily varied up to five 
times of the original value. Figure 16 shows the buckling 
shapes of five different mass densities of the aluminum cylin
der. Figure 17 also shows the buckling shapes of the carbon 
fiber composite cylinder as the density was arbitrarily varied 
up to five times. Some change in the QUckling shapes was 
observed with different densities of the composite. 

The maximum average radial velocity of the mid-section 
of every cylinder was plotted in Fig. 18 for the steel, alu-
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Po = 1304kg /m3 
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Fig. 17 Cross-sectional shapes of composite cylinders with different 
mass densities without FSI 
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Fig. 18 Plot of maximum average radial velocity at the mid-section of 
steel, aluminum and composite cylinders as the mass density increased 

minum and composite cylinders as their original mass density 
was arbitrarily increased. Because the composite had the low
est density among the three, its maximum radial velocity was 
the greatest than the other cylinders. As seen in the figure, 

'fl Springer 
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Fig. 19 Sketch of the computer model of a cylindrical shell for implo
sion study 
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Fig. 20 Gage locations for the implosion model of a cylindrical shell 

the decrease in the maximum velocity was inversely propor
tional to the one-half power of the density ratio .E.. where 

Po 
subscript 'o' indicates the original density. As the density 
increased fourfold, the maximum collapse speed decreased 
by half. 

4.2 Implosion of steel cylinders 

Once the buckling characteristics of the cylindrical shells 
were examined, the next study was undertaken for the implo
sion of the cylindrical shells. Figure 19 describes the problem 
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Table 8 Locations of numerical probes outside the cylindrical shell 

No. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 
23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 
43 

44 

Probe Radial 

PA2 
PB2 

PC2 
PD2 

PE2 

PF2 

PG2 

PH2 

PI2 
PJ2 
PK2 
PA3 
PB3 
PC3 
PD3 
PE3 

PF3 

PG3 

PH3 

PB 
PJ3 

PK3 
PA4 
PB4 
PC4 

PD4 

PE4 

PF4 

PG4 

PH4 

PI4 
PJ4 
PK4 
PAS 
PBS 
PCS 
PDS 
PES 

PFS 
PGS 
PHS 
PIS 

PJS 
PKS 

distance (m) 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

2.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

3.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

4.00 

5.00 

5.00 

5.00 

5.00 

5.00 

5.00 

5.00 

5.00 

5.00 

5.00 

5.00 

X (m) Y (m) Z (m) 

0.00 

1.41 

2.00 

1.41 

0.00 

0.00 

1.41 

2.00 

1.41 

0.00 

2.00 

0.00 

2.12 

3.00 

2.12 

0.00 

0.00 

2.12 

3.00 

2.12 

0.00 

3.00 

0.00 

2.83 

4.00 

2.83 

0.00 

0.00 

2.83 

4.00 

2.83 

0.00 

4.00 

0.00 

3.54 

5.00 

3.54 

0.00 

0.00 

3.54 

5.00 

3.54 

0.00 

5.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.00 

0.00 

0.00 

0.00 

0.00 

0.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.00 

2.00 

1.41 

0.00 

- 1.41 

- 2.00 

2.00 

1.41 

0.00 

-1.41 

-2.00 

0.00 

3.00 

2.12 

0.00 

- 2.12 

- 3.00 

3.00 

2.12 

0.00 

- 2.12 

- 3.00 

0.00 

4.00 

2.83 

0.00 

- 2.83 

-4.00 

4.00 

2.83 

0.00 

-2.83 

-4.00 

0.00 

5.00 

3.54 

0.00 

- 3.54 

- 5.00 

5.00 

3.54 

0.00 

- 3.54 

-5.00 

0.00 

Table 9 Locations of numerical probe in and near the cylindrical shell 

No. 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

0 

Probe Radial distance (m) X (m) 

Pl 

Pll 

Pl2 

Pl3 

P14 

PIS 
Pl6 

Pl7 

PIS 
Pl9 

P20 

0.01 

0.14 

0.21 

0.28 

0.42 

0.57 

0.71 

0.85 

0.99 

1.13 

1.27 

0.01 

0.10 

0.15 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

Y (m) Z (m) 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

P21 1.41 1.00 0.00 
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Fig. 21 Normalized pressure time-history of a cylindrical steel shell 
with inner radius I m, thickness 20 mm and Dt = 5msec 

domain which consists of a cylindrical shell with air inside 
and water outside of the shell. Non-reflective boundary con
ditions were applied to the boundary of the water medium. 
A half of the whole domain was modelled with symmetry 
for computational efficiency. The cylindrical shell was also 
modelled as a half cylinder. This suggests that any odd wave 
number of buckling mode shape cannot be represented with 
the symmetric model. 

Figure 20 illustrates the gage locations, where pressure 
time-histories were obtained. Tables 8 and 9 provided exact 
coordinate values of the gage locations which are located 
inside and outside of the cylinder. The external pressure in 
the water was set 1.5 times of the critical static buckling pres
sure of the cylinder. The internal pressure was also applied 
initially and decreased linearly as sketched in Fig. 6. 

Figure 21 shows the pressure time-history of the nominal 
steel cylinder which is the average pressure of the five gages 
from #PA2 to #PE2 at the same radial distance. The pressure 
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Dt=0.lms Dt=Sms 

Dt=l0ms Dt=lSms 

Fig. 22 Buckled mode shapes of steel cylinder under water as the inetr
nal pressure decreased in different rates with FSI 

was normalized with respect to the initial water pressure, and 
the internally applied pressure was reduced with Dt = 5 ms. 

The pressure remained nearly constant until 20 ms. Then, 
the pressure decreased gradually until 30 ms and increased 
gradually until around 40 ms. The buckling mode shape at 
30 ms shows n = 4. After 40 ms, the pressure increased dras
tically with some oscillation with the maximum pressure at 
around 43 ms. The maximum pressure was approximately 
3.0 times greater than the initial external water pressure. 
After the maximum pressure, it dropped very quickly. At 
50 ms, the pressure returned to the initial pressure with some 
oscillations. The buckled shape of the steel cylinder was also 
shown in Fig. 22 . The cylindrical shell model did not consider 
the erosion option to delete elements. Figure 21 also shows 
the first self-contact of the buckled steel cylinder because of 
buckling. 

The reduction rate of the internal pressure was also var
ied. Then, the buckling mode shape of the steel cylinder was 
varied with the change in the reduction rate of the internal 
pressure as sketched in Fig. 22 . Figures 13 and 22 are differ
ent in two aspects. Figure 13 used the whole cylinder model, 
while Fig. 22 was based on a half cylinder. More impor
tantly, the results in Fig. 13 were obtained without FSI. In 
other words, a constant external pressure was applied to the 
structure directly and remained all the time. On the contrary, 
the analysis for Fig. 22 included the FSI such that the exter
nal pressure could vary with time as the pressure in the fluid 
medium. Because of the symmetry model, the odd number 
of mode shape could not be represented. At any rate of Dt, 
the buckling with FSI also showed either the mode shape 
n = 2 or n = 4 depending on the rate change in the inter-
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nal pressure. Figure 22 shows the full cylinder with mirror 
images of the half cylinder. The line in the cylinder indicates 
the symmetric line of the cylinder. 

Figure 23 shows the pressure time-history of the steel 
cylinder at different radial distance when Dt = 0.1 ms, i.e., 
a very quick reduction, while Fig. 24 shows the same with 
Dt = 15 ms, a much slower reduction of internal pressure. 
When the pressure was compared for all different Dt rates, 
an interesting observation was made. As seen in Fig. 25 , the 
reduction rate with Dt = 5 ms resulted in the largest peak 
pressure than any other rate. In other words, the quickest 
reduction with Dt = 0.1 ms did not necessarily produce the 
larger pressure than that withDt = 5 ms. In addition, the cases 
with Dt = 0.1 ms and 10 ms produced almost the same peak 
pressures. This observation suggested there was an optimal 
collapse condition for the cylindrical steel shell to generate 
the largest pressure during its implosion process. To better 
understand the result, the radial velocity at the mid-section 
along the cylinder was plotted in Fig. 26 . This was the aver
age radial velocity along the circumference of the lengthwise 
mid-section of the cylindrical shell. The radial velocity was 
very small initially for all the cases, but the case with Dt 
= 5 ms showed that the radial velocity increased faster at an 
earlier time, and decreased faster at an earlier time than other 
cases. The maximum velocity was close for the cases Dt = 
0.1, 5, and 10 ms, while that was the largest at Dt = 15 ms. 

The maximum areal shock energy density rate was exam
ined in Fig. 27 . The areal energy density rate was computed 
from the product of the pressure and fluid velocity. The plot 
was made at various gage locations around the circumference 
at the same radial distance as Dt was varied. From the time
history of the areal shock energy density rate, their maximum 
values were selected for each location for every Dt case and 
they were plotted in Fig. 27 . The plot shows that the max
imum areal shock energy density rate was the largest and 
quite uniform around the circumference with Dt = 5 ms, and 
this was consistent with the peak pressure which was also the 
largest at Dt = 5 ms. 

Instead of controlling the internal pressure, the mass den
sity of the steel was arbitrarily varied as before. It was 
increased to three and five times of the original density, 
respectively. The change in the density also influences the 
buckling speed like the control of the internal pressure. Like 
the change in the internal pressure reduction rate, the change 
in the mass density also affected the buckled shape of the 
cross section. Figure 28 shows the buckled cross-sectional 
shapes of the steel cylinder with three different mass densi
ties. The buckled cross-section was quite dependent on the 
mass density, i.e., the collapsing speed of the shell. In other 
words, a change in the collapsing speed of the cylindrical 
shell with FSI influenced the buckling mode shape. Compar
ing Figs. 14, 15, 16, 17, 18, 19, 20 , 21 , 22, 23 , 24 , 25 , 26, 
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Fig. 23 Pressure time-histories at different radial distance of the steel cylinder with Dt = 0.1 ms 

27, 28 clearly shows the effect of FSI in association with the 
collapsing speed on the buckled mode shape. 

The normalized pressure time-history was compared in 
Fig. 29 for three different densities of the steel cylinder. The 
result showed that the original density gave the larger peak 
pressure than higher densities. 

The average radial velocity of the mid-section of the steel 
cylinder was plotted in Fig. 30 for three different densities. 
The original density gave a velocity increase at much earlier 
time and the magnitude of the peak value was also higher. 

The maximum areal shock energy density rate was also 
plotted for three different densities of the steel cylinder at the 
radial distance 2 m along different orientations along the cir
cumference in Fig. 31. The maximum areal shock energy 
density rate was the largest for the original density case, 
and the smallest for the threefold density case. The fivefold 
density case gave the maximum areal shock energy density 
rate between the other two cases. Figures 27 and 31 have a 
common feature such that the largest maximum areal shock 

energy density rate was relatively uniform along the circum
ferential direction. 

4.3 Implosion of aluminum cylinders 

Aluminum cylinders were studied next. The geometry and 
the pressure loading were the same as those for both alu
minum and steel cylinders, while their material properties 
were different. The first study was the change in the inter
nal pressure of the aluminum cylinder as studied for the steel 
cylinder. The internal pressure was reduced in different rates, 
while the cylinder was subjected to water pressure on its out
side. The buckled cross section is compared in Fig. 32 for 
four different rates of Dt. The results showed that the ini
tially buckled shape was very dependent on the reduction 
rate of the internal pressure. 

Figure 33 shows the normalized pressure time-history 
with Dt = 5 ms. Along the pressure plot, the buckled shape 
of the aluminum cylinder was also provided at some critical 
times. Until around 7 ms, the pressure was almost constant 
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Fig. 24 Pressure time-histories at different radial distance of the steel cylinder with Dt = 15 ms 
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Fig. 25 Comparison of pressure time-hostories of steel cylinder for dif
ferent reduction rates of internal pressure 

and started decrease quickly until 12 ms. Since then, pressure 
gradually increased until around 25 ms. The cross section at 
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Fig. 26 Plot of averge radial velocity at the mid-section of steel cylinder 
with different reduction rates of the internal pressure 

the mid-length clearly showed the buckled mode at 20 ms. 
The peak pressure was 2.9 times greater than the initial water 
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Fig. 27 Plot of areal wave energy density rate at diiferent gage locations 
along the circumferential direction for different reduction rates of the 
internal pressure of steel cylinder 

pressure. After the first peak, the pressure dropped almost 
instantly, and then it reached the second peak at 33 ms. Then, 
the pressure dropped quickly and remained at the initial pres
sure level. The buckled cross section is also shown at each 
peak pressure. Even though the aluminum cylinder showed 
a major collapse at the first peak, it collapsed completely at 
the second peak except for the rigid end plate. 

The pressure time-history for Dt = 0.1 ms shows a very 
high first peak followed by the secondary peak as shown 
in Fig. 34. The first peak pressure was about 2.5 times of 
the initial water pressure, which was even greater than that 
from the collapse of the steel cylinder. The second peak was 
about 2.5 times of the initial water pressure. Figure 35 shows 
all the pressure plots for different rates of internal pressure 
reduction. When comparing all the cases, the case with Dt = 
5 ms resulted in the largest peak pressure. 

The average radial velocity at the mid-section of the alu
minum cylinder was plotted in Fig. 36 for different Dt rates. 
The maximum peak velocity occurred for Dt = 10 ms and the 
minimum peak velocity was for Dt = 15 ms. The case with 
Dt = 0.1 ms and Dt = 5 ms gave almost the same of peak 
velocity. Comparing Figs. 35 and 36 suggested that there was 
no clear correlation between the maximum peak pressure and 
the maximum peak velocity. 

When the pressure curves were compared between the 
aluminum and steel cylinders, the aluminum cylinder pro
duced the peak pressure at earlier times, because it collapsed 
quicker due to lower stiffness and strength than the steel 

t=25ms t=70ms 

Density=7850kg/m 3 

t=40ms t=70ms 

Density=23550kg/m 3 

t=45ms t=70ms 

Density=39250kg/m 3 

Fig, 28 Buckled shapes of steel cylinders with three diferent assmed 
densities with FSI 
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Fig. 29 Average pressure time-history for steel cylinder with different 
mass densities 

cylinder. Another difference was the number of major peaks. 
The implosion of steel cylinder produced a single major pres-
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cylinder with three different assumed densities 
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Fig. 31 Plot of areal wave energy density rate at diiferent gage locations 
along the circumferential direction for different mass densities of steel 
cylinder 

sure peak, while the aluminum cylinder resulted in two major 
peaks of comparable magnitude. 

The density of the aluminum cylinder was arbitrarily 
changed to find its effect on the bucked shape and the resultant 
pressure wave. The cylinder was subjected to initial water 
pressure on its outer surface and air pressure on its inner 
surface without any additional internal pressure control. Fig
ure 37 shows the cross section of the buckled aluminum 
cylinder with three different assumed mass densities. One 
was the original mass density, and the other two were three
fold and fivefold densities. As the density was increased, 
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Fig. 32 Buckled mode shapes of aluminum cylinder under water as the 
inetmal pressure decreased in different rates with FSI 
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Fig. 33 Normalized pressure time-history of a cylindrical aluminum 
shell with inner radius I m, thickness 20 mm and Dt = Smsec 

the Fig. 37 shows that the buckled cross section varied. 
For example, the cross-sectional shape of the original den
sity 2700 kg/m3 was different from the buckled shapes with 
higher mass densities. 

The average of normalized pressure time-history at the 
radial distance 2 m was plotted in Fig. 38 for the aluminum 
cylinder with the mass density varied. The magnitude of the 
peak pressure occurred with the highest density case among 
all three cases even though it occurred at a latest time. 

Like the control of the internal pressure, the original den
sity case showed two major peaks in the pressure time-history 
plot. The control of the internal pressure gave two maj~r 
peaks one after the other, while the change in the density 
gave the second peak much later after the first peak. The 
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Fig. 35 Comparison of pressure time-histories of aluminum cylinder 
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Fig. 36 Average nodal radial velocity at the mid-section of the alu
minum cylinder with different Dt rates 

second major peak was about two-thirds of the first major 
peak. However, the relative magnitude of the second peak to 
the first peak became smaller as the density increased. For 
the fivefold mass density case, the second major peak was 
much smaller than the first main peak. The results suggested 
that the second peak was related to the mass density of the 
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Fig. 37 Buckled shapes of aluminum cylinder with three assumed mass 
densities 
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Fig. 38 Average pressure time-history at the radial distance 2 m for 
aluminum cylinder with different mass densities 

material. If the mass density was greater than a certain value, 
the second peak became negligible. That also confirmed that 
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Fig. 39 Average nodal radial velocity at the mid-section of the alu
minum cylinder with three different assumed densities 

---Density=2700kg/mA3 - • - Density=8100kg/mA3 

- &- Density=13500kg/mA3 

PA2 
(Pa) 2.0E+07 

, 
' . 

PE2 

Fig. 40 Peak pressure of aluminum cylinder at 2 m with different mass 
densities 

the steel cylinder showed a single major peak because of a 
higher mass density. 

The average radial velocity at the mid-length of the alu
minum cylinder is shown in Fig. 39 for three different 
assumed densities. The original density of the aluminum had 
the highest velocity with a rise at a shorter time period, while 
the fivefold density had the lowest velocity and a longer 
period. There was no clear correlation between the higher 
peak pressure and the radial velocity of the mid-section of 
the cylindrical shell. 

The variation of the maximum pressure at the radial dis
tance of 2 m was plotted for three different densities of the 
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Fig. 41 Maximum areal shock energy density rate of aluminum cylinder 
at 2 m with different mass densities 

aluminum cylinder in Fig. 40. The case of the original density 
showed a quite uniform pressure distribution around the cir
cumference of the cylinder. On the other hand, the other two 
cases gave higher pressure at the gage locations #PA2 through 
#PE2. These results are believed to be linked to the buckled 
shaped as shown in Fig. 37. The last two cases showed the 
same buckled shape, while the original density case yielded 
a different shape of buckling. 

The maximum areal shock energy density rate was quite 
uniform around the circumference of the cylinder regardless 
of the assumed density of the aluminum cylinder, as shown 
in Fig. 41. The maximum areal shock energy density rate was 
greater for the threefold density and the least for the fivefold 
density. This could result from the fluid velocity. Figure 42 
shows the fluid radial velocity time-history. The plot shows 
the highest velocity for the original density and the lowest 
velocity for the fivefold density. 

4.4 Implosion of composite cylinders 

The carbon composite cylinder was subjected to the same 
external water pressure as the previous metallic cylinders. 
As before, the study of the internal pressure reduction was 
conducted first. Figure43 compares the buckled cross section 
of the composite cylinder as the internal pressure was reduced 
in different rates. The buckling mode was n = 12 for Dt = 
0.1 ms, a very quick decrease in the internal pressure. Other 
cases had the bucking mode n = 8 as the Dt increased. 
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Fig. 43 Buckled mode shapes of composite cylinder under water as the 
inetmal pressure decreased in different rates with FSI 

The pressure time-history resulting from the implosion 
of the composite cylinder was plotted in Fig. 44 when Dt 
= 5.0 ms. The collapsing cross-sectional views were also 
provided in the plot. The pressure curve for the composite 
cylinder was quite different from those for the metallic cylin
ders. The pressure showed a large oscillation during the very 
early buckling stage, and the pressure increased gradually to 
the peak pressure. There was neither a long duration of almost 
constant pressure nor a sudden increase of the pressure to the 
peak values. The maximum peak pressure occurred earlier 
than the steel cylinder but later than the aluminum cylinder. 

Figure 45 shows the all pressure plots for different reduc
tion rates of the internal pressure. The case with Dt = 0. l ms 
had the smallest peak pressure, while the case with Dt = 
5.0 ms resulted in the largest peak pressure. The other two 
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Fig. 44 Normalized pressure time-history of a composite cylinder with 
inner radius I m, thickness 20 mm and Dt = Smsec 
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Fig. 45 Comparison of pressure time-histories of composite cylinder 
with different Dt rates 

cases were very close to the latter case. In addition, the case 
with Dt = 0. l ms gave a very oscillatory pressure from the 
beginning to a quite later time. 

The average nodal radial velocity at the mid-section of the 
composite cylinder was compared in Fig. 46 for different Dt 
rates. In this case, the magnitude of the peak radial velocity 
agreed with the magnitude of the peak pressure qualitatively. 
In other words, Dt = 5.0 ms gave the largest peak pressure 
as well as the largest peak radial velocity, while Dt = 0. l ms 
gave the smallest peak pressure as well as the smallest peak 
radial velocity. The other two cases were also similar. The 
composite cylinder was the only case showing such a cor
relation between the peak pressure and peak radial velocity. 
The metallic cylinders did not show such a correlation. 

As the second parametric study, the mass density of the 
carbon composite cylinder was also varied to three and five 
times of the original density. Figure 47 compares the buck
led cross sections with different mass densities. The buckled 
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Fig. 46 Average nodal radial velocity at the mid-section of the compos 
ite cylinder with different Dt rates 

cross sections were same though the original density to five
fold density and the wave number was 12. 

The pressure time-history of the composite cylinder with 
the original mass density is shown in Fig. 48 . The pressure 
was the average of five gages located at 2 m away from the 
center of the cylinder. The pressure profile of the compos
ite cylinder was quite different from those of the aluminum 
and steel cylinders. Both metallic cylinders resulted relatively 
constant pressure with small variations until very close to the 
peak pressures except for the initial sudden dip at very early 
times. Such a long period of small changes in the pressure 
with sudden peaks occurred for all the parametric studies 
regardless of the change in the reduction rate of the applied 
internal pressure or a change in the mass density of both 
metallic cylinders. On the other hand, the composite cylinder 
showed a continuous variation of pressure until the peak pres
sure. The peak pressure was reached more gradually rather 
than suddenly. This suggests that the buckling and collapse 
of the composite cylinder was more gradual than the metallic 
cylinders until the complete collapse. The failure progress in 
polymer composites was generally very gradual rather than 
very sudden. Such a failure behavior resulted in very different 
implosion pressure behavior as shown in Fig. 48 . 

The peak pressure was about 1.8 of the initial water pres
sure, which was lower than those of the metallic cylinders. 
The gradual increase reduced the peak pressure. However, the 
integration of pressure over time, i.e., pressure impulse, was 
much greater for the composite cylinder because of a longer 
duration of gradual increase of the pressure. As the density 
was increased for the composite cylinder, the peak pressure 
decreased. When the mass density was assumed fivefold, 
the peak pressure was about 1.7 times of the initial pres
sure. However, the general pressure time-history was similar 
regardless of the mass density except that the higher density 
resulted in a longer duration of the pressure increase to the 
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Fig. 48 Normalize pressure time-history of composite cylinder with the 
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peak value as seen in Fig. 49 . Therefore, even though the 
peak pressure was lower for the higher mass case, the pres-
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sure impulse was relatively the same as that of the original 
mass . 

The average of normalized pressure time-history at the 
radial distance 2 m was plotted in Fig . 50 for the composite 
cylinder with the mass density varied. 

Figure 51 compares the average radial velocities of the 
composite cylinders at the mid-section for three different 
mass densities. The original density case had the highest 
peak velocity than the other cases.' The threefold and five
fold density cases were very similar except that the velocity 
curve was slightly delayed in time for the fivefold case than 
the threefold case . 

The maximum shock energy areal density rate was plotted 
in Fig. 52. The maximum shock energy areal density rate was 
the largest for the original mass case and decreased as the 
mass density increased. 
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Fig. 52 Maximum shock energy areal density rate of composite cylinder 
at 2 m with different mass densities 

4.5 Implosion of cylinders with initial defect 

Because cylinders made of different materials showed dif
ferent buckling modes, they could not be compared on the 
same baseline. As a result, an initial defect was applied to all 
cylinders so that their buckling mode shapes could be iden
tical. To that end, an imperfection of the wall thickness was 
introduced along the longitudinal direction of the cylinders 
as sketched in Fig. 53. The defect was introduced as a thin
ner wall thickness because this was easier to model rather 
than the change in the cross-sectional geometry. The defect 
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Thickness: 10mm 

Fig. 53 A half cylinder model with initial defect along the longitudinal 
direction 

was located at the midway of the circumference such that the 
major buckled mode would be n = 2. 

First, the dynamic buckling analysis of the cylinders was 
conducted to check the buckling mode. Figure 54 compares 
the buckled mode shapes of three different cylinders made 
of steel, aluminum, and composite materials, respectively, 
under the same pressure loading condition, but not with 
FSI. The buckled cross-sectional shapes were very close one 
another. 

Similarly, Fig. 55 shows the buckled and collapsed 
cylinders with FSI for the implosion process. The figure 
shows both early time and late time of the buckling. Even 
though the initial defect was introduced, the buckled cross
sectional shapes were different, especially for the composite 
cylinders. 

The resultant pressure during the implosion process of the 
three cylinders with the same defect was plotted in Fig. 56. 
In this case, the aluminum cylinder yielded the greatest peak 
pressure followed by the composite cylinder. The steel cylin
der produced the least peak pressure. The composite cylinder 
showed a more gradual pressure build-up until the first peak 
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Cylindrical steel shell with defect 

t=13ms t=30ms 

Cylindrical aluminum shell with defect 

t=12ms t=30ms 

Cylindrical composite shell with defect 

Fig. 55 Dynamically buckled mode shapes for three different cylinders 
with initial defect with FSI 

pressure which occurred earlier than other cylinders. The 
aluminum cylinder showed two major peaks one after the 
other. However, in this case, the second peak was the maxi
mum pressure, while the previous case showed the maximum 
pressure at the first peak as seen in Fig. 34. Such a difference 
must be caused by the buckled/collapsed shapes of the cross 

(c) 
Fig. 54 Dynamically buckled mode shapes for a steel, b aluminum and c composite cylinders without FSI 
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sections, because the introduction of a defect changed those 
shapes. 

Finally, Fig. 57 compares the average nodal velocity of 
the mid-section of each cylinder during the implosion pro
cess. The peak velocity and its timing agreed with the peak 
pressures in Fig. 56 at least qualitatively. This result sug
gested that when the buckled/collapsed shapes were close, 
the collapsing speed influenced the peak pressure and timing 
resulting from the implosion. However, when the collapsing 
shapes were different, there was no such a direct correlation 
between the collapsing speed of the cross section and the 
resultant peak pressure. 

5 Conclusions 

A series of numerical studies were conducted for implosion 
of spherical and cylindrical shells. First, static buckling of the 
shell structures was conducted followed by their dynamic 
buckling. Then, the implosion was studied using the FSI 
between the shell structures and both internal and external 
fluids. The external fluid was water at a given depth, while 
the internal fluid was air at the atmospheric pressure initially. 

The finally collapsed shape of the spherical shell was very 
complex because the whole surface of the spherical shell 
should be shrunken into a much smaller space. There were 
many wrinkles and self-contacts of the collapsed surface. 
Therefore, the analysis program stopped because of such 
a complex bucked shape. To overcome this problem, the 
element erosion option should be considered. Then, some 
deleted elements resulting from too much straining helped 
the program continue beyond the complete collapse of the 
spherical shell. On the other hand, the element erosion option 
was not necessary for the cylindrical shells. 

Under the same external pressure, the implosion of the alu
minum spherical shell induced about I. I times higher peak 
pressure than the steel shell of the same geometry. The peak 
pressure also occurred at around 40 ms for the steel shell and 
around 30 ms for the aluminum shell. 

Buckling mode shapes of cylindrical shells were varied 
depending on the reduction rate of the internal pressure. This 
statement was true whether there was FSI or not. When cylin
ders were bucked quickly, the mode shape was n = 6, and 
the buckling was much slowed, the buckling mode changed 
to n = 4, which was the static buckling mode of the steel 
cylinder. 

The buckled mode shapes without FSI were not the same 
as those with FSI. Without FSI, a change in the mass density 
did not affect the buckling mode of the steel and aluminum 
cylinder. Composite cylinder showed some small effects on 
the complex buckled shapes. With FSI, a change in the 
mass density of the steel changed the buckled mode shapes. 
Aluminum shell also showed some changes in the buckled 
shapes. In addition, the buckled mode shapes were very dif
ferent depending on the materials such as steel, aluminum, 
or laminated composite. 

All the numerical simulations showed that there was an 
optimal buckling condition during the implosion, which 
resulted in the largest peak of the resultant shock wave. 
In other words, the fastest dynamic buckling did not nec
essarily result in the largest peak pressure. The aluminum 
cylinder showed that the largest peak pressure occurred with 
the fastest buckling of the cylinder. 

With FSI, the steel cylinder showed one major peak in the 
pressure time-history during implosion, while the aluminum 
cylinder showed two major peaks. In some case, the two 
peaks had comparable magnitudes. The aluminum cylinder 
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collapsed completely atthe second major peak. As the density 
of the aluminum increased as a parametric study, the second 
peak became smaller. This suggested that the second peak is 
related to the mass densities of the cylinder. 

The shock pressure time-history due to the implosion of 
the composite cylinder was significantly different from those 
of metal cylinders. The pressure graph of the composite cylin
der showed more gradual and oscillatory behavior with much 
lower peak pressure as compared to the metallic cylinders of 
the same size. 

To comp,are three cylinders made of different materials 
with the same baseline, an initial defect was introduced to all 
cylinders to generate the same or close shapes of buckling 
modes. The study showed that the aluminum cylinder gave 
the largest peak pressure, while the steel cylinder gave the 
least peak pressure. The peak pressure of the composite cylin
der was between the two cases. The study showed that the 
peak pressure during implosion was related to the collaps
ing velocity if the buckling shapes were similar. However, 
different modes of buckling did not suggest such a direct 
correlation between the peak pressure and collapsing speed 
of the cylindrical shells. Then, the combination of the buck
led mode shapes and collapsing speed affected the resultant 
shock pressure. 
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