
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������������

�6�2�8�5�&�(�6���2�)���&�+�$�1�*�(���,�1���,�1�7�(�5�1�(�7

�3�5�2�7�2�&�2�/���*�(�2�/�2�&�$�7�,�2�1���'�$�7�$�%�$�6�(�6

�.�D�X�I�I�P�D�Q�����%�U�\�D�Q���-��

�0�R�Q�W�H�U�H�\�����&�$�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W������������������������

�7�K�L�V���S�X�E�O�L�F�D�W�L�R�Q���L�V���D���Z�R�U�N���R�I���W�K�H���8���6�����*�R�Y�H�U�Q�P�H�Q�W���D�V���G�H�I�L�Q�H�G���L�Q���7�L�W�O�H�����������8�Q�L�W�H�G

�6�W�D�W�H�V���&�R�G�H�����6�H�F�W�L�R�Q�������������&�R�S�\�U�L�J�K�W���S�U�R�W�H�F�W�L�R�Q���L�V���Q�R�W���D�Y�D�L�O�D�E�O�H���I�R�U���W�K�L�V���Z�R�U�N���L�Q���W�K�H

�8�Q�L�W�H�G���6�W�D�W�H�V��

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SOURCES OF CHANGE IN INTERNET PROTOCOL
GEOLOCATION DATABASES

by

Bryan J. Kauffman

September 2021

Thesis Advisor: Robert Beverly
Co-Advisor: Justin P. Rohrer
Second Reader: Thomas J. Krenc

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2021

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
SOURCES OF CHANGE IN INTERNET PROTOCOL GEOLOCATION
DATABASES

5. FUNDING NUMBERS

6. AUTHOR(S) Bryan J. Kauffman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10.SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11.SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13.ABSTRACT (maximum 200 words)

Commercial �,�3��geolocation databases provide a capability to associate IP addresses or prefixes��to a physical��
location. These services provide critical information for emergency services, commercial entities, and government
agencies. The accuracy of these databases can vary to a degree that degrades their utility to an unacceptable
level, and the algorithms that are making location determinations are typically proprietary. This study seeks to
identify patterns in, or otherwise characterize, the set of network prefixes that exhibit geolocation change between
weekly snapshots of a particular commercial geolocation database: MaxMind.
 We employ ground-truth correlations using active Internet measurements to characterize discernable patterns
of prefix movements in the database. By measuring round-trip times from known-location vantage points to
prefixes with location changes, and identifying the closest vantage point to the likely actual prefix location, we
categorize and correlate possible causes of location instability in MaxMind. We find that approximately 7.5% of
MaxMind prefix-location variance possibly results from geolocation granularity changes. Our methodology
demonstrates a scalable technique to use Internet measurements to characterize movement shown by geolocation
databases. Finally, we propose methodology enhancements for future employment.
 This study illuminates the efficacy of IP geolocation databases for intelligence community, DOD, academic,
and commercial use.

14.SUBJECT TERMS
Internet, geolocation, Internet protocol geolocation, IP geolocation, Internet measurement,
RIPE

15.NUMBER OF
PAGES

115

16.PRICE CODE

17.SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18.SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19.SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20.LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

SOURCES OF CHANGE IN INTERNET PROTOCOL
GEOLOCATION DATABASES

Bryan J. Kauffman
Lieutenant Commander, United States Navy

BS, The George Washington University, 2010

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2021

Approved by: Robert Beverly
 Advisor

 Justin P. Rohrer
 Co-Advisor

 Thomas J. Krenc
 Second Reader

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Commercial �, �3� �geolocation databases provide a capability to associate

IP addresses or prefixes to a physical location. These services provide critical

information for emergency services, commercial entities, and government

agencies. The accuracy of these databases can vary to a degree that degrades their

utility to an unacceptable level, and the algorithms that are making location

determinations are typically proprietary. This study seeks to identify patterns in, or

otherwise characterize, the set of network prefixes that exhibit geolocation change

between weekly snapshots of a particular commercial geolocation database: MaxMind.

We employ ground-truth correlations using active Internet measurements to

characterize discernable patterns of prefix movements in the database. By measuring

round-trip times from known-location vantage points to prefixes with location changes,

and identifying the closest vantage point to the likely actual prefix location, we categorize

and correlate possible causes of location instability in MaxMind. We find that

approximately 7.5% of MaxMind prefix-location variance possibly results from

geolocation granularity changes. Our methodology demonstrates a scalable technique to

use Internet measurements to characterize movement shown by geolocation databases.

Finally, we propose methodology enhancements for future employment.

This study illuminates the efficacy of IP geolocation databases for intelligence

community, DOD, academic, and commercial use.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1

1.1 Scope . 3

1.2 Summary of Contributions . 3

1.3 Thesis Organization . 4

2 Background 5

2.1 Constraint-Based Geolocation 5

2.2 Database Driven Geolocation 7

2.3 Previous Work Exploring Accuracy of Commercial Databases 12

3 Methodology 15

3.1 Overview . 15

3.2 Data Collection . 18

3.3 Limitations. 26

4 Results 29

4.1 Overall Observations . 29

4.2 Observations from a Single Pre�x. 33

4.3 Analysis of RTT Anomalies . 46

4.4 Evaluation of Granularity E�ects 51

5 Conclusions and Future Work 55

5.1 Findings and Contributions . 55

5.2 Further Development . 56

5.3 Future Research . 58

5.4 Conclusion. 58

Appendix: Data Collection Module Code 59

vii

A.1 Maxmind-data-clean.py . 59

A.2 Target-pre-screen.py . 62

A.3 Get-atlas-probes.py . 66

A.4 Best-probe-�nder.py . 68

A.5 Measurement-request.py . 73

A.6 Measurement-request-PARALLEL.py 76

A.7 Retrieve-Measurement-Results.py. 80

A.8 Retrieve-Measurement-Results-by-tag.py 83

A.9 Retrieve-Measurement-Results-NO-MEAS-FILE.py 87

List of References 93

Initial Distribution List 97

viii

List of Figures

Figure 2.1 Overview of constraint-based geolocation 6

Figure 3.1 Overview of possible pre�x locations with probe locations 16

Figure 3.2 Graphic showing result of ping RTT di�erences for two possible
pre�x locations . 17

Figure 3.3 Histogram of MaxMind pre�x sizes 20

Figure 3.4 Overall methodology �ow . 22

Figure 3.5 Data collection module �ow . 23

Figure 4.1 CDF of probe distances to MaxMind reported pre�x locations across
all data collection snapshots . 31

Figure 4.2 CDF of RTT percentage di�erence 33

Figure 4.3 Visualization of MaxMind movement data for individual pre�x over
course of data collection . 35

Figure 4.4 Visualization of MaxMind movement data for individual pre�x (week
1) . 37

Figure 4.5 Visualization of MaxMind location and probes for individual pre�x
zoomed in on original location (week 1) 38

Figure 4.6 Visualization of MaxMind location and probes for individual pre�x
zoomed in on new location (week 1) 38

Figure 4.7 Visualization of MaxMind movement data for individual pre�x (week
2) . 40

Figure 4.8 Visualization of MaxMind location and probes for individual pre�x
zoomed in on original location (week 2) 41

Figure 4.9 Visualization of MaxMind location and probes for individual pre�x
zoomed in on new location (week 2) 41

ix

Figure 4.10 Visualization of MaxMind movement data for individual pre�x (week
3) . 43

Figure 4.11 Visualization of MaxMind location and probes for individual pre�x
zoomed in on original location (week 3) 43

Figure 4.12 Visualization of MaxMind location and probes for individual pre�x
zoomed in on new location (week 3) 44

Figure 4.13 Histogram of absolute RTT di�erences when the MaxMind move
was con�rmed . 47

Figure 4.14 Histogram of absolute RTT di�erences when the MaxMind move
was not con�rmed . 48

Figure 4.15 Map of pre�xes found in absolute RTT di�erence spike 49

Figure 4.16 Results of traceroute measurement against pre�x contained in RTT
di�erence spike . 50

Figure 4.17 Results of traceroute from probe ID 55562 against pre�x contained
in RTT di�erence spike . 51

Figure 4.18 CDF of number of occurrences for each MaxMind location . . . 52

Figure 4.19 Map of most prevalent pre�x locations in Europe 53

x

List of Tables

Table 3.1 MaxMind data set statistics . 19

Table 4.1 Data collection statistics . 30

Table 4.2 Data collection pre�x movement statistics 32

Table 4.3 Measurement results for 104.225.187.198/31 over the course of �ve
weeks of data collection . 34

Table 4.4 Single-week measurement results for 104.225.187.198/31 (Week 1) 36

Table 4.5 Single-week measurement results for 104.225.187.198/31 (Week 2) 39

Table 4.6 Single-week measurement results for 104.225.187.198/31 (Week 3) 42

Table 4.7 Minimum RTT and probe distance comparisons through three weeks
for 104.225.187.198/31 . 44

Table 4.8 Granularity change impact on MaxMind movement data 54

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ACLs access control lists

ANT Analysis of Network Tra�c

API application programming interface

AS autonomous system

ASN autonomous system number

BGP Border Gateway Protocol

CAIDA Center for Applied Internet Data Analysis

CBG constraint-based Internet Protocol (IP) geolocation

CDN content delivery network

CIDR Classless Inter-Domain Routing

CLLI Common Language Location Identi�er

DDoS distributed denial-of-service

DNS Domain Name System

DRM digital rights management

EULA End User License Agreement

FQDN fully quali�ed domain name

IANA Internet Assigned Numbers Authority

IATA International Air Transport Association

ICAO International Civil Aviation Organization

xiii

ICMP Internet Control Message Protocol

IP Internet Protocol

IPGeo IP Geolocation

ISP internet service provider

JSON JavaScript Object Notation

NAT Network Address Translation

PTR pointer

RTT round-trip time

TCP Transmission Control Protocol

TLD Top-Level Domain

UN/LOCODE�� ��United��Nations��Code��for��Trade��and��Transport��Locations��

USC�� ����University��of��Southern��California

xiv

Acknowledgments

This��thesis��is��dedicated��to��my��wife��Paula,��who�o�a��love,��patience,��determination,��courage,��

and��support��made��this��possible.��I��could��not��ask��for��a��better��partner��in��this��Navy��adventure.��I��

love��you��so��much�(��honey�(��and��thank��you��for��everything��you��do��for��us.

Thank��you��to��my��advisors,��Dr.��Beverly,��Dr.��Rohrer,��and��Dr.��Krenc�(��for��guiding��me��

through��this��process.��A��thesis��is��an��incredibly��daunting��prospect��and��your��support��pushed��

me��to��the��finish��line.

Thank��you��to��Chris��and��Emile��at��RIPE��NCC��for��your��support��of��our��research��and��cooperation��

with��increasing��our��RIPE��Atlas��rate��limits.��RIPE��Atlas��is��a��terri�c��system��and��hopefully��

others��will��continue��the��work��we��started��with��you.

Thank��you��to��the��NPS��faculty��and��sta���for��your��mentorship��and��education��these��past��two��

years.

Thank��you��to��my��classmates��who��kept��me��sane,��lent��a��frequent��hand��when��I��hit��a��wall,��and��

who�i��I��counted��on��throughout��my��time��at��NPS.��I��could��not��have��made��it��through��this��

degree��program��without��all��of��you.

Thank��you��to��my��parents,��Beverly��and��James�7��my��parents-in-law�(��Jesus��and��Rosa�7��

sister��Veronica�7��and��the��rest��of��our��family��all��over��the��country��for��the��continuous��love��and��

support��you��give��Paula��and��me.

Finally�(��thank��you�� to�� my�� superiors,��peers,��and��especially��the��Sailors,��Soldiers,��

Marines,��Airmen,��Coastguardsman,��civilians,��and��contractors��who�i�� I��have��served��with��

over��the��years.��Your��exertions,��leadership,��mentorship,��and��dedication��made��it��possible��for��

me��to��come��here��and��complete��this��degree.

BOLD��AND��DARING

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

Internet Protocol (IP) Geolocation (IPGeo) allows the correlation of an IP address to a

physical location, a topic of great interest in both the government and commercial sectors.

Commercial entities �nd interest in IPGeo capabilities to deliver targeted advertisements,

perform large scale customer analytics, detect fraud, perform digital forensics, implement

location-based pricing models, enforce digital rights management (DRM), and optimize

their business operations. Government institutions utilize IPGeo data to provide emergency

services and support law enforcement functions [1]. IPGeo databases provide an Internet-

scale capability to associate an IP address or pre�x to a real-world location. To truly

understand the capabilities and limitations of these commercial activities, one needs to

compare the database results to a ground truth geolocation.

These databases often display signi�cant error and unexplained changes in the geolocations

of IP addresses and pre�xes. IPGeo databases frequently show signi�cant deviations from

each other, with [2] highlighting that over 50% of analyzed IP addresses displayed geolo-

cation discrepancies of at least 100 km when compared across various IPGeo databases.

Additional research demonstrates the longitudinal instability of geolocation data provided

by IPGeo databases, with [3] �nding that approximately 75% of MaxMind GeoLite IP

addresses moved roughly twice per year. A number of factors complicate accurate IPGeo,

including but not limited to:

ˆ Continuous changes in logical network topology

ˆ Inherent inaccuracy of latency-based distance measurements

ˆ Circuitous paths through network infrastructure

ˆ Inaccurate or outdated information in databases (WHOIS, DNS, etc.)

ˆ Security policies which inhibit network measurement (for example disabling Internet

Control Message Protocol [ICMP] echo replies)

Inaccurate IPGeo data can have signi�cant implications to the previously discussed end-

users. For example, law enforcement and emergency services may be unable to accurately

determine the location of criminal elements or persons requiring assistance [4]. Commercial

1

entities can encounter di�culties enforcing DRM or providing correctly localized services.

Network and security researchers may be unable to accurately analyze utilization of network

resources, network topology, and sources of malicious activity [1]. With these implications

in mind, we strive to better understand why longitudinal instability occurs in IPGeo databases

to improve geolocation accuracy and enable users to better understand the validity of the

geolocation data used.

One of the most popular open-source geolocation databases is MaxMind [5], [6]. MaxMind

provides weekly geolocation data for over 99% of IP addresses in use and is utilized by

thousands of businesses worldwide. The ubiquity of MaxMind makes it an ideal candidate

for study. While the GeoLite2 database used for this study is open source, the algorithm and

method by which the data is obtained is proprietary and unavailable for analysis.

Previous research demonstrates the longitudinal instability of the MaxMind data set [3].

Knowing that the geolocation data provided by MaxMind changes (sometimes substantially)

between data sets, this study seeks to ascertain the veracity of this pre�x movement, and

conjecture as to the causal factors involved in this instability. Insight into the causation of

this pre�x movement could allow researchers to better understand and reverse-engineer the

MaxMind algorithm, improving community implementation of IPGeo techniques.

To guide the structure of this study, we make the following hypothesis: temporal variations

to locations as included in IPGeo databases may be due to the following factors:

ˆ Physical (true) movement of the speci�c pre�x (physical movement of a device with

assigned IP address or reallocation of IP address space to devices in another location)

ˆ A change in the algorithm (for example a substantive modi�cation to the methodology

used to determine a pre�x's geolocation)

ˆ A change in the inputs to the algorithm (either a change in the source of input data or

a substantial alteration to the data itself)

This study seeks to identify patterns in or otherwise characterize the set of pre�xes that

show a geolocation change between updates of the MaxMind database. With this primary

research question we aim to explain why location data changes over time in the MaxMind

data set.

2

1.1 Scope
Our study is bounded by the following constraints:

ˆ Analysis is limited to the free MaxMind GeoLite2 City data set. While MaxMind

states that GeoLite2 is less accurate than their paid GeoIP database, our methodology

is general and can be applied to any database

ˆ Only the IPv4 portion of the data set is considered

ˆ We ignore changes in pre�x size in the database, and no not analyze instances of

overlapping pre�xes

ˆ Our ground truth is inferred through ping measurements and limited by available

vantage points

ˆ Some anchor vantage-point geolocations may be incorrect

ˆ Only pre�xes with ICMP echo reachable IP addresses are analyzed

We further discuss many of these constraints in Chapter 3.

Furthermore, while we seek to correlate data trends to movement data observed in the

MaxMind data set, correlation does not imply causation. Given the variety of factors

in�uencing IPGeo determinations, and the unknown implementation of the MaxMind ge-

olocation algorithm, our observations cannot de�nitively attribute the source of observed

pre�x movement.

1.2 Summary of Contributions
We demonstrate that the MaxMind Geolite2 City data set displays signi�cant variation

in the number of pre�xes which change geolocation between snapshots, ranging between

approximately .06% to 21% of the total pre�xes available in the snapshot. Also, we at-

tribute approximately 7.5% of the pre�x movements analyzed to granularity changes in the

MaxMind data (country-level to city-level granularity, etc.). Additionally, we evaluate the

impact of last-mile e�ects (latency caused by last hop link characteristics) on the accuracy of

constraint-based IP geolocation (CBG) and show how measurements can be correlated with

database information data to characterize last-mile links. This insight provides a method-

ology to improve further implementations of our system by avoiding vantage points using

high-latency links (speci�cally satellite). Finally, we demonstrate a scalable methodology

3

to use Internet measurements to determine the veracity of longitudinal movement shown by

IPGeo databases, speci�cally whether the movement shown is a result of physical movement

of the pre�x.

1.3 Thesis Organization
Chapter 2 provides background on IPGeo, prior research in the �eld, and describes the

MaxMind data set and RIPE Atlas system used in the study. Chapter 3 provides the method-

ology employed during the study, including details of the data collection, preparation, and

analysis performed. Chapter 4 provides detailed analysis and results. Chapter 5 presents

�nal conclusions and proposals for future work.

4

CHAPTER 2:
Background

Multiple methods currently exist to execute IPGeo. These include database methods such

as WHOIS and Domain Name System (DNS), as well as CBG. Database methods make use

of stored data regarding Internet registry information to obtain or infer geolocation data.

In the case of WHOIS, a query about a speci�c domain name, IP address, or autonomous

system (AS) can return information with details of the registrant of the chosen identi�er.

Additionally, as outlined in [7], internet service providers (ISPs) can publish privileged

geolocation information regarding their IP address space to allow third parties to deliver

higher quality services to their customers when those services depend on accurate geoloca-

tion data. This also aids emergency services when responding to 911 calls and other time

critical situations dependent on accurate location data.

2.1 Constraint-Based Geolocation
CBG, as described in [8], calculates a geolocation estimate based on �multilateration with

distance constraints.� These distance constraints are obtained by measuring the total delay

between a known-location source and the target. Using assumptions regarding the compo-

nents of network delay described in Section 2.1.1, the delay is then converted to a distance

estimate using the propagation speed of data over physical-layer mediums. By obtaining

multiple distance estimates, these circles of possible locations (isochrones) are aggregated,

creating an intersecting area that circumscribes the possible locations of the target.

The authors of [8] establish that the speed of digital information through a �ber optic cable

as roughly 2/3 the speed of light in a vacuum. Knowing that �ber optic cables provide the

highest propagation speed of physical layer mediums used by network systems, this creates

an upper-bound which therefore provides the longest possible distance between the source

and target.

5

Figure 2.1. The intersection of three isochrones creates an area which con-
tains the possible locations of a target (area shown in yellow). The source
locations are indicated with antennas.

Figure 2.1 demonstrates how CBG determines the location of a target using active sources

with known locations. In this case, three sources are used to measure the network delay

between the sources and the target. Using an approach which obtains an upper-bound based

on propagation speed and empirical network delay data, the authors of [8] determine the

distance constraint within which the target should reside. By repeating this process using

multiple sources (in this case three), they obtain an area representing the location estimate

of the target. The centroid of this area is used as the point estimate of the target location,

with the authors providing a con�dence region (measured in km2) based on the size of the

area created by the intersection of the isochrones.

2.1.1 Sources of Network Delay
One common protocol used in CBG is the ICMP echo, more commonly known as a �ping.�

Four elements comprise a ping's round-trip time (RTT) [9]:

6

ˆ Processing delay: the time for a network node to inspect packet header information

to determine routing, check against access control lists (ACLs) and other �lters, and

other processing at the network node

ˆ Queuing delay: the time that a packet waits at a node for the outbound interface to

become available

ˆ Transmission delay: the time it takes for a packet's data to be transmitted by the

network node onto the carrying medium

ˆ Propagation delay: the time for a single bit to travel the physical distance from one

network node to another across the carrying medium

To determine physical distance using delay measurement, propagation delay must be isolated

from the remaining contributing delay factors. We discuss our methodology to obtain

propagation delay and convert ICMP echo RTT to distance in Chapter 3.

2.2 Database Driven Geolocation
Database driven geolocation seeks to incorporate data from a variety of sources (WHOIS,

DNS, proprietary algorithms, etc.) to provide users with a centralized source for IPGeo

data. Here we describe several sources used by database IPGeo providers.

2.2.1 Sources

WHOIS

The WHOIS protocol, described in [10] and [11], provides Internet resource information re-

lated to a domain name, IP address, or autonomous system number (ASN). This information

is broken into the following blocks:

ˆ Domain information

ˆ Registrant contact information

ˆ Administrative contact information

ˆ Technical contact information

An example of a WHOIS lookup is shown below. Note that the query result includes the

geographic location of the domain name registrant, as well as administrative and technical

7

contact information with geographic locations. This information can be used to infer the

geolocation of the web server for this domain.

$whois nps.edu

Whois v1.21 - Domain information lookup

Copyright (C) 2005-2019 Mark Russinovich

Sysinternals - www.sysinternals.com

Connecting to EDU.whois-servers.net...

Naval Postgraduate School

555 Dyer Rd., Ingersoll 130

Monterey, CA 93943

USA

Administrative Contact:

[NAME]

[ADDRESS]

[PHONE]

[EMAIL]

Technical Contact:

[NAME]

[ADDRESS]

[PHONE]

[EMAIL]

Name Servers:

NS1ERN.NPS.EDU

NS2ERN.NPS.EDU

DNS

Domain��names��can��provide��low��granularity��geolocation��information,��typically��down��to��

the��country��level.��This��is��particularly��useful��for��domains��which��use��a��country-code��Top-

Level��Domain��(TLD).�� �N�a�b�a�n�a�j�_�a��[12]��contains��a��list��of��Root��Zones��allocated��by��

the��Internet��Assigned��Numbers��Authority��(IANA).�� TLDs��make��up��the��final��portion��

of��a��fully ��qualified��domain��name��(FQDN)��and��serve��as��the��highest��level��of��address��

space��segmentation��in��DNS��[13].

8

These TLDs are further divided by type, with the overwhelming majority falling into the

following categories [12], [14]:

ˆ Generic (gTLD): Created based on the category of the organizations using the domain

(.com, .edu, .org, .int, .net) with two reserved for US only use (.mil, .gov)

ˆ Country Code (ccTLD): Managed by local administrators who set policies in the best

interest of users within the speci�ed country

ˆ Sponsored (sTLD): Specialized TLD for speci�c user community. An organization

(sponsor) executes policy for the speci�c sTLD

DNS can be used to geolocate FQDNs in several ways. Registry information as described in

Section 2.2.1 can reveal the street-level location of the registrant. For example, the FQDN

www.tsn.ca belongs to Canadian broadcaster �The Sports Network�.

$whois tsn.ca

[....]

Registry Registrant ID: 73713289-CIRA

Registrant Name: The Sports Network Inc.

Registrant Organization:

Registrant Street: 9 Channel Nine Court

Registrant City: Scarborough

Registrant State/Province: ON

Registrant Postal Code: M1S4B5

Registrant Country: CA

Registrant Phone: +1.5148702477

[....]

While for many purposes country-level granularity is insu�cient, for applications such as

content �ltering a user may �nd that country-level data su�ciently re�nes the geolocation

for a speci�c IP address.

Another method uses inferences from the FQDN to establish geolocation with city-level

granularity. Geographic hints are frequently embedded in FQDNs, with the following types

often occurring [15]:

9

ˆ International Air Transport Association (IATA) or International Civil Aviation Orga-

nization (ICAO) airport codes

ˆ Common Language Location Identi�er (CLLI) telecommunication equipment iden-

ti�ers, often using an encoding of the city and state

ˆ United Nations Code for Trade and Transport Locations (UN/LOCODE) identi�ers

used to identify major economic locations such as ports, rail terminals, etc.

For an example of this process, consider the host name "te0-3-1-5.nr51.b046470-

0.dfw06.atlas.cogentco.com", taken from the 1 July, 2020 Center for Applied Internet Data

Analysis (CAIDA) ARK data set [16]. The string "dfw" appears in the host name, corre-

sponding to Dallas-Fort Worth International Airport IATA code. The CAIDA ARK data set

attributes the IP address 154.24.41.2 to this host. When this IP address is submitted to the

public geolocation site ipinfo.io, the returned geolocation information shows this address

present in Dallas, Texas [17].

2.2.2 Limitations

IP Address / Domain Resolution

To use DNS-based geolocation against an IP address, one would need to obtain the do-

main name associated with the IP address in question using a DNS pointer (PTR) record.

Challenges arise when attempting this methodology against a pre�x containing multiple IP

addresses, as one would need to account for multiple domains within a single pre�x and IP

addresses located at multiple locations. This process also depends on the ability to resolve

the domain name to an IP address, which is not always possible.

Content Delivery Networks

A notable issue with this methodology stems from the ubiquity of content delivery networks

(CDNs), where the IP address obtained through DNS returns a result to an edge server which

will typically be located near the user requesting content from the desired site, as opposed

to contacting a web server hosted locally by the content provider. This issue can be seen

with the tsn.ca example, with content provided by the Akamai CDN:

$nslookup tsn.ca

10

Server: cdns01.comcast.net

Address: 2001:558:feed::1

Non-authoritative answer:

Name: tsn.ca

Address: 96.6.137.159

$whois 96.6.137.159

[...]

WHOIS Server: whois.akamai.com

Registrar URL: http://www.akamai.com

Updated Date: 2020-08-20T18:59:45Z

Creation Date: 1998-08-18T04:00:00Z

Registry Expiry Date: 2022-08-17T04:00:00Z

Registrar: Akamai Technologies, Inc.

[...]

Additionally, CDNs often employ Anycast routing to protect against distributed denial-of-

service (DDoS) attacks and spread server loads across multiple data centers. In Anycast

routing, multiple hosts share the same IP address, allowing Internet routing algorithms to

select the destination host with the optimal route from the client to the desired server [18].

This results in individual IP addresses residing in multiple locations, complicating accurate

geolocation of the IP address.

Vanity TLDs

Vanity TLDs also impair the use of ccTLDs to infer country-level geolocation. For example,

the vanity TLD "bryank.cn", available for purchase at the time of writing, would allow a US

based domain to use the country-code for China. Since vanity TLDs do not need to reside

in the country corresponding to their ccTLD, using country-codes to infer country-level

geolocation comes with signi�cant limitations.

11

2.3 Previous Work Exploring Accuracy of Commercial
Databases

2.3.1 Reliability
The authors of [2] describe the overall reliability of database IPGeo sources, as well as the

limitations inherent to this approach. They assessed the accuracy of several IPGeo databases

through comparison of database supplied pre�x locations to ground truth locations of ISP

points of presence (the network interface between the ISPs and the wider Internet). Their

criticisms focus on several main issues:

ˆ Focus on densely populated countries and regions (US and Europe for example)

ˆ Inconsistent correlation between database entries to the original allocation of IP

blocks and Border Gateway Protocol (BGP) announcements

ˆ Unrealistic claimed granularity of location accuracy

This study notes that in an e�ort to obtain and advertise city-level and �ner granularity, their

overall accuracy degrades instead of improving. This desire to obtain �ne granularity IPGeo

results creates unintended consequences, as IPGeo database providers are forced to choose

default coordinates within countries for targets which only resolve to country-level accuracy.

The choice of default coordinates within a particular country depends on several factors

(geography, population distribution, etc.), with these factors described further in Section

4.4. The author of [4] describes this issue with MaxMind in particular, where MaxMind's

algorithm assigned US based IP addresses with country-level granularity to a small farm in

Kansas, at the approximate center of the Continental US.

The authors of [19] explore the reliability of commercial databases, including MaxMind

GeoLite2 (used in our study) for performing IPGeo of network infrastructure, particularly

routers. Using a database of approximately 1.64 million router interfaces, they compared

these commercial databases against �ground truth� measurements consisting of a DNS-

based methodology (outlined in [15]), and RIPE-Atlas measurements similar to those de-

scribed in Chapter 3 of our study. This study notes the unreliability of commercial database

accuracy against routers and recommends against using MaxMind GeoLite2 against this

type of target as it provides insu�cient city-level accuracy and coverage.

12

2.3.2 Stability
Research outlined in [6] demonstrates the instability of MaxMind geolocation data and

makes recommendations to enable reproducible analysis when using MaxMind databases.

By analyzing 214 MaxMind �snapshots� over the course of approximately ten years, the

authors show that the following characteristics vary increasingly with time between snap-

shots:

ˆ The di�erence in IP address coverage (the IP addresses present in one snapshot but

not another, and vice versa)

ˆ The overall distance di�erence across the covered IP space (computed as the mean

log of all distance di�erences between the two snapshots)

The authors also demonstrate that when the maximum distance di�erence between snapshots

is considered for every sampled IP address in a calendar year, di�erent years demonstrate

considerable variation in the longitudinal instability of locations in the MaxMind database.

In particular, they show that speci�c pre�xes can remain nearly stationary in one year, while

moving up to a maximum of 1,000 km the next.

With these observations, the authors of [6] make several recommendations when using

MaxMind in further research:

ˆ When conducting Internet measurements related to MaxMind geolocation data, the

measurements should be conducted in conjunction with the corresponding MaxMind

snapshots to the maximum extent possible

ˆ Research referencing MaxMind data should reference the speci�c dates of the snap-

shots used

These recommendations are intended to enhance the accuracy and reproducibility of re-

search using MaxMind. As discussed in Chapter 3, our study follows both of these recom-

mendations.

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

CHAPTER 3:
Methodology

3.1 Overview
This study assesses temporal geolocation variance in MaxMind data by comparison to ping

RTT via RIPE Atlas. The methodology consists of two distinct phases. Data collection

occurs in �ve iterations. We obtain two consecutive weeks of MaxMind GeoLite2 City

data, extract pre�xes that change location between the two snapshots, then execute ping

measurements from vantage points through the RIPE Atlas application programming inter-

face (API). During analysis, we seek to draw conclusions pertaining to correlation of the

displayed MaxMind geolocation variance to the RIPE Atlas ping RTT results, and illuminate

opportunities for further study using our data set and future work to optimize our process.

The core tenant underpinning our study relies on the constant propagation speed of pack-

ets across the Internet through various physical mediums. Throughout our study, several

assumptions are made regarding the sources of delay discussed in Section 2.1.1:

ˆ The ping sources (hereafter known as �probes�) are reasonably close to the target,

allowing us to assume an �as the crow �ies� straight path between the probe and the

target. Selecting the closest probes possible to the target minimizes RTT increases

due to physical network topology not following straight paths (as is highly common

for packets traversing long distances)

ˆ Transmission delay is negligible due to the small size of ping packets (typically about

64 bytes when including ICMP header information)

ˆ Processing and queuing delay are compensated by taking the minimum RTT of three

measurements per probe

ˆ Delay is symmetrical, meaning that the total delay for for packets traveling to the

target host equals the total delay for packets returning to the source

With these assumptions made, we draw a direct correlation between the round trip distance

from the probe to the target and back using the following formula:

15

3 =
2
3

2 � ')) •2

We therefore conclude that if a ping source has a lower RTT to a target than another source,

then the probe with lowest RTT is physically closer to the target.

To illustrate how this logic applies to our study, we use the following example. In Figure 3.1,

we have a single pre�x, with two distinct geolocations provided by consecutive MaxMind

data sets (location A and location B). To determine which location represents the most

likely current location of the pre�x, we select three RIPE Atlas probes per location, located

as close to each MaxMind geolocation (one from each snapshot) as possible. Section 3.2.7

describes the selection methodology for these probes.

Figure 3.1. The two MaxMind indicated locations of a pre�x are shown with
blue dots (LOC A and LOC B). The probe locations are indicated with
antennas.

We submit ping measurements to the RIPE Atlas API using each of the six probes, targeting

16

an IP address within the pre�x (we discuss IP address selection later). We �nd the minimum

of the minimum RTTs for each set of three probes per location (min(RTT A) and min(RTT

B)). The inferred pre�x location is then the location associated with the lowest RTT between

min(RTT A) and min(RTT B), as illustrated in the following Figure 3.2.

Figure 3.2. In this case, Week 1 Probe 1 possesses the minimum RTT for
LOC A associated probes (Min(RTT A)), while Week 2 Probe 1 has the
same for the LOC B associated probes (Min(RTT B)). Since Min(RTT A)
is less than Min(RTT B), the pre�x is assessed to be located at LOC A.

We then determine if the movement displayed in the MaxMind data is corroborated by the

RIPE Atlas ping results. If the actual location using the steps above correlates with the

current week's location in MaxMind, we call the movement �con�rmed.� Conversely, if

the actual location correlates with the previous week's location in MaxMind, we assess the

movement as �not con�rmed�.

We illustrate the above methodology using Algorithm 1.

17

Algorithm 1 Corroboration of MaxMind movement for a single pre�x

Obtain location A (LOC A) from week 1 MaxMind data

Obtain location B (LOC B) from week 2 MaxMind data

Determine three closest active RIPE Atlas probes for LOC A and LOC B

Select target IP address

Submit ping measurement requests from each probe to the target IP address

if At least 1 ICMP echo reply for LOC A probes AND At least 1 ICMP echo reply for

LOC B probesthen

min(RTT A) minimum RTT for LOC A probes

min(RTT B) minimum RTT for LOC B probes

if min(RTT A) < min(RTT B)then

Movement not con�rmed

else

Movement con�rmed

end if

end if

3.2 Data Collection
The data used for analysis comes from two primary sources, the MaxMind GeoLite2 City

data set, and correlated RIPE Atlas data obtained during the data collection phase of this

study.

3.2.1 MaxMind
MaxMind data is available via their website and is downloaded as compressed folders

containing .csv �les. These data sets are updated weekly on Tuesdays. MaxMind makes

several weeks of data sets available, allowing users to download the current and previous

week's data easily through their web interface. In accordance with the MaxMind End User

License Agreement (EULA), our measurements use MaxMind data less than 30 days old

(typically less than 7-10 days old) [20]. This study uses six consecutive iterations of this

data set. Table 3.1 contains key statistics of the data.

18

Table 3.1. MaxMind data set statistics

Date Number of Pre�xes Pre�xes with Geolocation Data Unique Locations

03/09/21 3,472,912 3,471,178 147,207

03/16/21 3,473,766 3,472,038 147,207

03/23/21 3,430,232 3,428,496 146,695

03/30/21 3,418,348 3,416,585 146,554

04/06/21 3,369,042 3,367,333 144,688

04/13/21 3,494,500 3,492,742 147,788

�Pre�xes with Geolocation Data� refers to pre�xes to which MaxMind assigned a latitude

and longitude. �Unique Locations� refers to the number of unique combinations of latitude

and longitude within each snapshot. The combination of these two statistics results in an

average of approximately 23.46 pre�xes for each unique location attributed by MaxMind,

indicating a substantial reuse of locations possibly caused by factors described in Section

4.4.

The pre�x sizes range from /7 to /32 using Classless Inter-Domain Routing (CIDR) notation.

Figure 3.3 shows a histogram of MaxMind pre�x sizes observed in the six MaxMind

snapshots used in this study. The x-axis indicates the CIDR notation pre�x size. The

overwhelming majority of pre�xes range from /19 to /32, with /24 and /30 showing the

highest representation in the data. /24 pre�xes correspond to Class C networks in the now

outmoded Classful addressing scheme, while /30 pre�xes likely correspond to home or small

business networks, with only two assignable IP host addresses (four addresses total with

one reserved for the network and one for broadcast, not accounting for Network Address

Translation (NAT) to increase available addresses).

19

Figure 3.3. Histogram of MaxMind pre�x sizes for all snapshots.

3.2.2 RIPE Atlas
The Réseaux IP Européens Network Coordination Centre (RIPE NCC) provides Regional

Internet Registry (RIR) and other Internet infrastructure support throughout Europe, the

Middle East, and several other regions as described in [21]. In addition to these responsi-

bilities, RIPE coordinates and manages an Internet measurement platform known as RIPE

Atlas.

RIPE Atlas is an open source Internet measurement network which employs a global network

of probes that measure Internet connectivity and reachability. RIPE Atlas has over 11,000

probes spread over every continent, with the highest concentration of probes located in

North America, Europe, and East Asia [22]. The global reach and �xed probe locations

20

RIPE Atlas employs make it ideal for conducting constraint-based IPGeo queries against

speci�c pre�xes.

In addition to providing the aforementioned Internet measurement network, RIPE Atlas

developers have created and maintained two Python packages critical to this study. RIPE

Atlas Cousteau, described in [23] is a Python library which provides the majority of the

RIPE Atlas v2 API calls needed to submit measurement requests to RIPE Atlas. RIPE

Atlas Sagan, described in [24], is a Python library containing API calls used to retrieve

measurement results and parses JavaScript Object Notation (JSON) formatted results to

simplify analysis of these results.

3.2.3 Process Description
The basic data collection �ow employs the following steps, summarized in Figure 3.4:

1. Download two concurrent weeks of MaxMind GeoLite2 City data (for this example

�Week 0� and �Week 1�). This download occurs on the day that the current week data

(Week 1) is published

2. Compare the geolocation data between each data set, keeping only pre�xes which

demonstrate movement. (Week 0 location we will call �Location A� and Week 1 will

be at �Location B�)

3. Obtain a list of currently active RIPE Atlas probes with their locations

4. Determine the three closest probes to Location A and Location B respectively using

methodology in Section 3.2.7

5. Submit ping measurement requests via the RIPE Atlas API using the probes found in

step 4 against target IP addresses within the network pre�xes from step 2 (IP address

selection will be discussed in detail). The measurement request submission begins

within approximately two hours after the two MaxMind data sets are compared to

ensure that the data is as accurate as possible

6. Retrieve the measurement results using the RIPE Atlas API and save the data for later

analysis

21

Figure 3.4. Visualization of logical work�ow for data collection and analysis.

To facilitate data collection, we construct a six-step program �ow using Python modules

designed to each complete a step of the data collection process, visualized in Figure 3.5.

Nine modules comprise the code body, with the last two steps of the program �ow having

two and three modules created respectively to improve performance. The modules primarily

use Pandas to manage the data structures and ensure data integrity. They also make use of

several Python libraries developed by RIPE Atlas (Cousteu and Sagan). We discuss each of

these modules below.

22

Figure 3.5. Visualization of module �ow for data collection.

3.2.4 Maxmind-data-clean.py
This module reads two concurrent weeks of MaxMind data, compares the location data

for each pre�x in the combined data, retaining pre�xes which demonstrate movement

and exporting the resultant data to a .csv �le. This module compares matching pre�xes

without compensation for pre�x size changes between snapshots. For example, if the pre�x

128.61.0.0/16 appeared in one week and 128.61.0.0/17 appeared in the next, they would not

be compared for location change. The pre�x address and length must therefore both match

(through string comparison) to be considered for movement determination.

23

3.2.5 Target-pre-screen.py
This module provides the target IP address used for the ping measurements and attempts

to increase the yield of results from the measurement requests by �nding ICMP reachable

target IP addresses. This step was implemented after discovering during testing that roughly

72% of the pre�xes measured failed to receive an ICMP echo reply from the target and

therefore did not return an RTT.

The module starts by assigning the �+1� address as the target IP for each pre�x (for example

if the pre�x is 69.142.46.0/24, the starting address is 69.142.46.1). We then determine the

reachability of these target IP addresses by sending ICMP ping requests from a non-RIPE

dedicated host (a separate host used only for testing IP address reachability). If the target

address is reachable, it will be used as the target address in follow-on modules. If not, the

module increments the address by one (to 69.142.46.2 in this example), then re-attempts the

ping. It tries up to �ve address before either saving the reachable IP address or determining

that the pre�x is unreachable. The pings are executed using parallelization to reduce runtime.

We save the resultant target IP addresses with the data from the previous step in a .csv �le.

During testing, this module increased the number of pre�xes reachable by our system by

roughly 35% and reduced the number of measurements submitted to the RIPE Atlas API

by approximately 52%. These results indicate an increased yield of results with reduced

overhead on the RIPE Atlas system.

3.2.6 Get-atlas-probes.py
This module obtains a list of all currently active RIPE Atlas IPv4 probes. It obtains this list

as individual JSON pages, extracting the needed information (probe ID and location), and

exports this data to a .csv �le. This module executes during each week of data collection to

ensure that the probes selected by the next module are active. We note several characteristics

of the reported locations of RIPE Atlas probes [25]:

ˆ Probe locations are user-reported and not con�rmed by RIPE Atlas

ˆ Probe locations are obfuscated by RIPE Atlas for host privacy by up to 1 km

24

3.2.7 Best-probe-�nder.py
This module uses the MaxMind data with targets from step 2, along with the RIPE Atlas

probe data from step 3, to determine the three closest probes to each location provided by

MaxMind (Location A and Location B) for a total of six probes. The module determines

the Euclidean distance between the pre�x location and each of the probe locations, using

the three closest for each location and providing the distance from each pre�x to each probe

in kilometers for future analysis. We export this data to a .csv �le. Section 4.1.1 and Figure

4.1 describe probe distance distribution as a result of this module.

3.2.8 Measurement-request.py
This module, with its related module measurement-request-PARALLEL.py, submits mea-

surement requests via the RIPE Atlas API. The main di�erence between these two modules

is the use of parallelization in the later to expedite the submission process. We noted a

dramatic increase in the number of moved pre�xes with reachable IP addresses during week

5 of data collection. In order to scale our measurements with the increase of identi�ed pre�x

movements, this module can be executed in a parallelized fashion.

We use the Cousteau library [23] provided by RIPE Atlas to construct and submit each

ping request. Importantly, all measurements in a group can be a�xed with a �tag� that

identi�es the group and allows for retrieval via this tag. The module works sequentially

through the data from step 4, using the target IP addresses and probe IDs to construct a

properly formatted request to RIPE Atlas to begin a ping measurement. The response from

RIPE Atlas contains the Measurement ID associated with a speci�c measurement, which

can be used for measurement result retrieval. The Measurement ID is added to the data

input to this module, and we save the resultant data in a .csv �le.

3.2.9 Retrieve-Measurement-Results.py
This module, with its related modules Retrieve-Measurement-Results-by-tag.py and

Retrieve-Measurement-Results-by-tag-NO-MEAS-FILE.py, retrieves the results for the

measurements submitted to RIPE Atlas in step 5. The di�erences between these three

modules are the method by which the measurements are retrieved, and the input �le struc-

ture to the module.

25

The module retrieves measurement results using the Measurement IDs obtained during step

5 when the requests are submitted. Using the Sagan library from RIPE Atlas, it iterates

through the list of pre�xes, sequentially requesting the results for a particular Measurement

ID, and retrieving the minimum RTT for each probe used in the measurement. We associate

these RTTs with the applicable probe ID and save this information with the rest of the data

in the �nal .csv �le containing the results for the week's data collection. The remaining

modules in this section employ modi�ed methods to retrieve results through the RIPE Atlas

API.

3.3 Limitations
This section highlights several limitations of our system to enable further development and

re�nement for future studies.

3.3.1 RIPE Atlas Rate Limits
A initial limitation of methodology stemmed from the need to submit large volumes of

measurement requests through the RIPE Atlas API. To maintain the stability of the platform,

RIPE Atlas administrators impose rate limitations on measurement requests. The rate limits

that speci�cally impacted this study consisted of the following [26]:

ˆ No more than 100 simultaneous measurements.

ˆ No more than 100,000 results can be generated per day.

ˆ No more than 1,000,000 credits may be used each day.

These rate limits created several concerns. During testing, we noticed that as measurement

requests were submitted sequentially, they would pause submission approximately every

100 measurements for roughly 10 minutes. This queuing delay came as a result of the

nominal runtime for measurements (approximately 10 minutes), which meant that new

requests could not be successfully submitted until earlier measurements had completed.

Our team met virtually with several RIPE Atlas developers early in the project to discuss the

impact the simultaneous measurement limit would have on the study. The RIPE Atlas team

graciously raised the simultaneous measurement limit from 100 to 750 which eliminated

the queuing issues.

26

However, even with the increased daily use limits, other rate limitations impacted data

collection. While testing the data collection modules, we observed the volume of pre�xes

for which MaxMind indicated movement consistently amounted to roughly 32,000 pre�xes,

therefore requiring an upper limit of 32,000 measurements per week, well below the daily

submission limit. During data collection however, several weeks showed signi�cantly higher

numbers of pre�x movement, upwards of 700,000 pre�xes at maximum. While we reduced

the number of submitted measurements using the pre-screening module discussed in Section

3.2.5, the measurement count still eclipsed the 100,000 per-day limit imposed by RIPE Atlas.

This caused the measurement submission process to take several days to complete, resulting

in data that was less timely than intended.

3.3.2 Stateless Data Collection Methodology
As described in Algorithm 1 and shown in Figure 3.4, each iteration of the data collection

process compared two successive weeks of MaxMind data to determine if the movement

shown over the course of one week could be correlated by RIPE Atlas ping measurements.

A major limitation of the architecture as described is that the system does not maintain

state from week to week. For example, if a speci�c pre�x's movement in one week was

determined to be potentially spurious based on RIPE Atlas measurements, this would have

no e�ect on the following week's determination, as we would then compare the possibly

invalid location to a new location, resulting in a correlation determination using faulty data.

We discuss possible solutions to this issue in Section 4.2.5.

3.3.3 Target IP Address Selection
As discussed in Section 3.2.5, our target IP address selection depends ICMP echo requests

issued by a non-RIPE dedicated host, incrementing the IP address a limited number of times

until a reply is received or the pre�x is deemed unreachable. This approach most likely re-

duced the number of pre�xes measured through the RIPE Atlas API and resulted in less data

for analysis, as the module only tries �ve IP addresses per pre�x before characterizing the

pre�x as unreachable. We explored the use of the University of Southern California (USC)

Analysis of Network Tra�c (ANT) Lab's IPv4 Hitlist [27] to select target IP addresses,

however due to implementation complexity we propose this approach for future develop-

ment. The IPv4 Hitlist provides an ICMP echo reachable IP address in each /24 block of the

27

internet, updated four to six times per year. Use of the IPv4 Hitlist could improve the data

yield from the measurement process in future research.

3.3.4 Pre�x Size Changes
In Section 3.2.4 we discuss the methodology for �nding matching pre�xes for location

comparison (a string comparison between pre�xes from two MaxMind snapshots) and

that the pre�xes need to match in both address and size to undergo location comparison

and measurement. We propose that follow-on researchers supplement our methodology by

adding the ability to consider changing pre�x sizes between MaxMind snapshots (subnet or

supernet, pre�x splits, etc.). Numerous methods to identify pre�x overlaps exist, including

Python libraries and PATRICIA trees, which could provide deeper insight as to the impact

of changing pre�x sizes on the longitudinal stability of the MaxMind geolocation data.

28

CHAPTER 4:
Results

In this Chapter we explore the results of the data collection process described in Chapter 3.

Our results comprise both the macro analysis of the corpus resulting from the data collection

process and micro analysis of speci�c instances or anomalies observed in the data.

4.1 Overall Observations
This Section provides a high level overview of the results of each step of the data collection

process, along with general characterizations of the movement shown in the MaxMind data

against the RIPE Atlas measurements.

4.1.1 Data Collection Parameters
As outlined in Chapter 3, each step of the data collection process re�nes the MaxMind data

set to result in a list of pre�xes with the greatest probability of returning responsive results

when submitted for measurements in RIPE Atlas. Table 4.1 demonstrates the results of this

process. The following terms appear in Table 4.1:

ˆ Pre�xes Moved: The number of pre�xes in the MaxMind data set from the corre-

sponding date whose position does not match the data set from the preceding week

ˆ Reachable Pre�xes: The number of moved pre�xes which return successful ICMP

echo replies when requests are sent from a non-RIPE dedicated host

ˆ Responsive RIPE Results: The number of reachable pre�xes for which at least one of

three measurements using current week associated probes AND at least one of three

measurements using previous week associated probes returns an RTT

The percentages listed describe the relative fraction of the previous body of pre�xes which

exhibit the listed behavior. For example, 22.77% of the pre�xes which move during the

03/30/21 data collection snapshot return ICMP echo replies. The number of moved pre�xes

is a statistic determined by the data provided by MaxMind. In Section 3.3.3 we address

methodology limitations driving the relatively low number of reachable pre�xes and provide

29

suggestions for future improvement to target IP address selection in Section 5.2.1. The

number of responsive RIPE results depends on various factors inherent to the RIPE Atlas

system including changes to probe status (active or inactive) and network routing and latency

between the probes and target IP.

Table 4.1. Data collection statistics

Date Pre�xes Moved Reachable Pre�xes Responsive RIPE Results

03/16/21 2,086 (.06%) 815 (39.07%) 378 (46.38%)

03/23/21 260,902 (7.61%) 73,961 (28.35%) 5,851 (7.91%)

03/30/21 25,836 (.76%) 5,883 (22.77%) 1,829 (31.09%)

04/06/21 87,477 (2.60%) 18,935 (21.65%) 4,342 (22.93%)

04/13/21 726,603 (20.80%) 195,294 (26.88%) 31,959 (16.36%)

Figure 4.1 demonstrates the results of probe selection described in Section 3.2.7 across

all snapshots. Since we aim to select probes as close to the MaxMind reported location

as possible, we need to understand the e�ectiveness of our probe selection algorithm.

The x-axis describes the distance from the self-reported probe locations to the associated

MaxMind reported pre�x location as de�ned in Section 4.1.2. Of note, 50% of selected

probes reside within 13 km and nearly 90% reside within 100 km of the reported MaxMind

pre�x location.

30

Figure 4.1. CDF of probe distances to MaxMind reported pre�x locations
across all data collection snapshots.

4.1.2 General Result Characterizations
Our data collection results in a corpus containing 44,359 measurements conducted over �ve

weeks, which corresponds to the sum of the column �Responsive RIPE Results� from Table

4.1. To establish de�nitions used throughout this Chapter, we include the following list of

terms:

ˆ Probe association: A probe is �associated� with a given pre�x location if it is one of the

three geographically-closest probes active on the RIPE Atlas platform as determined

by the procedure described in Section 3.2.7

ˆ Move con�rmed: The RIPE Atlas probe with the lowest minimum ping RTT associates

with the new pre�x location

31

ˆ Move not con�rmed: The RIPE Atlas probe with the lowest minimum ping RTT

associates with the old pre�x location

Using these de�nitions we determine that approximately 56% of MaxMind indicated move-

ment is not con�rmed by RIPE Atlas measurements (24,927 / 44,359). Table 4.2 details the

movement characterizations for each snapshot.

Table 4.2. Data collection pre�x movement statistics

Date Responsive RIPE ResultsMove Con�rmed Move Not Con�rmed

03/16/21 378 293 (77.51%) 85 (22.49%)

03/23/21 5,851 2,537 (36.89%) 3,314 (63.11%)

03/30/21 1,829 805 (44.01%) 1,024 (55.99%)

04/06/21 4,342 1,953 (44.98%) 2,389 (55.02%)

04/13/21 31,959 13,844 (43.32%) 18,115 (56.68%)

Observing the relatively high rate of MaxMind reported pre�x movements not con�rmed

through RIPE Atlas measurements, we explore an individual pre�x and aberrations in our

data to attempt to correlate this discrepancy.

We attempt to identify a logical threshold at which a third option, �undetermined� or some

other adjective to that e�ect, could be implemented. Our corpus fails to reveal a threshold

that could be used for this purpose, as the relative RTT di�erences between the two minimum

RTT probes increase gradually and without a signi�cant change, as shown in Figure 4.2.

Figure 4.2 presents a CDF where the x-axis indicates the percentage di�erence between the

two minimum RTT probes for a speci�c measurement.

32

Figure 4.2. CDF of RTT percentage di�erence.

The lack of a noticeable �elbow� or shift in the rate of change of the proportion of pre�xes

as the RTT percentage di�erence increases precludes identi�cation of a threshold for this

third characterization.

4.2 Observations from a Single Pre�x
To illustrate the progression of the data collection process, we detail the behavior observed

in a single pre�x. We select this pre�x (104.225.187.198/31) since it demonstrates the most

frequent geolocation change with the most reliable RIPE Atlas data returned of any of the

pre�xes observed in our study. This pre�x resides in AS 396253, owned by iboss Inc., a US-

based cloud network security company located in Boston, MA. Based on this information

and the MaxMind provided locations (shown in Figure 4.3), this pre�x likely serves as a

cloud hosting server.

33

Over �ve weeks of data collection, MaxMind indicates movement for each of the �rst four

weeks, with movement ranging from about 360 km to 1,280 km between consecutive weeks.

We submit RIPE Atlas measurement requests for these �rst four weeks, with the �fth week

not undergoing measurements in accordance with our methodology as the pre�x does not

indicate movement.

Figure 4.3 contains a map overlay of the MaxMind location data, along with the determina-

tions made based on RIPE Atlas data. Of note, MaxMind returns the same geolocation for

weeks two, four, and �ve. This location, just outside Wichita, Kansas, is the default location

used by MaxMind for IP addresses with country-level geolocation granularity as described

in Section 2.3 [4].

Table 4.3 contains relevant data �elds demonstrating the behavior of this pre�x over the

course of the data collection process. We de�ne the �elds as follows:

ˆ MaxMind Dist Di�: Euclidian distance between the original and new pre�x locations

according to MaxMind

ˆ Wk1 min(RTT): Minimum RTT of the three probes associated with the original

location

ˆ Wk2 min(RTT): Minimum RTT of the three probes associated with the new location

ˆ Move Con�rmed: Determination of whether RIPE Atlas ping RTT results corrobo-

rate the MaxMind demonstrated pre�x movement based on the criteria described in

Section 4.1.2

Table 4.3. Measurement results for 104.225.187.198/31 over the course of
�ve weeks of data collection

Date MaxMind Dist Di� Wk1 min(RTT) Wk2 min(RTT) Move Con�rmed

03/16/21 358.79 km 8.49 ms 5.78 ms True

03/23/21 534.42 km 6.01 ms 23.95 ms False

03/30/21 1280.04 km 22.75 ms 19.63 ms True

04/06/21 1280.04 km 19.74 ms 18.09 ms True

04/13/21 0 km N/A N/A N/A

34

RIPE Atlas measurements corroborate the movement data observed from MaxMind for

weeks one, three, and four, while the movement during week two is not corroborated. To

highlight the logic used to corroborate MaxMind movement data using RIPE Atlas, we

detail week one, where the movement is con�rmed, and week two, where the movement

data in MaxMind is not con�rmed by RIPE Atlas measurements. We additionally explore

the impact of methodology limitations using week three results, and describe longitudinal

oscillations observed during week four.

Figure 4.3. Visualization of MaxMind location data and measurement results
for 104.225.187.198/31.

4.2.1 Move Con�rmed: Week 1
MaxMind GeoLite2 City data for 9 March (week 0) and 16 March (week 1) 2021 reveals

that our highlighted pre�x moves approximately 360 km, from just north of Houston to just

35

outside Dallas. Pre�x pre-screening determines reachability and selects target IP address

(for this week 104.225.187.199). Three probes are selected closest to the two MaxMind

locations, for a total of six probes. We submit a ping measurement request through the

RIPE Atlas API using this target IP address and selected probes and obtain results for this

measurement request.

According to the probes' self-reported location data, the probes used for this week have a

mean and median distance to the MaxMind pre�x location of approximately 8 km. Five

of the six probes return an RTT for analysis. As shown in Table 4.4, the probe with the

lowest minimum RTT is probe 2 for the week 1 location (probe ID 13283, RTT 5.78 ms).

The distances shown in Table 4.4 re�ect the distance from the self-reported probe location

to the MaxMind pre�x location for the associated snapshot (week 0 or week 1). Since the

probe with the lowest RTT is associated with the new location (the current week for data

collection), we assess the MaxMind indicated movement as con�rmed by RIPE Atlas.

Table 4.4. Single-week measurement results for 104.225.187.198/31 (Week
1)

Probe association/numberProbe ID Dist to MaxMind Location Min(RTT)

Week 0 / Probe 1 6903 2.03 km 8.54 ms

Week 0 / Probe 2 27214 1.96 km 15.89 ms

Week 0 / Probe 3 50143 6.48 km 8.49 ms

Week 1 / Probe 1 1198 9.56 km No result

Week 1 / Probe 2 13283 14.59 km 5.78 ms

Week 1 / Probe 3 50456 12.94 km 5.84 ms

We demonstrate this process using several map overlays to show the pre�x and probe

locations. Figure 4.4 shows an overview of the MaxMind reported pre�x locations and the

probes selected for use in the RIPE Atlas measurement. Figures 4.5 and 4.6 show closer

vantages of the original and new pre�x locations respectively.

36

Figure 4.4. Visualization of MaxMind location data and measurement results
for 104.225.187.198/31 during week 1 of data collection. The red markers
represent the MaxMind reported pre�x locations. The green markers repre-
sent the week 0 associated probes. The blue markers represent the week 1
associated probes. The yellow marker represents the min(RTT) probe.

37

Figure 4.5. Visualization of MaxMind original location and probes for
104.225.187.198/31 during week 1 of data collection, zoomed in on original
location. The red marker represents the week 0 MaxMind reported pre�x
location. The green markers represent the week 0 associated probes.

Figure 4.6. Visualization of MaxMind new location and probes for
104.225.187.198/31 during week 1 of data collection, zoomed in on new
location. The red marker represents the week 1 MaxMind reported pre�x lo-
cation. The blue markers represent the week 1 associated probes. The yellow
marker represents the min(RTT) probe.

38

4.2.2 Move Not Con�rmed: Week 2
We execute the same process during week 2 of data collection, using MaxMind GeoLite2

City data for 16 March (week 1) and 23 March (week 2) 2021. Initial processing of these two

MaxMind data sets reveals that the pre�x moves approximately 525 km, from just outside

Dallas to a lake just west of Wichita, Kansas. Using target IP 104.225.187.202 and with six

probes selected using the module described in Section 3.2.7, we submit a ping measurement

request to RIPE Atlas.

The probes used for this week have a mean distance to the pre�x location of approximately

27 km and median of approximately 14 km. Four of the six probes return an RTT, with the

lowest minimum RTT belonging to a probe associated with the original location (probe ID

50456, RTT 6.01 ms), as shown in Table 4.5. Since the probe with the lowest RTT is closest

to the original location (the previous week's location), we assess the MaxMind indicated

movement as not con�rmed by RIPE Atlas.

Table 4.5. Single-week measurement results for 104.225.187.198/31 (Week
2)

Probe association/numberProbe ID Dist to MaxMind Location Min(RTT)

Week 1 / Probe 1 1198 9.56 km No result

Week 1 / Probe 2 13283 14.59 km 8.74 ms

Week 1 / Probe 3 50456 12.94 km 6.01 ms

Week 2 / Probe 1 10507 0.07 km 29.88 ms

Week 2 / Probe 2 55178 53.18 km 23.95 ms

Week 2 / Probe 3 52177 73.95 km No result

As shown for the week 1 iteration, we demonstrate this process using several map overlays to

show the pre�x and probe locations. Figure 4.7 shows an overview of the MaxMind reported

pre�x locations and the probes selected for use in the RIPE Atlas measurement. Figures 4.8

and 4.9 show closer vantages of the original and new pre�x locations respectively.

39

Figure 4.7. Visualization of MaxMind location data and measurement results
for 104.225.187.198/31 during week 2 of data collection. The red markers
represent the MaxMind reported pre�x locations. The green markers repre-
sent the week 1 associated probes. The blue markers represent the week 2
associated probes. The yellow marker represents the min(RTT) probe.

40

Figure 4.8. Visualization of MaxMind original location and probes for
104.225.187.198/31 during week 2 of data collection, zoomed in on original
location. The red marker represents the week 1 MaxMind reported pre�x
location. The green markers represent the week 1 associated probes. The
yellow marker represents the min(RTT) probe.

Figure 4.9. Visualization of MaxMind new location and probes for
104.225.187.198/31 during week 2 of data collection, zoomed in on new
location. The red marker represents the week 2 MaxMind reported pre�x
location. The blue markers represent the week 2 associated probes. Note
one of the probes is co-located with the pre�x and the marker is obscured.

41

4.2.3 Move Con�rmed After Previous Week Not Con�rmed: Week 3
Week 3 of data collection uses MaxMind GeoLite2 City data for 23 March (week 2) and

30 March (week 3) 2021. According to MaxMind data the pre�x moves approximately

1,280 km, from the location just west of Wichita, Kansas to north of Atlanta. Using target

IP 104.225.187.200 and with six probes, we submit a ping measurement request to RIPE

Atlas.

The probes used for this week have a mean distance to the pre�x location of approximately

24 km and median of approximately 7 km. Five of the six probes return an RTT, with

the lowest minimum RTT belonging to a probe associated with the new location (probe

ID 6859, RTT 19.63 ms), as shown in Table 4.6. Since the probe with the lowest RTT

is associated with the new location (the current week for data collection), we assess the

MaxMind indicated movement as con�rmed by RIPE Atlas.

Table 4.6. Single-week measurement results for 104.225.187.198/31 (Week
3)

Probe association/numberProbe ID Dist to MaxMind Location Min(RTT)

Week 2 / Probe 1 10507 0.07 km 64.76 ms

Week 2 / Probe 2 55178 53.18 km 22.75 ms

Week 2 / Probe 3 52177 73.95 km No result

Week 3 / Probe 1 6859 1.97 km 19.63 ms

Week 3 / Probe 2 23903 5.58 km 38.21 ms

Week 3 / Probe 3 51006 9.21 km 30.55 ms

Figure 4.10 shows an overview of the MaxMind reported pre�x locations and the probes

selected for use in the RIPE Atlas measurement. Figures 4.11 and 4.12 show closer vantages

of the original and new pre�x locations respectively.

42

Figure 4.10. Visualization of MaxMind location data and measurement re-
sults for 104.225.187.198/31 during week 3 of data collection. The red mark-
ers represent the MaxMind reported pre�x locations. The green markers rep-
resent the week 2 associated probes. The blue markers represent the week
3 associated probes. The yellow marker (obscured, located in bottom right
cluster) represents the min(RTT) probe.

Figure 4.11. Visualization of MaxMind original location and probes for
104.225.187.198/31 during week 3 of data collection, zoomed in on original
location. The red marker represents the week 2 MaxMind reported pre�x
location. The green markers represent the week 2 associated probes. Note
one of the probes is co-located with the pre�x and the marker is obscured.

43

Figure 4.12. Visualization of MaxMind new location and probes for
104.225.187.198/31 during week 3 of data collection, zoomed in on new
location. The red marker represents the week 3 MaxMind reported pre�x lo-
cation. The blue markers represent the week 3 associated probes. The yellow
marker represents the min(RTT) probe.

This collection iteration highlights the limitation described in Section 3.3.2, as we determine

the movement in the previous week's iteration described in Section 4.2.2 is �not con�rmed�

by the RIPE Atlas ping measurements. Therefore, we likely employ a possibly invalid

location for the week 3 starting location, resulting in a correlation tainted by possibly faulty

data. We reinforce this conclusion by observing the relative increase in the minimum RTT

during the week 3 iteration compared to the previous two weeks, as shown in Table 4.7.

Table 4.7. Minimum RTT and probe distance comparisons through three
weeks for 104.225.187.198/31

Data Collection Iteration Min(RTT) Min(RTT) Probe Dist to MaxMind Location

Week 1 5.78 ms 14.59 km

Week 2 6.01 ms 12.94 km

Week 3 19.63 ms 1.97 km

44

The signi�cant increase in the minimum RTT for the week 3 iteration possibly implies that

the pre�x is actually located at neither the original location nor the new location used in this

iteration. With a stateful data collection architecture, we could use the original location from

the previous iteration (located near Dallas) to compare to the Atlanta location to determine

if the pre�x had actually moved from the Dallas location.

4.2.4 MaxMind Location Oscillation: Week 4
Weeks 3 and 4 demonstrate an oscillation in the MaxMind data, with the location shifting

from outside Wichita, Kansas to Atlanta and back again as demonstrated in Figure 4.3. This

oscillation re�ects �ndings regarding MaxMind longitudinal instability as described in [3].

This movement could also re�ect a granularity change (from city-level to country-level

granularity and vice-versa), as we describe in Section 4.4.

4.2.5 Impressions from Single Pre�x Analysis
After analyzing �ve weeks of data obtained for 104.225.187.198/31, we conjecture the

following scenario to explain the behavior observed in both the MaxMind geolocation

data and RIPE Atlas measurement results. We opine that the pre�x actually resides at the

Dallas location re�ected in Section 4.2.1 and in the 16 March 2021 MaxMind data. The

con�rmed move during week 1 of data collection from Houston to Dallas, combined with

the not con�rmed move from Dallas to Kansas supports this scenario. We further reinforce

this conclusion by observing the RTT increases shown in Table 4.7 and described in

Section 4.2.3. The MaxMind location oscillates from the country-level granularity location

in Kansas to Atlanta as the granularity improves, then back again as the granularity degrades

as we discuss in Section 4.2.4. We correlate these �ndings by noting that the AS owner,

iboss Inc., maintains a cloud data center in the Dallas area [28].

The use of a stateful data collection methodology, as discussed in Section 3.3.2, could

allow us to more de�nitively determine if this pre�x had remained stationary at the Dallas

location. We propose the following mythology improvement for future implementations of

our system. Perform movement characterization after every iteration of data collection. If

a pre�x movement is not con�rmed, carry this information forward to the following data

collection iteration. Use the original (con�rmed) location instead of the new (not con�rmed)

location for measurement on the following data collection iteration. This would allow the

45

location resulting from a con�rmed move to be compared against subsequent MaxMind

reported locations to re�ne the actual movement of the pre�x.

4.3 Analysis of RTT Anomalies
As described in Section 4.1.1, the primary data point driving the characterization of pre�x

movement observed in MaxMind data (�con�rmed� or �not con�rmed�) is the minimum

RTT of probes associated with the original and new location assigned to a pre�x. We seek

to observe the variation in the magnitude of the minimum RTT di�erence between original

and new location probes to determine if anomalies exist in the collected data. A speci�c

cluster of measurements displayed unusual behavior with respect to the rest of the data.

4.3.1 Absolute RTT Di�erences
We calculate the absolute RTT di�erence for each measurement through the following

formula:

38 5 5= 01B¹<8=¹')) º0 � <8=¹')) º1º

where <8=¹')) º0 is the minimum RTT for probes associated with the original pre�x

location and<8=¹')) º1 is the minimum RTT for probes associated with the new pre�x

location. We divide the data collection results into two categories, �move con�rmed� and

�move not con�rmed,� and plot histograms showing the absolute RTT di�erences for each

subset. We show these histograms in Figures 4.13 and 4.14, where the x-axis indicates the

RTT di�erence as previously de�ned (note that the y-axis is highly zoomed in for clarity).

46

Figure 4.13. Histogram of absolute RTT di�erences when the MaxMind
move was con�rmed.

In Figure 4.13, the pre�x count with respect to absolute RTT di�erence decreases asymp-

totically to zero as the absolute RTT di�erence increases.

47

Figure 4.14. Histogram of absolute RTT di�erences when the MaxMind
move was not con�rmed. Note the pre�x count spike at approximately 625ms
(circled).

In Figure 4.14, we observe a spike in the number of pre�xes showing an absolute RTT

di�erence between approximately 500 and 750 milliseconds. Given this aberration, we

delve further into this behavior.

4.3.2 Geospatial Analysis of RTT Di�erence Spike
To better understand this spike in absolute RTT di�erence, we isolate the pre�xes showing

an absolute RTT di�erence between 500 and 750 milliseconds in which the MaxMind

48

movement was not con�rmed. We plot the 36 pre�xes meeting this criteria on a map, with

31 of the 36 appearing in Wisconsin and the Upper Peninsula of Michigan, as shown in

Figure 4.15. The other �ve pre�xes appear in Ohio, Florida, France, Switzerland, and Italy,

and are disregarded for analysis of this spike.

Figure 4.15. Map of pre�xes found in absolute RTT di�erence spike. The
blue markers indicate the original location for each pre�x and the red markers
indicate the new location for each pre�x (two markers on the map per pre�x
unless they are so close that they overlap).

49

4.3.3 Probe Evaluation and Hypothesized Source of RTT Di�erence
Spike

Upon isolating the cluster of 31 measurements located in Wisconsin and Michigan, we eval-

uate the measurement parameters to identify commonality. We determine that the probes

used for the �current week� locations (meaning the new locations as indicated by Max-

Mind) are one of two probes, probe ID 100244 or probe ID 55562. Probe information,

available through the RIPE Atlas browser interface, reveals that they share an IP address

(99.198.53.11), are located approximately 140 meters from each other, and both belong to

AS7155 (VIASAT-SP-BACKBONE).

Viasat is a satellite internet provider serving residential, commercial, and defense customers

[29]. To determine if the abnormal delay demonstrated by the spike in absolute RTT

di�erence is a result of a �rst hop over a satellite link, we run a traceroute measurement in

RIPE Atlas using the same parameters as one of the measurements observed in the spike

(same target IP address and same probes). The measurement results demonstrate the same

abnormally high RTT di�erence as the ping measurement performed during data collection,

as shown in Figure 4.16.

Figure 4.16. Results of traceroute measurement against pre�x contained
in RTT di�erence spike. Probe 55562 shows a signi�cantly higher RTT,
consistent with ping results shown during data collection.

Further analysis of the traceroute results shows a signi�cant delay over the second hop in

the traceroute to the target IP as shown in Figure 4.17, consistent with the delay typically

associated with a satellite link.

50

Figure 4.17. Results of traceroute from probe ID 55562 against pre�x con-
tained in RTT di�erence spike. The �rst hop out of the local network demon-
strates a signi�cant delay consistent with latency over satellite links.

Ultimately we determine that the majority of the measurements shown in the absolute RTT

di�erence spike likely demonstrate latency inherent in satellite links. While this subset

comprises a small portion of the overall corpus, this process demonstrates the ability to use

our methodology to characterize links within the overall internet structure. It also provides a

criteria to screen probes using satellite links from selection for use in future implementations

of our system.

4.4 Evaluation of Granularity E�ects
As described in [4], MaxMind appears to select a �default� location for a pre�x whenever

country-level granularity is the most re�ned result their geolocation algorithm can achieve.

51

For the United States, this point resides in Kansas, roughly at the geographic center of

the Continental US. We hypothesize that some signi�cant portion of the movement data

observed in the corpus can be attributed to changes in the granularity of MaxMind's

geolocation data (country-level to city-level or vice-versa).

We start by working to identify the default country-level location for each country using a

full MaxMind data set (16 March 2021) prior to �ltering for ICMP echo reachable pre�xes.

This data set contains 147,207 unique locations (as previously outlined in Table 3.1), and

we look to identify which locations occur frequently enough to be considered as a default

location. Figure 4.18, where the x-axis indicates the number times a location occurs in the

MaxMind data, displays a �attening in the CDF curve at approximately 100 occurrences

per location.

Figure 4.18. CDF of number of occurrences for each MaxMind location. The
curve begins to �atten at approximately 100 occurrences per location.

52

With this result, we retain any locations occurring at least 100 times in the data set (yielding

5,126 locations), use a reverse geocoder to identify in which country the location resides,

and select the most prevalent location for each country. This process yields a list of 136

locations, some of which we show in Figure 4.19. In contrast to the US default location

(which occurs the most frequently (121,236 times or roughly 3.5% of the total data set))

many other countries appear to default to capital or most populated cities (Toronto, Mexico

City, and Tokyo for example). Other locations appear to lie near the center of population for

a country (such as in Henan province in China) [30]. We believe these locations probably

serve as default locations due to the number of pre�xes attributed to these speci�c latitude

and longitude combinations, in contrast to a cluster of geolocation results located within

populated areas.

Figure 4.19. Map of most prevalent pre�x locations in Europe.

Using these default locations in conjunction with the corpus collected through data col-

lection, roughly 12% of the measurements in the corpus (4,862 / 44,359) have one of the

default locations as either their previous or current location in MaxMind. Table 4.8 shows

the same methodology applied to the overall MaxMind data set.

53

Table 4.8. Granularity change impact on MaxMind movement data

Date Pre�xes Moved Moved Pre�xes with Default Location Percentage

03/16/21 2,086 467 21.58%

03/23/21 260,902 21,545 8.26%

03/30/21 25,836 3,746 14.50%

04/06/21 87,477 5,987 6.84%

04/13/21 726,603 50,699 6.97%

By using these default locations for comparison against the overall MaxMind data set, we

determine that approximately 7.48% (82,444 / 1,102,904) of the pre�x movements ob-

served during data collection are possibly the result of granularity changes in the MaxMind

algorithm, as opposed to actual physical movement of the pre�x itself.

54

CHAPTER 5:
Conclusions and Future Work

5.1 Findings and Contributions
This study identi�es behaviors inherent in the MaxMind IPGeo database, and establishes the

foundation of a scalable methodology and architecture to use publicly accessible Internet

measurements to assess the validity of temporal variations in IPGeo databases.

5.1.1 MaxMind Behavior
We establish that MaxMind regularly attempts to re�ne pre�x location accuracy, with the

single pre�x detailed in Section 4.2 exhibiting four signi�cant location changes in a �ve

week period. Our analysis demonstrates that approximately 5.34% of the reported MaxMind

pre�x locations changed over the course of our observation (1,102,904 / 20,648,372), with

single-week rates of change ranging from .06% to 20.80%. While we cannot de�nitively

identify a cause for this location variation, we �nd that granularity changes could account

for approximately 7.48% of the overall geolocation variation noted in the �ve weeks we

analyzed MaxMind data. This initial insight provides the foundation for future exploration

of the causes of IPGeo database location instability. We propose future research identify

if this variance results from changes in BGP route advertisements, a data source which

exceeds the the scope of our study.

5.1.2 Measurement Architecture
Our study demonstrates a scalable methodology and architecture to use publicly accessible

Internet measurements to assess the validity of geolocation variations in IPGeo databases.

Our system allows for the identi�cation of moving pre�xes across multiple snapshots of the

MaxMind database. It also identi�es sets of active RIPE Atlas probes near a speci�ed loca-

tion to facilitate Internet measurements. We establish an analysis methodology to exclude

from these sets probes which appear to use high-latency links such as satellite to improve

the e�ectiveness of measurements used to characterize IPGeo database behavior.

55

5.2 Further Development
We propose several improvements to the data collection and analysis architecture and

methodology outlined in this study. These improvements exceed the time and resource con-

straints of our study, and future development could help re�ne the foundation we establish.

5.2.1 Movement Correlation Re�nement
We describe the limitation imposed by our target IP address selection in Section 3.3.3,

speci�cally the �nite number of IP addresses per pre�x considered for selection for RIPE

Atlas ping measurements. We also discuss the use of the USC ANT Lab's IPv4 Hitlist to

identify ICMP echo reachable IP addresses in /24 pre�xes. Since, as shown in Figure 3.3,

/24 pre�xes comprise approximately 18.67% of the observed MaxMind pre�xes (the most

common pre�x size in our data), the IPv4 Hitlist's body of reachable IP addresses in /24

pre�xes could signi�cantly increase the data yield in future research.

Other sources to aid IP address selection include fping and zmap. Fping employs ICMP echo

requests to determine target pre�x reachability and is designed to execute against multiple

targets, which may be speci�ed by an input �le [31]. The zmap network scanner uses

Transmission Control Protocol (TCP) SYN scans to determine pre�x reachability, outputting

reachable IP addresses within speci�ed pre�xes [32]. Both of these tools would enhance the

quantity of pre�xes with reachable target IP addresses for RIPE Atlas measurements and

increase the overall data yield. To expedite the weekly process of �nding reachable target IP

addresses, we propose maintaining an asynchronous list of reachable target addresses. This

list could be referenced each week as a starting point to see if previously reachable target

IP addresses remain usable for measurements.

Additional sources of data to characterize pre�x movement observed in MaxMind geoloca-

tion data could help to better understand possible causes behind this behavior. We discuss

various IPGeo methodologies in Section 2.2, speci�cally utilizing DNS, and describe prior

work using these methods to assess IPGeo database performance. We additionally identify

BGP route advertisements as a promising avenue to help correlate pre�x movement exhib-

ited by MaxMind. We propose future researchers combine the process used in our study

with these geolocation sources to further re�ne ground-truth comparisons against IPGeo

databases.

56

5.2.2 Methodology Expansion
Our methodology presents several opportunities for expansion. The duration of our data

collection process covered �ve consecutive comparisons of MaxMind data over a �ve

week period utilizing six consecutive MaxMind snapshots. We show signi�cant variance of

several parameters in these snapshots in Tables 3.1, 4.1, and 4.2. While the duration of our

data collection process allowed for methodology validation and initial correlation of data

anomalies to observed movement behavior, a longer duration research e�ort could improve

the general understanding of MaxMind's behavior.

Another avenue for expansion of our methodology arises from the process used to select

pre�xes for RIPE Atlas measurement described in Section 3.2.4. We only submit pre�xes

which demonstrate movement between MaxMind snapshots for measurement using RIPE

Atlas, while disregarding pre�xes that remain stationary. While this �ltering reduces the

number of RIPE Atlas measurements required and allows for characterization of pre�x

movement re�ected by MaxMind, opportunities exist to determine if pre�x movement

occurs which MaxMind fails to identify. Performing ground truth comparison on all pre�xes

present in MaxMind snapshots would allow for this analysis. We propose incorporating the

methods discussed in Section 5.2.1 to build this ground truth data while minimizing the

excessive loading of the RIPE Atlas system.

We propose further re�nement in the utilization of RIPE Atlas probes. We demonstrate

in Section 4.2 that the distance between probes and the reported MaxMind pre�x location

varies widely. Future iterations of our methodology could account for this variation to

improve the accuracy of the movement characterizations. The probe locations used in future

characterization algorithms could account for the probe location obfuscation (approximately

1km) described in Section 3.2.6 by employing probe location areas instead of the single

points used in our study. Finally, for MaxMind pre�x movements over small distances, the

probe selection algorithm could verify that probes selected for one location (either original

or new) are closer to their associated location (as de�ned in Section 4.1.2) than the other

location in the iteration, preventing probe overlap between sets.

57

5.3 Future Research
We identify future research avenues beyond the scope of this study. Researchers should

determine if IPv6 geolocation variation in MaxMind di�ers from IPv4. This topic would

illuminate di�erences in the geolocation algorithm implementation in the far more expansive

IPv6 address space and enhance understanding of geolocation of IPv6 hosts. We additionally

propose modi�cation of our methodology to explore the behavior of other IPGeo databases

to enhance community understanding of the processes used across various providers. Finally,

we encourage employing CBG in conjunction with our methodology to further characterize

IPGeo database location variation. The addition of CBG with passive BGP routing data

could signi�cantly enhance the insight our methodology provides.

5.4 Conclusion
This study enhances the understanding of the relationship between the logical and physical

layers of the Internet. With this insight, we work to improve the functionality, accessibility,

and security of the Internet environment for government agencies, commercial organiza-

tions, and Internet citizens alike.

58

APPENDIX: Data Collection Module Code

A.1 Maxmind-data-clean.py
1 # -*- coding: utf -8 -*-

2 """

3 Takes two consecutive weeks of MaxMind data from .csv files , removes

unneeded

4 data , and compares them to extract prefixes which display movement.

5

6 ARG1: Raw MAXMIND File Week 1

7 ARG2: Raw MAXMIND File Week 2

8 ARG3: Output file

9

10 """

11

12 import sys

13 import pandas as pd

14 import numpy as np

15 from geopy.distance import distance

16 from datetime import datetime

17

18

19 def getPrefixes_wk1(infile):

20 mm_data = pd.read_csv(infile , usecols=['network ', ' latitude ', '

longitude '])

21 mm_data.rename(columns={" latitude": "Week 1 Latitude", " longitude": "

Week 1 Longitude"}, inplace = True)

22 return mm_data

23

24 def getPrefixes_wk2(infile):

25 mm_data = pd.read_csv(infile , index_col='network ', usecols=['network ',

' latitude ', ' longitude '])

26 mm_data.rename(columns={" latitude": "Week 2 Latitude", " longitude": "

Week 2 Longitude"}, inplace = True)

27 return mm_data

28

29 def compilePrefixes(mm_wk1 , mm_wk2):

59

30 mm_wk1_size = mm_wk1.shape[0]

31

32 for i in range(mm_wk1_size):

33 net = mm_wk1.at[i , "network"]

34

35 #DEBUGGING ONLY

36 print(i , end='\r ')

37

38 mm_wk1.at[i , "MaxMind Shows Movement"] = False

39 mm_wk1.at[i , "MaxMind Week 2 Data Available"] = True

40 mm_wk1.at[i , "MaxMind Data Available"] = True

41

42 try:

43 wk2_lat = mm_wk2.at[net , "Week 2 Latitude"]

44 except:

45 mm_wk1.at[i , "MaxMind Week 2 Data Available"] = False

46 mm_wk1.at[i , "MaxMind Data Available"] = False

47 continue

48

49 wk2_long = mm_wk2.at[net , "Week 2 Longitude"]

50 mm_wk1.at[i , "Week 2 Latitude"] = wk2_lat

51 mm_wk1.at[i , "Week 2 Longitude"] = wk2_long

52 wk1_lat = mm_wk1.at[i , "Week 1 Latitude"]

53 wk1_long = mm_wk1.at[i , "Week 1 Longitude"]

54

55 is_nan_wk1lat = np. isnan(mm_wk1.at[i , "Week 1 Latitude"])

56 is_nan_wk1long = np. isnan(mm_wk1.at[i , "Week 1 Longitude"])

57 is_nan_wk2lat = np. isnan(mm_wk1.at[i , "Week 2 Latitude"])

58 is_nan_wk2long = np. isnan(mm_wk1.at[i , "Week 2 Longitude"])

59

60 if not is_nan_wk1lat and not is_nan_wk1long and not is_nan_wk2lat

and not is_nan_wk2long:

61 dist = float(distance((wk1_lat , wk1_long), (wk2_lat , wk2_long)).

km)

62 if dist < 0.5:

63 dist = 0

64 mm_wk1.at[i , "MaxMind Distance Difference"] = dist

65 if dist != 0:

66 mm_wk1.at[i , "MaxMind Shows Movement"] = True

67 else:

60

68 mm_wk1.at[i , "MaxMind Data Available"] = False

69

70 print("\n")

71

72 return mm_wk1

73

74 def writePrefixes(mm_data , outfile):

75

76 output_prefixes = mm_data[mm_data['MaxMind Shows Movement '] == True]

77 output_prefixes.set_index("network", inplace=True)

78 out_size = output_prefixes.shape[0]

79 print("Number of moved prefixes: ", out_size)

80

81 #TESTING ONLY

82 ' ' '

83 prefixes_sample = output_prefixes.sample(n=1000)

84 sample_outfile = "sample_" + outfile

85 prefixes_sample. to_csv(sample_outfile)

86 ' ' '

87

88 #ACTUAL

89

90 output_prefixes. to_csv(outfile)

91

92

93

94 ##

95

96 if __name__ == "__main__":

97 if len(sys.argv) < 4:

98 raise RuntimeError("Provide input files and output file")

99

100 start = datetime.now()

101 start_time = start .strftime("%H:%M:%S")

102 print("Start Time =", start_time)

103

104 wk1_infile = sys.argv [1]

105 wk2_infile = sys.argv [2]

106 outfile = sys.argv [3]

107

61

108 #ACTUAL

109

110 f = open(outfile , 'w', newline='')

111

112

113 #TESTING ONLY

114 ' ' '

115 sample_outfile = "sample_" + outfile

116 f_s = open(sample_outfile , 'w', newline=' ')

117 ' ' '

118

119 wk1_prefixes = getPrefixes_wk1(wk1_infile)

120 wk2_prefixes = getPrefixes_wk2(wk2_infile)

121 prefixes = compilePrefixes(wk1_prefixes , wk2_prefixes)

122 writePrefixes(prefixes , outfile)

123

124 #ACTUAL

125

126 f.close()

127

128

129 #TESTING ONLY

130 ' ' '

131 f_s.close()

132 ' ' '

133

134 end = datetime.now()

135 end_time = end.strftime("%H:%M:%S")

136 print("End Time =", end_time)

A.2 Target-pre-screen.py
1 # -*- coding: utf -8 -*-

2 """

3 Applies pre -screening for target prefixes and assigns target IP

addresses. If

4 a prefix us unreachable on pings to five IP addresses within the prefix ,

the

5 prefix is deemed unreachable. Program runs in parallel to expedite

62

output .

6

7 ARG1: Maxmind Data File

8 ARG2: Output file

9

10 """

11

12 import sys

13 from ipaddress import ip_address

14 import pandas as pd

15 from ping3 import ping

16 from multiprocessing import Pool , cpu_count

17 from datetime import datetime

18

19 def init_df_for_tgts(mm_data):

20

21 mm_data_size = mm_data.shape[0]

22

23 for i in range(mm_data_size):

24

25 print(" Initializing Targets , IP: ", i , end='\r ')

26

27 addr = mm_data.at[i , "network"]

28 addr = addr.split ("/") [0]

29 addr_bin = ip_address(addr)

30 addr_bin += 1

31

32 mm_data.at[i , "Target IP"] = addr_bin

33

34 print("\n")

35

36 return mm_data

37

38

39 def ping_checks(mm_data):

40

41 for i , row in mm_data. iterrows():

42 print("Pre -Screening Targets , IP: ", i , end='\r ')

43

44 addr_bin = mm_data.at[i , "Target IP"]

63

45 ping_result = ping(str(addr_bin))

46 IP_tries = 1

47 while (not ping_result) and (IP_tries < 5):

48 addr_bin += 1

49 ping_result = ping(str(addr_bin))

50 IP_tries += 1

51

52 mm_data.at[i , "Target IP"] = addr_bin

53 mm_data.at[i , "IP Addresses Tried"] = IP_tries

54

55 if not ping_result :

56 mm_data.at[i , "Target Reachable"] = False

57 else:

58 mm_data.at[i , "Target Reachable"] = True

59

60 print("\n")

61

62 return mm_data

63

64 def parallelize_ping_checks(mm_df , func):

65

66 mm_data_size = mm_df.shape[0]

67 n_cores = 200

68 print("Using %d cores\n" % n_cores)

69

70 chunk_size = int(mm_data_size/n_cores)

71

72 chunks = [mm_df_init . iloc[mm_df_init . index[i:i + chunk_size]] for i in

range(0, mm_df_init .shape[0] , chunk_size)]

73

74 pool = Pool(n_cores)

75 df = pd.concat(pool.map(func , chunks))

76 pool.close()

77 pool. join()

78

79

80 return df

81

82

83

64

84 ##

85

86 if __name__ == "__main__":

87 if len(sys.argv) < 3:

88 raise RuntimeError("Provide Input file , Output file")

89

90 start = datetime.now()

91 start_time = start .strftime("%H:%M:%S")

92 print("Start Time =", start_time)

93

94 mm_file = sys.argv [1]

95 df_outfile = sys.argv [2]

96 f = open(df_outfile , 'w', newline='')

97

98 #TESTING ONLY

99 ' ' '

100 mm_df = pd.read_csv(mm_file)

101 mm_sample_df = mm_df.sample(n=100)

102 mm_sample_df . reset_index(drop=True , inplace=True)

103

104 mm_df_init = init_df_for_tgts(mm_sample_df)

105 output_df = parallelize_ping_checks(mm_df_init , ping_checks)

106 ' ' '

107

108 #ACTUAL

109

110 mm_df = pd.read_csv(mm_file)

111

112 mm_df_init = init_df_for_tgts(mm_df)

113 output_df = parallelize_ping_checks(mm_df_init , ping_checks)

114

115 output_df .set_index('network ', inplace=True)

116

117 output_df . to_csv(f, index_label = 'network ')

118 f.close()

119

120 end = datetime.now()

121 end_time = end.strftime("%H:%M:%S")

122 print("End Time =", end_time)

65

A.3 Get-atlas-probes.py
1 #!/usr/bin/env python

2 """

3 Adapted from the following:

4 Program: $Id: fetch -atlas -v6.py $

5 Author: Robert Beverly <rbeverly@nps.edu>

6

7 Searches for RIPE ATLAS probes in geographic proximity to specific geos

of Maxmind provided prefixess

8

9 ARG1: Output file

10 """

11

12

13 import sys

14 import requests

15 import pandas as pd

16 from datetime import datetime

17

18 # bryan 's Atlas key

19 API_URL = "https ://atlas.ripe.net/api/v2"

20 KEY = "PLACE RIPE API KEY HERE"

21

22

23 def getPage(page):

24 payload = {'key ' : KEY, 'system -ipv4 -works ' : ' true ', ' format ' : '

json ', 'page ' : page}

25 res = requests.get(API_URL + "/probes" , params=payload)

26

27 if res.status_code != 200:

28 print("error occurred: %s" % res. json()["error"])

29 return None

30 return res. json()

31

32

33 def getProbes(maxpages=999999999):

34 i=0

35 page = 1

36 probes = dict ()

37 while True:

66

38 print("Fetching page %d" % (page))

39 data = getPage(page)

40 if not data:

41 break

42 if 'next ' not in data:

43 break

44 for result in data['results ']:

45 i+=1

46 v4addr = None

47 if 'address_v4 ' in result :

48 v4addr = result ['address_v4 ']

49 status = result ['status ']

50 connect_status = status['id ']

51 if v4addr and (connect_status == 1):

52 probe_id = result [' id ']

53 geometry = result ['geometry ']

54 if geometry:

55 coordinates = geometry['coordinates ']

56 long = coordinates [0]

57 lat = coordinates [1]

58 probes[probe_id] = (v4addr , lat , long)

59

60 print("Processed %d results , found %d IPv4 probes." % (i, len(probes

)))

61 page+=1

62 if page > maxpages:

63 break

64

65 print("Processed %d results , found %d IPv4 probes." % (i, len(probes))

)

66 return probes

67

68

69 ##

70

71 if __name__ == "__main__":

72

73 start = datetime.now()

74 start_time = start .strftime("%H:%M:%S")

75 print("Start Time =", start_time)

67

76

77 if len(sys.argv) < 2:

78 raise RuntimeError("Provide output file")

79

80 outfile = sys.argv [1]

81 f = open(outfile , 'w', newline='')

82 probes = getProbes()

83 probes_df = pd.DataFrame.from_dict (probes , orient=' index ', columns = (

'IP Address ', 'Latitude ', 'Longitude '))

84 probes_df . to_csv(f, index_label = 'Probe ID')

85 f.close()

86

87 end = datetime.now()

88 end_time = end.strftime("%H:%M:%S")

89 print("End Time =", end_time)

A.4 Best-probe-�nder.py
1 # -*- coding: utf -8 -*-

2 """

3 Finds three closest probes to each of two MaxMind locations per prefix

4

5 ARG1: Maxmind Data File with targets

6 ARG2: RIPE ATLAS Probe Data File

7 ARG3: Output file

8

9 """

10

11 import sys

12 import pandas as pd

13 import numpy as np

14 from scipy.spatial import distance

15 from geopy.distance import distance as gpdistance

16 from datetime import datetime

17

18

19 def init_df_for_probes(mm_clean):

20 mm_clean["Week 1 Probe 1 ID"] = np.nan

21 mm_clean["Week 1 Probe 1 Latitude"] = np.nan

68

22 mm_clean["Week 1 Probe 1 Longitude"] = np.nan

23 mm_clean["Week 1 Probe 1 Distance"] = np.nan

24

25 mm_clean["Week 1 Probe 2 ID"] = np.nan

26 mm_clean["Week 1 Probe 2 Latitude"] = np.nan

27 mm_clean["Week 1 Probe 2 Longitude"] = np.nan

28 mm_clean["Week 1 Probe 2 Distance"] = np.nan

29

30 mm_clean["Week 1 Probe 3 ID"] = np.nan

31 mm_clean["Week 1 Probe 3 Latitude"] = np.nan

32 mm_clean["Week 1 Probe 3 Longitude"] = np.nan

33 mm_clean["Week 1 Probe 3 Distance"] = np.nan

34

35 mm_clean["Week 2 Probe 1 ID"] = np.nan

36 mm_clean["Week 2 Probe 1 Latitude"] = np.nan

37 mm_clean["Week 2 Probe 1 Longitude"] = np.nan

38 mm_clean["Week 2 Probe 1 Distance"] = np.nan

39

40 mm_clean["Week 2 Probe 2 ID"] = np.nan

41 mm_clean["Week 2 Probe 2 Latitude"] = np.nan

42 mm_clean["Week 2 Probe 2 Longitude"] = np.nan

43 mm_clean["Week 2 Probe 2 Distance"] = np.nan

44

45 mm_clean["Week 2 Probe 3 ID"] = np.nan

46 mm_clean["Week 2 Probe 3 Latitude"] = np.nan

47 mm_clean["Week 2 Probe 3 Longitude"] = np.nan

48 mm_clean["Week 2 Probe 2 Distance"] = np.nan

49

50 return mm_clean

51

52 def closest_probe(prefix_loc , probes):

53 closest_index = distance.cdist ([prefix_loc], probes).argmin()

54 return closest_index

55

56 def determine_probes(mm_clean , probes_master):

57 mm_clean_size = mm_clean.shape[0]

58

59 for i in range(mm_clean_size):

60 print(i , end='\r ')

61

69

62 probes = probes_master .copy()

63 wk1_lat = mm_clean.at[i , 'Week 1 Latitude ']

64 wk1_long = mm_clean.at[i , 'Week 1 Longitude ']

65 wk2_lat = mm_clean.at[i , 'Week 2 Latitude ']

66 wk2_long = mm_clean.at[i , 'Week 2 Longitude ']

67 wk1_prefix_loc = (wk1_lat , wk1_long)

68 wk2_prefix_loc = (wk2_lat , wk2_long)

69 if (pd. isnull (wk1_lat)) or (pd. isnull (wk1_long)) or (pd. isnull (

wk2_lat)) or (pd. isnull (wk2_long)):

70 continue

71 l l_array = probes[['Latitude ', 'Longitude ']]. to_numpy()

72

73 #START WEEK 1

74 wk1_probe_1_index = closest_probe(wk1_prefix_loc , ll_array)

75 wk1_probe_1_id = probes.at[wk1_probe_1_index , 'Probe ID']

76 wk1_probe_1_lat = probes.at[wk1_probe_1_index , 'Latitude ']

77 wk1_probe_1_long = probes.at[wk1_probe_1_index , 'Longitude ']

78 wk1_probe_1_dist = float(gpdistance((wk1_lat , wk1_long), (

wk1_probe_1_lat , wk1_probe_1_long)).km)

79 mm_clean.at[i , 'Week 1 Probe 1 ID'] = wk1_probe_1_id

80 mm_clean.at[i , 'Week 1 Probe 1 Latitude '] = wk1_probe_1_lat

81 mm_clean.at[i , 'Week 1 Probe 1 Longitude '] = wk1_probe_1_long

82 mm_clean.at[i , 'Week 1 Probe 1 Distance '] = wk1_probe_1_dist

83

84 probes.drop([wk1_probe_1_index], inplace = True)

85 probes.reset_index(drop = True , inplace = True)

86 l l_array = probes[['Latitude ', 'Longitude ']]. to_numpy()

87

88 wk1_probe_2_index = closest_probe(wk1_prefix_loc , ll_array)

89 wk1_probe_2_id = probes.at[wk1_probe_2_index , 'Probe ID']

90 wk1_probe_2_lat = probes.at[wk1_probe_2_index , 'Latitude ']

91 wk1_probe_2_long = probes.at[wk1_probe_2_index , 'Longitude ']

92 wk1_probe_2_dist = float(gpdistance((wk1_lat , wk1_long), (

wk1_probe_2_lat , wk1_probe_2_long)).km)

93 mm_clean.at[i , 'Week 1 Probe 2 ID'] = wk1_probe_2_id

94 mm_clean.at[i , 'Week 1 Probe 2 Latitude '] = wk1_probe_2_lat

95 mm_clean.at[i , 'Week 1 Probe 2 Longitude '] = wk1_probe_2_long

96 mm_clean.at[i , 'Week 1 Probe 2 Distance '] = wk1_probe_2_dist

97

98 probes.drop([wk1_probe_2_index], inplace = True)

70

99 probes.reset_index(drop = True , inplace = True)

100 l l_array = probes[['Latitude ', 'Longitude ']]. to_numpy()

101

102 wk1_probe_3_index = closest_probe(wk1_prefix_loc , ll_array)

103 wk1_probe_3_id = probes.at[wk1_probe_3_index , 'Probe ID']

104 wk1_probe_3_lat = probes.at[wk1_probe_3_index , 'Latitude ']

105 wk1_probe_3_long = probes.at[wk1_probe_3_index , 'Longitude ']

106 wk1_probe_3_dist = float(gpdistance((wk1_lat , wk1_long), (

wk1_probe_3_lat , wk1_probe_3_long)).km)

107 mm_clean.at[i , 'Week 1 Probe 3 ID'] = wk1_probe_3_id

108 mm_clean.at[i , 'Week 1 Probe 3 Latitude '] = wk1_probe_3_lat

109 mm_clean.at[i , 'Week 1 Probe 3 Longitude '] = wk1_probe_3_long

110 mm_clean.at[i , 'Week 1 Probe 3 Distance '] = wk1_probe_3_dist

111

112 #START WEEK 2

113 probes = probes_master .copy()

114 l l_array = probes[['Latitude ', 'Longitude ']]. to_numpy()

115

116 wk2_probe_1_index = closest_probe(wk2_prefix_loc , ll_array)

117 wk2_probe_1_id = probes.at[wk2_probe_1_index , 'Probe ID']

118 wk2_probe_1_lat = probes.at[wk2_probe_1_index , 'Latitude ']

119 wk2_probe_1_long = probes.at[wk2_probe_1_index , 'Longitude ']

120 wk2_probe_1_dist = float(gpdistance((wk2_lat , wk2_long), (

wk2_probe_1_lat , wk2_probe_1_long)).km)

121 mm_clean.at[i , 'Week 2 Probe 1 ID'] = wk2_probe_1_id

122 mm_clean.at[i , 'Week 2 Probe 1 Latitude '] = wk2_probe_1_lat

123 mm_clean.at[i , 'Week 2 Probe 1 Longitude '] = wk2_probe_1_long

124 mm_clean.at[i , 'Week 2 Probe 1 Distance '] = wk2_probe_1_dist

125

126 probes.drop([wk2_probe_1_index], inplace = True)

127 probes.reset_index(drop = True , inplace = True)

128 l l_array = probes[['Latitude ', 'Longitude ']]. to_numpy()

129

130 wk2_probe_2_index = closest_probe(wk2_prefix_loc , ll_array)

131 wk2_probe_2_id = probes.at[wk2_probe_2_index , 'Probe ID']

132 wk2_probe_2_lat = probes.at[wk2_probe_2_index , 'Latitude ']

133 wk2_probe_2_long = probes.at[wk2_probe_2_index , 'Longitude ']

134 wk2_probe_2_dist = float(gpdistance((wk2_lat , wk2_long), (

wk2_probe_2_lat , wk2_probe_2_long)).km)

135 mm_clean.at[i , 'Week 2 Probe 2 ID'] = wk2_probe_2_id

71

136 mm_clean.at[i , 'Week 2 Probe 2 Latitude '] = wk2_probe_2_lat

137 mm_clean.at[i , 'Week 2 Probe 2 Longitude '] = wk2_probe_2_long

138 mm_clean.at[i , 'Week 2 Probe 2 Distance '] = wk2_probe_2_dist

139

140 probes.drop([wk2_probe_2_index], inplace = True)

141 probes.reset_index(drop = True , inplace = True)

142 l l_array = probes[['Latitude ', 'Longitude ']]. to_numpy()

143

144 wk2_probe_3_index = closest_probe(wk2_prefix_loc , ll_array)

145 wk2_probe_3_id = probes.at[wk2_probe_3_index , 'Probe ID']

146 wk2_probe_3_lat = probes.at[wk2_probe_3_index , 'Latitude ']

147 wk2_probe_3_long = probes.at[wk2_probe_3_index , 'Longitude ']

148 wk2_probe_3_dist = float(gpdistance((wk2_lat , wk2_long), (

wk2_probe_3_lat , wk2_probe_3_long)).km)

149 mm_clean.at[i , 'Week 2 Probe 3 ID'] = wk2_probe_3_id

150 mm_clean.at[i , 'Week 2 Probe 3 Latitude '] = wk2_probe_3_lat

151 mm_clean.at[i , 'Week 2 Probe 3 Longitude '] = wk2_probe_3_long

152 mm_clean.at[i , 'Week 2 Probe 3 Distance '] = wk2_probe_3_dist

153

154 mm_clean.set_index('network ', inplace=True)

155

156 return mm_clean

157

158 ##

159

160 if __name__ == "__main__":

161 if len(sys.argv) < 4:

162 raise RuntimeError("Provide Maxmind file , Probe file , and output

file")

163

164 start = datetime.now()

165 start_time = start .strftime("%H:%M:%S")

166 print("Start Time =", start_time)

167

168 mm_file = sys.argv [1]

169 probe_file = sys.argv [2]

170 outfile = sys.argv [3]

171 mm_clean_df = pd.read_csv(mm_file , usecols=['network ', 'Week 1

Latitude ', 'Week 1 Longitude ', "Week 2 Latitude" , "Week 2 Longitude

", "MaxMind Distance Difference", "Target Reachable", "Target IP", "

72

IP Addresses Tried"])

172 probe_df = pd.read_csv(probe_file , usecols=['Probe ID', 'IP Address ',

'Latitude ', 'Longitude '])

173 f = open(outfile , 'w', newline='')

174

175 mm_clean_df = init_df_for_probes(mm_clean_df)

176 output_df = determine_probes(mm_clean_df , probe_df)

177

178 output_df . to_csv(f, index_label = 'network ')

179 f.close()

180

181 end = datetime.now()

182 end_time = end.strftime("%H:%M:%S")

183 print("End Time =", end_time)

A.5 Measurement-request.py
1 # -*- coding: utf -8 -*-

2 """

3 Program submits measurement requests through RIPE ATLAS API on reachable

4 prefixes.

5

6 ARG1: Maxmind Data File with Probes and Targets

7 ARG2: Output file

8 ARG3: Tag (lowercase letters with no spaces)

9

10 """

11

12 import sys

13 import time

14 import pandas as pd

15 import numpy as np

16 from ripe.atlas.cousteau import Ping , AtlasCreateRequest , AtlasSource

17 from datetime import datetime

18

19 KEY = "PLACE RIPE API KEY HERE"

20

21 def init_df_for_measurements(mm_data):

22

73

23 mm_with_targets = mm_data[mm_data["Target Reachable"] == True]

24 mm_with_targets. reset_index(drop=True , inplace=True)

25

26 return mm_with_targets

27

28

29 def request_measurements(mm_data , tag):

30

31 mm_data_size = mm_data.shape[0]

32 mm_data["Measurement ID"] = np.nan

33

34 for i in range(mm_data_size):

35 tries = 0

36

37 print("Request : ", i , end='\r ')

38

39 tgt = str(mm_data.at[i , "Target IP"])

40 wk1_source1_ID = str(int(mm_data.at[i , "Week 1 Probe 1 ID"]))

41 wk1_source2_ID = str(int(mm_data.at[i , "Week 1 Probe 2 ID"]))

42 wk1_source3_ID = str(int(mm_data.at[i , "Week 1 Probe 3 ID"]))

43 wk2_source1_ID = str(int(mm_data.at[i , "Week 2 Probe 1 ID"]))

44 wk2_source2_ID = str(int(mm_data.at[i , "Week 2 Probe 2 ID"]))

45 wk2_source3_ID = str(int(mm_data.at[i , "Week 2 Probe 3 ID"]))

46 mes_description = mm_data.at[i , "network"]

47

48 ping = Ping(af=4, target=tgt , description=mes_description , tags=[tag

])

49 wk1_source1 = AtlasSource(type="probes", requested=1, value =

wk1_source1_ID)

50 wk1_source2 = AtlasSource(type="probes", requested=1, value =

wk1_source2_ID)

51 wk1_source3 = AtlasSource(type="probes", requested=1, value =

wk1_source3_ID)

52 wk2_source1 = AtlasSource(type="probes", requested=1, value =

wk2_source1_ID)

53 wk2_source2 = AtlasSource(type="probes", requested=1, value =

wk2_source2_ID)

54 wk2_source3 = AtlasSource(type="probes", requested=1, value =

wk2_source3_ID)

55 atlas_request = AtlasCreateRequest(

74

56 start_time=datetime.utcnow(),

57 key=KEY,

58 measurements=[ping],

59 sources=[wk1_source1 , wk1_source2 , wk1_source3 , wk2_source1 ,

wk2_source2 , wk2_source3],

60 is_oneoff=True)

61

62 (is_success , response) = atlas_request .create()

63

64 while (not is_success) and (tries <= 60):

65 tries += 1

66 time.sleep(2)

67 atlas_request = AtlasCreateRequest(

68 start_time=datetime.utcnow(),

69 key=KEY,

70 measurements=[ping],

71 sources=[wk1_source1 , wk1_source2 , wk1_source3 , wk2_source1 ,

wk2_source2 , wk2_source3],

72 is_oneoff=True)

73 (is_success , response) = atlas_request .create()

74

75 if tries >= 59:

76 continue

77

78 measurement_ID = response['measurements '][0]

79 mm_data.at[i , "Measurement ID"] = measurement_ID

80

81

82 mm_data.set_index('network ', inplace=True)

83

84 return mm_data

85

86

87

88 ###

89

90 if __name__ == "__main__":

91 if len(sys.argv) < 4:

92 raise RuntimeError("Provide Input file , Output file , and tag")

93

75

94 start = datetime.now()

95 start_time = start .strftime("%H:%M:%S")

96 print("Start Time =", start_time)

97

98 mm_file = sys.argv [1]

99 df_outfile = sys.argv [2]

100 tag = sys.argv [3]

101 f = open(df_outfile , 'w', newline='')

102

103 #TESTING ONLY

104 ' ' '

105 mm_df = pd.read_csv(mm_file)

106 mm_sample_df = mm_df.sample(n=2)

107 mm_sample_df . reset_index(inplace=True)

108 mm_sample_df .drop(columns=[' index '], inplace=True)

109 mm_df_init = init_df_for_measurements(mm_sample_df)

110 ' ' '

111

112 #ACTUAL

113 mm_df = pd.read_csv(mm_file)

114 mm_df_init = init_df_for_measurements(mm_df)

115

116

117 output_df = request_measurements(mm_df_init , tag)

118 output_df . to_csv(f, index_label = 'network ')

119 f.close()

120

121 end = datetime.now()

122 end_time = end.strftime("%H:%M:%S")

123 print("End Time =", end_time)

A.6 Measurement-request-PARALLEL.py
1 # -*- coding: utf -8 -*-

2 """

3 Program submits measurement requests through RIPE ATLAS API on reachable

4 prefixes.

5

6 ARG1: Maxmind Data File with Probes and Targets

76

7 ARG2: Output file

8 ARG3: Tag (lowercase letters with no spaces)

9

10 """

11

12 import sys

13 import time

14 import pandas as pd

15 import numpy as np

16 from ripe.atlas.cousteau import Ping , AtlasCreateRequest , AtlasSource

17 from multiprocessing import Pool , cpu_count

18 from datetime import datetime

19

20 KEY = "PLACE RIPE API KEY HERE"

21

22 def init_df_for_measurements(mm_data):

23

24 mm_with_targets = mm_data[mm_data["Target Reachable"] == True]

25 mm_with_targets. reset_index(drop=True , inplace=True)

26

27 return mm_with_targets

28

29

30 def request_measurements(mm_data , tag = "onethreeapriltest "):

31

32 mm_data_size = mm_data.shape[0]

33 mm_data["Measurement ID"] = np.nan

34

35 for i , row in mm_data. iterrows():

36 tries = 0

37

38 print("Request : ", i , end='\r ')

39

40 tgt = str(mm_data.at[i , "Target IP"])

41 wk1_source1_ID = str(int(mm_data.at[i , "Week 1 Probe 1 ID"]))

42 wk1_source2_ID = str(int(mm_data.at[i , "Week 1 Probe 2 ID"]))

43 wk1_source3_ID = str(int(mm_data.at[i , "Week 1 Probe 3 ID"]))

44 wk2_source1_ID = str(int(mm_data.at[i , "Week 2 Probe 1 ID"]))

45 wk2_source2_ID = str(int(mm_data.at[i , "Week 2 Probe 2 ID"]))

46 wk2_source3_ID = str(int(mm_data.at[i , "Week 2 Probe 3 ID"]))

77

47 mes_description = mm_data.at[i , "network"]

48

49 ping = Ping(af=4, target=tgt , description=mes_description , tags=[tag

])

50 wk1_source1 = AtlasSource(type="probes", requested=1, value =

wk1_source1_ID)

51 wk1_source2 = AtlasSource(type="probes", requested=1, value =

wk1_source2_ID)

52 wk1_source3 = AtlasSource(type="probes", requested=1, value =

wk1_source3_ID)

53 wk2_source1 = AtlasSource(type="probes", requested=1, value =

wk2_source1_ID)

54 wk2_source2 = AtlasSource(type="probes", requested=1, value =

wk2_source2_ID)

55 wk2_source3 = AtlasSource(type="probes", requested=1, value =

wk2_source3_ID)

56 atlas_request = AtlasCreateRequest(

57 start_time=datetime.utcnow(),

58 key=KEY,

59 measurements=[ping],

60 sources=[wk1_source1 , wk1_source2 , wk1_source3 , wk2_source1 ,

wk2_source2 , wk2_source3],

61 is_oneoff=True)

62

63 (is_success , response) = atlas_request .create()

64

65 while (not is_success) and (tries <= 60):

66 tries += 1

67 time.sleep(2)

68 atlas_request = AtlasCreateRequest(

69 start_time=datetime.utcnow(),

70 key=KEY,

71 measurements=[ping],

72 sources=[wk1_source1 , wk1_source2 , wk1_source3 , wk2_source1 ,

wk2_source2 , wk2_source3],

73 is_oneoff=True)

74 (is_success , response) = atlas_request .create()

75

76 if tries >= 59:

77 continue

78

78

79 measurement_ID = response['measurements '][0]

80 mm_data.at[i , "Measurement ID"] = measurement_ID

81

82 mm_data.set_index('network ', inplace=True)

83

84 return mm_data

85

86 def parallelize_requests(mm_df , func):

87

88 mm_data_size = mm_df.shape[0]

89 print(mm_data_size)

90 n_cores = 20

91 print("Using %d cores\n" % n_cores)

92

93 chunk_size = int(mm_data_size/n_cores)

94 print(chunk_size)

95

96 chunks = [mm_df_init . iloc[mm_df_init . index[i:i + chunk_size]] for i in

range(0, mm_df_init .shape[0] , chunk_size)]

97

98 pool = Pool(n_cores)

99 df = pd.concat(pool.map(func , chunks))

100 pool.close()

101 pool. join()

102

103

104 return df

105

106

107

108 ##

109

110 if __name__ == "__main__":

111 if len(sys.argv) < 4:

112 raise RuntimeError("Provide Input file , Output file , and tag")

113

114 start = datetime.now()

115 start_time = start .strftime("%H:%M:%S")

116 print("Start Time =", start_time)

79

117

118 mm_file = sys.argv [1]

119 df_outfile = sys.argv [2]

120 tag = sys.argv [3]

121 f = open(df_outfile , 'w', newline='')

122

123 #TESTING ONLY

124

125 # mm_df = pd.read_csv(mm_file)

126 # mm_df_init = init_df_for_measurements(mm_df)

127 # mm_df_init = mm_df.sample(n=20)

128 # mm_df_init . reset_index(inplace=True)

129 # mm_df_init .drop(columns=[' index '], inplace=True)

130

131 # print(mm_df_init)

132

133

134 #ACTUAL

135 mm_df = pd.read_csv(mm_file)

136 mm_df_init = init_df_for_measurements(mm_df)

137

138

139 output_df = parallelize_requests(mm_df_init , request_measurements)

140 output_df . to_csv(f, index_label = 'network ')

141 f.close()

142

143 end = datetime.now()

144 end_time = end.strftime("%H:%M:%S")

145 print("End Time =", end_time)

A.7 Retrieve-Measurement-Results.py
1 # -*- coding: utf -8 -*-

2 """

3 Program retrieves mesurement results based on measurement ID.

4

5 ARG1: Maxmind Data File

6 ARG2: Output file

7 """

80

8

9 import sys

10 import requests

11 import pandas as pd

12 import numpy as np

13 from ripe.atlas.sagan import PingResult

14 from datetime import datetime

15

16

17 def init_df_for_measurements(meas_df):

18

19 meas_df["Week 1 Probe 1 Min RTT"] = np.nan

20 meas_df["Week 1 Probe 2 Min RTT"] = np.nan

21 meas_df["Week 1 Probe 3 Min RTT"] = np.nan

22 meas_df["Week 2 Probe 1 Min RTT"] = np.nan

23 meas_df["Week 2 Probe 2 Min RTT"] = np.nan

24 meas_df["Week 2 Probe 3 Min RTT"] = np.nan

25

26 return meas_df

27

28 def request_results(meas_df):

29 meas_df_size = meas_df.shape[0]

30

31 for i in range(meas_df_size):

32 measurement = i+1

33 print("Measurement: ", measurement)

34 meas_id = meas_df.at[i , "Measurement ID"]

35

36 if np. isnan(meas_id):

37 continue

38

39 meas_id = int(meas_id)

40

41 source = "https ://atlas.ripe.net/api/v2/measurements/" + str(meas_id

) + "/ results"

42 resp = requests.get(source)

43 while(resp.status_code != 200):

44 resp = requests.get(source)

45 response = requests.get(source). json()

46

81

47

48 for element in response:

49 result = PingResult (element)

50 result_probe = result .probe_id

51 wk1_probe_1 = int(meas_df.at[i , "Week 1 Probe 1 ID"])

52 wk1_probe_2 = int(meas_df.at[i , "Week 1 Probe 2 ID"])

53 wk1_probe_3 = int(meas_df.at[i , "Week 1 Probe 3 ID"])

54 wk2_probe_1 = int(meas_df.at[i , "Week 2 Probe 1 ID"])

55 wk2_probe_2 = int(meas_df.at[i , "Week 2 Probe 2 ID"])

56 wk2_probe_3 = int(meas_df.at[i , "Week 2 Probe 3 ID"])

57 min_rtt = result . rtt_min

58 if result_probe == wk1_probe_1:

59 meas_df.at[i , "Week 1 Probe 1 Min RTT"] = min_rtt

60 elif result_probe == wk1_probe_2:

61 meas_df.at[i , "Week 1 Probe 2 Min RTT"] = min_rtt

62 elif result_probe == wk1_probe_3:

63 meas_df.at[i , "Week 1 Probe 3 Min RTT"] = min_rtt

64 elif result_probe == wk2_probe_1:

65 meas_df.at[i , "Week 2 Probe 1 Min RTT"] = min_rtt

66 elif result_probe == wk2_probe_2:

67 meas_df.at[i , "Week 2 Probe 2 Min RTT"] = min_rtt

68 elif result_probe == wk2_probe_3:

69 meas_df.at[i , "Week 2 Probe 3 Min RTT"] = min_rtt

70

71 meas_df.set_index('network ', inplace=True)

72

73 print("Results Retrieved")

74

75 return meas_df

76

77

78

79

80 ##

81

82 if __name__ == "__main__":

83 if len(sys.argv) < 3:

84 raise RuntimeError("Provide Input file and Output file")

85

86 start = datetime.now()

82

87 start_time = start .strftime("%H:%M:%S")

88 print("Start Time =", start_time)

89

90 mm_file = sys.argv [1]

91 outfile = sys.argv [2]

92 f = open(outfile , 'w', newline='')

93

94 mm_df = pd.read_csv(mm_file)

95

96 init_df = init_df_for_measurements(mm_df)

97

98 output_df = request_results(init_df)

99

100 output_df . to_csv(f, index_label = 'network ')

101 f.close()

102

103 end = datetime.now()

104 end_time = end.strftime("%H:%M:%S")

105 print("End Time =", end_time)

A.8 Retrieve-Measurement-Results-by-tag.py
1 # -*- coding: utf -8 -*-

2 """

3 Program retrieves mesurement results based on measurement ID using the

assigned Tag.

4

5 ARG1: Maxmind Data File

6 ARG2: Output file

7 """

8

9 import sys

10 import requests

11 import pandas as pd

12 import numpy as np

13 from ripe.atlas.sagan import PingResult

14 from datetime import datetime

15 import urllib3

16 import json

83

17

18 API_URL = "https ://atlas.ripe.net/api/v2"

19 TAG = "sixaprilactual"

20 KEY = "af5f9084 -9e02 -42db-a726 -cad579996607"

21 HTTP = urllib3.PoolManager ()

22

23 def init_df_for_measurements(meas_df):

24

25 meas_df["Week 1 Probe 1 Min RTT"] = np.nan

26 meas_df["Week 1 Probe 2 Min RTT"] = np.nan

27 meas_df["Week 1 Probe 3 Min RTT"] = np.nan

28 meas_df["Week 2 Probe 1 Min RTT"] = np.nan

29 meas_df["Week 2 Probe 2 Min RTT"] = np.nan

30 meas_df["Week 2 Probe 3 Min RTT"] = np.nan

31

32 meas_df.set_index('network ', inplace=True)

33

34 return meas_df

35

36 def getPage(page):

37 payload = {'key ' : KEY, 'tags ' : TAG, 'page ' : page}

38 res = HTTP.request('GET', API_URL + "/measurements" , fields = payload

)

39 tries = 1

40 while (res.status != 200) and (tries <= 20):

41 tries += 1

42 res = HTTP.request('GET', API_URL + "/measurements" , fields =

payload)

43 if (res.status != 200) and (tries > 20):

44 print("page error on page %d", page)

45 return None

46 return json. loads(res.data.decode('utf -8 '))

47

48 def getUrl (url):

49 tries = 1

50 resp = HTTP.request('GET', url)

51 while(resp.status != 200) and (tries <= 20):

52 tries += 1

53 resp = HTTP.request('GET', url)

54 if (resp.status != 200) and (tries > 20):

84

55 print("could not retrieve url %s", url)

56 return None

57 return json. loads(resp.data.decode('utf -8 '))

58

59 def request_results(meas_df):

60 measurement = 0

61 page = 1

62

63 next_url = API_URL + "/measurements" + "?key=" + KEY + "&page=" + str(

page) + "&tags=" + TAG

64 while True:

65

66 if not next_url :

67 break

68

69 tag_response = getUrl (next_url)

70

71 if not tag_response:

72 break

73

74 try:

75 tag_results = tag_response["results"]

76 except:

77 break

78

79 next_url = tag_response["next"]

80

81 for tag_element in tag_results :

82 measurement += 1

83 print("Measurement: ", measurement , end = '\r ')

84

85 result_html = tag_element["result "]

86 meas_id = tag_element[" id"]

87 description = tag_element["description"]

88 meas_df.at[description , "Measurement ID"] = meas_id

89

90 resp = HTTP.request('GET', result_html)

91 while(resp.status != 200):

92 resp = HTTP.request('GET', result_html)

93 response = json. loads(resp.data.decode('utf -8 '))

85

94

95 for element in response:

96 result = PingResult (element)

97 result_probe = result .probe_id

98 wk1_probe_1 = int(meas_df.at[description , "Week 1 Probe 1 ID"])

99 wk1_probe_2 = int(meas_df.at[description , "Week 1 Probe 2 ID"])

100 wk1_probe_3 = int(meas_df.at[description , "Week 1 Probe 3 ID"])

101 wk2_probe_1 = int(meas_df.at[description , "Week 2 Probe 1 ID"])

102 wk2_probe_2 = int(meas_df.at[description , "Week 2 Probe 2 ID"])

103 wk2_probe_3 = int(meas_df.at[description , "Week 2 Probe 3 ID"])

104 min_rtt = result . rtt_min

105 if result_probe == wk1_probe_1:

106 meas_df.at[description , "Week 1 Probe 1 Min RTT"] = min_rtt

107 elif result_probe == wk1_probe_2:

108 meas_df.at[description , "Week 1 Probe 2 Min RTT"] = min_rtt

109 elif result_probe == wk1_probe_3:

110 meas_df.at[description , "Week 1 Probe 3 Min RTT"] = min_rtt

111 elif result_probe == wk2_probe_1:

112 meas_df.at[description , "Week 2 Probe 1 Min RTT"] = min_rtt

113 elif result_probe == wk2_probe_2:

114 meas_df.at[description , "Week 2 Probe 2 Min RTT"] = min_rtt

115 elif result_probe == wk2_probe_3:

116 meas_df.at[description , "Week 2 Probe 3 Min RTT"] = min_rtt

117 page += 1

118

119 print("Measurement: ", measurement)

120 print("Results Retrieved")

121

122 return meas_df

123

124

125

126

127 ###

128

129 if __name__ == "__main__":

130 if len(sys.argv) < 3:

131 raise RuntimeError("Provide Input file and Output file")

132

133 start = datetime.now()

86

134 start_time = start .strftime("%H:%M:%S")

135 print("Start Time =", start_time)

136

137 mm_file = sys.argv [1]

138 outfile = sys.argv [2]

139 f = open(outfile , 'w', newline='')

140

141 mm_df = pd.read_csv(mm_file)

142

143 init_df = init_df_for_measurements(mm_df)

144

145 output_df = request_results(init_df)

146

147 output_df . to_csv(f, index_label = 'network ')

148 f.close()

149

150 end = datetime.now()

151 end_time = end.strftime("%H:%M:%S")

152 print("End Time =", end_time)

A.9 Retrieve-Measurement-Results-NO-MEAS-FILE.py
1 # -*- coding: utf -8 -*-

2 """

3 Program retrieves mesurement results based on measurement ID using the

assigned Tag.

4

5 ARG1: Maxmind Data File

6 ARG2: Output file

7 """

8

9 import sys

10 import requests

11 import pandas as pd

12 import numpy as np

13 from ripe.atlas.sagan import PingResult

14 from datetime import datetime

15 import urllib3

16 import json

87

17

18 API_URL = "https ://atlas.ripe.net/api/v2"

19 TAG = "onethreeaprilactualv2"

20 KEY = "af5f9084 -9e02 -42db-a726 -cad579996607"

21 HTTP = urllib3.PoolManager ()

22

23 def init_df_for_measurements(meas_df):

24

25 mm_reach_only = meas_df[meas_df["Target Reachable"] == True]

26

27 mm_reach_only["Week 1 Probe 1 Min RTT"] = np.nan

28 mm_reach_only["Week 1 Probe 2 Min RTT"] = np.nan

29 mm_reach_only["Week 1 Probe 3 Min RTT"] = np.nan

30 mm_reach_only["Week 2 Probe 1 Min RTT"] = np.nan

31 mm_reach_only["Week 2 Probe 2 Min RTT"] = np.nan

32 mm_reach_only["Week 2 Probe 3 Min RTT"] = np.nan

33

34 mm_reach_only["Measurement ID"] = np.nan

35

36 mm_reach_only.set_index('network ', inplace=True)

37

38 return mm_reach_only

39

40 def getPage(page):

41 payload = {'key ' : KEY, 'tags ' : TAG, 'page ' : page}

42 res = HTTP.request('GET', API_URL + "/measurements" , fields = payload

)

43 tries = 1

44 while (res.status != 200) and (tries <= 20):

45 tries += 1

46 res = HTTP.request('GET', API_URL + "/measurements" , fields =

payload)

47 if (res.status != 200) and (tries > 20):

48 print("page error on page %d", page)

49 return None

50 return json. loads(res.data.decode('utf -8 '))

51

52 def getUrl (url):

53 tries = 1

54 resp = HTTP.request('GET', url)

88

55 while(resp.status != 200) and (tries <= 20):

56 tries += 1

57 resp = HTTP.request('GET', url)

58 if (resp.status != 200) and (tries > 20):

59 print("could not retrieve url %s", url)

60 return None

61 return json. loads(resp.data.decode('utf -8 '))

62

63 def request_results(meas_df):

64 measurement = 0

65 page = 1

66

67 next_url = API_URL + "/measurements" + "?key=" + KEY + "&page=" + str(

page) + "&tags=" + TAG

68 while True:

69

70 if not next_url :

71 break

72

73 tag_response = getUrl (next_url)

74

75 if not tag_response:

76 break

77

78 try:

79 tag_results = tag_response["results"]

80 except:

81 break

82

83 next_url = tag_response["next"]

84

85 for tag_element in tag_results :

86 measurement += 1

87 print("Measurement: ", measurement , end = '\r ')

88

89 result_html = tag_element["result "]

90 meas_id = tag_element[" id"]

91 description = tag_element["description"]

92 meas_df.at[description , "Measurement ID"] = meas_id

93

89

94 resp = HTTP.request('GET', result_html)

95 while(resp.status != 200):

96 resp = HTTP.request('GET', result_html)

97 response = json. loads(resp.data.decode('utf -8 '))

98

99 for element in response:

100 result = PingResult (element)

101 result_probe = result .probe_id

102 wk1_probe_1 = int(meas_df.at[description , "Week 1 Probe 1 ID"])

103 wk1_probe_2 = int(meas_df.at[description , "Week 1 Probe 2 ID"])

104 wk1_probe_3 = int(meas_df.at[description , "Week 1 Probe 3 ID"])

105 wk2_probe_1 = int(meas_df.at[description , "Week 2 Probe 1 ID"])

106 wk2_probe_2 = int(meas_df.at[description , "Week 2 Probe 2 ID"])

107 wk2_probe_3 = int(meas_df.at[description , "Week 2 Probe 3 ID"])

108 min_rtt = result . rtt_min

109 if result_probe == wk1_probe_1:

110 meas_df.at[description , "Week 1 Probe 1 Min RTT"] = min_rtt

111 elif result_probe == wk1_probe_2:

112 meas_df.at[description , "Week 1 Probe 2 Min RTT"] = min_rtt

113 elif result_probe == wk1_probe_3:

114 meas_df.at[description , "Week 1 Probe 3 Min RTT"] = min_rtt

115 elif result_probe == wk2_probe_1:

116 meas_df.at[description , "Week 2 Probe 1 Min RTT"] = min_rtt

117 elif result_probe == wk2_probe_2:

118 meas_df.at[description , "Week 2 Probe 2 Min RTT"] = min_rtt

119 elif result_probe == wk2_probe_3:

120 meas_df.at[description , "Week 2 Probe 3 Min RTT"] = min_rtt

121 page += 1

122

123 print("Measurement: ", measurement)

124 print("Results Retrieved")

125

126 return meas_df

127

128

129

130

131 ##

132

133 if __name__ == "__main__":

90

134 if len(sys.argv) < 3:

135 raise RuntimeError("Provide Input file and Output file")

136

137 start = datetime.now()

138 start_time = start .strftime("%H:%M:%S")

139 print("Start Time =", start_time)

140

141 mm_file = sys.argv [1]

142 outfile = sys.argv [2]

143 f = open(outfile , 'w', newline='')

144

145 mm_df = pd.read_csv(mm_file)

146

147 init_df = init_df_for_measurements(mm_df)

148

149 output_df = request_results(init_df)

150

151 output_df . to_csv(f, index_label = 'network ')

152 f.close()

153

154 end = datetime.now()

155 end_time = end.strftime("%H:%M:%S")

156 print("End Time =", end_time)

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

List of References

�<���>B.��Hu�aker,��M.��Fomenkov,��and��K.��Cla�y,���Geocompare:��A��comparison��of��public��
and��commercial��geolocation��databases��-���Pechnical��report,���Cooperative��Association��
for��Internet��Data��Analysis��(CAIDA),��Tech.��Rep.,��2011-05.

�<���>I.��Poese,��S.��Uhlig,��M.��A.��Kaafar,��B.��Donnet,��and��B.��Gueye,���IP��geolocation��
databases:��Unreliable?���ACM��SIGCOMM��Computer��Communication��Review,
vol.��41,��no.��2,��pp.��53�56,��Apr.��2011.��Available:��https://dl.acm.org/doi/10.1145/��
1971162.1971171

�<���>J.��A.��Culbert,���Toward��understanding��the��longitudinal��stability��of��an��IP��geolocation��
database,���M.S.��thesis,��Dept.��of��Comp.��Sci.,��NPS,��Monterey,��CA,��USA,��Mar.��2020.��
Available:��https://calhoun.nps.edu/handle/10945/64848

�<���>O.��Solon,���Kansas��family��sues��mapping��company��for��years��of��̀digital��hell�*'���Ac-
cessed��Aug.��9,��2021��[Online],��Aug.��2016.��Available:��http://www.theguardian.com/
technology/2016/aug/09/maxmind-mapping-lawsuit-kansas-farm-ip-address

�<���>MaxMind,���GeoIP®��databases��&��services:��Industry��leading��IP��intelligence�*���Ac-
cessed��Aug.��9,��2021��[Online].��Available:��https://www.maxmind.com/en/geoip2-
services-and-databases

�<���>M.��Gouel,��K.��Vermeulen,��O.��Fourmaux,��T.��Friedman,��and��R.��Beverly,���IP��geoloca-
tion��database��stability��and��implications��for��network��research,���in��Proceedings��of��the��
Network��Tra�c�� Measurement��and��Analysis��(TMA)��Conference,��Sep.��2021.

�<���>E.��Kline,��K.��Duleba,��Z.��Szamonek,��S.��Moser,��and��W.��Kumari,���A��format��for��self-
published��IP��geolocation��feeds,���RFC��Editor,��Tech.��Rep.��RFC8805,��Aug.��2020.��
Available:��https://www.rfc-editor.org/info/rfc8805

�<���>B.��Gueye,��A.��Ziviani,��M.��Crovella,��and��S.��Fdida,���Constraint-based��geolocation��of��
Internet��hosts,���IEEE/ACM��Transactions��on��Networking,��vol.��14,��no.��6,��pp.��1219�
1232,��Dec.��2006.��Available:��http://ieeexplore.ieee.org/document/4032725/

�<���>J.��F.��Kurose��and��K.��W.��Ross,��Computer��networking:���=��top-down��approach,�����U�I��ed.��
Boston,��MA:��Pearson,��2017.

�<�����>Jithin,���WHOIS��lookup��explained�*���Accessed��Aug.��9,��2021��[Online].��Available:��
https://www.interserver.net/tips/kb/whois-lookup-explained/

�<�����>L.��Daigle,���WHOIS��protocol��specification,���RFC��Editor,��Tech.��Rep.��RFC3912,��Sep.��
2004.��Available:��https://www.rfc-editor.org/info/rfc3912

93

�<�����>IANA,���Root��zone��database�*���Accessed��Aug.��9,��2021��[Online].��Available:��https://
www.iana.org/domains/root/db

�<�����>J.��Postel,���Domain��Name��System��structure��and��delegation,���RFC��Editor,��Tech.��Rep.��
RFC1591,��Mar.��1994.��Available:��https://www.rfc-editor.org/info/rfc1591

�<�����>ICANN,���Top-level��domains��(gTLDs)�*���Accessed��Aug.��9,��2021��[Online].��Available:��
http://archive.icann.org/en/tlds/

�<�����>B.��Hu�aker,��M.��Fomenkov,��and��K.��Cla�y,���DRoP:��DNS-based��router��positioning,���
ACM��SIGCOMM��Computer��Communication��Review,��vol.��44,��no.��3,��pp.��5�13,��July��
2014.��Available:��https://dl.acm.org/doi/10.1145/2656877.2656879

�<�����>CAIDA,���CAIDA��data��-���Kverview��of��datasets,��monitors,��and��reports�*���Accessed��
Aug.��9,��2021��[Online].��Available:��https://www.caida.org/catalog/datasets/overview/

�<�����>IPinfo.io,���154.24.41.2��IP��address��details�*���Accessed��Aug.��9,��2021��[Online].��Avail-
able:��https://ipinfo.io/154.24.41.2

�<�����>Cloudflare,���What��is��anycast?���Accessed��Aug.��9,��2021��[Online].��Available:��https:��//
www.cloudflare.com/learning/cdn/glossary/anycast-network/

�<�����>M.��Gharaibeh,��A.��Shah,��B.��Hu�aker,��H.��Zhang,��R.��Ensafi,��and��C.��Papadopoulos,���A��
look��at��router��geolocation��in��public��and��commercial��databases,���in��Proceedings��of��the��
2017��Internet��Measurement��Conference.��London��United��Kingdom:��ACM,��Nov.��2017,��
pp.��463�469.��Available:��https://dl.acm.org/doi/10.1145/3131365.3131380

�<�����>MaxMind,���MaxMind��end��user��license��agreement�*���Accessed��Aug.��9,��2021��[Online].��
Available:��https://www.maxmind.com/en/end-user-license-agreement

�<�����>RIPE��NCC,���What��we��do�*���Accessed��Aug.��9,��2021��[Online].��Available:��https://www.��
ripe.net/about-us/what-we-do/functions

�<�����>RIPE��NCC,���Global��RIPE��Atlas��network��coverage�*���Accessed��Aug.��9,��2021��[On-
line].��Available:��https://atlas.ripe.net/results/maps/network-coverage/

�<�����>RIPE��NCC,���RIPE��Atlas��Cousteau����� RIPE��Atlas��Cousteau��1.1��documentation�*���
Accessed��Aug.��9,��2021��[Online].��Available:��https://ripe-atlas-cousteau.readthedocs.��
io/en/latest/

�<�����>RIPE��NCC,���Welcome��to��RIPE��Atlas��Sagan's��documentation!����� RIPE��Atlas��Sagan��
1.2��documentation,���Accessed��Aug.��9,��2021��[Online].��Available:��https://ripe-atlas-
sagan.readthedocs.io/en/latest/

�<�����>RIPE��NCC,���Atlas��console�*���Accessed��Aug.��9,��2021��[Online].��Available:��https://
atlas.ripe.net/about/faq

94

�<�����>RIPE��Atlas,���Starting��your��own��measurements��(user-defined��measurements)�*��Ac-
cessed��Aug.��9,��2021��[Online].��Available:��https://beta-docs.atlas.ripe.net/getting-
started/user-defined-measurements.html

�<�����>ANT��Lab,���IPv4��hitlists�*���Accessed��Aug.��9,��2021��[Online].��Available:��https://ant.isi.��
edu/datasets/ip_hitlists/

�<�����>iboss,���Cloud��Data��Centers��-��Global��SASE��Fabric�*���Accessed��Aug.��17,��2021��[On-
line].��Available:��https://www.iboss.com/cloud-data-centers/

�<�����>Viasat,���Home��satellite��Internet�*���Accessed��Aug.��9,��2021��[Online].��Available:��
https:��//www.viasat.com/home-internet/

�<�����>J.��Fan,��A.��Tao,��and��C.��Lv,���The��coupling��mechanism��of��the��centroids��of��economic��
gravity��and��population��gravity��and��its��e�ect��on��the��regional��gap��in��China,���Progress��
In��Grography,��vol.��29,��no.��1,��pp.��87�95,��Jan.��2010.��Available:��http://sourcedb.igsnrr.��
cas.cn/zw/lw/201007/P020100706529106697457.pdf

�<�����>Fping.org,���Fping��man-page�*���Accessed��Aug.��16,��2021��[Online].��Available:��https:��//
fping.org/fping.1.html

�<�����>Z.��Durumeric,���Zmap��Wiki �*���Accessed��Aug.��16,��2021��[Online].��Available:��https:��//
github.com/zmap/zmap

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

97

	21Sep_Kauffman_Bryan_First8
	21Sep_Kauffman_Bryan
	Introduction

