
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2021-12

A SECURITY-CENTRIC APPLICATION OF
PRECISION TIME PROTOCOL WITHIN
ICS/SCADA SYSTEMS

Allen, Charles A.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/68692

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

A SECURITY-CENTRIC APPLICATION OF PRECISION
TIME PROTOCOL WITHIN ICS/SCADA SYSTEMS

by

Charles A. Allen

December 2021

Thesis Advisor: Chad A. Bollmann
Co-Advisor: George W. Dinolt
Second Reader: Darren J. Rogers

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2021 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
A SECURITY-CENTRIC APPLICATION OF PRECISION TIME PROTOCOL
WITHIN ICS/SCADA SYSTEMS

 5. FUNDING NUMBERS

 REPQN

 6. AUTHOR(S) Charles A. Allen

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
Navy Cyber Warfare Development Group, Suitland, MD

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Industrial Control System and Supervisory Control and Data Acquisition (ICS/SCADA) systems are
key pieces of larger infrastructure that are responsible for safely operating transportation, industrial
operations, and military equipment, among many other applications. ICS/SCADA systems rely on precise
timing and clear communication paths between control elements and sensors. Because ICS/SCADA system
designs place a premium on timeliness and availability of data, security ended up as an afterthought, stacked
on top of existing (insecure) protocols. As precise timing is already resident and inherent in most
ICS/SCADA systems, a unique opportunity is presented to leverage existing technology to potentially
enhance the security of these systems. This research seeks to evaluate the utility of timing as a mechanism to
mitigate certain types of malicious cyber-based operations such as a man-on-the-side (MotS) attack. By
building a functioning ICS/SCADA system and communication loop that incorporates precise timing
strategies in the reporting and control loop, specifically the precision time protocol (PTP), it was shown that
certain kinds of MotS attacks can be mitigated by leveraging precise timing.

 14. SUBJECT TERMS
ICS, SCADA, cyber security, PTP, man in the middle, man on the side, MotS 15. NUMBER OF

PAGES
 109
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

A SECURITY-CENTRIC APPLICATION OF PRECISION TIME PROTOCOL
WITHIN ICS/SCADA SYSTEMS

Charles A. Allen
Lieutenant, United States Navy
BA, University of Kansas, 2013

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2021

Approved by: Chad A. Bollmann
 Advisor

 George W. Dinolt
 Co-Advisor

 Darren J. Rogers
 Second Reader

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Industrial Control System and Supervisory Control and Data Acquisition

(ICS/SCADA) systems are key pieces of larger infrastructure that are responsible for

safely operating transportation, industrial operations, and military equipment, among

many other applications. ICS/SCADA systems rely on precise timing and clear

communication paths between control elements and sensors. Because ICS/SCADA

system designs place a premium on timeliness and availability of data, security ended up

as an afterthought, stacked on top of existing (insecure) protocols. As precise timing is

already resident and inherent in most ICS/SCADA systems, a unique opportunity is

presented to leverage existing technology to potentially enhance the security of these

systems. This research seeks to evaluate the utility of timing as a mechanism to mitigate

certain types of malicious cyber-based operations such as a man-on-the-side (MotS)

attack. By building a functioning ICS/SCADA system and communication loop that

incorporates precise timing strategies in the reporting and control loop, specifically the

precision time protocol (PTP), it was shown that certain kinds of MotS attacks can be

mitigated by leveraging precise timing.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 State of Play . 1
1.2 Engineering Enclave for Maritime Security 5
1.3 Objectives . 5
1.4 Chapter Organization. 6

2 Background and Related Work 7
2.1 Precision Time Protocol . 7
2.2 Related Research . 12
2.3 Consideration of Current PTP Vulnerabilities 14

3 Methodology 17
3.1 Hardware . 18
3.2 Software. 22
3.3 Assembly . 27
3.4 Configuration . 34
3.5 Implementation Approach . 36
3.6 Python Scripts . 38

4 Testing & Results 41
4.1 Testing . 41
4.2 Test Analysis . 53

5 Conclusion 59
5.1 Discussion . 59
5.2 Advantages. 61
5.3 Limitations. 62

vii

6 Future Work 63
6.1 Test Bed Improvements . 63
6.2 MitM . 65
6.3 Summary . 65

Appendix: Configuration Files, Code, and Scripts 67
A.1 Arduino Code . 67
A.2 Eve Attack Bash Script . 72
A.3 Alice ptp4l.conf . 73
A.4 Bob ptp4l.conf . 75
A.5 Eve ptp4l.conf . 78
A.6 Alice/HMI Python Script . 81
A.7 Bob/RTU Python Script. 81
A.8 Data Visualization Scripts . 81

List of References 85

Initial Distribution List 89

viii

List of Figures

Figure 2.1 Basic synchronization message exchange 10

Figure 2.2 Timestamp generation model 11

Figure 3.1 OT simulation rack. 18

Figure 3.2 TCP/IP network map. 22

Figure 3.3 Koyo CLICK! PLC software v3.10. 23

Figure 3.4 Arduino IDE v.1.8.16. 24

Figure 3.5 Raspberry Pi 4 configuration. 25

Figure 3.6 MQTT communication. 26

Figure 3.7 Arduino 1: emergency manual override push button. 28

Figure 3.8 Arduino 2: VFD emulator. 29

Figure 3.9 Raspberry Pi configuration. 31

Figure 3.11 Wiring of PLC. 31

Figure 3.10 Raspberry Pi schematic, using Fritzing. 32

Figure 3.12 Wiring of VFD. 33

Figure 3.13 Full system schematic, using Fritzing. 34

Figure 3.14 Use of ethtool to check timestamp capability. 37

Figure 4.1 Initial synchronization. 43

Figure 4.2 Example of ptp4l output. 45

Figure 4.3 Initial synchronization, post stabilization. 46

Figure 4.4 Long run of ptp4l service. 48

ix

Figure 4.5 Wireshark packet flow. 50

Figure 4.6 Full test — future messages. 54

Figure 4.7 Full test — post rogue master takeover. 55

Figure 4.8 Full test — offset versus time. 56

Figure 5.1 Hardware versus software timestamps. 60

x

List of Tables

Table 3.1 GS1 drive parameter settings . 20

Table 3.2 Local Area Network (LAN) addressing 35

Table 4.1 Initial synchronization key statistics 44

Table 4.2 Initial synchronization stabilized key statistics 47

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

ADC analog to digital converter

AI artificial intelligence

BMCA best master clock algorithm

COTS commercial-off-the-shelf

CPSA Cyber-Physical Security Assessment

CPU central processing unit

DOD Department of Defense

DoS denial of service

E-ISAC Electricity Information Sharing and Analysis Center

EEMS Engineering Enclave for Maritime Security

FCI false command injection

FDI false data injection

GNSS global navigation satellite system

GPIO general purpose input/output

HMI human machine interface

ICS industrial control system

ICS/SCADA industrial control system (ICS)/supervisory control and data
acquisition (SCADA)

IDE integrated development environment

IEEE Institute of Electrical and Electronics Engineers

xiii

IP internet protocol

IoT Internet of Things

IT information technology

LAN local area network

PTP precision time protocol

MitM man in the middle

ML machine learning

MotS man on the side

MQTT message queuing telemetry transport

NIDS network intrusion detection systems

NIC network interface card

NTP network time protocol

NPS Naval Postgraduate School

OS operating system

OT operational technology

PLC programmable logic controller

PKI public key infrastructure

RF radio frequency

RTU remote terminal unit

RFC Request for Comment

RPM revolutions per minute

SANS SysAdmin, Audit, Network, and Security

xiv

SCADA supervisory control and data acquisition

SSH secure shell

TCP transmission control protocol

TLS transport layer security

UDP User Datagram Protocol

USN U.S. Navy

VFD variable frequency drives

VPN virtual private network

WAN wide area network

WLAN wireless local area network

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Acknowledgments

I would like to thank Commander Chad Bollmann for taking me on as an advisee, offering
tremendous support and amazing opportunities, and encouraging me to explore the topics
and subject matter in which I was most interested. The depth of learning that this endeavor
drove in me is difficult to specifically enumerate. Digging into both the hardware and
software aspects was enlightening, challenging, and a terrific experience. I can only hope
that my work here furthers the important efforts of the CCW and the EEMS lab.

Thank you to Dr. George Dinolt for co-advising in this research endeavor. I relied on his
depth of expertise in the field to get the ball over the goal line. His steadfast support and
encouragement throughout this process was additionally critical. The advantage of having
a recognized subject matter expert in your corner cannot be understated.

Thank you to Darren Rogers. Darren was consistently a sounding board, cooperative trou-
bleshooter, and the glue guy, running down anything we needed for our project, despite
having so many irons of his own in the fire. He’s relied upon because he is reliable and I
had an exceptional time working with him throughout this whole process.

Thank you to Vikram Kanth. With his wealth of knowledge and expertise, he was a key
sounding board in clearing more than a few conceptual log jams. His selfless assistance
in coding and data visualization, while in the midst of his own Ph.D. work, was a game
changer.

I would also like to especially thank Micky Hall for his friendship, expertise, and support
throughout the entirety of this program. Despite the rigors of a growing family and his own
academic pursuits, he was relentlessly helpful and integral to the learning that occurred
here. A father, a friend, and a tutor (for me and countless others) — Micky has it all.

Finally, endless and tremendous gratitude to my family. To my father, the intellectually
and academically curious heavyweight encouraging me throughout this and every other
undertaking I have ever started. To my mother, whose infinite support in everything that I
do I am so blessed to have and not take for granted. And to my two role model brothers and
their exploding families, I can’t thank you guys enough!

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
Introduction

1.1 State of Play
Industrial Control System and Supervisory Control and Data Acquisition (ICS/SCADA)
systems are the bedrock of modern society. By monitoring, managing, and controlling rou-
tine yet vital functions across many key parts of industry such as manufacturing, energy, and
transportation, ICS/SCADA systems are the invisible connective tissue on which mankind
has come to rely. Together, ICS/SCADA systems represent concentric subsets of a broader
operational technology (OT) systems, but as the foundation that underlies OT, failure of
ICS/SCADA systems for any reason can have direct and pervasive adverse impacts on the
broader system and beyond. Those impacts and interruptions are significant as they reach
down to the most granular level of the systems that safely enable power generation and trans-
mission, natural gas delivery, dams, water treatment, nuclear power, telecommunications,
and much more. For simplicity, use of the term ICS/SCADA will hereafter be encapsulated
by the overarching term “OT.”

Targeting of these systems has been well documented. In 2011, Guan et al. [1] described a
few important cases such as a worm that infected the Davis-Besse nuclear power plant in
Ohio, sewage system release into public waterways in Australia, and water treatment system
penetration in Pennsylvania. Since Guan et al., however, there have been more significant
events with serious implications.While discussions regarding specific attribution are not the
purpose of this paper, the 2009-10 Stuxnet computer worm gained international attention
and fundamentally changed the discussion of cyberspace as a domain for warfare. Industry
experts and analysts described Stuxnet to be a “cyber-weapon of mass destruction,” very
sophisticated, and extremely narrow in target scope, aiming squarely at the Iranian govern-
ment’s nuclear material enrichment program [2] In 2016, SysAdmin, Audit, Network, and
Security (SANS) industrial control system (ICS) conducted a thorough analysis of a cyber-
attack on the Ukrainian power grid through the Electricity Information Sharing andAnalysis
Center (E-ISAC). The cyber-attack that targeted SCADA-controlled power distribution and
management resulted in electrical outages for approximately 225,000 customers [3]. While

1

still foregoing an attribution discussion, it is important to note that many organizations
attributed the Ukrainian power grid attack to Russia which, if true, represents the risk that
powerful nation states are capable of targeting OT systems around the world to serious and
potentially disastrous ends.

Twokey factors have resulted in the current status quo ofOT systems [1]. First, thematuration
of automation and its industrial applications was immediately recognized and adopted by
virtually all players in critical infrastructure around the world. Second, potential cost-saving
and convenience led to the interconnection of these industrial networks via widespread
and cheap accesses, the internet chief among them. As is the case with many innovations
that incrementally develop over a long period of time, security was not a feature baked
into early supervisory control and data acquisition (SCADA) systems. Restricting physical
access to management buildings or substations was once considered sufficient mitigation,
but that control alone is clearly no longer enough to mitigate risk of attack [4]. Additionally,
proprietary protocols and connections had in the past served as a barrier to interference by
would-be interlopers, but the transition to standardized communication protocol standards
like Ethernet (Institute of Electrical and Electronics Engineers (IEEE) 802.3) and expanded
use of public communication media like the internet simplified possible attack vectors [2].

This is not to suggest that standards are a problem; rather, the opposite. Well-designed
and well-implemented standards are integral to the protection of OT systems. Systems of
systems, like both the internet and OT networks, rely on stacks or layers of communication
protocols, with each layer either serving a different function or obfuscating some details of
a lower layer. The power of layering and stacking protocols is that security functions can be
built into systems by adding or changing different layers of the communication stack. The
shift to reliance on the internet to manage geographically disparate industrial systems will
continue to invite cyber intrusions of varying degrees. It is therefore exceedingly important
that communications protocols are secure in design and implementation.

1.1.1 Current Approaches
Despite the low priority typically ascribed to security within OT designs and implementa-
tions, there are a number of techniques that have been utilized to varying degrees of success.
As noted previously, implementing secure systems does normally incur trade-offs in other

2

aspects such as speed, efficiency, reliability, or accessibility. In most applications of OT
systems, those trade-offs are not acceptable from a risk-tolerance standpoint. The classic
security “CIA” triad of confidentiality, integrity, and availability (normally including au-
thentication as well), is a model that certainly fits OT. In these systems generally, but most
importantly in critical infrastructure or transportation, availability is the dominant piece.
Malicious activity was not typically considered in the original design of the first systems, so
confidentiality and integrity were assumed to a certain degree. However, as operators of OT
systems have found cost-effective the benefits of connecting their systems to the internet,
confidentiality and especially integrity have surged in importance — yet never to overtake
availability [5].

Encryption A common solution to many cyber-related vulnerabilities, encryption has
many useful and successful applications in commercial, industry, and government/military
infor-mation systems. By encoding information using a cryptographic key, the information
that is transmitted over an otherwise insecure medium becomes unintelligible to a would-
be snooper or malicious actor. The information can only become useful again once it is de-
coded by the recipient using the correct decryption key. The obvious benefit to applying
encryption within OT systems is that a malicious actor that has access to a communication
medium between two nodes would be unable to decipher the information being exchanged
on that medium. While useful in principle, in an OT system encryption could result in
undesirable side effects. Fauri et al. described a few of the major downsides to encryption
within an ICS system [5]. First, encryption may not actually result in enhanced security of
the system, as the case studies of ICS attacks they reviewed would not have been prevented
by encryption. Second, encryption could hamper ICS operators and system administra-tors
from proper surveillance of their internal traffic because network intrusion detection
systems (NIDS) may not be able to make sense of the encrypted traffic without adding
substantial costs to the overall system. Finally, and drawing from their second conclusion,
encryption can also hamper troubleshooting and recovery efforts. This last conclusion is a
particularly important consideration because "uptime," or reliability, of an OT system is of
paramount importance. The Colonial Pipeline ransomware attack of May 2021 is a salient
example of this pitfall of encryption. Even after paying the ransom to receive the
decryption keys in order to restore service as quickly as possible, the decryption process
itself took an extended period of time, incurring continued damages to the victim
organization and their customers [6].

3

Authentication Authentication, or the process of positively validating the correct identity
of an information handler, is closely related to integrity. Although it is used to great effect
in more common information technology (IT) environments, public key infrastructure
(PKI) implementations in OT environments tend to be haphazard and cumbersome. PKI is
a very effective method to distribute asymmetric cryptographic keys, but it typically
requires a significant amount of overhead and management. Commonly within OT, only
certain subsets of the system will utilize secure methods, while other parts closer to the
control plane tend to still communicate in plain, unauthenticated traffic, leaving them very
vulnerable to surveillance and even attacks like spoofing [7]. Other issues with PKI
implementation in ICS systems are rooted in prevalent hardware issues: memory and
processing power. The computational power required to effectively implement a system
like this at multiple levels is typically greater than the individual nodes can support, which
may have additional ramifications if the primary control function of the node is
compromised. Finally, even with expenses paid towards building and implementing a PKI
system, the issue of securely storing the various private keys persists [7].

Physical Controls Physical access controls are an important assumption in most studies of
OT security, but they will not be explored in this research. Effective bypassing of physical
security can in some cases render other cyber-based measures useless depending on where,
physically or logically, access is achieved. Other physical controls, such as human
intervention or a "man in the loop" are typically advisory and rely on accurate information
within the OT system to be presented to the human monitoring the system, a key design
consideration of the malware that damaged the Iranian nuclear program in 2010 [8].

1.1.2 Timing Approach
Each of the previously described approaches tends to result in a trade-off with reliability or
safety that is not normally tolerated in OT systems. Therefore, this research sought to
leverage existing safety and reliability aspects, specifically precise timing, to improve the
security of the overall system without requiring a sacrifice of reliability or safety. Precise
timing is typically required by most ICS systems within a certain tolerance. The network
time protocol (NTP) is a computer network-based timing standard that is in wide use and

4

satisfies most requirements of IT environments [9]. For more time-critical systems like
OT, especially in critical infrastructure or transportation environments, NTP is not accurate
enough. In these cases, absent a proprietary solution, the precision time protocol (PTP) can
be utilized to ensure proper synchronization across the nodes of the network.

1.2 Engineering Enclave for Maritime Security
The Engineering Enclave for Maritime Security (EEMS) laboratory at Naval Postgraduate
School (NPS) provides a wide assortment of capabilities to build and simulate maritime in-
formation systems pursuant to academic research endeavors. The lab provided the equipment
and oversight in building the simulation OT network that reflects basic maritime control
mechanisms. The equipment provided by EEMS includes but is not limited to the three-
phase induction motors, A/C drive components, programmable logic controller (PLC)s,
Raspberry Pi and Arduino modules, as well as the necessary steering and throttle hardware.

1.3 Objectives

1.3.1 Goals
This scope of this thesis is to evaluate the specific utility of PTP as a security mechanism to
guard against man on the side (MotS) attacks by a malicious actor with physical access to
the communication network. This work specifically looks at the application of this strategy
on the EEMS lab’s OT simulation rack, whose assembly and configuration was a large part
of the work herein. The thesis does not explicitly seek to evaluate potential issues with PTP
such as denial of service (DoS) or other attack vectors beyond those described at the outset.

1.3.2 Contributions
The primary contributions of our research were:

• Assembling an OT subsystem physical testbed
• Using commercial-off-the-shelf (COTS) equipment to create a timing-synchronized
control loop in the subsystem

• Demonstrating the use of timing as a component in securing an OT system

5

• Providing recommendations for further work leveraging PTP and the developed test
bed

1.4 Chapter Organization
The organization of the remainder of this thesis is as follows. Chapter 2 provides background
context, conducts a review of existing related work in this field, and discusses the specific
application of that related work in regards to this research endeavor. Chapter 3 describes the
methodology, design, hardware and software requirements as well as the implementation
of the approach. Chapter 4 reviews the results of each phase of testing, with thorough
consideration of both advantages and disadvantages as uncovered during testing, as well as
a discussion of potential use cases. Chapter 5 is a comprehensive conclusion of all aspects
of research. Finally, leveraging lessons learned from the aforedescribed research endeavors,
Chapter 6 provides recommendations for future work with specific applicability to both
government and private industry.

6

CHAPTER 2:
Background and Related Work

This chapter provides an overview of the timing protocol evaluated through our research
in Section 2.1. In 2.1.1, the specific mechanics of the PTP protocol are discussed in more
detail. Section 2.1.2 covers the very important Request for Comment (RFC) that defines key
security improvements for the standard. Sections 2.2 and 2.3 review recent research into
this topic area and discuss its applicability to our research endeavors.

2.1 Precision Time Protocol
The IEEE 1588 protocol standard for PTP was designed as a method to increase the timing
accuracy of networked communications. The standard was designed to synchronize real-
time clocks within a distributed network to a very high degree of precision. Originally
published as IEEE 1588-2002 on November 8, 2002, the standard has been incorporated
into other standards and has also been revised and improved since its original inception.
The standard offers a targeted timing accuracy to less than a microsecond, a significant
improvement on NTP’s accuracy of a few milliseconds. PTP is constrained to operate
within a small number of subnets, unlike NTP which can cross many subnets, wide area
network (WAN)s, and even the internet. A trade-off to the benefit of an OT system is that the
actual on-network constraints and resource requirements of PTP are comparatively less than
that of an NTP network. Offering a greater degree of flexibility, PTP can be implemented
either via hardware or software, though hardware implementations offer the highest degree
of accuracy. Although the original design of PTP did not include a security specification,
improvements have been recommended including RFC 7384, which will be discussed in
greater detail.

The goals set out by the IEEE 1588 standard are as follows: sub-microsecond synchro-
nization of real-time clocks in a distributed network, deployability within localized systems
typical of industrial automation, and applicability within local area networks that support
multicast communications (including but not limited to Ethernet) [10]. All three of these
goals align to the intentions of this research endeavor: achieving a high degree of synchro-

7

nization within the OT network, deploying the protocol within a highly localized industrial
application, and leveraging the Ethernet communication standard. Additional benefits in-
clude simple and free installation due to the open source nature as well as support for
systems and networks with varying degrees of clock precision and/or reliability. As previ-
ously stated, the standard has been revised twice, with the most recent revision promulgated
in 2019. However, the IEEE1588-2008 version is discussed in greater detail here because
linuxptp, the Linux daemon used in this research to manage the PTP implementation, is
based upon the 2008 revision.

2.1.1 Timing Methodology
The timing methodology of IEEE 1588 sought to address the problem of creating a highly
accurate and consistent time base across the clocks of all deviceswithin a system. IEEE1588-
2008 is arranged into 19 clauses or subsections, with special attention paid to clauses 6
(PTP overview) and 13 (inter-clock message format).

Importantly, according to clause 6 of 1588-2008, "PTP is tolerant of an occasional missed
message, duplicated message, or message that arrived out of order. However, PTP assumes
that such impairments are relatively rare" [11].

PTP was designed with a multicast communication model in mind, lending itself well to
the internet protocol (IP), User Datagram Protocol (UDP), and ethernet implementations.
Because network components like bridges can introduce timing jitter, their deployment in
our experimental design is limited. To the maximum extent possible, only essential non-PTP
networking equipment (i.e. routers and switches) are utilized in order to minimize jitter.

PTP employs a master/slave architecture with a grandmaster clock atop the hierarchy trans-
mitting timing synchronization to the subordinate slave clocks, which use the received
timestamp information to compute an appropriate offset from the master and adjust their
own clocks accordingly. Accurate timestamp data underpins the entire PTP protocol. A
key guiding principle for this research was to leverage COTS equipment to the maximum
extent possible. As a result, the design relied on software timestamping, a capability natively
supported by the Raspberry Pi 4 with Linux kernel 3.0 or later [12]. Discussed in greater
detail in subsequent sections, hardware timestamping can be utilized, perhaps in future
endeavors, but would require additional hardware such as a PTP-compliant Raspberry Pi

8

"shield" or an alternate network interface card (NIC). The Raspberry Pi 4 units utilized
software timestamping via the linuxptp Linux daemon.

The IEEE 1588-2008 standard defines two types of messages: event and general. Event
message types for PTP are sync, delay_req, pdelay_req, and pdelay_resp. General message
types are announce, follow_up, delay_resp, pdelay_resp_follow_up, management, and sig-
naling. Announce, transmitted from the grandmaster, is used to establish the hierarchy and
inform the slave clock(s). The messages sync, delay_req, follow_up, and delay_resp handle
the transmission of timing data, while the remaining messages of pdelay_req, pdelay_resp,
and pdelay_resp_follow_up measure the delay between two clocks that implement the peer
delay mechanism.

As described in the establishing standard and corresponding to Figure 2.1, the following
message exchange process occurs in PTP. First, the grandmaster sends a sync message to
the slave and records this time as C1. Second, when the slave receives the sync message,
it records time of receipt as C2. The grandmaster can, with proper hardware, embed the
timestamp in the syncmessage, or it can embed the timestamp C1 in a follow_upmessage, as
is the case here. Third, the slave sends a delay_reqmessage to the master, recording the time
of transmission as C3. Fourth, the master receives the slave’s delay_req message, recorded
at time C4. Finally, the master sends a delay_resp message with the C4 timestamp embedded
back to the slave, which now has all necessary timestamp information in order to compute
its own clock offset as well as the mean propagation time.

9

Figure 2.1. Basic PTP synchronization message exchange between a master
and a slave clock, denoting the messages and corresponding timestamps.
Source: [11, figure 12].

This transmission and computation process assumes transmission symmetry, that the trans-
mission time from master to slave and from slave to master are the same. If asymmetry is
inherent in the system, then the calculated clock offset times will be subject to a high degree
of error.

10

Figure 2.2. Example of hardware timestamp generation scheme employed by
a PTP node. Source: [11, figure 14].

Figure 2.2 shows a timestamp generation model that is based upon hardware timestamping.
As the Raspberry Pi 4 units used here were not (at the time) capable of hardware timestamp-
ing, the software timestamping that is relied upon occurs at level C of Figure 2.2, rather than
at level A. A kernel-level implementation of PTP could implement software timestamping
at level B of 2.2. The hardware assist shown at level A is lower in the protocol stack and
provides a more accurate and more reliable aperture to generate a timestamp, which is why
this method is preferred in most applications of PTP [11].

2.1.2 RFC 7384
Submitted in 2014, RFC 7384 is seminal in its definition of a set of security requirements
for timing protocols in general, with special consideration for NTP and PTP. RFC 7384
states that while NTPv4 incorporated specific security mechanisms, PTP only included a
thinly defined and "experimental" security protocol. Although the IEEE 1588-2019 revision
provides options for enhanced security including cryptographic messaging, source authen-
tication, and the addition of an informative security-focused annex, RFC 7384 has not yet
been superseded and is referenced in the IEEE 1588-2019 revision [13].

Of particular interest to this project, RFC 7384 specifically addresses man in the middle

11

(MitM) attacks as part of its security model. A key finding from the RFC is the utility of
confidentiality in mitigating MitM attacks by protecting the individual protocol packets.
Despite the advantages conferred by confidentiality, likely through encryption, encryption
alone only complicates MitM attacks and is not sufficient to outright prevent these attacks.
For that reason, the RFC describes encryption as a "may," rather than a "must." Protection
against packet delay and intercept attacks is, however, described as a "must," given the
potentially severe implications to the system if clock accuracy is degraded, especially in a
PTP system. Though described as a "must," this RFC does not define a specific approach to
mitigating packet delay and intercept attacks, as it will depend on architecture and system
requirements [14]. Despite being cut from the same cloth, a MotS attack varies from MitM
primarily in the sense that a MotS does not "control a node but can still inject data" [15].
The defense against MotS attacks that is the focus of our research can also improve its
effectiveness by leveraging a multitude of techniques, encryption among them.

Another very important consideration illuminated by RFC 7384 is that of a rogue master. A
rogue master is a malicious node that convinces the slave nodes that it is the trusted grand-
master clock. This can take a few different shapes in a PTP network such as a transparent
clock or boundary clock, but the concept is very relevant to this research endeavor. The
MotS attacker in this research design strongly resembles a rogue master.

2.2 Related Research
There is a significant body of research work in the realm of cyber-physical systems that runs
the spectrum from critical infrastructure OT to Internet of Things (IoT) devices making
their way into homes around the world. The research discussed in this section covers the
cyber-physical systems that comprise OT networks and discusses known vulnerabilities in
PTP.

2.2.1 “Impact of Malicious Control Commands in Cyber-Physical
Smart Grids”

As an important recent case study, the 2015 cyber attack on the Ukrainian power grid was
a prime motivator for the research conducted by Saxena et al resulting in a useful cyber
risk mitigation tool called Cyber-Physical Security Assessment (CPSA) [16]. This tool was

12

specifically tailored against known Trojans like BlackEnergy that was used in the Ukrainian
attack that accessed SCADA networks through hĳacked virtual private network (VPN)
connections into the utility provider’s corporate network.

The assumed capability that the authors describe is one adopted in this research: The
adversary has the technical and if necessary, physical access capabilities, to perform a
MitM attack, thereby enabling the injection of illegitimate and/or malicious commands to
the network. A key distinction in assumptions, however, is that the research did not assume
the attacker to be an insider with legitimate access to properly functioning systems that
were used improperly or maliciously. Of the three use cases Saxena et al described, Use
Case 1 is the nearest comparison to our work, whereby the adversary "impersonates the
network and sends a false (unwanted) but legitimate command outside of the control center
to breaker of the largest generator" [16]. The implications of malicious commands are
insecure operations of the power system as well as the possibility of shedding electrical load
from the substations, resulting in power loss not unlike the 2015 Ukrainian attack. Potential
future work could involve adapting the CPSA to model the shipboard environment.

2.2.2 “Performance Evaluation of IEEE 1588 Protocol Using Rasp-
berry Pi over WLAN”

Allahi et al contributed significantly to the design and implementation considerations in
this research, especially via their performance evaluation of PTP over a wireless local
area network (WLAN) utilizing a Raspberry Pi [17]. Their work in both implementing and
evaluating the performance of a readily-available Raspberry Pi Model 3 to handle PTP com-
munications sufficiently over a wireless medium was a key validation of hardware selection
for this research. Their success implementing IEEE 1588 over WLAN has important impli-
cations for industry by providing another method to achieve precise timing in their systems
using COTS and open-source equipment. Allahi et al were able to demonstrate a wireless
system with precise timing on par with the wired local area network (LAN) standard. The
work of Allahi et al helped validate the hardware selection for this research. Additionally,
their consideration of real-time network traffic that is distinct and in addition to the PTP
traffic was useful to our work. Many of the complicating factors they had to consider for the
WLAN PTP implementation, such as packet size constraints, wireless transmission delays,
and additional external radio frequency (RF) interference, are not applicable to our work as

13

we utilized a wired medium.

2.3 Consideration of Current PTP Vulnerabilities

2.3.1 “Precision Time Protocol Attack Strategies and Their Resistance
to Existing Security Extensions”

In one of the most significant and recent studies on PTP security, Alghamdi and Schukat
evaluated and experimented with a variety of attack approaches that were outlined in RFC
7384, in addition to adding their own increased specificity to a few attack approaches [18].

Importantly, this research incorporated key design considerations from Annex P of IEEE
1588-2019. Their work demonstrated that adversaries can compromise any and all measure
of PTP components (i.e., from the grandmaster to slave) and any boundary or transparent
clocks in between. Because all key elements of PTP architecture were shown to be vul-
nerable, the difficulty of comprehensively mitigating threats to PTP networks is greatly
increased. Alghamdi and Schukat showed that the internal attacker has the widest array of
possible attack vectors to utilize to corrupt the timing in a system. The problem persists and
while there are certainly security provisions that can and should be implemented to mitigate
risk, there still does not exist any single mechanism to provide sufficient protection to key
systems on its own.

2.3.2 “Impact of Cyberattacks on PTP”
By developing an effective test bed and using it to examine key vulnerabilities in PTP,
DeCusatis et al highlighted what they referred to as a critical interdependence between
security and timing [19]. Their findings regarding a severe vulnerability due to lack of
sufficient authentication inside PTP networks are significant and should be leveraged in
future revisions of the standard. For example, in a master spoof DoS attack they evaluated,
the attack was roundly successful because the slave blindly accepted packets spoofed by
the attacker. DeCusatis et al postulate a better method of providing enhanced identification
in the system – one that allows the slave to generate the master’s valid address from the
traffic [19]. The threat model they designed within the construct of their test bed was based
on the aforementioned RFC 7384, with special emphasis onMitM-style masquerade attacks

14

as well as DoS attacks across different portions of the network stack.

Another key revelation of DeCusatis et al is the counterproductive impact that hardware
timestamping, an important piece of PTP precision, may have on the application of crypto-
graphic standards. As the authors described in [19], there is a distinct disadvantage to the
use of hardware timestamping because it occurs at the lowest level of the communication
stack, as shown in Figure 2.2. This behavior is not necessarily compatible with higher-level
encryption of data that occurs in the application layer. It is specifically that difference in
timing between layers that defeats the advantage of hardware timestamping closer to the
physical layer.

DeCusatis et al raised another consideration relevant to our work, one that would necessarily
prohibit the integration of certain kinds of security mechanisms. As some security measures
like signatures or certificates rely upon an accurate time of day to ascertain whether or not
they are expired, a system that uses an arbitrary time might preclude their use [19].

One of the many important takeaways from their work is the value of authentication in
critical networks, especially networks that provide important functionality such as precise
timing. The multicast communication approach for PTP is effective in a trusted network, but
the lack of authentication schemes in these networks renders them incredibly vulnerable.
The multicast approach allows for an insider to glean necessary information about the
master/slave communication scheme in order to duplicate the master itself. During this
period of time, there would be an extra "slave" node as the attacker emulates a slave in order
to collect the necessary information. The task is further simplified for the attacker because
the return communications from the slave(s) back to the master can be entirely ignored [19].
Without a clear and effective mechanism for slaves to validate that received packets are from
the legitimate master, the slave will accept anything that has the basic, easily observable
characteristics of the master.

The master clock takeover attack described by the authors has key hallmarks that help the
attack avoid detection by normal means and enhance the attack’s effectiveness in elbowing
out a legitimate master. First, the attacker can use fields in the PTP standard to suggest that
it is more of a trustworthy time source than the legitimate node. More inherently-accurate
precision timing sources are weighted more heavily and better sources are preferred by the
nodes in the network, so an attacker advertising the highest "atomic clock" precision will be

15

preferred. The two stages of the attack they describe, sniffing and spoofing, can be readily
performed by an insider attacker [19].

There is a large body of additional interesting and related work that examines PTP security
mechanisms in practice, such as [20], [21], and [22]. We consider the works previously
discussed here to be the most pertinent to our work.

2.3.3 Distinguishing Factors
The work we conducted differs from the aforementioned works in a number of respects.
First, our work focused on the use of readily available COTS equipment, such as a Raspberry
Pi, to enable a low-cost, easily-deployable, and open source precise timing command and
control environment. Second, though the accuracy boost afforded by hardware timestamping
is certain, we focused on the use of software timestamping to evaluate its security utility for
a wider population of potential systems. Third, we sought to add this control layer on top of
an existing OT system as a method of securing it against a MotS attack. Finally, we focused
on the use of an arbitrary time, selected by the master in the network, in order to mitigate
the attacker’s false command injection (FCI).

16

CHAPTER 3:
Methodology

This chapter discusses the design and build phases of our research. This project had two
primary parts. The first part was to complete the EEMS lab’s OT rack so that it could
be used as a basic simulation test bed for a ship’s control system. The second part of the
research was to add a supervisory control network, synchronized via PTP, and evaluate its
ability to protect the subordinate control system against certain kinds of malicious activity.

Section 3.1 provides an overview of the hardware acquired by the EEMS lab that enabled the
build. Section 3.2 describes the software associated with the various hardware components,
the capabilities of the software, and the utility of each to our research. Section 3.3 specifically
describes the build phase, whereby the constituent components discussed in section 3.1 were
connected to provide the desired functionality. Section 3.4 describes the basic configuration
of each of the components after assembly was completed. Section 3.5 details the governing
approach to using our test bed to test and evaluate the MotS attacks by the malicious insider
node, Eve. Finally, section 3.6 describes the command and control logic employed by the
primary nodes Alice and Bob.

Due to three different programmatic contexts, we use three different groupings of naming
conventions, depending on the context. In the context of the overall system, we use the
names Alice, Bob, and Eve as originally described by [23] to refer to two legitimate nodes
and a malicious node, respectively. In the context of PTP, Alice is the grandmaster, Bob is
the PTP slave, and Eve ultimately acts as a rogue master. Finally, in the context of message
queuing telemetry transport (MQTT) and the command and control communications the
Alice node is referred to as human machine interface (HMI), the Bob node is referred to as
remote terminal unit (RTU), and the Eve node attempts to conduct FCI.

First, we describe the hardware.

17

3.1 Hardware
The majority of the simulation hardware was acquired by the NPS EEMS lab from Au-
tomationDirect, a popular North American vendor for industrial automation equipment.
Additional equipment was acquired separately via SparkFun or other suppliers. Figure 3.1
below shows the front of the EEMS lab’s OT simulation rack.

Figure 3.1. EEMS Lab OT Simulation Rack

Each of the constituent components, including the PTP control architecture, is described in
greater detail in the following sections.

18

3.1.1 Motors
The two motors at the bottom of Figure 3.1 are two similar models of IronHorse general
purpose, 1800 revolutions per minute (RPM) three-phase motors from AutomationDirect.
The MTR2-P33 provides 1/3 horse power and the MTR2-P50 provides 1/2 horse power.
Both are sufficient for simulation and demonstration, especially considering they are not
intended to support an actual thrust load.

3.1.2 AC Drive
The AC variable frequency drives (VFD), on the bottom mounted rung in Figure 3.1,
are GS1 series AC VFD from AutomationDirect. The drives are used to vary the speed
of the aforementioned three-phase motors by converting AC power to DC, which is then
synthesized back into three phase output power. The GS1-10P5 drives on the simulation
rack support up to 1/2 horse power and take 100-120 volts on input with a maximum output
voltage of 200-240 volts. The GS1 drive was configured with baseline settings according
to Table 3.1. Of specific note in Table 3.1 are P3.00 and P4.00, which govern the source of
operation and source of frequency and are both set via commands over RS-485 [24]. The
possible alternative options for configuring the drive with different communication media
or standards are described in [24].

19

Parameter Description Setting
P0.00 Motor Nameplate Voltage 230
P0.01 Motor Nameplate Amps 1.4
P0.02 Motor Base Frequency 60
P0.03 Motor Base RPM 1725
P0.04 Motor Max RPM 2000
P1.00 Stop Method 0 (Ramp to stop)
P1.01 Acceleration Time (seconds) 5.0
P1.02 Deceleration Time (seconds) 5.0
P2.00 Volt/Hertz Settings 1
P3.00 Source of Operation Command 3 (RS-485)
P4.00 Source of Frequency Command 5 (RS-485)
P8.00 User Defined Display Function 1
P9.01 Transmission Speed (baud) 2 (19200)
P9.02 Communication Protocol 5 (Modbus RTU)

Table 3.1. GS1 drive settings. Adapted from [24].

3.1.3 Programmable Logic Controllers
The PLC units are Koyo CLICK! PLCs, one of which has an ethernet-capable CPU. The
primary PLC in use is the ethernet-capable C0-12-series that has four discrete input ter-
minals, four discrete output terminals, four analog input terminals, and two analog output
terminals, along with three options for communication ports: ethernet, Modbus, or RS-485
serial. They are managed using the provided CLICK! PLC software and initial setup was
conducted using the ethernet communication interface [25].

3.1.4 Arduino Uno
The Arduino Uno prototyping board was used to manage the manual override and control
signaling from the physical steering column (helm) and throttle (lee helm), enabling the

20

bypassing of the HMI push button interface when the emergency manual to override push
button is pressed.

Due to challenges implementing RS-485 Modbus across the three different controller plat-
forms (PLC, Arduino, and Raspberry Pi), we were not able to complete a full-path solution
for the test bed. By the term "full-path", we mean that an ON command, by way of a button
press on the HMI, traverses the entirety of the OT test bed network and actuates the motor
by way of the VFD. Therefore, in addition to the aforementioned Arduino used to control
the emergency manual override push button signaling, we added an additional Arduino to
act as a VFD emulator and receive commands from the RTU over a similar RS-485 serial
connection.

3.1.5 Raspberry Pi 4
The Raspberry Pi 4 units provide the backbone RTU to HMI communication loop using the
MQTT lightweight and open-source publish/subscribemessaging protocol. They also enable
the PTPmaster/slave software architecture.Additionally, a touchscreenHMI interface driven
by a Raspberry Pi 4 can be provided in future work, but physical buttons and LEDs were
installed in lieu of the touchscreen due to processing overhead.

3.1.6 Networking
We utilized a Linksys EA8500 router with gigabit ethernet interfaces. Gigabit speeds were
maintained throughout the network, including corresponding network cabling (i.e., category
6 ethernet). In addition to the router, we used a Netgear GS105 gigabit switch. The router
and switch were used to facilitate the MQTT and PTP communication as well as provide
the aperture for Wireshark packet captures via an Apple MacBook Pro, also on the same
network and subnet. Figure 3.2 shows this basic transmission control protocol (TCP)/IP
networking configuration with all lines representing category 6 ethernet cables. The green
lines represent the valid traffic paths for legitimate nodes Alice and Bob while the red
line represents the attack vector of Eve in our test bed. It is shown later that removing
the router by severing the connection between switch and router in Figure 3.2, and using
statically-assigned IP addressing, can improve overall timing performance.

21

Figure 3.2. Test bed TCP/IP network map

Next, we describe the software used to enable key functionality of the aforementioned
hardware.

3.2 Software

3.2.1 CLICK!
TheKoyoCLICK! PLC comeswith a robust software suite that is capable of communicating
with the hardware over the TCP/IP, RS-232, or RS-485 protocols. It uses those protocols to
read and write ladder logic-based programs to and from the PLC. Ladder logic is a written
method of describing control circuitry that is based on relay contacts or switches, using
Boolean expressions [26]. The PLC can use the TCP/IP connection to pass data back and
forth from the connected PC. It can also receive a ladder logic program and then disconnect
from the PC to operate in standalone mode. Figure 3.3 shows the software at startup, as it
displays a list of connected and available PLCs, basic information about them, their current
operating mode (RUN/STOP), and their current status.

22

Figure 3.3. PLC communication software

3.2.2 Arduino
The Arduino integrated development environment (IDE) provides a simple, yet capable
development environment for the units used in our work. It allows for specification of
multiple COMM ports to talk to different boards simultaneously. Additionally, the IDE
provides useful compilation and error handling in addition to the serial monitor, used to
output serial data from Arduino input pins such as the potentiometers in the helm or lee
helm. Figure 3.4 shows the Arduino IDE on the left and the serial monitor window on the
right.

23

Figure 3.4. Arduino IDE software

3.2.3 RaspbianOS
The Raspberry Pis were loaded with the standard, most recent version of Raspbian OS,
"buster," a powerful yet lightweight iteration of the Debian operating system (OS) that is
optimized for the Raspberry Pi ARM architecture. The version we used is v5.10.17, which
has baseline support for PTP included. It comes with configuration options that were useful
here such as setting host names, enabling SSH, and enabling access to the Raspberry Pi’s
onboard general purpose input/output (GPIO) pins. Figure 3.5 shows the Raspberry Pi
configuration window, accessed via SSH using sudo raspi-config (after enabling SSH
during initial local configuration).

24

Figure 3.5. Raspberry Pi 4 configuration, accessed via SSH.

3.2.4 MQTT
MQTT, the message delivery protocol, uses a publish/subscribe messaging transport pro-
tocol. This protocol was selected for a few reasons. MQTT is lightweight, open source,
reliable, and, importantly for ICS systems, very scalable. Per the OASIS standard and the
MQTT governing body, MQTT is ideal for constrained environments and for machine-to-
machine communications [27]. It is noted that shipboard environments do not typically use
MQTT for vital ICS-type controls. MQTT afforded the advantages described above and
provided the basic command and control necessary in this system. In order to leverage the
advantages of MQTT in a small network configuration, we used a non-standard MQTT
implementation with two clients communicating directly, rather than through a server as
described by [27]. Figure 3.6 shows the basic communication loop between the two primary
nodes. Solid lines indicate MQTT publish to the topic and dotted lines indicate MQTT
subscribe to the topic.

25

Figure 3.6. MQTT communication paths.

The utilized MQTT version supports transport layer security (TLS) encryption for connec-
tions between message brokers and subscribers, but in order to reduce potential errors, TLS
was not employed.

3.2.5 PTP
There are a few different approaches to implement PTP on COTS equipment like Raspberry
Pi units. Two different approaches to a software daemon, ptpd [28] and linuxptp [12], as
well as a purely Python-based implementation of the IEEE 1588 2008 standard [29], were
considered as possible methods of implementing PTP in this system. At the time of writing,
there were no existing implementations of PTP based on the newer 2018 revision.

linuxptp The Linux PTP Project is an open source approach at implementing the IEEE 1588
standard for Linux kernels. It is licensed under the GNU General Public License. In 2010
Richard Cochran et al proposed an improvement on an earlier Linux kernel implementation
of hardware timestamping in PTP, ptpd [30]. Cochran et al proposed subsequent improve-
ments to the problem of synchronizing a Linux system clock with the PTP hardware clock
at the NIC level [31]. As they stated in [31], they anticipated the necessary kernel patches
that appeared in Linux Kernel version 3.0.0. Those patches and their work with PTP in a
Linux kernel were part of the aforementioned Linux PTP Project and therefore the basis of
linuxptp. Richard Cochran (and other contributors) continue to update and improve the tool,

26

which is available on his GitHub [12]. The linuxptp software package is easy to install and
configure, and although our research only leveraged the software timestamping aspect, lin-
uxptp is easily reconfigurable to support hardware timestamping with a compatible NIC. As
the authors predicted in [31], Linux kernel version 3.0 does provide the necessary support
for both hardware and software timestamping [12]. The linuxptp install package includes
two subordinate packages: ptp4l, the actual daemon implementation, and phc2sys, which is
the PTP Hardware Clock to System service. The phc2sys is only needed for hardware-level
implementations that utilize hardware timestamping and require timing adjustments at the
NIC level [12].

In the next section, we discuss the assembly and interconnection of the various hardware
components.

3.3 Assembly

3.3.1 Arduino
Two Arduinos were utilized for this project. Arduino 1 serves as the emergency manual
to override pushbutton and the physical helm and lee helm controls, as seen on the top
of Figure 3.1. The position of the helm and lee helm is governed by a 5kΩ potentiometer
inside each unit. The analog output terminal of both potentiometers are fed into the A0
and A1 analog input terminals on the Arduino, each supplied with 5V DC and grounded
at the Arduino GND terminal. The voltage-interrupting pushbutton on the lee helm throttle
also draws 5V DC, grounded through the board’s GND terminal, and the button position is
passed as a digital input via Arduino digital pin 2.

Two SparkFun Qwiic relays are used to switch the communication path from "normal
operation" via the HMI, RTU, and PLC to the "emergency operation" condition directly
to the VFD via a MAX485 module available to the Arduino. Additionally, after the push
button is pressed, a red LED attached to pin 13 is used to visually display that the system is
in the emergency condition by energizing the light in addition to the relays switching to the
Normally Open position. The left image in Figure 3.7 shows the setup for Arduino 1 and
the right image in Figure 3.7 is the full schematic diagram for the circuitry.

27

Figure 3.7. Photograph and Fritzing schematic of the helm/lee helm console
with the emergency manual push button circuitry

Arduino 2 powers the VFD emulator, which was added in order to demonstrate the PTP
mechanism, absent a full-path solution from HMI to RTU to PLC to VFD. Arduino 2 has
a very simple configuration, with only a MAX485 module to simulate the VFD receiving
legitimate commands from the RTU and an LED to simulate the on/off actions of the VFD.
The MAX485 module is powered by 5V DC, grounded to Arduino GND, with terminals A
and B connected to the corresponding terminals on the RTU. Additionally, the MAX485’s
DE and RE pins are coupled and connected to Arduino pin 2. MAX485 DO is connected
to Arduino pin 0 (Rx) and MAX485 DI is connected to Arduino pin 1 (Tx). The LED,
grounded by a 220Ω resistor, is connected to Arduino pin 13. The image on the left in
Figure 3.8 shows the setup for Arduino 1 and the diagram on the right in Figure 3.8 provides
a full schematic for the circuitry.

3.3.2 Raspberry Pi
The common assembly across all Raspberry Pi 4s was that each was connected via category
6 ethernet cable to the Netgear switch, which was also connected via category 6 ethernet

28

Figure 3.8. Photograph and Fritzing schematic of the second Arduino unit,
powering the VFD emulator

cable to the Linksys router. The individual assembly steps for the HMI and RTU are
described below.

HMI Physical buttons, LEDs, and potentiometers were installed through the HMI’s avail-
able GPIO pins in order to reduce processing overhead incurred by driving an LCD touch
panel display (per the original design).

The three push buttons, corresponding to the three LED status lights (green, red, and blue),
represent states on, off, and forward/reverse respectively. The push buttons are each hard
wired with pull-up resistors via the 3.3V DC power supplied by the Raspberry PI board.
Although pull-up conditions can be applied in software through the Raspberry Pi GPIO
configuration, hard wiring reduced code length and increased the reliability and accuracy of
button presses. For the first button, a 10kΩ resistor from 3.3VDCwas connected to the rung
shared by Raspberry Pi pin 36 and a 1kΩ resistor into the left terminal of the push button.
The right terminal of the push button is wired directly to GND. This same configuration is
duplicated for the other two push buttons, except button 2 is wired to Raspberry Pi pin 38
and button 3 is wired to Raspberry Pi pin 40. Pins 36, 38, and 40 were configured via GPIO
setup as digital input pins.

The three LED status lights are wired in a similar fashion as both Arduinos, but with the
output from Raspberry Pi pin 11 wired into a 220Ω resistor and then into the anode side

29

(long leg) of the LED. The cathode side (short leg) of the LED is wired to GND. As the
VFD emulator is only configured to receive ON or OFF commands from the RTU, the
potentiometer is not currently configured to send data to the HMI; the transmission of
potentiometer data would require either an analog to digital converter (ADC) or another
Arduino unit.

RTU The RTU is configuredmore simply than the HMI, and not unlike Arduino 2. The RTU
communicates with Arudino 2, the VFD emulator, via a corresponding MAX485 module
that is connected via the Raspberry Pi GPIO pins. This MAX485 draws 5V DC from the
Raspberry Pi pin 2 and returns to GND on pin 6. As with Arduino 2 (the VFD emulator),
terminals A and B on the MAX 485 connect via hookup wire to the corresponding A and
B terminals on Arduino 2’s MAX485 module. This established the RS-485 communication
link between the two. As with the other MAX485 modules, DE and RE are coupled, but the
coupled wire is connected to Raspberry Pi pin 7. MAX485 DO is connected to Raspberry
Pi pin 10 and DI is connected to Raspberry Pi pin 8.

Figure 3.9 shows the setup for both HMI and RTU Raspberry Pi units and Figure 3.10 is
the full schematic diagram for the circuitry, also via Fritzing.

3.3.3 Click PLC
The CLICK PLC system is wired for power in accordance with reference [32], using 24V
DC power into the terminal blocks as shown in Figure 3.11. For communications with the
PC running the CLICK! PLC Software, Comm Port 1 (TCP/IP) has a category 6 ethernet
cable attached to the router providing the LAN for the project. It is worth acknowledging that
this configuration does technically expose the PLC to the attacking Raspberry Pi unit that
is also on the same LAN and subnet as the HMI, RTU, and now PLC. This configuration
was chosen in order to simplify the experimental setup and that attack vector is neither
considered nor explored any further in this work. A future implementation that would avoid
this risk could, instead of TCP/IP, utilize the Comm Port 2 (RS-232) and a module for
the RS-232 serial communication protocol. The VFD section that follows discusses the
communication connections required to control the VFD via the PLC.

30

Figure 3.9. Photograph of the configuration of the HMI (left Raspberry Pi)
and the RTU (right Raspberry Pi)

Figure 3.11. Wiring of CLICK PLC for power, from [32].

31

Figure 3.10. Full Schematic of HMI and RTU Configuration, using Fritzing

3.3.4 VFD
TheAutomationDirectGS1 seriesVFDwaswired in accordancewith [24], using the 1-phase
input power connections and 3-phase output power connections. Figure 3.12 shows the nec-
essary connections for each VFD from the ACmotor or power source. The communications
are provided via the AutomationDirect pre-terminated RS-485 cable (GS-485HD15-CBL-
2), ultimately connected from Comm Port 3 on the PLC to the RJ-45 port on the bottom
of the VFD. Note that the wiring in this specific implementation is re-routed through the
relays as part of the emergency manual override functionality.

32

Figure 3.12. Wiring of 1-phase input and 3-phase output, from [24].

3.3.5 Full System Schematic
Figure 3.13 shows the full configuration layout of our test bed. It is worth noting that the
configuration shown does incorporate the PLC connected via the same network hardware
as both the HMI and RTU.

33

Figure 3.13. Full system schematic, using Fritzing

In the next section, we discuss the configuration of the components of this test bed.

3.4 Configuration

3.4.1 Networking
The nodes on the network were configured with static IP addressing corresponding to Table
3.2. A MacBook Pro with a dynamically assigned IP address was utilized for configuration
and testing on the nodes via SSH. WiFi was disabled on the router.

34

Hostname IP Address MAC Address
alice 192.168.1.38 DC:A6:32:30:FF:F3
bob 192.168.1.39 DC:A6:32:30:E6:F6
eve 192.1681.36 DC:A6:32:1B:02:06

clickplc 192.168.1.20 00:D0:7C:12:67:6E

Table 3.2. Static IP address assignments for experimentation LAN

3.4.2 Raspberry Pi
All three of the Raspberry Pi units received the following initial configuration settings (via
sudo raspi-config), as seen in Figure 3.5:

1. 1 > S1 (Wireless LAN) > [Set to join hotspot for updates and package installs]
2. 1 > S4 (Hostname) > [Set to alice/bob/eve]
3. 1 > S5 (Boot / Auto login) > B2 (Console Autologin)
4. 1 > S6 (Network at Boot) > Enabled
5. 1 > S7 (Splash Screen) > Disabled
6. 3 > P2 (SSH) > Enabled
7. 3 > P3 (VNC) > Disabled
8. 3 > P4 (SPI) > Enabled (not req’d for Eve)
9. 3 > P5 (I2C) > Enabled (not req’d for Eve)

10. 3 > P8 (Remote GPIO) > Enabled (not req’d for Eve)

Additionally, all three received the following common installation packages, installed via
standard Linux installation methods:

sudo apt install python3

sudo apt install linuxptp

sudo apt install mosquitto mosquitto-clients

sudo apt-get install paho-mqtt

35

The linuxptp installation package created a new directory in /etc/linuxptp, where two
configuration files are now located, ptp4l.conf and timemaster.conf. timemaster.conf is the
configuration file for the timemaster service that governs fallbacks to NTP timesources or in
instances when there are multiple PTP domains that require greater specificity. ptp4l.conf,
the configuration file for the ptp4l service, is the focus here. The full configuration file for
each node can be found in Appendix A.3, A.4, or A.5.

All three nodes had settings that needed to be uniform across all nodes in order to properly
communicate via PTP. For example, all three nodes needed to have software timestamping,
the appropriate interface, and the correct clock servo mechanism in agreement. Most default
settings were maintained, as they provided a sufficient synchronization. For example, the
use of two-step, the delay mechanism (end to end, vice peer to peer), and clock settings were
maintained. There were some key changes that needed to be implemented according to the
circumstances of each node. For example, Bob (the RTU) needed to have slaveOnly set to 1,
as there was no condition in which Bobwould become the PTP grandmaster. Additionally, in
order to ensure that Bobwould re-synchronize following a change inmasters, step_threshold
was set to the same value as first_step_threshold (0.00002). Also, adding [eth0] to the end
of the configuration file for each eliminates the need to add the option to specify an interface
when running ptp4l either from command line or starting it as the background service.

3.4.3 Arduino
After the hardware assembly was completed and the board was wired correctly, the Arduino
configuration was very simple. Each board was loaded with the corresponding Arduino
Sketch file, and then the onboard microcontroller does the rest of the work. Arduino 1 was
loaded with the sketch file in Appendix A.1.2 and Arduino 2 was loaded with the sketch
file in Appendix A.1.1.

Next, we discuss the overarching strategy for using precise timing in this system to mitigate
a MotS attack.

3.5 Implementation Approach
With the test bed assembled and configured, we address the second phase of our project:
examining a method of defeating a MotS (Eve) through effective use of precise timing. As

36

the MotS, Eve is presumed to have physical access to the network, can see data flowing
across it and between the nodes, capture data, and even send data to the various nodes.
But, Eve is unable to delete valid data from the system; she is only able to inject her own
malicious and false commands into the system. Eve has knowledge of how the two legitimate
nodes, Alice and Bob, work together via MQTT and PTP. Additionally, Eve is ultimately
capable of even hĳacking the PTP communication cycle, for example, by advertising a better
priority bit in the hopes of distorting the best master clock algorithm in her favor.

Successful defense against these attacks rests on Bob, the RTU and PTP slave also connected
via RS-485 to the VFD emulator, using the timestamp information required in the MQTT
message to determine if the associated command also inside the MQTT message is valid or
not. The commands currently accepted between the two are either "on" or "off," controlling
the LED on the VFD emulator.

Alice, the HMI and the PTP master, selects an arbitrary time, changes its system clock
accordingly, and then begins to synchronizewith Bob using linuxptp suite, specifically ptp4l.
Again, the phc2sys service is not needed here as the NIC in the Raspberry Pi 4 models do not
support hardware timestamping. Using configuration guidance from the Red Hat Customer
Portal, ethtool is a useful utility in order to verify key capabilities of the NIC and kernel at
large [33]. Figure 3.14 shows the use of ethtool to validate the NIC and kernel capability to
handle at least software timestamping. The key fields to be present in the Capabilities section
of the output of ethtool are "software-transmit", "software-receive", and "software-system-
clock." Hardware timestamp-capable units will have additional entries that correspond to:
"hardware-transmit," "hardware-receive," and "hardware-raw-clock" [33].

Figure 3.14. Screenshot of ethtool used to check timestamping capability,
in this case of Eve.

37

Bob, now synchronized to Alice’s arbitrary time, has a known reference point for checking
the validity of the incoming messages. Separately, an average MQTT message processing
and propagation delay was computed and that value is also used by Bob to conduct the
validity checks. If the command packets received are within the mean time differential then
they are considered valid.

This is particularly useful for the defender because a MotS that is either trying to guess the
timestamps or, based on intercepted traffic is trying to preempt them by sending ones slightly
ahead, has a very narrow window for its messages to be accepted as valid. Additionally, the
defender, Bob, can safely drop all packets timestamped ahead of the synchronized arbitrary
time, as receiving data from the future is an impossible legitimate scenario for Bob. What
remains is the very narrow window of time in which Eve must correctly guess (or compute)
the precise time and also transmit it within the known offset.

In the next section, we describe the methodology that governs normal command and control
within our experimental test bed.

3.6 Python Scripts
Python 3 was the preferred choice to implement the code design because of its simplicity,
extensibility (i.e. in importing the paho-mqtt library, among others), and its ability to handle
date time objects and strings. MQTT delivers the messages as strings, and it is important
to be able to convert the timestamps in the received messages back into a datetime object
for accurate computation of time differentials. The basic MQTT publish and subscribe
framework that we utilized drew from the CS3250 Cyber Physical Systems Laboratory #3
by Singh and Prince [34]. The pseudocode of the program logic follows here, and the Python
3 code can be found in Appendix A.6 and A.7.

3.6.1 Alice Psuedocode
Timing:

Alice sets system time as arbitrary

ptp4l synchronizes Bob to Alice’s arbitrary time

Command Messaging:

while True:

38

Check for button press

if Green button was pressed:

Create "on" payload

Get current time & add to "on" payload

Send payload via MQTT

if Red button was pressed:

Create "off" payload

Get current time & add to "off" payload

Send payload via MQTT

Receive status update payload from Bob

3.6.2 Bob Psuedocode
Timing:

Bob uses ptp4l to synchronizes to Alice’s arbitrary time

Command Messaging:

while True:

Check for new MQTT message (via on_message)

if new message received:

Get current time

Decode message (parse command and timestamp)

Compute difference of current time & timestamp

if difference < average MQTT time difference:

Command is valid

Forward Command to VFD emulator

if difference >= average MQTT time difference:

Command is invalid

Disregard/Drop

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

CHAPTER 4:
Testing & Results

This section describes the testing methodology and discusses the results captured from
our test bed. Subsection 4.1.1 describes the testing process of the linuxptp software suite,
detailing a series of tests that compare different configurations in search of optimal settings.
Subsection 4.1.2 details the configuration and testing of the MQTT control messaging.
Finally, section 4.2 describes the key findings regarding our use of arbitrary time and the
effects of the rogue master takeover attack.

4.1 Testing
In this section we discuss the testing of the key constituent protocols in our testbed PTP and
MQTT. For data visualization, we utilized Google Colab, which is a cloud based coding
environment similar to Jupyter Notebook. There were a number of advantages conferred by
using Google Colab such as ready access to a wide array of powerful libraries like Pandas,
NumPy, SciPy, Matplotlib, and more. Additionally, the cloud backup and version history
components of Google Colab proved to be useful advantages in the course of the data
analysis. The Python code that we used to generate the data and figures in this section can
be found in Appendix A.8. In addition to Google Colab, we used the popular packet capture
program Wireshark to examine the multicast PTP traffic flowing through the network.

First, we will discuss PTP synchronization using ptp4l.

4.1.1 PTP Synchronization
With the linuxptp package installed on the relevant nodes according to Section 3.4 and
utilizing the configuration found in Appendices A.3 and A.4, we ran the PTP synchro-
nization under a number of different scenarios. For example, we first gathered the initial
synchronization data by running ptp4l directly from the command line, with the output of
the process going to standard out. Subsequent data collections compared various aspects
of the ptp4l application such as clock servo methods linear regression (linreg) versus pi
constant (pi). For another example, we compared altered network configurations such as the

41

set up described by the full network diagram in Figure 3.2 versus a "bare bones" switch-only
configuration. These comparisons and others are described in greater detail in this section.

Initial Synchronization
Our first data collection with linxuptp on Alice and Bob was an approximately 23 minute
run, with output from the various services being printed to standard out (stdout) over the
secure shell (SSH) connection of the MacBook Pro. This initial synchronization run will
also be used to describe some of the features, behaviors, and output of the ptp4l program in
practice. Figure 4.1 shows the result of this synchronization run with the calculated offset
from the master’s time along the y-axis in nanoseconds and the total run time along x-axis
in seconds. The ptp4l application prints new computed master offset values to standard out
approximately every second.

Figure 4.2 shows an example of typical PTP logging messages via ptp4l on Bob. The
command used to execute this run on Bob can be seen in the first line of Figure 4.2.
Option -f with /etc/linuxptp/ptp4l.conf specifies the configuration file for linuxptp
to consult. Additionally, options -s -m in the same figure explicitly declare the run to use
SlaveOnlymode and route output to standard out, respectively. In order for synchronization
to occur, Alice needed to also be running ptp4l, using the configuration found in A.3, also
with the -m option on the command line to also route output to standard out over SSH. Alice
can use a lower priority1 and priority2 value in order to ensure she takes on the role of PTP
grandmaster, however specifying Bob as SlaveOnly as previously described will achieve the
same effect: Alice assumes the role of PTP grandmaster and Bob assumes PTP slave.

We take this opportunity to examine some of the output of ptp4l using Figure 4.2 from Bob.
After the first line in Figure 4.2 that was described above, each line of the ptp4l standard
output begins with ptp4l[X]:, where X is a float that represents the current uptime, or
the number of seconds since the last reboot. In the Linux kernel, this value is stored in
/proc/uptime. Our data visualization script remaps this number to begin at 0 s.

In the first few lines of Figure 4.2, the ptp4l output, there are important port state changes
to examine. According to [33] and the ptp4l manual page, port 0 refers to a Unix domain
socket used to manage PTP, while port 1 refers to the specific interface in use by ptp4l–in
our case this is Raspberry Pi eth0 interface, as specified in the configuration file.

42

Figure 4.1. Initial PTP synchronization using ptp4l from the linuxptp pack-
age

We can see in the first line of ptp4l output that Bob’s correct interface is now in the
LISTENING state, looking for a grandmaster from which to receive timing data. As the
corresponding service had already been running on Alice, we can see in the third line
of Figure 4.2 that Bob detected a new foreign master. This was based on the announce
messages sent by the ptp4l program on Alice.

The next four lines reflect Bob working through the best master clock algorithm (BMCA)
as specified in [11] and enacted by [12]. All of the lines of Bob’s standard output in Figure
4.2 that contain master offset are the data lines that we include and parse in order to
analyze further. These data lines contain five key data elements: kernel uptime in seconds,
master offset, clock servo state (s0/s1/s2), frequency, and path delay. Uptime and master
offset have been described previously, but clock servo state is an important value to describe
as well. A clock servo is a mechanism used to correct the offset drift between a master
and subordinate slave nodes [35]. In the context of linuxptp and ptp4l, the clock servo state
refers to the degree to which the ptp4l servo can change the system time to match what
it has computed as the correct time, based on the PTP messages it has received from the

43

Statistic Value
Number of Values 1393

Mean offset -5484.5 ns
Mean abs(offset) 9194.2 ns

Median 3916ns
Standard Deviation 1548.1

Mean (log normalized) 8.24 ns
Median (log normalized) 8.2 ns

Standard Deviation (log normalized) 1.38

Table 4.1. Key statistics from the initial synchronization with ptp4l.

master. State s0 is unlocked, meaning the slave’s clock is not yet ready to track the master
time [12]. State s1 is clock step, meaning the slave’s clock servo is ready to correct its time
based on the master’s calculated offset [12]. Finally, state s2 is locked, meaning the slave’s
clock servo has locked onto the master’s timing offset and is gradually altering its time,
consistent with the new incoming offset values [12], [33]. The master offset values in states
s0 and s1 can be extreme prior to synchronization, and this is especially true with our use
of an arbitrary time value at the master. Because of the extreme values in those first two
clock servo states, the tendency of those values to artificially skew results, and the ptp4l
application’s swift shifts into state s2 after approximately 16 seconds in state s0, the data
we use excludes those first two clock servo states. The remainder of Bob’s output from ptp4l
in this run contains only s2 data and would only include additional information such as port
state changes if there was a change in master, of which there was not in this run.

It required just under seven minutes during this initial run and baseline performance ref-
erence for the offset to stabilize near what we will later describe as our optimal achieved
offset range for software timestamping. In Figure 4.1, this stabilization occurs near the 400
s mark. Using the data visualization methods described at the beginning of this chapter
that can be found in Appendix A.8, we will examine key metrics of this initial run. Table
4.1 displays the key statistics we extracted from this initial synchronization. Of note, the
standard deviation was extremely high (1548.1) until logarithmically normalized (1.38).

44

Figure 4.2. Example prints to standard out using ptp4l from the linuxptp
package

Subsequent runs did not produce the same six to seven minute "cold start" as this initial
run. In fact, they began basic stabilization inside our tolerable offset threshold from the
beginning. These additional runs will be described in greater detail later. But before we
proceed, we will further examine this initial run from the point of synchronization after the
cold start, near the 400 s mark of 4.1. Figure 4.3 shows the rest of the run from this point
forward and gives a glimpse of the normal offset range for ptp4lwith software timestamping
in our test bed. Table 4.2 shows the key statistics for this stabilized segment of the initial
synchronization. Here, we see the initial standard deviation (3019.5) is substantially better
than the full initial synchronization as shown in Table 4.1, and when normalized, the
standard deviation is very close to 1 (1.09).

Next, we will examine a few different ptp4l testing scenarios, beginning with a "long run"
of the service.

45

Figure 4.3. Initial PTP synchronization, following offset stabilization using
ptp4l from the linuxptp package

Long Run Data
In order to assess the stability of the ptp4l service over a longer period of time, we captured
data for over two hours (7600 s). The long run proved to be very stable over the two hour
period, with some identifiable outliers where the offsets exceeded the optimal offset window.
Figure 4.4 shows the 7600 second data capture with identifiable outlier clusters near the
300 s, 4000 s, 5000 s, 6000 s, 6500 s, and 7500 s marks. The most clear outliers occurred
near the 4000 s and 5000 s marks. For this data set, we found an average offset of -10 ns,
a median offset of -442 ns, an average absolute offset of 4187 ns, and a standard deviation
of 5410. After logarithmic normalization, the standard deviation is 1.18. Of note, just the
four largest outlier offset values were correctly identified using a Z-score of 2.75. By trial
and error, a Z-score of 2.35 resulted in the successful identification of all six offset outlier
clusters, at the aforementioned intervals in Figure 4.4.

46

Statistic Value
Number of Values 1094

Mean offset -481 ns
Mean abs(offset) 3568.4 ns

Median 3066 ns
Standard Deviation 3019.5

Mean (log normalized) 7.8 ns
Median (log normalized) 8 ns

Standard Deviation (log normalized) 1.09

Table 4.2. Key statistics from the initial synchronization, post cold start with
ptp4l.

Switch-Only Network Configuration
As previously discussed in Section 3.1.6, we examined a more simplistic network configu-
ration like the one in Figure 3.2, where the connection between the switch and the router had
been severed, leaving only the Raspberry Pi nodes in communication by way of the Netgear
Switch and via statically assigned IP addresses. Using this basic networking configuration
for an approximately 15 minute run, we found a mean offset of 83 ns, a median of -502
ns, and an a mean absolute offset of 3021 ns. The standard deviation after logarithmic
normalization was 1.07. With this run, a Z-score of 2.25 was needed in order to correctly
identify the two primary outlier offset values.

Standard Out versus Background Service
In comparing these two options, we are by extension evaluating to what degree increased
processor or increased network stress may impact the master offset values on Bob. The
standard out option, printing to a console connected via SSH, is the mechanism creating
this increase in network traffic, as each print of standard out is transmitted to the connected
console over that remote SSH connection. Meanwhile, with the nodes running ptp4l as a
service, they do not transmit more traffic than necessary and record the behavior of the
service in /var/log/messages. The entries into this file by the ptp4l service are almost
identical to what is printed via standard out as seen in 4.2, but with the current system date

47

Figure 4.4. Long run of ptp4l service, showing offset versus time.

and time appended to the beginning of each line.

The distinction between processor versus network stress was examined in greater and far
more specific detail by Huwyler, who showed that central processing unit (CPU) load did
not have a substantial impact on the calculated offsets, but high volumes of induced noise in
the network did considerably impact performance of the ptp4l service [36]. This work, and
a deeper look into the impact of network noise that we observed, are discussed in greater
detail in Section 4.1.2.

Our comparison of these two approaches to using ptp4l kept all other configuration details
such as clock servo mechanism and delay measurement constant. For standard out, we found
a mean offset of 384 ns, a median of -234 ns, and a mean absolute offset of 3586 ns. For the
service, we found a mean offset of -640 ns, a median of -122 ns, and a mean absolute offset
of 3442 ns.

We logarithmically normalized both data sets in order to use a consistent benchmark to com-
pare performance between the approaches described in this subsection. This normalization

48

tells us more about how far the average results are from that calculated mean. As such, the
normalized standard deviation of the ptp4l service (1.04) illustrates the offsets in that data
set were slightly closer to their average than that of the standard out methodology, with a
standard deviation of 1.06. We chose the service approach because the standard deviation
for the standard out approach was greater than the ptp4l service.

Comparing linreg vs pi Clock Servo Mechanisms
As described by [33], ptp4l accepts either of two primary clock servo mechanisms, linreg
(linear regression) or pi (pi constant). The linreg mechanism is an adaptive one with
reduced configuration options, but higher processing demands. Our results from running a
synchronization using linreg showed a median offset of -95 ns, a mean offset of -57 ns, and
a mean absolute offset of 3583 ns. Our log normalized standard deviation using linreg was
1.2.With pi, we ascertained a median offset of -1094 ns, a mean offset of -741 ns and a mean
absolute offset of 4244 ns. Our log normalized standard deviation with pi was 1.12. The
750 ns advantage of linreg over pi in mean absolute offset values, along with comparable
standard deviations, lead us into the discussion of why we chose linreg over pi.

We selected linreg as the operative clock servo for a few reasons. First, based on the
aforementioned data that we collected and analyzed, linreg did show better performance
versus the pi constant servo. Second, owing to the lower degree of configuration required
and its adaptive nature, linreg has additional advantages over the alternative. Finally, as
shown by [36], increased processor load was not the prime driver of instability in offset
values—network load was. Therefore, the additional processing burden of linreg over pi
was not considered to be a major detriment in our test bed, and the results from our test bed
confirmed this conclusion.

Wireshark Data
To gather and examine network data, we utilized the popular packet analyzer Wireshark
(v.3.4.9). Figure 4.5 depicts a normal PTP two-step message exchange, as captured by
Wireshark. In that figure, the protocol is shown to operate in the manner specified by [11].
The multicast address in the center of the figure, 224.0.1.129, could represent anyone on
that network listening to multicast traffic on the given ports (UDP 319 & UDP 320). It is
worth highlighting here that of the timestamps needed by the slave to correctly calculate the

49

offset, only C1 (time of sync transmission) and C4 (time of delay_req receipt) are recovered by
Wireshark’s packet sniffing. Timestamps C2 (time of sync receipt) and C3 (time of delay_req
transmission) are recorded only by the slave. Figure 2.1 refers.

Figure 4.5. Wireshark packet flow diagram depicting a standard PTP mes-
sage exchange in practice.

Next, we will discuss the mechanics of the command and control in our test bed, using
MQTT.

4.1.2 MQTT Control Messaging

Control Overview
The publish-and-subscribe MQTT framework that we used was derived from [34]. On top
of the basic publish and subscribe framework of [34], we built core modules in order to
enable necessary functionality such as registering button presses on the HMI, or checking
the log for PTP offset stability on the RTU. For reference, the Python 3 code for each node
can be found in appendices A.6 and A.7.

HMI The HMI uses the MQTT methods of on_connect and on_message to handle
the connections between MQTT publisher and subscriber, and subsequently the messages
passing between them. There needed to be a publisher and a subscriber on each node in
order to facilitate the bidirectional communication loop. In addition to these two functions, a
buttonHandler functionwas created using themultiprocessing library in order to allow the
HMI to continuously watch for button presses while the main function continues handling

50

MQTT message traffic. ON and OFF commands were created in hardware by the green
and red buttons and lights. Using a Boolean sendState variable, new MQTT commands
were only sent to the RTU if the state had changed, meaning the opposing button had been
pressed. This ON/OFF logic was handled in software, but could have also been implemented
in hardware using a toggle switch.

The HMI is the publisher of the “mqtt/commands” topic, which is subscribed to by the
RTU. Vice versa, the RTU is the publisher of the “mqtt/updates” topic, which is subscribed
to by the HMI. MQTT does not natively support timestamping within the protocol, so it was
necessary for us to append the timestamp to the data payload. When a new and valid button
press is logged by buttonHandler, HMI takes a timestamp and if the button pressed was
green, it appends that timestamp to the “on/” payload and publishes it to “mqtt/commands”,
thereby sending it to the RTU.

RTU Using the same basic publish and subscribe framework described above, the RTU had
different demands that required new functions. There is an important distinction in the way
the system handles getting and sending a timestamp: all payload in MQTT messages are
published as a Python string, however when the timestamp was originally made, it was as
a Python datetime object. For this reason, we had to add a function that the RTU could
use to convert the received timestamp string into a Python datetime object, which could
then be used to perform calculations such as the transmitted & received timing difference.
Using the split method, RTU divides the received payload into a command segment and a
datetime segment. Then, using methodology described by [37], RTU converts the received
timestamp segment back into a Python datetime object.

Because our PTP system with software timestamping could not approach nanosecond-level
precision of hardware timestamps, we deemed it appropriate to use a conversion method
that kept datetime objects in terms of microsecond precision. After the conversion, the
RTU conducts a simple subtraction of the timestamp found in the master’s payload from
the timestamp the RTU took when it received the payload. It was important to perform this
computation inside the RTU’s on_message function, because the time difference
computation needed to be as instantaneous as possible. Receiving the payload, storing it in
a global variable, exiting on_message and returning to main() all before completing that
time difference calculation would incur delay due to movement between functions on the
stack.

51

The validity decision takes advantage of the ongoing synchronization between HMI and
RTU according to the arbitrary time decided by the HMI & PTP master. The precise
alignment of legitimate nodes along this arbitrary time value is what makes it difficult for
Eve, the attacker, to perform FCI in the system under normal conditions. The first validity
decision made by the RTU is whether or not the received timestamp is ahead of its own.
If so, RTU can automatically discard this message as it is not possible for a valid message
to come from its valid master at a future time. The part of the validity decision is whether
or not the computed timestamp difference is either greater than or less than or equal to the
validityTolerance. We will describe the manner in which we determined the appropriate
validityTolerance in the next section.

After the validity decision is made inside on_message, the Boolean global variable
validCmd is changed accordingly and is passed to main(), where the RTU makes its next
conditional decision prior to sending any commands to the VFD emulator. In order to
ensure the RTU was only receiving valid commands while it was synchronized by the ptp4l
service running in the background, we created an additional logWatcher function that
con-tinuously scans through the most recent ptp4l service entries in the /var/log/
messages directory, computes the current average offset, and then determines if the offset
values are within the valid range of stability. The three values (in nanoseconds) used by
logWatcher were determined based on the offset ranges determined by the preceding
sections. Nomi-nally, any computed average offset greater than offsetError = 10000
puts the system into an error state, prohibiting acceptance of new commands and explicitly
printing an error to standard out. In between offsetError = 10000 and offsetWarning
= 5000, new commands are accepted, but a warning is printed to standard out. If the
computed average is between offsetWarning = 5000 and offsetOptimal = 3000,
commands are accepted with no warnings printed unless in debug mode. This is the normal
operating range for the system, and it is worth noting here that a DoS attack is certainly
possible, but was not specifically evaluated in our test bed as there is a large pre-existing
body of work reviewing the susceptibility of PTP to DoS attacks. Any computed running
averages of the offset that are below offsetOptimal = 3000 are considered optimal with
all valid commands also accepted.

52

Determining Average Time
In order to determine the average expected time delay between authentic HMI to RTU mes-
sages, we modified the control programs to print both payloads, delimited by a /. This phase
required alternate pressing of each button on the HMI in order to transmit a new payload
each time. This process was repeated approximately every second, under normal otherwise
operating constraints for the test bed. Using pandas dataframes in Google Colab, we parsed
the output of the test to include just the two timestamp values for each button press, calcu-
lated the difference between slave-received and master-transmitted timestamps, and applied
the mean() function to compute the average of all differences. The mean difference we
calculated was 0.00124s. We then used this value as the basis for the validityTolerance
variable previously described.

Full Test
We conducted full tests for approximately 25 minutes. The 25 minute time frame intention-
ally allows for approximately 15 minutes of PTP synchronization time via the ptp4l service
before the MQTT Python scripts are started on both nodes. The last 10 minutes of the test
examines the behavior of the MQTT communications and introduces the MotS attacker,
Eve, who uses the attack script in Appendix A.2. The results of those tests are described in
Section 4.2.

4.2 Test Analysis

Arbitrary Time
The arbitrary time we chose varied, but was typically within the most recent 24 hour period.
The difference between the arbitrary time and the slave’s current time is not particularly
relevant because, as described in section 4.1.1, clock state s1 is when the biggest timing ad-
justments are made by the slave’s clock servo. After it enters state s2, the timing adjustments
are more gradual. Therefore, an arbitrary time that is days or weeks off will be accounted
and adjusted for before the slave’s clock begins to stabilize according to the offsets it is
calculating once locked in s2.

Eve has a very narrow window of time that she needs to accurately guess in order to land
successful FCIs with Bob. Even if the correct date is known, given the mean difference of

53

0.00124 s, as calculated in Subsection 4.1.2, Eve has an approximately 0.0000014% chance
of guessing correctly. This, based on: 0.00124 s divided by 86400 seconds per day. Even
though Eve is able to to watch the multicast UDP network traffic flowing between Alice
and Bob, she is missing the two critical values of C2 and C3, in order to calculate her own
accurate offsets from Alice. This shortcoming in Eve’s attack strategy led her to attempt the
rogue master takeover, described in Subsection 4.2.1.

Before proceeding, we will show the effect of the use of arbitrary time in the two invalid
circumstances of ahead of arbitrary time as well as outside the validityTolerance value.
Figure 4.6 shows Alice, Bob, and Eve in that order, from left to right. As Bob has been
time synchronized to Alice’s arbitrary time using ptp4l, the commands Alice sends to
Bob are validated and are accepted. Of the four valid messages shown on Bob’s console,
the longest time difference between timestamps was 0.00122 s, which is still inside our
validityTolerance of 0.00124 s. Next, as shown in the far right console and highlighted
in red, Eve attempts to send false commands to Bob. These commands are rejected because
they are grossly outside the validityTolerance threshold. The calculated time difference
of these invalidated commands are around 368532 s. Negative time difference values reflect
received timestamps that are ahead of the synchronized arbitrary time.

Figure 4.6. Full test output depicting valid messages accepted and invalid
messages rejected.

In the next Subsection, we review the results and impact of Eve’s rogue master takeover
attack.

54

4.2.1 Rogue Master Takeover
After Eve’s FCI attempts were rejected based on timing, Eve initiated a rogue master
takeover attack, similar to that described in [14]. Eve’s most important considerations for
this to be successful were to ensure that delay mechanism and clock servo mechanism
were in agreement with what Alice and Bob were already using. Figure 4.7 shows the next
phase of Eve’s attack. In Figure 4.7 in green we see Alice’s valid commands, accepted
by Bob. In the same Figure in red we see Eve’s successful rogue master takeover, where
the top right console window says of Eve “assuming the grand master role”. Now
that she has control, Eve again attempts to transmit her commands to Bob. In Figure 4.7,
these commands are also rejected as they are still outside the threshold, though they are
much closer to validityTolerance. These new commands have a smallest calculated
time difference of 0.0261 s.

Figure 4.7. Full test output after Eve’s rogue master takeover.

This iteration of the test was run without the logWatcher capability enabled in order
to evaluate the effect of Eve’s rogue master takeover as well as the FCI attempts. With
logWatcher, the rogue master takeover attack grossly disrupts stability of the system and
strongly resembles a DoS (though it was not our intention to evaluate DoS here). The effects
of that rogue master takeover attack on timing offsets is depicted in Figure 4.8, drawn from
Bob’s ptp4l logfile. In Figure 4.8, time on the x-axis was remapped to the kernel time values
represented in the ptp4l log, so that specific moments on the line graph could be more easily

55

referenced in the log. This allowed us to confirm that at kernel time 76808.495 s, Bob’s
offsets began wildly fluctuating as it entered a re-synchronization period with the new PTP
master, Eve.

Additionally, Figure 4.8 has two reference lines drawn across the graph. The overlaid
red line represents the offsetWarning = 5000 and the overlaid yellow line represents
offsetError = 10000. These lines are used to highlight the potential disruption to the
system that the rogue master takeover attack would have caused under normal operating
conditions. The normal operating conditions shown are consistent with the testing described
in Section 4.1.1, and resulted in running averages well below the offsetError conditions
and normally inside the offsetWarning conditions, until the moment of the takeover.

In conclusion, despite Eve’s eventual success in exploiting security shortcomings of PTP
(i.e., lack of authentication) by wresting control of the timing system away from Alice, Eve
is still not able to inject false commands. The net effect of creating that timing instability
as shown in 4.8 at the point of RM Takeover is an action that more closely resembles a
DoS, and is counterproductive to Eve’s goal of surreptitiously injecting false commands.

Figure 4.8. Line graph depicting offset versus time for the full test, including
the rogue master takeover attack.

56

Eve successfully took control of timing, but destabilized the system in the process and still
had her false commands rejected by Bob.

In the next chapter we discuss these findings further and present conclusions about the
results using our PTP test bed.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

CHAPTER 5:
Conclusion

This chapter discusses the conclusions we reached through our research, the aspects of our
work that were successful, the aspects of our work that were unsuccessful, key advantages
of our approach, and finally the limitations to our approach.

5.1 Discussion
In our OT test bed, we have demonstrated that timing can be a useful aspect of security. By
mitigating certain kinds of attacks through the use of an arbitrary time value, we were able to
reject certain FCI attempts by the MotS attacker. This is an intentionally narrow focus on a
small subset of the broader category of kinds of MotS attacks, and there are still many ways
for a MotS to circumvent or disrupt the system entirely (e.g. disruption via rogue master
takeover or an explicit DoS). Limitations in our work that are discussed here highlight
the necessity for a breadth of security approaches to safeguard an OT system. In physical
security, a door handle lock is probably not sufficient to prevent a burglar or home invader.
Instead, a broad array of approaches such as deadbolts or security cameras in addition to
the handle lock offer more comprehensive and reliable mitigation of malicious activity. For
OT, timing can assist in mitigating certain attacks, but the reliance on that accurate timing
for core OT reliability functions may make its application to security unappealing.

In the following subsections, we take a deeper look into what did and did not work in our
test bed.

5.1.1 What Worked
PTP software timestamp offset stabilization was predictable and consistent across most
of our applications in the test bed. Additionally, our master offset values were notably
smaller than similar COTS demonstrations by [38] and were on par with that of [36].
Figure 5.1 shows an overlay of two horizontal green lines, on top of Figure 5.9 from [38],
depicting the typical master offset ranges we received in our testbed versus a similar COTS
implementation in [38].

59

Figure 5.1. Hardware versus software timestamps from Ahmed (2018), over-
laid with our typical offset range given by the bright green horizontal lines.
Adapted from: [38, figure 5.9].

We were able to synchronize the operation of our testbed system and tie its functionality to
tolerable ranges of offset values from the master. The MQTT command and control proved
to be an effective and simple way of handling message publication to constituent nodes in
our OT test bed. MQTT was highly modular in implementation, allowing for the addition
of missing features, such as native timestamping, directly into the message payload.

Using arbitrary time, we were able to explicitly reject certain FCI attempts. There were
clear windows in which Eve was not able to inject false commands, at least until execution
of the rogue master takeover.

We demonstrated the effectiveness of the rogue master attack, accentuating the importance
of bringing the linuxptp package into alignment with [13] and [14].

60

5.1.2 What Didn’t Work
The additional network noise generated by the consistent updates from the slave node caused
noticeable and detrimental effects in our test bed. This is admittedly a difficult challenge
to address, as updates from the slave are necessary. For example, being able to regularly
retrieve the true current operating frequency of a VFD is critical to safe and reliable opera-
tion. The system should strike a balance between frequency of update messaging and stress
on the network. In order to prevent disruption to our system, we ceased the MQTT message
updating from the slave to the master. Creating a separate multiprocessing instance
to handle message updates at shorter intervals might strike a better balance. Slowing the
update rate inside main() via a longer time.sleep() value would disrupt the processing
of inbound messages and the transmission of outbound messages. Further, it would intro-
duce greater probability that the master might miss messages from the slave during those
time.sleep() periods.

5.2 Advantages
The system we utilized has a few key advantages. First, the COTS approach enabled quick
acquisition, setup, and deployment of a very reliable PTP-based synchronization andMQTT-
based command and control network.

Additionally, both the PTP implementation we used via linuxptp as well as the MQTT
implementation via mosquitto/paho-mqtt utilize UDP multicast. This affords an additional
advantage of being highly scalable. Although we did not implement additional slave nodes,
doing sowould be very straightforward. Thismulticast approachworkedwell in our network,
primarily because there were only two primary types of network traffic: PTP and MQTT.
In an implementation on a consolidated network with additional types of traffic (i.e. mail,
web, etc.), this multicast might not be a tenable solution.

Finally, the nature of the PTP communication algorithm, whereby only two of the four
necessary timestamps are actually transmitted, was an advantage to our ends. In order to
get the same level of precision as the legitimate slave node, the MotS needs to ascertain
those two other timestamps. In the next chapter, we will discuss a potential application of
emerging technology to improve the attack.

61

5.3 Limitations
In testing with this configuration, using only the software timestamping on the Raspberry
Pi’s, PTP offset stabilization could take up to 15 minutes. The work of [39] has indicated
this cold start can be in excess of 20 minutes. This latency could have serious implications
in time-sensitive systems, especially ones like a shipboard ICS that requires fast and reliable
on/off system control. In initial testing, the 10-15 minute synchronization was on cold
start and subsequent synchronizations did not take the same length of time to stabilize.
Subsequent trials were synchronized to a similar average offset as the initial cold start from
the moment the clock servo locked in state s2 .

As discussed in Section 2.3.2, use of this arbitrary time premise could prohibit the use of
certain security mechanisms that rely on an accurate and true time of day. For example,
some systems gather their PTP timing from a global navigation satellite system (GNSS)
valid time source. In this kind of system, it isn’t practical to use an arbitrary time value in
PTP without first disconnecting the GNSS time source, as GNSS is a higher clock priority
than the local oscillator used by a node like a Raspberry Pi [13]. Additionally, some other OT
systems may require the true time of day for reliable operations. For example, an assembly
line at a car manufacturer might initialize certain systems an hour before workers arrive for
the first shift.

Next, management of the system via SSH incurs additional network load which could
potentially be detrimental, depending on what other operations are occurring over that
remote management connection.

Finally, despite initial intentions to not specifically examine DoS, we confirmed that the
system is very susceptible to a DoS-style attack. The rogue master takeover’s induction of
bad timing offsets in a full test resulted in locking up the system in the error state. Preventing
this level of system seizure due to distortion of the running offsets calculated by the RTU is
challenging with linuxptp, because entries are only written to the log approximately every
second. Computing a more accurate running offset and simultaneously reducing the impact
of average-distorting false offsets would require more frequent logging.

In the final chapter, we discuss potential areas for futurework, informed by the considerations
we have reviewed in this chapter.

62

CHAPTER 6:
Future Work

Finally, in this chapter we discuss future work in the OT and precision timing space.

6.1 Test Bed Improvements
The first potential for future work and improvement we will discuss relates to our own OT
test bed.

Hardware Timestamping The first and clearest recommendation for future work in this
domain is to leverage hardware timestamps. Reducing the offsets by an order of magnitude
through hardware timestamping is very useful and [38] provided a clear visual representation
of the difference in precision afforded by this design choice. The linuxptp software suite
is very powerful and regularly updated, routinely bringing necessary improvements and
continuing to accommodate the use of hardware timestamps.

The Real-Time Hat, by InnoRoute, is a "hat" that interfaces with Raspberry Pi units and
offers the NIC-level interfacing with the PTP protocol powered by linuxptp. Hats, or other
COTS equipment with NICs that support IEEE1588 could be utilized instead of a Raspberry
Pi. Additionally, the use of network equipment that specifically supports IEEE1588, such as
some produced by Cisco, can further improve timing accuracy of the system. Switches that
specifically support IEEE1588 can increase accuracy by acting as a PTP boundary clock.
The IEEE1588-compliant switches can then timestamp the PTP messages at the hardware
layer, at the moment they are transmitted, further reducing inaccuracies from processing
and queuing [40].

Straying from the pure COTS approach, there are still other methods of precise timing,
including some used by renowned international research organizations. For example White
Rabbit, a field-programmable gate array-based timing solution used by the researchers
at CERN, "achieves sub-nanosecond accuracy in Ethernet based networks" and can be
integrated into existing PTP implementations [41]. Although described as cost-effective,
this level of precisionmay not be necessary inmostOT systems and could even be overkill for

63

security-centric applications.White Rabbit is worth highlighting, though, for its commercial
availability and its capability to achieve picosecond-level accuracy in existing PTP systems.

These hardware-based approaches could be examined individually, or could be a piece of
another possible approach which is the use of a separate channel for the timing network.
This would involve another parallel network connected to a secondary ethernet interface
on the nodes. For example, in this implementation eth0 could be connected to the PTP
timing network, while eth1 is connected to the MQTT control network. There is potential
to incur processing overhead, but based on the findings of [36] in regards to processing load
versus network load, that overhead might be negligible compared to security and stability
advantages afforded by a separate physical channel.

Security Security improvements to the PTP side of the test bed could implement recom-
mendations from [14]. Broadly, [14] refers to the use of IPSec or MACsec as a starting point
for a security requirement. The first and most significant requirement outlined in the RFC
was the "must" of clock identity authentication and authorization [14]. The proper security
mechanisms that support both authentication and authorization can have positive material
impacts in mitigating an attack like the rogue master we demonstrated.

As described in [14], authentication of slaves can clarify in the network which nodes are
authorized to receive the timing information sent by the master. Additionally, proper authen-
tication of slaves can mitigate DoS attacks against the master [14]. Spoofing prevention is a
"must" described by [14] as spoofing can be very detrimental to the system. An unmitigated
spoofed master (distinct from the rogue master we evaluated here) usually presents itself as
a PTP transparent clock and can transmit false timing data to the slaves in the network.

For the MQTT side of the test bed, mosquitto and paho-mqtt support TLS for security
within the newest version of MQTT protocol. Using encryption in the command and control
messaging could mitigate both MotS and potentially MitM attacks against the slave (and/or
master) node. It is worth noting that encryption and decryption of payloads could add
additional latency to the system. The level of impact encrypting payloads might have on
timing latency could also be specifically evaluated in future work.

Arbitrary Time Although we have previously discussed the limitations of using arbitrary
time within systems that can tolerate its application, there is potential to leverage arbitrary

64

time in more meaningful ways. For example, by introducing a cryptographic aspect to the
selection of the arbitrary time by the master, we could improve resilience against a MotS
attack. This would subject the PTP system to the same challenges discussed in Chapter
1. Specifically, challenges surrounding key storage and distribution, highlighted by [7],
reemerge when considering a cryptographic approach to the arbitrary time premise.

6.2 MitM
Part of the original proposal of this research was to evaluate the capacity of precise timing
to determine whether or not a command had been altered en route. This premise focused
on a true MitM, whereby the additional processing delay caused by the changes made by
the MitM were measurable due to such a high degree of precision in timing.

This preliminary objective was not practically addressable here given our use of software
timestamps. However, addressing this problem with an extremely high degree of precision
using hardware timestamping at the lowest possible layer of the protocol stack might prove
effective. There is additional potential inside this MitM exploration to leverage artificial
intelligence (AI) and machine learning (ML) in concert with precise hardware-level times-
tamping to measure and evaluate processing delays added by a MitM. As mentioned in
Chapter 5, there is potential to apply emerging technologies such as AI and ML to aid an
attacker’s traffic analysis, possibly providing a better way to accurately guess or infer the
missing timestamps C2 and C3.

6.3 Summary
We have presented the assembly of an OT system with a modular and scalable PTP-
synchronized command and control protocol that is able to leverage precise timing in order
to mitigate a specific kind of MotS attack. Though there are still many vulnerabilities in
the system, the fusion of different security strategies in concert with timing may make
approaches like this more viable in other OT implementations.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX: Configuration Files, Code, and Scripts

A.1 Arduino Code

A.1.1 RS-485 VFD Emulator
/*Derived from Arduino Sketch example code found in Arduino IDE

RS-485 ASCII (vice modbus) via Arduino:

https://forum.arduino.cc/t/modbus-rs485-to-gs1-vfd/400756

*/

int enablePin = 2;

const int ledPin = 13; // the number of the LED pin

int ledState = LOW; // the current state of the output pin

long int on = 1; //establish value 1 as on

long int off = 0; //establish value 0 as off

void setup(){

Serial.begin(19200); // initialize serial at baudrate 9600:

pinMode(enablePin, OUTPUT);

delay(10);

digitalWrite(enablePin, LOW); //(Pin2 LOW to receive value from Master)

pinMode(ledPin, OUTPUT); //set pinMode for the LED as output

digitalWrite(ledPin, ledState); //set initial state (LOW)

}

void loop(){

while (Serial.available()){ //While Serial data has arrived

long int command = Serial.parseInt(); //Receive INTEGER value from Master

// through RS-485

Serial.println(command); //Print received & parsed cmd to monitor

if (command == on){

Serial.println("On");

//ledState != ledState; //change the led state

67

digitalWrite(ledPin, HIGH); //

//delay(100);

//digitalWrite(ledPin, LOW);

} if (command == off){

Serial.println("Off");

digitalWrite(ledPin, LOW);

}

//digitalWrite(ledPin, ledState); //write the new value to the led

}

}

A.1.2 Emergency Manual to Override Push Button
/*Derived from Arduino Sketch example code found in Arduino IDE and

SparkFun Qwiic example:

https://learn.sparkfun.com/tutorials/qwiic-single-relay-hookup-guide/all

RS-485 ASCII (vice modbus) via Arduino:

https://forum.arduino.cc/t/modbus-rs485-to-gs1-vfd/400756

This implementation is set for a single relay (RELAY_A).

RELAY_B is commented out

*/

//RELAY:

#include <Wire.h>

#include "SparkFun_Qwiic_Relay.h"

#define RELAY_A_ADDR 0x18

//#define RELAY_B_ADDR 0x19

Qwiic_Relay relayA(RELAY_A_ADDR);

//Qwiic_Relay relayB(RELAY_B_ADDR);

//SERVO:

#include <Servo.h>

Servo myservo; // create servo object to control a servo

68

// twelve servo objects can be created on most boards

int start = 0; // variable to store the servo position

int finish = 90;

//BUTTONS:

// constants won’t change. They’re used here to set pin numbers:

const int buttonPin = 2; // the number of the pushbutton pin

const int ledPin = 13; // the number of the LED pin

// Variables will change:

int ledState = LOW; // the current state of the output pin

int buttonState; // the current reading from the input pin

int lastButtonState = LOW; // the previous reading from the input pin

// the following variables are unsigned longs because the time, measured in

// milliseconds, will quickly become a bigger number than can be stored in an int.

unsigned long lastDebounceTime = 0; // the last time the output pin was toggled

unsigned long debounceDelay = 50; // debounce time; increase if output flickers

//RS485:

#define MASTER_EN 8 //connected to RS485 enable pin (currently both DE & RE)

// the setup routine runs once when you press reset:

void setup() {

relayA.turnRelayOff();

myservo.attach(9); // attaches the servo on pin 9 to the servo object

// initialize the LED pin as an output:

pinMode(ledPin, OUTPUT);

// initialize the pushbutton pin as an input:

pinMode(buttonPin, INPUT);

// set initial LED state

digitalWrite(ledPin, ledState);

// initialize serial communication at 19200 (formerly 9600) bits per second:

Serial.begin(19200);

69

//RS485 Setup:

pinMode(MASTER_EN, OUTPUT); //Declare Enable pin as output (to Slave)

digitalWrite(MASTER_EN, LOW); //make RE/DE enable pin LOW

}

// the loop routine runs over and over again forever:

void loop() {

// read the state of the switch into a local variable:

int reading = digitalRead(buttonPin);

// check to see if you just pressed the button

// (i.e. the input went from LOW to HIGH), and you’ve waited long enough

// since the last press to ignore any noise:

// If the switch changed, due to noise or pressing:

if (reading != lastButtonState) {

// reset the debouncing timer

lastDebounceTime = millis();

}

if ((millis() - lastDebounceTime) > debounceDelay) {

// whatever the reading is at, it’s been there for longer than the debounce

// delay, so take it as the actual current state:

// if the button state has changed:

if (reading != buttonState) {

buttonState = reading;

// only toggle the LED if the new button state is HIGH

if (buttonState == HIGH) {

ledState = !ledState;

}

70

}

}

// set the LED:

digitalWrite(ledPin, ledState);

if (ledState == HIGH) {

//relayA.turnRelayOn();

//set the servo

//myservo.write(finish); // tell servo to go to position in variable ’pos’

relayA.turnRelayOn();

delay(15); // waits 15ms for the servo to reach the position

} else {

relayA.turnRelayOff();

//myservo.write(start); // tell servo to go to start position

delay(15); // waits 15ms for the servo to reach the position

//relayA.toggleRelay();

}

// save the reading. Next time through the loop, it’ll be the lastButtonState:

lastButtonState = reading;

//SERIAL PRINT TO SLAVE VIA RS-485:

//digitalWrite(MASTER_EN, HIGH); //Make enable pin high to send data to slave

//delay(5); //required minimum delay of 5ms?

//SERIAL READ:

// read the input on analog pin 0:

int sensorValue = analogRead(A0);

// print out the value you read:

Serial.println(sensorValue);

Serial.flush();

//delay(500); // delay in between reads for stability

//delay(1000); //From 485MASTER sketch

71

//RS485 Receive mode enable

//digitalWrite(MASTER_EN, LOW); //Receive mode back on

}

A.2 Eve Attack Bash Script
#!/bin/bash

mqtt_inject.sh

AUTHOR: LT CHARLES ALLEN, USN

mqtt_inject.sh accepts user input for command (on or off), packages

it into the message format, and transmits to the target IP

using mosquitto_pub.

TARGET_IP="192.168.1.39"

TARGET_TOPIC="mqtt/commands"

#Perpetual Loop:

while true; do

echo "Enter command (on/off): "

read COMMAND

echo "${COMMAND}"

TIME IN NANOSECONDS:

#NOW=‘date +"%Y-%m-%d %T.%N"‘

TIME IN MILLISECONDS:

#NOW=‘date +"%Y-%m-%d %T.%3N"‘

TIME IN MICROSECONDS:

NOW=‘date +"%Y-%m-%d %T.%6N"‘

#echo "${COMMAND}/${NOW}"

mosquitto_pub -h ${TARGET_IP} -t ${TARGET_TOPIC} -m "${COMMAND}/${NOW}"

72

done

A.3 Alice ptp4l.conf
[global]

#

Default Data Set

#

twoStepFlag 1

slaveOnly 0

priority1 128

priority2 128

domainNumber 0

#utc_offset 37

clockClass 248

clockAccuracy 0xFE

offsetScaledLogVariance 0xFFFF

free_running 0

freq_est_interval 1

dscp_event 0

dscp_general 0

#

Port Data Set

#

logAnnounceInterval 1

logSyncInterval 0

logMinDelayReqInterval 0

logMinPdelayReqInterval 0

announceReceiptTimeout 3

syncReceiptTimeout 0

delayAsymmetry 0

fault_reset_interval 4

neighborPropDelayThresh 20000000

#

73

Run time options

- logging_level 7 for all available messages

assume_two_step 1

logging_level 6

path_trace_enabled 0

follow_up_info 0

hybrid_e2e 0

net_sync_monitor 0

tx_timestamp_timeout 1

use_syslog 1

verbose 0

summary_interval 0

kernel_leap 1

check_fup_sync 0

#

Servo Options

#

pi_proportional_const 0.0

pi_integral_const 0.0

pi_proportional_scale 0.0

pi_proportional_exponent -0.3

pi_proportional_norm_max 0.7

pi_integral_scale 0.0

pi_integral_exponent 0.4

pi_integral_norm_max 0.3

step_threshold 0.0

first_step_threshold 0.00002

max_frequency 900000000

#clock_servo pi

clock_servo linreg

sanity_freq_limit 200000000

ntpshm_segment 0

#

Transport options

#

74

transportSpecific 0x0

ptp_dst_mac 01:1B:19:00:00:00

p2p_dst_mac 01:80:C2:00:00:0E

udp_ttl 1

udp6_scope 0x0E

uds_address /var/run/ptp4l

#

Default interface options

#

network_transport UDPv4

delay_mechanism E2E

time_stamping software

tsproc_mode filter

delay_filter moving_median

delay_filter_length 10

egressLatency 0

ingressLatency 0

boundary_clock_jbod 0

#

Clock description

#

productDescription ;;

revisionData ;;

manufacturerIdentity 00:00:00

userDescription ;

timeSource 0xA0

[eth0]

A.4 Bob ptp4l.conf
[global]

#

Default Data Set

#

75

twoStepFlag 1

slaveOnly 1

priority1 128

priority2 128

domainNumber 0

#utc_offset 37

clockClass 248

clockAccuracy 0xFE

offsetScaledLogVariance 0xFFFF

free_running 0

freq_est_interval 1

dscp_event 0

dscp_general 0

#

Port Data Set

#

logAnnounceInterval 1

logSyncInterval 0

logMinDelayReqInterval 0

logMinPdelayReqInterval 0

announceReceiptTimeout 3

syncReceiptTimeout 0

delayAsymmetry 0

fault_reset_interval 4

neighborPropDelayThresh 20000000

#

Run time options

#

assume_two_step 1

#assume_two_step 0

logging_level 6

path_trace_enabled 0

follow_up_info 0

hybrid_e2e 0

net_sync_monitor 0

76

tx_timestamp_timeout 1

use_syslog 1

verbose 0

summary_interval 0

kernel_leap 1

check_fup_sync 0

#

Servo Options

#

pi_proportional_const 0.0

pi_integral_const 0.0

pi_proportional_scale 0.0

pi_proportional_exponent -0.3

pi_proportional_norm_max 0.7

pi_integral_scale 0.0

pi_integral_exponent 0.4

pi_integral_norm_max 0.3

step_threshold 0.00002

#step_threshold 0.0

first_step_threshold 0.00002

max_frequency 900000000

#clock_servo pi

clock_servo linreg

sanity_freq_limit 200000000

ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0

ptp_dst_mac 01:1B:19:00:00:00

p2p_dst_mac 01:80:C2:00:00:0E

udp_ttl 1

udp6_scope 0x0E

uds_address /var/run/ptp4l

#

77

Default interface options

#

network_transport UDPv4

delay_mechanism E2E

time_stamping software

tsproc_mode filter

delay_filter moving_median

delay_filter_length 10

egressLatency 0

ingressLatency 0

boundary_clock_jbod 0

#

Clock description

#

productDescription ;;

revisionData ;;

manufacturerIdentity 00:00:00

userDescription ;

timeSource 0xA0

[eth0]

A.5 Eve ptp4l.conf
[global]

#

Default Data Set

#

twoStepFlag 1

slaveOnly 0

#priority1 125

priority1 128

#priority2 125

78

priority2 128

domainNumber 0

#utc_offset 37

clockClass 248

clockAccuracy 0xFE

offsetScaledLogVariance 0xFFFF

free_running 0

freq_est_interval 1

dscp_event 0

dscp_general 0

#

Port Data Set

#

logAnnounceInterval 1

logSyncInterval 0

logMinDelayReqInterval 0

logMinPdelayReqInterval 0

announceReceiptTimeout 3

syncReceiptTimeout 0

delayAsymmetry 0

fault_reset_interval 4

neighborPropDelayThresh 20000000

#

Run time options

#

assume_two_step 0

logging_level 6

path_trace_enabled 0

follow_up_info 0

hybrid_e2e 0

net_sync_monitor 0

tx_timestamp_timeout 1

use_syslog 1

verbose 0

summary_interval 0

79

kernel_leap 1

check_fup_sync 0

#

Servo Options

#

pi_proportional_const 0.0

pi_integral_const 0.0

pi_proportional_scale 0.0

pi_proportional_exponent -0.3

pi_proportional_norm_max 0.7

pi_integral_scale 0.0

pi_integral_exponent 0.4

pi_integral_norm_max 0.3

step_threshold 0.0

first_step_threshold 0.00002

max_frequency 900000000

clock_servo linreg

#clock_servo pi

sanity_freq_limit 200000000

ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0

ptp_dst_mac 01:1B:19:00:00:00

p2p_dst_mac 01:80:C2:00:00:0E

udp_ttl 1

udp6_scope 0x0E

uds_address /var/run/ptp4l

#

Default interface options

#

network_transport UDPv4

delay_mechanism E2E

time_stamping software

80

tsproc_mode filter

delay_filter moving_median

delay_filter_length 10

egressLatency 0

ingressLatency 0

boundary_clock_jbod 0

#

Clock description

#

productDescription ;;

revisionData ;;

manufacturerIdentity 00:00:00

userDescription ;

timeSource 0xA0

[eth0]

A.6 Alice/HMI Python Script
https://gitlab.nps.edu/charles.allen/allen-thesis-ptp-security.git

A.7 Bob/RTU Python Script
https://gitlab.nps.edu/charles.allen/allen-thesis-ptp-security.git

A.8 Data Visualization Scripts
import pandas as pd

import numpy as np

from scipy import stats

import matplotlib.pyplot as plt

import plotly.express as px

import csv

import statistics

81

#Create lists to hold key data from logfile

time = [] #create list of time values

offset = [] #create list of offset values

freq = [] #create list of freq values

path_delay = [] #create list of path_delay values

state = [] #create list of state values

#Read in and parse the logfiles for key data

with open(’linreg-slave.txt’, ’r’) as f: #open the ptp4l output .txt file

lines = f.readlines() #read in each line of the file

for line in lines: #begin to parse through each line

line = " ".join(line.split())

cont = line.split(’ ’) #split each line on space delimiter

if ’offset’ in line and (cont[9] == ’s2’): #parse lines for just those that

contain "offset" and "s2"

if float(cont[8]) != 0: #checking for offset values that

are not = 0

time.append(float(cont[5][1:-1])) #add time value to time list

offset.append(float(cont[8])) #add offsest value to offset list

#state.append(cont[9]) #add state value to state list

freq.append(int(cont[11])) #add freq value to freq list

path_delay.append(float(cont[14])) #add path_delay to path_delay list

#Housekeeping data manipulations

time = [i - time[0] for i in time] #Map time values from kernel time to 0 base

offset = np.asarray(offset) #make offset list a numpy array

offset = np.absolute(offset) #use np to take absolute values of offset

offset = np.log(offset) #use np to take the log of each value in list

print(len(offset)) #print the length of the offset list

#Printing basic statistics:

print("Average absOffset: ", np.mean(offset))

print("Standard Deviation: ", np.std(offset))

print("Median: ",np.median(offset))

82

#Z-scores & ourliers

z = np.asarray(stats.zscore(offset)) #set up z to handle z-score computations

threshold = 3 #set z-score threshold = 3

outliers = np.where(z > 2.35) #create outliers list, adding those

outside the specified value of z

print(len(outliers[0])) #print number of outliers

for o in outliers[0]: #print the outlier value and the time

of the outlying data point

print(time[o],offset[o]) # -> this might involve commenting out

the mapping of time value to 0 in

order to check against the log file

#averageOffset = Average(offset)

#print("Average offset: ", averageOffset)

#offsetMed = statistics.median(offset)

#print("Median Offset", offsetMed)

print("")

#Display Plot/Histogram

#plt.plot(time,offset)

#plt.show()

plt.hist(offset, bins=’auto’)

plt.show()

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

List of References

[1] J. Guan, J. H. Graham, and J. L. Hieb, “A digraph model for risk identification and
mangement in SCADA systems,” in Proceedings of 2011 IEEE International Con-
ference on Intelligence and Security Informatics. IEEE, 2011, pp. 150–155.

[2] B. Galloway and G. P. Hancke, “Introduction to industrial control networks,” IEEE
Communications surveys and tutorials, vol. 15, no. 2, pp. 860–880, 2013.

[3] R. Lee, M. Assante, and T. Conway, “Analysis of the cyber attack on the ukrainian
power grid: Defense use case,” SANS Institute, Bethesda, MD, USA, 2016. [Online].
Available: https://nsarchive.gwu.edu/sites/default/files/documents/3891751/SANS-
and-Electricity-Information-Sharing-and.pdf

[4] Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby, and K. Stod-
dart, “A review of cyber security risk assessment methods for SCADA systems,”
Computers & security, vol. 56, pp. 1–27, 2016.

[5] D. Fauri, B. de Wĳs, J. den Hartog, E. Costante, E. Zambon, and S. Etalle, “Encryp-
tion in ICS networks: A blessing or a curse?” in 2017 IEEE International Confer-
ence on Smart Grid Communications (SmartGridComm). IEEE, 2017, pp. 289–294.

[6] W. Turton, M. Riley, and J. Jacobs, “Colonial pipeline paid hackers nearly $5 million
in ransom,” May 13, 2021. [Online]. Available: https://www.bloomberg.com/news/
articles/2021-05-13/colonial-pipeline-paid-hackers-nearly-5-million-in-ransom/

[7] N. Rao, S. Srivastava, and S. K.S, “PKI deployment challenges and recommenda-
tions for ICS networks,” International journal of information security and privacy,
vol. 11, no. 2, pp. 38–48, 2017.

[8] W. Broad and D. Sanger, “Worm was perfect for sabotaging centrifuges,” Nov. 18,
2010. [Online]. Available: https://www.nytimes.com/2010/11/19/world/middleeast/
19stuxnet.html/

[9] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network Time Protocol Version
4: Protocol and Algorithms Specification,” Internet Requests for Comments, IETF,
RFC 5905, June 2010. Available: https://datatracker.ietf.org/doc/html/rfc5905

[10] J. Eidson, “IEEE-1588 standard for a precision clock synchronization protocol for
networked measurement and control systems: A tutorial,” Agilent Technologies, Oct.
10, 2005. [Online]. Available: https://www.nist.gov/system/files/documents/el/isd/
ieee/tutorial-basic.pdf

85

[11] "TC-9", “IEEE standard for a precision clock synchronization protocol for net-
worked measurement and control systems,” "IEEE" Std 1588-2008 (Revision of
IEEE Std 1588-2002), pp. 1–269, 2008. Available: https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=4579760

[12] R. Cochran, linuxptp, ver. 2, 2021. [Online]. Available: https://github.com/
richardcochran/linuxptp

[13] "1588-2019 - IEEE standard for a precision clock synchronization protocol for net-
worked measurement and control systems". IEEE, 2020.

[14] T. Mizrahi, “Security requirements of time protocols in packet switched networks,”
Internet Requests for Comments, IETF, RFC 7384, October 2014. Available: https:
//datatracker.ietf.org/doc/html/rfc7384

[15] T. Rid and B. Buchanan, “Attributing cyber attacks,” Journal of Strategic Studies,
vol. 38, no. 1-2, pp. 4–37, 2015.

[16] N. Saxena, L. Xiong, V. Chukwuka, and S. Grĳalva, “Impact evaluation of malicious
control commands in cyber-physical smart grids,” IEEE Transactions on Sustainable
Computing, vol. 6, no. 2, pp. 208–220, 2021.

[17] I. Allahi, B. Khan, A. S. Nagra, R. Idrees, and S. Masud, “Performance evaluation
of IEEE 1588 protocol using raspberry pi over WLAN,” in 2018 IEEE International
Conference on Communication Systems (ICCS). IEEE, 2018, pp. 315–320.

[18] W. Alghamdi and M. Schukat, “Precision time protocol attack strategies and their
resistance to existing security extensions,” Cybersecurity, vol. 4, no. 1, pp. 1–17,
2021.

[19] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. A. Wojciak, and S. Guendert,
“Impact of cyberattacks on precision time protocol,” IEEE Transactions on Instru-
mentation and Measurement, vol. 69, no. 5, pp. 2172–2181, 2020.

[20] B. Moussa, M. Debbabi, and C. Assi, “A detection and mitigation model for PTP
delay attack in an IEC 61850 substation,” IEEE transactions on smart grid, vol. 9,
no. 5, pp. 3954–3965, 2018.

[21] B. Moussa, C. Robillard, A. Zugenmaier, M. Kassouf, M. Debbabi, and C. Assi,
“Securing the precision time protocol (PTP) against fake timestamps,” IEEE com-
munications letters, vol. 23, no. 2, pp. 278–281, 2019.

[22] E. Itkin and A. Wool, “A security analysis and revised security extension for the
precision time protocol,” IEEE transactions on dependable and secure computing,
vol. 17, no. 1, pp. 22–34, 2020.

86

[23] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 26, no. 1, pp. 96–
99, 1983.

[24] GS1 Series Drives User Manual, 2nd ed., Automation Direct, Cumming, GA, 2011,
pp. 3–6–3–8.

[25] AutomationDirect.com. “CLICK PLC - How To Control a 3-Phase AC Motor Using
a GS1 Drive and a CLICK PLC” Jul. 26, 2013. [YouTube video]. Available: https:
//www.youtube.com/watch?v=3ZpFqL1200I

[26] ECMWeb. “The basics of ladder logic” Dec. 1, 2003. [Online]. Available: https:
//www.ecmweb.com/archive/article/20891380/the-basics-of-ladder-logic

[27] R. Coppen,MQTT Version 5.0: OASIS Standard, ver. 5, 2019. [Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

[28] S. Kreuzer, G. Neville-Neil, and W. Owczarek, ptpd, ver. 2, 2019. [Online]. Avail-
able: https://github.com/ptpd/ptpd

[29] V. Aggarwal, IEEE1588-PTP, ver. 2, 2021. [Online]. Available: https://github.com/
bestvibes/IEEE1588-PTP

[30] R. Cochran and C. Marinescu, “Design and implementation of a PTP clock infras-
tructure for the Linux kernel,” in 2010 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control and Communication. IEEE, 2010,
pp. 116–121.

[31] R. Cochran, C. Marinescu, and C. Riesch, “Synchronizing the Linux system time to
a PTP hardware clock,” in 2011 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication. IEEE, 2011, pp.
87–92.

[32] CLICK PLC User Manual, 6th ed., Automation Direct, Cumming, GA, 2021.

[33] “Using PTP,” Red Hat Customer Portal, 2021. [Online]. Available: https://access.
redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_
guide/ch-configuring_ptp_using_ptp4l

[34] G. Singh and C. Prince, “Multi-node controller with gateway,” Laboratory descrip-
tion for Cyber Physical Systems, Graduate School of Operational and Information
Sciences., Naval Postgraduate School, Monterey, CA, January 2021.

87

[35] D. Macii, D. Fontanelli, and D. Petri, “A master-slave synchronization model for
enhanced servo clock design,” in 2009 International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication. IEEE, 2009, pp.
1–6.

[36] J. Huwyler, “PTP time synchronization for flocklab 2,” Master’s thesis, Dept. of Info.
Tech. and Elec. Eng., ETH Zurich, 2020, semester thesis. Available: https://pub.tik.
ee.ethz.ch/students/2020-FS/SA-2020-01.pdf

[37] Kite. “How to get the time with microsecond precision in Python.” Accessed 2021.
[Online]. Available: https://www.kite.com/python/answers/how-to-get-the-time-
with-microsecond-precision-in-python

[38] M. Ahmed, “Implementation and performance analysis of precision time protocol on
Linux based system-on-chip platform,” 2018, master Project.

[39] V. Jordan. ("2020. [Online.]"). “Sync up your clocks! Better PTP settings on Rasp-
berry Pi.”. [Online]. Available: https://medium.com/inatech/sync-your-clocks-better-
ptp-settings-on-raspberry-pi-37a9a54e4802

[40] “PTP - precision time protocol: IEEE 1588 v1 and v2 PTP boundary clock capabili-
ties in industrial managed switches.” Available: https://www.perle.com/supportfiles/
precision-time-protocol.shtml

[41] F. Girela, “Software defined timing: the synchronization solution for data centers,”
Seven Solutions, 2019. [Online]. Available: https://wsts.atis.org/wp-content/uploads/
sites/9/2019/03/4_03_7Solutions_Lopez_Software-Defined-Timing.pdf

88

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

89

	21Dec_Allen_Charles_First8
	21Dec_Allen_Charles

