
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2021-12

USEFUL MEASURES OF COMPLEXITY: A MODEL
OF ASSESSING DEGREE OF COMPLEXITY IN
ENGINEERED SYSTEMS AND ENGINEERING PROJECTS

Ton, Cuong
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/68753

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

USEFUL MEASURES OF COMPLEXITY: A MODEL OF
ASSESSING DEGREE OF COMPLEXITY IN ENGINEERED

SYSTEMS AND ENGINEERING PROJECTS

by

Cuong Ton

December 2021

Dissertation Supervisors: Ronald E. Giachetti
 Robert C. Harney

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2021

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE
USEFUL MEASURES OF COMPLEXITY: A MODEL OF ASSESSING
DEGREE OF COMPLEXITY IN ENGINEERED SYSTEMS AND
ENGINEERING PROJECTS

5. FUNDING NUMBERS

6. AUTHOR(S) Cuong Ton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Many modern systems are very complex, a reality which can affect their safety and reliability of operations.

Systems engineers need new ways to measure problem complexity. This research lays the groundwork for measuring the
complexity of systems engineering (SE) projects. This research proposes a project complexity measurement model
(PCMM) and associated methods to measure complexity. To develop the PCMM, we analyze four major types of
complexity (structural complexity, temporal complexity, organizational complexity, and technological complexity) and
define a set of complexity metrics.
 Through a survey of engineering projects, we also develop project profiles for three types of software projects
typically used in the U.S. Navy to provide empirical evidence for the PCMM. The results of our work on these projects
show that as a project increases in complexity, the more difficult and expensive it is for a project to meet all
requirements and schedules because of changing interactions and dynamics among the project participants and
stakeholders. The three projects reveal reduction of project complexity by setting a priority and a baseline in
requirements and project scope, concentrating on the expected deliverable, strengthening familiarity of the systems
engineering process, eliminating redundant processes, and clarifying organizational roles and decision-making processes
to best serve the project teams while also streamlining on business processes and information systems.

14. SUBJECT TERMS
project complexity, project risk, complexity science, complex systems, systems engineering,
SE complex systems engineering, complexity reduction, measurement, measures of
complexity, model of estimating degree of complexity, approaches to measure system
complexity, methods to estimate the complexity of engineered systems, interdependence,
complexity profile, project complexity measurement model, PCMM

15. NUMBER OF
PAGES

357
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

USEFUL MEASURES OF COMPLEXITY: A MODEL OF ASSESSING DEGREE
OF COMPLEXITY IN ENGINEERED SYSTEMS AND ENGINEERING

PROJECTS

Cuong Ton
Civilian, Department of the Navy
BSEE, University of Utah, 1987
MEng, University of Utah, 1989

MS, Electrical Engineering, Naval Postgraduate School, 2013

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2021

Approved by: Ronald E. Giachetti Robert C. Harney (posthumously)
Department of Department of
Systems Engineering Systems Engineering
Dissertation Supervisor Dissertation Supervisor

Wei Kang Robert Semmens
Department of Department of
Applied Mathematics Systems Engineering

Douglas L. Van Bossuyt Clifford A. Whitcomb
Department of Department of
Systems Engineering Systems Engineering

Ronald E. Giachetti
Department of
Systems Engineering
Dissertation Chair

Approved by: Oleg A. Yakimenko
Chair, Department of Systems Engineering

Michael E. Freeman
Vice Provost of Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Many modern systems are very complex, a reality which can affect their safety

and reliability of operations. Systems engineers need new ways to measure problem

complexity. This research lays the groundwork for measuring the complexity of systems

engineering (SE) projects. This research proposes a project complexity measurement

model (PCMM) and associated methods to measure complexity. To develop the PCMM,

we analyze four major types of complexity (structural complexity, temporal complexity,

organizational complexity, and technological complexity) and define a set of complexity

metrics.

 Through a survey of engineering projects, we also develop project profiles for

three types of software projects typically used in the U.S. Navy to provide empirical

evidence for the PCMM. The results of our work on these projects show that as a project

increases in complexity, the more difficult and expensive it is for a project to meet all

requirements and schedules because of changing interactions and dynamics among the

project participants and stakeholders. The three projects reveal reduction of project

complexity by setting a priority and a baseline in requirements and project scope,

concentrating on the expected deliverable, strengthening familiarity of the systems

engineering process, eliminating redundant processes, and clarifying organizational roles

and decision-making processes to best serve the project teams while also streamlining on

business processes and information systems.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION AND BACKGROUND ..1

1. Definition ..3
2. Characteristics of Complexity ..9
3. Characteristics of Complex Systems ..18
4. Factors that Cause an Increase in Complexity..........................23
5. Effects of Complexity on Projects and Systems24

B. RESEARCH RELEVANCE AND OBJECTIVE25
C. CONTRIBUTIONS AND BENEFITS TO THE BODY OF

KNOWLEDGE IN SYSTEMS ENGINEERING26
D. OVERVIEW OF THE WORK ...27

II. LITERATURE REVIEW ...31
A. SOURCES OF COMPLEXITY..31

1. Complexity of the Problem ...33
2. Complexity of the Environment ...33
3. Complexity of the System ..34
4. Complexity of the Design of the System34
5. Complexity of the Engineering Process35

B. BACKGROUND AND HISTORY OF COMPLEXITY
SCIENCE ..36

C. PREVIOUS WORK ...41
1. Structural Complexity ...42
2. Organizational Complexity ...46
3. Temporal Complexity ..48
4. Technological Complexity ...52
5. Seven Building Blocks of Complexity ..55
6. Software Complexity Measurement ...67
7. Project Complexity ..76
8. Review of Additional Literature Related to Engineered

Systems ..86
9. Extension of Previous Work ...89

D. CHAPTER SUMMARY ..91

III. PROJECT COMPLEXITY MEASUREMENT MODEL (PCMM)93
A. RESEARCH APPROACH ..94

1. Structural Complexity ...98

viii

2. Organizational Complexity ...99
3. Temporal Complexity ..100
4. Technological Complexity ...101

B. METHODOLOGY ..101
1. Project Complexity Measurement Model (PCMM)102
2. Acquisition of Test Data to Perform the Complexity

Measurements ..105
3. Methodology of applying the PCMM to Assess Project

Complexity ..106
4. B1 Project Complexity Profile ..139

C. SENSITIVITY ANALYSIS...146
D. COMPLEXITY REDUCTION AND MITIGATION151
E. CHAPTER SUMMARY ..154

IV. PROJECT DATA TO DEMONSTRATE THE VALIDITY OF THE
PCMM ...155
A. B4 WINDOWS-BASED DATABASE SOFTWARE PROGRAM157

1. Measure of the Number of Personnel Required for the B4
Project ...162

2. Defect Density Measure ...163
3. Organizational Complexity Measure164
4. Geographical Distribution of Teams Measure166
5. Requirements Volatility Measure ...167
6. Number of Different Job Position Types168
7. B4 Project Complexity Profile ..168

B. B6 WINDOWS-BASED DATABASE SOFTWARE PROGRAM173
1. Measure of the Number of Personnel Required for the B6

Project ...177
2. Defect Density Measure ...177
3. Organizational Complexity Measure179
4. Geographical Distribution of Teams Measure180
5. Requirements Volatility Measure ...181
6. Number of Different Job Position Types182
7. B6 Project Complexity Profile ..182

C. B8 WINDOWS-BASED DATABASE SOFTWARE PROGRAM187
1. Measure of Number of Personnel Required for the B8

Project ...191
2. Defect Density Measure ..191
3. Organizational Complexity Measure193
4. Geographical Distribution of Teams Measure194
5. Requirements Volatility Measure ...195

ix

6. Number of Different Job Position Types Measure196
7. B8 Project Complexity Profile ..196
8. Comparison of Complexity Profile of Three Engineering

Projects..201
9. Sensitivity Analysis ..205
10. Analysis of Three Main PCMM Measures Related to

Project Cost, Schedule, and Performance206
11. Analysis of the PCMM Measures Related to the Risk

Levels of the Project...211
12. Complexity Reduction and Mitigation for the B6 Project212

D. CHAPTER SUMMARY ..214

V. CONCLUSION AND FUTURE WORK ...219
A. SUMMARY ..219
B. CONCLUSIONS ..222
C. AREAS FOR FUTURE RESEARCH ..224
D. FINAL REMARKS ..225

EPILOGUE ..227

APPENDIX A. COMPLEXITY MEASURES OF THE B4 PROJECT229
1. Measure of the Number of Personnel Required for the

Development Effort ..229
2. Defect Density Measure ...232
3. Organizational Complexity Measure234
4. Geographical Distribution of Teams Measure241
5. Requirements Volatility Measure ...242
6. Number of Different Job Position Types243
7. B4 Project Complexity ...248

APPENDIX B. COMPLEXITY MEASURES OF THE B6 PROJECT255
1. Measure of the Number of Personnel Required for the

Development Effort ..256
2. Defect Density Measure ...257
3. Organizational Complexity Measure258
4. Geographical Distribution of Teams Measure266
5. Requirements Volatility Measure ...267
6. Number of Different Job Position Types268
7. B6 Project Complexity ...268

x

APPENDIX C. COMPLEXITY MEASURES OF THE B8 PROJECT273
1. Measure of the Number of Personnel Required for the

Development Effort ..275
2. Defect Density Measure ...277
3. Organizational Complexity Measure278
4. Geographical Distribution of Teams Measure286
5. Requirements Volatility Measure ...287
6. Number of Different Job Position Types288
7. B8 Project Complexity ...288

APPENDIX D. CSE QUESTIONS ...295

APPENDIX E. HEURISTIC APPROACHES TO REDUCING
COMPLEXITY ..297

LIST OF REFERENCES ..299

INITIAL DISTRIBUTION LIST ...321

xi

LIST OF FIGURES

Figure 1. An example of an organizational network ...11

Figure 2. Two different hierarchies with two different diversity values.
Adapted from [29]..14

Figure 3. System complexity contributes about two thirds of the overall cost
escalation for fighter aircraft. Source: [3]. ...32

Figure 4. Examples of Wolfram’s four types of dynamic behavior. Adapted
from [11]. ...49

Figure 5. A diagram depicting the relationship between interactions and
coupling for engineered systems. Adapted from [104].50

Figure 6. Research approach roadmap ..94

Figure 7. Overall processes to develop the complexity profile for the SoI94

Figure 8. Likert scale. Source: [32]. ..104

Figure 9. CSM for applying the PCMM to complex projects106

Figure 10. Contents of an SoI project profile ..108

Figure 11. Steps to develop a project complexity profile using the PCMM109

Figure 12. B1 Project defect density metric ..116

Figure 13. Context diagram conventions used in this dissertation119

Figure 14. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between PMA and IPT,
between PMA and PT, and between PMA and the DT/OT unit121

Figure 15. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between IPT and PT,
between IPT and CU, and between IPT and BFM...................................121

Figure 16. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between PT and the T/F
unit, between PT and SDU, between PT and BFM, and between PT
and the contractor unit ...122

xii

Figure 17. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between SDU and the
T/F unit and between SDU and the DT/OT unit as well as the
communication frequencies and levels of importance of the
communications between the contractor unit and BFM and between
the contractor unit and CU ...122

Figure 18. B1 Project requirements volatility ...133

Figure 19. CM workflow of the Navy software programs ..156

Figure 20. A context diagram of the B4 Project..158

Figure 21. Plot of defect density of the B4 Project ...163

Figure 22. Test Hours of the Project B4 ..164

Figure 23. Requirements volatility of the B4 Project ..168

Figure 24. A context diagram of the B6 Project..174

Figure 25. Defect density of the B6 Project ..178

Figure 26. Test Hours of the B6 Project ..178

Figure 27. Requirements volatility for the B6 Project ..182

Figure 28. A context diagram of the B8 Project..188

Figure 29. Defect density of the B8 Project ..192

Figure 30. Test hours of the B8 Project...192

Figure 31. Requirements volatility of the B8 Project ..196

Figure A-1. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between PMA and IPT,
between PMA and PT, and between PMA and the DT/OT unit234

Figure A-2. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between IPT and PT,
between IPT and CU, and between IPT and BFM...................................235

Figure A-3. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between PT and the T/F
unit, between PT and SDU, between PT and BFM, and between PT
and the contractor unit ...236

xiii

Figure A-4. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between SDU and the
T/F unit, between SDU and DT/OT unit, between the contractor unit
and BFM, and between the contractor unit and CU236

Figure B-1. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between PMA and IPT,
between PMA and PT, and also between PMA and the DT/OT unit259

Figure B-2. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between IPT and PT,
between IPT and CU, and between IPT and BFM...................................260

Figure B-3. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between PT and the T/F
unit, between PT and SDU, between PT and BFM, and between PT
and the contractor unit ...260

Figure B-4. A context diagram of nodes, links, communication frequencies, and
levels of importance of the communications between SDU and the
T/F unit, between SDU and DT/OT unit, between the contractor unit
and BFM, and between the contractor unit and CU261

Figure C-1. A context diagram of nodes, links, communication frequencies, and
importance levels of the communications between PMA and IPT,
between PMA and PT, and between PMA and the DT/OT unit279

Figure C-2. A context diagram of nodes, links, communication frequencies, and
importance levels of the communications between IPT and PT,
between IPT and CU, and between IPT and BFM...................................279

Figure C-3. A context diagram of nodes, links, communication frequencies, and
importance levels of the communications between PT and the T/F
unit, between PT and SDU, between PT and BFM, and between PT
and the contractor unit ...280

Figure C-4. A context diagram of nodes, links, communication frequencies, and
importance levels of the communications between SDU and the T/F
unit, between SDU and DT/OT unit, between the contractor unit and
BFM, and between the contractor unit and CU280

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF TABLES

Table 1. Key concepts of complexity science ..39

Table 2. Tools and techniques for analyzing complex systems40

Table 3. Structural complexity measurements in engineered systems and
engineering projects. ..45

Table 4. Organizational complexity measurements in engineered systems and
engineering projects. ..47

Table 5. Temporal complexity measures in engineered systems and
engineering projects. ..52

Table 6. Technological complexity measures in engineered systems and
engineering projects. ..54

Table 7. Size drivers of systems engineering and corresponding sources.
Adapted from [24]..58

Table 8. Relative weights for size drivers of systems engineering based on a
survey data from experts in the field. Source: [24].59

Table 9. Rating values for cost drivers of systems engineering. Source: [24].60

Table 10. Weight scale for function point parameters. Adapted from [97],
[148]. ..75

Table 11. Measures of software complexity. ...75

Table 12. Factors influencing project complexity. Adapted from [16], [57].83

Table 13. Summary of researchers’ works related to the four different
approaches to measure project complexity ..84

Table 14. Complexity measurements in engineered systems.88

Table 15. Indicative metrics of the four types of complexity of the SoI98

Table 16. B1 Project profile ...110

Table 17. Rating values for cost drivers of systems engineering. Adapted from
[24]. ..111

xvi

Table 18. Calculation of COSYSMO size [24] for the B1 Project. Adapted
from [24]. ...112

Table 19. The B1 Project’s effort weight factor. Adapted from [24].113

Table 20. The B1 Project development effort ..113

Table 21. B1 Project defect density during the 18-month period115

Table 22. The B1 Project organizational units and their responsibilities118

Table 23. N2 chart of the B1 Project ...123

Table 24. Frequencies of the communications during the 18 months in the B1
Project ..123

Table 25. Levels of importance of the communications in the B1 Project125

Table 26. Organizational complexity of each organizational unit in the B1
Project ..128

Table 27. Geographical distributions of teams in the B1 Project130

Table 28. B1 Project requirements metrics during the development phase (18
months) ..132

Table 29. Job position types in the B1 Project ...134

Table 30. Responsibilities for job position types in the B1 Project135

Table 31. Complexity profile of the B1 Project ...139

Table 32. The score and associated level of complexity of the measure of the
number of personnel required for the development effort142

Table 33. The score and associated level of complexity of the measure of
defect density ...143

Table 34. The score and associated level of complexity of the measure of
organizational complexity ..143

Table 35. The score and associated level of complexity of the measure of
geographical distribution of teams ...144

Table 36. The score and associated level of complexity of the measure of
requirements volatility ...144

xvii

Table 37. The score and associated level of complexity of the measure of the
number of different job position types ...145

Table 38. The B1 Project complexity level..146

Table 39. A 30% increase to the three B1 Project inputs ..147

Table 40. Calculation of COSYSMO size ...147

Table 41. The B1 Project development effort ..148

Table 42. An additional increase of 10% to the three B1 Project inputs149

Table 43. Calculation of COSYSMO size [24]..149

Table 44. The B1 Project development effort ..150

Table 45. B4 Project profile. Adapted from [24]. ..161

Table 46. N2 chart of the B4 Project ...165

Table 47. Complexity profile of the B4 Project ...169

Table 48. Complexity level of the B4 Project ..172

Table 49. B6 Project profile ...175

Table 50. N2 chart of the B6 Project ...179

Table 51. B6 Project complexity profile ..183

Table 52. The complexity level and risk level of the B6 Project186

Table 53. B8 Project profile ...189

Table 54. N2 chart of the B8 Project ...193

Table 55. B8 Project complexity profile ..197

Table 56. The complexity level and risk level of the B8 Project200

Table 57. A comparison of complexity profile of three engineering projects202

Table 58. Sensitivity analysis of the defect density measurement in the three
engineering projects ...206

Table 59. Analysis of project cost and the measure of the number of personnel
required for the development effort ...207

xviii

Table 60. Analysis of project performance and the measure of defect density208

Table 61. Analysis of project cost and the measure of requirements volatility209

Table 62. Correlation Analysis of the three main PCMM’s measures210

Table 63. Correlation Analysis of the PCMM’s measures and risk level of the
project ..211

Table A-1. The B4 Project organizational units and their responsibilities229

Table A-2. Planned reviews from the B4 Project plan ...230

Table A-3. Calculation of software size for the B4 Project231

Table A-4. The B4 Project’s effort weight factor ..231

Table A-5. The B4 Project development effort ..232

Table A-6. B4 Project defect density during the 24 months of the development
phase ..233

Table A-7. Consolidated data of the releases of Table A-6234

Table A-8. Frequencies of the communications during the entire 24 months of
the development phase ...237

Table A-9. Levels of importance of the communications during the entire 24
months in the B4 Project ..239

Table A-10. Organizational complexity of each organizational unit in the B4
Project ..240

Table A-11. Geographical distribution of teams in the B4 Project241

Table A-12. B4 Project requirements metrics during the 24 months of the
development phase ...242

Table A-13. Job position types in the B4 Project ...243

Table A-14. Responsibilities for job position types in the B4 Project244

Table A-15. The score and associated level of complexity of the measure of the
number of personnel required for the B4 Project248

Table A-16. The score and associated level of complexity of the measure of
defect density in the B4 Project ...249

xix

Table A-17. The score and associated level of complexity of the measure of
organizational complexity in the B4 Project ..249

Table A-18. The score and associated level of complexity of the measure of
geographical distribution of teams in the B4 Project250

Table A-19. The score and associated level of complexity of the measure of
requirements volatility for the B4 Project ..250

Table A-20. The score and associated level of complexity of the measure of the
number of different job position types in the B4 Project251

Table A-21. The complexity level of the B4 Project ...251

Table A-22. Mapping between project complexity and risk level252

Table A-23. Rating of project risk level ...252

Table A-24. Risk level of each metric in the B4 Project..253

Table B-1. Planned reviews listed in the B6 Project plan ..255

Table B-2. Calculation of software size for the B6 Project256

Table B-3. The B6 Project’s effort weight factor ..257

Table B-4. The B6 Project development effort ..257

Table B-5. Frequencies of the communications during the first 28 months of the
development phase ...261

Table B-6. Levels of importance of the communications during the first 28
months of the development phase ..263

Table B-7. Organizational complexity of each organizational unit in the B6
Project ..265

Table B-8. Geographical distributions of teams in the B6 Project266

Table B-9. B6 Project requirements metrics during first 28 months of the
development phase ...268

Table B-10. The score and associated level of complexity of the measure of the
number of personnel required for the B6 Project269

Table B-11. The score and associated level of complexity of the measure of
defect density in the B6 Project ...269

xx

Table B-12. The score and associated level of complexity of the measure of
organizational complexity in the B6 Project ..270

Table B-13. The score and associated level of complexity of the measure of
geographical distribution of teams in the B6 Project270

Table B-14. The score and associated level of complexity of the measure of
requirements volatility in the B6 Project ...271

Table B-15. The score and associated level of complexity of the measure of the
number of different job position types in the B6 Project271

Table B-16. The complexity level of the B6 Project ...272

Table B-17. The risk level of each metric in the B6 Project ..272

Table C-1. Stakeholders’ roles and functions listed in the B8 Project plan273

Table C-2. Planned reviews from the B8 Project plan ...275

Table C-3. Calculation of software size for the B8 Project276

Table C-4. The B8 Project’s effort weight factor ..276

Table C-5. The B8 Project development effort ..277

Table C-6. B8 Project’s defect density during the first 20 months of the
development phase ...278

Table C-7. Frequencies of the communications during the first 20 months of the
development phase ...281

Table C-8. Levels of importance of the communications during the first 20
months of the development phase ..283

Table C-9. Organizational complexity of each organizational unit in the B8
Project ..285

Table C-10. Geographical distributions of teams in the B8 Project286

Table C-11. B8 Project requirement metrics during the first 20 months of the
development phase ...287

Table C-12. The score and associated level of complexity of the measure of the
number of personnel required for the B8 Project288

Table C-13. The score and associated level of complexity of the measure of
defect density in the B8 Project ...289

xxi

Table C-14. The score and associated level of complexity of the measure of
organizational complexity in the B8 Project ..289

Table C-15. The score and associated level of complexity of the measure of
geographical distribution of teams in the B8 Project290

Table C-16. The score and associated level of complexity of the measure of
requirements volatility in the B8 Project ...290

Table C-17. The score and associated level of complexity of the measure of
number of different job position types in the B8 Project291

Table C-18. The complexity level of the B8 Project ...292

Table C-19. The risk level of each metric in the B8 Project ..293

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

xxiii

LIST OF ACRONYMS AND ABBREVIATIONS

CBO coupling between object classes

CCB configuration control board

CMMI capability maturity model integration

COSYSMO constructive systems engineering cost model

CSE complex systems engineering

CSM complexity study method

DARPA Defense Advanced Research Projects Agency

DIT depth of inheritance tree

IDD interface design description

INCOSE International Council on Systems Engineering

IOT internet of things

IPMA International Project Management Association

IPT integrated product teams

IT information technology

KLOC thousand lines of code

LCOM lack of cohesion method

LOC lines of code

OU organizational unit

PCMM project complexity measurement model

PMA program management activity

RFC response for class

RFP request for proposal

RTR requirements traceability report

SARS Severe Acute Respiratory Syndrome

SDD software design document

SE systems engineering

SoI system-of-interest

xxiv

SoS system-of-systems

TFS Team Foundation Server

TSE traditional systems engineering

WMC weighted methods per class

xxv

LIST OF SYMBOLS

A a calibration constant derived from historical project data
BR the baseline of the software release
CRi the number of change requirements during the ith period
DDM defect density measure
E represents economy/diseconomy of scale or an efficiency factor
EMi effort multiplier of COSYSMO for the ith cost driver
F the total number of communications between two nodes i and j
fij the frequency of communications between two nodes i and j
GD measure of geographical distribution of teams
IF index function
JPT Number of different job position types
M mass
n the number of organizations involved in the communications
P power
PM effort in person-month for nominal schedule

P𝑆𝑆𝑖𝑖 the project size at the ith period
RVM requirements volatility measure
Size the weighted sum of the four size drivers (requirements, interfaces,

algorithms, operational scenarios)
ν(G) cyclomatic complexity function
wi,j a factor of importance of the communication between two nodes i

and j

WADi the weighted average number of defects during the ith period

xxvi

THIS PAGE INTENTIONALLY LEFT BLANK

xxvii

EXECUTIVE SUMMARY

Systems engineers need to measure and reduce problem complexity to improve

system affordability and maintainability. This research seeks to determine practical and

effective complexity measures of engineering projects and engineered systems and to

develop a measurement scheme for assessing the complexity of system development

projects. For this work, we have reviewed the following relevant topics: complexity theory,

attributes and characteristics of complexity, measures of complexity, project assessment,

system complexity, and impacts of system complexity and project complexity.

Previous works have shown three observations. First, the concept of complexity is

broad. There are no widely agreed upon complexity measurement standards for engineered

systems. Second, complexity metrics for software development projects and system

development projects have many variations. Most proposed complexity metrics are

incomplete, impractical to use, or useful only in limited cases. Third, there are no

standardized tools or methodologies to develop complex systems. Complexity theory and

complex systems engineering (CSE) practices help to provide some insights and guidance

in these areas.

For this research project, we have completed five important tasks. First, we

conducted a literature review to identify potentially useful measures of complexity (i.e.,

structural complexity, organizational complexity, temporal complexity, technological

complexity, numerosity, connectedness, interdependence, and diversity). Second, we

developed a project complexity measurement model (PCMM) and associated methods to

measure complexity in engineering projects. Third, we demonstrated the usefulness of this

new approach on three engineering projects (i.e., Navy software projects B4, B6, and B8).

Fourth, we established three complexity profiles for the engineering projects using the new

approach and compared the computed complexity values to those from industry common

practices. This provided a baseline to analyze project complexity. Fifth, we proposed

complexity reduction techniques by reducing or eliminating redundant elements within

designs and processes. Systems engineers can also simplify business processes with

xxviii

standard tools, standard techniques, and increased familiarity with the systems engineering

processes to reduce interdependence tasks and activities among organizational units.

The results of this research show that systems engineers can use the PCMM and

apply its associated methods for estimating the complexity of system development projects

based on six complexity metrics (number of personnel required for the development effort,

defect density, organizational complexity, geographical distribution of project teams,

requirements volatility, and the number of different types of job positions). The six

complexity metrics are derived from the many possible complexity dimensions that

scholars have observed. These six metrics are related to the project risks (e.g., schedule

delays, budget overruns, and failure to meet stakeholders’ requirements). By applying the

PCMM to three engineering projects, we demonstrate that the method for estimating the

complexity in system development projects is useful, consistent, practical, and reliable.

The results of this research also show that systems engineers can use the complexity value

computed by the PCMM as an indicator of project risk. From these results estimated by the

PCMM, they can study the impacts and determine which kinds of complexity to reduce to

improve system affordability. In addition, they can use a complexity value determined by

the PCMM as a guide for project reviews, the development of the system architecture, and

comparisons of alternatives.

In all three engineering projects, structural complexity, organizational complexity,

temporal complexity, and technological complexity are the four main types of complexity

that cause an increase in risk of schedule delays and cost overruns to the system

development project. In this research, structural complexity is defined as defect density

and the number of personnel required for the engineering project. Organizational

complexity is defined as a measure of the patterns of communication among organizations

in terms of the frequencies and levels of importance of the communications as well as a

measure of geographical distribution of teams. Temporal complexity is interpreted as a

measure of requirements volatility. Technological complexity is represented as a measure

of the number of different types of job positions. The interaction of the project teams,

dynamic behaviors in the execution target, the political culture, and the speed of

xxix

technological change also add complexity. A certain mix of values for these project-related

attributes may lead to complexity.

Practitioners need a list of experience-based techniques to work on the set of

problems presented by complex systems engineering (CSE). Through a review of the

literature and observation in the course of the engineering projects, we find nine heuristics

that can be applied as best practices in CSE. First, program managers should identify the

need for subject matter experts and recruit them as part of the team. Second, systems

engineers should strive to achieve a solid base of knowledge that may be applicable to the

target system. Third, systems engineers should measure system complexity in the early

stages of design to gain insight of a system’s complexity. Fourth, systems engineers should

become familiar with the target system as a user and learn what users value in similar

systems. Fifth, systems engineers should be prepared to adjust their models to

accommodate new findings. Sixth, systems engineers should be wary of the working model

and think of ways to disprove it. Seventh, systems engineers should keep the measurements

simple, short, and easy to understand. Eighth, systems engineers should work with the end

in the mind and evaluate potential benefits from the measurements. Ninth, systems

engineers should ask why and how the measurements can help achieve the end goal and

analyze the assumptions and limitations of these measurements.

In conclusion, the justification for the new approach to assessing the degree of

complexity as presented in this research project is straightforward. Project managers and

systems engineers can apply the new approach of assessing the degree of complexity

outlined in this research to manage engineering projects and to keep these projects below

a certain complexity threshold to reduce project risk as well as system development

difficulty. In other words, the new approach has the potential to reduce problem complexity

and thus to improve system affordability and maintainability.

xxx

THIS PAGE INTENTIONALLY LEFT BLANK

xxxi

ACKNOWLEDGMENTS

First, I would like to thank Mr. Thomas Dowd (SES, Director, NAVAIR Ranges

and AVMI) for his support and funding of this research.

I want to thank my advisor, Dr. Ronald Giachetti, for providing his guidance and

helping me through the dissertation process. I am exceedingly grateful for his generous

support.

Heartfelt thanks to Dr. Robert C. Harney for the opportunity to work on this project.

Immense appreciation goes to Dr. Harney for sharing his knowledge, ideas, and time with

me, and for his dedication in helping me with this project.

Thanks to my dissertation committee (Dr. Cliff Whitcomb, Dr. Douglas Van

Bossuyt, Dr. Robert Semmens, and Dr. Wei Kang). I am grateful for their support. I also

want to share my gratitude with Dr. Bryan O’Halloran and Ms. Lorene Barnes for their

support. In addition, I want to thank Dr. David Jenn, Mr. Elissa Carey, Mr. Michael Orton,

and Ms. Delores Smikle for their support through my graduate studies.

I am thankful to Betsy, Chloe, George, and Daniel for many helpful suggestions

and editorial comments on my dissertation, along with their insights and perspectives.

A special thanks to John for editorial comments in reading my dissertation, and for

his acumen, viewpoint, and support.

Of course, I have to thank my family, my parents, my siblings, my uncles, and my

aunts for their unceasing love, encouragement, and support.

My gratitude also extends to my ninth-grade teachers, Mr. McCoy and Mr. Zahler,

my high school teachers, Mr. Lott, Mr. Smith, Mr. Reynolds, Mr. Armstrong, Mr. Gilbert,

Mr. Gough, Mrs. Nelson, Mrs. Carter, Mrs. Snow, Mrs. Rawson, Mr. Schofield, Mr. Clark,

Mr. Gadd, Mr. Larsen, Mr. McMillan, Mrs. Prescott, Mr. Shewell, Mr. Harmon, Mr.

Standley, Mr. McOmie, Mr. Perkins, Mr. Sullivan, Mr. DeNiro, Mr. Robison, and Mrs.

Mann. In addition, I would like to thank my college professors, Dr. Grow, Dr. Baird, Dr.

Gandhi, Dr. Iskander, Dr. Futrell, and Dr. Miller. I also want to thank my dear friends,

Dawn and Beau.

Finally, I want to thank the readers of this dissertation.

xxxii

THIS PAGE INTENTIONALLY LEFT BLANK

xxxiii

PROLOGUE

In a corner of the National Naval Aviation Museum in Pensacola, Florida, is a

peculiar airplane. It is nothing like the classic airplanes (e.g., the Sopwith Camel fighter

aircraft) or the modern fighter jets (e.g., the F/A-18 Hornet flown by the Blue Angels) that

fill the other areas in the display section of the hanger. The immediate front of the Northrop

Grumman EA-6B Prowler airplane’s cockpit has a refueling probe that is asymmetrical

and appears bent to the right. The top of the airplane contains an electronic warfare

transmitter antenna. The canopy has a gold tint for protection from electromagnetic

interference. On the back of the aircraft, the tail has a vertical fin pod extension. Looking

inside, the cockpit, it is filled with various multifunctional displays, integrated

communications, flight control systems, and navigation systems. These electronics look

very sophisticated. They are not like the equipment we have in today’s cars. The aircraft’s

cockpit instruments, which consist of both hardware and software, appear very difficult to

operate.

So, what is it that makes up such a complex flight system? Like weaving a tapestry,

each piece of technology in the flight system folds into one another to make up the system

as a whole. One can imagine the complexity of integrating all the system components. One

way to understand such a complex system is to develop a set of complexity measures that

describe patterns of interdependent tasks and organizational activities in systems

development. The purpose of understanding the complexity is to improve the system

development process and to aid the development team. To analyze complexity, we must

embrace the attitude of making the complex understandable. Given the quest for simplicity

that propels the scientific enterprise, we hope to build in this dissertation a useful and

practical model and rely on a survey of engineering projects to convey the key ideas of

complexity measurement.

xxxiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The physical sciences have alternated between revolutions driven by new
ideas and explorations driven by new tools.

―Freeman Dyson [1],
 “Is Science Mostly Driven by Ideas or by Tools?”

This chapter begins by presenting the driving forces behind this research and

introducing the notion of complexity as applied in engineered systems and engineering

projects. Next, we identify several characteristics of complex engineered systems and

present the research objectives of this dissertation. The subsequent section presents the

anticipated benefits and contributions of the research. Finally, we describe how the rest of

dissertation is organized.

A. MOTIVATION AND BACKGROUND

Project managers and systems engineers often cite complexity is a main cause of

failure or difficulty in system development [2]. They believe complexity is a major

contributing factor to cost escalation and schedule delay in the development of new systems

[3]. In general, we observe that the higher the system’s complexity, the more difficult it is

to design and develop the system. Consequently, we are interested in practical measures of

complexity in engineered systems and engineering projects for several reasons.

First, complexity measures are important for economic reasons. For example,

project managers and systems engineers could apply the new measures of complexity

outlined in this research to design systems that are below a certain complexity threshold to

reduce project risk and system development difficulty. In other words, the new measures

have the potential to pinpoint complexity of a problem and thus to improve system

affordability and maintainability.

Second, complexity measures are important for technological reasons. Complexity

science and the study of complex systems engineering (CSE) are emergent fields as

2

scientists strive to stay technologically competitive and to make progress in new research

areas.

Third, complexity measures are important for project management. For example,

by knowing the level of complexity early in a system development project, project

managers can plan development efforts and apply resources in appropriate places to

minimize project risk.

Fourth, both practitioners and students could gain insights about SE and design by

learning and exchanging knowledge about complexity measures. Furthermore, businesses

use complexity measures to gain a deeper understanding of organizational processes, and

this understanding helps create customized environments that are ergonomic, efficient,

practical, and effective for today’s work.

Finally, complexity measures are important for government agencies and defense

contractors which must quantify project complexity in requests for proposal (RFP). For

example, when evaluating the architectural concept for a military system-of-systems (SoS)

in a contract proposal, decision makers could use the result of an architectural complexity

measurement to determine whether the architectural design of the SoS would yield a timely

and cost-effective solution.

This research addresses complexity measurement as a systems engineering (SE)

tool to allow a systems engineer to assess project risk and explore alternatives early in the

engineering process, achieving the most cost-efficient balance. It addresses three areas of

study. First, this research addresses measures of complexity of engineering projects.

Specifically, this research demonstrates how to predict the level of complexity in a given

engineering project in order to (1) plan development efforts, (2) apply resources in

appropriate places, and (3) measure system complexity in a practical way to gain insight

into system design decisions. Second, this research creates a new model of complexity

measurement and applies it to engineering projects for demonstration. A survey of

engineering projects is derived from three Navy software programs (named in this

dissertation as projects B4, B6, and B8). Third, this research examines CSE methods to

determine and understand the impact a given complexity value is likely to have on

3

engineering systems. With that understanding, systems engineers can adapt their SE

methods to accommodate that impact.

1. Definition

Before we present the definitions of complexity, complex systems, and project

complexity used in this research, let us depict and evaluate a complex scenario so that we

can understand some of the complex behaviors that may be at play in a system.

Furthermore, it is essential to understand complex behavior and its implications, and to

characterize complex behaviors in a system in order to adapt our SE approach adequately.

Imagine a group of more than 30 cars traveling down a street with intersections.

Drivers proceed based on the traffic and weather conditions as well as drivers’ moods,

driving habits, and urgencies. They have no common destination. Each car travels at its

own speed and optimum path, and each driver’s objective is to get to his or her destination

accident free and with minimum delay. This scenario is complex because the traffic

situation involves many environmental variables, cars’ dynamics, and human interactions.

We need tools from complexity science to understand traffic and to build better streets,

highways, and traffic control systems. Complexities in this scenario include drivers,

pedestrians, cars and their routes, guardrails, weather conditions, and speed limit signs as

well as traffic signals for the crossing traffic of both automobiles and pedestrians. All of

these factors can change from second to second and evolve over time.

Now, within this scenario, consider this: Paul is a systems engineer, responsible for

the traffic safety of all cars on that street, and the intersections that they cross. Given the

speed limit of the street and the number of cars passing through each intersection each

minute, Paul has to design a traffic control system. In doing so, he must anticipate

occasional rain and thunderstorms as well as pedestrians crossing at intersections. Because

the traffic problem is complex, Paul relies on technology (e.g., artificial intelligence tools

such as fuzzy logic models, genetic algorithms, and artificial neural networks [4]) to build

a traffic control system to solve the traffic problem. The control system might introduce

additional complexity to the problem. For example, because every systems engineer has

his or her unique interpretation of the causes of the traffic problem (e.g., vehicles breaking

down during rush hour, vehicles driving too slow on the streets, weather, traffic volume,

4

or pedestrians crossing streets) and how to solve it, engineers might impose requirements

to address such events in order to prevent traffic jams and collisions. As described in the

traffic example, a traffic control model depends on many variables, mechanisms and

parameters, and it is not so obvious which traffic control models are the most effective in

preventing traffic jams and collisions. In the traffic control system development project,

Paul may need to address the following two questions: (1) How many operational problems

could result from the poor design? (2) How many testing issues may stem from difficult

requirements?

Complexity both hinders and benefits the world in which we live. For example, in

automobiles, engineers design and install an autopilot module to enable auto-park and

automatic driving on highways. These features benefit the consumers, but at the same time,

consumers are paying more for the automobile and potentially taking on some additional

risks by using these features. This illustrates that complexity is often the price of increased

performance. However, the development of self-driving cars continues around the globe.

Cars without a self-driving capability contain around 100 million lines of code (LOC) [5].

Self-driving cars require about one billion LOC [6]. The F-35 fighter jets contain around

24 million LOC [7]. Evaluating by LOC, an autonomous car could be up to four times more

complex than the F-35 fighter jet. In fact, self-driving cars have many engineering

challenges. For companies in the competition to market the technology of self-driving car,

they face a very challenging task because they must demonstrate the safety of these vehicles

in a cost-effective way and within a practical timeline [8]. These companies need to

perform physical testing and that would require hundreds of thousands of driven road miles

[8]. In addition, physical testing of self-driving cars is difficult, expensive, and potentially

unsafe because the autonomous systems of the car must be able to handle many driving

situations, including corner or thorn cases [8]. Although simulation provides some answers

to the development of autonomous vehicle, the safety and security requirements, the

physical testing, and the complexity of the software application all pose challenges to the

deployment of self-driving cars.

The effects of complexity, which may be deleterious on engineering systems, are

as follows:

5

• Makes the design process difficult because of the uncertainty in the

acquisition environment.

• Increases product life cycle cost because the system requires more time

and effort to build.

• Makes the job of providing safety assurance more difficult for a safety

inspector because emergent behavior can occur, and system behavior can

be unstable and unpredictable.

• Makes a system harder to maintain and repair because the system is harder

to understand.

• Makes it difficult to report and diagnose problems.

• Makes it difficult to adhere to a task’s rules and requirements due to

decentralized control and distributed processes within the system.

• Makes it difficult to break down a problem into sub-problems because the

system has so many interdependent pieces.

• Makes project planning and risk management more difficult because the

system shows dynamic patterns of behavior, which may be unclear in

cause and effect.

• Reduces confidence levels in the results of verification and assurance

because the system may be chaotic, unstable, uncontrollable, and

unpredictable.

• Makes process integration more difficult because of the presence of a

system of systems with many stakeholders.

• Makes coordination much harder because of system scale and variety, and

stakeholders may hold diverse political views.

6

However, complexity not always hinders the world in which we live. It sometimes

benefits us. In fact, some manufacturers require certain degree of complexity in their supply

chain to maintain productive operations. For example, a manufacturer of high-tech

hardware has redundant sources of supply to prevent periodic supply disruptions, but this

adds substantial complexity to the supply chain [9].

To gain some insights about the challenges of problem complexity, we need to

understand the problems arising from complexity. Some examples of problems that arise

from complexity are as follows: (1) difficulty in understanding and modeling the system,

(2) unpredictable behaviors and emergence, (3) inefficient processes that could damage a

company’s performance, (4) increasing regulation, (5) weak risk management, and (6)

difficulty in system development and project management.

So how do we define complexity? Scientists in various disciplines define

complexity in many different ways. In the next section, we present the definition of

complexity used by this research and discuss the differences between complicatedness and

complexity.

a. Complexity

We define complexity as the extreme difficulty of describing, analyzing,

controlling, and managing a system consisting of many internal components with countless

interconnections [10], [11]. People perceive complexity as the difficulty to understand a

system and to represent the system in a meaningful and predictable way. For example,

when the structure or behavior of a system is uncertain, unpredictable, or difficult to fully

understand, we perceive that the system is complex. Complexity is not inherently an

undesirable property. Systems require a certain level of complexity to obtain a desired

performance. However, excess complexity in a system can contribute to undesirable

emergent behaviors (e.g., unexpected errors on the user interface or unintended power

overload on the circuit).

In a complex situation, systems engineers can use complexity measures for

comparing one situation to another. In an engineering project, systems engineers can use

7

complexity measures for estimating complexity. For example, decision makers in a military

weapon program can use complexity measures as evaluation criteria for trade studies.

That said, complexity and complicatedness are not the same things.

Complicatedness refers to something that is difficult but not impossible to explain and

understand [10]. Complicated systems have many intricately moving parts and linear

feedback loops that tend not to interact with each other, but they work in predictable ways.

For example, a Rolex watch is complicated because it has many intricately moving parts

and these parts have many possible interactions among them. In addition, complicated

systems are predictable and manageable. For instance, fixing the transmission of a car is

complicated, but the steps to drive a car are easy and routine. We can control complicated

systems and analyze them piece-by-piece. Hence, we can fully understand and model

complicated systems. So, two discerning differences between complexity and

complicatedness are (1) the ability to understand and explain the interactions of the parts,

and (2) the ability to reliably predict system behavior.

Complexity may occur in many contexts, both in natural systems (e.g., birds in a

flock, fireflies flashing synchronously at night, and schools of fish in a coordinated

movement) and engineered systems (e.g., traffic control systems, F-35 fighter jets, and self-

driving cars). Complexity occurs throughout a system’s life cycle, from writing

requirements, design, and development to integration, production, and testing. Complexity

is present in organizations, business policies, contract management, mergers, acquisitions,

supply chains, and distribution networks. Complexity also is present in the system

operational environment, system design, and engineering programs. In fact, systems

engineers and project managers have to face complex problems and develop complex

systems regularly in their engineering practices.

b. Complex Systems

Although many different definitions of complex systems appear in the scientific

literature, in this research, we define complex systems as systems with components,

interconnections, and interactions that are difficult to relate, comprehend, predict, design,

8

and manage [12], [13]. Complex systems may display non-equilibrium dynamics as well

as emergent, nonlinear, non-deterministic and/or chaotic behavior [12], [13].

Mission engineering and SoS engineering are two areas in which the Navy must

confront complex systems. In mission engineering, the Navy applies SE processes and

knowledge to design missions involving multiple platforms (e.g., F-18 and P-8) and assets

(e.g., GPS and satellites) to complete a mission in the face of adversary actions. The

mission is complex because it contains multiple platforms and multiple assets. A SoS is a

system that consists of other dependent systems networked together to achieve higher

capabilities than the sum of the capabilities of the built-in systems. A SoS (e.g., an airplane,

a ship) is complex because these systems are networked together.

c. Project Complexity

This research studies complexity as a critical factor affecting projects in terms of

the difficulty of understanding and controlling project risk. Through reviewing the

literature, we find that researchers in different fields provide many different definitions of

project complexity. In this research, we define project complexity as the degree of

difficulty in understanding, planning, scheduling, and controlling project properties as well

as project interfaces, consequently making it very difficult to predict project outcomes

[14]–[17]. The possible project properties (project duration, project cost, number of

requirements) and project interfaces (e.g., suppliers, top management, stakeholders,

personnel, information interfaces, geographic interfaces) are identified and drawn from

complexity theory, complex system variables, the review of the relevant literature, and

subject-matter experts’ experience. The identified project properties and project interfaces

are then applied to develop the complexity metrics, which serve as metrics of the overall

project complexity.

Project risk deals with the unknown and known events that may affect project

outcomes. Project teams often make tradeoffs between the triple constraints (schedule, budget,

and performance) of project management. Project teams also deal with three aspects of

management. First is the project risk because of decision-making under uncertainty. Second is

the difficulty in accomplishing project properties such as cost, schedule, system design and

9

integration, and permit approval from external agencies. Third is the complexity in planning,

scheduling, and controlling of project properties and project interfaces. Broadly speaking, we

observe that the greater the number of project elements (properties) and their interactions

(interfaces) to achieve project outcomes, the higher the degree of complexity of a given project.

In that regard, the literature indicates that project properties and project interfaces are two key

metrics to measure project complexity [14]–[17].

2. Characteristics of Complexity

In literature concerning the characteristics of complexity, Page [18] identified five

characteristics (numerosity, connectedness, interdependence, diversity, and adaptivity) that

contribute to whether the system is complex or not. Systems that consist of entities (i.e.,

parts, components) that are numerous, connected, interdependent, diverse, and adaptive all

contribute to making a system complex [18]. Furthermore, Chaisson’s work shows a strong

relationship between our perceptions of “complexity” and “the flow of energy” [19].

Without “the flow of energy,” the system ceases to be complex because the system is in

the equilibrium or static state. He suggests using the power P flowing through a mass M as

a measure of the flow of energy [19]. Consequently, complexity will continue to increase

while increasing the flow of energy [19]. Chaisson also points out that a non-equilibrium

system frequently exhibits extreme events such as cascades of collective failure [19].

Because of Chaisson’s work, we can add two additional characteristics (non-equilibrium

and nonlinearity) to Page’s five characteristics of complexity. Hence, we have seven

characteristics known as the seven building blocks that contribute to complexity. They are

as follows: (1) numerosity, (2) connectedness, (3) interdependence, (4) diversity, (5)

adaptivity, (6) non-equilibrium, and (7) nonlinearity. To gain some understanding of these

seven characteristics, let us review them in order.

a. Numerosity

Numerosity is a size measure of complexity [18]. A size measure is the number of

elements of a system (e.g., number of parts, number of interactions between parts, number

of total collection of properties of a system, and number of observable behaviors) [18].

Size measures do not always lead to complexity. For example, the Defense Advanced

10

Research Projects Agency’s (DARPA) [20] found that the presence of many integrated

circuits (ICs) in a system does not necessarily increase the complexity of the system

because the elements in an IC are all the same. However, the ICs used in today’s airplanes,

satellites, rockets, and cars have more parts, and these technologies are getting more

complex. To improve performance and reduce cost, an IC has many components packed

tightly, and, therefore, the number of unanticipated interactions grows substantially.

Hence, the increasing number of ICs in a system is likely to increase complexity.

According to the DARPA META program [21], complexity has increased for ICs.

Likewise, the complexity has also increased for software-intensive systems [22], [23]

because the number of lines of code has increased for these systems. Most size measures

appear as estimators for complicatedness. However, complex things will typically have a

large number of parts and a large number of possible behaviors. Thus, size measures play

a role in the degree of complexity.

In terms of size measures related to the number of possible behaviors, we know that

multiple people form complex systems. A large number of people form a society.

Consequently, we observe a large number of possible behaviors in a society. For instance,

a couple in a family cooperates on house chores. When children and grandparents also live

in a household, everyone in the house collaborates on house chores. Therefore, we notice

some changes in behavioral complexity (e.g., fewer chores and more interactions for each

person). Now, consider multiple households in a village. All of the intra-household

behaviors persist, but now there is additional cooperation and competition between the

households. The village may also institute some form of government to provide order and

stability. Subsequently, we observe some changes in behavioral complexity. Villages grow

into a town. Towns expand into a city. Cities become megacities. Multiple megacities form

states. Multiple states become nations. Multiple nations become a continent. Continents

cover the planet. With each increase in aggregated population, new behaviors arise. In

short, numerosity contributes to increases in complexity.

From a project perspective, numerosity appears to loosely associate with the size

of development effort of a project (i.e., labor hours). One way to measure development

effort is in terms of how long and how many people it takes to complete the project. The

11

Constructive Systems Engineering Cost Model (COSYSMO) [24] is one way to accurately

estimate the amount of effort associated with performing the system engineering tasks in

projects. Hence, we might be able to use COSYSMO as a metric for project complexity.

We will have in-depth discussion of COSYSMO in Chapter III.

b. Connectedness

A network consists of nodes and links. Nodes are things (e.g., systems, people,

computers, and machines). Links are relationships between the nodes (e.g., friendships,

communication lines, and business dealings). Whenever we have two or more nodes

interconnected by links, we have a network. Figure 1 shows an organizational network

where the entities are organizational units, the connections are information flows (i.e.,

status reports and decision notifications), and the interactions represent the exchange of

information.

Figure 1. An example of an organizational network

In systems engineering, we measure connectedness by measuring the interactions

between systems. Examples of these interactions are the transfer of energy, information,

money, and material. One way to measure connectedness in complex projects is to develop

a network diagram between interdependent organizational units and show the relationships

associated with those organizational units. By analyzing the frequency and importance of

interactions between each organizational unit, we can determine the connectedness value

12

of the project. For instance, as shown in Figure 1, we have a project that involves two

organizational units. There are 2 nodes and 2 links that connect in an organizational

network. OU1 transfers the information 24 times to OU2, and each transfer has a level of

importance of 2. OU2 transfers the information 2 times to OU1, and the transfer has a level

of importance of 5. The connectedness of the project can be defined as the sum of each

weighted transfers of OU1 to OU2 plus the sum of each weighted transfers of OU2 to OU1.

In this case, OU1 has 24 transfers, and each transfer has a weight factor of 0.4 (2/5). OU2

has 2 transfers and a weight factor of 1 (5/5). Thus, the connectedness of the project is 11.6

(24 times 0.4 plus 2 times 1). In short, complex projects will usually have many possible

interactions and behaviors, and the number of interactions and observable behaviors is an

indirect measure of connectedness.

In many complex projects, risk factors (i.e., lack of management support or

mediocre team performance) are identified as inherent complexities of a project [25], [26].

For example, lack of management support can create uncertainty about the project, which

can affect team performance and the organizational structure of the project in terms of who

has authority over the project and who makes the final decisions. Senior management

adheres to a complicated decision-making process that could delay project decisions and

increase the risk of schedule delay. They can demand rigorous project oversight that could

interfere with team performance. Project managers have to cope with senior management’s

decisions. Similarly, lack of coordination among organizational units (i.e., contractor unit,

project team, and integrated product team) can cause schedule delay. Hence, by definition

in this research, project complexity is an indication of project risk.

c. Interdependence

From a systems engineering perspective, interdependence is an informational

relationship, a control relationship, or a resource relationship such that one organizational

unit depends on another organizational unit [27]. It emerges due to interactions between

elements of the engineering project. In engineering design, organizations are in charge of

executing the tasks. In this perspective, interdependence is the degree, in terms of behaviors

and results, to which an organization depends upon the actions of another organization

13

[27]. As a result, we have a set of tasks among the organizational units. We need a set of

capabilities to execute a task. Furthermore, because an entity in an organization that has

those capabilities may apply and complete the task, we can define interdependence as

emerging between tasks rather than between organizations [27]. In general,

interdependence is high when the coordination load is high, which might require more time

and effort to manage these tasks [27]. However, in systems engineering, management can

change roles and responsibilities of each organization and limit the capability of task in

each organization [27]. As a result of the reassignment of roles and responsibilities of

organizations, the interdependence among organizations changes, but the “interdependence

between tasks” remains the same [27]. Hence, we have to examine interdependence both

in task and in organization.

Giachetti [28] proposes a model and measurement formalism based on the notion

of process and organization to analyze interdependence in enterprise systems. He creates a

process control diagram that includes the frequency, the level of importance, and timing of

the flow of information to represent the strength of three different interdependencies: a

sequence of a task, the reciprocal of a task, and collective resources. One drawback of this

model is that it omits informal communications between processes and organizational

units. Nevertheless, this model is a reasonable way to measure interdependence in

enterprise systems.

In sum, systems engineers could model the measure of interdependence possibly

using an organizational network diagram, which comprises of organizational units and the

frequency and importance of the flow of information between each organizational unit.

d. Diversity

Page [12] defines diversity as the lack of sameness. In other words, the number of

different types of elements determines diversity. Diversity can mean variation in

parameters and attributes (e.g., beak depth in Darwin’s finches), multiplicity of types (e.g.,

models of cars), differences in populations (e.g., the number of employees in each

organization), differences in structure (e.g., software architectures), and differences in

function (e.g., a specialty either in air conditioning repairs or automotive transmission

14

repairs) [29]. When present, diversity appears to increase the number of behaviors, which

in turn increases complexity. Numerosity contributes to complexity most when the

elements are diverse. In short, diversity is a factor affecting complexity. For example, as

shown in Figure 2, a hierarchical measure of complexity takes into account the number of

layers and the diversity of differing structures. Given the same number of layers, the

structure with more diversity is more complex than the structure with little diversity.

Diversity in the elements (e.g., layers, structures, and people) in an interdependent system

is likely to foster differences in outcomes, and, therefore, increased complexity. Complex

systems tend to have much more diversity [12], [29].

Figure 2. Two different hierarchies with two different diversity

values. Adapted from [29].

Three diversity measures appear to be applicable to engineered systems. They are:

(1) variation measures, (2) distance measures, and (3) attribute measures. Variation

measures describe diversity within a type. Distance measures tell the magnitude between

two different types [29]. Attribute measures determine “the total number of attributes”

required to describe “all elements of the system” [29].

In complex projects, diversity of team members may involve differences in history

(e.g., past experience, education, and job assignments), preference (e.g., likes versus

dislikes), personality (e.g., logical versus emotional), and adaptability (e.g., ability to learn)

[29]. Based on the definition of diversity of complex projects, diversity appears to be

loosely associated with key risk factors of a project. For example, in a diverse team, the

15

variations in team-related issues (e.g., team conflicts, staff turnover, lack of motivation,

and lack of team communications) can be quantified by a variation measure. Moreover,

different types of job positions in interdependent organizational units are likely to foster

differences in job assignments (more task types) and outcomes (more behavioral types),

and, therefore, increase complexity. From this perspective, systems engineers could

possibly model the measure of diversity in engineering projects using different types of job

positions in organizational units.

e. Adaptivity

In SE, adaptivity is a system’s ability to change its function or behavior in response

to changes in its environment [29]. When present, adaptivity appears to increase

complexity. Adaptivity may be random such as in transformation or variation. For example,

search engines have search and indexing algorithms that allow users to search efficiently

(i.e., eliminating redundant links or reducing the number of retrieval links, saving users’

time from useless page searching). A browser plug-in contains re-search and re-

classification algorithms to refine the results returned by the search engines so that users

obtain the closest links to their search text. The re-search and re-classification algorithms

contain certain kinds of selection and decision-making, which are the two elements of

adaptivity. Adaptivity may be specific, as produced by learning. For instance, in an

adaptive learning application, the application uses an artificial intelligence (AI) algorithm

(e.g., machine learning [30] and deep learning [31] technology) to customize the content,

curriculum, method, or pace of learning for each student. The AI algorithm contains certain

kinds of profiling, learning, selection, and decision-making, where all are elements of

adaptivity. Another example of adaptivity is a dual-mode cellphone that can automatically

choose a wireless standard at its current location.

In complex systems, adaptivity is difficult to quantify because it potentially

involves every element of a system and every activity the system can perform. However,

we know that some adaptive mechanisms are more “complex” than others. We could

possibly rate the relative complexity of the system’s adaptive mechanism based on a Likert

16

scale [32]. However, this approach has not been proven through validation in empirical

research studies.

In engineering projects, adaptivity requires some sort of change in the project’s

properties (e.g., project cost, project duration, and the number of requirements) or in the

project’s interfaces (e.g., suppliers, top management, and personnel). For example, a

project manager decides to compress the project schedule to meet his allocated budget. The

decision to change the project schedule is an element of adaptivity.

Based on the definition of adaptivity, we can derive five characteristics of

adaptivity as follows [29]: (1) A change in the ability of an element to affect or to be

affected by other elements, (2) A change in the connections, interactions, or relationships

between elements, (3) A fluctuation in the amplitude or frequency of a function, (4) A

change in the function of an element, and (5) A change in the design of an element.

In complex projects, we could possibly model adaptivity by using key complexity

characteristics and loosely associate them with adaptive mechanisms. This approach is very

similar to the approach of measuring adaptivity for complex systems. Nevertheless, this

approach has not been proven through validation in empirical research studies.

In software development projects, Subramanian and Chung [33] propose using the

architecture adaptability index (AAI) and the software adaptability index (SAI) for

measuring software adaptivity. They define software adaptivity as the ability to

accommodate changes in the software environment. Some changes in the software

environment include the changes in the number of inputs and changes in non-functional

requirements (i.e., performance, maintainability, and security) of a software system. Non-

functional requirements are qualitative requirements such as a 100% reliability requirement

for an aircraft engine or a software requirement to use micro-service principles for self-

driving cars. Based on the definition of software adaptivity, Subramanian and Chung [33]

suggest that different software architectures have varying degrees of adaptability, which

we measure by AAI. They claim that the closer AAI is to one, the more adaptable the

software architecture is [33]. Different software programs have different degrees of

adaptability [33], which we measure by SAI. Subramanian and Chung claim that the closer

SAI is to one, the more adaptable the software program is [33]. However, the definitions

17

of AAI and SAI are limited to measure adaptivity for non-functional requirements, and

software can only satisfy non-functional requirements within acceptable limits.

f. Non-equilibrium

A non-equilibrium system is a system that dissipates energy persistently regardless

of the amount of energy supplied from the external systems [34]. For example, the

combustion reaction in a gasoline engine of a car is a non-equilibrium system. The work

of Chaisson shows that as the flow of energy of a system increases, the more capable the

system is of reducing entropy, and thus, the more complex the system is [19]. A non-

equilibrium system is a dynamic system and often exhibits extreme events (i.e., cascades

of collective failures) [34].

Intuitively, the flow of information is associated with the dynamics of the system,

and dynamics are related to either information processing, work performed, or the flow of

energy. Clark and Jacques [35] propose that one possible way to determine complexity in

dynamic systems is to observe changes in kinetic energy. This measurement provides

insights into system risks and why some systems fail in certain ways [35]. This approach

is still in its infancy and requires further study. In short, our understanding of non-

equilibrium systems is still very limited.

g. Nonlinearity

Nonlinearity refers to a relationship in which change in any of the inputs results in

a disproportional change in the outputs [36], [37]. For example, a modest reduction of

airfare between cities can disproportionately increase the number of passengers. In

mathematics, a nonlinear function is likely to have an exponent, a maximum, and a

minimum. A small stimulus input may produce a very large response in a system. Similarly,

a rather large stimulus may produce little response. In other words, a stimulus to one part

of the system may produce nonlinear responses in the system. We cannot predict the

behavior of a nonlinear system from the behaviors of the parts [38]. For example, in a

manufacturer of automobile parts, the variance between sales and orders tends to increase

as this information sends to upstream inventory and production decisions [39]. This

phenomenon is called the “bullwhip” effect [39]. From a systems engineering perspective,

18

project development elements (e.g., requirement, user involvement, and management

support) and processes (e.g., regulation, decision-making, and technology integration) may

be nonlinear because their effects may not be proportional to their causes.

3. Characteristics of Complex Systems

In Section 2, we discussed seven characteristics of complexity at the component

level of the system. However, at the system level, the system exhibits additional

characteristics of complexity. In literature concerning the distinction between systems that

are complex and those that are not, the following are five characteristics of complex

systems:

• “Self-organizing behavior” [40] (e.g., the Mars Exploration program to

understand Mars’ environment),

• Evolution and adaptation to environment [41] (e.g., the SpaceX Mars

program to land a human on the surface of Mars),

• “Evolving problems” that create “constantly changing needs” [40] (e.g.,

the California high-speed railroad project [42]),

• “Decision-making under uncertainty” [40] (e.g., the Apollo program), and

• Nonlinear cause and effect such that small disturbances create large effects

[41] (e.g., the 2010 Deepwater Horizon oil spill in the Gulf of Mexico

[43]).

In parallel to the five characteristics mentioned in above, Sheard [40] presents the

following four characteristics of complex systems: (1) self-organization, (2) evolutionary

dynamics, (3) uncertainty, and (4) nonlinearity. Moreover, scientific literature on

complexity includes some additional characteristics of complex systems as follows [40]:

(1) emergence, (2) nonlinearity; (3) limited predictability, (4) evolutionary dynamics, (5)

self-organization, (6) uncertainty, and (7) spontaneous order complexity. To gain some

understanding of complex systems, the first step is to review the definitions of these seven

characteristics.

19

a. Emergence

Emergence describes “the whole” as “different from the sum of the parts” [41],

[44], [45]. For example, the smell of ammonia exhibits properties from the whole

compound of nitrogen and hydrogen. Emergent behaviors are usually unexpected when

first observed. For example, many discrete pixels produce an emergent image of a

motorcycle. There are many paths to emergence. Hence, there are many types of

emergence. For example, a rack and pinion gears system that converts rotary motion into

linear motion can be described as linear emergence. Linear emergence usually arises from

traditional systems engineering. On the other hand, a nonlinear system such as an electronic

circuit that converts a square wave into a sine wave can be described as nonlinear

emergence. Thus, nonlinear emergence arises in nonlinear systems, and nonlinear systems

are complex. Emergence is likely to pose many challenges to systems engineers because

emergence in a system is unpredictable, and, therefore, its behaviors are difficult to control.

Many nonlinear systems exhibit emergent behaviors. To design and analyze complex

systems, engineers may need to do the following [29]:

• Predict emergence where possible.

• Accommodate emergence when it appears unpredictably.

• Control emergent behaviors, and even design systems to produce certain

kinds of emergence.

b. Nonlinearity

In complex systems, irregular behavior arises from nonlinearity rather than from

random driving forces [46]. For example, in a regional weather system, the movement of

the jet stream affects the air pressure and helps shape the weather in that region. It is

difficult to determine design parameters when the system is nonlinear. Whenever parts of

a system collaborate or rival with other systems, nonlinear interactions occur. There are

degrees of nonlinearity. Too much nonlinearity is likely bad for a system because the

system may become uncontrollable. To design and analyze nonlinear systems, engineers

may need to perform the following [29], [46]:

20

• Treat any nonlinearity system as a minor perturbation to a linear system.

• Redesign systems that cannot make linear approximation.

• Control or minimize nonlinearity behaviors by designing adaptive systems

to accommodate certain kinds of bifurcations and to limit abrupt change in

a system.

c. Limited Predictability

Limited predictability refers to the minimal capacity to predict in advance a

system’s state or behavior [47]. For instance, in a nonlinear system, small changes in initial

states can cause very different dynamics over time, and, thus, long-term predictability is

not possible [46]. Thus, when contending with complex systems, any predictive activity is

an educated guess at best. For example, weather forecast systems can predict the weather

within a few days with a limited degree of accuracy. From a traditional SE perspective, SE

success mostly depends upon the repeatability and predictability of system behavior. For

instance, in an ordinary linear system, systems engineers can analyze the behaviors of parts

to predict the behavior of an entire system. On the other hand, complex systems are

inherently unpredictable. To overcome or accommodate challenges posted by complex

systems, systems engineers likely need to do the following:

• Study and gain in-depth knowledge of the system.

• Conduct modeling and simulation to establish key parameter values.

• Determine or estimate a time horizon at which the system’s behavior

trajectories diverge.

d. Evolutionary Dynamics

Evolutionary dynamics refers to a system’s structure or behavior that constantly

changes and innovates over time [41]. Evolutionary dynamics often occurs in complex

adaptive systems. For example, although the human immune system has relatively few cell

types, it is capable of responding to many threats. Another example would be large

21

economies in which millions of buyers and sellers trade hundreds of thousands of

commodities. Although each agent acts in his or her own best interests, economies

normally exhibit stability and usually show steady, long-term growth. In short, the human

immune system and the economic systems seem to exhibit evolutionary dynamics. The

human immune system and the economic systems improve on its own.

On the other hand, some man-made systems do not have this characteristic. The F-

35 fighter jet, for example, is not evolutionary. Although it appears that the design of each

new fighter jet becomes better (e.g., F-14, F-18, F-22, to F-35), the evolution of fighter-jet

technology is something imposed by the human designers.

However, a biomechanical system such as a prosthetic arm is an artificial

intelligence system that exhibits certain characteristics of evolutionary dynamics. For

instance, human movement can be represented by nonlinear responses [48]. The stretching

of human tissues show nonlinear responses [48]. The prosthetic arm has electrode arrays

of sensors that interpret hand movement patterns [49]. The algorithm that analyzes and

interprets the hand movement patterns is based on a dynamic systems approach, which is

a nonlinear model [49]. As the speed of the computer improves over time and the models

for dynamic systems have been enhanced and optimized, the algorithm becomes better and

more accurate in interpreting and predicting the hand movement’s positions in 3-D. Hence,

a prosthetic arm has evolved and become a better system for movement control and extend-

to-lift maneuver. The movements of a prosthetic arm look natural and smooth. To

strengthen evolutionary dynamics in systems engineering, systems engineers may perform

the following:

• Encourage competition and cooperation in research among project teams

and organizations.

• Facilitate the process of natural selection (adaptation).

• Emphasize social networking to encourage innovation.

22

e. Self-Organization

According to Heylighen [50], self-organization appears when elements of a system

collectively form certain patterns. It occurs from the bottom up organizing unit. For

example, synchronized flashing of fireflies at night exhibits the capacity of self-

organization. Crystals form from atoms by self-organization. Other examples of self-

organization include the movements of flocks of birds, herds of horses, and schools of fish.

Self-organization is also applicable in engineered systems. An electronic hardware based

on a programmable chip and “self-evolvable” communicating components is an example

of a man-made system that exhibits self-organization [51]. Self-organization often leads a

system to critical states with tipping points that could trigger catastrophic events [52]. To

minimize systems reaching the tipping points, systems engineers can do the following:

• Reduce random noise.

• Conduct modeling and simulation to predict or identify areas of potential

positive feedback.

• Control the inputs by limiting strong fluctuations and overloading.

f. Uncertainty

Uncertainty refers to decision-making involving unknown or incomplete

information [53]. One way to measure uncertainty is to use “a set of possible states or

outcomes where probabilities are assigned to each possible state or outcome” [53]. For

example, when a vending machine spits out a coin, it is uncertain whether it will land on

heads or tails. Nevertheless, we know the probability of tails is 0.5, though the actual value

is uncertain. Uncertainty is also applicable in engineering. Uncertainty due to either

probabilistic system behavior or insufficient knowledge contributes to problem complexity

[54]. To minimize uncertain dynamics of a system, systems engineers can do the following:

• Conduct modeling and simulation of SoI to predict or identify areas of

variations and nonlinearity.

• Control the inputs by rejecting or limiting disturbances.

23

g. Spontaneous Order

Spontaneous order is a process that creates a meaningful structure by independent

agents acting in self-interest without coordination [50]. It is an emergent phenomenon that

occurs both in natural and engineered systems. Spontaneous order has a number of

phenomena because a system’s behavior is not just different from the component

behaviors, but it is also different in kind. For example, crystals form from the order of

atoms. The international monetary system is an example of a man-made spontaneous-order

system that provides temporary credit to consumers undergoing a current-account deficit

[55], [56]. To foster spontaneous order, systems engineers can carry out the following:

• Plan and support organizations.

• Emphasize rules and standards.

• Cooperate with individuals in project teams and organizations.

Learning the characteristics of complexity is just the first step in studying complex

systems. The next step is to study the causes and effects of complexity on engineered

systems and engineering projects. This is important because complexity is an indicator of

project risk, and systems engineers often need to manage this risk. The next section

presents the causes of an increase in complexity.

4. Factors that Cause an Increase in Complexity

Describing something that is difficult to predict is a nonlinear problem.

Requirements volatility and unforeseen complexity could drive the projects in a non-linear

direction. An increase in complexity in a system is due to the following factors [57]:

• Number of parts,

• Number of interconnections,

• Nature of interactions such as nonlinearity or changes that are not constant

functions of the input variable, and

• Dynamic shifts or changes as a function of time.

24

Understanding the causes of complexity in engineering projects is necessary

because systems engineers can study these causes and then take actions to mitigate

potential project risks such as schedule slippage, budget overruns, and failure to meet

requirements.

5. Effects of Complexity on Projects and Systems

The complexities of a project seem to be driven by changes to the scope and

unexpected business decisions. Complexity affects a project or a system in the following

ways [57]:

• It increases the risk of schedule delay.

• It increases the risk of budget overruns.

• It increases the risk of failure to meet requirements.

• It contributes to higher costs by requiring more effort in systems

development, verification, and validation.

• It creates a greater challenge in designing the system.

• It introduces ways in which a system can fail.

• It increases uncertainty of system dynamics.

In addition, when a project is constantly changing the requirements, it is difficult

for the project manager to set achievable goals. Evolving cause-effect relationships in a

network of systems may lead to concealed bugs and unexpected behaviors [58].

Furthermore, constant change in requirements may create unintended consequences such

as system degradations and disruptions and can devastate or even abort the intended actions

[59]. Understanding the effects of complexity on projects and systems is important because

systems engineers can take actions to reduce or mitigate the complexity of the problem.

25

B. RESEARCH RELEVANCE AND OBJECTIVE

Project managers, systems engineers, hardware and software developers, and

researchers seek to answer the following questions:

• Can we develop a useful measure of complexity for systems engineering?

• Can we use these measures of complexity to determine the level of

complexity in an engineering project? From such a measurement, can we

plan development efforts and apply resources in appropriate places?

• What impact is a given complexity value likely to have on engineering

projects?

• Can we reduce or mitigate complexity? If yes, what are the methods or

techniques for reducing complexity?

At this time, there are no widely agreed upon or standardized complexity

measurement standards for engineered systems and engineering projects. The absence of

complexity measurement standards opens up the opportunity for this research. In short,

useful measures of complexity in engineered systems and engineering projects appear to

be the most-requested standards by systems engineers [40].

This research has the following three objectives:

• To provide practical and effective measures of complexity of engineered

systems and engineering projects for systems engineers by introducing a

model for complexity analysis,

• To validate this model of complexity measurement based on empirical

data from three Navy software projects, and

• To use the results of complexity measurement to determine ways for

reducing complexity.

Ultimately, systems engineers can use the model to determine system development

approaches and organizational strategies to reduce project complexity.

26

C. CONTRIBUTIONS AND BENEFITS TO THE BODY OF KNOWLEDGE

IN SYSTEMS ENGINEERING

Numerous studies on software complexity focus on the size of the code, control

flow, data flow, the size of the project team, the number of interdependent programming

tasks, and other performance parameters. This research extends the complexity

measurement in software engineering by bringing together into one holistic model that

consists of several different metrics proposed by several different researchers. This model

includes measures of number of personnel required for the development effort, defect

density, number of geographical distribution of project teams, organizational complexity,

requirements volatility, and the number of different types of job positions. This approach

incorporates principles of risk management and project management in software

engineering by relating them to risk analysis and decision-making to support high quality

systems engineering.

In addition, this research covers a use case of SE body of knowledge in the topic of

SE advanced measurement where systems engineers and project managers use the PCMM

and associated methods to measure complexity and assess project risks to ensure

affordability. For example, the PCMM link project complexity to systems development

cost, schedule, performance, and risk. As a result, the PCMM provides project managers

and IPT management teams with common practices in the areas related to the review of

work products, roles and responsibility expectations, accountability demands, and

affordability.

The main contributions of this research are as follows:

• A model for identifying key complexity measures in engineered systems

and relationships between different elements of complexity within

systems,

• Potential approaches for complexity reduction,

• A systematic method for measuring system and project complexity and a

demonstration of the model using empirical data from three Navy software

27

projects to determine the ranges of values in the proposed complexity

measures, and

• A demonstration of complexity reduction using results from the

complexity measurements of three Navy software projects.

D. OVERVIEW OF THE WORK

This dissertation is organized into five chapters. In Chapter I, we identify the

objectives, potential benefits, and anticipated contributions of the research. The chapter

focuses on the following:

• Introduces the notion of complexity as applied in engineered system.

• Describes a scenario of a complex system, problems that arise from

complexity, and the importance of complexity measures.

• Identifies several characteristics of complex engineered systems.

• Defines complexity and complex systems.

• Introduces the seven building blocks of complexity that form the

foundation of this dissertation.

• Includes several research questions and reasons for a need to answer these

questions.

Chapter II presents measures of complexity drawn from previous literature. This

information helps form a foundation to develop a model of useful measures of complexity.

Chapter II consists of the following:

• A broad overview of complexity science history and technologies,

• A discussion of recent developments in measures of complexity of

engineered systems,

28

• A description of several measurement methods for complex engineered

systems as well as an evaluation of their advantages, disadvantages, and

relevance,

• A set of ideas, definitions, and properties of complex systems as well as

examples of measures of complex engineered systems, and

• An explanation of tools used in complexity research and an assessment of

their advantages and disadvantages.

In Chapter III, we present a model of useful measures of complexity. This chapter

presents the formulation of the system complexity metrics, system and project properties,

and analysis methods used throughout the dissertation. The chapter accomplishes the

following:

• Identifies factors that describe project complexity based on key risk

factors in a project.

• Creates a new approach to develop complexity indicators, which serve as

qualitative measures of the associated factors that describe project

complexity.

• Develops the model and methods that estimate complexity of systems and

projects.

• Proposes methods for reducing or mitigating complexity.

In Chapter IV, we use empirical data from three Navy software projects (named in

this dissertation as projects B4, B6, and B8) to validate the proposed complexity

measurement model. The empirical evidence is drawn from project-level observables such

as requirements volatility, defect density, development cost, and frequencies of the flow of

information between organizations. Chapter IV achieves the following:

• Illustrates validity and relevancy of the proposed complexity model

through results from three software engineering projects.

29

• Addresses concerns and issues of complexity measurement for each

engineering project.

• Presents lessons learned from three software projects and proposes

recommendations for reducing complexity.

Finally, in Chapter V, we conclude this dissertation by presenting a summary of

this research, a list of this dissertation’s contributions to the bodies of knowledge, and ideas

for future research that were inspired by this work. In addition, we discuss the effects of

complexity on system development efforts.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

II. LITERATURE REVIEW

It’s very hard to do science on complex systems.

―John Horgan [60],
“From Complexity to Perplexity”

As noted in Chapter I, the system-of-interest (SoI) for this dissertation is the DOD

software acquisition program for the design and development of complex systems typically

used in defense acquisition. No single source, but rather a combination of the several

sources of complexity, appears to increase complexity. This realization solidifies the need

for creating a complexity profile that consists of multiple complexity measures for project

risk assessment. Thus, this chapter starts with a discussion of sources of complexity and

system complexity as a risk in project management, systems design, manufacturing,

testing, and deployment. Next, we present a background and history of complexity science.

The subsequent section reviews recent developments in measures of complexity of

engineered systems, including metrics to measure complexity in systems design and

development, definitions of complex systems, and properties of complex systems as well

as examples of measures of complexity. Drawn from previous studies, this section

introduces the seven elements of complexity that will form the foundation of this

dissertation. Finally, we identify certain gaps in the literature concerning complexity

measurement and propose several solutions to address these gaps.

A. SOURCES OF COMPLEXITY

Today’s engineered systems such as offshore wind turbines, fighter aircraft,

satellite communication systems, and control systems for smart power grids are

complicated, complex, and challenging to design and manage. They are large systems,

difficult to maintain and prone to unanticipated failure, and they carry huge costs and risks.

Keeping complexity under control in these systems is necessary to improve their

affordability. In a 2008 RAND Corporation report [3], roughly two thirds of the overall

cost escalation for fighter aircraft was attributed to system complexity (Figure 3). Some

government-funded fighter-jet programs (e.g., F-22A and F-35) have been delayed or

32

cancelled because of cost escalation. Many project managers often need to make tradeoffs

between functionality and performance of a system to limit a system’s complexity and to

improve system affordability. To constrain and manage complexity, systems engineers

need to identify useful measures of complexity.

Figure 3. System complexity contributes about two thirds of the

overall cost escalation for fighter aircraft. Source: [3].

In general, increased complexity contributes to higher costs, greater challenges in

systems design, and more effort required in systems development, verification, and

validation. Measuring complexity is an important issue in project management and in the

design, manufacturing, testing, and deployment of systems. In addition, complex systems

may have emergent behaviors (e.g., unexpected errors on the user interface or unintended

power overloads on the circuit) during system validation and operation. These potential

behaviors can lead to undesirable and expensive system recalls and redesign.

Systems engineers must identify the nature of complexity and the extent of

complexity that imposes on the development program [57]. Such an analysis will help

systems engineers to determine whether any mechanism would exist for reducing

complexity such as by decoupling the system from its environment. According to the

International Council on Systems Engineering (INCOSE), complexity in a development

33

program can arise from at least three sources [58]: (1) the problem being addressed, (2) the

system environment, and (3) the system being developed. In addition, engineering

processes themselves are also sources of complexity [61]–[64]. Therefore, to quantify the

complexity of engineered systems, systems engineers need to understand complexity of the

problem, environment, system, design of the system, and the engineering process. Let us

discuss each source of complexity in order.

1. Complexity of the Problem

In engineering projects, systems engineers commonly observe several sources of

complexity of the problem. Understanding these sources of complexity of the problem will

be valuable to project managers for project planning. According to Sheard and Mostashari

[65], complexity of the problem can be the result of the following underlying issues:

• Ill-defined problems,

• Conflicting requirements,

• Too many problem elements,

• Interactions between problem elements,

• Diverse and demanding stakeholders,

• Interacting stakeholders,

• Resources issues,

• Multiple constraints, and

• System of systems orientation.

However, people are often the root cause of some of these issues due to negligence or lack

of emphasis.

2. Complexity of the Environment

Many projects often encounter system environment problems. From our SE

experiences, we know that system environments are inherently complex [58]. By knowing

the sources of complexity of the system environment, project managers can estimate the

expected effort needed to complete the project. Some of the complexities of the

environment include rapidly evolving threats, strong dependence upon highly variable

34

environmental conditions, and large disturbances of the environment resulting from

resource consumption, waste products, and physical damage. Appreciation and

understanding of system environment problems can help systems engineers develop usable

measures of complexity.

3. Complexity of the System

Stevens [66] suggests one way to understand complex engineering problems is by

studying the four contexts of the system: (1) the strategic context, (2) the implementation

context, (3) the stakeholder context, and (4) the system context. First, systems engineers

use the strategic context to look at the scope and stability of the intended mission. They

need to determine whether requirements are expected to change with time and whether the

mission is intended to address a single function or multiple functions within an enterprise.

Second, project managers use the implementation context to look at the scale of the effort.

They need to decide whether the project aims at developing a single system for a specific

purpose or multiple interrelated systems. Third, the stakeholder context addresses potential

difficulties with stakeholders. Project managers need to evaluate whether the stakeholders

are on board with the stated objectives and whether the relationships with stakeholders are

stable or changing. Fourth, the system context addresses the expectations of the system.

Systems engineers need to analyze and determine whether the expected system behavior is

known or likely to evolve as the design is developed. Engineers study these four contexts

to gain understanding of the problem. By determining the range of the system within each

context, both systems engineers and project managers can generate a profile of their

projects and accurately measure the degree of project complexity.

4. Complexity of the Design of the System

System complexity may also arise from system design. Complexity of system

design is caused by excessive functionality, complicated feedback loops, a certain problem

that human cause, nonlinear and adaptive elements, and high connectivity and

interdependence between elements [29]. Furthermore, system requirements, changes of

technology, team dynamics, organizational policies and procedures as well as external

35

stakeholders are also sources that contribute to complexity. Furthermore, to solve these

design problems, systems engineers can do the following [29], [61]–[64]:

• Reduce and remove unnecessary functionality.

• Limit the degree of adaptivity.

• Minimize interactions between nonlinear elements.

• Increase connectivity but reduce and limit interdependence between elements.

• Emphasize system-level optimization.

• Resolve or eliminate conflicting requirements.

• Decouple feedback loops to make a system easy to understand and control.

• Reduce the “human factors” in system complexity.

• Ensure adequate redundancy.

5. Complexity of the Engineering Process

In the engineering process, systems engineers often face the challenge of

simplifying the design processes without affecting product performance [28], [199]. They

sometimes need to make tradeoffs between efficiency and maintaining control of the design

processes. The number of tasks and the frequencies of the communications between tasks

often determine the level of complexity of the engineering processes [28], [199]. One

aspect of the complexity of the engineering processes is the amount of the communications

required between the tasks that require decisions and the analytical tasks [28]. Systems

engineers must understand the communication patterns between tasks that need decisions

and the analytical tasks in design processes so they can minimize the complexity of design

processes. For example, systems engineers can reduce the complexity of design processes

by either re-sequence non-coupling tasks or identify and remove weak coupling between

tasks [67]. Systems engineers can make design decisions based on the values of design

parameters using the users’ operational range of values (e.g., a rotor speed of 16.8 rpm of

a wind turbine). In sum, the literature has established that systems engineers will find value

in tracing complexity to its source so they can address it in systems design and project

planning.

36

B. BACKGROUND AND HISTORY OF COMPLEXITY SCIENCE

Finding the common concepts and mechanisms of complexity greatly aids the

understanding of complex systems. This section begins with a brief history of complexity

science and follows with an overview of the characteristics of complexity and complex

systems. We will discuss concepts and methods of complexity science, which will be useful

to derive some measures of complexity for this research.

In the 1950s, scientists developed computers, numerical techniques, and algorithms

to study nonlinear systems. To analyze the dynamics of nonlinear systems, scientists

developed chaos theory. Chaos contains irregular non-repetitive behavior. It represents

unpredictability because the cause and effect relationships are unperceivable. The root of

chaos is extreme sensitivity to initial conditions. In other words, changes occurring in an

initial stage will be amplified and eventually dominate the system. For example, in 1963,

Edward Norton Lorenz, a pioneer of chaos theory, discovered the butterfly effect when

observing his weather forecasting model [68]. Scientists also observed chaos in

semiconductors and electronic circuits. The implication was that nonlinear systems were

inherently unpredictable. Thus, chaos theory became an important part of understanding of

nonlinear systems. Subsequently, scientists and systems engineers have applied the

butterfly wing patterns to models to study nonlinear and complex systems.

In the 1990s and early 2000s, scientists and engineers used network theory to

describe complex adaptive systems. A complex engineered system can be modeled as a

network; thus, a brief introduction of networks is an essential part of an overview of

complex systems.

A network consists of nodes (e.g., people, machines, and computers) and links (e.g.,

human relationships and communication lines) [69], [70]. A network’s function is to

transfer goods and services (information, people, raw materials, manufactured products,

etc.) between the nodes [69], [70]. Networks can be in flux such that nodes are added and/or

deleted [69], [70]. Systems engineers create network models to measure the values of

connectedness and interdependence of networks, which are measures of network

complexity.

37

Scientists and engineers developed a few network models to address emergent and

adaptive properties of complex adaptive systems. For example, a hub and spokes network

has one node that connects directly to every other node along links that comprise the spokes

[69], [70]. Airlines typically adopt the hub and spokes model to route all of their traffic

through a central or multiple hubs.

Other types of networks include a random network, a clustered network, a small-

world network, and a power law network. A random network provides connectivity by

creating random connections between nodes [71]. Neuroscientists use the model of random

network to study neural networks. In a clustered network, every node is directly connected

to many other nodes [72]. Scientists and biologists use this model to study disease spread

such as severe acute respiratory syndrome (SARS) epidemics and the HIV/AIDS pandemic

[73]. Small-world networks are mixtures of random and clustered networks [74], [75].

Power law networks (e.g., the World Wide Web [76], [77]) have many connections to

guard against or prevent random failures. In sum, systems engineers use various types of

network models to study complex engineered systems.

Scientists and engineers have observed that diversity has several relationships with

complexity. As introduced in Chapter I, Scott Page, an American social scientist, defines

diversity as the state or quality of not being the same [15]. In other words, the number of

different types of elements determines diversity. When present, diversity can increase

complexity [15]. The more different types of elements are present in a system, the more

ways they can combine.

Moreover, diversity generally improves robustness and performance [15].

Robustness is the ability to maintain a system’s functionality despite a disturbance within

it [29]. The more types of elements present in the system, the more functions can be

exploited to respond to a disturbance. Robustness requires that there is a restoring response

for every disturbance of the system [29].

Many factors can contribute to complexity, including time, space, and interactions. In

1948, Warren Weaver, one of the pioneers of machine translation, distinguished two cases of

complexity [78]: organized and disorganized complexity. Organized complexity results from

a vast number of parameters describing the aggregate of the system elements [78]. An example

38

of organized complexity is the design specification of a radar system for air traffic control

which has thousands of components. Disorganized complexity results from the sum of a large

number of approximately identical system elements, each of which has different values of a

few different parameters [78]. An example of disorganized complexity is the behavior of a

volume of gas. The gas volume’s behavior is describable by a few statistically averaged

parameters. However, many man-made systems have system properties somewhere in between

organized complexity and disorganized complexity [18], [44].

As stated in the previous section, engineering processes are one of the sources of

complexity. In 2006, Minai et al. [79] addressed the challenges that arise in developing

complex engineered systems and identified new CSE approaches that are being adopted.

Minai et al. [79] suggested that CSE should focus on creating an environment in which

systems can develop and expand, change can occur, and selection favors some systems

over others. Furthermore, Minai et al. have stated [79]: “Every engineered system is a tool

made to serve the ends of its user.” This is a basic requirement of engineering. Engineered

systems are intentionally designed and fabricated, and they are usually useful. Complex

systems include people not only as designers, but also as part of the system (e.g., operations

and maintenance). Minai et al.’s work sheds light on the current state of CSE. They

recognize the need to enhance the engineering methods of complex systems.

Many scientists are actively pursuing the study of complex phenomena through

their observations and hypotheses. Because of significant improvements in computational

technologies, scientists and engineers create computational models known as agent-based

models in simulated worlds that encompass both biology and technology [46], [80]. In

2007, Miller and Page [46] studied complex adaptive social systems using computational

models to explore general mechanisms underlying some complex phenomena in nature.

In 2009, Mitchell [81] presented several thoughtful ideas. She has stated [81]:

“Neither a single science of complexity nor a single complexity theory exists yet.” This

raises an interesting issue in complexity. A theory of complexity needs mathematics that

describes complex phenomena and it needs observations and testable hypotheses to explain

those observations. A viable theory of complexity (which does not exist yet) would

describe and explain such complex phenomena as chaos, order, nonlinearity, criticality,

39

self-organization, emergence, and aperiodic (but nonrandom) behavior. Mitchell defined a

complex system as a large network of components that exhibit nontrivial emergent and

complex collective behaviors [81]. Her work refers to nonlinearity, connectedness,

interdependence, and adaptivity [81]. These characteristics are part of the building blocks

of complexity.

Learning some key concepts and methods of complexity science is useful to derive

some measures of complexity for this research. As showed in Table 1, we provide a

summary of key concepts of complexity science.

Table 1. Key concepts of complexity science

Concept Example

Adaptability Engineers have developed adaptive equalizers
or echo cancelers in high-speed data modems.

Self-organization Software developers have created a mobile
game system that can automatically network
with nearby game systems to perform a multi-
player experience.

Emergence A face-recognition system processes many
discrete pixels and produces a recognizable
image.

Attractors (degree
of predictability)

Scientists and systems engineers apply the
butterfly wing patterns in models of pattern
formation for studying nonlinear and complex
systems.

Chaos Scientists have observed chaos in
semiconductors and electronic circuits.

Nonlinearity In AM radio, listeners sometimes experience
electronic distortion such as clipping and
crossover distortion.

Networks Airlines route their air traffic through one
central or multiple hubs.

Power laws The World Wide Web is resilient to random
failures.

40

As time progresses, more and more engineered systems will be complex systems,

and new tools and techniques for their design, development, and use will need to be

developed. Complexity science is moving forward and progress has been made. Available

tools and techniques for analyzing complex systems appear in Table 2.

Table 2. Tools and techniques for analyzing complex systems

Tool Set Purpose

Agent-based
Models

• Provide insights about stability characteristics,
including rules and constraints of the system.

• Show conditions for unstable or dangerous
traits of the system.

Network Analyses • Identify normal (stable) and abnormal
(unstable) networks.

• Identify network patterns to make predictions
of behaviors in networks.

Data Mining • Finds outliers in data sets that do not fit
expected patterns.

Scenario Modeling • Reflects key dynamics and conditions of
systems in some simulated scenarios.

• Provides insights into how the systems respond
by varying conditions the systems face.
Results are helpful for making strategic
decisions.

Sensitivity
Analysis

• Calculates the ranges of parameters which the
system does and does not work.

Dynamical
Systems Modeling

• Makes predictions of future behaviors in a
system.

• Simulates the results of alternative system
interventions.

In sum, complexity science is an interdisciplinary field of research that tries to

interpret biological and physiological worlds that exhibit capacities of self-organization

and adaptation via learning or evolution [81]. This research attempts to refine methods of

complexity science.

41

The world has always been viewed by observers as complex, but questions linger

as to what to do with complexity, and how to interpret and measure it. The next section

presents previous work concerning several quantitative and qualitative measures of

complexity.

C. PREVIOUS WORK

Many scientists and engineers have attempted to develop measures of complexity

because complexity has caused project failures, cost overruns, and schedule delays [3].

This section identifies recent developments in measures of complexity of engineered

systems and engineering projects.

Through a review of the literature, we find four main types of complexity in

engineering projects [14], [81]–[83] represented as follows: (1) structural complexity, (2)

organizational complexity, (3) temporal complexity, and (4) technological complexity.

Structural complexity is measured by the number of elements involved in the

project and the dependence of these elements relative to each other [82], [84], [85]. It is

used for risk assessment in terms of product quality control [84], [85]. It is characterized

by the project properties and project interfaces (described either as linear or nonlinear

relationships) between each of the organizational units [82], [85]. Project properties contain

size of scope, cost of the project, project duration, project team size, and the number of

requirements. Project interfaces include defect density and personnel required for the

engineering project.

Organizational complexity indicates connectedness and interdependence among

organizational units during the system engineering processes [14], [84], [85]. It denotes a

measure of the patterns of communication among organizations in terms of their frequency

and importance and a measure of geographical distribution of teams [84], [85].

Temporal complexity refers to the uncertainties caused by the changes in the project

properties and project interfaces over the course of the project [85], [86]. It is interpreted

as a measure of requirements volatility [84]–[86].

42

Technological complexity relates to the integration of technology in the

transformation processes that convert inputs to outputs [14], [86]. It refers to both the

variety of some aspect of a task and the interdependency between tasks and between teams

[14], [85]–[87]. Elements that contribute to technological complexity include the number

of operators, the type of technical expertise, and the type of skilled staff needed [14], [86].

Hence, technological complexity is defined as a measure of the number of different types

of job positions [14], [85], [86].

Using the definition of complexity from Chapter I, we have three aspects of

complexity described as follows: (1) the degree of difficulty in describing, understanding,

verifying, managing, designing, and changing interdependencies of a system, (2) the degree

of difficulty in accurately predicting emergent behavior of a system, and (3) the degree of

difficulty in explaining emergent behavior of a system. We can apply these aspects to the

four main types of complexity to measure complexity in engineering projects.

In general, structural complexity, organizational complexity, temporal complexity,

and technological complexity are correlated with one another [85]–[88]. In other words, as

the structural complexity increases, the organizational complexity also increases [88], [89].

Let us discuss each of the four types of complexity.

1. Structural Complexity

In general, a system is structurally complex if the interactions between components

within the system are difficult to describe or understand. We know that system architecture,

software architecture, and software size are project elements that can contribute to

structural complexity [17]. Structural complexity metrics are based on the concepts of

entropy and logical depth [90]. Through a review of the literature, we find that several

researchers have different ways of measuring structural complexity.

In [90], Lloyd’s view of structural complexity is the difficulty in describing things.

He describes structural complexity as the amount of information required in an event to

describe a system [90]. Lloyd’s measurement approach of structural complexity uses the

Shannon entropy [91] method which computes the average amount of information of an

event necessary to describe the system. Shannon’s entropy method measures how much

43

information is contained in the output of a process and is typically measured in bits.

Information refers to anything that can answer a question (e.g., digits, text strings, number

and type of pathogens in the body, or available food supply around an ant colony). The

Shannon entropy measurement method is useful in evaluating the design complexity of any

digital signal processing system. In general, for actual systems with many different types

of parts, entropy is difficult to calculate because the dynamic range of outcomes (a degree

of disorder) may be enormous, and outcomes may be unpredictable. Nevertheless, Lloyd

and Gell-Mann applied the Shannon entropy method for measuring structural complexity

within the manufacturing process [92]. Similarly, Arteta and Giachetti used Shannon’s

entropy method for measuring the complexity of business processes [93].

In [94], Kolmogorov proposes an algorithmic complexity measurement based on

the size of the smallest computer program that could form a full description of a picture

without degradation from noise. In other words, the complexity of how information flows

in the system reflects the system’s structural complexity. This process is measured in bits.

For example, a program that generates a string “MYBIGSTAR” has more algorithmic

information-content than the one that generates the string “AAAAAAAA.” This

measurement approach might apply in medical imaging, acoustic processing, and bio-

informatics. However, for large complex systems like a Boeing 787 jetliner, it is not

practical to determine its algorithmic information-content because of the enormous amount

of information and computation needed to generate the Boeing 787 data model.

In [29], Harney proposes that both an “indentured parts count,” commonly called a

“bill of materials” [95], and a function count for a system can be ways to measure structural

complexity. The bill of materials can be used to measure complexity as a function of the

numbers of item types, quantities, indenture levels, and unique part numbers. The list may

be useful in determining the structural complexity of past systems, allowing comparisons

between programs and the outcomes of various SE tools. A system function count is

directly analogous to the method of function point count in software [96]–[98]. First,

software engineers analyze and determine the system’s functions. After counting each type

of function, they can determine an overall system function count by a weighted sum. Since

functions are determined relatively early in a design, this might provide early guidance

44

concerning both the degree of complexity and the actions necessary to accommodate that

complexity.

However, there are some drawbacks to these two approaches. For example, the

biggest difficulty in measuring a bill of materials is that, because parts lists are not available

early in the development process, they are unlikely to be a guide to predicting and solving

problems. Furthermore, part count only measures numerosity, and it does not consider

diversity, interdependence and other factors that can affect complexity. Similarly, a system

function count requires sufficient system definitions to develop system functions. It

requires considerable study of prior program efforts and mature requirements to guide that

determination.

In [99], Sinha proposes a quantitative structural complexity metric using the

following three primary sources of complexity: (1) the complexities of each component,

(2) the complexities of each pairwise interaction, and (3) the effect of architecture or the

arrangement of the interfaces. To capture the interaction among system components, Sinha

proposes the topology complexity metric based on the functional form of the electron

energy of an organic molecular system. This metric helps to characterize different types of

architectures, and is tractable throughout the system development phase. One advantage of

this bottom-up approach is that it can provide complexity estimation of novel components

and interfaces where data may not available. One drawback of this approach is that it relies

on expert opinion for estimation of component and interface complexities. Another

drawback is the lack of a reasonable size of data from real world engineered systems for

empirical validation of theoretical predictions. However, this structural complexity

estimation method can apply to multiple engineered systems ranging from simple power

drills to car engines.

In regard to project complexity, Williams [83] defines structural complexity as the

degree of effects on the tasks that is based on the number of elements involved in the project

(i.e., the number of hierarchical levels of management, number of organizational units,

division of tasks, etc.) and the interdependence (i.e., management interactions and technical

interfaces) of these elements relative to each other. He also claims that uncertainty in goals

and methods contributes to project complexity due to difficulty in specifying user

45

requirements and the possibility of change of user requirements after the initial prototypes.

We will further review this topic in the project complexity section of this chapter.

According to Simon [100], complex systems are often structured hierarchically

with more strong interactions occurring within, rather than between, subsystems. In other

words, Simon believes that each subsystem is independent of other subsystems. This idea

works like building blocks in that evolution produces complex entities by putting together

fewer complex entities. Simon’s observations do not reflect the degree of complexity of

functions within each component, nor the diversity of differing structures produced by the

successive hierarchical layers.

Gell-Mann et al. [92] suggest an effective complexity measure that involves a

process of finding regularity and randomness in objects. This approach is to quantify

complexity in terms of structure and information within a system. This measurement

method computes the amount of information required to depict the regularities of a system

[92]. Effective complexity is low for both extremely ordered and very random things [92].

Effective complexity might be useful when comparing two engineered systems to

determine if one system is inherently more complex than the other. In practice, though,

effective complexity is difficult to measure, and various observers may disagree on the

definition of a system’s regularity.

A summary of the work of these scholars appears in Table 3.

Table 3. Structural complexity measurements in engineered systems and
engineering projects.

Year Scholars Structural Complexity Metric

1962 Simon [100] Measure a system’s complexity by
the level of hierarchy.

1965 Kolmogorov
[94]

Measure algorithmic complexity by
bits that represent the content of
information of a system.

1996 Gell-Mann et al.
[92]

Measure complexity by the
structure of a system.

46

Year Scholars Structural Complexity Metric

1999 Williams [83] Measure project complexity by “the
number of elements and the
interdependence between these
elements” in the project.

2001 Lloyd [90] Measure complexity by bits that
represent the order and disorder of
information of the system.

2014 Sinha [99] Measure the level of complexity
based on three sources of
complexity: (1) the complexities of
each component, (2) the
complexities of each pairwise
interaction, and (3) the arrangement
of the interfaces.

2017 Harney [29] Measure systems complexities
based on a bill of materials and a
system function count.

2. Organizational Complexity

Organizational structure often mirrors the system’s architecture (called Conway’s

law [87]). For example, in a system’s architecture, we may have systems, subsystems,

units, assemblies, subassemblies, and components. This system’s architecture mirrors the

hierarchical structure of a typical organizational structure (i.e., divisions, departments,

branches, sections, teams, and individuals). In general, more hierarchy in the organization

will lead to structure that is more hierarchical in a system. In short, organizational

complexity is simply structural complexity applied to organizations as the system-of-

interest (SOI).

Lloyd defines organizational complexity as the degree of difficulty of describing

organizational structure (e.g., a corporation, a division of a company, etc.) and the amount

of information sharing within an organization [90]. Measurements include schema length,

hierarchical complexity, functional network complexity, effective complexity, stochastic

complexity, channel capacity, correlation, and stored information [90]. For example, a

47

hierarchical complexity measurement indicates the degree of complexity in the vertical and

horizontal structure of an organization (e.g., an organization may have divisions,

departments, and branches, and each branch may have several locations and buildings).

Baccarini [14] describes organizational complexity as the engagement of a

temporary multi-organizational structure to manage a project. He refers to organizational

complexity as the level of impacts on the project that is based on the number of project

elements (e.g., stakeholders, engineering disciplines, number of employees, business

processes, organizational units, and project size) and the relationships (e.g., the number of

management and technical interfaces) between these elements [14]. Furthermore, several

authors including Giachetti [28], McCann and Ferry [101] as well as Victor and Blackburn

[102] have proposed that the interdependent relationships between organizations and

business processes can contribute to organizational complexity. Lee and Xia [85] claim

that organizational complexity is a result of changes in the hierarchy of organizations,

information systems used by the organizations, and business processes. Lee and Xia

propose a framework that includes an organizational complexity measurement for

assessing information system development projects. Lee and Xia believe that a project

environmental conditions (market, social, political, and regulatory conditions) contribute

to project complexity [85].

Table 4 shows a summary of the work of these authors.

Table 4. Organizational complexity measurements in engineered systems
and engineering projects.

Year Authors Organizational Complexity Metric

1979 McCann and
Ferry [101]

Measure inter-organizational relations
based on a conceptual model.

1987 Victor and
Blackburn
[102]

Measure the levels of interdependence
between work units based on a
framework of “alternative
conceptualization.”

1996 Baccarini
[14]

Measure project complexity based on
project size and the interdependence of
organizational units.

48

Year Authors Organizational Complexity Metric

2001 Lloyd [90] Measure organizational complexity in
terms of the degree of organization
based on the vertical and horizontal
structure of an organization and the
amount of information sharing within
an organization.

2002 Lee and
Xia [85]

Measure project complexity based on
“changes in user information needs,
business processes, and organizational
structures.”

2006 Giachetti
[28]

Measure interdependence in enterprise
systems based on patterns of workflow
and frequency, importance, and delay of
the flow of information.

3. Temporal Complexity

A system has temporal complexity if its behaviors are difficult to describe and

predict effectively [85], [86]. Furthermore, temporal complexity reflects the level of

impacts on the project due to requirements volatility that is caused by the external

environment (i.e., environmental regulations, market conditions, political and institutional

complexities, funding mechanisms, and technical issues) [84].

Lloyd and Pagels [103] propose a complexity measurement based on

thermodynamic depth. This approach suggests that engineers quantify complexity in terms

of randomness within a system. This measurement method calculates how many bits of

information of the resources are required to describe the particular trajectories leading to

the current state [103]. In other words, systems that are more complex are harder to build

[103]. For example, when studying a particular organism, a scientist starts with the simplest

possible organism, and then determines all the genetic events (mutations, gene doublings,

gene modifications, rearrangements, etc.) that lead to the current state of an organism under

study [103]. The more events required, the more complex the organism [103]. In practice,

this measurement method of randomness within a system is very difficult to apply to

natural objects because it is not clear how natural objects evolve to the current state.

49

Nevertheless, this measurement method appears similar to the Shannon entropy method

proposed by Gell-Mann and Lloyd for measuring structural complexity [92].

Wolfram [11] categorizes the following four basic kinds of behavior in a system:

(1) equilibrium (i.e., static or simple oscillation), (2) complexity (i.e., aperiodic oscillation),

(3) chaos (i.e., unpredictable and aperiodic oscillation with no apparent order), and (4)

randomness (i.e., noisy oscillation because of random inputs). Pictures of these four types

of behavior appear in Figure 4. From Wolfram’s perspective, complexity comprises

everything that is not static, cyclic, or random [11]. Wolfram’s characterization of these

four types of dynamic behavior correlates to the temporal complexity of a system. Based

on the understanding of these behaviors in systems, systems engineers have learned to

describe temporal complexity in terms of the volatility and predictability of the behaviors

of a system.

Figure 4. Examples of Wolfram’s four types of dynamic behavior.

Adapted from [11].

In [104], Perrow proposes a model to characterize complex systems such as air

traffic, chemical plants, dams, and nuclear power plants in terms of their risk. He states

that complex systems feature feedback loops and tightly coupled interactions between

system components [104]. As depicted in Figure 5, nuclear power plants have complex

50

interactions (i.e., interacting controls and feedback loops) that could result in unexpected

behavior. The system also has tight couplings among its components because delays in

controls are not possible and the order of operations is complex. Perrow’s depiction of

tightly coupled interactions between system components reflects that temporal complexity

is associated with both the interactions and the coupling of the system components. In

addition, Perrow observes that complex systems have catastrophic potential [104] such as

a nuclear reactor burning out of control causing a nuclear meltdown. Perrow’s model for

characterizing complex systems can direct an engineer’s focus to dynamic systems and

resource allocation in designing these systems—an important practical consideration.

Figure 5. A diagram depicting the relationship between interactions

and coupling for engineered systems. Adapted from [104].

In [105], Lopez-Ruiz et al. propose a complexity measurement based on a statistical

description of systems known as statistical complexity to capture structure, organization,

patterns, regularities, and symmetries in systems. This approach is to quantify complexity

in term of randomness within a system. Systems are essentially message sources. For

example, for a system whose message is “repeat 1 2,” statistical complexity is low. On the

other hand, for a system whose message is “choose at random from X, W, J, or S,”

statistical complexity is high. Statistical complexity is not easy to measure because it

51

requires interpretation of the system as a message source. In general, this measurement

method is very difficult to apply. To apply this measurement in an engineered system, a

systems engineer constructs the simplest possible model that represents the behavior of the

system [81]. The amount of information required in an event to describe the behaviors of

the simplest model is the measure of statistical complexity. Some scientists use this

measurement approach to research crystals’ atomic structure and neuron firing patterns

[81].

Remington and Pollack [84] propose temporal complexity as the volatility or

disruption caused by the external environment (market dynamics, social and political

challenges, uncertainty in environmental regulations, and technical issues) during the

course of the project. Consequently, this type of temporal complexity could affect project

outcomes.

A summary of the research of these researchers appears in Table 5. It seems like

some of these researchers characterize randomness as complexity and some researchers

characterize randomness as not complexity. One characteristic of randomness is that there

is no correlation between one sample and the next. Random behaviors of a system can be

generated by either random noise processes produced internally or random external

influences on system elements. The random external influence can be measured or known,

and, therefore, the behavior of the system is predictable. Hence, random behavior is not

complex. On the other hand, a complex system, by definition from Chapter I, may exhibit

emergent, nonlinear, non-deterministic and/or chaotic behavior, and, thus, the dynamic

behavior of a complex system can be either random or not random. In short, temporal

complexity can be measured either based on the randomness within a system or the strength

of coupled interactions between system components.

52

Table 5. Temporal complexity measures in engineered systems and
engineering projects.

Year Researchers Temporal Complexity Metric

1988 Lloyd and
Pagels [103]

Measure temporal complexity by
calculating how many bits of
information of the resources are
required to describe the particular
trajectories leading to the current state
(i.e., randomness within a system).

1995 Lopez-Ruiz
et al. [105]

Measure temporal complexity based
on the randomness within a system
(statistical complexity).

1999 Perrow [104] Measure temporal complexity by the
strength of coupled interactions
between system components.

2002 Wolfram
[11]

Measure temporal complexity based
on everything that is not static, cyclic,
or random.

2008 Remington
and Pollack
[84]

Measure temporal complexity in terms
of external complexities associated
with market volatility, funding
mechanisms, and political and
institutional complexities.

4. Technological Complexity

Technological complexity refers to the level of difficulty related to the conversion

processes that transform inputs into outputs [14], [86]. For example, a drone control system

has a sophisticated algorithm that analyzes and converts video signals to electrical signals

in order to control the drone. The algorithm that performs the geo-location mapping as well

as the transformation process of analog signals (videos) to digital signals (digitized

electrical signals) is complex. To a certain extent, technological complexity can be

described as the difficulty in creation of things [90]. It represents the level of difficulty

concerning the transformation processes in engineered systems [90]. Lloyd proposes

53

complexity measurement in terms of time, energy, and/or dollars [90]. Lloyd’s

measurements include the following [90]:

• The amount of simulation (cost) involved to produce a prototype of a design.

• The length of a series of events (time) that leads to the system created.

• The least amount of information from a system’s past behavior that is required

to predict its future behavior.

This approach is useful in evaluating the speed of a particular algorithm in solving

problems that involve searching, optimization, counting, and decision-making. An

example of this measurement approach is the Google search-ranking algorithm [106],

[107], which sorts through many webpages in a search index in a fraction of a second to

find the most relevant and most useful results for what the user is looking for. The Google

search-ranking algorithm uses all incoming links and checks the relevancy of the source

websites so it can calculate a value for each link [106], [107]. The complexity of the ranking

algorithm is that it has to process a large amount of data, and the processing mechanisms

are constantly updated because of the dynamic nature of the World Wide Web [106].

Another example of applying this measurement approach is the particle-swarm

optimization algorithm [108], [109], which solves a system optimization problem that is

adaptive and emergent. A software engineer measures the amount of time it takes for the

particle-swarm optimization algorithm to solve the multi-dimensional problem. This is a

critical measurement for systems that process real-time data. In practice, this measurement

approach is very difficult to apply to man-made systems whose evolution is unclear.

Bennett [110] proposes a complexity measure that computes the system’s logical

depth. Logical depth refers to the amount of computation or simulation time involved in

producing a prototype of a design [110]. In other words, an object’s logical depth is a

measure of how difficult that object is to make [110]. A logical depth of an algorithm is a

minimum size necessary for recreating a given piece of information [110]. To a certain

extent, technological complexity can be interpreted as a logical depth of an algorithm. For

example, one could conceptually use a Turing machine (i.e., a mathematical model of

computation) and a software program to perform a computation [110]. The time required

54

for the optimum Turing machine to create the object is a measure of the complexity [110].

However, it is impossible to determine which Turing machine would be optimal, or how

long it would take to run. In general, logically deep objects and algorithms take longer to

compute, construct and run than to calculate, build and execute simple, flat structures of

objects and algorithms [110]. In a man-made system that generates a design of any natural

object of interest, this proposed measure of complexity is impractical. For example, a

system that generates a design of a tree and its fruit yield would be difficult because of the

importance of variables such as water supply and climate conditions.

Baccarini [14] describes technological complexity as the level of complexity in

transforming inputs to outputs. According to Baccarini [14], elements of technological

complexity include the characteristics of the project; the level of knowledge required for

planning, executing, and managing the project; and the operational requirements [14]. For

instance, for an engineering project that designs a computer chip, elements of technological

complexity include the number of employees required for the project, the location of the

project, the type of skill set needed, and the knowledge required to design computer chips

[14].

Table 6 presents a summary of the work of these authors.

Table 6. Technological complexity measures in engineered systems and
engineering projects.

Year Authors Technological Complexity Metric

1988 Bennett
[110]

Measure technological complexity by
the amount of computation or
simulation time involved in producing
a prototype of a design.

1996 Baccarini
[14]

Measure technological complexity by
“the number of operators required,
location of the project, type of work
skills needed, and type of technical
expertise required.”

2001 Lloyd
[90]

Measure technological complexity
based on time, energy, and/or dollars.

55

In summary, previous studies of complexity in systems design and development

explained in this section suggest that there are many researchers who have presented many

different possibilities for measuring complexities. This great quantity of complexity

measures is reinforced by the number of pages it took to explain all of it. The list of

complexity measurements in the four types of complexity may be insufficient and

incomplete because complexity is multi-dimensional (e.g., complexity in the environment,

in the system, in the design of the system as well as in the engineering of the system) and

not precisely prescribed by a specific theory of complexity. Some measurements of

complexity in engineered systems are difficult to perform because the measurement

requires interpretation of the system as a message source and various observers also may

disagree on the definition of depicting a system’s regularity (e.g., statistical complexity and

effective complexity). Some measures of complexity are impractical to use in actual

systems, or may have major flaws because of the enormous amount of information and

computation needed to generate a data model (e.g., algorithmic complexity). These limits

open up the opportunity for this dissertation to develop practical measures of complexity.

For instance, numerous studies on software complexity focus on the size of the code,

control flow, data flow, the size of the project team, the number of interdependent

programming tasks as well as other software metrics. This research can extend the

complexity measurement to include requirements volatility and defect density as well as

geographical distribution of project teams, and create a complexity profile for project risk

assessment. In the next section, we review some measures of complexity in the literature

related to nonlinearity, non-equilibrium, numerosity, connectedness, interdependence,

diversity, and adaptivity.

5. Seven Building Blocks of Complexity

Both Page and Miller [13], [46] conclude that complexity arises in the “Interest in

Between.” “Interest in Between” refers to the spaces between simple and strategic

behaviors. These spaces lie between what engineers already know and engineers need to

know. Page observes that a certain mix of values for attributes (nonlinearity, non-

equilibrium character, numerosity, connectedness, interdependence, diversity, and

adaptivity) may lead to complexity [13]. A different mix may lead to a different kind of

56

system [13]. This is an important observation because models that study complex systems

need to account for the “Interest in Between” phenomenon. When a system bears none of

the Page’s seven attributes of complexity, it is essentially in an inert state, and complex

behavior is not possible. Furthermore, it seems that no single source but rather a

combination of the seven attributes appears to increase complexity. This realization is

important to this research because of the need for assessing the risk of a complex project.

Let us review the complexity measures related to the seven building blocks of complexity.

(1) Nonlinearity

As described in Chapter I, nonlinearity is a necessary condition for complexity [29].

Nonlinear system behaviors are complex. We explained in Chapter I the “bullwhip” effect

[39] in which we have unproportioned fluctuations of orders in the supply chain. This

phenomenon illustrates one example of how a nonlinear system behavior is indicative of a

complex system. In [111], Allgöwer proposes a nonlinearity measure based on two

approaches. One approach is to calculate the lower bound of Fourier coefficients of the

system’s output. The second approach is a numerical computation of the nonlinearity

measure (a nonlinear function describing the behaviors of a system) using convex

optimization. Both approaches are difficult to apply to man-made systems.

By analogy, in the complex forms of nature, multimodality provides for rugged

landscapes and numerous possible bifurcations [112]. Hence, a systems engineer might be

able to measure nonlinearity that matters to complexity in an engineered system by

estimating the multimodality of a nonlinear function. An approach to estimating

multimodality is to use the maximum exponent in a power series expansion of the nonlinear

function that describes the behaviors of the system [29]. However, when coefficients in a

power series expansion become sufficiently small, one might terminate the expansion.

Unfortunately, determining multimodality of an arbitrary function does not appear to

always yield useful solutions. As a possible alternative, a qualitative approach using

descriptive analysis and subject-matter experts’ experience to rate the complexity level of

the parts’ behavior may be a reasonable method to measure nonlinearity. Systems engineers

57

can analyze the behaviors of the parts to predict the system’s behavior. Nevertheless,

measurement of nonlinearity is still an active area of research.

(2) Non-equilibrium

As stated in Chapter I, a non-equilibrium system is a system that dissipates energy

persistently regardless the amount of energy supplied from the external systems. As

discussed in Chapter I, Chaisson’s work [19] shows that as a system increases in the flow

of energy, the more capability that system has to reduce entropy, and thus, the more

complex is the system. Intuitively, the flow of information links to the dynamics of the

system, and dynamics are related to either information processing, work performed, or the

flow of energy.

In [35], Clark and Jacques propose that one possible way to determine complexity

in dynamic systems is to observe changes in kinetic energy. This measurement allows

systems engineers to understand system risks and analyze the dynamics of the system that

might be the cause of the failure of the system [35]. This work is still in its infancy and

requires further study.

In engineering projects, several authors have measured the flow of information of

a system [113], [114], [115], or the flow of information of the business processes [92].

However, some of these measurements require production schedules (e.g., orders and

deliveries) and supply chain delivery schedules, and therefore are not practical to

implement in the early stages of a project. In short, measurement of non-equilibrium is still

an active area of research.

(3) Numerosity

In Chapter I, we discussed numerosity in some detail as it related to size measures

and the number of observable behaviors in a system. For example, an F-35 fighter jet

contains many systems and subsystems. The interactions of systems and subsystems can

produce emergent behaviors. Thus, numerosity appears to be a necessary condition for

complexity. Meyer et al. [116] present a simple way to calculate numerosity in a system

by multiplying together the number of parts (Np), the number of types of parts (Nt), and the

58

number of interfaces of each of the parts (Ni) and then taking the cube root of the product

as shown in Equation 2.1.

 Numerosity = �(𝑁𝑁𝑁𝑁)(𝑁𝑁𝑁𝑁)(𝑁𝑁𝑁𝑁)3 (2.1)

This method of measuring numerosity requires a complete model (down to the level

of individual parts) of a system. Furthermore, this method assumes that all three factors

(the part, the type of parts, and the interface of the part) contribute equally to the level of

complexity in a system, which is not always the case in actual systems.

In [24], Valerdi proposes a COSYSMO model to estimate “the time and effort

associated with accomplishing the system engineering tasks” in large-scale systems.

Valerdi found various parametric drivers that could affect the cost of a project [24]. The

effort and duration of a project required for the completion of project tasks are often

expressed in terms of person-month. COSYSMO’s size drivers of systems engineering are

the number of requirements, use cases, interfaces, and algorithms that are applicable to

systems containing both hardware and software [24]. Table 7 presents the sources of

information for the four size drivers of systems engineering in COSYSMO.

Table 7. Size drivers of systems engineering and corresponding sources.
Adapted from [24].

Size Driver of Systems Engineering Source

1) Number of system requirements Counted from the document of system
requirements specification

2) Number of major interface Counted from the interface control
document

3) Number of critical algorithm Counted from system requirements
specification or system design description
document

4) Number of operational scenarios Counted from use cases or test cases

59

Early in the system development life cycle, these sources of size drivers may not

be available yet. As an alternative, program managers can obtain or derive data for these

size drivers from previous acquisition programs. From the SE perspective, the functional

size of a system is estimated by the weighted sum of these drivers [24]. Table 8 presents

the relative weights for each level of size drivers. These weights are based on a survey data

from systems engineering experts in various application domains. For instance, as shown

in Table 8, a “difficult” system requirement has a relative weight of 5hereas, a “nominal”

operational scenario has a relative weight of 22.8.

Table 8. Relative weights for size drivers of systems engineering based on a
survey data from experts in the field. Source: [24].

Size Driver of Systems
Engineering

Easy Nominal Difficult

1) System Requirement 0.5 1 5

2) Major Interfaces 1.7 4.3 9.8

3) Critical Algorithms 3.4 6.5 18.2

4) Operational Scenario 9.8 22.8 47.4

Factors such as complexity, volatility, and reuse can be used to adjust the size

drivers as shown in Table 8 [24]. However, Valerdi [24] only chooses complexity to

characterize the size drivers of systems engineering and uses a 6-level scale (very low, low,

nominal, high, very high, and extra high), as shown in Table 9.

60

Table 9. Rating values for cost drivers of systems engineering. Source: [24].

COSYSMO [24] provides an estimation of the functional size of a system in terms

of the number of person-month necessary to develop the SoI. In general, we need more

personnel to develop large systems [24]. Equation (2.2) shows the mathematical form of

the COSYSMO model [24].

 𝑃𝑃𝑃𝑃 = (𝐴𝐴)(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝐸𝐸(∏ 𝐸𝐸𝐸𝐸𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (2.2)

PM denotes effort “in person-month” [24] for a formal schedule. “A denotes a

calibration constant” calculated by “historical project data; a typical value is 0.325 for a

software development project” [24]. “Size denotes the summation of the weighted four size

drivers” [24]. E denotes efficiency factor “where the default is 1 and n denotes the number

of cost drivers. EMi denotes effort weight factor for the ith cost driver where the nominal

value is 1” [24].

In estimation of the cost of software, “lines of code (LOC), function points (FP),

and application points (AP)” are common measures of size of the software [24]. The

COSYSMO have “adjustment factors to estimate the size of software for different

61

languages running on different platforms.” Nevertheless, some limitations of COSYSMO

include the following [24]:

• The range of operation of COSYSMO is for application domains in the

military/defense and space systems fields because the model was validated

mostly from defense and space industry data.

• COSYSMO ignores the effects of volatility and reusability in size drivers.

• COSYSMO lacks rules and standards regarding the counting of

requirements.

• COSYSMO does not include the effect of systems engineering

organizations on systems engineering efforts.

Despite these limitations, COSYSMO identifies “size and cost drivers” for SE

projects, which can serve as a risk management tool for SE organizations [24]. Ultimately,

after performing COSYSMO estimation, program managers need to go through a common-

sense test to determine whether the system warrants the size and cost of systems

engineering.

(4) Connectedness

In engineered systems, we measure connectedness by counting the number of

interactions between systems. The types of interactions include the exchange of energy,

information, money, and material. In general, as the number of links (e.g., dependences,

relationships) in a network increases, the connectedness of the system increases, and at the

same time, so does the complexity of the system [117].

In engineered systems, we measure connectedness by calculating the number of

entities with which an entity can directly connect or interact. Entities include systems,

people, computers, and machines. Entities may be connected in physical, informational,

geographical, and/or virtual environments. Two connected entities may, or may not,

interact directly. They may exchange information via networks.

62

In [118], Bailey et al. propose an index measure of social connectedness based on

the relative frequency of friendship connections (e.g., patterns of relationships) in large

social networks (i.e., Facebook, LinkedIn). This study shows that the geographic distance

contributes a decrease to the intensity of friendship connections [118] (e.g., the Allen curve

[119] phenomenon). It also demonstrates that “social interaction correlates with social and

economic activity across regions” [118] (e.g., engagements and interactions between

people to exchange information or money in a clustered network).

In addition, Greenwood-Nimmo et al. [120] develop a technique to measure

macroeconomic connectedness by studying financial connectedness in a global financial

system. This technique relies on the topology structure of clustered networks in global

systems to identify and analyze systemic risk, which, in turn, can be used as a risk

mitigation tool for global financial systems. Both Bailey et al. [118] and Greenwood-

Nimmo et al. [120] identify and analyze the number of observable behaviors (i.e., patterns),

which is an indirect measure of connectedness in a clustered network.

From a systems engineering perspective, modern engineered systems often have

internal networks that connect components and external networks that connect the system

to other systems. Information processing supports connectedness by facilitating many

possible implementations of networks.

(5) Interdependence

Interdependence emerges due to the flow of processes [28]. In engineered systems,

interdependence is the influence of the behavior of one entity upon the behavior of another,

and vice versa [28]. Interdependence can occur when entities are connected either in

physical, informational, and/or virtual environments. Information processing supports

interdependence because any message sent from one node to another requires transmission,

reception, and subsequent action for any dependence to occur [28]. In systems engineering,

interdependence is an informational, control, or resource relationship such that one

organizational unit depends on another organizational unit [27].

Danziger et al. [121] describe interdependence as the interactions between networks

via connectivity and dependency links in the context of critical infrastructure. When links

63

connect nodes within the same network, we have connectivity in the network [121].

Danziger et al. state: “Links that depend on other links require support from another

network” [121]. Although the dependent node is connected to its own network, “the

dependent node will fail if the supporting node fails” [121]. When two networks support

each other for connectivity, we call these two networks interdependent networks [121].

Amaral et al. [122] propose an interrelatedness measurement between the different

parts or sectors of an economy. This measure reflects two aspects of complexity [122]: (1)

every part of a system has connections to other parts of the system (i.e., more connections

would increase complexity); (2) the behavior of each part of the system in relation to both

the internal connections among the elements of that part and external connections with

other parts of the system.

In [123], Domercant et al. propose a complexity measure of military SoS

architecture by capturing three aspects of system complexity: (1) “the distribution of

functionality among constituent systems within the architecture,” (2) the interfaces that

connect these systems, and (3) “the coordination of numerous functions to fulfill a

capability.” In essence, Domercant et al. propose a complexity measure of SoS architecture

that captures the degree of interdependence among functions, tasks, and activities as well

as the flow of information and data through the interfaces.

In an enterprise system, interdependence is the degree to which one unit’s actions

control or influence another unit’s actions and outcomes, and vice versa [28]. In [28],

Giachetti proposes a model to characterize the strength of interdependence between the

subsystems of an enterprise. He views interdependence as occurring between tasks and

exhibiting asymmetric relationship (e.g., task A can be dependent on task B but the reverse

may not be true) [28]. Giachetti’s model captures the attributes of workflows in an

organizational structure and measures these attributes based on frequency, importance, and

delay [28]. Based on Giachetti’s interdependence definition in an enterprise system [28], it

appears that one way to measure interdependence is to develop a network model using

organizational units as nodes and the frequency and the level of importance of the flow of

information between each organizational unit as links to measure interdependence.

64

(6) Diversity

A system’s diversity stems from the number of different types of elements it

comprises. Systems engineers might observe that diversity has several relationships with

complexity. First, diversity in types is often associated with complexity. Second, diversity

in compositions is also often associated with complexity. Third, variation within a type

seldom results in complexity because differences in a type are describable by a numerical

value. Diversity of type and variation within a type as described by the law of requisite

variety [124] generally improve robustness, which is the ability to maintain functionality

despite a disturbance. For example, if a system has a number of different types of system

software, then the system has more functions available to exploit for responding to a

disturbance. If a system can support a number of different screen sizes, then the system

likely finds one that will fit certain devices to support a number of users. Hence, diversity

usually improves performance and generally increases behavior [29]. Furthermore,

complex systems tend to have diversity [29].

However, it is possible to have too much diversity. For instance, if a system has

200 different kinds of parts, then there are about 20,000 possible ways to combine two

parts into a single part for reducing the number of parts in a system. If a system has different

entities, then each entity in the system has more ways to change. If different kinds of

entities present, then they have more ways to combine.

In [125], Broekel suggests that the complexity of technologies can be measured by

the diversity of components within the network structure of a system. He defines

technologies as combinations of components connected in various types of network

topologies [125]. From his technology complexity study, Broekel [125] concluded that as

“the range of functions” of a system increase over time, technologies become more

complex. In addition, Broekel [125] also concluded that complexity of technologies are

associated with “large research and development (R&D) efforts and intensive collaborative

R&D activities.” Broekel’s model [125] of complexity of technologies reflects

characteristics of both numerosity and diversity.

65

In Chapter I, we provided an example that different types of job positions in

interdependent organizational units are likely to foster differences in job assignments and

outcomes, and, therefore, increased complexity. We proposed modeling diversity by

mapping out different types of job positions of organizations involved in the project, and

then counting the total number of different position types. In general, a complex

engineering project has different types of organizational units. Each organizational unit

generally has different types of job positions to perform some tasks. This approach of

modeling diversity reflects both the variation and attribute measurements.

(7) Adaptivity

Adaptivity refers to a system’s ability to change to accommodate the new

environment. It is a source of robustness. Complex adaptive systems (CAS) are systems

that continuously interact with their environment [126]. The interaction can be the transfer

of information, energy, or material into or out of the system boundary. CAS have a history

or memory as they evolve, and they show nonlinear behaviors. Examples of CAS are

virtual reality (VR) systems, augmented reality (AR) systems, and networks of “artificial

intelligence systems” [126].

In engineered systems, adaptation is relatively fast, and it requires computation

(information processing) [29]. However, in a natural world, evolution is the primary

mechanism for adaptation, which is not fast and does not require computation. Evolution

is a process of moderate change from a simpler state to a more complex state [29]. For

example, mountain ranges rise up and erode down gradually over time. In systems

engineering, we have systems that are made from technologies, and those technologies

evolve over time because humans direct this evolution (e.g., an F-18 fighter jet has better

technology than an F-14). Adaptivity is difficult to quantify because it potentially involves

every element of a system and every activity the system can perform. One possible way to

determine the adaptivity in a system is using a subjective scale similar to a Likert scale

[32]. Creating a subjective scale for relative rankings is not new in the scientific

community. This approach of measuring adaptivity has not been proven through validation

in empirical research studies.

66

Siddiqa et al. [127] review a form of complex adaptive networks called the Social

Internet of Things (SIoT) in which nodes are interconnected and act as intelligent agents.

These agents can accept changes and adapt to their environment for its survival. The idea

of adaptivity in the SIoT can possibly be measured by the degree of resiliency of network

connectivity and network traffic load. This approach of measuring adaptivity has not been

proven through validation in empirical research studies.

In [128], Tamersoy et al. define a requirements model for adaptive multi-

organizational systems based on non-functional requirements (i.e., goals, roles, and

organizations). The model of adaptivity relies on the dependencies between organizations

and between roles. Adaptive systems consist of multiple interacting organizations. Each

organization has multiple interacting roles, and each role has multiple goals. The degree of

adaptivity of a system is determined by the patterns of interacting organizations and roles.

Nevertheless, this approach of measuring adaptivity in a system serves as a proof of

concept. Though, more studies might be desirable.

In Chapter I, we discussed the architecture adaptability index (AAI) and the

software adaptability index (SAI) proposed by Subramanian and Chung [33] for measuring

software adaptivity. Both adaptivity indexes appear evolvable and scalable. For example,

in the beginning of a project, the project manager can calculate the SAI based on the

module architecture. At the end of the project, the project manager can measure the SAI

based on the final code. Hence, the project manager can verify that a certain software has

a certain adequate level of adaptivity. The drawbacks are that AAI and SAI are limited to

measure adaptivity for non-functional requirements, and software can only satisfy non-

functional requirements within acceptable limits. Nevertheless, Subramanian et al.’s

approach can serve as a good starting point for measuring adaptivity in software. In short,

it appears some research has been conducted on the application of CAS to engineering

systems.

In conclusion, nonlinearity, non-equilibrium, numerosity, connectedness, and

interdependence are characteristic of all systems. Diversity and adaptivity are the result of

complexity, and they are present in complex systems but not in ordinary systems. The

authors of [24], [116], [125] point out that most size measures do not appear directly related

67

to complexity. Instead, they may be better indicators of complicatedness. However,

because numerosity is a factor in complexity, size must play some role in the degree of

complexity [24], [125]. The combination of numerosity and diversity in a system appears

to increase complexity. In addition, several authors such as [28], [118], [120], [122] show

that the quantity of interactions is related to numerosity, connectedness, and

interdependence. The quantity of interactions potentially increases as the number of parts

increases and/or the number of connections between parts increases. Furthermore, as the

number of connections increases, interdependence increases [28], [122], [123]. However,

the quantity of interactions does not depend on the degree of diversity, and it ignores

adaptivity [29].

Research in methods to measure complexity will play a major role in developing

solutions to many complex engineered systems. There exists a gap between what is

available in the DOD systems acquisition programs today and the complexity measurement

models that could be used in the early phases of those military acquisition products [129]–

[131]. The goal of this dissertation is to narrow this gap. In the next two sections, we first

discuss software complexity measurement from previous works and then review the

literature on project complexity measurement. Finally, we identify some gaps in the

literature concerning complexity measurement and propose some ideas to address these

gaps. Ultimately, this dissertation aims to propose a complexity measurement model that

can assess project risk and aid the development team to reduce project complexity.

6. Software Complexity Measurement

Software complexity involves the structure and content of the software. Complexity

in software commonly contributes to software error. We measure the complexity of

software systems by software size, control flow, data flow, and other factors influenced by

the specific programming task and the experience of the programmer [132], [133]. In

general, the cost of software development and maintenance can be estimated by software

size and software complexity. To reduce and contain the software development cost and

software defects, software engineers and project managers must find relationships between

programming tasks (i.e., coding, troubleshooting, and unit testing or changing the

68

software), development time, and program maintenance [133]. Project managers and

software engineers use measures of software complexity for cost projection, labor

allocation, and program evaluation [133]. In general, software complexity measures have

two categories: design complexity and code complexity [132]. Software engineers assess

software design and code complexity from program size, program control flow (i.e., logic

structures in a program) and program data flow (i.e., data dependency among modules)

[132]. These measures are the physical activities in the software development life cycle,

and they predict software reliability, portability, and maintainability [132]. In an attempt

to understand the sources of software complexity, researchers consider the following

questions [132], [133]:

• How much does it cost to maintain complex software?

• What are effective techniques to measure software complexity?

• What metrics are useful and effective for identifying software elements

and patterns that incur avoidable complexity?

Early in a development cycle, project teams can gauge source code complexity to

target potential problem areas [133]. The following sections identify developments in

measures of software complexity.

a. Lines of Code (LOC):

Lines of code (LOC) is a very common measure used to quantify software

complexity. It counts the number of lines of source code, which indicates program size

[134], [135]. The advantages of the LOC measure are as follows [134], [135]:

• It is simple and easy to count.

• It is independent of program language.

• It is easy to understand.

• It can automate the counting process.

69

The disadvantages of the LOC measure are as follows [134], [135]:

• It does not account for the intelligence content and the layout of the code.

• It ignores the complexity from the program control flow.

• It has no counting standard because different tools measure different

things (e.g., commented lines, blank lines, and program statements) and

provide different results.

LOC is widely used as an estimate of program size [134]. In addition, it can be used

with other code metrics to formulate more comprehensive complexity determination [134].

b. McCabe Cyclomatic Complexity Measures

In 1976, McCabe [136] suggested cyclomatic complexity measures to determine

software complexity. He defined cyclomatic complexity as the number of linear free paths

within source code, which is simply the number of decision points plus one [136].

Cyclomatic complexity is used to measure the relative complexity of different builds of the

software. Cyclomatic complexity depends entirely on the structure of software’s control

flow graph. Industry studies indicate that a high cyclomatic complexity will lead to a high

probability of errors [136]. In addition, many industry studies have shown that the number

of tests required for a software method indicates that method’s cyclomatic complexity

[136]. Thus, in attempting to increase overall reliability, many organizations limit the

cyclomatic complexity of their software methods.

McCabe proposed to limit cyclomatic complexity to 10 [136]. Limiting complexity

at all stages of software development helps to avoid risks associated with high complexity

software [136]. Overly complex methods have the following effects [136]:

• They are prone to error.

• They are hard to understand.

• They are hard to test.

• They are hard to modify.

70

In practice, software systems engineers use tools for software metrics to analyze

and calculate cyclomatic complexity. For example, Java code developers use an Eclipse

Metrics plugin to compute cyclomatic complexity [137]. C# developers use ReSharper

plugin to calculate cyclomatic complexity [138].

Advantages of McCabe cyclomatic complexity are as follows [135]:

• It can be applied early in a software’s life cycle (software design phase).

• It provides relative complexity of various software design patterns.

• It is easy to apply.

• It guides the testing process and maintenance activities by limiting the

program logic during development.

Some disadvantages of McCabe cyclomatic complexity include the following

[135]:

• The control flow graph must be available, which does not occur until late

into the software design phase.

• It may provide a misleading figure because many of McCabe’s tools

measure different variables and can yield different results.

• Interpreting the results of cyclomatic complexity is a challenge because

software methods with a high cyclomatic complexity score can also be

easy to understand, test, and maintain, and vice versa. In other words,

cyclomatic complexity does not distinguish the complexities of various

kinds of control flow.

• It ignores both the complexity from the program’s data flow and

complexity added at the nesting levels.

71

c. Halstead’s Complexity Metrics

In 1977, Halstead introduced metrics for measuring complexity of software [139].

Halstead’s metrics measure the properties of software and the relationships between them.

These metrics provide an estimate of the program’s vocabulary, size of the program,

volume of the program, difficulty to develop the program, errors generated by executing

the program, and effort required to create the program as well as time needed to develop

source code. The McCabe Software Company suggested limiting the size of the program

N to 300, volume V to 1,500, difficult D to 30, effort E to 300, and estimated software

defects B to 0.6 [140].

Advantages of Halstead’s metrics are as follows [135], [139]:

• Any programming language can apply the Halstead model.

• It does not need in-depth analysis of programming structure.

• It predicts error rate, maintenance effort, and overall quality of programs.

Some disadvantages of Halstead’s metric include the following [135], [139]:

• It needs a completed code to compute the metrics. Thus, it has little use as

a predictive estimating model.

• Because of the absence of any standard of counting rules in a program, it

is difficult to define and count a distinct number of operators and operands

in a program.

• It does not specify what the level of the program that makes the program

complex.

• There are flaws in the assumptions used to derive Halstead’s formulas.

d. The Complexity Metric of Henry and Kafura

In 1981, Henry and Kafura proposed a complexity metric based on the procedure

length and “the flow of information into procedures and out of procedures” [141], [142].

72

Henry used “the UNIX system to validate his complexity metric.” He suggested that “the

complexity of a component” can be an indicator of “potentially faulty components” of a

system [142].

Advantages of Henry and Kafura’s metric are as follows [142]:

• It can be applied during the design phase in a software life cycle.

• It accounts for data-driven complexity.

Disadvantages of Henry and Kafura’s metric are as follows [142]:

• If a procedure has no external interactions, it will have a complexity value

of zero.

• This method cannot apply for black box components when the

component’s source code is unavailable.

• For complicated and complex method calls, it is very easy to miss the flow

of control relations.

• This method requires some techniques for thorough information flow

analysis of the software method.

e. The Complexity Metrics of Chidamber and Kemerer

In 1993, Chidamber and Kemerer proposed six complexity metrics for object-

oriented software design [143]. They are as follows:

(1) Weighted methods per class (WMC)

This measure [143] calculates the sum of the complexity of all the methods

identified in the class WMC = ∑ 𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=0 where n is the totality of methods identified in a class

and Ci is the class complexity. Because the high value of this metric indicates a high degree

of complexity in the class, it requires more testing effort [143]. In software development,

a short method is preferred because it is easy to read and can reduce program complexity

[143].

73

(2) Depth of inheritance tree (DIT)

This measure [143] computes the maximum number of steps from the root class

tree to the class node. A high DIT value indicates a high degree of complexity in design,

but it also represents an excellent opportunity for reuse of inherited methods [143].

(3) Number of children (NOC)

This measure [143] provides the sum of immediate successors of the base class. A

high NOC value indicates poor design needing more testing effort, but it also represents a

huge potential for reuse of base class [143].

(4) Response for class (RFC)

This measure [143] offers the total invoked methods from a message received by

an object of the class. A high RFC value represents a high degree of complexity in the class

and, therefore, it requires additional testing effort. A high RFC value is also associated with

software defects [144]. Thus, in software development, a low RFC value is preferred

because it indicates lower complexity and defects [144].

(5) Coupling between object classes (CBO)

This metric [143] measures the level of coupling between object classes in the code.

When an object class calls the methods of another object class or vice versa, we have a

coupling between two classes. When coupling between classes is high, programmers need

additional time to analyze and alter the codes. A high CBO value indicates poor design,

difficulty in understanding interaction between classes, and less reuse of classes [143].

Thus, the software requires more maintenance effort. Sahraoui et al. recommended keeping

CBO values below 14 [145].

(6) Lack of cohesion method (LCOM)

This measure [143] identifies the cohesion of a class. It is the sum of disjoint sets

of methods in a class. A low LCOM value indicates a high degree of cohesion in a class

and, therefore, implies simplicity and high reusability of the class [143]. A high LCOM

value indicates potential software defects [144].

Advantages of Chidamber and Kemerer’s metric are as follows [143]:

74

• It supports object-oriented programs.

• It is language independent.

• Some metrics highly correlate to software defects, which are useful for

software developers and testers.

Some disadvantages of Chidamber and Kemerer’s metric include the following [143]:

• The WMC metric cannot apply for black box components when the

component’s source code is unavailable. Thus, it cannot apply during the

design phase in a software life cycle.

• Relationships between metrics (e.g., DIT, NOC, and CBO) and defects are

incoherent.

f. Function Point

In 1979, Albrecht at IBM introduced the function point approach to estimating

software size [96]. Function point is an approach to estimating software size (e.g., lines of

code) [97], and as a size measure, it is an estimate of complexity. To compute function

points, software engineers first determine the system’s features and functionality based on

five parameters [148]: external inputs, external outputs, internal logical files, external

interface files, and external inquiries. Each parameter of a function point has three

categories: simple, average, or complex [148].

To compute the raw function points, software engineers adjust each parameter of a

function point by a weight number shown in Table 10. Each function point has an

associated level of complexity. For example, a number is a simple user-output type, while

an image is a complex user-output type. In sum, function point analysis captures certain

aspects of software complexity including distributed data processing, data communication,

and complex processing.

75

Table 10. Weight scale for function point parameters. Adapted from [97],
[148].

Function Point
Parameter Complex Average Simple

User Inputs 6 4 3

Outputs send to
users

7 5 4

Internal logical files 15 10 7

External interfaces 10 7 5

External inquiries 6 4 3

Other software metrics for assessing software complexity include counting the link-

time dependencies in an application and measuring an application’s balance between the

degree of abstraction and stability of related classes in object-oriented programming [149],

[150].

A summary of measures of software complexity appears in Table 11.

Table 11. Measures of software complexity.

Metric Software Complexity Measurement

Lines of code (LOC)
[134], [135]

This measurement is easy to count but not
available early in life cycle.

Cyclomatic complexity
(McCabe) [136]

This measurement is well studied, easy to
compute, internal to a module, and strongly
correlated with effort and propensity for
defect.

Halstead complexity
[139]

Similar to McCabe’s cyclomatic
complexity, this measurement counts the
number of operators and operands in the
software.

Henry and Kafura
metric [141], [142]

This measurement counts the number of
relations among modules and is easy to
compute.

76

Metric Software Complexity Measurement

Chidamber and
Kemerer metric [143]

This measurement supports object-oriented
programs and highly correlates to software
defect.

Function point [96] This measurement is available prior to
code and is easy to understand.

7. Project Complexity

As projects have become more complex, it is imperative for project managers to

understand project complexity. In general, complexity affects the schedule, cost, and

performance of a project. The higher the project complexity, the more time it takes to

complete the project and, therefore, the higher the costs to achieve project outcomes [148].

To create a project plan of a software program, the project manager needs to determine the

project cost by estimating the number of personnel required for the project. To estimate the

project cost, the project manager needs to estimate the average yearly salary of a software

developer. The Project Management Institute (PMI) defines four project sizes [151]: (1)

small projects of less than $5 million, (2) medium projects between $5 million to $50

million, (3) large projects between $50 million to $500 million, and (4) mega projects

above $500 million. In the computer software industry, the average yearly salary of a

software developer is $97,288 [152]. Adding 50% of cost for company-paid benefits and

taxes [153], a software developer’s yearly total cost in the U.S. is $145,932. Hence, for a

project cost of $5 million per year, the project manager can hire 34 software developers

($5 million / $145,932). We will use $145,932 yearly cost for a software developer as an

industry standard in the software engineering projects.

The project complexity influences the selection of a project’s organizational

structure and subject-matter experts as well as experienced management personnel [149],

[150], [154]. Through a review of the literature, we find that the work of several researchers

can be grouped into the four approaches to understanding overall project complexity [14],

[84], [155], [156]: (1) organizational complexity, (2) requirements complexity, (3)

temporal complexity, and (4) technological, social, cultural, and task complexity. Let us

77

discuss each of the four approaches to examine their merits for measuring project

complexity.

a. Organizational Complexity

Baccarini (1996) defines project complexity as the integration of an organizational

structure and project management processes by coordination, communication, and control

[14]. He refers to organizational complexity as a degree of difficulty that depends on the

number of project elements (e.g., stakeholders, engineering disciplines, project size,

number of employees, and business processes) and the relative interdependence of these

elements [14]. In other words, organizational complexity relates to the organizational

structure of the project team and the system development process [14]. Baccarini describes

organizational complexity as the engagement of a virtual and logical multi-organizational

structure to manage the project [14].

In [157], Wood and Ashton indicate that relationship difficulties between the

project teams lead to poor dissemination of information and resulting in incoherent stream

of goals at the outset of a project. Poor channels of communication, poor production, and

use of information contribute to organizational complexity [157]. Wood and Ashton

conclude that organizational complexity has a major impact upon the project complexity

[157].

Schwandt [158] hypothesizes that “organizational complexity and organizational

performance” (i.e., efficiency and value of shareholder) have “a bathtub-shaped

relationship.” The organizational performance will peak at a manageable level of

organizational complexity and then the organizational performance will drop off quickly

as an increase in organizational complexity [158]. He defines four drivers of complexity in

his model [158]: (1) diversity, (2) ambiguity, (3) interdependence, and (4) fast flux. When

the values of these drivers are increase, we have higher complexity [158].

Examples of organizational diversity measures include the number of institutions

with which the organization interacts, the amount of budgetary resources, the number of

stakeholders, and the amount of technical knowledge necessary to interact with team

members [158]. Examples of measures of organizational ambiguity are the number of

78

subsidiaries, the extent of role variety, the number of the communications among

organizations, and the level of efficiency of the overall business processes [158]. The extent

of variety of roles are computed by the number of different types of job positions in an

organization [158]. A role variety matrix contains job titles and responsibilities. An

organizational chart provides the information needed for this measurement. Measures of

organizational interdependence consist of the number of subsidiaries and organizational

structure [158]. Measures of organizational fast influx include the proportion of new

employees and the number and volume of mergers and acquisitions.

According to Schwandt [158], a structural size of an organization and its

interdependencies are closely related because the growing number of elements in an

organization will result in an increase in the number of relationships. Hence, the structural

size of an organization reflects the organization’s complexity [158]. In the reliability

evaluation of Schwandt’s organizational complexity measurement model, the weight factor

of a size measure is 0.61 [158]. This means that the structural size of an organization has a

significant impact on organizational complexity. One way to interpret this size’s weight

factor is by relating it to organizational complexity based on the structural size of a project

team. For instance, if a project team consists of 9 organizational units, then the weight

factor of organizational complexity of the project is 5.49 (9 times 0.61). We will use this

size’s weight factor as a reference value for comparison of organizational complexity in

the engineering projects.

b. Requirements Complexity

Software developers must make changes in the code to reflect changes in

requirements. According to Stark et al. [155], requirements volatility is positively

correlated with the increase in the size of the project as well as with schedule duration, and

accounts for 20% of the total maintenance effort. Requirements volatility is an indicator of

the degree of stability of requirements. According to Stark et al. [155], requirements

volatility is the number of changes to requirements (new requirements, modifications of

requirements, and deletions of requirements) over a certain period divided by the number

of requirements at the start of the project. Hence, understanding and analyzing

79

requirements volatility and its impact during the software development life cycle are

important for managing project risk. In general, high requirements volatility contributes to

low quality and low success rates of the delivery of software to customers [155]. Project

managers and system developers are interested in requirements volatility for project

management, risk assessment, and a potential assessment of project complexity [155].

Malaiya and Denton [159] show that high requirements volatility will cause the

resulting software to have a higher defect density, especially when the requirement changes

occur close to the software release date. High volatility of requirement changes reflects

poor understanding of the environment and system, which can introduce problems in all

areas of the system development such as software defects or poor quality of products [159].

Defect density is an important measurement of software quality and is often used as a

software acceptance criterion. In the defect density measurements, the best practice in the

software industry is to keep the number of defects per KLOC less than 3 for reducing the

risk of requirements creep [160].

Pfahl and Lebsanft [161] demonstrate in their simulation that requirements

volatility has a significant impact on the development effort (i.e., overall cost of the project)

and project duration. Ultimately, requirements volatility represents risk to the success and

completion of a project.

Parsons-Hann and Liu (2005) conclude that requirements complexity contributes

to project failure [162]. Furthermore, Parsons-Hann and Liu identify five factors

influencing the complexity of requirements [162]: (1) the time spent on the project, (2) the

heterogeneity of the organization, (3) the skill of project members, (4) the number and

location of stakeholders, and (5) the project resources. Let’s explain each factor in order.

Because of project deadlines, a project manager often needs to estimate how long

it will take to fulfill a certain requirement in a project and to complete an entire project.

When the team estimates that a longer schedule is needed to complete the project based on

the initial plan, then that project should be considered as a “high risk” project.

To stay competitive in the industry and to maintain good communication channels,

many projects will have partnerships with geographically dispersed organizations. This can

80

be challenging for the ongoing relationships with business partners at various sites because

of the differences in time zones, business and culture norms, native languages, and

technologies used for communication. Thus, geographic barriers can affect the

requirements complexity. The heterogeneity of the organization can contribute to the

complexity of the requirements because of ongoing collaboration with stakeholders

[162]. Azim’s research [163] finds that 56% of the respondents cited that geographical

distribution of project teams contributes to project complexity. One study from Waber et

al. [164] shows that engineers who worked at the same building were 20% more likely to

stay in touch digitally than those who worked at different sites. When a project team needed

to collaborate, team members in the same office e-mailed each other four times as

frequently as colleagues in different locations. Consequently, the increase in collaboration

with project members lead to 32% faster of completing the project [164]. We will use

Waber’s study [164] as a criterion for comparing the measure of geographical distribution

of teams in the engineering projects.

Most projects will have a range of skilled project members ranging from new

graduates and young systems engineers to the project manager who have a number of

years’ experience working on similar projects. This diversity of skill level can affect the

complexity of user requirements in terms of understanding of the system requirements and

whether the project member has worked on a similar project before [162].

When managing a project in a virtual organization, coordinating and obtaining

requirements from stakeholders at various sites is very difficult [162]. A stakeholder refers

to any individual or group of employees who can influence or be influenced by an

organization’s activities [162]. The number and location of stakeholders can contribute to

requirements complexity because of the difficulty of generating the requirements from

numerous different stakeholders [162].

In a 1995 CHAOS report [165], 10.6% of the companies interviewed stated that the

lack of project resources is the third biggest reason contributing to project failure. Project

resources refer to money, employees, and skills required to meet all project objectives

accurately and on time.

81

Nurmuliani et al. (2006) show that the major causes of requirements volatility are

“changes in the needs of the customer, an increase understanding of the product by the

developers, and changes in the policy of the organization” [166]. They show that

requirements volatility is very high at the end of a requirement analysis phase [166]. They

find that new requirements added late in the development life cycle require more effort

than new requirements added early in the life cycle because of the volume of change of the

project documents and the increasing number of revisions in project documents [166].

Thus, if software requirements change frequently (i.e., high requirements volatility), then

they may create significant project uncertainty [161], [166]. One limitation of this approach

is that it applies only for specific cases because the measurement focuses on specific types

of requirements changes [166]. Hence, systems engineers need to study the effectiveness

of categorizing types of requirements changes and their benefits [166].

Other measurements related to requirements volatility in the literature include

volatility in scope [167], technical requirements and design changes because of regulatory

requirements, schedule changes due to poor or missed requirements, and defects due to

inadequate requirements [168]. In regard to the requirements volatility measurements, a

review of the literature shows that the common practice in the software industry is to keep

the rate of changes at less than 1 for reducing the risk of requirements uncertainty and

requirements creep [169], [170]. We will use this value for comparison in the engineering

projects.

c. Temporal complexity

In Section 3, we briefly discussed Remington and Pollack’s view on temporal

complexities. They defined temporal complexities as external complexities associated with

market volatility, funding mechanisms, political uncertainty, and financial regulations [84].

In other words, temporal complexity reflects the level of obscurity related to the volatility

or disruption caused by the environment (market conditions, social norms, political

pressure, regulatory requirements, and technical issues) during the course of the project

[84]. Lee and Xia also believe that environmental conditions contribute to project

82

complexity [85]. Consequently, temporal complexity could influence directional

complexity and impact project outcomes.

Over the course of a software development life cycle, software usually has changes

to LOC because of changes to requirements, bug fixes, security patches, and optimization

of code. Code churn is a measure that quantifies this change [171]. Nagappan and Ball

(2005) show that the amount of churn and the temporal extent of churn are indicators of

software defect [171]. In other words, they conclude that “code that changes often in before

the release will likely have more defects in after the release than code that changes

infrequent over the same period” [171]. One drawback of this approach is that it is case

study-specific for a large size of software (approximately 44 million LOC [172]).

d. Technological, Social, Cultural, and Task Complexity

Brockmann and Girmscheid (2007) propose three complexity measurements

related to engineering projects: 1) social complexity, 2) cultural complexity, and 3) task

complexity. Social complexity is determined by the number and diversity of stakeholders

collaborating in the project [156]. Cultural complexity depends on the history, experience,

and decision-making processes of the team members [156]. Task complexity is determined

by the number of activities in terms of time and space required for the coordination and

execution of a task [156]. According to Brockmann and Girmscheid [156], elements of task

complexities include “structural complexity, technical complexity, directional complexity,

and temporal complexity.” We have discussed structural complexity and temporal

complexity in the previous sections.

As stated in the structural complexity section, Williams [83] believes that

uncertainty in goals and methods contributes to project complexity due to users’

requirements being difficult to specify and not frozen in the initial prototypes.

Remington and Pollack (2008) define directional complexity as the level of

perplexity related to the incoherence of project goals and methodologies among

stakeholders [84]. For example, when the project goals and scope are not understood or

agreed upon among stakeholders, the project becomes very difficult to manage due to the

83

uncertainty in project goals, project methodologies, and the lack of urgency and

inflexibility among project team members [84].

Heydebrand [172] describes technological complexity and skill structure of an

organization in terms of division of labor according to organizational roles. Organizational

roles represent different types of job positions in an organization.

Remington et al. (2009) list a number of factors that appear to contribute to project

complexity [16]. These factors include the following: goals, stakeholders, management

processes, work practices, interfaces and interdependencies, technologies, and time [16],

[57]. A summary of these factors is shown in Table 12.

Table 12. Factors influencing project complexity. Adapted from [16], [57].

Factor Explanation

Goals Undefined or inadequate project goals both at a
strategic level and at an operational level
contribute to project complexity.

Stakeholders The number of stakeholders and how they
communicate the information among them affect
project complexity.

Management
process

Management decision-making processes,
relationships between management, stakeholders,
team members, and suppliers; and intersecting of
activities and methods influence project
complexity.

Work practices The project’s organizational structure in terms of
division of labor, appointment of personnel, and
the level of stress on the personnel to meet project
objectives adds project complexity.

Interfaces and
interdependencies

The number of systems and subsystems that are
integrated in the project, the different
assumptions across these systems, the multi-
organizational and schedule interdependencies
between activities, the work of upgrading and
rebuilding, and the size and meshes of the project
all contribute to project complexity.

84

Factor Explanation

Technology The need to accomplish tasks by a variety of
technologies and the interdependencies between
teams, between a network of tasks, and between
different technologies contribute to project
complexity.

Time Projects with compressed schedules or unusually
long durations and projects requiring multiple
phases affect project complexity.

Table 13 summaries the works of some researchers related to the four different

approaches to measure project complexity.

Table 13. Summary of researchers’ works related to the four different
approaches to measure project complexity

Year Author Source of Project Complexity

1996 Baccarini [14] Organizational complexity and
technological complexity

2009 Schwandt [158] Organizational complexity

2010 Wood and
Ashton [157]

Organizational complexity

1999 Stark et al.
[155]

Requirements volatility

1999 Malaiya and
Denton [159]

Requirements volatility and
defect density

2000 Pfahl and Lebsanft
[161]

Requirements volatility

2001 Feland and
Leifer [170]

Requirements volatility

2005 Parsons-Hann
and Liu [162]

Requirements complexity

2010 Azim [163] Geographical distribution of
project teams

85

Year Author Source of Project Complexity

2014 Waber et al.
[164]

Geographical distribution of
project teams

2006 Nurmuliania,
Zowghi, and
Fowell [166]

Requirements volatility

2010 Peña and
Valerdi [168]

Requirements volatility

2002 Lee and Xia
[85]

Risk on project environmental
conditions

2005 Nagappan and
Ball [171]

Code churn

2007 Brockmann and
Girmscheid
[156]

Social complexity, cultural
complexity, and task complexity

1999 Williams [83] Structural complexity and
uncertainty in goals and methods

2008 Remington and
Pollack [84]

Directional complexity and
temporal complexity

1973 Heydebrand
[172]

Technological complexity in
terms of division of labor
according to organizational roles

2009 Remington,
Zolin, and
Turner [16]

Factors contributing to project
complexity (goals, stakeholders,
management processes, work
practices, interfaces and
interdependencies, technologies,
and time)

In sum, previous literature indicates that many researchers from different

perspectives have attempted to develop approaches that identify project complexity and its

impact on the project. Clearly, the concept of project complexity is broad. There are no

widely agreed upon complexity measurement standards for complex projects. As described

in this chapter, complexity metrics for software and system development projects have

86

many variations. However, some of these concepts and methodologies could help develop

a practical way to measure complexity. For example, measure of requirements volatility,

defect density, and the measure of geographical distribution of project teams are practical

measures of project complexity. The approach of this research includes a model that

calculates the degree of complexity using the measurement concepts from the four different

approaches to measure project complexity, the four kinds of complexity, and the seven

building blocks of complexity, which are described in this chapter.

8. Review of Additional Literature Related to Engineered Systems

Some additional literature is relevant to this dissertation. Simon (1962) proposes

that the degree of hierarchy is one way to characterize the complexity of a system [100].

Degree of hierarchy refers to the number of layers in which the system can be decomposed

[100]. Broadly speaking, Simon [100] observes that the more layers in the system, the more

complex the system becomes.

In the shipbuilding industry, a ship’s design must satisfy criteria related to

performance, cost, safety, environmental regulations, passenger comfort, and customer

requirements. Meeting all of these requirements call for complex designs and a complex

design process. Caprace and Rigo (2010) propose a complexity metric for practical ship

design [173]. The goal is to provide ship designers with information related to design

complexity throughout the design process so that they can achieve efficient design during

the first prototype. This complexity metric includes a combination of the shape complexity,

the assembly complexity, and the material complexity [173].

Complexity in information technology (IT) systems can reduce efficiency and

quality in production, reducing a company’s flexibility to adopt new technology. Leukert

(2011) proposes that the level of complexity in IT systems depends on the function,

interface, data, and technology of the system [174].

Some of the recent papers published by several scholars about complexity

measurements include “architectural complexity of Systems-of-Systems,” “cyclomatic

complexity,” and structural complexity. Domerçant et al. (2011) propose a model to

measure “architectural complexity of Systems-of-Systems” by “the number of functions,”

87

“the number of network interfaces used to transmit data,” and “cyclomatic complexity”

[136], [175]. Malone and Wolfarth (2013) propose a model that measure “cyclomatic

complexity” and use this measurement to estimate the development cost of a software

project [176]. Tie and Bolluijt (2014) propose a framework to measure project complexity

that includes “11 contextual factors and 10 inherent project characteristics” [177]. Schuh

et al. (2016) propose a conceptual framework that integrates “a set of complexity drivers

and a method” to evaluate complexity based on these drivers [178]. Fang et al. (2017)

develop a network risk model to measure project risks and their interactions [179]. Ellinas

et al. (2018) propose using the structure of the activity network diagrams to measure the

structural complexity of projects [180].

Clark and Jacques (2012) propose that a possible way to determine complexity in

dynamic systems is to observe changes in kinetic energy [35]. This measurement allows

system engineers to understand system risks [35].

Tamaskar et al. (2014) have developed a method to accurately predict development

costs and schedules for aerospace products [181]. As industry experts, Tamaskar et al.

[181] have proposed a framework to measure system complexity that is based on the size

of a system and interactions between system components.

Based on the papers published by several researchers in recent years, the theme of

complexity measurement still focuses on models that consist of complexity drivers and

indicators in various types of complexity (e.g., structural complexity, inherent complexity,

software complexity, technological complexity, and organizational complexity). Many

complexity measurement frameworks and models are very complicated and require project

managers and systems engineers to invest an extensive amount of time and resources to

gather and analyze the data before they can start to use the model to measure complexity.

A summary of the work of several scholars related to measures of complexity is shown in

Table 14.

88

Table 14. Complexity measurements in engineered systems.

Year Authors System Complexity Measurement

1962 Simon [100] Measure a system’s complexity by the
level of hierarchy.

2010 Caprace and
Rigo [173]

Measure complexity in ship design based
on the shape complexity, assembly
complexity, and material complexity.

2011 Leukert
[174]

Measure IT systems complexities based
on four factors: function, interface, data,
and technology.

2011 Domerçant et
al. [175]

Measure “architectural complexity of
Systems-of-Systems” by a combination of
“the number of functions,” “the number
of network interfaces used to transmit
data,” and “cyclomatic complexity.”

2012 Clark and
Jacques [35]

Measure the level of complexity in
dynamic systems by observing changes in
kinetic energy.

2013 Malone and
Wolfarth
[176]

Measure “cyclomatic complexity” and
use this measurement to estimate the
development cost of the project.

2014 Tie and
Bolluijt
[177]

Measure project complexity by proposing
a framework that includes “11 contextual
factors and 10 inherent project
characteristics.”

2014 Tamaskar et
al. [181]

Measure the degree of complexity in
engineered systems based on size of the
system and interactions between system
components

2016 Schuh et al.
[178]

Measure project complexity by proposing
a conceptual framework that integrates “a
set of complexity drivers and a method”
to evaluate complexity based on these
drivers.

2017 Fang et al.
[179]

Measure project risks and their
interactions using a network risk model.

2018 Ellinas et al.
[180]

Measure the structural complexity of
projects using the structure of the activity
network diagrams.

89

Moreover, systems engineers and program managers are interested in how they can

apply complexity measurement at the mission level [182]. We briefly mentioned in Chapter

I that mission engineering and SoS engineering are two areas in which the U.S. Navy must

confront complex systems. In mission engineering, the focus is on mission success

parameters that drive requirements [182]. In general, a mission has a set of operational

activities to achieve a goal [182]. Mission engineering defines the operational tasks or

activities and then assigns people, systems, or organizations for executing those tasks

[182]. For instance, we can imagine a mission to seize an airport. Mission engineering may

consider a solution to this problem that includes ground-based vehicles, drone swarms,

robots, and soldiers [182]. From the mission engineering perspective, these individual

systems (ground-based vehicles, drones, robots, and soldiers) are components of the overall

system, which serves the end-to-end mission of airfield seizure [182]. Consequently,

mission engineering is using SoS methodology, which is complex [182]. Another example

of mission engineering is the Naval Integrated Fire Control Counter Air (NIFC-CA) project

[183]. This project is using an SoS engineering approach to extend the Navy battlespace to

the maximum kinematic range of the weapons (i.e., focusing on over-the-horizon targets)

[183].

9. Extension of Previous Work

Complexity is “a characteristic of a technical system being developed,” and is

usually “created by the interaction of people, organizations,” and the environments that are

“part of the complex system surrounding the technical system” [58]. Many studies have

covered a number of complexity measurements in systems, software, and engineering

projects that are based on size, diversity, interdependence, dynamism, and adaptivity.

However, many of the proposed complexity measures merely serve as starting points for

“systems engineers seeking complexity modeling approaches to SE” [81]. With the

increasing focus on the value and cost of the system across the acquisition life cycle,

models for complexity analysis, analysis of system affordability, and techniques for

reducing system complexity are becoming more important in the DOD acquisition arena.

There exists a gap between what is available in the DOD acquisition programs today and

the complexity measurement models that could be used in early phases of developing

90

military acquisition products [129]–[131]. For example, according to the U.S. Government

Accountability Office (GAO) [130], many DoD programs are underestimating the

difficulty of software development efforts. A lack of knowledge of understanding the

system requirements and the failure to collect and analyze metrics necessary in the early

phases of development to measure progress can increase the risk of budget overruns and

schedule slippage due to system development difficulty.

Furthermore, stronger management practices such as using metrics to oversee

development progress are needed to reduce the risk of requirements creep, which in turn

reduces the complexity of the design processes. Hence, the application of complexity

metrics can improve DOD’s software-intensive weapon acquisitions [129]. When dealing

with complexity and uncertainty in the early phase of a project, the project manager needs

metrics that focus on the schedule, the cost, the number of changes in requirements, the

number of hours of testing, and the number of unresolved defects of the project [129]. The

project manager can use these metrics to create both the project profile and the complexity

profile. From these profiles, the project manager can select project cycles, methodologies,

and project management strategies. Without such discipline, software acquisition programs

may face difficulty in meeting cost and schedule targets [129]. Thus, there is a need to have

complexity metrics that focus on the relationship between project complexity and project

performance outcomes [135].

Moreover, in recent years, DOD has focused on system affordability for weapon

acquisition programs. A review of the relevant literature reveals that there is a gap in the

current SE body of knowledge concerning the topics of system affordability and SE

advanced measurements [184]. In the topics of system affordability and advancements of

SE measurements, there is a need of a use-case study to link between complexity to the

cost and schedule of complex systems engineering projects. To study the relationship of

this link, we need to identify a model of complexity and measurement methods to analyze

project complexity and to provide insight for improvement of system affordability.

Therefore, our effort in this dissertation is to narrow the gap in the body of

knowledge of complexity and SE by proposing a new complexity measurement model

derived from literature that relates to the topics of system affordability and SE advanced

91

measurements. The new complexity measurement model is derived from the four major

sources of project complexity (structural complexity, temporal complexity, organizational

complexity, and technological complexity). This new model results in creating a

complexity profile for project managers and systems engineers to pinpoint and then to

study what aspects of the engineering project are potential risks of cost overrun and

schedule slippage. As a result of this study, systems engineers and project managers can

take actions to reduce or mitigate complexity of the SoI, and thus, improve system

affordability.

D. CHAPTER SUMMARY

Chapter II surveyed the history of complexity science and highlighted major works

about measures of complexity from the scientific literature. Chapter II showed that

complexity results from the numerosity, connectivity, interactivity, diversity, and

adaptivity of a system as well as from its environment [18], [28], [29], [116]. In addition,

Chapter II presented some of the flaws and drawbacks of existing measures of complexity

as well as several ideas to address these gaps. It discussed complexity as applied in software

applications and system development projects. Through a review of the literature, we

showed that complexity can influence projects in terms of difficulty of understanding,

verification of work performed by the project team, and control of project resources [166].

In fact, complexity contributes to project failure [165]. Understanding the different types

of complexity can help project managers make better decisions about the ways to manage

complex projects. Finally, Chapter II discussed some important properties of measures

relating to the seven building blocks of complexity.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

III. PROJECT COMPLEXITY MEASUREMENT MODEL (PCMM)

The quest of any model is to ease thinking while retaining some ability to
illuminate reality.

―John H. Miller and Scott E. Page [46],
“Complex Adaptive Systems:

An Introduction to Computational Models of Social Life”

As noted in Chapter II’s literature review, complexity can be increased by

conflicting requirements and the mingling of problem elements, multiple constraints,

diverse stakeholders, and demanding stakeholders during the engineering process.

Complexity also can be increased by the interactions between decisions and the analytical

tasks during the system development processes. This realization strengthens the validity of

creating a complexity profile of an engineering project that consists of multiple complexity

measures for project risk assessment. This chapter describes a practical approach to

measure complexity. The approach includes identifying a set of complexity metrics drawn

from the literature review. Next, we develop the project complexity measurement model

(PCMM) and associated methods to measure complexity. The PCMM presented in this

chapter is derived from literature related to the sources of complexity and the four major

types of project complexity (structural complexity, temporal complexity, organizational

complexity, and technological complexity) presented in Chapter II. Furthermore, the

literature on complexity and project complexity in Chapter II provides evidence of the

validity of the PCMM and the research methodology presented in this chapter. This chapter

includes the formulation of the system and project complexity metrics. This chapter also

discuss system and project properties as well as analysis methods used throughout the

dissertation. The analysis methods depend on a project profile, other known program

parameters, and historical data. Finally, we discuss how program managers can use the

complexity measures presented in the model to take actions to reduce complexity. A

roadmap of this research approach appears in Figure 6. We will discuss each of these steps

in the next section of this chapter.

94

Figure 6. Research approach roadmap

A. RESEARCH APPROACH

The outcome of the PCMM is a complexity profile for the SoI. In Figure 7, we

provide the overall processes to create the complexity profile of a SoI.

Figure 7. Overall processes to develop the complexity profile for the

SoI

95

In step 1 of Figure 6, we draw results from the literature review from Chapter II.

Four types of complexity were drawn from four academic publications (Baccarini [14],

Williams [83], Brockmann and Girmscheid [156], and Remington and Pollack [84]) as

follows: 1) structural complexity, 2) organizational complexity, 3) temporal complexity,

and 4) technological complexity.

In step 2 of Figure 6, we identify sources and types of complexity in an engineering

program. We explained in Chapter II that system architecture, software architecture, and

software size are project elements that can contribute to structural complexity in

engineering projects. In a system development process, organizational complexity is

increased by the number and diversity of stakeholders, size and structure of the project

team, nature of the procurement process, and information flow between activities in terms

of information exchanges between organizational units. Furthermore, we explained that we

can use a project management framework such as the Project Management Body of

Knowledge (PMBOK) [185] for classifying the sources of complexity and subsequently

relating them to the types of complexity and complexity metrics to study project

complexity.

The PCMM, which consists of a set of complexity measures, creates a complexity

profile of the SoI that is useful for the assessment of project risk and program complexity.

The PCMM and associated methods to measure complexity can help systems engineers

and program managers reason through their decisions related to systems engineering.

Similarly, the PCMM and associated methods to measure complexity are designed to shed

more light on Williams’ [83] approach for measuring the complexity of the underlying

structure of the project. The PCMM measures the structural complexity of a project in two

different ways: 1) the number of personnel required for the project to develop the SoI, and

2) the number of defects per project size.

In addition, the PCMM extends the work of both Baccarini [14] and Lloyd [90] for

measuring the complexity of organizational structure in a complex project. The PCMM

measures the organizational complexity of a project in two ways: 1) The patterns of

communication in terms of their frequencies and the level of importance of the

communications among organizations, and 2) The geographical distribution of teams.

96

Moreover, the PCMM also follows the approaches of Remington and Pollack [80] and

Stark et al. [155] for measuring the temporal complexity in terms of requirements volatility

during the engineering project. Finally, the PCMM uses the approaches of both Baccarini

[14] and Lloyd [90] for the assessment of technological complexity by presenting a metric

that measures the type of skilled staff needed for the development of the SoI. In sum, the

PCMM and associated methods to measure complexity make contributions in at least two

major ways: 1) a new quantitative approach to assess project complexity, and 2)

advancement in the state of practice in the project risk assessment of Navy software

systems.

In step 3 of Figure 6, we develop the indicative metrics of the four types of

complexity of the SoI that are important to the IPT, program managers, and systems

engineers. Each type of complexity is associated with several complexity factors that

contribute to the complexity of the system development process [16], [57], [83], [85], [86],

[156], [162], [164], [173]. Chapter II revealed that complexity is influenced by many

factors. The list of complexity metrics is long, and in the end not very practical to use

because it would be difficult to measure all complexity metrics due to budget constraints

and schedule constraints. Moreover, it would be impossible to agree on the exact scope of

each type of complexity or on the definition of complexity as numerous authors proposed

different taxonomies, characteristics, and attributes of complexity. Current literature

provides some evidence on the validity of the above arguments. Therefore, we have chosen

to focus on the major sources of complexity from the four types of complexity in the SoI.

Project managers and systems engineers are concerned about deliverables and

requirements of the SoI. They need to keep the project within budget and maintain the

schedules by minimizing project risk. To identify project risk, systems engineers and

project managers select certain complexity metrics and measure them. For instance, the

project manager faces great challenges in managing a project in a virtual environment. To

improve the likelihood of success and predictable project outcomes, the project manager

needs to understand the effects of the fact that the virtual team is located in multiple

locations in multiple time zones on the project schedule and the quality of the deliverables.

97

For an assessment of the risk of the structural complexity, we choose complexity

metrics such as size of scope, project duration, and number of requirements related to

product quality control. These complexity metrics influence the number of personnel

required for the development of the SoI.

In organizational complexity, we select size of the project team, number of

locations of the project team, number of tasks, team communication activities, and

experience of the participants as the main complexity metrics for project risk. These

complexity metrics are measured by the geographical distribution of teams and by the

patterns of communication in terms of their frequencies and the level of importance of the

communications among organizations.

In temporal complexity, we pick project stability as the foremost metric for project

risk. Requirements volatility measures project stability in terms of the number of

requirement changes as a function of the duration of the development phase of a project.

In technological complexity, we select the integration of technical processes and

dependencies between tasks as the leading complexity metrics for project risk. The measure

of the number of different job position types provides some insights about the complexity

of integrating technical processes and executing interdependencies tasks in the

development phase of a SoI.

In Table 15, we present the indicative metrics of the four types of complexity of the

SoI.

98

Table 15. Indicative metrics of the four types of complexity of the SoI

Type of Complexity Indicative Metrics

Structural complexity • Measure of the number of personnel
required for the project (e.g.,
COSYSMO [24])

• Defect density measure

Organizational
complexity

• Measure of the patterns of
communication in terms of their
frequencies and the level of importance
of the communications among
organizations

• Geographical distribution of teams
measure

Temporal complexity • Requirements volatility measure

Technological
complexity

• Measure of the number of different job
position types required on the project

In step 4 of Figure 6, we need to explain the relevance of the complexity metrics.

Let’s describe each measure of complexity in order.

1. Structural Complexity

In managing a project’s scope, we need to define, verify, and control project work.

As noted in Chapter II, COSYSMO measures the person-month required for performing

the system engineering tasks in large-scale systems [24]. It is related to the structural

complexity of the project because it involves size and cost drivers for systems engineering

[24]. We use COSYSMO to measure structural complexity in terms of the functional size

of a system, which is expressed in terms of the number of person-month. Drivers of project

size consist of the number of requirements, interfaces, algorithms, and use cases [24].

Drivers of project cost include requirements understanding and architecture understanding

[24]. These cost drivers are indicative of either uncertainty or an emerging understanding

of needs during the engineering process. As noted in Chapter I, uncertainty is one of the

characteristics of complexity.

99

In a software development project, defect density measures the number of defects

per KLOC. We categorize defect density as structural complexity because KLOC is a

function of a system’s functional size. Defect density indicates product quality, project

progress, and productivity.

In managing the quality of a software project, we set quality objectives for the

project. Quality objectives set during the planning phase can introduce complexities to

projects. For example, a project manager requires the software lead to set up baseline

measurements of the code walk-through process. A project manager also requires the test

lead to provide a monthly report of defect density so the program manager can track the

overall quality trend of the products. The quality objectives for the project can possibly

cause frustration to the developers, and collecting the baseline metrics can complicate and

lengthen the duration of the code walk-through process.

2. Organizational Complexity

In an engineering project, the interchange of information between organizations can

be measured by the patterns of communication between organizations in terms of the

frequency and the level of importance of their interactions. It is related to the organizational

complexity of the project because it indicates the information flow between tasks and

activities. It shows the connectedness and interdependence among organizational units

during the system engineering processes. For example, in managing a project’s

procurement and meeting deadlines, project managers are concerned with the timely

completion of the project and must handle the process of acquiring third parties’ products

and services. The number of interdependent organizations involved in meeting a project’s

deadlines and in procurement execution can influence the complexity of the project.

Literature seems to confirm that the interdependent relationships between organizations

contribute to project complexity [28], [93], [94]. Hence, project managers find that the

patterns of communications in terms of the frequencies and the level of importance of the

communications among organizations are crucial for the success of each program.

The geographical distribution of teams measures the number of locations, time

zones, and sites of all organizational units involved in the engineering project. It is related

100

to the organizational complexity because it measures the number of sites involved in the

engineering development process, which is related to the team size in a virtual organization.

In general, when managing a project in a virtual organization, coordinating, acquiring

requirements, and executing project tasks with project teams at various sites across multiple

time zones are all very difficult [162], [186]. In fact, distributed teams need more

coordination than physically co-located teams because of the multiple sites and the barriers

associated with adopting technology across multiple sites. The Allen curve supports the

idea that a strong negative correlation exists between physical distance and the frequency

of communication between work stations [119], [187]. For example, in managing a

project’s human resource, project managers must handle all necessary processes for

organizing, managing, and leading the project team. Factors such as team size and

geographical distribution of project teams can contribute greatly to project complexity.

3. Temporal Complexity

Requirements volatility measures the number of changes in requirements (new

requirements, modifications of requirements, and deletion of requirements) during a

specific period of time in the development phase of a project. It is related to the temporal

complexity because it measures project stability in terms of the number of changes in

requirements as a function of the duration in the development phase of a project. High

volatility of changes in requirements reflects uncertainty of the design of the system’s

architecture and poor understanding of the environment and system. If the requirements

are changing too quickly, this introduces problems in all areas of the system development,

especially in meeting a deadline and keeping within budget. For instance, during the

development and integration of a system, we often have change requests to add, modify,

or delete requirements. These change requests reflect changes in customer’s priorities,

changes in the budget of the project, and changes in developers’ understanding of the

requirements and product [84]. Requirements volatility can cause product defects due to

changes in either hardware or software or both in a system, and reflects decision-making

under uncertainty.

101

4. Technological Complexity

One way to measure technological complexity in a project is by counting the

number of different job position types because of the dependencies between tasks and the

diversity of job skills required during the integration of technical processes in the

development phase of a SoI. For example, the number of different job position types

required on a project is likely to foster differences in job assignments and outcomes, and,

thus, increased complexity.

To measure the degree of influence of each of the aforementioned four types of

complexity and their indicative metrics, in the next section we introduce the PCMM and

associated methods to measure complexity. This is indicated in step 5 of Figure 6.

B. METHODOLOGY

In this section, we present the PCMM to assess the degree of complexity based on

the indicative metrics of the SoI shown in Table 15. We also apply the PCMM to measure

complexity of a Navy software acquisition program.

In general, traditional project management practices encourage linear thinking and

plenty of structure and control. Complex projects are different from traditional projects in

a variety of ways, including:

• Project size,

• Project cost,

• Scope,

• Deliverables,

• Uncertain requirements,

• Multiple locations across multiple time zones,

• Large virtual teams, and

• Numerous complex interactions.

Complex projects are usually large in scope, and the initial statement of work is

often only partially complete. For example, research and development (R&D) projects are

complex because project teams are not 100 percent sure where the project is leading toward

102

something meaningful, and they do not know what the project will cost nor if and when

they will achieve something useful in the project. As a result, large, complex projects often

have large cost overruns and schedule slippages. For instance, the Denver International

Airport was a complex, huge construction project, and it had significant construction cost

overruns (about $58.4 million higher than the original budget) and schedule slippages

[188]. To manage risk of schedule slippage and budget overruns in meeting the necessary

project deliverables, program managers need to measure project complexity.

1. Project Complexity Measurement Model (PCMM)

The PCMM consists of six complexity metrics derived from four major types of

project complexity discussed in previous section.

a. Measure of Number of Personnel Required for the Development Effort

A rule of thumb of cost in engineered systems is to allocate 15% of total program

effort to systems engineering [189], [190]. One way to estimate the number of personnel

required for the development effort is to use the COSYSMO [24] for an estimate of how

long and how many people it takes to complete the project. The amount of person-month

required for a project (PM) is estimated as follows [24]:

𝑃𝑃𝑃𝑃 = (𝐴𝐴)(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝐸𝐸 ∏ (𝐸𝐸𝐸𝐸𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 (3.1)

where PM denotes effort “in person-month” for a formal schedule [24], “A denotes a

calibration constant derived from historical project data, size denotes the summation of the

weighted four size drivers (requirements, interfaces, algorithms, use cases)” [24], E denotes

the efficiency factor, “n denotes the number of cost drivers, and EMi denotes effort factor

for the ith cost driver (i.e., requirements understanding, technical risk, and process

capability)” [24].

b. Defect Density Measure

The defect density measure (DDM) is an indicator of product quality, progress, and

productivity. It is defined as follows:

103

DDM = (𝑁𝑁𝑁𝑁𝑖𝑖) / (P𝑆𝑆𝑖𝑖) (3.2)

where NDi denotes the weighted average number of defects during the ith period, i is

measured by months, and P𝑆𝑆𝑖𝑖 denotes the project size at the ith period, which is measured

by KLOC for software projects.

c. Organizational Complexity Measure

The organizational complexity measure is defined as an index function (IF) [157],

IF = �∑ (𝑤𝑤𝑖𝑖𝑖𝑖)(𝑓𝑓𝑖𝑖𝑖𝑖)/(5𝐹𝐹𝑛𝑛
𝑖𝑖𝑖𝑖=1)� (3.3)

where wi,j denotes a factor of importance of the communications between two nodes i and

j [157], fij denotes the frequency of the communications between two nodes i and j, F

represents the total number of communications between two nodes i and j, and n denotes

the number of organizations involved in the communications [157]. Note that the term of

5F is a normalized factor of both frequency and importance of the communications. The

range of IF is between 0 and 1. While a zero value of IF has no contribution to the

complexity, a value of one in IF means a maximum contribution to the organizational

complexity [157].

We define frequency as the number of times that an organizational unit sends

information to another organizational unit during the period of the development cycle,

which is measured by weeks. We define level of importance based on how important the

information flow is to the organizational unit. We use a Likert scale [32] of 1 to 5 to map

the level of importance in information flow as shown in Figure 8.

104

Figure 8. Likert scale. Source: [32].

d. Geographical Distribution of Teams Measure

The geographical distribution of teams measure (GD) is defined as follows:

GD = (𝑙𝑙 + 𝑡𝑡 + 𝑠𝑠) (3.4)

where l denotes the total number of locations of all organizational units, t denotes the total

number of time zones of all organizational units, and s denotes the total number of sites of

all organizational units.

e. Requirements Volatility Measure

The requirements volatility measure (RVM) is defined as follows:

RVM = (CRi) / (BR) (3.5)

where CRi denotes the number of changes in requirements (new requirements,

modifications of requirements, and deletions of requirements) during the ith period, i

denotes each release in months, and BR denotes the baseline of the software release, which

is measured by the number of requirements.

f. Number of Different Job Position Types

The number of different job position types (JPT) is defined as follows:

JPT = (∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1) (3.6)

where pi denotes the number of job position type identified in the ith organizational unit

and n denotes the total number of organizational units in the project.

105

2. Acquisition of Test Data to Perform the Complexity Measurements

Not all of the PCMM metrics can be measured at the beginning of the project. In

fact, two of the six measures of the PCMM depend on having test data to compute the

values of complexity. To resolve this issue, project managers can use the project plan of

the previous project or a project before with a similar size and make certain assumptions

on the current project regarding the levels of difficulty in the implementation of system

requirements, interfaces, algorithms, and use cases. With these assumptions, the project

manager can compute the complexity values of four PCMM measures: (1) the number of

personnel required for the development effort, (2) organizational complexity, (3)

geographical distribution of teams, and (4) the number of different types of job positions.

The PCMM measure of defect density depends on having test data. This issue of

not having test data to measure defect density can be mitigated by relying on the

experiences of the subject-matter experts on the history of the project and leveraging

project data from the previous project or from a project before with a similar size for insight

of the current project. The project manager may need the testers to run some simulations

of the system to obtain test data. In some cases, the project manager can also obtain the test

data after the testers completed their initial tests during the development phase, which can

occur in a few months after the project started.

The project manager can estimate the overall defect density of the project in the

beginning of the project based on the previous project data or data of projects of a similar

size and allocate at least 10% of project reserves to cover the residual risks in the project.

Furthermore, the project manager can monitor the number of changes request and

implement configuration management control.

The PCMM measure of requirements volatility also depends on having data after

the project has gone through a period of development. Similarly, this issue of not having

data beforehand can be mitigated by leveraging the requirement traceability reports from

the previous project or from a project before with a similar size for insight in the current

project. The project manager can schedule peer reviews on the software requirement

106

specifications (SRS) earlier in the development phase and establish an initial requirements

traceability report of the project.

In addition, the project manager can estimate the overall requirements volatility of

the project based on the previous project data and allocate at least 10% of project reserves

to cover the residual risks in the project. Furthermore, the project manager can control the

number of requirements change during the development period by the configuration control

board.

3. Methodology of applying the PCMM to Assess Project Complexity

We introduce a complexity study method (CSM) to assess project complexity. This

method involves five steps as shown in Figure 9.

Figure 9. CSM for applying the PCMM to complex projects

In step 1 of the CSM, we review the SoI project data from the project plan and

develop the project profile. The work of reviewing the project data requires studying and

107

identifying key aspects of project attributes and characteristics. For example, program

managers strategically seek to determine the following:

• Whether or not any organizations have developed similar systems before,

• Whether system quality is measurable,

• The number of organizations, users, and stakeholders involved,

• The kind of technology used (hardware and software),

• The number of detailed design documents and use cases,

• The number of functional requirements, conflict requirements, and

inadequate requirements,

• Whether control is decentralized and distributed across physical systems

and cyber space, and

• Known risks and future opportunities.

We follow step 2 of the CSM. The outcome of this step is a project profile as shown

in Figure 10 that identifies key elements of system characteristics and important factors

that affect project cost, schedule, performance, and risk. In step 3 of the CSM, program

managers use this project profile to analyze and to select other known program parameters

and historical data for making certain assumptions and decisions related to the complexity

profile for the project. Figure 10 presents the contents of the SoI project profile.

108

Figure 10. Contents of an SoI project profile

With a project profile, the program manager performs step 4 of the CSM to assess

the degree of complexity of the SoI project. For instance, as part of measuring defect

density in a software project, program managers need both the number of defects and LOC

for a release. Because program managers do not have the data until they finish building the

product, they have to rely on the historical data of similar projects. They have to find a

similar project in terms of project size, project duration, and number of functional

requirements from an in-house project repository system (e.g., Microsoft SharePoint and

pragma Systems processMax). A repository system contains many project artifacts such as

test reports, decision memos, review documents, project metrics, use cases, and detail

design documents. Program managers obtain the historical data from test metrics derived

from a monthly test report. Test metrics often include the date, LOC, and the number of

cumulative defects and test hours for each release in each month. As part of managing the

quality of a software project, the test lead often collects test data from testers and then

generates test metrics monthly according to the test plan. He or she submits test metrics to

109

program managers for monthly review and trend analysis. The test lead also posts test

metrics on an in-house project repository system such as Microsoft SharePoint as part of

the project archive process. Hence, with the available data from past programs, program

managers can measure defect density quite easily. Figure 11 shows the steps to develop a

project complexity profile using the PCMM.

Figure 11. Steps to develop a project complexity profile using the

PCMM

Once we develop a project complexity profile using the PCMM, we follow step 5

of the CSM and identify potential opportunities to reduce project risks.

To demonstrate the PCMM, we analyze a Navy software development project. This

project uses an evolutionary development method in which the program delivers the

software in increments known as “blocks.” In this case, we designate this project as the B1

Project. As indicated in step 6 of Figure 6, we analyze the project data and create the project

profile. Table 16 shows the B1 Project profile derived from the empirical project data. The

project data shown in Table 16 are available when the project starts.

110

Table 16. B1 Project profile

Project Property Value Source of Information

Yearly Budget $3 million ($4.5 mil/1.5 years) Project plan

Team Size 20 Project plan

Duration of the development
phase

18 months (1.5 years) Project plan

Baseline Requirement (BR) 1,946 requirements (at project
start) Requirements traceability

report (RTR)

Number of requirements at
the end of the project

1,721 requirements RTR

Number of Change Requests
(CRs)

528 CRs (151 new, 1
modification, 376 deletions) RTR

Number of “nominal”
requirements

344 requirements (20%) Applying the 80–20 rule that
is based on the interview of
program managers of
previous programs

Number of “easy”
requirements

1,377 requirements (80%) Applying the 80–20 rule that
is based on the interview of
program managers of
previous programs

Understanding of
requirements

high Project plan

Technical Risk nominal Project plan

Process Capability nominal Project plan (CMMI level 3
[191])

Number of External Interfaces 2 (all “easy”) IDD

Number of Critical
Algorithms

1 (“nominal”) Software design document
(SDD) and project plan

Number of use cases 32 (all “easy”) Use case documents and test
plan

Number lines of code (LOC) 576,500 Build report (SLOC count)

111

In the following sections, we follow the steps outlined in Figure 11 and apply them

to the B1 Project to demonstrate the method to measure project complexity.

a. Measure of Number of Personnel Required for the Development Effort

As noted in Table 9 of Chapter II, the COSYSMO contains 14 cost drivers. The

effort multiplier ratio (EMR) represents the influence on the systems engineering effort.

The four most influential cost drivers in the COSYSMO, which have high EMR values,

are the following: (1) requirements understanding, (2) architecture understanding, (3) level

of service requirements, and (4) technology risk. The least influential cost drivers, which

have lower EMR values, are as follows: documentation, number of installations, number

of recursive levels in the design, and tools support. Early in the system life cycle, the

sources of data for some cost drivers may not be available to the project manager. For

software projects such as the B1 Project, the set of cost drivers that significantly drive the

systems engineering cost are requirements understanding, technology risk, and process

capability, which is shown in Table 17. The data for these three cost drivers are available

from the project plan when the project starts.

Table 17. Rating values for cost drivers of systems engineering. Adapted
from [24].

 Very
Low

Low Nominal High Very High Extra High EMR

Requirements
understanding

1.87 1.37 1 0.77 0.60 3.12

Technology
risk

0.67 0.82 1 1.32 1.75 2.61

Process
capability

1.47 1.21 1 0.88 0.77 0.68 2.16

Requirements understanding is defined as the level of comprehension and

familiarity of the system requirements by the development team [24]. Based on his or her

work experiences, the project manager assesses the level of familiarity of the system

112

requirements of the development team. The overall degree of understanding of these

requirements has an effect on the amount of effort needed for SE.

Technical risk is characterized as the possibility of requiring more SE effort due to

immaturity and obsolescence of the technology implemented into the system [24]. This is

based on a subjective assessment of the system from the project manager.

Process capability is defined as the ability of the project team to follow defined

processes with a certain degree of effectiveness [24]. The Capability Maturity Model

Integration (CMMI) [191] is one of many published process models that is used in rating

process capability.

The four size drivers that affect the system engineering effort are the number of

requirements, number of major interfaces, number of critical algorithms, and number of

use cases [24].

To demonstrate the PCMM and associated methods to measure structural

complexity, we use the data from the B1 Project profile (Table 16), and the relative weights

for size drivers shown in Table 8 of Chapter II to calculate the COSYSMO size [24] for

the B1 Project. The results are showed in Table 18.

Table 18. Calculation of COSYSMO size [24] for the B1 Project. Adapted
from [24].

COSYSMO size’s driver B1 Project software size

Requirements (1,377 easy requirements)(0.5) = 688.5
(344 nominal requirements)(1) = 344
Total = 688.5 + 344 = 1,032.5

Interfaces (2 easy interfaces)(1.7) = 3.4

Algorithms (1 nominal algorithm)(6.5) = 6.5

Operational Scenarios (use
cases)

(32 easy use cases)(9.8) = 313.6

Total COSYSMO size =
requirements + interfaces +
algorithms + user cases

1,032.5 + 3.4 + 6.5 + 313.6 = 1,356

113

Similarly, we calculate the effort weight factor from Tables 16 and 17 for the B1

Project as shown in Table 19.

Table 19. The B1 Project’s effort weight factor. Adapted from [24].

Effort weight factor Value

Requirements understanding = high 0.77

Technical risk = nominal 1

Process capability = nominal 1

The B1 Project’s effort weight factor =
(requirements understanding)(technical
risk)(process capability)

(0.77)(1)(1) =
0.77

As described in Chapter II, in a typical software development project, the value of

the COSYSMO calibration factors A is 0.325 [24], and the default value of E is 1 [24]. We

use Equation (3.1) to calculate the amount of person-month required for the B1 Project and

present the results in Table 20.

Table 20. The B1 Project development effort

B1 Project development effort Value

Effort required to build the system = PM =
(calibration factors)(effort factor)(software
size)

(0.325)(0.77)(1,356) =
339.34 person-month

B1 Project development effort = (effort
required to build the system) / (duration of
the development phase)

339.34 / 18 = 18.85
people

Table 20 shows that the B1 Project requires 18.85 people to develop the system in

18 months. The project personnel measure of 18.85 people is very much in line when

compared to the project team size of 20 listed in the B1 Project profile (Table 16). As noted

114

in Chapter II, the average annual salary of a software developer is $145,932. The project

plan indicates that the estimated yearly project cost is $3 million. If we divided the annual

project cost by the average yearly salary of a software developer, we obtain approximately

20 developers that could be hired per year to work on this project. This result demonstrates

that the PCMM and associated methods to measure the number of personnel required for

the development effort is analytical and accordant with the measure of structural

complexity defined in terms of size and cost drivers for an engineering project.

b. Defect Density Measure

According to COSYSMO [24] and several sources from literature [192], [193], we

define project size in terms of the number of LOC, the number of function points, the

number of requirements, the number of documentation pages, and the number of test hours.

In a software project, high defect density indicates poor product quality, difficult or poor

project attributes, and uncertainty of the system [165]. The patterns of requirement changes

over time have substantial influence on defect density because software developers must

make changes in the code to reflect changes in requirements or to fix bugs in a software

module [159], [165]. For example, if the requirement changes occur close to the software

release date, this will cause the resulting software to have a higher defect density [159].

Therefore, the product quality will likely go down. High defect density also has a

significant impact on the development cost [161]. Fixing software defects after releasing

the product is expensive. Project managers and system developers are interested in this

measure for project management, risk assessment, and potential assessment of project

complexity.

Moreover, knowing the relationship between complexity and defect density is very

useful to project managers. Alfadel et al. [194] demonstrate that two software complexity

metrics, cyclomatic complexity [136] and Halstead complexity [139], have a linear

relationship with defect density metric.

In step 7 of Figure 6, test data to measure defect density may not be available in the

early phase of system life cycle due to the evolutionary nature of systems. In that case, test

data of previous acquisition programs must be obtained or derived in order to estimate the

115

defect density of the project. The project manager may need the testers to run some

simulations of the system to obtain test data. In some cases, the project manager can also

obtain the test data after the testers completed their initial tests during the development

phase, which can occur in a few months after the project started.

To illustrate the PCMM and associated methods to measure defect density for the

B1 Project, we analyze the test data. In this case, the project has been in the development

phase for 18 months. Testers has tested the software during this period. Thus, the test data

is available to calculate the defect density for this project. The project plan indicates that

the B1 Project is programmed using the C# object-oriented programming language. We

obtain the data for this measure for release 0 (baseline) through release 18 (18 months)

from a test metric report via Microsoft SharePoint (Table 21). In Table 21, the number of

defects for a release (NDi) is the cumulative number of defects unresolved at the end of the

ith release. The defect density (DD) is calculated using Equation (3.2).

Table 21. B1 Project defect density during the 18-month period

Release (i) Month Cumulative defects
unresolved (NDi)

KLOC DD = (NDi)/(KLOC)

0 Oct. 2014 19 512.727 0.037
1 Nov. 2014 33 512.727 0.064
2 Dec. 2014 42 512.782 0.082
3 Jan. 2015 50 512.782 0.097
4 Feb. 2015 55 512.837 0.107
5 Mar. 2015 56 512.862 0.109
6 Apr. 2015 56 512.862 0.109
7 May 2015 56 535.873 0.104
8 Jun. 2015 38 552.103 0.069
9 Jul. 2015 47 552.103 0.085
10 Aug. 2015 67 552.103 0.121
11 Sep. 2015 84 552.213 0.152
12 Oct. 2015 90 575.249 0.156
13 Nov. 2015 103 575.249 0.179
14 Dec. 2015 106 575.397 0.184
15 Jan. 2016 119 575.474 0.207
16 Feb. 2016 126 575.745 0.219
17 Mar. 2016 134 576.0 0.233
18 Apr. 2016 185 576.5 0.32

116

Figure 12 displays a plot of defect density against the release version number with

release 0 being the start of the new project (baseline). From Figure 12, the defect density

(NDi/KLOC) is growing fairly steady throughout the development cycle. After 18 months

in the development phase (April 2016), the project averaged 0.32 defects per KLOC, which

is within the industry standard limit of less than 3 [160]. In general, we expect that an

increase in test hours will yield higher defect density during the development phase because

more defects are discovered. As shown in Figure 12, the “NDi//KLOC” increases slightly

at the end of the development life cycle because testers have increased their test hours and

discovered more bugs before the release of the software. This finding confirms the previous

studies [159], [165] showing that the patterns of requirement changes over time have

substantial influence on defect density. Hence, the PCMM and associated methods to

measure defect density is consistent with the measure of structural complexity defined in

terms of size and cost drivers for systems engineering.

Figure 12. B1 Project defect density metric

117

c. Organizational Complexity Measure

Broadly speaking, we observe that organizational complexity exists in many DoD

acquisition systems. Interactions among multiple organizations and stakeholders in a

development team can contribute to organizational complexity. A temporary multi-

organizational structure in a program consists of several organizational units that are

responsible for funding, managing, and executing program tasks. We define an

organizational unit as a distinct group, either internal or external of a company, with a set

of roles in the project. These roles are responsible for managing the delivery of work,

services, and resources to the project. For example, a contractor unit is an organizational

unit that is responsible for delivery of work and services to the project. A resourcing unit

(e.g., PMA) is an organizational unit that is responsible for providing funding to the project.

A high organizational complexity measurement generally reflects the following

factors [88], [157]:

• Poor channels of communication,

• Poor generation and use of information for decision-making,

• Poorly defined project roles,

• High interdependencies between roles,

• A large number of project stakeholders,

• Poor relationships between the project parties, and

• Difficult relationships with the project sponsor.

A combination of these factors contributes to organizational complexity. In a multi-

organizational structure, one way to measure organizational complexity is to analyze the

relationships between organizational units. Connectedness and interdependence between

organizational units are two primary relationships [101], [102]. Connectedness is the

number of units in which one unit directly connects to or interacts with other units. Two

connected units may, or may not, interact. They may exchange information via networks.

Interdependence is the degree to which one unit’s actions control or influence another

unit’s actions and outcomes, and vice versa [28].

118

To demonstrate the PCMM to measure organizational complexity in the multi-

organizational project, we analyze the B1 Project organizational structure from the project

plan. The project plan indicates nine organizational units and lists their responsibilities

(Table 22). The data shown in Table 22 are available when the project starts.

Table 22. The B1 Project organizational units and their responsibilities

Organizational
Unit

Responsibilities

1. Program
Management
Activity (PMA)

• Provides funding to programs such as a capability
development program (CDP).

• Decides programs priorities.
• Decides programs hardware and software.

2. Integrated
Product Team
(IPT)

• Provides lab spaces and network infrastructures to
projects.

• Decides organizational processes.
• Submits CDP.
• Manages contracts.
• Mitigates program risks.

3. Project Team
(PT)

• Manages and executes project requirements.
• Participates in critical design review and senior

management review.
• Provides personnel work status and project

metrics to IPT.

4. Business
Financial
Management
(BFM)

• Sends, receives, and processes funding
documents.

• Provides labor and materials expenditures to the
project team.

5. Contractor
Unit

• Provides work and services to the project.

6. Software
Distribution
Unit (SDU)

• Packages and distributes software to trainers, to
the DT/OT unit, and to the fleet.

7. Trainer/Fleet
users Unit (T/F

• Trains fleet users on how to use fleet software.

119

Organizational
Unit

Responsibilities

Unit) • Reports software anomalies to the project team.

8. Contracting
Unit (CU)

• Provides statements of work and manages
contracts.

9. DT/OT Unit • Performs developmental and operational tests on
software.

As illustrated in Figure 13, we define a context diagram convention. We use this

diagram convention in the engineering projects throughout this dissertation. The diagram

convention is defined as follows: (1) The single arrow-line points from the sending unit to

the receiving unit; (2) The description above the single arrow-line represents the flow of

information from one unit to another unit; (3) The first number in the parentheses indicates

the frequency of the communications and the second number represents the value of

importance of the communications. When we measure organizational complexity, we use

the context diagram convention to represent the two important relationships

(connectedness and interdependence) in terms of the flow of information of the

communications between organizational units. These data are available when the project

starts.

Figure 13. Context diagram conventions used in this dissertation

120

Figures 14, 15, 16, and 17 represent the nine organizational units (nodes) and their

relationships (links) involved in the B1 Project. We use these figures to compute the overall

organizational complexity of the B1 Project.

As shown in Figure 14, IPT has three links to PMA. First, IPT sends the program

status 36 times to PMA during the first 18 months of the project, and the level of importance

of each communication is 3. Second, IPT sends the program funding status 18 times to

PMA during the project, and the level of importance of each communication is 3. Third,

IPT submits CDPs 1 time to PMA during the first 18 months of the project, asking funding

for some additional capabilities of the program, and the level of importance of the

communication is 5.

In addition, PMA has five links to the IPT. First, PMA sends CDP decisions 1 time

to IPT during the 18-month project, and the level of importance of the communication is

5. Second, PMA provides CDP funding documents 6 times to IPT during the first 18

months, and the level of importance of each communication is 3. Third, PMA sends

program priorities and statuses 18 times to IPT, and the level of importance of each

communication is 1. Fourth, PMA sends hardware and software requirements 1 time to

IPT, and the level of importance of the communication is 5. Fifth, PMA provides the

DT/OT report 1 time to IPT during the 18 months project, and the level of importance of

the communication is 4.

121

IPT PMA

Project
Team (PT)

DT/OT
Unit

Critical design review (1:2)

Senior management review (6:2)

Developmental test status (1:2)

Operational test status (1:2)
CDP decision (1:5)

Program funding status (18:3)

CDP funding documents (6:3)

Hardware and software decisions (1:5)

DT/OT report (1:4)

Program operations status (36:3)

Program priorities and statuses (18:1)

CDP submission (1:5)

Figure 14. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between PMA and IPT, between PMA and PT, and between PMA

and the DT/OT unit

Figures 15, 16, and 17 show the rest of the nodes, links, communication

frequencies, and levels of importance of the communications between the organizations of

the B1 Project.

Project
Team
(PT)

IPT

BFM

Contracting
Unit (CU)

Project status (36:1)

Project metrics (18:2)

Personnel work status (36:2)

Contracts Status (18:1)

Project personnel status (36:3)

Contracts status (18:2)

Request for proposal status (18:2)

Project funding status (18:1)

Funding document status (36:1)

Labor expenditures (36:2)

Materials expenditures (36:2)

Program funding status (18:3)

Contracts approval (1:5)

Statement of work status (36:2)

Lab operations decision (18:2)

Figure 15. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications

122

between IPT and PT, between IPT and CU, and between IPT and
BFM

T/F Unit

Project
Team (PT)

BFM

Contracto
r Unit

Software anomaly report (18:3)

Fleet requirements priority report (2:3)

EDT schedule (2:2)

Software submission schedule (18:2)

Software distribution status (6:1)

Work performed status (36:2)

Bill hours report (36:2)

Labor hour expenditure status (36:2)

Materials expenditure status (36:2)SDU

Figure 16. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between PT and the T/F unit, between PT and SDU, between PT

and BFM, and between PT and the contractor unit

T/F Unit

SDU

Software distribution status (18:2)

Software distribution status (18:2)
DT/OT

Unit

BFM

Contractor
Unit

Contract funding status (18:2)

Contracting
Unit (CU)

Contract fulfillment status (1:2)

Figure 17. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between SDU and the T/F unit and between SDU and the DT/OT

unit as well as the communication frequencies and levels of
importance of the communications between the contractor unit and

BFM and between the contractor unit and CU

123

In sum, we identified nine organizational units and their patterns of information

flow in the B1 Project. We use the patterns of information flow, along with that

information’s frequency and importance, to characterize connectedness and

interdependence between organizational units. Table 23 shows the N2 chart of the nine

organizational units and 40 links in the B1 Project.

Table 23. N2 chart of the B1 Project

 IPT PMA Project
Team

BFM Contracting
Unit

T/F
Unit

DT/OT
Unit

Total

1. IPT 3 3 3 1 10
2. PMA 5 5
3. Project Team 3 2 5
4. BFM 2 2 4
5. Contracting
Unit

3 3

6. Contractor Unit 2 1 1 4
7. SDU 2 1 1 4
8. T/F Unit 3 3
9. DT/OT Unit 2 2
Total links 13 7 12 4 2 1 1 40

Tables 24 and 25 present the frequencies and levels of importance of the

communications in the B1 Project during the 18 months. We use these empirical data to

measure organizational complexity between organizational units. The combination of

frequency and the level of importance of communications between organizational units can

determine how much effect the patterns of the communications have upon project

complexity.

Table 24. Frequencies of the communications during the 18 months in the B1
Project

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

1. IPT 1. Program operations
status

 36

124

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

2. Program funding
status

 18

3. CDP submission 1
1. Contracts status 18
2. Lab operations status 18
3. Project personnel
status

 36

1. Labor expenditures 36
2. Materials
expenditures

 36

3. Program funding
status

 18

1. Contracts approval 1
Subtotal 55 72 90 1

2. PMA 1. CDP decisions 1
2. CDP funding
document

6

3. Program priorities
status

18

4. Hardware/software
decisions

1

5. DT/OT report 1
Subtotal 27

3. Project
Team (PT)

1. Project status 36
2. Project metrics 18
3. Personnel work status 36
1. Critical design review
status

 1

2. Senior management
review

 6

Subtotal 90 7
4. BFM 1. Project funding status 18

2. Funding document
status

36

1. Labor hour
expenditure status

 36

2. Materials expenditure
status

 36

Subtotal 54 72
5.
Contracting
Unit (CU)

1. Contracts status 18
2. RFP status 18
3. Statement of work
status

36

Subtotal 72

125

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

6. Contractor
Unit

1. Work performed
status

 36

2. Bill hours report 36
1. Contract funding
status

 18

1. Contract fulfillment
status

 1

Subtotal 72 18 1
7. T/F Unit 1. EDT schedule 2

2. Software anomaly
report

 18

3. Fleet requirements
priority report

 2

Subtotal 22
8. DT/OT
Unit

1. DT status 1
2. OT status 1
Subtotal 2

9. SDU 1. Software submission
schedule

 18

2. Software distribution
status

 6

1. Software release
status

 18 18

Subtotal 24 18 18
 Total 242 64 262 108 2 18 18

Table 25. Levels of importance of the communications in the B1 Project

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

1. IPT 1. Program operations status 3
2. Program funding status 3
3. CDP submission 5
1. Contracts status 1
2. Lab operations status 2
3. Project personnel status 3
1. Labor expenditures 2
2. Materials expenditures 2
3. Program funding status 3

126

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

1. Contracts approval
decisions

 5

2. PMA 1. CDP decisions 5
2. CDP funding documents 3
3. Program priorities status 1
4. Hardware/software
decisions

5

5. DT/OT report 4
3. Project
Team (PT)

1. Project status 1
2. Project metrics 2
3. Personnel work status 2
1. Critical design review status 2
2. Senior management review 2

4. BFM 1. Project funding status 1
2. Funding document status 1
1. Labor hour expenditure
status

 2

2. Materials expenditure status 2
5.
Contracting
Unit (CU)

1. Contracts status 2
2. RFP status 2
3. Statement of work status 2

6.
Contractor
Unit

1. Work performed status 2
2. Bill hours report 2
1. Contract funding status 2
1. Contract fulfillment status 2

7. T/F Unit 1. EDT schedule 2
2. Software anomaly reporting 3
3. Fleet requirements priority
status

 3

8. DT/OT
Unit

1. DT status 2
2. OT status 2

9. SDU 1. Software submission
schedule

 2

2. Software distribution status 1 2 2

From Equation (3.3) and Tables 24 and 25, we calculate the index function of each

organizational unit. Table 26 presents the number of contributions from each

organizational unit to the organizational complexity. Over the duration of the development

phase, the overall organizational complexity is the sum of all contributions from the

organizational units. In this example, we sum up the contributions of organizational

complexity from the nine organizational units during the period of 18 months and obtain a

127

value of 7.71. This means that the organizational complexity of each organizational unit

has contributed to some degrees of an adverse effect upon the B1 Project in terms of

schedule delay and cost overrun due to high interdependencies between organizational

roles and the large number of information flows for communication and decision-making.

The result of this example is consistent with the results from previous works found in the

related literature [28], [157].

In addition, as discussed in Chapter II, Schwandt’s [158] weight factor of a size

measure is 0.61. The organizational complexity that is based on the structural size of a

project team is 5.49 (the size of a project team, which is 9, times 0.61). In the B1 Project,

we have computed the organizational complexity as 7.71, which is about 40% above

Schwandt’s method [158] of estimating organizational complexity based on the size of an

organization. This difference can be explained by the heterogeneity of behaviors (i.e., the

patterns and volumes of communication and the levels of importance of the information in

the communications) of the nine organizational units.

The uncertainty and ambiguity in terms of the absence or presence of information

within and between each organization required to perform the tasks also contribute to the

differences of the organizational complexity in the PCMM. Hence, the PCMM and

associated methods to measure organizational complexity is compatible with Schwandt’s

study [158] on organizational complexity in terms of size driver (e.g., the number of

organizational units) for systems engineering.

128

Table 26. Organizational complexity of each organizational unit in the B1
Project

Organizational
Unit

IF Total

1. IPT interacts
with PMA, PT,
BFM, and CU.

PMA:
[(3)(36)+(3)(18)+
(5)(1)]/[(5)(55)]
= 0.607

PT:
[(1)(18)+(2)(18)+
(3)(36)]/[(5)(72)]
= 0.45

BFM:
[(2)(36)+(2)(3
6)+(3)(18)]/[(
5)(90)] = 0.44

CU:
[(1)(5)]/
[(5)(1)]
= 1

2.49

2. PMA
interacts with
IPT.

IPT: [(5)(1)+(3)(6)+(1)(18)+(5)(1)+(4)(1)]/[(5)(27)]=0.37 0.37

3. PT interacts
with IPT and
PMA.

IPT:
[(1)(36)+(2)(18)+(2)(36)]/[(5)(9
0)] = 0.32

PMA: [(2)(1)+(2)(6)]/[(5)(7)] =
0.4

0.72

4. BFM
interacts with
IPT and PT.

IPT:
[(1)(18)+(1)(36)]/[(5)(54)]= 0.2

PT: [(2)(36)+(2)(36)]/[(5)(72)]
= 0.4

0.6

5. CU interacts
with IPT.

IPT: [(2)(18)+(2)(18)+(2)(36)]/[(5)(72)] = 0.4 0.4

6. Contractor
Unit interacts
with PT, BFM,
and CU.

PT:
[(2)(36)+(2)(36)]/[(5)(
72)] = 0.2

BFM:
[(2)(18)]/[(5
)(18)] = 0.4

CU: [(2)(1)]/[(5)(1)] = 0.4 1

7. T/F Unit
interacts with
PT.

PT: [(2)(2)+(3)(18)+(3)(2)]/[(5)(22)] = 0.581 0.581

8. DT/OT Unit
interacts with
PMA.

PMA: [(2)(1)+(2)(1)]/[(5)(2)] = 0.4 0.4

9. SDU interacts
with PT, T/F
Unit, and
DT/OT Unit.

PT:
[(2)(18)+(1)(6)]/[
(5)(24)] = 0.35

T/F Unit:
[(2)(18)]/[(5)(18)
] = 0.4

DT/OT Unit:
[(2)(18)]/[(5)(18)] = 0.4

1.15

Overall
Complexity

 7.71

Table 26 shows that IPT has the greatest number of tasks and communications

among the organizational units. It has the highest organizational complexity (IF = 2.49) of

the overall complexity of 7.71 among project organizations. PMA has the least number of

tasks and communications, which, in turn, has the lowest organizational complexity (IF =

0.37) of the overall complexity among project organizations. The data from this example

129

show a positive correlation between organizational complexity and the number of

organizational units and tasks involved in the engineering project. In short, the PCMM and

associated methods to measure organizational complexity have built upon earlier work by

Baccarini [14] and Schwandt [158] by identifying the specific individual factors (i.e., the

number of interdependent organizational units and the frequency and importance of their

communications) that contribute to organizational complexity.

d. Geographical Distribution of Teams Measure

The geographically dispersed of organizations can be challenging for the ongoing

relations with business partners at various sites. Because of the differences in time zones,

business and cultural norms, native language, and technology used for communication,

geographic barriers can affect the project requirements. The causes of complexity mainly

arise from lack of system level integration, lack of control over the dispersed teams, the

incoherence of the teams, and communication issues.

To illustrate the PCMM and associated methods to measure geographical

distribution of teams, we analyze the B1 Project organizational structure in the project plan.

The project plan indicates that the 9 organizational units are located in 13 sites and situated

in 4 different cities across 2 time zones (Table 27). These data are available when the

project starts. Using Equation (3.4), we can calculate the degree of geographical

distribution of teams (GD) by adding up the number of sites (s), locations (l), and time

zones (t) as shown in Table 27. The result is the GD measurement of 19 (4 + 13 + 2). The

Allen Curve [115] shows that communication decreases exponentially as distance increases

and becomes stable at around eight meters. As the distance increases beyond eight meters

between two collaborative teams, there is only a 5% probability of communication once a

week among these two teams [119]. As shown in Table 27, PT, the contractor unit, and the

DT/OT unit have two to three sites. These sites are located more than eight meters apart.

This means that according to Allen [119], these three organizations have a 5% probability

to communicate once a week with other organizational units.

In an ideal situation for team communications where we assume all nine

organizational units are situated at one site and located in one city in one time zone, the

130

degree of geographical distribution of teams is calculated as 3 (1 + 1 + 1). Comparing this

value with the value of GD of the B1 Project, it shows that the B1 Project is about 6.3 times

(19 divided by 3) less likely to communicate than in the ideal situation. Nevertheless, a

typical Navy software acquisition program with a $5 million annual budget usually have a

similar number of organizational units as the B1 Project because the IPT approach to

software development usually adopts the functional organizations for a specific purpose of

delivering a product for an external or internal customer [197]. Essentially, degrees of

collaboration between teams in the B1 Project depend much on the number of locations

and sites. Hence, the PCMM and associated methods to measure geographical distribution

of teams are reasonable and applicable to a typical Navy software acquisition program that

has an annual budget of less than $5 million.

Table 27. Geographical distributions of teams in the B1 Project

 Number of Sites Location Time Zone

PMA 1 East Coast city Eastern time

IPT 1 Southwest city 1 Pacific time
PT 3 Southwest city 1 Pacific time

BFM 1 Southwest city 1 Pacific time

CU 1 Southwest city 1 Pacific time
Contractor Unit 2 Southwest city 1 Pacific time

T/F Unit 1 Northwest city Pacific time
DT/OT Unit 2 East Coast city and

Southwest city 2
Eastern time and Pacific
time

SDU 1 Southwest city 1 Pacific time
Total 13 4 2

e. Requirements Volatility Measure

Requirements volatility indicates the level of risk associated with the huge changes

in system development effort, cost, and time as well as the quality of the product which

may result in project delay or possible project failure.

131

As explained in Chapter II, the requirements volatility measure is typically less than

1 [169], [170]. A number greater than one means that a greater number of requirements

have added, modified, or deleted than the number of requirements originally planned in the

release. In this case, the project has been in the development phase for 18 months. The

requirements lead has been tracking the requirements changes and provided the

requirements traceability report during this period. We obtain the data for this measure for

a given baseline from a requirements baseline report. As discussed in Chapter II, high

requirements volatility indicates uncertainty of the system and poor understanding of

environment and system [161], [166].

From the B1 Project profile (Table 16) and Equation (3.5), we calculate the value

of requirements volatility in the B1 Project. The overall requirements volatility of the B1

Project (i = total of 12 baselines measured by 18 months) is calculated as follows:

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵

=
528

1946
= 0.27.

The computed requirements volatility of the B1 Project is similar to the

requirements volatility of 0.36 in Latif et al.’s case study [195]. Compared to Stark et al.’s

studies [155] of 0.64 (the first two years of releases) and 0.3 (the last two years of releases)

for a typical small size of software project (annual budget of $5 million or less), the

calculated requirements volatility of the B1 Project also has a similar result. Table 27 shows

the B1 Project requirements metrics during the 18-month development phase. During an

18-month period, the B1 Project had 528 change requests (151 new, 1 modification, and

376 deletions) and 1,721 requirements (Table 28). In Figure 18, we provide a plot of

requirements volatility against the baseline version number with baseline 0 being the start

of this new project. From Figure 26, the requirement changes are fast in baseline 4,

indicating either uncertainty of the system or poor understanding of the environment and

system. The requirement changes slows down after baseline 5, indicating that the number

of changes is getting smaller. As stated in Equation (3.5), the rate of requirements volatility

depends on the total number of requirements changes. Furthermore, as shown in Figure 18,

requirement changes tend to decrease toward the end of the development life cycle. This

finding confirms Nurmuliani et al.’s [166] and Nurmuliani et al.’s [196] hypotheses that

132

requirements volatility tends to decrease toward the end of the development life cycle and

has a great impact on the development effort. Hence, the PCMM and associated methods

to measure requirements volatility are acceptable to a typical Navy software acquisition

program that has an annual budget of less than $5 million.

Table 28. B1 Project requirements metrics during the development phase (18
months)

 Requirement (CRi) BR = 1,946 requirements
Baseline (i) New Modification Deletion Total # of

requirements
Requirements

volatility =
(CRi)/(BR)

0 1,946 0
1 11 1,957 0
2 69 8 2,018 0.04
3 31 2,049 0.02
4 309 1,740 0.16
5 4 28 1,716 0.02
6 20 1 5 1,731 0.01
7 5 1736 0
8 6 3 1,739 0
9 22 1,717 0.01
10 1 1,718 0
11 1 1,717 0
12 4 1,721 0

Total 151 1 376

133

Figure 18. B1 Project requirements volatility

f. Number of Different Job Position Types

Using the material surveyed in the literature review of Chapter II, we know that

diversity in types is often associated with complexity. For example, different types of job

positions in interdependent organizational units are likely to foster differences in job

assignments and outcomes, and, therefore, increased complexity. Thus, we model the

number of different job position types in organizational units as diversity in types.

To demonstrate measurement of the number of different job position types in

organizations, we analyze the B1 Project organizational structure in the project plan. The

project plan indicates 44 different types of job positions. Table 29 lists the 44 different

types of job positions in the 9 organizations. Table 30 shows the responsibilities for each

job position type in the B1 Project. The data shown in Tables 29 and 30 are available when

the project starts.

134

Table 29. Job position types in the B1 Project

 Job Position Type

1. PMA a. Program manager
b. Executive officer
c. Logistics lead
d. Business operations manager

2. IPT a. IPT site lead
b. Military lead
c. Office manager
d. Chief systems engineer
e. Program-related engineering
lead

f. Lead technologist
g. International programs lead
h. Process improvement lead
i. Fleet help desk specialist
j. Training manager

3. PT a. Product lead
b. Project manager
c. Systems engineer
d. Design lead
e. Requirements lead
f. Programmer

g. Software installer
h. Test lead
i. Configuration manager
j. Product documentation lead
k. Standards compliance lead
l. Tester

4. BFM a. BFM lead
b. Financial analyst
c. Financial technician

5. CU a. Contracting officer
b. Contracting analyst
c. Contract specialist

6. Contractor
Unit

a. Contract representative
b. Site manager
c. Technical team lead

7. T/F Unit a. Fleet liaison
b. Trainer
c. Fleet representative

8. DT/OT Unit a. Lead software engineer
b. Information assurance specialist
c. Technical analyst

9. SDU a. Program analyst
b. Product integrity lead
c. Systems engineer lead

135

Table 30. Responsibilities for job position types in the B1 Project

Job Position Type Responsibility

1. Program manager Lead, plan, budget, and manage the acquisition
and execution of programs, interface with
international partners and foreign military sales
(FMS) customers.

2. Executive officer Coordinate and decide program’s funding and
priorities.

3. Logistics lead Coordinate and distribute hardware to various
programs at the PMA level.

4. Business
operations manager

Perform supervisory responsibilities associated
with the strategic planning, risk management,
and administrative and management activities
for various programs.

5. IPT site lead Direct, plan, budget, and manage the execution
of programs at the IPT level.

6. Military lead Serve as IPT site lead from the military chain
of command.

7. Office manager Provide credit card buys, maintain training
records and create reports for various data
calls.

8. Chief systems
engineer

Review, evaluate, coordinate, and monitor
programs at the IPT level.

9. Program-related
engineering lead

Coordinate and allocate funding for program-
related engineering and program-related
logistics.

10. Lead
technologist

Coordinate and execute capability
development across multiple product lines and
on solution development with other
competencies.

11. International
programs lead

Collaborate and coordinate with the defense
science and technology (DST) group and
foreign partners to develop new capabilities.
Provide support to FMS customers.

12. Process
improvement lead

Plan, review, and execute standards
compliance and process improvement policies
established by the IPT.

136

Job Position Type Responsibility

13. Fleet help desk
specialist

Provide help desk support to fleet users by
answering phone calls and responding to
emails from the fleet.

14. Training
manager

Plan, schedule, coordinate, and conduct
process improvement training.

15. Product lead Direct and lead development of project plans
including resource requirements, timelines,
priorities, and budget impact.

16. Project manager Coordinate, assess, and monitor software
development schedules, contracts, budgets, and
personnel of the B1 Project.

17. Systems
engineer

Analyze requirements, functional interfaces,
and functional architectures of the B1 software
project.

18. Design lead Provide technical guidance to the software
development team and is responsible for the
software architectures of the B1 Project.

19. Requirements
lead

Develop, review, analyze, and maintain
software requirements for the B1 Project.

20. Programmer Develop code and perform software integration
activities.

21. Software
installer

Develop software installation packages for
deployment.

22. Test lead Plan and manage all test-related functions
including test strategy, test plan development,
test execution and reporting, development of
personnel skills, and improvement of
processes.

23. Configuration
manager

Perform configuration management duties in
support of software releases. Develop and
maintain build scripts, operational procedures,
and internal documentation.

24. Product
documentation lead

Develop software user’s guide and technical
manuals.

25. Standards
compliance lead

Assess, review, and monitor process
compliance in each program.

137

Job Position Type Responsibility

26. Tester Test software and record software defects.

27. BFM lead Monitor programs for project management
requirements. Perform financial analysis and
reporting.

28. Financial analyst Provide requirement instructions related to
funding documents.

29. Financial
technician

Prepare, process, and reconcile funding
documents and related issues. Respond to data
calls and cost estimating.

30. Contracting
officer

Coordinate, implement, and monitor the
contract compliance program. Provide
technical advice and assistance in all areas of
contracted support services.

31. Contracting
analyst

Provide advice and assistance to the
contracting officer and program managers in
cost and schedule contractual management,
ensuring proper interpretations of reporting
requirements.

32. Contract
specialist

Negotiate sole source contracts and
modifications. Provide guidance to technical
personnel involved in the development of
contract packages.

33. Contract
representative

Maintain records of performance schedules
and work progress reports. Monitor contractor
performance and/or negotiate settlements.

34. Site manager Lead, plan, execute, and conduct analyses
concerning all aspects of services performed
by contract.

35. Technical team
lead

Serve as a supervisor of technical teams for
contracting work.

36. Fleet liaison Plan, coordinate, report, and execute fleet
requirements. Analyze and resolve fleet-related
issues.

37. Trainer Conduct operational software training to fleet
users. Test released software and report
software anomalies to product lead.

138

Job Position Type Responsibility

38. Fleet
representative

Work closely with project managers and
trainers in reviewing fleet requirements for the
program.

39. Lead software
engineer

Evaluate the effectiveness of DT/OT software
function in addressing operational and
information security requirements.

40. Information
assurance specialist

Evaluate, assess, analyze, and test software
systems to ensure compliance with information
assurance policies, instructions, and directives.

41. Technical
analyst

Assist lead software engineer to evaluate,
assess, analyze, and test DT/OT software.

42. Program analyst Interface with customers from multiple
technical teams and provide services required
by customers.

43. Product integrity
lead

Coordinate and distribute software to
customers from multiple technical teams
according to SDU release schedule and
distribution list.

44. Systems
engineer lead

Coordinate, assess, and monitor software
release schedule for a specific program within
the SDU.

Using Equation (3.6), we calculated JPT and obtain 44. The 44 job position types

interact and exchange information in many different ways that contribute to project

complexity. Some of the job positions support several projects and share the labor cost

among them. As compared to a typical Navy software acquisition program approach, the

IPT usually adopts functional roles similar to those found in a typical Navy software

acquisition program, as shown in the Table 29 [197]. These roles execute the project plan

and ensure that lower-level processes occur and products are created. Hence, the PCMM

and associated methods to measure the number of different job position types are sensible

to a typical Navy software acquisition program that has an annual budget of less than $5

million.

139

As shown in step 8 of Figure 6, we have applied the PCMM and created a

complexity profile for the B1 Project. In the next section, we present the complexity profile

of the B1 Project and provide an understanding of the impact that a given complexity value

is likely to have on engineered systems and projects.

4. B1 Project Complexity Profile

Using the PCMM, we have calculated the complexity values of the B1 Project.

Table 31 presents the complexity profile of the B1 Project.

Table 31. Complexity profile of the B1 Project

Complexity
Measure

PCMM
Value

Results from previous works and
conclusions drawn based on the
IPT-related literature

Number of
Personnel
required for the
development
effort (people)

18.85
people per
year

20 people per year for projects with
an annual budget of $3 million [151
–[153]

Defect density
(defects per
KLOC)

0.32 ≤ 3 [160]

Organizational
Complexity (IF)

7.71 5.49 based on Schwandt’s study
[158]

Geographical
distribution of
teams (GD)

19 Reasonable when compared to a
typical Navy software acquisition
program with an annual budget of
less than $5 million [197]

Requirements
volatility (RVM)

0.27 < 1 [162]

Number of
different job
position types
(JPT)

44 Sensible when compared to a
typical Navy software acquisition
program with an annual budget of
less than $5 million [197]

As indicated in step 9 of Figure 6, we analyze the complexity profile of the B1

Project. In regard to the measurement of the personnel required for the development effort,

140

the Project Management Institute (PMI) provides a guideline for determining the size of

the project (e.g., small project < $5M, medium project < $50M, large project < $500M,

and mega project > $500M) [159]. Based on an annual budget of $3 million, the project

manager could fund approximately 20 people ($3 mil/$145,932). The PCMM estimates

18.85 people. The PMBOK [185] says that project reserves are 5% to 10% of the estimated

cost. Project reserves cover residual risks in the project. Thus, the PCMM shows that we

need annual funding for 20.74 people (18.85 times 1.1) or $3.026 million. Based on the

original annual budget of $3 million, the PCMM shows a risk for $26,000 shortfalls in the

annual budget.

In the defect density measure, the software industry standard is to keep defects per

KLOC under 3 [161]. In the B1 Project, the PCMM estimates 0.32. This means that the

PCMM shows low risk (0 < DD < 3) in terms of the stability of the software releases.

In the organizational complexity measure, the literature from previous works [25],

[157] supports the hypothesis that high interdependencies between organizational roles and

a large number of information flows for communication and decision-making contributes

to organizational complexity. Based on Schwandt’s approach [158], we can estimate the

organizational complexity as 5.49 (9 organizational units times Schwandt’s [158] weight

factor of 0.61). Note that an IF value of less than 0.5 in each organizational unit in the

project will generally indicate low risk related to organizational complexity [158]. In the

B1 Project, the PCMM estimates 7.71 or an average IF value of 0.86 (7.71 / 9). This means

that the PCMM indicates medium risk (0.5 < IF < 0.9) related to organizational complexity

[158].

The Allen curve [119] phenomenon supports the complexity measure of

geographical distribution of teams. In an ideal work environment, GD is 3 (one site, one

location, and one time zone) to maintain a high probability of communication once a week

for team collaboration. The PCMM estimates GD of 19 based on the data from the B1

project plan. Nevertheless, when comparing to the IPT approach in software development,

a typical Navy software acquisition program with an annual budget of less than $5 million

usually has a similar number of organizational units as the B1 Project [197]. Hence, GD of

19 is a reasonable estimate for a typical Navy software program. This means that the

141

PCMM indicates low to medium risk (3 < GD < 20) related to the complexity of team

collaboration.

In the requirements volatility measure, the best practice in the software industry is

to keep the rate of changes at less than one for reducing the risk of requirements uncertainty

and requirements creep [162]. The PCMM estimates RVM of 0.27 based on the empirical

data from a requirements metric report of the B1 Project. This means that the PCMM shows

low risk (0 < RVM < 1) related to requirements volatility in the B1 Project.

Diversity in types is often associated with complexity. In Chapters I and II, we

explained that different job position types in interdependent organizational units are likely

to have differences in job assignments and outcomes, and, therefore, increased complexity.

The PCMM estimates degrees of different job position types as 44. Based on a typical Navy

software acquisition program approach to software development, the IPT usually adopts

functional roles similar to those found in the B1 Project [197]. This means that the PCMM

indicates low risk (JPT < 45) related to the complexity of different job position types.

In sum, based on the B1 Project empirical data, we draw a conclusion that the

PCMM and associated methods to measure project complexity are more reasonable

compared to several studies in the literature [151]–[153], [158], [160], [162], [197]. The

higher the value of each complexity measure from the PCMM, the more complex the

project, and vice versa. The complexity values of the B1 Project obtained from the PCMM

provide program managers a level of understanding in terms of risk and dependency areas

in the B1 Project.

In general, for any system development project, it is more difficult or costly to

correct an error discovered late in the life cycle. The PCMM program managers can use a

project’s complexity values computed from the PCMM as a guide for project comparisons,

to plan for project cost and schedule and to identify relevant risk areas in software projects.

We need to determine the scores and associated levels of complexity of six complexity

metrics in the PCMM to identify the overall B1 Project complexity level.

First, to determine the score and associated level of complexity of the personnel

required metric, we use the project size of $5 million annual budget from the PMI [159] as

a guide and $145,932 yearly salary of a software developer [152][153] to calculate to the

142

number of people that can be funded annually for the project. It is 34 people ($5 million /

$145,932). We divided 34 into 5 ranges of scores. We use a Likert scale [32] of 1 to 5 and

map the score of the personnel required metric to the associated level of complexity as

shown in Table 32.

Table 32. The score and associated level of complexity of the measure of the
number of personnel required for the development effort

Metric PCMM
value

Number of people
can be funded per
year (PMI)

Score Complexity Level

1. Number of
personnel required
for the development
effort (people)

 1 to 7 1 Simple

8 to 15 2 Complicated

20.74 16 to 27 3 Low complexity

 28 to 34 4 Moderate complexity

> 34 or unknown 5 High complexity

Second, to determine the score and associated complexity level of the defect density

metric, we use the software industry standard of keeping the number of defects per KLOC

less than 3 [160] as a guide and divide this value of 3 into 5 ranges of scores. We use a

Likert scale [32] of 1 to 5 to map the score of the defect density metric to the associated

level of complexity as shown in Table 33.

143

Table 33. The score and associated level of complexity of the measure of
defect density

Metric PCMM
value

Defects / KLOC (software
industry standard)

Score Complexity Level

2. Defect
density (defects
/ KLOC)

0.32 0 to 0.5 1 Simple

 0.51 to 1.1 2 Complicated

1.2 to 2 3 Low complexity

2.1 to 3 4 Moderate complexity

> 3 or unknown 5 High complexity

Third, to determine the score and associated level of complexity of the organizational

complexity metric, we use Schwandt’s study [158] of 5.49 as a reference number for low

complexity. We use a Likert scale [32] of 1 to 5 to map the score of the organizational

complexity metric to the associated level of complexity as shown in Table 34.

Table 34. The score and associated level of complexity of the measure of
organizational complexity

Metric PCMM
value

IF (Schwandt’s study
[158])

Score Complexity Level

3. Organizational
complexity

 0 to 1.8 1 Simple

1.9 to 3.7 2 Complicated

3.8 to 5.5 3 Low complexity

7.71 5.6 to 8.1 4 Moderate
complexity

 More than 8.1 or unknown 5 High complexity

Fourth, to determine the score and associated level of complexity of the

geographical distribution of teams metric, we use the Allen curve [119] as a guide for

conducting optimum team communications (one site, one city, and one time zone) and use

the IPT functional roles [197] of 19 as a reference number for low complexity. We also use

144

a Likert scale [32] of 1 to 5 to map the score of the geographical distribution of teams

metric to the associated level of complexity as shown in Table 35.

Table 35. The score and associated level of complexity of the measure of
geographical distribution of teams

Metric PCMM
value

GD (guide from the Allen
curve [119] and the IPT
roles [197])

Score Complexity
Level

4. Geographical
distribution of
teams

 1 to 3 1 Simple

4 to 10 2 Complicated

19 11 to 19 3 Low complexity

 20 to 40 4 Moderate
complexity

More than 40 or unknown 5 High complexity

Fifth, to determine the score and associated level of complexity of the requirements

volatility metric, we use the best practice in the software industry of keeping the rate of

changes at less than one [162] as a threshold value for moderate complexity. We use a

Likert scale [32] of 1 to 5 to map the score of the requirements volatility metric to the

associated level of complexity as shown in Table 36.

Table 36. The score and associated level of complexity of the measure of
requirements volatility

Metric PCMM
value

RVM (best practice in the
software industry [162])

Score Complexity Level

5. Requirements
volatility

 0 to 0.2 1 Simple

0.27 0.21 to 0.42 2 Complicated

 0.43 to 0.66 3 Low complexity

0.67 to 1 4 Moderate complexity

More than 1 or unknown 5 High complexity

145

Sixth, to determine the score of the PCMM for the number of different job position

types, we use the IPT job positions [197] of 44 as a guide for low complexity. We use a

Likert scale [32] of 1 to 5 to map the score of the number of different job position types

metric to the associated level of complexity as shown in Table 37.

Table 37. The score and associated level of complexity of the measure of the
number of different job position types

Metric PCMM
value

JPT (guide from the IPT
roles [197])

Score Complexity
Level

6. Number of
different job
position types

 1 to 15 1 Simple

16 to 30 2 Complicated

44 31 to 45 3 Low complexity

 46 to 65 4 Moderate
complexity

More than 65 or unknown 5 High complexity

To determine the overall complexity level for the B1 Project, we compute the

average of the complexity scores of the six measures in the PCMM as shown in Table 38.

Hence, the overall complexity level of the B1 Project complexity is 2.67 (low complexity),

as shown in Table 38.

146

Table 38. The B1 Project complexity level

Metric PCMM value Complexity
Score

Complexity
Level

1. Number of personnel required for the
development effort (people)

20.74 3 Low

2. Defect density (defects / KLOC) 0.32 1 Simple

3. Organizational complexity 7.71 4 Moderate

4. Geographical distribution of teams 19 3 Low

5. Requirements volatility 0.27 2 Complicated

6. Number of different job position types 44 3 Low

Overall B1 Project complexity level 2.67 Low

C. SENSITIVITY ANALYSIS

The B1 Project in Section B illustrated that the PCMM is both useful and effective.

Nevertheless, to further show the practical use of the PCMM, we perform a sensitivity

analysis on the B1 Project. The goal of sensitivity analysis is to determine the range of

input parameters where the project can achieve a desirable outcome. The approach is to

change the technical parameters of the B1 Project and observe the value of the decision

variables. We use sensitivity analysis to demonstrate the validity of the PCMM and show

the robustness and reliability of the analysis used by the model.

In this section, we perform a sensitivity analysis on the measure of the number of

personnel required for the development effort. We initially make a 30% change to the

annual budget of the B1 Project. Then we increase the number of CRs and requirements by

30% as shown in Table 39.

147

Table 39. A 30% increase to the three B1 Project inputs

Project Property Original Value Original Value
increased by 30% for
sensitivity analysis

Estimated Yearly Budget $3 million $.3.9 million

Number of
Requirements

1,721
requirements

2,237 requirements

Number of Change
Requests (CRs)

528 CRs (151
new, 1
modification,
376 deletions)

686 CRs (196 new, 1
modification, 489
deletions)

Number of “nominal”
requirements

344
requirements

447 requirements

Number of “easy”
requirements

1,377
requirements

1,790 requirements

Based on these changes, we estimate the number of personnel required for the

development effort. Using an annual budget of $3.9 million from Table 39 and a yearly

salary of $145,932 for a software developer, we could hire 26.72 people ($3.9 mil /

$145,932). Table 40 shows the results of COSYSMO size for the B1 Project.

Table 40. Calculation of COSYSMO size

COSYSMO size’s driver [24] B1 Project software size for
sensitivity analysis

Requirements (1,790 easy requirements)(0.5) = 895
(447 nominal requirements)(1) = 447
Total = 895 + 447 = 1,342

Interfaces (2 easy interfaces)(1.7) = 3.4

Algorithms (1 nominal algorithm)(6.5) = 6.5

Operational Scenarios (use cases) (32 easy use cases)(9.8) = 313.6

Total COSYSMO size [24] =
requirements + interfaces +
algorithms + user cases

1,342 + 3.4 + 6.5 + 313.6 = 1,665.5

148

We keep the same value of the effort weight factor of 0.77 [24] as shown in Table

19. We also keep the values of the COSYSMO calibration factors A as 0.325 [24] and the

default value of E as 1 [24]. Finally, we use Equation (3.1) to calculate the amount of

person-month required for the B1 Project and present the results in Table 41.

Table 41. The B1 Project development effort

B1 Project development effort Value

Effort required to build the system = PM =
(calibration factors)(effort factor)(software
size)

(0.325)(0.77)(1,665.5) =
416.79 person-month

B1 Project development effort = (effort
required to build the system) / (duration of
the development phase)

416.79 / 18 = 23.15 people

As shown in Table 41, the PCMM estimates 23.15 people. Compared to the original

value of 18.85 people, the percentage of change in the personnel required measure is

22.81% (23.15 / 18.85 – 1 x 100%). This is expected because we made a 30% change to

three input parameters of the B1 Project and the PCMM increases by 22.81%. Hence, the

sensitivity value of the PCMM is 0.24 (1 - 0.2281/ 0.3).

Next, we increase the annual budget by another addition of 10%. We also increase

the number of CRs and requirements by an addition of 10% as shown in Table 42.

149

Table 42. An additional increase of 10% to the three B1 Project inputs

Project Property Original Value Original Value
increased by 10% for
sensitivity analysis

Estimated Yearly
Budget

$4.29 million $4.29 million

Number of
Requirements

2,461 requirements 2,461 requirements

Number of Change
Requests (CRs)

686 CRs (196 new,
1 modification, 489
deletions)

755 CRs (216 new, 1
modification, 538
deletions)

Number of
“nominal”
requirements

447 requirements 492 requirements

Number of “easy”
requirements

1,790 requirements 1,969 requirements

Once again, using the annual budget of $4.29 million shown in Table 42 and an

annual salary of $145,932 for a software developer, we could hire 29.39 people ($4.29 mil

/ $145,932). Tables 43 shows the results of the COSYSMO size [24] and Table 44 shows

the personnel required for the B1 Project.

Table 43. Calculation of COSYSMO size [24]

COSYSMO size’s driver [24] B1 Project software size for sensitivity
analysis

Requirements (1,969 easy requirements)(0.5) = 984.5
(492 nominal requirements)(1) = 492
Total = 984.5 + 492 = 1,476.5

Interfaces (2 easy interfaces)(1.7) = 3.4

Algorithms (1 nominal algorithm)(6.5) = 6.5

Operational Scenarios (use cases) (32 easy use cases)(9.8) = 313.6

Total COSYSMO size [24] =
requirements + interfaces +
algorithms + user cases

1,476.5 + 3.4 + 6.5 + 313.6 = 1,800

150

Table 44. The B1 Project development effort

B1 Project development effort Value

Effort required to build the system = PM =
(calibration factors)(effort factor)(software
size)

(0.325)(0.77)(1,800) =
450.45 person-month

B1 Project development effort = (effort
required to build the system) / (duration of the
development phase)

450.45 / 18 = 25.02 people

As shown in Table 44, the PCMM estimates 25.02 people. Compared to the original

value of 23.15 people before the 10% changes, the percentage of change in the personnel

required measure is 8.08% (25.02 / 23.15 – 1 x 100%). This is expected because we made

an additional change of 10% to the three input parameters and the PCMM increases by

8.08%. Thus, the sensitivity value of the PCMM is 0.19 (1 – 0.0808 / 0.1), which is less

than 0.24 as expected. Hence, the sensitivity value of the PCMM is stable, dropping from

0.24 to 0.19.

 Regarding the requirements volatility measure, we increase the number of change

requests by 30%. Using Tables 16 and 39 as well as Equation (3.5), we calculated the

overall requirements volatility of 0.35 (686 / 1,946), which is increased by 30% compared

to the original value of 0.27. Hence, the sensitivity value of the PCMM is 0.29 (0.35 / 0.27

– 1).

 Next, with the additional increase of 10% as shown in Table 42, the calculated

overall requirements volatility is 0.388 (755 / 1,946), which is increased by 10% as

expected compared to the original value of 0.35. Hence, the sensitivity value of the PCMM

is 0.1 (1 - 0.388 / 0.35), which is less than 0.29 as expected. Thus, the sensitivity value of

the PCMM is stable, dropping from 0.29 to 0.1.

 In sum, we performed a sensitivity analysis on both the number of personnel

required for the development effort and the requirements volatility of the PCMM. The

analysis shows that regarding both measurements, the PCMM is sensitive to the changes

in the technical parameters of the B1 Project. At the same time, the PCMM is stable within

151

the ranges of the technical parameters where the project does sustain the different levels of

complexity. We will perform a sensitivity analysis on the defect density measurement using

the project data in Chapter IV.

D. COMPLEXITY REDUCTION AND MITIGATION

Project managers can reduce project complexity by simplify their project structures

and communications platform. These changes can potentially provide cost saving while

strengthening the execution of project tasks. Project managers use complexity reduction as

a management tool to streamline business processes and optimize information systems with

project objectives.

In step 10 of Figure 6, we suggest ways to reduce or mitigate complexity. For

example, in a system development program, we can reduce or mitigate complexity of the

measure of defect density by reducing or eliminating redundant designs and processes

[147]. One way is by consolidating multiple functional requirements into a common

platform or framework to improve design efficiency. The effect of the fact that the

improvement of design efficiency in software simplify the code, making it easy to maintain

and to debug in a unit test. As a result, software developers can potentially reduce the

number of small and common mistakes in the program control logic. Therefore, the code

is more robust to execute and has fewer dependencies in the operational environment. The

number of software defects will decrease over time, which results in a reduction of defect

density.

To connect these complexity reduction techniques to the PCMM model, we need

to explain the relevance of these techniques in regard to the PCMM metrics. Let’s describe

the application of these techniques to each measure of the PCMM in order.

First, to reduce the number of personnel required for the development effort, the

program manager can reduce the size of the project by limiting the project scope through

planning early in the development cycle. By dividing the number of system requirements

into several increments of software blocks, the program manager can reduce the number of

major interfaces, critical algorithms, and operational scenarios in each block. The

requirements lead can perform requirements prototyping when end user requirements are

152

volatile. In addition, the program manager and software lead can reduce the cost driver EMi

of the project by performing the following:

• Increase the level of requirements understanding to very high by

conducting technical interchange meetings and requirements peer reviews.

• Reduce the technical risk of the project to very low by performing design

prototyping.

• Increase the process capability to very high by conducting training on the

CMMI process [191] and process improvement.

Furthermore, the software lead can consolidate multiple functional requirements

into a common platform or framework to improve design efficiency [198]. Moreover, the

program manager can reduce or eliminate redundant processes to optimize process

efficiency by streamlining information systems with business objectives. Hence, we can

reduce project complexity by reducing the size of development effort.

Second, in terms of reducing defect density, the software lead in the project can

reduce the number of defects (NDi) in each baseline (KLOC) by setting coding standards

and conducting code walk-through procedures that developers should abide by. The

software lead can show developers software architectures and examples of how to develop

loosely coupled code, making code easier to maintain. In addition, the program manager

can standardize on one IT platform that provides configuration controls of code releases.

Furthermore, the software lead can leverage a modular design of code and reuse that code

to improve design efficiency and limit the amount of code change within a software unit.

Third, to reduce organizational complexity of the project, the program manager can

reduce the communication frequencies and the levels of importance of the communications

among organizational [147]. The program manager can set a priority and a baseline in

project reporting as well as focus on critical decisions and customers’ needs by aligning

information systems with business objectives. In addition, the program manager can clarify

organizational roles and decision-making processes to best serve the project teams while

also streamline on business processes and information systems.

153

Fourth, to reduce the geographical distribution of teams, the program manager can

reduce the number of locations (l), time zones (t), and sites (s) of each organizational unit

in the project by performing the following:

• Reduce project activities that take place in multiple locations.

• Change the problem definition or approach in such possible ways that

reduces complexity of project activities.

As shown in Table 27, we have identified 13 sites (s =13), 4 cities (l = 4), and 2

time zones (t = 2) in the B1 Project. To reduce GD, the program manager can consolidate

and rearrange the project activities to reduce the number of geographical locations and

different time zones during the project. In addition, the program manager can consolidate

and rearrange the lab spaces and seating arrangements between developers to fit the number

of sites. Thus, the combination of reducing the number of sites and the number of project

activities in multiple locations can reduce project complexity and improve team

collaboration.

Fifth, to reduce the requirements volatility of the project, the program manager can

reduce the number of change requirements (CRi) in each baseline of the release (BR) by

performing requirements prototyping and implementing a formal change approval process.

Furthermore, the program manager can freeze the project scope early in the development

cycle and postpone change requests that are not immediately needed by the customers,

raising the hurdles for new capability requirements and other expansion activities that add

complexity cost. The program manager also needs to limit the addition of new requirements

late in the development life cycle. For example, in Table 31, a requirements volatility

measure of 0.27 means that the risk is low regarding requirements creep and the insufficient

understanding of the software requirements and use cases. To keep the project risk level

low during the early development cycle, program managers can schedule weekly

requirements reviews, design reviews, and test case peer reviews to clarify requirements

understanding among the requirements lead, design lead, test lead, and developers.

Six, to reduce the number of different job position types in the project, the program

manager can combine or reduce the number of reporting tasks and review activities in each

154

organizational unit as well as increase the competency level and control the maturity of a

project. In Table 31, we have 44 different job position types (JPM = 44) that must take

place to execute the work. This reflects many engagements and interactions between each

job position that might exchange information. To reduce project complexity, the program

manager can clarify the organizational roles, reduce levels of management, and improve

spans of control of each organization.

E. CHAPTER SUMMARY

The PCMM presented in this chapter is derived from literature related to the sources

of complexity and the four major types of project complexity presented in Chapter II. The

indicative metrics of the four types of complexity of the SoI presented in Table 15 provide

a systematic way to measure the degree of complexity of a software project. We can draw

parallels of the PCMM to 4 of the 7 building blocks of complexity―numerosity,

connectedness, interdependence, and diversity. Furthermore, literature about types of

complexity and project complexity from Chapter II provides evidence on the validity of

the PCMM and the research methodology presented in this chapter. In the next chapter, we

present three software engineering projects and apply the PCMM and associated methods

to calculate the overall degree of complexity of each program. The engineering projects

(named in this dissertation as B4, B6, and B8 programs) are intended to demonstrate the

validity and relevancy of the PCMM through in-depth analysis and results.

155

IV. PROJECT DATA TO DEMONSTRATE THE VALIDITY OF
THE PCMM

Given a problem to solve, figure out how to do it once, and then do it the
same way each time.

―Ali A. Minai, Dan Braha, and Yaneer Bar-Yam [79],
“Complex Engineered Systems: A New Paradigm”

As noted in the Chapter II literature review, conflicting requirements, combined

problem elements, diverse and demanding stakeholders, and multiple constraints appear to

increase the overall complexity of engineering projects. This realization justifies the need

for creating a complexity profile that consists of multiple complexity measures for project

risk assessment. The objective of this chapter is to demonstrate the validity of the PCMM

for the purpose of computing complexity by examining three engineering projects (the

software programs B4, B6, and B8) and computing their complexity values. We compare

the complexity values of the three engineering projects to the values of the industry

common practices in the literature. The output of the PCMM is a value that signifies a

project’s complexity, which systems engineers can then use to predict, analyze, and

understand patterns of communications and activities in systems development. This value

might serve as a proxy for resources or time requirements for developing system

architecture. The project manager can use the project’s complexity profile as supporting

evidence to present to senior management and IPT for introducing changes in the project

management strategy and for developing potential approaches in complexity reduction. In

addition, because complexity contributes to project risk, higher values returned by the

PCMM imply that we need to allocate additional time and effort to development,

integration, testing, and maintenance.

To confirm the usefulness of the PCMM, we need to ask the following questions:

1. How does the complexity values from the PCMM compare to the values

of the industry common practices?

156

2. Does the PCMM accurately describe the complexity properties of real-

world systems?

3. Does the PCMM work as a prescription for complexity analysis in real-

world systems?

4. Does the PCMM help systems engineers identify, understand, and assess

the impacts a given complexity value is likely to have on real-world

systems?

Throughout this chapter, we keep these questions in mind when applying the

PCMM to compute the complexity values and develop a complexity profile for each use

case. To validate the PCCM’s complexity measures, we compare them to the values output

by other methods in previous studies and the industry common practice noted in Chapter

II. We also perform a complexity reduction analysis for the B6 Project. Figure 19 shows

an overview of the configuration management (CM) workflow of the Navy software

programs.

Figure 19. CM workflow of the Navy software programs

157

The data collected for the three Navy projects (B4, B6, and B8) are from the internal

software projects that are supported by the IPT organizations in the related command. The

data are collected from various project documents such as the project plan, the test plan,

test reports, LOC reports, requirements traceability reports, software design description

documents, interface design documents, and use case documents.

In the B4, B6, and B8 Projects, we analyze the empirical project data and determine

the following information:

• Annual budget of the project,

• Project duration for that block,

• Number of requirements and change requests listed in the

requirements traceability reports,

• Number of use cases listed in the SDD documents,

• Number of interfaces required (obtained from the SDD documents),

• LOC of each release (obtained from the LOC reports), and

• Number of defects and number of test hours conducted for each

baseline of the release (obtained from the test reports).

A. B4 WINDOWS-BASED DATABASE SOFTWARE PROGRAM

In this use case, the Navy B4 software project used an evolutionary development

method in which the program delivers the software in increments. The overall project is

broken up into separate phases which may be representative of the different software

builds. Each software build completes a subset of requirements. The project contains the

following phases, according to [22], [200]:

1. Creating requirements,

2. Analyzing requirements,

3. Designing software,

4. Writing code and conducting unit test,

158

5. Integration testing,

6. System integration testing, and

7. Deployment of software.

The purpose of this project is to develop a Windows database application for fleet

users to use as a tool for mission planning and data analysis.

Figure 20 depicts an overview of the Navy B4 Project, which includes

organizations, project teams, management teams, a project plan, and software requirement

specifications (SRS) as well as databases and elements of both hardware and software. In

addition, the project has IT systems supporting ad hoc audits of new requirements, project

reviews, and configuration management. Test teams and organizations such as DT, OT,

trainers, and fleet representatives are responsible for testing the system.

Figure 20. A context diagram of the B4 Project

Figure 9 of Chapter III shows the five steps of the complexity study method (CSM).

We use the CSM and apply it to the B4 Project. In step 1 of the CSM, we use the in-house

repository system (SharePoint) to obtain the SRS, interface design description (IDD), use

case documents, software design document (SDD), project plan, requirements traceability

report (RTR), and test plan of the B4 Project. We review SRS, IDD, RTR, and project plan

to develop the B4 Project profile.

The B4 Project plan identifies 23 software work products and 18 deliverables that

include the project documents. It shows an organizational chart that has 20 team members

159

in the project. Table A-1 of Appendix A lists the organizations and their responsibilities.

In addition, Table A-2 of Appendix A presents the PMA, IPT, and PT that are involved in

milestone reviews and status reviews during the 24-month development phase.

The B4 Project plan indicates that the C# object-oriented programming language

was used to develop the software application. The IDD document lists four external

interfaces. Developers noted in the IDD document that one external interface was

determined as nominal to implement because it has 18 classes and several methods to

support query and retrieval of data. The B4 test plan lists 32 test procedures that link to 32

use cases in the development phase. Each test procedure provides test steps that verify

requirements in each use case. Since the project started in April of 2017, the empirical data

of change requests during the 24-month development phase were available. The RTR listed

803 change requests that include 356 new change requests, 18 modifications, and 429

deletions during the 24-month period. The project started with a baseline of 2,067

requirements. At the end of the 24-month period, it had 1,994 requirements.

The level of complexity to implement each requirement depends on how well the

requirement is written, how easily it is to track the sources of the requirement, and whether

any requirements extend over to other requirements [24]. From the interviews of several

program managers of previous programs, some requirements are considered easy because

these requirements have been implemented successfully before. According to the previous

program manager, these requirements are straightforward and usually take less than a week

to implement. Some requirements are considered nominal because they are sophisticated

and can take up to 4 weeks to finish. Some requirements are difficult to implement and

largely extend over to other requirements [24].

In the case of the B4 Project, the project manager reviews and analyzes the project

data of the B1 Project from the previous acquisition program and obtains the level of

complexity and the amount of time it took to implement each requirement. However, the

dataset of the B1 Project from the previous acquisition program is not complete.

Nevertheless, the project manager decides there is no requirement in the difficult category

for the B4 Project. Thus, the project manager decides applying the 80–20 rule that is based

on the interviews of program managers of previous programs and determines that 80% of

160

requirements will take less than 1 week to implement while 20% of requirements will take

between 2 to 4 weeks. Hence, in the B4 Project, the program manager determines that 1,595

requirements (80% of requirements) will be easy to implement while 399 requirements

(20% of requirements) will be nominal to implement.

Requirements understanding refers to the level of familiarity of the system

requirements by the development team [24]. Based on his or her work experiences, the

project manager assesses the level of familiarity of the system requirements of the

development team. The project plan indicated that requirements understanding of the

software development team was high.

Technical risk is characterized as the possibility of requiring more SE effort due to

immaturity or obsolescence of the technology implemented into the system [24]. This is

based on a subjective assessment of the system from the project manager. The project plan

listed technical risk as nominal (technology proven on pilot projects).

Process capability refers to the ability of the project team to follow defined

processes with a certain degree of effectiveness [24]. The Capability Maturity Model

Integration (CMMI) [191] is one of many published process models that is used in rating

process capability.

The IPT is a CMMI level 3 (i.e., defined processes) organization. Therefore, the B4

Project follows CMMI processes at the start of the project. The project plan stated that the

process capability of the project team was nominal (managed SE process, activities driven

by customers’ and stakeholders’ needs).

External interfaces are defined as logical boundaries between functions which

provide handshaking and exchange messages via certain protocols [24]. The IDD listed

four external interfaces. The complexity of interfaces is based on a subjective assessment

from the software developers. The IDD indicated that three interfaces were easy (simple

establishing a communication channel between entities and exchange messages) to

implement and one interface was nominal (moderate sophistication use of protocol for

setting a communication channel between entities), which requires more engineering

effort.

161

Algorithms represent newly defined functions that require some mathematical

methods in order to achieve the system performance requirements [24]. The SDD and

project plan identified four critical algorithms. Software developers rated two algorithms

as easy (simple data and timing not an issue) and the other two algorithms as nominal

(relational data and nested structure with decision logic) based on their experiences.

Use cases capture the system’s functionalities [24]. The use case documents and

test plan showed 27 use cases in order to validate the system performance. The software

developers rated all 27 use cases as easy (well defined system operational scenario).

With the information from the project plan, IDD, use case documents, SDD, test

plan, build reports, and requirements metrics report (RTR), we follow step 2 of the CSM

shown in Figure 9 and develop the B4 Project profile, as shown in Table 45.

Table 45. B4 Project profile. Adapted from [24].

Project Property Value Source of Information

Yearly Budget $3.3 million Project plan

Team Size 20 Project plan

Duration of the
Development
Phase

24 months Project plan

Baseline
Requirement (BR)

2,067 requirements
at project start

RTR

Number of
requirements at
the end of the
project

1,994 requirements RTR

Number of
Change Requests
(CRs)

803 CRs (356 new,
18 modifications,
and 429 deletions)

RTR

Number of
“nominal”
requirements

399 requirements
(20%)

Applying the 80–20 rule that
is based on the interview of
program managers of previous
programs

Number of “easy”
requirements

1,595 requirements
(80%)

Applying the 80–20 rule that
is based on the interview of
program managers of previous
programs

162

Project Property Value Source of Information

Understanding of
requirements [24]

high Project plan

Technical Risk nominal Project plan

Process
Capability [24]

nominal Project plan (CMMI [191]
level 3)

Number of
External
Interfaces

4 (3 “easy” and 1
“nominal”)

IDD

Number of
Critical
Algorithms [24]

4 (2 “easy” and 2
“nominal”)

Software design document
(SDD) and project plan

Number of use
cases

27 (all “easy”) Use case documents and test
plan

Number of lines
of code (LOC)

870,559 Build report (SLOC count)

We follow step 3 of the CSM shown in Figure 9 and compare the B4 project profile

with previous projects based on historical data. In this case, we compare the B4 project

profile with the B1 Project profile described in Chapter III because the B4 Project is the

next block of software that adds more capabilities to the B1 Project. Hence, the B4 Project

profile is similar to the B1 Project profile in terms of the number of requirements. In step

4 of the CSM shown in Figure 9, we apply the PCMM and estimate the B4 Project

complexity as shown in the next section.

1. Measure of the Number of Personnel Required for the B4 Project

We use the data from the B4 Project profile shown in Table 45 to compute and

obtain a software size value of 1,490.3 as shown in Table A-3 of Appendix A. In addition,

using the COSYSMO [24] weight factors of cost drivers shown in Table 17 of Chapter III,

we calculate and obtain the effort weight factor of 0.77 as shown in Table A-4 of Appendix

A.

Finally, we use Equation (3.1) to calculate the number of person-month required

(PM) in the B4 Project [24]. We divided the PM value of 372.95 person-month by 24

months and obtain 15.54 people as shown in Table A-5 of Appendix A. Adding the project

163

reserves of 10% to cover residual risks in the project [185], we determine that the B4

Project needs annual funding for 17.09 people (15.54 times 1.1) or $2.494 million (17.09

times $145,932). In this case, the number of personnel required for the development effort

estimated by the PCMM is reasonable and well within 20% of the projected personnel

required as specified in the B4 Project plan.

2. Defect Density Measure

We need test data to measure defect density. In this case, the test data is available

because the B4 Project started in April of 2017 and has completed the development phase.

Testers have evaluated the software. Tables A-6 and A-7 of Appendix A show the B4

Project monthly test report, taken from the empirical project data. The plots shown in

Figures 21 and 22 reflect the data in Table A-7 of Appendix A.

Figure 21. Plot of defect density of the B4 Project

164

Figure 22. Test Hours of the Project B4

As seen in Figure 21, the defect density (NDi/KLOC) is approximately constant

throughout the development cycle. The NDi//KLOC increased slightly at the end of the

development cycle because testers discovered more bugs before the release of the software.

The trend line of test hours is downward as illustrated in Figure 22. Testers have to balance

their priorities between increasing their test time and shifting their time away from testing

and focusing on test metric reporting and updating test procedures. As shown in Table A-

7 of Appendix A, the project defect density is 0.299 defects per KLOC, which is within the

industry standard limit of less than 3 defects per KLOC [160].

In general, when test hours are increased during the development phase in a

software project, the defect density also increases because more defects are discovered.

When the test hours decrease significantly, this may indicate that testers have focused on

writing test procedures and have not tested the software enough to close the unresolved

defects. Program managers should use the defect density report as an indicator of project

performance.

3. Organizational Complexity Measure

The B4 Project plan identifies nine organizational units, and their responsibilities

are showed in Table A-1 of Appendix A. We characterize connectedness and

165

interdependence among organizational units by the patterns of information flow, along

with the information’s frequency and importance.

Figure A-1 of Appendix A identifies the nodes, links, frequencies, and levels of

importance of the communications between PMA and IPT, between PMA and PT, and

between PMA and the DT/OT unit during the 24-month development phase. Figures A-2,

A-3, and A-4 of Appendix A show the context diagrams of the rest of the nodes, links,

communication frequencies, and levels of importance of the communications between the

organizations of the B4 Project. We use Figures A-1, A-2, A-3, and A-4 of Appendix A to

generate the N2 chart as shown in Table 46. The N2 chart represents nine organizational

units and 40 links in the B4 Project.

Table 46. N2 chart of the B4 Project

IPT PMA Project
Team

BFM Contracting
Unit

T/F
Unit

DT/
OT
Unit

Total

IPT 3 3 3 1 10
PMA 5 5
Project Team 3 2 5
BFM 2 2 4
Contracting Unit 3 3
Contractor Unit 2 1 1 4
SDU 2 1 1 4
DT/OT Unit 2 2
T/F Unit 3 3
Total links 40

From Equation (3.3) and Tables A-8 and A-9 of Appendix A, we calculate the index

function of each organizational unit that is associated with the links to another

organizational unit. Table A-10 of Appendix A presents the organizational complexity of

each organizational unit and the total organizational complexity of 7.66.

This means that the organizational complexity of each organizational unit has to

some degree contributed to the effect upon the B4 Project due to the large number of

information flows for communication and decision-making. In this use case, we have

166

computed the organizational complexity as 7.66, which is similar to the result derived from

Schwandt’s method [158] of estimating organizational complexity of 5.49 (the size of a

project team, which is 9, times the weight factor of a size measure, which is 0.61). This

difference can be explained by the heterogeneity of behaviors (i.e., the patterns and

volumes of communication and the levels of importance of the information in the

communications) of the nine organizational units. The ambiguity in terms of the absence

or presence of information within and between each organization required to perform the

tasks also contribute to the differences of the organizational complexity in the PCMM.

As shown in Table A-10 of Appendix A, IPT has the greatest number of tasks and

communications in the project, which, in turn, have contributed to the highest

organizational complexity (IF = 2.52) among project organizations. CU has the fewest

number of tasks and communications, which, in turn, have contributed to the lowest

organizational complexity (IF = 0.2) among project organizations.

4. Geographical Distribution of Teams Measure

From the B4 Project plan, we identify 13 sites situated in 4 cities and across 2 time

zones. Using Equation (3.4), the degree of geographical distribution of teams (GD) is

determined by adding up the number of sites (s), locations (l), and time zones (t) as shown

in Table A-11 of Appendix A. In this case, we compute GD and obtain 19 (13 + 4 + 2).

According to Allen [119], a GD value of greater than 3 means that there is a less than 5%

probability that each of the 9 organizational units communicates once a week with other

organizational units. This means that collaboration between teams is infrequent, which can

contribute to a higher risk of schedule delay, cost overrun, or project failure. However, a

typical Navy software acquisition program with a $5 million annual budget usually adopts

the IPT approach to software development that includes these functional organizations for

a specific purpose of delivering a product to internal customers and fleet users [197]. These

organizations in the B4 Project adjusted their project schedules and held weekly status

meeting for overcoming the barrier of geographical distribution of teams to achieve the

project deliverables.

167

5. Requirements Volatility Measure

Using Equation (3.5) and the B4 Project profile shown in Table 45, we calculate

the value of requirements volatility in the B4 Project. The overall requirements volatility

measure (RVM) of the B4 Project is as follows:

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐶𝐶𝑅𝑅
𝐵𝐵𝐵𝐵

=
803

2067
= 0.388

where CR denotes the number of changes in requirements (new requirements,

modifications of requirements, and deletions of requirements) during the 24-month period,

and BR denotes the baseline of the software release, which is measured by the number of

requirements.

We obtain the data of requirements baseline 0 through baseline 22 from the B4

Project requirements metric report and present them in Table A-12 of Appendix A.

As shown in Figure 23, we plot the requirements volatility against the baseline

version number with baseline 0 being the start of this new project. The requirements

volatility (CRi / BR) is high in baselines 1, 4, 10, and 16, indicating either uncertainty of

the software system or poor understanding of the environment and system. Uncertainty

generally is a contributing factor to schedule delay due to indecisive project planning

decisions. The requirements volatility (CRi / BR) eases after baseline 16, indicating that

the number of requirement changes decreases. Furthermore, as indicated in Figure 23,

requirement changes tend to decrease toward the end of the development life cycle.

168

Figure 23. Requirements volatility of the B4 Project

6. Number of Different Job Position Types

The B4 Project plan lists 44 job position types, and we present them in Table A-13

of Appendix A. The B4 Project plan also describes the responsibilities of the 44 job

position types, and we list them in Table A-14 of Appendix A. Using Equation (3.6), we

calculate JPT by counting all job position types and the value is 44.

People who worked in these different types of job positions interact, exchange, and

process information in many different ways that contribute to project complexity. Some of

the people in these job positions support several projects, and the labor cost are shared

between the projects.

7. B4 Project Complexity Profile

Using the PCMM, we have calculated the complexity values of the B4 Project.

Table 47 presents the complexity profile of the B4 Project. This complexity profile is the

six measures of the PCMM. The six measures represent a combination of four different

types of complexity (structural complexity, organizational complexity, temporal

complexity, and technological complexity).

169

Table 47. Complexity profile of the B4 Project

Complexity
Measure

PCMM
Value

Results from previous works
and conclusions drawn based
on the IPT-related literature

Number of
Personnel
required for the
development
effort (people)

17.09
people
per year

22 people per year based on
projects with an annual budget
of $3.3 million [151]–[153]

Defect density
(defects per
KLOC)

0.299 ≤ 3 [160]

Organizational
Complexity (IF)

7.66 5.49 based on Schwandt’s
study [158]

Geographical
distribution of
teams (GD)

19 Reasonable when compared to
a typical Navy software
acquisition program with an
annual budget of less than $5
million [197]

Requirements
volatility (RVM)

0.388 < 1 [162]

Number of
different job
position types
(JPT)

44 Sensible and consistent when
compared to a typical Navy
software acquisition program
with an annual budget of less
than $5 million [197]

We follow step 5 of the CSM shown in Figure 9 and analyze the results to identify

potential opportunities to reduce project risks. The purpose of this analysis is to determine

the validity of the PCMM.

First, regarding the measurement of the number of personnel required for the

development effort, the project manager can determine the number of people and the right

mix of different employees to work on the project. An adequate number of personnel to

maintain the project schedules and handle the project tasks as well as popup assignments

reduces project risk. Based on the estimated annual project budget shown in the project

170

plan, we could fund 22.6 people ($3.3 million / $145,932) yearly for the B4 Project.

Nevertheless, the project plan listed 20 people and allocated some funding for project

reserves. The PCMM estimated 17.09 people. This indicates very low risk related to the

size of the team because the measurement of the personnel required by the PCMM is less

than 20 people. This analysis shows that the PCMM is fairly consistent and accurate in

estimating the level of complexity in terms of the number of people required for the annual

budget compared to the B4 Project plan. Note that the project manager uses the project

plan as an initial plan for project cost, schedule, and deliverables when the project starts.

Second, because the development phase was completed in this case, the test data

were available to compute the defect density. When the B4 Project started in April of 2017,

the project manager used the results of the B1 Project and estimated the defect density

(0.32) for the B4 Project because the B1 Project was the previous block of software of the

B4 Project as shown in Figure 19. The PCMM estimated 0.299 defects per KLOC based

on the empirical data. This indicates very low risk related to the stability of the released

software because the defect density measurement is less than 3 defects per KLOC as

specified by the software industry standard [160]. The PCMM is reasonable and consistent

in estimating the level of complexity based on the test data of the B4 Project.

Third, in the organizational complexity measurement, the PCMM estimated a value

of 7.66 for the organizational complexity. This indicates low risk related to the patterns

and volumes of communication among the organizations of the project team because the

average weight factor of the 9 organizations is 0.85 (7.66 divided by 9), which is close to

1 and greater than the Schwandt’s [158] weight factor of 0.61. The result of this

measurement is consistent with the results from previous works found in the relevant

literature [28], [157].

Fourth, the PCMM estimated a value of 19 for the measurement of the geographical

distribution of teams. This indicates medium risk related to the degrees of collaboration

between teams because this measurement is greater than 3 (one site, one location, and one

time zone) for an ideal team environment in maintaining a high probability of

communication once a week [119]. Nevertheless, the PCMM is sensible and consistent

with a typical Navy software acquisition program because the IPT approach to software

171

development usually adopts the functional organizations shown in Table A-1, Appendix

A, for the specific purpose of delivering a product for internal and external customers

[197].

Fifth, because the development phase was completed in this case, the requirements

traceability report was available to compute the requirements volatility. When the B4

Project started in April of 2017, the project manager used the results of the B1 Project and

estimated the requirements volatility (0.27) for the B4 Project because change requests for

additional requirements were added to the requirements baseline of the B1 Project as

illustrated in Figure 19. The PCMM estimated the requirements volatility measurement of

0.388 based on the empirical data. This indicates low risk related to requirements creep

and the understanding of the software requirements as well as use cases because the RVM

is less than 1 as indicated in the literature [162]. The PCMM is consistent and reasonable

in estimating the level of complexity based on the requirements traceability report of the

B4 Project.

Sixth, in the measurement of the number of different job position types, the PCMM

estimated 44 different job position types based on the B4 Project plan. This indicates low

risk related to the execution of tasks, job assignments, organizational roles, and

management control because the IPT often adopts functional roles similar to those found

in a typical Navy software acquisition program, as shown in A-14, Appendix A. The

PCMM is consistent in estimating the level of complexity in terms of the number of

different job position types based on the B4 Project plan.

The overall complexity level of the B4 Project is computed as the average of the

six complexity scores as shown in Table-21 of Appendix A. As presented in Table A-21

of Appendix A, the overall complexity score of the B4 project is 2.67 and that the

complexity level is low.

In regard to the B4 Project risk, we use Table A-22 of Appendix A to score the six

metrics in Tables A-15, A-16, A-17, A-18, A-19, and A-20 of Appendix A. We rate the

risk level of the project based on degree of impact in terms of cost, schedule, and

performance on the project, as shown in Table A-23 of Appendix A. The overall risk level

172

of the B4 Project is calculated as the average of the risk scores of the six PCMM measures,

which is 1.167 as shown in Table A-24 of Appendix A. Thus, the overall risk level of the

B4 Project is low as presented in Table A-24 of Appendix A. As illustrated in Table A-23

of Appendix A, a low-risk project means a cost increase of less than 10% to the initial

project cost.

Table 48 shows the complexity level and risk level of each metric in the B4 Project.

Table 48. Complexity level of the B4 Project

Metric Complexity
Score

Complexity
Level

Risk
Level

1. Number of
personnel
required for the
development
effort

3 Low Low

2. Defect density 1 Simple Low

3. Organizational
Complexity

4 Moderate Medium

4. Geographical
distribution of
teams

3 Low Low

5. Requirements
volatility

2 Complicated Low

6. Number of
different job
position types

3 Low Low

Overall
complexity level
of the B4 Project

2.67 Low Low

In sum, the PCMM helps project managers determine areas of possible concern and

provide unique practices to manage complex projects. Based on the PCMM assessment of

the B4 Project, one area of concern is the organizational complexity, which is indicated as

a medium risk. This means a potential cost increase of 10% to 20% to the project cost as

173

shown in Table A-23. The project manager may need to spend some time determining how

the team will distribute and retrieve project information. Overall, the assessment of low

complexity and low risk of the B4 Project demonstrated the consistency of the PCMM

because the B4 Project was a low-risk project. According to the B4 Project manager and

the IPT senior management review, the B4 Project delivered the software on schedule and

well within budget. The software met the performance requirements based on the

operational test report.

B. B6 WINDOWS-BASED DATABASE SOFTWARE PROGRAM

The purpose of the B6 Project is to develop a Windows database application for

fleet users to use as a tool for mission planning and data analysis. The B6 Project is the

next software block of the B4 Project, and it uses an evolutionary development method

through which the project delivers the software in increments. The B6 software program

provides more capabilities than the B4 software program by implementing additional

requirements requested from the fleet. The B6 Project is broken up into separate phases

which are representative of the different software builds. Each software build completes a

subset of requirements and contains phases that are similar to those of the B4 Project.

Figure 24 shows an overview of the B6 Project, which includes organizations, project

teams, management teams, a project plan, and SRS as well as databases and elements of

both hardware and software. In addition, the project has IT systems supporting ad hoc

audits of new requirements, project reviews, and configuration management. Test teams

and organizations such as DT, OT, trainers, and fleet representatives are responsible for

testing the system.

174

Figure 24. A context diagram of the B6 Project

The B6 Project plan identifies 21 software work products and 21 deliverables that

include project documents. It shows an organizational chart that has 34 team members in

the project. The B6 Project has nine organizational units that are identical to those in the

B4 Project as shown in Table A-1 of Appendix A. The responsibilities of these nine

organizational units are listed in Table A-1 of Appendix A. In addition, Table B-1 of

Appendix B presents the PMA, IPT, and PT that are involved in milestone reviews and

status reviews during the first 28-month development phase.

The B6 Project plan indicates that the integrated development environment is

Microsoft Windows 10 and the C# object-oriented programming language. The IDD

documents and test procedures list 17 external interfaces. Software developers determined

and noted in the IDD documents that 4 external interfaces were difficult to implement

because these interfaces have several classes that require some methods to perform lengthy

computations for analyzing the data. Developers also determined that 6 interfaces were

nominal to implement because these interfaces have classes that require several methods

to perform calculations for data mapping. The B6 test plan lists 39 test procedures that link

to 39 use cases in the development phase. Each test procedure provides test steps that verify

requirements in each use case. Since the project started in February of 2017, data related

to change requests during the 28-month development phase were available. The RTR listed

2,725 change requests that included 1,586 new change requests, 286 modifications, and

853 deletions during the 28-month period. The project started with a baseline of 2,089

requirements. At the end of the 28-month period, it had 2,822 requirements.

175

The project manager follows the approach of the B4 Project and determines that

80% of requirements will take less than 1 week to implement while 20% of requirements

will take between 2 to 4 weeks. Hence, the program manager determines that 2,258

requirements (80% of requirements) will be easy to implement and concludes that 282

requirements (10% of requirements) will be nominal to implement. The remaining 10%

requirements (282 requirements) will be difficult to implement.

Similar to the B4 Project plan, the B6 Project plan indicated that requirements

understanding of the software development team was high and technical risk was nominal.

In addition, the process capability of the project team was nominal.

Software developers noted in the SDD that three algorithms were easy (simple data

manipulation and timing not an issue) to develop. Two algorithms required nominal effort

from the developers to implement because of the relational data and nested structure with

decision logic. Two algorithms were difficult to create because of the complicated

relational data and several nested structures with decision logic. Developers determined

and noted in the use case documents that 29 use cases were easy to generate. Six use cases

required a nominal amount of time from the developers to create the operational scenarios.

Four use cases were difficult to develop because of complicated scenarios that involve

multiple assets and these assets have interactions among each other.

With the information from the project plan, IDDs, use case documents, SDD, test plan,

test procedures, build reports, and RTR, we create the B6 Project profile as shown in Table 49.

Table 49. B6 Project profile

Project Property Value Source of Information

Estimated Yearly
Budget

$5.3 million Project plan

Team Size 34 Project plan

Duration of the
Development Phase

28 months Project plan

Baseline
Requirement (BR)

2,089 requirements
at project start

RTR

176

Project Property Value Source of Information

Number of
Requirements at the
end of the project

2,822 requirements RTR

Number of Change
Requests (CRs)

2,725 CRs (1,586 new, 286
modifications, 853 deletions)

RTR

Number of
“difficult”
requirements

282 requirements
(10%)

Allocating 10% of
requirements as
“difficult” based on the
interview of the project
manager of the B4
Project

Number of
“nominal”
requirements

282 requirements
(10%)

Allocating 10% of
requirements as
“nominal” based on the
interview of the project
manager of the B4
Project

Number of “easy”
requirements

2,258 requirements
(80%)

Applying the 80–20
rule that is based on the
interview of the project
manager of the B4
Project

Understanding of
requirements [24]

high Project plan

Technical Risk [24] nominal Project plan

Process Capability
[24]

nominal Project plan (CMMI
[191] level 3)

Number of External
Interfaces

17 (7 “easy,” 6 “nominal,”
and 4 “difficult”)

IDD and test procedures

Number of Critical
Algorithms [24]

7 (3 “easy,” 2 “nominal,”
and 2 “difficult”)

Software design
document (SDD) and
project plan

Number of use
cases

39 (29 “easy,” 6 “nominal,”
and 4 “difficult”)

Use case documents
and test plan

Number of lines of
code (LOC)

790,487 Build report (SLOC
count)

177

With the project profile shown in Table 49, we apply the PCMM and estimate the

B6 Project complexity in the next section.

1. Measure of the Number of Personnel Required for the B6 Project

We use the data from the B6 Project profile shown in Table 49 to calculate and

obtain a software size value of 1,490.3, as shown in Table B-2 of Appendix B. In addition,

we use the COSYSMO weight factors of cost drivers [24] shown in Table 17 of Chapter

III to calculate and obtain the effort weight factor of 0.77, as shown in Table B-3 of

Appendix B.

Finally, we use Equation (3.1) to calculate the amount of person-month required

(PM) [24] in the B6 Project and obtain 31.89 people as shown in Table B-4 of Appendix

B. Adding the project reserves of 10% to cover residual risks in the project [174], the B6

Project needs annual funding for 35.08 people (31.89 times 1.1) or $5.119 million (35.08

times $145,932). In this case, the number of personnel required for the development effort

estimated by the PCMM is reasonable and not exceeding 5% of the projected personnel

required as specified in the B6 Project plan.

2. Defect Density Measure

Since the project started in February of 2017, we have test data to measure defect

density. Table B-5 of Appendix B shows the B6 Project monthly test report, taken from

the empirical project data. The plots shown in Figures 25 and 26 reflect the data in Table

B-5 of Appendix B.

178

Figure 25. Defect density of the B6 Project

Figure 26. Test Hours of the B6 Project

As shown in Figure 25, the NDi/KLOC spikes dramatically on release 7. This

indicates an increasing number of defects due to a slight increase in test hours from releases

6 to 7 as shown in Figure 26. Furthermore, the defect density has decreased significantly

on release 8 as shown in Figure 25, indicating that testers may have focused their test effort

on open defects and may have closed some defects. As testers continue to test the software,

the defect density gradually increases. The defect density is trending upward as testers

179

increase the test hours toward the end of the development cycle and find more defects.

Table B-5 of Appendix B shows that the project defect density averaged 1.78 defects per

KLOC, which is within the industry standard limit of 3 [160].

3. Organizational Complexity Measure

The B6 Project plan lists nine organizational units, and their responsibilities are

identical to those in the B4 Project, as shown in Table A-1 of Appendix A.

Figure B-1 of Appendix B identifies the nodes, links, frequencies, and levels of

importance of the communications between PMA and IPT, between PMA and PT, and

between PMA and the DT/OT unit during the 28-month development phase. Figures B-2,

B-3, and B-4 of Appendix B show the context diagrams of the rest of the nodes, links,

communication frequencies, and levels of importance of the communications between the

organizations of the B6 Project. We use Figures B-1, B-2, B-3, and B-4 of Appendix B to

generate the N2 chart as shown in Table 50. The N2 chart represents nine organizational

units and 40 links in the B6 Project.

Table 50. N2 chart of the B6 Project

IPT PMA Project
Team

BFM Contracting
Unit

T/F
Unit

DT/OT
Unit

Total

IPT 3 3 3 1 10
PMA 5 5
Project
Team

3 2 5

BFM 2 2 4
Contracting
Unit

3 3

Contractor
Unit

 2 1 1 4

SDU 2 1 1 4
DT/OT Unit 2 2
T/F Unit 3 3
Total links 40

180

From Equation (3.3) and Tables B-5 and B-6 of Appendix B, we calculate the index

function of each organizational unit that is associated with its links. Table B-7 of Appendix

B presents the organizational complexity of each organizational unit and the total

organizational complexity of 7.64.

The organizational complexity of the B6 Project is very similar to the B4 Project

because the B6 Project is the next block of software of the B4 Project. Each organizational

unit has to some degree contributed to the negative effect upon the B6 Project in terms of

schedule delay and cost overrun due to the time required to process the frequent exchange

of information for decision-making.

As shown in Table B-7 of Appendix B, IPT has the most tasks and the greatest

number of communications in the project, which, in turn, have contributed to the highest

organizational complexity (IF = 2.52) among project organizations. CU has the fewest

number of tasks and the lowest number of communications, which, in turn, have

contributed to the lowest organizational complexity (IF = 0.2) among project

organizations.

4. Geographical Distribution of Teams Measure

From the B6 Project plan, we identify 14 sites situated in 4 cities and across 2 time

zones. Using Equation (3.4), the degree of geographical distribution of teams (GD) is

determined by adding up the number of sites (s), locations (l), and time zones (t) as shown

in Table B-8 of Appendix B. In this case, we compute GD and obtain 20 (14 + 4 + 2). This

GD is very close to the GD of the B4 Project as determined by Table A-11 of Appendix A.

Similar to the B4 Project, this high GD value suggests that collaborative works between

teams in the B6 Project should be infrequent, which may contribute to a higher risk of

schedule delay or budget shortfall. However, these organizations in the B6 Project adjusted

their project schedules and held weekly status meetings for overcoming the barrier of

geographical distribution of teams to achieve the project deliverables.

181

5. Requirements Volatility Measure

Using Equation (3.5) and the B6 Project profile shown in Table 49, we calculate

the value of requirements volatility in the B6 Project. The overall requirements volatility

measure (RVM) of the B6 Project is as follows:

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐶𝐶𝐶𝐶
𝐵𝐵𝐵𝐵

=
2,725
2,089

= 1.3

where CR denotes the number of changes in requirements (new requirements,

modifications of requirements, and deletions of requirements) during the 28-month period,

and BR denotes the baseline of the software release, which is measured by the number of

requirements.

Since the project started in February of 2017, data for the number of requirement

changes were available for this measurement. We obtain the data of requirements baseline

0 through baseline 26 from the B6 Project requirements metric report and present them in

Table B-9 of Appendix B.

As shown in Figure 27, we plot the requirements volatility against the baseline

version number with baseline 0 being the start of this new project. The requirements

volatility (CRi / BR) is high in baselines 4, 7, 12, 15, 21, and 25, indicating either

uncertainty of the software system or poor understanding of the environment and system.

Uncertainty generally is caused by indecisive project planning decisions. The requirements

volatility (CRi / BR) eases after baseline 26, indicating that the number of requirement

changes decreases. Furthermore, as indicated in Figure 27, requirement changes tend to

decrease toward the end of the development life cycle.

182

Figure 27. Requirements volatility for the B6 Project

6. Number of Different Job Position Types

The B6 Project plan lists 44 job position types that are identical to those in the B4

Project, as shown in Table A-13 of Appendix A. The B6 Project plan also describes the

responsibilities of the 44 job position types that are the same as those in the B4 Project, as

shown in Table A-14 of Appendix A. Using Equation (3.6), we calculate JPT by counting

all job position types and obtain the value of 44.

A high value of JPT indicates that the B6 Project has varieties of tasks and task

priorities that can affect the overall project performance. People who worked in these 44

types of job positions interact, exchange, and process information in many different ways

that contribute to project complexity. Some of the people in these job positions support

several projects, and their work schedules are based on the number of hours allocated for

supporting that projects.

7. B6 Project Complexity Profile

Using the PCMM, we have calculated the complexity values of the B6 Project.

Table 51 shows the complexity profile of the B6 Project.

183

Table 51. B6 Project complexity profile

Complexity Measure PCMM
Value

Results from previous
works and conclusions
drawn based on the IPT-
related literature

Number of personnel
required for the
development effort
(people)

35.08
people
per year

36 people per year based
on projects with an
annual budget of $5.3
million [151]–[153]

Defect density (defects
per KLOC)

1.78 ≤ 3 [160]

Organizational
Complexity (IF)

7.64 5.49 based on
Schwandt’s study [158]

Geographical
distribution of teams
(GD)

20 Reasonable when
compared to a typical
Navy software
acquisition program with
an annual budget of less
than $5 million [197]

Requirements
volatility (RVM)

1.3 < 1 [162]

Number of different
job position types
(JPT)

44 Sensible and consistent
when compared to a
typical Navy software
acquisition program with
an annual budget of less
than $5 million [197]

Regarding the measurement of the number of personnel required for the

development effort, the PCMM estimated that 35.08 people are needed for the B6 Project.

However, the project plan listed 34 people. This indicates a moderate risk related to the

size of the team because the project team has 34 people and may lack the personnel

resources as estimated by the PCMM. This analysis shows that the PCMM is fairly

consistent and accurate in estimating the level of complexity of the project in terms of the

number of people required for the annual budget compared to the B6 Project plan.

184

Because the development phase was completed in the B6 Project, the test data were

available to compute the defect density. When the B6 Project started in February of 2017,

the project manager used the defect density value of the B4 Project, which is 0.299 defects

per KLOC, and estimated the defect density for the B6 Project as 0.299 defects per KLOC

because the B4 Project was the previous block of software of the B6 Project as illustrated

in Figure 19. However, the PCMM estimated 1.78 defects per KLOC based on the

empirical data. This indicates low risk related to the stability of the released software

because the defect density measurement is less than 3 defects per KLOC as specified by

the software industry standard [160]. As expected, the defect density of the B6 Project

should be higher than the defect density of the B4 Project because additional functions are

added to the B6 Project and the number of change requests in the B6 Project is much higher

than the number of change requests in the B4 Project. From this perspective, the PCMM is

reasonable and consistent in estimating the level of complexity based on the test data of

the B6 Project.

In regard to the organizational complexity measurement, the PCMM estimated a

value of 7.64 for the organizational complexity. This is consistent with the results of the

B4 Project as both projects have identical organizations and similar patterns of

communications.

The PCMM estimated a value of 20 for the measurement of the geographical

distribution of teams. This measurement is also consistent with the B4 Project because both

projects have similar geographical distribution of teams. This measurement indicates

medium risk related to the degrees of collaboration between teams because the Allen curve

[119] is still applicable. Nevertheless, the PCMM is consistent with a typical Navy software

acquisition program because the IPT and project teams adapt to local norms and they have

established protocols for communication according to specific purposes for internal and

external customers [197].

Because the development phase was completed in this case, the requirements

traceability report was available to compute the requirements volatility. When the B6

Project started in February of 2017, the project manager used the requirements volatility

value of the B4 Project, which is 0.388, and estimated the requirements volatility for the

185

B6 Project as 0.388. Nevertheless, the PCMM estimated the requirements volatility

measurement as 1.3 based on the empirical data. This indicates high risk related to

requirements creep and the understanding of the software requirements as well as use cases

because the RVM is greater than 1 as indicated in the literature [162]. As expected, the

RVM of the B6 Project should be higher than the RVM of the B4 Project because additional

requirements are added to the B6 Project. From this view, the PCMM is consistent and

reasonable in estimating the level of complexity based on the requirements traceability

report of the B6 Project.

In regard to the measurement of the number of different job position types, the

PCMM estimated 44 different job position types based on the B6 Project plan. This is

expected because both projects B4 and B6 have identical types of job positions. From this

perspective, the PCMM is consistent in estimating the level of complexity based on the B6

Project plan.

The overall complexity level of the B6 Project is calculated as the average of the

complexity scores of six measures as shown in Table B-16 of Appendix B. As illustrated

in Table B-16 of Appendix B, the overall complexity level of the B6 Project is 4, which is

moderate complexity.

Regarding the risk level of the B6 Project, we use Table A-22 of Appendix A to

score the six metrics in Tables B-10, B-11, B-12, B-13, B-14, and B-15. The overall risk

level of the B6 Project is computed as the average of the six risk scores of the six measures

in Table B-17 of Appendix B. We rate the risk level of the project based on degree of

impact in terms of cost, schedule, and performance on the project, as shown in Table A-

23. As presented in Table B-17 of Appendix B, the overall risk level of the B6 Project is

2, which is medium risk.

Table 52 shows the complexity level and risk level of each metric in the B6 Project.

186

Table 52. The complexity level and risk level of the B6 Project

Metric Project
Complexity
Score

Complexity
Level

Risk
Level

1. Number of
personnel
required for the
development
effort

5 High High

2. Defect density 3 Low Low

3. Organizational
Complexity

4 Moderate Medium

4. Geographical
distribution of
teams

4 Moderate Medium

5. Requirements
volatility

5 High High

6. Number of
different job
position types

3 Low Low

Overall risk level
of the B6 Project

4 Moderate Medium

In sum, the PCMM determines that the B6 Project has moderate complexity and

medium risk. The results of the PCMM provide insights on four areas of possible concerns

related to the B6 Project.

First, the PCMM determines that the measure of the number of personnel required

for the development effort is high risk, which means that the number of people assigned to

the project may be insufficient and the project schedule may potentially slip of more than

four weeks. Second, the PCMM determines that the measure of organizational complexity

is medium risk, which indicates the frequent exchange of information for decision-making

and the high number of tasks and communications required for the project. This may cause

a cost increase of 10% to 20% to the budget of the project. Third, the PCMM determines

that the measure of geographical distribution of teams is medium risk, which may be a

187

concern for a potential schedule slip of 2 to 4 weeks. Four, the PCMM determines that the

measure of requirements volatility is high risk, which indicates a high number of change

requests and a potential of a project cost increase of more than 20%.

The PCMM assessment of the B6 Project demonstrated the consistency of the

PCMM because the B6 Project was a moderate-risk project according to the B6 Project

manager and the IPT senior management review. Nevertheless, the project manager was in

control of the project and was able to mitigate the risk of insufficient personnel resources

and the risk of requirements creep. The project manager delivered the software on schedule

as well as within budget.

C. B8 WINDOWS-BASED DATABASE SOFTWARE PROGRAM

Similar to the B6 Project, the purpose of the B8 Project is to develop a Windows

database application for fleet users to use as a tool for mission planning and data analysis.

In fact, the B8 Project is the next software block of the B6 Project, and it uses a hybrid

development method that is between an agile method and waterfall development method

in which the project delivers the software in increments. The B8 software program not only

fixes some software defects reported in the B6 software program but it also provides new

capabilities by implementing additional requirements requested from the fleet. The B8

Project is broken up into separate program increments which may are representative of the

different software builds. Each software build completes a subset of requirements and

contains phases that are similar to those of the B6 Project. Figure 28 shows an overview of

the B8 Project, which includes project teams, management teams, the B8 Project plan, and

SRS as well as databases and elements of both hardware and software. In addition, the

project has IT systems supporting ad hoc audits of new requirements, project reviews, and

configuration management. Test teams and organizations such as DT, OT, trainers, and

fleet representatives are responsible for testing the system.

188

Figure 28. A context diagram of the B8 Project

The B8 Project plan identifies 23 software work products and 25 deliverables that

include project documents. It lists the cost of the project is $4.3 million. The B8 Project’s

organizational chart shows 28 team members. Table C-1 of Appendix C shows some

stakeholders’ roles and functions listed in the project plan. In addition, Table C-2 of

Appendix C presents the PMA, IPT, and PT that are involved in milestone reviews and

status reviews during the first 20-month development phase.

The B8 Project plan indicates that the integrated development environment is

Microsoft Windows 10 and the C# object-oriented programming language. The IDD

documents and test procedures list two external interfaces. Software developers determined

and noted in the IDD documents that two external interfaces were easy to implement

because these interfaces have few classes that require few methods to query and retrieve

data or to perform simple computations for analyzing the data. The B8 test plan lists 43

test procedures that link to 43 use cases. Since the project started in October of 2019, data

related to change requests were available during the first 20-month development phase. It

listed 1,029 change requests that included 533 new change requests, 32 modifications, and

464 deletions during a 20-month period. The project started with a baseline of 2,822

requirements. At the end of the 20-month period, it had 2,891 requirements.

The number of requirements in the B8 Project is slightly more than the number of

requirements in the B6 Project. However, the development phase of the B8 Project is also

shorter than the development phase of the B6 Project because the funding of the B8 Project

is less than the funding of the B6 Project. After reviewing both project plans B4 and B6,

the B8 Project manager interviews the project managers of the B4 and B6 Project. In the

189

end, the B8 Project manager decides to follow the same approach as the B6 Project and

concludes that 80% of requirements will take less than 1 week to implement while 20% of

requirements will take between 2 to 4 weeks. Hence, the B8 Project manager determines

that 2,313 requirements (80% of requirements) will be easy to implement and the

remaining 20% requirements (578 requirements) will be nominal to implement.

Since the B8 Project is the next software block of the B6 Project, both projects have

the same IPT management team. Both projects share the software expertise among the team

members. Hence, the B8 Project plan indicated that requirements understanding of the

software development team was high and the technical risk was nominal. In addition, the

process capability of the project team was nominal.

Software developers noted in the SDD that the project has one algorithm that was

easy (simple data manipulation and timing not an issue) to develop. Developers determined

and noted in the use case documents that they have developed 43 use cases. They noted

that 38 use cases were easy to generate, and 5 use cases required a nominal amount of time

to create the operational scenarios.

With the information from the project plan, IDD, use case documents, SDD, test plan,

test procedures, build reports, and RTR, we create the B8 Project profile as shown in Table 53.

Table 53. B8 Project profile

Project Property Value Source of Information

Estimated Yearly
Budget

$4.3 million Project plan

Team Size 28 Project plan

Duration of the
Development Phase

20 months Project plan

Baseline
Requirement (BR)

2,822
requirements at
project start

RTR

Number of
requirements at the
end of the project

2,891
requirements

RTR

190

Project Property Value Source of Information

Number of Change
Requests (CRs)

1,029 CRs (533 new, 32
modifications, and 464
deletions)

RTR

Number of “difficult”
requirements

289 requirements
(10%)

Allocating 10% of
requirements as
“difficult” based on the
interview of the B6
Project manager and
reviewing the B6
Project plan

Number of “nominal”
requirements

289 requirements
(10%)

Allocating 10% of
requirements as
“nominal” based on the
interview of the B6
Project manager and
reviewing the B6
Project plan

Number of “easy”
requirements

2,313
requirements
(80%)

Applying the 80–20
rule that is based on the
interview of the B6
Project manager and the
review of the B6 Project
plan

Understanding of
requirements [24]

high Project plan

Technical Risk [24] nominal Project plan

Process Capability
[24]

nominal Project plan (CMMI
[191] level 3)

Number of External
Interfaces

2 (“easy”) IDD and test procedures

Number of Critical
Algorithms [24]

1 (“easy”)

Software design
document (SDD) and
project plan

Number of use cases 43 (38”easy” and 5
“nominal”)

Use case documents
and test plan

Number of lines of
code (LOC)

449,836 Build report (SLOC
count)

191

With the project profile shown in Table 53, we apply the PCMM and estimate the

B8 Project complexity in the next section.

1. Measure of Number of Personnel Required for the B8 Project

We use the data from the B8 Project profile shown in Table 53 to compute and

obtain a software size value of 2,227.7, as shown in Table C-3 of Appendix C. In addition,

we use the COSYSMO weight factors of cost drivers shown in Table 17 of Chapter III to

calculate and obtain the effort weight factor of 0.77, as shown in Table C-4 of Appendix

C.

Finally, we use Equation (3.1) to calculate the number of person-month required

(PM) [24] in the B8 Project and obtain 27.87 people as shown in Table C-5 of Appendix

C. Adding the project reserves of 10% to cover residual risks in the project [174], we

determine that the B8 Project needs annual funding for 30.66 people (27.87 times 1.1) or

$4.474 million (30.66 times $145,932). In this case, the number of personnel required for

the development effort estimated by the PCMM is reasonable and not exceeding 10% of

the projected number of personnel required as specified in the B8 Project plan.

2. Defect Density Measure

Since the project started in October of 2019, we have test data to measure defect

density. Table C-6 of Appendix C shows the B8 Project monthly test report, taken from the

empirical project data. Figures 29 and 30 present the plots of Table C-6 of Appendix C.

192

Figure 29. Defect density of the B8 Project

Figure 30. Test hours of the B8 Project

As shown in Figure 29, the defect density trend line is upward toward the end of

the development phase. The trend line of test hours is also upward as illustrated in Figure

30. The defect density (NDi/KLOC) increases substantially from releases 5 to 6, from 8 to

9, and from 11 to 12 when the test hour increases at the same time. This indicates that

testers may be focused on testing while also writing test procedures. The defect density

(ND/KLOC) continues trending upward as testers increase the test hours toward the end of

193

the development cycle. Table C-6 of Appendix C shows that the project defect density

averaged 0.109 defects per KLOC, which is within the industry standard limit of 3 [160].

The defect density of the B8 Project showed in Figure 29 fluctuates less than that

of the defect density of the B6 Project showed in Figure 25, indicating that the B8 software

program is more stable than the B6 software program. In addition, the defect density of the

B8 Project fluctuates more than that of the B4 Project showed in Figure 21, indicating that

the B8 software program is less stable than the B4 software program. A stable software

program has a better project performance than a non-table software program in terms of

cost and schedule. Hence, project managers should use the defect density metric as an

indicator of project performance.

3. Organizational Complexity Measure

The B8 Project plan listed nine organizational units, and their responsibilities are

identical to those in the B4 Project, as shown in Table A-1 of Appendix A.

Figure C-1 of Appendix C shows the nodes, links, frequencies, and the level of

importance of communications between PMA and IPT, between PMA and PT, and

between PMA and the DT/OT unit during the 20-month period. Figures C-2, C-3, and C-4

of Appendix C show the context diagrams of the rest of the nodes, links, communication

frequencies and importance values between the organizations of the B8 Project. We use

Figures C-1, C-2, C-3, and C-4 to generate the N2 chart as shown in Table 54. The N2

chart represents nine organizational units and 40 links in the B8 Project. All nine

organizational units communicate and exchange information to perform project tasks.

Table 54. N2 chart of the B8 Project

IPT PMA Project
Team

BFM Contracting
Unit

T/F
Unit

DT/OT
Unit

Total

IPT 3 3 3 1 10
PMA 5 5
Project Team 3 2 5
BFM 2 2 4
Contracting
Unit

3 3

194

IPT PMA Project

Team
BFM Contracting

Unit
T/F
Unit

DT/OT
Unit

Total

Contractor
Unit

 2 1 1 4

SDU 2 1 1 4
DT/OT Unit 2 2
T/F Unit 3 3
Total links 40

From Equation (3.3) and Tables C-7 and C-8 of Appendix C, we calculate the index

function of each organizational unit that is associated with its links. Table C-9 of Appendix

C presents the organizational complexity of each organizational unit and the total

organizational complexity of 7.88.

The organizational complexity of the B8 Project is very similar to the

organizational complexity of the B6 Project because the B8 Project is the next block of

software of the B6 Project. Each organizational unit has to some degree contributed to the

negative effect upon the B8 Project in terms of schedule delay and cost overrun due to the

time required to process the frequent exchange of information for decision-making.

As shown in Table C-9 of Appendix C, IPT has the greatest number of tasks and

the highest number of communications in the project that contribute to the highest

organizational complexity (IF = 2.52) among project organizations. CU has the fewest

number of tasks and the lowest number of communications that contribute to the lowest

organizational complexity (IF = 0.2) among project organizations.

4. Geographical Distribution of Teams Measure

From the B8 Project plan, we identified 14 sites situated in 4 cities and across 2

time zones. Using Equation (3.4), the degree of geographical distribution of teams (GD) is

determined by adding up the number of sites (s), locations (l), and time zones (t) as shown

in Table C-10 of Appendix C. In this case, we compute GD and obtain 20 (14 + 4 + 2).

This GD is identical to the GD in the B6 Project. This high GD value suggests that

collaborative works between teams in the B8 Project should be infrequent, which may

contribute to a higher risk of schedule delay or budget shortfall.

195

Similar to the B6 Project, these organizations in the B8 Project adjusted their

project schedules and held weekly status meetings for overcoming the barrier of

geographical distribution of teams to achieve the project deliverables.

5. Requirements Volatility Measure

Using Equation (3.5) and the B8 Project profile shown in Table 53, we calculated

the value of requirements volatility in the B8 Project. The overall requirements volatility

measure (RVM) of the B8 Project is as follows:

𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐶𝐶𝑅𝑅
𝐵𝐵𝐵𝐵

=
1,029
2,822

= 0.36

where CR denotes the number of changes in requirements (new requirements,

modifications of requirements, and deletions of requirements) during the 20-month period,

and BR denotes the baseline of the software release, which is measured by the number of

requirements.

Because the project started in October of 2019, we obtain the data of requirements

baseline 0 through baseline 20 from the B8 Project requirements metric report and present

them in Table C-11 of Appendix C.

As shown in Figure 31, we plot the requirements volatility against the baseline

version number with baseline 0 being the start of this new project. The requirements

volatility (CRi / BR) is high in baselines 4, 11, 14, and 19 indicating either uncertainty of

the software system or poor understanding of the environment and system. Uncertainty

generally is caused by indecisive project planning decisions. The requirements volatility

(CRi / BR) eases after baseline 20, indicating that the number of requirement changes

decreases. Furthermore, as indicated in Figure 31, requirement changes tend to decrease

toward the end of the development life cycle.

196

Figure 31. Requirements volatility of the B8 Project

6. Number of Different Job Position Types Measure

The B8 Project plan lists 44 job position types that are identical to those in the B4

Project, as shown in Table A-13 of Appendix A. The B8 Project plan also describes the

responsibilities of the 44 job position types that are the same as those in the B4 Project, as

shown in Table A-14 of Appendix A. Using Equation (3.6), we calculate JPT by counting

all job position types and obtain the value of 44.

This high JPT value suggests that the B8 Project have varieties of tasks and task

priorities that can affect the overall project performance. Similar to the B4 Project and the

B6 Project, people who worked in these 44 types of job positions interact, exchange, and

process information in many different ways that contribute to project complexity. Some of

the people in these job positions support several projects, and their work schedules are

based on the number of hours allocated for supporting that projects.

7. B8 Project Complexity Profile

Using the PCMM, we have calculated the complexity values of the B8 Project.

Table 55 shows the complexity profile of the B8 Project.

197

Table 55. B8 Project complexity profile

Complexity
Measure

PCMM
Value

Results from previous works
and conclusions drawn based
on the IPT-related literature

Number of
personnel
required for the
development
effort (people)

30.66
people
per year

29.46 people based on
projects with an annual
budget of $4.3 million [151]–
[153]

Defect density
(defects per
KLOC)

0.109 ≤ 3 [160]

Organizational
Complexity (IF)

7.88 5.49 based on Schwandt’s
study [158]

Geographical
distribution of
teams (GD)

20 Reasonable when compared
to a typical Navy software
acquisition program with an
annual budget of less than $5
million [197]

Requirements
volatility (RVM)

0.36 < 1 [162]

Number of
different job
position types
(JPT)

44 Sensible and consistent when
compared to a typical Navy
software acquisition program
with an annual budget of less
than $5 million [197]

Regarding the measurement of the number of personnel required for the

development effort, the PCMM estimated that 30.66 people are needed for the B8 Project.

But based on the estimated annual project cost shown in the project plan, we could fund

29.46 people ($4.3 million / $145,932) yearly for the B8 Project. However, the project plan

listed 28 people per year and allocated some funding for project reserves. This indicates a

moderately low risk related to the size of the team because the 28 people on the B8 Project

is less than 30.66 people estimated by the PCMM. This analysis shows that the PCMM is

198

fairly consistent and accurate in estimating the level of complexity in terms of the number

of people required for the annual budget compared to the B8 Project plan.

Because the development phase was completed in the B8 Project, the test data were

available to compute the defect density. When the B8 Project started in October of 2019,

the project manager used the defect density value of the B6 Project, which is 1.78 defects

per KLOC, and estimated the defect density of the B8 Project as 1.78 defects per KLOC

because the B6 Project was the previous block of software of the B8 Project as shown in

Figure 19. Nevertheless, the PCMM estimated 0.109 defects per KLOC based on the

empirical data. This indicates low risk related to the stability of the released software

because the defect density measurement is less than 3 defects per KLOC as specified by

the software industry standard [160]. As expected, the defect density of the B8 Project

should be lower than the defect density of the B6 Project because the number of change

requests in the B8 Project is much less than the number of change requests in the B6

Project. From this perspective, the PCMM is reasonable and consistent in estimating the

level of complexity based on the test data of the B8 Project.

In regard to the organizational complexity measurement, the PCMM estimated a

value of 7.88 for the organizational complexity. This is consistent with the results of the

B6 Project as both projects have identical organizations and similar patterns of

communications.

The PCMM estimated a value of 20 for the measurement of the geographical

distribution of teams. This measurement is also consistent with the B6 Project because both

projects have the same geographical distribution of teams. This measurement indicates

medium risk related to the degrees of collaboration between teams because the Allen curve

[119] is still applicable. Nevertheless, the PCMM is consistent with a typical Navy software

acquisition program because the IPT and project teams adapt to local norms and they have

established protocols for communication according to specific purposes for internal and

external customers [197].

Because the development phase was completed in this case, the requirements

traceability report was available to compute the requirements volatility. When the B8

199

Project started in October of 2019, the project manager used the requirements volatility

value of the B6 Project, which is 1.3, and estimated the requirements volatility for the B6

Project as 1.3. Nevertheless, the PCMM estimated the requirements volatility measurement

as 0.36 based on the empirical data. This indicates low risk related to requirements creep

and the understanding of the software requirements as well as use cases because the RVM

is less than 1 as indicated in the literature [162]. As expected, the RVM of the B8 Project

should be lower than the RVM of the B6 Project because the number of change requests in

the B8 Project is less than the number of change requests in the B6 Project. From this view,

the PCMM is consistent and reasonable in estimating the level of complexity based on the

requirements traceability report of the B8 Project.

In regard to the measurement of the number of different job position types, the

PCMM estimated 44 different job position types based on the B8 Project plan. This is

expected because both projects B6 and B8 have identical types of job positions. From this

perspective, the PCMM is consistent in estimating the level of complexity in terms of

number of different job position types based on the B8 Project plan.

The overall complexity level of the B8 Project is calculated as the average of the

six complexity scores of the six measures in the PCMM as shown in Table C-18 of

Appendix C. As illustrated in Table C-18 of Appendix C, the overall complexity level of

the B8 Project is 3 (low complexity).

Regarding the risk level of the B8 Project, we use Table A-22 of Appendix A to

score the six metrics in Tables C-12, C-13, C-14, C-15, C-16, and C-17. The risk level of

the project is defined in Table A-23, which is based on degree of impact in terms of cost,

schedule, and performance on the project. The risk level of the B8 Project is computed as

the average of the six complexity scores of the six measures shown in Table C-19 of

Appendix C. As presented in Table C-19 of Appendix C, the overall risk level of the B8

Project is 1.5 (low risk).

Table 56 shows the complexity level and risk level of each metric in the B8 Project.

200

Table 56. The complexity level and risk level of the B8 Project

Metric Comple
xity
Score

Complexity
Level

Risk
Level

1. Number of
personnel required
for the
development effort

4 Moderate Medium

2. Defect density 1 Simple Low

3. Organizational
Complexity

4 Moderate Medium

4. Geographical
distribution of
teams

4 Moderate Medium

5. Requirements
volatility

2 Complicated Low

6. Number of
different job
position types

3 Low Low

Overall complexity
level and risk level
of the B8 Project

3 Low Low

In sum, based on the assessment of the PCMM, the B8 Project has a low complexity

and the risk level of the project is low. The PCMM provides insights on three areas of

possible concerns related to the B8 Project.

First, the number of personnel assigned to the project (28 people per year listed in

the project plan) is very close to the number of personnel estimated by the PCMM (27.87

people per year). However, because we need to allocate project reserves of 10% to cover

residual risks, this may create a risk in the schedule. Thus, the PCMM reflects that concern

as a medium risk, which means a potential schedule slip of 2 to 4 weeks.

Second, the organizational complexity may be a concern because how the team

engages in communications and how the team makes decision affect the project execution.

201

Hence, the PCMM indicates that concern as a medium risk, which means a potential cost

increase of 10% to 20% to the project budget.

Third, the geographical distribution of teams may be a concern as indicated by the

PCMM because the project needs some collaborative work between teams and a rich and

robust communications platform for executing the project. The PCMM shows this concern

as a medium risk, which means a potential schedule slip of 2 to 4 weeks.

The PCMM assessments of the B8 Project demonstrated the consistency of the

PCMM because the B8 Project was a low-risk project according to the IPT senior

management review. The project manager monitored the team progress and kept the budget

and schedule under control. The project manager mitigated the risk of insufficient

personnel resources. According to the IPT senior management review, the B8 Project

delivered the software on schedule and within budget.

8. Comparison of Complexity Profile of Three Engineering Projects

A comparison of complexity profile of the three engineering projects (the B4

Project, B6 Project, and B8 Project) appears in Table 57. As expected, the PCMM indicates

that the B6 Project has a higher complexity level and risk level than the B8 Project and the

B4 Project. This result is consistent with the project data and the IPT senior management

review. Table 57 indicates that the B6 Project is worse than that of the B4 and B8 Projects

to deliver the product on time and within budget. Note that the B6 Project costs more than

20% of the B4 and B8 Projects. The B6 Project schedule is 4 to 8 months longer than the

B4 and B8 Projects. These observations are consistent with the moderate-complexity rating

and the medium-risk rating by the PCMM.

Because the B4 Project was completed, data were available to measure defect

density and requirements volatility of the B4 Project. On the other hand, both B6 and B8

Projects are still continuing. Therefore, the project managers of the B6 and B8 Projects use

earlier periods of test data and measures the defect density and requirements volatility.

In all three cases, the PCMM is consistently estimated the complexity levels and

the risk levels of the projects. As shown in Table 57, the B6 Project is the most complex

202

project and has the highest risk level among the three projects. Thus, the B6 Project has the

highest requirements volatility and the highest defect density among the three projects.

Furthermore, Table 57 indicates that the B6 Project requires more personnel for the

development effort than the B8 Project and the B4 Project. In addition, the B6 Project has

the longest period of development and the highest number of defects per KLOC among the

three projects.

All three engineering projects have similar levels of organizational complexity. In

general, if interdependence is high among organizational units, then the time, cost, and

effort necessary to coordinate the process will be high. All three engineering projects have

similar values in the measure of different job position types and in the measure of

geographical distribution of teams. This makes sense because the B8 Project is the

continuation of the B6 Project, and the B6 Project is the continuation of the B4 Project.

Note that a long project duration generally increases the risk of schedule slippage and cost

overrun as demonstrated by the PCMM in the B6 Project complexity profile shown in

Table 57.

Table 57. A comparison of complexity profile of three engineering projects

Complexity Measure B4 Project

(24 months)

B6 Project

(28 months)

B8 Project

(20 months)

1. Number of personnel required for the

development effort (people/year)

17.09 35.08 30.66

2. Defect density (defects per KLOC) 0.299 1.78 0.109

3. Organizational Complexity 7.66 7.64 7.65

4. Geographical distribution of teams 19 20 20

5. Requirements volatility 0.388 1.3 0.36

6. Number of different job position types 44 44 44

Complexity Score 2.67 4 3

203

Complexity Measure B4 Project

(24 months)

B6 Project

(28 months)

B8 Project

(20 months)

Risk Score 1.167 2 1.5

Complexity Level Low Moderate Low

Risk Level Low Medium Low

The range of values of the measure of number of personnel required for the

development effort is between 17 people per year to 35 people per year. These values are

typical for a Navy software development project where the annual budget of the project is

between 3.3 million to 5.3 million.

In regard to the measure of defect density, the range of values of this measure is

between 0.1 defects per KLOC to 0.32 defects per KLOC in a typical Navy software

development project where the software program lines of code is between 450 KLOC to

870 KLOC. Note that the B6 Project has 1.78 defects per KLOC, which is not typical due

to the high number of defects in the software program.

Regarding the measure of organizational complexity, the range of values of this

measure is between the values of 5.4 and 7.7 in a typical Navy software development

project where the project normally involves 9 to 10 organizations in the IPT.

The range of values of the measure of requirements volatility in a typical Navy

software development project is between the values of 19 and 20 where the government

agencies and the contractors collaborate onsite and offsite to development the software

program.

The range of values of the measure of geographical distribution of teams in a typical

Navy software development project is between the values of 19 and 20 where the

government agencies and the contractors collaborate onsite and offsite to development the

software program.

204

In regard to the measure of the number of different job position types, a typical

Navy software development project has a range of values from 44 to 46 types of job

positions where the project normally involves 9 to 10 organizations in the IPT with an

annual budget between 3.3 million to 5.3 million.

The program managers of the B4, B6, and B8 Projects define the program success

according to the following project outcomes:

• The software has no priority 1 or 2 defects. A Priority 1 defect is defined

as a critical and “must fix” defect because it prevents the accomplishment

of an operational capability. A Priority 2 defect is defined as a very

important and no work-around defect but also “need to fix” defect because

it adversely affects technical, cost, or schedule risks to the project.

• IPT and senior management have reviewed the project metrics that include

the number of defects and priorities, defect density, the number of

statement of requirements achieved, and man-hours spent on the project.

• The software meets all statements of requirements.

• The PMA receives a letter of certification of the software from the

program manager to enter the operational test (OT).

• The OT unit completes the OT test and sends the OT report to the PMA,

recommending releasing the software to the fleet.

The B4, B6, and B8 Projects all achieved the desired project outcomes. Based on

the B6 Project outcomes stated in test reports, statements of requirements, and certification

letters as well as project expenditures drawn from financial data such as labor, contracts

obligation, and materials, the B6 Project shows a greater number of test hours, defects,

change requests, and the number of personnel required for the development effort than the

B4 and B8 Projects. The program manager and the PMA conclude that the B6 Project is

more complex and has a higher level of risk than the B4 and the B8 Projects.

205

In short, as demonstrated by the three Navy software projects, the PCMM and

associated methods to measure complexity can help systems engineers and program

managers analyze project complexity and reason through their decisions related to systems

engineering. The PCMM can help systems engineers perform the following items:

• To estimate the number of personnel required for the development effort

of the SoI,

• To understand project complexity and risk in terms of requirements

stability and product quality control via defect density measurement

during or after the completion of the project,

• To assess the impacts from a given complexity value of the number of

locations of the team on team communications for collaborative work, and

• To assess the impacts of a given complexity value of the number of

different job positions on the integration of technical processes.

9. Sensitivity Analysis

In Section C of Chapter III, we performed a sensitivity analysis on both the number

of personnel required for the development effort and the requirements volatility of the

PCMM. In this section, we use the project data from the three engineering projects and

perform a sensitivity analysis on the measure of defect density because this measure has a

major effect on the complexity level and risk level of the project. The number of test hours

and the number of defects in each use case are obtained from Table A-7 of Appendix A,

Table B-5 of Appendix B, and Table C-6 of Appendix C. As shown in Table 58, the number

of defects per test hours increases by 112.82% (0.22 / 0.195) between Project B4 and

Project B6, the defect density of the B6 Project also increases by 595.31% (1.78 / 0.299).

The sensitivity value of this measurement is 5.27 (595.31% / 112.82%).

As illustrated in Table 58, the number of defects per test hours decreases by

379.31% (0.22/0.058) between Project B6 and Project B8, the defect density of the B8

Project also decreases by 1,633% (1.78/0.109). The sensitivity value of this measurement

206

is 4.3 (1,633% / 379.31%). Hence, the sensitivity value of the PCMM is stable, dropping

from 5.27 to 4.3.

Table 58. Sensitivity analysis of the defect density measurement in the three
engineering projects

Project Data B4
Project

B6
Project

B8
Project

Defect density
(defects / KLOC)

0.299 1.78 0.109

Total number of
test hours

1,339.5 6,384.85 838.5

Total number of
defects

261 1,408 49

Defects / Test hours 0.195 0.22 0.058

Since there is little change in the measurements of organizational complexity,

geographical distribution of teams, and the number of different job position types among

the B4, B6, and B8 Projects, we will not perform a sensitivity analysis on these measures.

In sum, we performed a sensitivity analysis on the defect density of the PCMM.

The analysis shows that in regard to the defect density measurement, the PCMM is

sensitive to the changes in the technical parameters of the project. At the same time, the

PCMM is stable within the ranges of the technical parameters that specify in the project

profile. Therefore, the PCMM does sustain the different levels of complexity.

10. Analysis of Three Main PCMM Measures Related to Project Cost,
Schedule, and Performance

Because we have three metrics (number of personnel required for the development

effort, defect density, and requirements volatility) in the PCMM that affect project

complexity to the greatest extent in our three engineering projects, let’s analyze each metric

and draw some conclusions related to project cost, schedule, and performance.

207

Since the B6 Project is the most complex and has a higher risk than both the B4 and

B8 Projects, our project correlation analysis of the three main PCMM measurements will

be focused on the B6 Project, as shown in Tables 59, 60, and 61. According to the project

managers and the IPT senior management review, all three projects met the requirements,

budgets, performances, and schedules for the deliverables.

Based on the results of three engineering projects, we conclude that the PCMM’s

measure of the number of personnel required for the development effort correlates to

project cost and may also be correlated to project schedule and performance.

Table 59. Analysis of project cost and the measure of the number of
personnel required for the development effort

 B4 Project B6 Project B8 Project

Project cost per year $3.3 million $5.3 million $4.3 million

Project duration (months) 24 28 20

Number of requirements 1,994 2,822 2,891

Number of change requests 803 2,725 1,029

KLOC 870.559 790.487 449.836

PCMM measure: number of
personnel required for the
development effort (people/year)

17.09 35.08 30.66

Measure correlates to project cost. The B6 Project requires more personnel for the
development effort and costs more than the B4
and B8 Projects.

Measure may be correlated to project
schedule.

The B6 Project has a longer project duration
and a greater number of personnel required for
the development effort than the B4 and B8
Projects

Measure may be correlated to
performance.

Both the B6 and B8 Projects require more
personnel for the development effort and have
more requirements than the B4 Project.

208

In Table 60, we conclude that the PCMM’s measure of defect density correlates to

performance and may also be corrected to project cost and project schedule.

Table 60. Analysis of project performance and the measure of defect density

B4 Project B6 Project B8 Project

Project cost per year $3.3 million $5.3 million $4.3 million

Project duration (months) 24 28 20

Number of requirements at the

end of the project

1,994 2,822 2,891

Number of change requests 803 2,725 1,029

KLOC 870.559 790.487 449.836

Number of test hours 1,339.5 6,384.85 838.5

Number of defects 261 1,408 49

Defects / test hours 0.195 0.22 0.058

PCMM measure: defect density 0.299 1.78 0.109

Measure may be correlated to

project cost.

The B6 Project has higher defect density and costs

more than the B4 and B8 Projects.

Measure may be correlated to

project schedule.

The B6 Project has higher defect density and a

longer project duration than the B4 and B8 Projects.

Measure correlates to

performance.

The B6 Projects has higher defect density and has

more change requests than the B4 and B8 Project.

209

In Table 61, we conclude that the PCMM’s measure of requirements volatility

correlates to project cost and may also be correlated to project schedule and performance.

Table 61. Analysis of project cost and the measure of requirements volatility

 B4 Project B6 Project B8 Project

Project cost per year $3.3 million $5.3 million $4.3 million

Project duration (months) 24 28 20

Number of requirements at the end of the

project

1,994 2,822 2,891

Number of change requests 803 2,725 1,029

KLOC 870.559 790.487 449.836

Number of test hours 1,339.5 6,384.85 838.5

Number of defects 261 1,408 49

Defects / test hours 0.195 0.22 0.058

PCMM measure: requirements volatility 0.388 1.3 0.36

Measure correlates to project cost. The B6 Project has higher requirements

volatility and costs more than the B4 and

B8 Projects.

Measure may be correlated to project

schedule.

The B6 Project has higher requirements

volatility and a longer project duration than

both the B4 and B8 Projects.

Measure may be correlated to

performance.

The B6 Projects has higher defects per test

hours and has more change requests than

the B4 and B8 Project.

210

The overall correlation analysis of the three main PCMM’s measures are shown in

Table 62. As shown in Table 62, the correlation between the measure of the number of

personnel required for the development effort and the project cost is positive. This indicates

that as the number of personnel required for the development effort increases, the project

cost also increases, and vice versa.

On the other hand, the correlation between the measure of defect density and the

project performance is negative, as shown in Table 62. This suggests that as the defect

density value increases, the project performance decreases, and vice versa.

The correlation between the measure of requirements volatility and the project

schedule is positive, as illustrated in Table 62. This suggests that as the requirements

volatility value increases, the project duration is also longer, and vice versa.

Table 62. Correlation Analysis of the three main PCMM’s measures

PCMM Measure Project Attribute Correlation

1. Number of personnel required for the

development effort

Cost positive

Schedule negative

Performance negative

2. Defect density Cost positive

Schedule positive

Performance negative

3. Requirements volatility Cost positive

Schedule positive

Performance negative

211

11. Analysis of the PCMM Measures Related to the Risk Levels of the
Project

The overall correlation analysis of the PCMM’s measures and the risk levels of the

project are shown in Table 63. As shown in Table 63, the correlation between the measure

of number of personnel required for the development effort and the risk levels of the project

is positive. This indicates that as the number of personnel required for the development

effort increases, the risk levels of the project also increase, and vice versa.

Similarly, the correlation between the measure of defect density and the risk levels

of the project is also positive, as shown in Table 63. This suggests that as the defect density

value increases, the risk levels of the project also increase, and vice versa.

The correlation between the measure of requirements volatility and the risk levels

of the project is positive, as illustrated in Table 63. This suggests that as the requirements

volatility value increases, the risk levels of the project also increase, and vice versa.

The rest of the PCMM measures also has a positive correlation to the risk levels of

the project.

Table 63. Correlation Analysis of the PCMM’s measures and risk level of the
project

PCMM Measure Risk Levels of the project Correlation

1. Number of personnel required for the

development effort

Low, medium, and high positive

2. Defect density Low, medium, and high positive

3. Organizational Complexity Low, medium, and high positive

4. Geographical distribution of teams Low, medium, and high positive

5. Requirements volatility Low, medium, and high positive

6. Number of different job position types Low, medium, and high positive

212

12. Complexity Reduction and Mitigation for the B6 Project

Reduction of project complexity helps project managers simplify their project

structures and communications platform. Reduction in any of these areas creates

opportunities for cost saving while strengthening the execution of project tasks and

increasing the focus on customers. Project managers use complexity reduction as a

management tool to streamline business processes and optimize information systems with

project objectives.

In regard to reduction of the number of personnel required for the development

effort of the B6 Project, the project manager can reduce the number of system requirements,

major interfaces, critical algorithms, and use cases in each block by dividing the number

of system requirements into several increments of software blocks. In addition, the

software lead can consolidate multiple functional requirements into a common platform or

framework to improve design efficiency.

The project manager can reduce the cost driver EMi of the project by performing

the following: (1) increase the level of requirements understanding to very high through

peer reviews and technical interchange meetings, (2) increase the process capability to very

high via a robust communications platform, and (3) reduce the technical risk of the project

to very low through unit tests and by reducing interdependency in designs and processes.

In regard to reduce defect density of the B6 Project, the project manager and the

software lead can reduce the number of defects (NDi) in each baseline (KLOC) by

performing the following: (1) conduct unit tests and code walk-through procedures that

developers should abide by, (2) set coding standards, (3) develop loosely coupled code and

make the code easier to maintain, (4) standardize on one IT platform that provides

configuration controls of code releases, (4) leverage on a modular design of code and reuse

that code to improve design efficiency, (5) limit the amount of code change within a

software unit, and (6) prototype code in the early stages of development.

In terms of reducing organizational complexity in the B6 Project, the project

manager can do the following: (1) reduce the number of tasks among organizational units

by focusing on tasks that are critical to customers’ needs, (2) reduce the frequency of the

213

information exchange among organizational units by setting a priority and a baseline in

project reporting, and (3) clarify organizational roles and decision-making processes to best

serve the project teams while also streamline on business processes and information

systems.

In regard to reduce geographical distribution of teams, the project manager can

decrease the number of locations (l), time zones (t), and sites (s) of each organizational unit

in the project by performing the following: (1) reduce the number of project activities that

take place in multiple locations, and (2) change the problem definition or approach in such

possible ways that reduces complexity of project activities.

In regard to reduce requirements volatility of the B6 Project, the project manager

can lower the number of change requirements in each baseline of the release by performing

the following: (1) keep project tasks and requests separate, (2) implement a formal change

approval process, (3) keep a change log, (4) use online collaboration tools, and (5) perform

requirements prototyping, and (6) conduct peer reviews.

In addition, the program manager can freeze the project scope early in the

development cycle and postpone change requests that are not immediately needed by the

customers, thus, raising the hurdles for new capability requirements and other expansion

activities that add complexity costs. The program manager may also need to limit the

addition of new requirements late in the development life cycle.

To reduce the number of different job position types in the B6 Project, the project

manager can cut down the number of job position types (pi) in each organizational unit by

performing the following: (1) combine and eliminate some reporting tasks and review

activities via process improvement, and (2) increase the competency level and control

maturity of a project.

In sum, the PCMM prescribes a systematic way to calculate the complexity value

of any engineering project. The model is consistent and predictable in that it relates project

effort to personnel resources in order to comprehend design effort, to perform system

integration, prototyping, and testing. In addition, the complexity profile identifies the

214

complexity metrics and communicates the significance of those metrics to stakeholders,

aiding in decision-making.

Identifying issues early in a project’s life cycle can be challenging because

complexity increases and covers interactions between components. The complexity values

of the B6 Project obtained from the PCMM can help systems engineers and project

managers pinpoint and then analyze what aspects of the B6 Project are potential risks of

schedule slippage and then study them.

In general, it is more expensive to correct an error discovered late in the project life

cycle. Systems engineers can use a complexity value computed from the PCMM as a guide

for project reviews and comparisons of alternatives. Complexity is not always bad, but

sometimes even desirable. In fact, in some cases, maintaining some degree of complexity

is essential to effective operations and keen risk management. For example, in a high-tech

hardware manufacturer, the manufacturer has redundant supply sources to prevent periodic

supply disruptions. The manufacturer mitigates the risk of supply disruptions by adding

complexity to the supply chain. As a result, the manufacturer has steady manufacturing

operations even though the operational cost of the business has increased. On the other

hand, complexity reduction helps many organizations simplify their business strategy,

organizational structures, processes, deployment of products, and information technology.

By strengthening the execution of project tasks and the relationships with the customers,

organizations can potentially reduce their cost of doing businesses. In short, organizations

use complexity reduction to optimize business processes and streamline information

systems with project objectives.

D. CHAPTER SUMMARY

In sum, this chapter has addressed the four questions in the beginning of this

chapter. First, the complexity values from the PCMM are consistent with the results from

the software industry standard [160], [162], previous works found in the related literature

[28], [157], [158], and the IPT-related literature [197]. With the exception of the value of

requirements volatility in the B6 Project, the complexity values of all six measures of the

215

PCMM in the three cases are within the acceptable limits of software industry standard,

previous works found in the related literature, and the IPT-related literature.

Second, the PCMM accurately describes the complexity properties of real-world

systems that are similar to the three Navy acquisitions projects that were analyzed in these

project. The applicability of this model to a broader range of projects requires further study.

Third, the PCMM can potentially work as a prescription for complexity analysis in

real-world systems by providing a complexity model and associated methods to measure

and analyze complexity in three Navy software development projects. The results from

three software projects are consistent with the PCMM. Project parameters and

characteristics of the three projects are adequate and representative of a typical Navy

software project based on results from previous works, International Project Management

Association (IPMA) experts’ opinions identified in the literature review, and conclusions

drawn from the IPT-related literature.

The rationale and analyses of the three engineering projects based on the PCMM

are reasonable. The project profile for each use case is based on project plan, SRS, IDD,

test plan, requirements metric reports, and test reports at the beginning of the planning and

development phase of the acquisition life cycle. The project profile includes project cost,

project duration, the number of requirements, the number of change requests, and other

key elements used by the PCMM. However, the applicability of this model to a broader

range of projects requires further study.

Fourth, the PCMM can potentially help systems engineers and project managers to

identify, understand, and assess the impacts a given complexity value on real-world

systems through comparisons of the complexity measurements of three engineering

projects.

The model is consistent and predictable in that it relates project effort to personnel

resources in order to comprehend design effort, to perform system integration, prototyping,

and testing. In addition, the complexity profile identifies the complexity metrics and

communicates the significance of those metrics to stakeholders, aiding in decision-making.

Practitioners often use previous or similar projects to compare complexity measurements

216

and then confidently perform approved measures by the project manager. Nevertheless, the

applicability of this model to a broader range of projects requires further study.

Overall, in the three projects, the measure of the number of personnel required for

the development effort, defect density, and requirements volatility are the three major

measures that most contribute to complexity in the projects. These three measures are

correlated to project cost and performance. From the complexity profile of the B6 Project,

we have shown that limiting numerosity and interdependence results in decreasing

organizational complexity. Furthermore, reducing the number of change requests related

to the requirements of the SoI decreases requirements volatility. In addition, the patterns

of requirement changes over time and the number of test hours conducted during the

development phase have substantial influence on defect density. Thus, systems engineers

should aim to reduce complexity by limiting numerosity and interdependence in a system

or a project.

In sum, the PCMM is workable because:

• The results from three software projects are consistent with the PCMM.

• Project parameters and characteristics of the three engineering projects are

adequate and representative of a typical Navy software project based on

results from previous works, International Project Management

Association (IPMA) experts’ opinions identified in the literature review,

and conclusions drawn from the IPT-related literature.

• Practitioners often use previous or similar projects to compare complexity

measurements and then confidently perform approved measures by the

project manager.

We can use the PCMM as a guide to assess complexity in the design and

management of complex projects. Practitioners will ultimately use previous products or

projects of a similar size to compare complexity measurements to gain insight on what

works for their project and then to confidently perform approved measures by the project

manager.

217

As noted in Chapter I, complexity can occur in systems (computer hardware,

software, network infrastructures, etc.), projects (process, constraints, regulations, etc.),

and environments (interfacing systems, cultural variety, social span, etc.). The three

projects serve as test beds that demonstrate the validity of the PCMM for computing

complexity metrics.

The PCMM would serve as a guide to assess project complexity. The results of our

work on the PCMM and on these three software projects show that as a project increases

in complexity, more interactions and dynamics among the project participants and

stakeholders make it more difficult for a project to meet all requirements and schedules.

However, we can reduce complexity with the better structures, standard tools, procedures,

and techniques as well as with familiarity of the SoI.

218

THIS PAGE INTENTIONALLY LEFT BLANK

219

V. CONCLUSION AND FUTURE WORK

Systems engineers need measures of complexity if they are going to work
on complex systems.

―Robert C. Harney [29],
Professor of Systems Engineering, Naval Postgraduate School

Chapter V starts with a summary of the main outcomes of this research and then

follows with a review of the research’s contributions relative to the current literature. Next,

we address some shortcomings of the research method and results. In the following section,

we suggest some areas of potential future research to extend this work. Finally, we propose

some ideas for future endeavors inspired by this research.

A. SUMMARY

The intent of this dissertation is to provide engineers and project managers with a

model and a systematic approach that identifies key complexity measures in engineered

systems for project management and risk assessment, as well as potential approaches to

complexity reduction. To achieve these goals, this research developed a unique project

complexity measurement model (PCMM) and associated methods to measure complexity

in a project. The PCMM, which consists of a set of complexity measures, creates a

complexity profile of the SoI that is relevant and useful for project risk assessment and

program complexity assessment. In addition, the PCMM and associated methods to

measure complexity can help systems engineers and program managers reason through

their decisions related to systems engineering.

A review of the relevant literature reveals that there is a gap in the current SE body

of knowledge concerning the topics of system affordability and SE advanced

measurements [178]. In the topics of system affordability and advancements of SE

measurements, there is a need of a use-case study to link between complexity to the cost

and schedule of complex systems engineering projects [178]. To study the relationship of

220

this link, we need to identify a model of complexity and measurement methods to analyze

project complexity and to provide insight for improvement of system affordability.

Furthermore, with the increasing focus on the value and cost of the system across

the acquisition life cycle, models for complexity analysis, analysis of system affordability,

and techniques for reducing system complexity are becoming more important in the DOD

acquisition arena. There exists a gap between what is available in the DOD systems

acquisition programs today and the complexity measurement models that could be used in

the early phases of systems engineering on those military acquisition products [129], [130].

For example, many DoD programs are underestimating the difficulty of software

development efforts. Collecting and analyzing complexity metrics in the early phases of

development can reduce the risk of budget overruns and schedule slippage due to system

development difficulty.

The PCMM and associated methods to measure complexity in a project have

extended the current SE body of knowledge by bringing together into one holistic model

that consists of several different metrics proposed by several different researchers. This

model includes measures of number of personnel required for the development effort,

requirements volatility, defect density, geographical distribution of project teams,

organizational complexity, and the number of different types of job positions. This

approach incorporates principles of risk management and project management in software

engineering by relating them to risk analysis and decision-making to support high quality

systems engineering.

In addition, this research has covered a use case of SE body of knowledge in the

topic of SE advanced measurement where systems engineers and project managers use the

PCMM and associated methods to measure complexity and assess project risks to ensure

affordability. For example, the PCMM and associated methods link project complexity to

systems development cost, schedule, performance, and risk. As a result, the PCMM

provides project managers and IPT management teams with common practices in the areas

related to the review of work products, roles and responsibility expectations, accountability

demands, and affordability.

The main contributions of this research are as follows:

221

• A systematic approach to assess project complexity and explore design

alternatives early in the process as well as potential approaches to complexity

reduction,

• A model for identifying key complexity measures in engineering projects and

relationships between different elements of complexity within systems for

project management,

• A quantitative model and associated methods for expressing and

communicating systems and project complexity issues to project managers,

systems engineers, manufacturers, and stakeholders, and

• Advancement in the state of practice in the project risk assessment of Navy

software systems.

In Chapter IV, the results of three projects (the B4, B6, and B8 Projects)

demonstrated that the measurements of the number of personnel required for the

development effort, defect density, and requirements volatility are the three major

measures that contribute to complexity in the Navy software projects. The results of our

work on these three projects demonstrated that as a project increases in complexity, more

interactions and dynamics among the project participants and stakeholders make it more

difficult for the project to meet all requirements and performance expectations.

This dissertation discussed ways for reducing project complexity while

strengthening the execution of project tasks. As mentioned in Chapter IV, we can reduce

project complexity with better structures, standard tools, procedures, and techniques as

well as with familiarity of the SoI. For example, in the B6 Project, the program manager

and software design lead need to identify software architectures that best address a client-

server system (i.e., the logical 3-tier system with a data layer, an application layer, and a

presentation layer). The software design lead needs to train software developers on

software design patterns and the C# coding standards. The systems engineers need to

identify and address SoS engineering concerns by conducting trade studies, modeling and

prototyping of the SoI, and communicating with software developers to clarify the system’s

requirements. Software developers need to determine the correct design by adapting proven

designs and following the C# coding standards.

222

The PCMM correlated the complexity attributes of the project to management

effort, design effort, and testing. The three projects showed that three of the six complexity

measures were significant for computing project complexity (number of personnel required

for the development effort, requirements volatility, and defect density in terms of number

of defects per KLOC). Although not all six measures were significant, the three projects

demonstrated that the most complex project has higher values in these three measures than

the less complex projects. In addition, the most complex project has a higher risk of failure

in regard to the budget, schedule, and performance. However, the applicability of this

model to a broader range of projects requires further study.

In sum, the three projects serve as test beds that demonstrate partial validity of the

PCMM for computing complexity metrics. In addition, the complexity profile from each

use case identifies the six complexity measures (number of personnel required for the

development effort, defect density, organizational complexity, geographical distribution of

project teams, requirements volatility, and the number of different job position types) and

communicates the significance of those measures to stakeholders, aiding in decision-

making.

B. CONCLUSIONS

Systems engineers and project managers must identify interdependencies of core

processes and tasks and manage them to minimize project risk. Systems engineers and

project managers should apply resources not only in project oversight and clarifying project

requirements but also in developing prototypes and conducting simulations of integration

processes to minimize project risk.

This research demonstrated that the PCMM and associated methods to measure

complexity provide project managers practical measures to estimate an engineering

project’s complexity, allowing them to analyze project complexity and reason through their

decisions related to systems engineering early in the planning and design process. Systems

engineers and project managers can use this research to determine the level of complexity

in a project or a system, and from that assessment, plan development efforts and apply

resources in appropriate places. In placing value on a system’s degree of complexity,

223

system engineers and project managers can predict a specific range of possible impacts.

With that evaluation, targeted actions can mitigate these impacts.

The likely impact of a given complexity value on engineering systems can be

deleterious. A high value returned by the complexity function might imply the necessity of

additional time and effort in development, integration, testing, and maintenance.

Complexity is an indicator of project risk and, in general, we should aim to keep a

complexity value low. The results of the software projects in Chapter IV support this

observation. In addition, a high complexity value assigned to a system might predict

difficulty in conducting exhaustive system testing due to the complex operational

environment and/or a very large system.

System design, system requirements, changes of technology, team dynamics,

organizational policies and procedures, and external stakeholders are factors that contribute

to complexity. A reasonable thought is that complexity changes with time because

engineering projects and their environments evolve over time.

The identification of complexity in engineered systems and the PCMM’s method

of estimating the degree of complexity in any engineering project shed more light on the

approach of measuring project complexity by identifying metrics that describe project

complexity based on key risk factors in an engineering project. In addition, the PCMM lays

the groundwork for complexity measurement standards for engineering projects by

applying a set of measures of complexity to the project that are relevant and important to

the program managers and systems engineers.

There are several shortcomings of the research method and results. First, the

PCMM only provides metrics that are associated with complexity. It does not provide

measurement of causal relationships between each complexity factor. For instance, the

measure of the number of personnel required for the development effort is related to the

project size (i.e., the number of requirements, interfaces, algorithms, and operational

scenarios). Defect density measures the number of defects per KLOC. Both measures are

related to the project size. In general, given a fixed schedule, a large project requires more

people to complete than a small project. A large software project usually contributes to

224

higher defect density than a small software project because it simply entails more code to

write. Thus, there is a causal relationship between the measure of the number of personnel

required for the development effort and the measure of defect density.

Second, the PCMM does not provide measurement of recursive relationships

between some project attributes and complexity. For instance, the PCMM does not measure

the relationship between the number of project work packages and complexity or the

relationship between employing emerging technology of the project and complexity.

Moreover, a recursive relationship exists between the system development cycle and

complexity. For example, a software development cycle typically consists of several phases

like creating requirements, designing software, writing code, integration testing, deploying

software, and maintaining the code [22], [100]. Software complexity, which can be gauged

by the number of lines of code, the length of the procedure, and the number of branches in

the code, can affect the maintenance cost of the software [146]. As the LOC increases, “the

software becomes more complex and more bugs may be introduced” [146], and, therefore,

the maintenance costs also increase [146]. In addition, the software build process can be

difficult due to unanticipated dependencies and “complex branching structure” [146].

Large software projects also need substantial “management control” [146] (monitoring and

tracking the number of defects, the number of change requirements, and the number of test

hours). Hence, a recursive relationship exists between the system development cycle, some

project attributes, and complexity.

In sum, this research demonstrated a practical way to measure complexity of

engineering projects. Systems engineers and project managers can use this complexity

measurement method to provide both relevant information to stakeholders in the form of

metrics that contribute to complexity and early guidance concerning actions necessary to

accommodate that complexity.

C. AREAS FOR FUTURE RESEARCH

We invested considerable effort in this research to develop a systematic method to

estimate the complexity of engineering projects. Opportunities also exist in related research

areas that would broaden the SE body of knowledge. Because of partial validation from

225

the results of the three projects, and not knowing the nature of any of the relationships

between complexity factors and complexity, both the pursuit of more empirical data of the

project and the performance of regression analysis could lead to better estimates of the

relationships between the complexity factors and complexity. In addition, the PCMM and

associated methods to measure complexity can be extended to the creation of complexity

profiles for small systems and enterprise systems. The PCMM and associated methods can

be extended for the following items:

• The complexity in systems of systems, which will be a challenge to measure

because of the potential for emergent behaviors, distributed processes and

controls as well as conflicting requirements, and

• Other complex entities, such as acquisitions, the software in a system, the

system’s technical performance, technological maturity across the system, and

risk.

Furthermore, the PCMM and associated methods can be applied to assess the

effectiveness of approaches that reduce and contain complexity. In addition, the PCMM

and associated methods can be applied to assess the recursive relationship between a

system development cycle and complexity.

D. FINAL REMARKS

Until this research, systems engineers have used a few project complexity measures

only in a specific application. The software projects in Chapter IV demonstrated that the

PCMM and associated methods to measure complexity are both practical and useful for

engineering projects. This research provides a systematic method to compare the

complexity of engineering projects and to determine which project is less risky to manage.

Thus, the PCMM and associated methods to measure complexity provide some answers to

the research questions presented in Chapter I.

In engineering complex systems, engineers often aim to reduce complexity because

causes of complexity are significant and that can affect the system’s performance, safety,

and reliability of operations. Addressing the causes of complexity is a practical way to

reduce project risks in engineering projects. This research provides a tool to measure

226

project complexity and analyze its effects as well as to interpret CSE activities. Project

managers and systems engineers can use this research in heuristics that suggests which

kinds of complexity to reduce to improve system affordability. At a minimum, engineers

can apply measures of the complexity presented in this research to quantify a design

complexity and a development effort. Consequently, systems engineers can design simpler

systems or processes according to these measures of complexity.

227

EPILOGUE

As globalization has grown in recent years, technology has expanded and improved

rapidly. Our world is changing very quickly, and we have many complex issues to tackle

such as climate change, the COVID-19 pandemic, and flu outbreaks. Complexity science

is concerned with systems and problems that are vigorous, unpredictable, and difficult to

solve, consisting of many parts and interconnected relationships, and with causes and

effects not obviously related. When we talk about complexity, we refer to ideas that are

difficult-to-describe, predict, model, and understand. A complex system has multiple

interfaces and subsystems as well as multiple levels of interactions.

In this research, we have presented a model and methods that enable engineers to

assess and estimate complexity of systems and projects. We have explored some classes of

problems that require complex systems knowledge. We have discussed some ideas for how

to reduce complexity in a system and project. Finally, we have presented a CSE model that

improves our methods for enterprise SE.

This research has demonstrated a step forward in devising a set of measures that

provides benefits from having a method to quantify a design complexity and a development

effort. Such benefits could help identify areas of possible concern, make projections, and

provide inputs to decision analyses such as trade studies.

We are on the edge of a vast and emerging science. One main purpose of this

research is to provide a clearer picture of the concept of complexity and an understanding

of the complexity that surrounds us. We can ask whether core ideas of the complexity

sciences presented in this research can help us address some difficult problems faced by

today’s society—the spread of disease, the effects of climate change, and the unequal

distribution of economic resources. We are making progress in the understanding of

complex systems and starting to reveal their secrets—emergence, limited predictability,

self-organization, spontaneous order, and evolutionary dynamics. No doubt, we will need

more research as we move forward. The underlying journey seems possible, challenging,

and exciting.

228

THIS PAGE INTENTIONALLY LEFT BLANK

229

APPENDIX A. COMPLEXITY MEASURES OF THE B4 PROJECT

In this appendix, we show the complexity measures of the B4 Project, which

include the number of personnel required for the development effort, defect density,

organizational complexity, and geographical distribution of teams as well as requirements

volatility and the number of different job position types.

1. Measure of the Number of Personnel Required for the Development
Effort

 Table A-1 shows the organizational units and their responsibilities in the B4

project.

Table A-1. The B4 Project organizational units and their responsibilities

Organizational Unit Responsibilities

1. Program
Management
Activity (PMA)

• Provides funding to programs such as a capability
development program (CDP).

• Decides programs priorities.
• Decides programs hardware and software.

2. Integrated
Product Team
(IPT)

• Provides lab spaces and network infrastructures to
projects.

• Decides organizational processes.
• Submits CDP.
• Manages contracts.
• Mitigates program risks.

3. Project Team
(PT)

• Manages and executes project requirements.
• Participates in critical design review and senior

management review.
• Provides personnel work status and project metrics

to IPT.

4. Business
Financial
Management
(BFM)

• Sends, receives, and processes funding documents.
• Provides labor and materials expenditures to the

project team.

5. Contractor Unit • Provides work and services to the project.

230

Organizational Unit Responsibilities

6. Software
Distribution Unit
(SDU)

• Packages and distributes software to trainers, to the
DT/OT unit, and to the fleet.

7. Trainer/fleet
users Unit (T/F
Unit)

• Trains fleet users on how to use fleet software.
• Reports software anomalies to the project team.

8. Contracting Unit
(CU)

• Provides statements of work and manages
contracts.

9. DT/OT Unit • Performs developmental and operational tests on
software.

Table A-2 presents organizational units involved in milestone reviews and status

reviews during the 24-month development phase.

Table A-2. Planned reviews from the B4 Project plan

Organizational
Unit

Review Frequency

PMA • CDP review

One time during the
planning phase

IPT • Senior management
review

Quarterly

• Project management
review

Once every two weeks
during the planning and
development phase

PT • System and software
requirement review

• Preliminary design
review

• Critical design review

Two times during the
development phase

• Technical interchange
meeting

Monthly

• Project milestone review Three times during the
development phase

• CCB meeting Once every two weeks

231

Table A-3 shows the calculation of software size for the B4 Project.

Table A-3. Calculation of software size for the B4 Project

Software size’s driver [24] B4 Project software size

Requirements (399 nominal requirements)(1) = 399
(1,595 easy requirements)(0.5) = 797.5
Total is 1,196.5 (399 + 797.5)

Interfaces (3 easy interfaces)(1.7) = 5.1
(1 nominal interface)(4.3) = 4.3
Total is 9.4 (5.1 + 4.3)

Algorithms (2 easy algorithms)(3.4) = 6.8
(2 nominal algorithms)(6.5) = 13
Total is 19.8 (6.8 + 13)

Operational Scenarios (use cases) (27 easy use cases)(9.8) = 264.6

Total software size [24] =
requirements + interfaces +
algorithms + user cases

1,196.5 + 9.4 + 19.8 + 264.6 = 1,490.3

Table A-4 shows the calculation of the B4 Project’s effort weight factor.

Table A-4. The B4 Project’s effort weight factor

Effort weight factors Value

Requirements understanding is high [24]. 0.77

Technical risk is nominal [24]. 1

Process capability is nominal [24]. 1

The B4 Project’s effort weight factor is
calculated [24].

(0.77)(1)(1) = 0.77

Table A-5 shows the calculation of PM (person-month) [24] and the number of

people required for the development effort. Note that the calibration constant is 0.325, and

232

the effort weight factor is 0.77 in a typical software development project [24]. As shown

in Table A-5, the B4 Project requires 15.54 people to develop the system in 24 months.

Table A-5. The B4 Project development effort

B4 Project development effort Value

Effort required to build the system = PM =
(calibration factors)(effort factor)(software size)

(0.325)(0.77)(1,490.3)
= 372.95 person-month

B4 Project development effort = (effort required to
build the system) / (duration of the development
phase)

372.95 / 24 = 15.54
people

2. Defect Density Measure

Table A-6 shows the B4 Project defect density during the 24 months of the

development phase. The number of defects for a release (NDi) represents the cumulative

defects unresolved.

233

Table A-6. B4 Project defect density during the 24 months of the development
phase

Release (i) Month Cumulative defects
unresolved (NDi)

KLOC Defect density
(NDi/KLOC)

Test
Hours

0 Apr-17 188 910.617 0.206 81
1 May-17 193 926.073 0.208 204
2 Jun-17 200 925.060 0.216 210.5
2 Jul-17 201 925.060 0.217 86
3 Aug-17 201 859.681 0.233 15
3 Sep-17 206 859.681 0.239 85
3 Oct-17 213 859.681 0.247 10
4 Nov-17 213 858.702 0.248 38.5
4 Dec-17 217 858.702 0.252 63
5 Jan-18 218 859.007 0.253 17
6 Feb-18 224 859.081 0.26 157
7 Mar-18 227 859.069 0.264 47
7 Apr-18 231 859.069 0.268 82.5
7 May-18 233 859.069 0.271 5
8 Jun-18 235 859.094 0.273 22
8 Jul-18 238 859.094 0.277 0
9 Aug-18 252 860.018 0.293 83
9 Sep-18 255 860.018 0.296 0
10 Oct-18 134 870.559 0.153 119
10 Nov-18 256 870.559 0.294 14
10 Dec-18 258 870.559 0.296 0
10 Jan-19 259 870.559 0.297 0
10 Feb-19 261 870.559 0.299 0
10 Mar-19 261 870.559 0.299 0

Table A-7 shows the consolidate data of the releases of Table A-6. In Table A-7,

the defect density of the B4 Project is 0.299 in the first 24 months (April 2017 to March

2019). The total test hours for that period of 24 months is 1,339.5 hours. 261 defects are

reported in the 24-month period.

234

Table A-7. Consolidated data of the releases of Table A-6

Release (i) Month Cumulative defects
unresolved (NDi)

KLOC Defect density
(NDi/KLOC)

Test Hours

0 Apr-17 188 910.617 0.206 81
1 May-17 193 926.073 0.208 204
2 Jul-17 201 925.060 0.217 296.5
3 Oct-17 213 859.681 0.247 110
4 Dec-17 217 858.702 0.252 101.5
5 Jan-18 218 859.007 0.253 17
6 Feb-18 224 859.081 0.26 157
7 May-18 233 859.069 0.271 134.5
8 Jul-18 238 859.094 0.277 22
9 Sep-18 255 860.018 0.296 83
10 Mar-19 261 870.559 0.299 133
Total 1,339.5

3. Organizational Complexity Measure

Figure A-1 shows the context diagram of nodes, links, communication frequencies

and levels of importance of the communications between PMA and IPT, between PMA

and PT, and also between PMA and the DT/OT unit during the 24 months development

phase.

IPT PMA

Project
Team
(PT)

DT/OT
Unit

Critical design review (1:3)

Senior management review (8:3)

Developmental test status (1:2)

Operational test status (1:2)

CDP submissions (1:5)

Program operations status (48:2)

CDP decisions and priorities (1:5)

Program funding status (24:3)

CDP funding documents (8:5)

Program priorities (24:3)

Hardware/software selection (1:3)

DT/OT report (1:4)

Figure A-1. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between PMA and IPT, between PMA and PT, and between PMA

and the DT/OT unit

235

Figures A-2, A-3, and A-4 show the context diagrams of the rest of the nodes, links,

communication frequencies, and importance levels of the communications between the

organizations of the B4 Project.

Project
Team
(PT)

IPT

BFM

Contracting
Unit (CU)

Project status (48:1)

Project metrics (24:2)

Personnel work status (48:2)

Contracts status (24:1)

Lab operations decisions (24:2)

Project personnel status (48:3)

Contracts status (24:1)

Request for proposal status (24:1)

Statement of work status (48:1)

Project funding status (24:1)

Funding document status (48:1)

Labor expenditures (48:3)

Materials expenditures (48:3)

Program funding status (24:3)

Contracts approval (1:5)

Figure A-2. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between IPT and PT, between IPT and CU, and between IPT and

BFM

236

T/F Unit

Project
Team (PT)

BFM

Contractor
Unit

Software anomaly reports (24:4)

Fleet requirements priority report (2:3)

EDT schedule (2:2)

Software submission schedule (24:2)

Software distribution status (8:1)

Work performed status (48:2)

Bill hours reports (48:2)

Labor hour expenditure status (48:3)

Materials expenditure status (48:3)

SDU

Figure A-3. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between PT and the T/F unit, between PT and SDU, between PT

and BFM, and between PT and the contractor unit

T/F Unit

SDU

Software distribution status (24:1)

Software distribution status (24:1)
DT/OT

Unit

BFM

Contractor
Unit

Contract funding status (24:1)

Contractin
g Unit
(CU)

Contract fulfillment status (1:1)

Figure A-4. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between SDU and the T/F unit, between SDU and DT/OT unit,

between the contractor unit and BFM, and between the contractor
unit and CU

Tables A-8 and A-9 show the frequencies and levels of importance of the

communications in the B4 Project during the 24 months of the development phase. These

237

data are extracted from project status reports, test reports, senior management reviews, and

the project plan.

Table A-8. Frequencies of the communications during the entire 24 months of
the development phase

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

1. IPT 1. Program operations
status

 48

2. Program funding status 24
3. CDP submission 1
1. Contracts status 24
2. Lab operations status 24
3. Project personnel
status

 48

1. Labor expenditures 48
2. Materials expenditures 48
3. Program funding status 24
1. Contracts approval
decisions

 1

Subtotal 73 96 120 1
2. PMA 1. CDP decisions 1

2. CDP funding
document

8

3. Program priorities
status

24

4. B4 hardware/software
selection

1

5. B4 DT/OT report 1
Subtotal 35

3. Project
Team (PT)

1. Project status 48
2. Project metrics 24
3. Personnel work status 48
1. Critical design review
status

 1

2. Senior management
review

 8

Subtotal 120 9
4. BFM 1. Project funding status 24

2. Funding document
status

48

1. Labor hour
expenditure status

 48

238

2. Materials expenditure
status

 48

Subtotal 72 96
5.
Contracting
Unit (CU)

1. Contracts status 24
2. RFP status 24
3. Statement of work
status

48

Subtotal 96
6.
Contractor
Unit

1. Work performed status 48
2. Bill hours report 48
1. Contract funding status 24
1. Contract fulfillment
status

 1

Subtotal 96 24 1
7. T/F Unit 1. EDT schedule 2

2. Software anomaly
report

 24

3. Fleet requirements
priority report

 2

Subtotal 28
8. DT/OT
Unit

1. DT status 1
2. OT status 1
Subtotal 2

9. SDU 1. Software submission
schedule

 24

2. Software distribution
status

 8

1. Software release status 24 24
Subtotal 32 24 24

 Total 322 84 34
8

144 2 24 24

239

Table A-9. Levels of importance of the communications during the entire 24
months in the B4 Project

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

1. IPT 1. Program operations
status

 2

2. Program funding status 3
3. CDP submission 5
1. Contracts status 1
2. Lab operations status 2
3. Project personnel
status

 3

1. Labor expenditures 3
2. Materials expenditures 3
3. Program funding status 3
1. Contracts approval
decisions

 5

2. PMA 1. CDP decisions 5
2. CDP funding
documents

5

3. Program priorities
status

3

4. Hardware/software
decisions

3

5. DT/OT report 4
3. Project
Team

1. Project status 1
2. Project metrics 2
3. Personnel work status 2
1. Critical design review
status

 3

2. Senior management
review

 3

4. BFM 1. Project funding status 1
2. Funding document
status

1

1. Labor hour
expenditure status

 3

2. Materials expenditure
status

 3

5.
Contracting
Unit (CU)

1. Contracts status 1
2. RFP status 1
3. Statement of work
status

1

1. Work performed status 2
2. Bill hours report 2

240

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

6.
Contractor
Unit

1. Contract funding status 1
1. Contract fulfillment
status

 1

7. T/F Unit 1. EDT schedule 2
2. Software anomaly
reporting

 4

3. Fleet requirements
priority report

 3

8. DT/OT
Unit

1. DT status 2
2. OT status 2

9. SDU 1. Software submission
schedule

 2

2. Software distribution
status

 1 1 1

Table A-10 shows the organizational complexity of each organizational unit. We

sum up the contribution of organizational complexity from each of the nine organizational

units during the period of 24 months and obtain the total organizational complexity of 7.66.

Table A-10. Organizational complexity of each organizational unit in
the B4 Project

Organizational Unit IF Total

1. IPT interacts
with PMA, PT,
BFM, and CU.

PMA:
[(2)(48)+3(24)+(
5)(1)]/[(5)(73)]=
0.474

PT:
[(1)(24)+(2)(
24)+(3)(48)]/
[(5)(96)] =
0.45

BFM:
[(3)(48)+(3)(48
)+(3)(24)]/[(5)(
120)] = 0.6

CU:
(1)(5)/[
(5)(1)]
= 1

2.52

2. PMA interacts
with IPT.

IPT: [(5)(1)+(5)(8)+(3)(24)+(3)(1)+(4)(1)]/[(5)(35)] = 0.708 0.708

3. PT interacts with
IPT and PMA.

IPT:
[(1)(48)+(2)(24)+(2)(48)]/[(5)(12
0)] = 0.32

PMA:
[(3)(1)+(3)(8)]/[(5)(9)] =
0.6

0.92

4. BFM interacts
with IPT and PT.

IPT: 134516
[(1)(24)+(1)(48)]/[(5)(72)] = 0.2

PT:
[(2)(48)+(2)(48)]/[(5)(96)
] = 0.4

0.6

5. CU interacts
with IPT.

IPT: [(1)(24)+(1)(24)+(1)(48)]/[(5)(96)] = 0.2 0.2

241

Organizational Unit IF Total

6. Contractor Unit
interacts with PT,
BFM, and CU.

PT:
[(2)(48)+(2)(48)]/
[(5)(96)] = 0.4

BFM:
[(1)(24)]/[(5)
(24)] = 0.2

CU: [(1)(1)]/[(5)(1)] = 0.2 0.8

7. T/F Unit
interacts with PT.

PT: [(2)(2)+(4)(24)+(3)(2)]/[(5)(28)] = 0.757 0.757

8. DT/OT Unit
interacts with
PMA.

PMA: [(2)(1)+(2)(1)]/[(5)(2)] = 0.4 0.4

9. SDU interacts
with PT, T/F Unit,
and DT/OT Unit.

PT:
[(2)(24)+(1)(8)]/[
(5)(32)] = 0.35

T/F Unit:
[(1)(24)]/[(5)
(24)] = 0.2

DT/OT Unit:
[(1)(24)]/[(5)(24)] = 0.2

0.75

Total Contributions 7.66

4. Geographical Distribution of Teams Measure

Table A-11 shows the geographical distribution of teams from the nine

organizational units in the B4 Project. We sum up the number of sites, locations, and time

zones. We obtain the value of 19 for the measure of geographical distribution of teams.

Table A-11. Geographical distribution of teams in the B4 Project

 Number of Sites Location Time Zone

1. PMA 1 East-coast city

Eastern time

2. IPT 1 Southwest-1city Pacific time
3. PT 3 Southwest-1 city Pacific time

4. BFM 1 Southwest-1 city Pacific time

5. CU 1 Southwest-1 city Pacific time

6. Contractor Unit 2 Southwest-1 city Pacific time

7. T/F Unit 1 Northwest city Pacific time

8. DT/OT Unit 2 East-coast city and
Southwest-2 city

Eastern time and Pacific
time

9. SDU 1 Southwest-1 city Pacific time

Total 13 4 2

242

5. Requirements Volatility Measure

Table A-12 show the requirements metrics during the 24 months of the

development phase. As presented in Table 58, the project starts with a baseline of 2,067

requirements. During a 24-month period, the B4 Project has 803 change requests (356 new

+ 18 modifications + 429 deletions) and 1,994 requirements.

Table A-12. B4 Project requirements metrics during the 24 months of
the development phase

 Requirement (CRi) BR = 2,067 requirements
Baseline New Modification Deletion Total # of

requirements
Requirements

volatility =
(CRi)/(BR)

0 2,067 0
1 50 2,117 0.024
2 5 2,122 0.002
3 10 2,132 0.004
4 150 2,282 0.072
5 17 1 7 2,292 0.012
6 6 2,298 0.003
7 12 11 2 2,308 0.012
8 4 1 7 2,305 0.005
9 5 2,300 0.002
10 23 311 2,012 0.161
11 7 30 1,989 0.018
12 7 14 1,982 0.010
13 19 8 1,993 0.013
14 20 2 5 2,008 0.013
15 5 2 2,013 0.003
16 5 27 1,991 0.015
17 1 1,992 0
18 1 1,991 0
19 4 1,995 0.002
20 4 1,999 0.002
21 1 2,000 0
22 1 2,001 0
23 4 1 2,004 0.002
24 1 1 11 1,994 0.006

Total 356 18 429

243

6. Number of Different Job Position Types

Table A-13 shows 44 types of job position in the B4 Project. Thus, the measure of

different job position types (JPT) is 44.

Table A-13. Job position types in the B4 Project

Organization
Unit

Job Position Type

1. PMA a. Program manager
b. Executive officer
c. Logistics lead
d. Business operations manager

2. IPT a. IPT site lead
b. Military lead
c. Office manager
d. Chief systems engineer
e. Program-related
engineering lead

f. Lead technologist
g. International
programs lead
h. Process
improvement lead
i. Fleet help desk
specialist
j. Training manager

3. PT a. Product lead
b. Project manager
c. Systems engineer
d. Design lead
e. Requirements lead
f. Programmer

g. Software installer
h. Test lead
i. Configuration
manager
j. Product
documentation lead
k. Standards
compliance lead
l. Tester

4. BFM a. BFM lead
b. Financial analyst
c. Financial technician

5. CU a. Contracting officer
b. Contracting analyst
c. Contract specialist

244

Organization
Unit

Job Position Type

6.
Contractor
Unit

a. Contract representative
b. Site manager
c. Technical team lead

7. T/F Unit a. Fleet liaison
b. Trainer
c. Fleet representative

8. DT/OT
Unit

a. Lead software engineer
b. Information assurance specialist
c. Technical analyst

9. SDU a. Program analyst
b. Product integrity lead
c. Systems engineer lead

Table A-14 shows the responsibilities for the 44 job position types in the B4 Project.

Table A-14. Responsibilities for job position types in the B4 Project

Job Position Type Responsibility

1. Project sponsor Define future operational requirements for
the fleet. Set program’s priorities and
allocate funding.

2. Executive officer Coordinate and decide program’s funding
and priorities.

3. Logistics lead Coordinate and distribute hardware to
various programs at the PMA level.

4. Business operations
manager

Perform supervisory responsibilities
associated with the strategic planning, risk
management, and administrative and
management activities for various
programs.

5. IPT site lead Direct, plan, budget, and manage the
execution of programs at the IPT level.

245

Job Position Type Responsibility

6. Military lead Serve as IPT site lead from the military
chain of command.

7. Office manager Provide credit card buys. Maintain training
records and create reports for various data
calls.

8. Chief systems
engineer

Review, evaluate, coordinate, and monitor
programs at the IPT level.

9. Program-related
engineering lead

Coordinate and allocate funding for
program-related engineering and program-
related logistics.

10. Lead technologist Coordinate and execute capability
development across multiple product lines
and on solution development with other
competencies.

11. International
programs lead

Collaborate and coordinate with defense
science and technology (DST) group and
foreign partners to develop new capabilities.
Provide support to FMS customers.

12. Process
improvement lead

Plan, review, and execute standards
compliance and process improvement
policies established by the IPT.

13. Fleet help desk
specialist

Provide help desk support to fleet users by
answering phone calls and responding to
emails from the fleet.

14. Training manager Plan, schedule, coordinate, and conduct
process improvement training.

15. Product lead Direct and lead development of project
plans, including project schedule, technical
performance, and budget. Approve or
disapprove milestone reviews.

16. Project manager Coordinate, assess, and monitor software
development schedules, contracts, budgets,
and personnel of the B4 Project.

17. Systems engineer Perform requirements, functional interfaces,
and functional architectures of the B4
software project.

246

Job Position Type Responsibility

18. Design lead Lead the software development process,
implementation of code, testing strategies,
and software deployment methods.

19. Requirements lead Develop, review, analyze, and maintain
software requirements for the B4 Project.

20. Programmer Develop code and perform software
integration activities.

21. Software installer Develop software installation packages for
deployment.

22. Test lead Plan and manage all test related functions
including test strategy, test plan
development, test execution and reporting,
development of personnel skills, and
improvement of processes.

23. Configuration
manager

Perform configuration management duties
in support of software releases. Develop and
maintain software version description
documents, operational procedures, and
internal documentation.

24. Product
documentation lead

Develop software user’s guide and technical
manuals.

25. Standards
compliance lead

Assess, review, and monitor process
compliance in each program.

26. Tester Test software and record software defects.

27. BFM lead Monitor programs for project management
requirements. Perform financial analysis
and reporting.

28. Financial analyst Provide guidance on policies and
requirements of financial programs.

29. Financial technician Prepare, process, and reconcile funding
documents and related issues. Respond to
data calls and cost estimating.

30. Contracting officer Coordinate, implement, and monitor the
contract compliance program. Provide
technical advice and assistance in all areas
of contracted support services.

247

Job Position Type Responsibility

31. Contracting analyst Provide advice and assistance to the
contracting officer and program managers
in cost and schedule contractual
management, ensuring proper
interpretations of reporting requirements.

32. Contract specialist Negotiate sole source contracts and
modifications. Provide guidance to
technical personnel involved in the
development of contract packages.

33. Contract
representative

Maintain records of performance schedules
and work progress reports. Monitor
contractor performance and/or negotiate
settlements.

34. Site manager Lead, plan, execute, and conduct analyses
concerning all aspects of services performed
by contract.

35. Technical team lead Serve as a supervisor of technical teams for
contracting work.

36. Fleet liaison Plan, coordinate, report, and execute fleet
requirements. Analyze and resolve fleet-
related issues.

37. Trainer Conduct operational software training to
fleet users. Test released software and
report any software anomaly to product
lead.

38. Fleet representative Work closely with project managers and
trainers in reviewing fleet requirements for
the program.

39. Lead software
engineer

Evaluate the effectiveness of DT/OT
software function in addressing operational
and information security requirements.
Determine if a system is ready or not for
fleet release.

40. Information
assurance specialist

Evaluate, assess, analyze, and test software
systems to ensure compliance with
Information Assurance policies,
instructions, and directives.

248

Job Position Type Responsibility

41. Technical analyst Assist lead software engineer to evaluate,
assess, analyze, and test of DT/OT software.

42. Program analyst Interface with customers from multiple
technical teams and provide services
required by customers.

43. Product integrity
lead

Coordinate and distribute software to
customers from multiple technical teams
according to SDU release schedule and
distribution list.

44. Systems engineer
lead

Coordinate, assess, and monitor software
release schedule for a specific program
within the SDU.

7. B4 Project Complexity

Tables A-15, A-16, A-17, A-18, A-19, and A-20 show the scores and associated

levels of complexity of six complexity metrics in the PCMM. We use a Likert scale [32]

of 1 to 5 to map the scores of the PCMM metrics to the associated levels of complexity as

shown in Tables A-15, A-16, A-17, A-18, A-19, and A-20.

Table A-15. The score and associated level of complexity of the
measure of the number of personnel required for the B4 Project

Metric PCMM

value

Number of people

per year can be

funded (PMI)

Score Complexity Level

1. Number of

personnel required

for the development

effort (people)

 1 to 7 1 Simple

8 to 15 2 Complicated

17.09 16 to 27 3 Low complexity

 28 to 34 4 Moderate complexity

> 34 or unknown 5 High complexity

249

Table A-16. The score and associated level of complexity of the
measure of defect density in the B4 Project

Metric PCMM

value

Defects / KLOC

(software industry

standard)

Score Complexity Level

2. Defect density

(defects / KLOC)

0.299 0 to 0.5 1 Simple

 0.51 to 1.1 2 Complicated

1.2 to 2 3 Low complexity

2.1 to 3 4 Moderate complexity

> 3 or unknown 5 High complexity

Table A-17. The score and associated level of complexity of the
measure of organizational complexity in the B4 Project

Metric PCMM

value

IF (Schwandt’s study

[158])

Score Complexity Level

3. Organizational

complexity

 0 to 1.8 1 Simple

1.9 to 3.7 2 Complicated

3.8 to 5.5 3 Low complexity

7.66 5.6 to 8.1 4 Moderate

complexity

 More than 8.1 or unknown 5 High complexity

250

Table A-18. The score and associated level of complexity of the
measure of geographical distribution of teams in the B4 Project

Metric PCMM

value

GD (guide from the Allen

curve [119] and the IPT

roles [197])

Score Complexity

Level

4. Geographical

distribution of

teams

 1 to 3 1 Simple

4 to 10 2 Complicated

19 11 to 19 3 Low complexity

 20 to 40 4 Moderate

complexity

More than 40 or unknown 5 High complexity

Table A-19. The score and associated level of complexity of the
measure of requirements volatility for the B4 Project

Metric PCMM

value

RVM (best practice in the

software industry [162])

Score Complexity Level

5. Requirements

volatility

 0 to 0.2 1 Simple

0.388 0.21 to 0.42 2 Complicated

 0.43 to 0.66 3 Low complexity

0.67 to 1 4 Moderate complexity

More than 1 or unknown 5 High complexity

251

Table A-20. The score and associated level of complexity of the
measure of the number of different job position types in the B4 Project

Metric PCMM value JPT (guide from the IPT

roles [197])

Score Complexity Level

6. Number of

different job

position types

 1 to 15 1 Simple

16 to 30 2 Complicated

44 31 to 45 3 Low complexity

 46 to 65 4 Moderate

complexity

More than 65 or unknown 5 High complexity

In regard to project complexity, we have six metrics. The overall complexity level

of the B4 Project is computed as the average of the six complexity scores of the six

measures in the PCMM, which is 2.67 as shown in Table A-21. Hence, the complexity

level of the B4 Project is low.

Table A-21. The complexity level of the B4 Project

Metric PCMM value Complexity
Score

Complexity
Level

1. Number of personnel required for the

development effort (people)

17.05 3 Low

2. Defect density (defects / KLOC) 0.299 1 Simple

3. Organizational complexity 7.66 4 Moderate

4. Geographical distribution of teams 19 3 Low

5. Requirements volatility 0.388 2 Complicated

6. Number of different job position types 44 3 Low

Overall complexity level of the B4 Project 2.67 Low

252

In regard to project risk, we use a Likert scale [32] of 1 to 3 to map the total score

from the six metrics of the PCMM to the associated risk level. Table A-22 shows the

mapping between project complexity and risk level.

Table A-22. Mapping between project complexity and risk level

Project Complexity Risk Level

1 – Simple 1 - Low

2 – Complicated

3 – Low complexity

4 – Moderate complexity 2 - Medium

5 – High complexity 3 - High

We rate the risk level of the project based on degree of impact in terms of cost,

schedule, and performance on the project, as shown in Table A-23.

Table A-23. Rating of project risk level

Risk
Level

Project Cost Project
Schedule

Project
Performance

Low A cost
increase of
less than 10%

A schedule slip
of less than 2
weeks

Requirements
can be met.

Medi
um

A cost
increase
between 10%
to 20%

A schedule slip
of between 2 to
4 weeks

Requirements
can be met.

High A cost
increase of
greater than
20%

A schedule slip
of greater than
4 weeks

Requirements
cannot be met.
Major system
redesign is
required.

253

We use Table A-22 to score the six metrics in Tables A-15, A-16, A-17, A-18, A-

19, and A-20. The overall risk level of the B4 Project is calculated as the average of the six

risk scores of the six measures in the PCMM as shown in Table A-24, which is 1.167. Thus,

the overall risk level of the B4 Project is low.

Table A-24. Risk level of each metric in the B4 Project

Metric Risk Score Risk Level

1. Number of personnel required for the development

effort (people)

1 Low

2. Defect density (defects / KLOC) 1 Low

3. Organizational complexity 2 Medium

4. Geographical distribution of teams 1 Low

5. Requirements volatility 1 Low

6. Number of different job position types 1 Low

Overall risk level of the B4 Project 1.167 Low

254

THIS PAGE INTENTIONALLY LEFT BLANK

255

APPENDIX B. COMPLEXITY MEASURES OF THE B6 PROJECT

In this appendix, we show the complexity measurements of the B6 Project, which

include six measurements: (1) number of personnel required for the development effort,

(2) defect density, (3) organizational complexity, (4) geographical distribution of teams,

(5) requirements volatility, and (6) number of different job position types. Based on the

PMA’s project definitions (project cost and duration, capability development, and

performance), the program manager’s opinions regarding the statement of requirement, the

number of personnel required in program development, project deliverables and schedules,

and the empirical data of both projects B4 and B6, the B6 Project is deemed more complex

than the B4 Project. The project plan shows the nine organizational units involved in

milestone reviews and status reviews during the 28 months development phase, as shown

in Table B-1.

Table B-1. Planned reviews listed in the B6 Project plan

Organizational
Unit

Review Frequency

PMA CDP review

One time during
the planning phase

IPT Senior management review Quarterly

Project management review Once every two
weeks during the
planning and
development phase

PT • System and software
requirement review

• Preliminary design
review

• Critical design review

Two times during
the development
phase

Technical interchange
meeting

Monthly

Software engineering group
review

Once every two
weeks

256

Organizational
Unit

Review Frequency

Project milestone review Three times during
the development
phase

CCB meeting Once every two
weeks

1. Measure of the Number of Personnel Required for the Development
Effort

Table B-2 shows the calculation of software size for the B6 Project.

Table B-2. Calculation of software size for the B6 Project

Software size’s driver [24] B6 Project software size

Requirements (282 difficult requirements)(5) = 1,410
(282 nominal requirements)(1) = 282
(2,258 easy requirements)(0.5) = 1,129
Total is 2,821 (1,410 + 282 + 1,129)

Interfaces (7 easy interfaces)(1.7) = 11.9
(6 nominal interfaces)(4.3) = 25.8
(4 difficult interfaces)(9.8) = 39.2
Total is 76.9 (10.2 + 12.9 + 19.6)

Algorithms (3 easy algorithms)(3.4) = 10.2
(2 nominal algorithms)(6.5) = 13
(2 difficult algorithms)(18.2) = 36.4
Total is 59.6 (10.2 + 13 + 36.4)

Operational Scenarios (use
cases)

(29 easy use cases)(9.8) = 284.2
(6 nominal use cases)(22.8) = 136.8
(4 difficult use cases)(47.4) = 189.6
Total is 610.6 (284.2 + 136.8 + 189.6)

Total software size [24] =
requirements + interfaces +
algorithms + user cases

2,821 + 76.9 + 59.6 + 610.6 = 3,568.1
person-month

257

Table B-3 shows the calculation of the B6 Project’s effort weight factor.

Table B-3. The B6 Project’s effort weight factor

Effort weight factors Value

Requirements understanding is high
[24].

0.77

Technical risk is nominal [24]. 1

Process capability is nominal [24]. 1

The B6 Project’s effort weight factor is
calculated.

(0.77)(1)(1) =
0.77

Table B-4 shows the calculation of PM (person-month) [24] and the number of

people required for the development effort. Note that the calibration constant is 0.325, and

the effort weight factor is 0.77 in a typical software development project [24]. The B6

Project requires 31.89 people to develop the system in 28 months.

Table B-4. The B6 Project development effort

B6 Project development effort Value

Effort required to build the system = PM
= (calibration factors)(effort
factor)(software size)

(0.325)(0.77)(3,568.1) =
892.92 person-month

B6 Project development effort = (effort
required to build the system) / (project
duration)

892.92 / 28 = 31.89
people

2. Defect Density Measure

Table B-5 shows the B6 Project defect density during the entire 28 months of the

development phase. The defect density of the B6 Project is 1.78 in the first 28 months

258

(February 2017 to June 2019). The total test hours for that period of 28 months is 6,384.85

hours. 1,408 defects are reported in the 28-month period.

Table B-5. B6 Project’s defect density during the first 28 months of the

development phase.

Release (i) Month Cumulative
defects open (NDi)

KLOC Defect density
(NDi/KLOC)

Test Hours

0 Feb-17 53 495.289 0.107 41
1 Mar-17 60 526.648 0.113 53
2 Apr-17 86 151.192 0.568 69
3 May-17 123 355.636 0.345 55.5
4 Jun-17 174 482.089 0.360 124
5 Jul-17 230 251.791 0.913 114
6 Aug-17 259 244.945 1.057 73
7 Sep-17 283 268.905 3.339 84.75
8 Oct-17 299 312.894 0.955 99
9 Nov-17 348 336.775 1.033 118.75
10 Dec-17 429 329.711 1.301 103.5
11 Jan-18 498 365.653 1.361 132.25
12 Feb-18 515 393.651 1.308 14.75
13 Mar-18 592 457.078 1.295 301.75
14 Apr-18 633 524.784 1.206 142.5
15 May-18 738 526.934 1.400 335
16 Jun-18 794 532.500 1.491 276
17 Jul-18 856 544.476 1.572 370.2
18 Aug-18 901 556.425 1.619 282.5
19 Sep-18 982 532.407 1.844 286.6
20 Oct-18 1062 492.262 2.157 474
21 Nov-18 1100 481.926 2.282 235.5
22 Dec-18 1137 475.657 2.390 212.8
23 Jan-19 1222 676.197 1.807 523.95
24 Feb-19 1273 675.668 1.884 446.55
25 Mar-19 1304 676.831 1.926 275
26 Apr-19 1340 677.286 1.978 460.5
27 May-19 1388 789.210 1.758 382
28 Jun-19 1408 790.487 1.781 297.5
Total 6,384.85

3. Organizational Complexity Measure

Figure B-1 shows the context diagram of nodes, links, communication frequencies,

and levels of importance of the communications between PMA and IPT, between PMA

259

and PT, and between PMA and the DT/OT unit during the 28 months development phase.

For example, as shown in Figure B-1, IPT submits CDPs to the PMA one time with the

communication level of importance of 5. PMA provides the program priorities to the IPT

28 times with the communication level of importance of 3 each time.

IPT PMA

Project
Team
(PT)

DT/OT
Unit

Critical design review (1:3)

Senior management review (9:3)

Developmental test status (1:2)

Operational test status (1:2)

CDP submissions (1:5)

Program operations status (56:2)

CDP decisions and priorities (1:5)

Program funding status (28:3)

CDP funding documents (9:5)

Program priorities (28:3)

Hardware/software selection (1:3)

DT/OT report (1:4)

Figure B-1. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between PMA and IPT, between PMA and PT, and also between

PMA and the DT/OT unit

Figures B-2, B-3, and B-4 show the context diagrams of the rest of the nodes, links,

the communication frequencies, and levels of importance of the communications between

the organizations of the B6 Project.

260

Project
Team
(PT)

IPT

BFM

Contracting
Unit (CU)

Project status (56:1)

Project metrics (28:2)

Personnel work status (56:2)

Contracts status (28:1)

Lab operations decisions (28:2)

Project personnel status (56:3)

Contracts status (28:1)

Request for proposal status (28:1)

Statement of work status (56:1)

Project funding status (28:1)

Funding document status (56:1)

Labor expenditures (56:3)

Materials expenditures (56:3)

Program funding status (28:3)

Contracts approval (1:5)

Figure B-2. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between IPT and PT, between IPT and CU, and between IPT and

BFM

T/F Unit

Project
Team (PT)

BFM

Contractor
Unit

Software anomaly reports (28:4)

Fleet requirements priority report (2:3)

EDT schedules (3:2)

Software submission schedules (28:2)

Software distribution status (10:1)

Work performed status (56:2)

Bill hours reports (56:2)

Labor hour expenditure status (56:3)

Materials expenditure status (56:3)
SDU

Figure B-3. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between PT and the T/F unit, between PT and SDU, between PT

and BFM, and between PT and the contractor unit

261

T/F Unit

SDU

Software distribution status (28:1)

Software distribution status (28:1)
DT/OT

Unit

BFM

Contractor
Unit

Contract funding status (28:1)

Contracting
Unit (CU)

Contract fulfillment status (1:1)

Figure B-4. A context diagram of nodes, links, communication

frequencies, and levels of importance of the communications
between SDU and the T/F unit, between SDU and DT/OT unit,

between the contractor unit and BFM, and between the contractor
unit and CU

Tables B-5 and B-6 show the frequencies and levels of importance of the

communications in the B6 Project during the 28 months of the development phase. These

data are extracted from project status reports, test reports, senior management reviews, and

the project plan.

Table B-5. Frequencies of the communications during the first 28 months of
the development phase

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

1. IPT 1. Program
operations status

 56

2. Program funding
status

 28

3. CDP submission 1
1. Contracts status 28
2. Lab operations
status

 28

262

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

3. Project personnel
status

 56

1. Labor
expenditures

 56

2. Materials
expenditures

 56

3. Program funding
status

 28

1. Contracts
approval decisions

 1

Subtotal 85 112 140 1
2. PMA 1. CDP decisions 1

2. CDP funding
documents

9

3. Program priorities
status

28

4. B6
hardware/software
selection

1

5. B6 DT/OT report 1
Subtotal 40

3. Project
Team (PT)

1. Project status 56
2. Project metrics 28
3. Personnel work
status

56

1. Critical design
review status

 1

2. Senior
management review

 9

Subtotal 140 10
4. BFM 1. Project funding

status
28

2. Funding
document status

56

1. Labor hour
expenditure status

 56

2. Materials
expenditure status

 56

Subtotal 84 112
1. Contracts status 28

263

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

5.
Contracting
Unit (CU)

2. RFP status 28
3. Statement of work
status

56

Subtotal 112
6.
Contractor
Unit

1. Work performed
status

 56

2. Bill hours report 56
1. Contract funding
status

 28

1. Contract
fulfillment status

 1

Subtotal 112 28 1
7. T/F Unit 1. EDT schedule 3

2. Software anomaly
report

 28

3. Fleet requirements
priority report

 2

Subtotal 33
8. DT/OT
Unit

1. DT status 1
2. OT status 1
Subtotal 2

9. SDU 1. Software
submission schedule

 28

2. Software
distribution status

 10

1. Software release
status

 28 28

Subtotal 38 28 28
 Total 376 97 407 168 2 28 28

Table B-6. Levels of importance of the communications during the first 28
months of the development phase

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

1. IPT 1. Program
operations status

 2

2. Program funding
status

 3

264

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

3. CDP submission 5
1. Contracts status 1
2. Lab operations
status

 2

3. Project personnel
status

 3

1. Labor expenditures 3
2. Materials
expenditures

 3

3. Program funding
status

 3

1. Contracts approval
decisions

 5

2. PMA 1. CDP decisions 5
2. CDP funding
documents

5

3. Program priorities
status

3

4. Hardware/software
decisions

3

5. DT/OT report 4
3. Project
Team

1. Project status 1
2. Project metrics 2
3. Personnel work
status

2

1. Critical design
review status

 3

2. Senior
management review

 3

4. BFM 1. Project funding
status

1

2. Funding document
status

1

1. Labor hour
expenditure status

 3

2. Materials
expenditure status

 3

5.
Contractin
g Unit
(CU)

1. Contracts status 1
2. RFP status 1
3. Statement of work
status

1

265

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/OT
Unit

6.
Contractor
Unit

1. Work performed
status

 2

2. Bill hours report 2
1. Contract funding
status

 1

1. Contract
fulfillment status

 1

7. T/F
Unit

1. EDT schedule 2
2. Software anomaly
reporting

 4

3. Fleet requirements
priority report

 3

8. DT/OT
Unit

1. DT status 2
2. OT status 2

9. SDU 1. Software
submission schedule

 2

2. Software
distribution status

 1 1 1

Table B-7 shows the calculations of organizational complexity of each

organizational unit. We sum up the contribution of organizational complexity from each of

the nine organizational units during the period of 28 months and obtain the total

organizational complexity of 7.64.

Table B-7. Organizational complexity of each organizational unit in the B6
Project

Organizational
Unit

IF Total

1. IPT interacts
with PMA, PT,
BFM, and CU.

PMA:
[(2)(56)+(3)(28)+
(5)(1)]/[(5)(85)]=
0.473

PT:
[(1)(28)+(2)(
28)+(3)(56)]/
[(5)(112)]=0.
45

BFM:
[(3)(56)+(3)(5
6)+(3)(28)]/[(
5)(140)]=0.6

CU:
[(1)(5)]
/[(5)(1)
] =1

2.52

2. PMA
interacts with
IPT.

IPT: [(5)(1)+(5)(9)+(3)(28)+(3)(1)+(4)(1)]/[(5)(40)]=0.705 0.705

266

Organizational
Unit

IF Total

3. PT interacts
with IPT and
PMA.

IPT:
[(1)(56)+(2)(28)+(2)(56)]/[(5)(140)]=
0.32

PMA:
[(3)(1)+(3)(9)]/[(5)(
10)]=0.6

0.92

4. BFM
interacts with
IPT and PT.

IPT: [(1)(28)+(1)(56)]/[(5)(81)]=0.2 PT:
[(2)(56)+(2)(56)]/[(5
)(112)]=0.4

0.6

5. CU interacts
with IPT.

IPT: [(1)(28)+(1)(28)+(1)(56)]/[(5)(112)]=0.2 0.2

6. Contractor
Unit interacts
with PT, BFM,
and CU.

PT:
[(2)(56)+(2)(56)]/[(5)
(112)]=0.4

BFM:
[(1)(28)]/
[(5)(28)]
=0.2

CU: [(1)(1)]/[(5)(1)]=0.2 0.8

7. T/F Unit
interacts with
PT.

PT: [(2)(3)+(4)(28)+(3)(2)]/[(5)(33)]=0.751 0.751

8. DT/OT Unit
interacts with
PMA.

PMA: [(2)(1)+(2)(1)]/[(5)(2)]=0.4 0.4

9. SDU
interacts with
PT, T/F Unit,
and DT/OT
Unit.

PT:
[(2)(28)+(1)(10)]/
[(5)(38)]=0.347

T/F Unit:
[(1)(28)]/[(5)
(28)]=0.2

DT/OT Unit:
[(1)(28)]/[(5)(28)]=0.2

0.747

Total
Contribution

 7.64

4. Geographical Distribution of Teams Measure

Table B-8 shows the geographical distribution of teams from the nine

organizational units in the B6 Project. We sum up the number of sites, locations, and time

zones. We obtain the value of 20 for the measure of geographical distribution of teams.

Table B-8. Geographical distributions of teams in the B6 Project

 Number
of Sites

Location Time Zone

1. PMA 1 East-coast city Eastern time

2. IPT 1 Southwest-1city Pacific time

267

 Number
of Sites

Location Time Zone

3. PT 4 Southwest-1 city Pacific time

4. BFM 1 Southwest-1 city Pacific time

5. CU 1 Southwest-1 city Pacific time

6. Contractor
Unit

2 Southwest-1 city Pacific time

7. T/F Unit 1 Northwest city Pacific time

8. DT/OT
Unit

2 East-coast city
and
Southwest-2 city

Eastern time and
Pacific time

9. SDU 1 Southwest-1 city Pacific time

Total 14 4 2

5. Requirements Volatility Measure

Table B-9 show the requirements metrics during the 28 months of the development

phase. As presented in Table B-9, the project starts with a baseline of 2,089 requirements.

During a 28-month period, the B6 Project has 2,725 change requests (1,586 new + 286

modifications + 853 deletions) and 2,822 requirements.

268

Table B-9. B6 Project requirements metrics during first 28 months of the
development phase

 Requirement (CRi) BR = 2,089 requirements
Baseline

(i)
New Modification Deletion Total # of

requirements
Requirements volatility

(CRi)/(BR)
0 2,089 0
1 10 30 2,069 0.019
2 6 14 2,061 0.009
3 19 8 2,072 0.013
4 260 4 45 2,287 0.148
5 5 2,292 0.002
6 46 1 9 2,329 0.027
7 169 4 37 2,461 0.1
8 26 4 2,483 0.014
9 3 53 3 2,483 0.028

10 21 18 2,486 0.018
11 226 42 15 2,697 0.135
12 268 29 100 2,865 0.19
13 34 27 64 2,835 0.059
14 23 53 2,805 0.036
15 107 138 2,774 0.117
16 23 5 40 2,757 0.032
17 31 4 2,784 0.016
18 24 59 2,749 0.039
19 37 4 27 2,759 0.032
20 17 14 8 2,768 0.018
21 34 8 85 2,717 0.061
22 37 7 21 2,733 0.031
23 1 1 1 2,733 0.001
24 20 1 17 2,736 0.018
25 137 86 39 2,834 0.125
26 2 14 2,822 0.007

Total 1,586 286 853

6. Number of Different Job Position Types

The B6 Project plan shows 44 types of job positions that are identical to those in

the B4 Project, as shown in Table A-14, Appendix A. Thus, the measure of different job

position types (JPT) is 44.

7. B6 Project Complexity

Tables B-10, B-11, B-12, B-13, B-14, and B-15 show the scores and associated

levels of complexity of six complexity metrics in the PCMM. Similar to the B4 Project, we

269

use a Likert scale [32] of 1 to 5 to map the scores of the PCMM metrics to the associated

levels of complexity as shown in Tables B-10, B-11, B-12, B-13, B-14, and B-15.

Table B-10. The score and associated level of complexity of the
measure of the number of personnel required for the B6 Project

Metric PCMM

value

Number of people

per year can be

funded (PMI)

Score Complexity Level

1. Number of

personnel required

for the development

effort (people)

 1 to 7 1 Simple

8 to 15 2 Complicated

16 to 27 3 Low complexity

28 to 34 4 Moderate complexity

35.08 > 34 or unknown 5 High complexity

Table B-11. The score and associated level of complexity of the
measure of defect density in the B6 Project

Metric PCMM

value

Defects / KLOC (software

industry standard)

Score Complexity Level

2. Defect

density (defects

/ KLOC)

 0 to 0.5 1 Simple

0.51 to 1.1 2 Complicated

1.78 1.2 to 2 3 Low complexity

 2.1 to 3 4 Moderate

complexity

> 3 or unknown 5 High complexity

270

Table B-12. The score and associated level of complexity of the
measure of organizational complexity in the B6 Project

Metric PCMM

value

IF (Schwandt’s study

[158])

Score Complexity Level

3. Organizational

complexity

 0 to 1.8 1 Simple

1.9 to 3.7 2 Complicated

3.8 to 5.5 3 Low complexity

7.64 5.6 to 8.1 4 Moderate complexity

 More than 8.1 or

unknown

5 High complexity

Table B-13. The score and associated level of complexity of the
measure of geographical distribution of teams in the B6 Project

Metric PCMM

value

GD (guide from the Allen curve

[119] and the IPT roles [197])

Score Complexity

Level

4.

Geographical

distribution of

teams

 1 to 3 1 Simple

4 to 10 2 Complicated

11 to 19 3 Low

complexity

20 20 to 40 4 Moderate

complexity

 More than 40 or unknown 5 High

complexity

271

Table B-14. The score and associated level of complexity of the
measure of requirements volatility in the B6 Project

Metric PCMM

value

RVM (best practice in the

software industry [162])

Score Complexity Level

5.

Requirements

volatility

 0 to 0.2 1 Simple

0.21 to 0.42 2 Complicated

0.43 to 0.66 3 Low complexity

0.67 to 1 4 Moderate

complexity

1.3 More than 1 or unknown 5 High complexity

Table B-15. The score and associated level of complexity of the
measure of the number of different job position types in the B6 Project

Metric PCMM value JPT (guide from the IPT

roles [197])

Score Complexity Level

6. Number of

different job

position types

 1 to 15 1 Simple

16 to 30 2 Complicated

44 31 to 45 3 Low complexity

 46 to 65 4 Moderate

complexity

More than 65 or unknown 5 High complexity

The overall complexity level of the B6 Project is computed as the average

complexity scores of the six measures in the PCMM as shown in Tables B-16. With the

average complexity scores of 4, the overall complexity level of the B6 Project is moderate,

as shown in Table B-16.

272

Table B-16. The complexity level of the B6 Project

Metric PCMM value Complexity
Score

Complexity
Level

1. Number of personnel required for the
development effort (people)

35.08 5 High

2. Defect density (defects / KLOC) 1.78 3 Low

3. Organizational complexity 7.64 4 Moderate

4. Geographical distribution of teams 20 4 Moderate

5. Requirements volatility 1.3 5 High

6. Number of different job position types 44 3 Low

Overall complexity level of the B6 Project 4 Moderate

We use Table A-22 to score the six metrics in Tables B-10, B-11, B-12, B-13, B-

14, and B-15. The overall risk level of the B6 Project is calculated as the average of the six

risk scores of the six measures in the PCMM, which is 2 as shown in Table B-17. Thus,

the overall risk level of the B6 Project is medium as shown in Table B-17.

Table B-17. The risk level of each metric in the B6 Project

Metric Score Risk Level

1. Number of personnel required for the development
effort (people)

3 High

2. Defect density (defects / KLOC) 1 Low

3. Organizational complexity 2 Medium

4. Geographical distribution of teams 2 Medium

5. Requirements volatility 3 High

6. Number of different job position types 1 Low

Overall risk level of the B6 Project 2 Medium

273

APPENDIX C. COMPLEXITY MEASURES OF THE B8 PROJECT

In this appendix, we present the complexity measurements of the B8 Project. These

measurements include the number of personnel required for the development effort, defect

density, organizational complexity, geographical distribution of project teams,

requirements volatility, and the number of different job position types. Based on the PMA’s

project definitions, the program manager’s opinion, and the empirical data from the project

profiles B4, B6, and B8, the B8 Project is less complex than the B6 Project but more

complex than the B4 Project. The B8 Project plan listed stakeholders’ roles and functions,

as shown in Table C-1.

Table C-1. Stakeholders’ roles and functions listed in the B8 Project plan

Stakeholder
Role

Function

Program
sponsor

• Define future operational requirements for the
fleet.

• Set program’s priorities and allocate funding.

Program
manager

• Develop the project schedule, budget, and evaluate
the technical performance of the SoI.

• Approve or disapprove milestone reviews.
• Oversee procurements.

Product lead • Oversee system definition, development,
integration, and testing.

• Establish and maintain the project management
plan (PMP).

• Create program increment plan (PIP) and conduct
program increment planning meetings.

• Interface with IPT and external organizations for
project status.

• Participate in milestone reviews and IPT
management reviews.

274

Stakeholder
Role

Function

Senior
management

• Provide personnel and lab resources to each
project.

• Provide resources for personnel development and
training.

• Commit to IPT policies, process improvement, and
industrial engineering development standards.

BFM office • Allocate funding within the IPT.
• Provide contractor oversight.
• Oversee IPT procurements.
• Advise senior management on any anomalies.

Fleet
representation

• Provide operational insight and end user direction
during the development life cycle for new
capabilities and modifications.

Naval aviation
depot

• Generate hardware change packages for the
specified aircraft.

Developmental
testing

• Verify and validate that all new system
requirements are met.

• Perform a regression test to verify and validate that
previously existing requirements still perform
correctly by the system.

Operational
testing

• Test new or modified systems as they would be
used in the fleet.

• Determine whether a system is ready for fleet
release.

The project plan also shows the nine organizational units involved in milestone

reviews and status reviews during the 20 months development phase, as shown in Table C-

2.

275

Table C-2. Planned reviews from the B8 Project plan

Organizational
Unit

Review Frequency

PMA • CDP review

One time during the
planning phase

IPT • Senior management
review

Quarterly

• Project management
review

Once every two
weeks during the
planning and
development phase

PT • System and software
requirement review

• Preliminary design
review

• Critical design
review

Two times during
the development
phase

• Technical
interchange meeting

Monthly

• Software
engineering group
review

Once every two
weeks

• Project milestone
review

Three times during
the development
phase

• CCB meeting Once every two
weeks

1. Measure of the Number of Personnel Required for the Development
Effort

Table C-3 shows the calculation of software size for the B8 Project.

276

Table C-3. Calculation of software size for the B8 Project

Software size’s driver [24] B8 Project software size

Requirements (578 nominal requirements)(1) = 578
(2,313 easy requirements)(0.5) = 1,156.5
Total is 1,734.5 (578 + 1,156.5).

Interfaces (2 easy interfaces)(1.7) = 3.4
Total is 3.4.

Algorithms (1 easy algorithms)(3.4) = 3.4
Total is 3.4.

Operational Scenario (use
cases)

(38 easy use cases)(9.8) = 372.4
(5 nominal use cases)(22.8) = 114
Total is 486.4 (372.4 + 114).

Total software size [24] =
requirements + interfaces
+ algorithms + user cases

1,734.5 + 3.4 + 3.4 + 486.4 = 2,227.7

Table C-4 shows the computation of the B8 Project’s effort weight factor.

Table C-4. The B8 Project’s effort weight factor

Effort weight factors Value
Requirements understanding is high
[24].

0.77

Technical risk is nominal [24]. 1
Process capability is nominal [24]. 1
The B6 Project’s effort weight factor is
calculated

(0.77)(1)(1) = 0.77

Table C-5 shows the calculation of PM (person-month) [24] and the number of

people required for the development effort. Note that the calibration constant is 0.325, and

the effort weight factor is 0.77 in a typical software development project [24]. The B8

Project requires 27.87 people to develop the system in 20 months.

277

Table C-5. The B8 Project development effort

B8 Project development effort Value

Effort required to build the system = PM =
(calibration factors)(effort factor)(software
size)

(0.325)(0.77)(2,227.7) =
557.48 person-month

B6 Project development effort = (effort
required to build the system) / (project
duration)

557.48 / 20 = 27.87
people

2. Defect Density Measure

Table C-6 shows the B8 Project’s defect density during the first 20 months of the

development phase. After the first 20 months in the development phase (Jun-21), the

project averaged 0.109 defects per KLOC, which is well within the industry standard limit

of 3. The total test hours for the 20-month period is 838.5 hours. There are 49 defects

reported in the 20-month period.

In Table C-6, the defect density trend is upward toward the end of the first 20

months development cycle (October 2019 through June 2021), indicating that test hours

have increased dramatically before the release of the software to stakeholders. This means

that either the testers spent fewer hours testing and closing the open defects, or they spent

more hours testing the software and found more defects.

278

Table C-6. B8 Project’s defect density during the first 20 months of the
development phase

Release Month Cumulative
defects open (NDi)

KLOC Defect density
(NDi/KLOC)

Test Hours

0 Oct-19 1 787.303 0.001 50
1 Nov-19 1 784.546 0.001 9
2 Dec-19 1 786.059 0.001 17
3 Jan-20 1 786.059 0.001 0
4 Feb-20 1 786.059 0.001 0
5 Mar-20 1 355.542 0.003 16
6 Apr-20 6 323.950 0.019 35
7 May-20 10 442.604 0.022 42
8 Jun-20 10 442.604 0.022 10
9 Jul-20 16 446.237 0.035 48
10 Aug-20 16 440.028 0.036 0
11 Sep-20 21 443.354 0.047 66
12 Oct-20 35 449.464 0.078 175
13 Nov-20 40 449.789 0.089 104
14 Dec-20 41 448.745 0.091 47
15 Jan-21 44 448.741 0.098 24
16 Feb-21 44 448.818 0.098 27.5
17 Mar-21 44 449.836 0.098 0
18 Apr-21 44 449.836 0.098 7
19 May-21 46 449.836 0.102 64
20 Jun-21 49 449.836 0.109 97
Total 838.5

3. Organizational Complexity Measure

Figure C-1 shows the context diagram of nodes, links, communication frequencies

and levels of importance of communications between PMA and IPT, between PMA and

PT, and between PMA and the DT/OT unit during the first 20-month development phase.

For example, as shown in Figure C-1, IPT submits CDPs to the PMA one time with the

communication level of importance of 5. PMA provides the program priorities to the IPT

20 times with the communication level of importance of 3 each time.

279

IPT PMA

Project
Team
(PT)

DT/OT
Unit

Critical design review (1:3)

Senior management review (6:3)

Developmental test status (1:2)

Operational test status (1:2)

CDP submissions (1:5)

Program operations status (40:2)

CDP decisions and priorities (1:5)

Program funding status (20:3)

CDP funding documents (6:5)

Program priorities (20:3)

Hardware/software selection (1:3)

DT/OT reports (1:4)

Figure C-1. A context diagram of nodes, links, communication

frequencies, and importance levels of the communications between
PMA and IPT, between PMA and PT, and between PMA and the

DT/OT unit

Figures C-2, C-3, and C-4 show the context diagrams of the rest of the nodes, links,

communication frequencies, and importance levels of the communications between the

organizations of the B6 Project.

Project
Team
(PT)

IPT

BFM

Contracting
Unit (CU)

Project status (40:1)

Project metrics (20:2)

Personnel work status (40:2)

Contracts status (20:1)

Lab operations status (20:2)

Project personnel status (40:3)

Contracts status (20:1)

Request for proposal status (20:1)

Statement of work status (40:1)

Project funding status (20:1)

Funding document status (40:1)

Labor expenditures (40:3)

Materials expenditures (40:3)

Program funding status (20:3)

Contracts approval (1:5)

Figure C-2. A context diagram of nodes, links, communication

frequencies, and importance levels of the communications between
IPT and PT, between IPT and CU, and between IPT and BFM

280

T/F Unit

Project
Team (PT)

BFM

Contractor
Unit

Software anomaly reports (20:4)

Fleet requirements priority reports (2:3)

EDT schedules (2:2)

Software submission schedules (20:2)

Software distribution status (6:1)

Work performed status (40:2)

Bill hours reports (40:2)

Labor hour expenditure status (40:3)

Materials expenditure status (40:3)
SDU

Figure C-3. A context diagram of nodes, links, communication

frequencies, and importance levels of the communications between
PT and the T/F unit, between PT and SDU, between PT and BFM,

and between PT and the contractor unit

T/F Unit

SDU

Software distribution status (20:1)

Software distribution status (20:1)
DT/OT

Unit

BFM

Contractor
Unit

Contract funding status (20:1)

Contracting
Unit (CU)

Contract fulfillment status (1:1)

Figure C-4. A context diagram of nodes, links, communication

frequencies, and importance levels of the communications between
SDU and the T/F unit, between SDU and DT/OT unit, between the
contractor unit and BFM, and between the contractor unit and CU

Tables C-7 and C-8 show the frequencies and levels of importance of the

communications in the B8 Project during the 20 months of the development phase. These

281

data are extracted from project status reports, test reports, senior management reviews, and

the project plan.

Table C-7. Frequencies of the communications during the first 20 months of
the development phase

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

1. IPT 1. Program operations
status

 40

2. Program funding
status

 20

3. CDP submission 1
1. Contracts status 20
2. Lab operations status 20
3. Project personnel
status

 40

1. Labor expenditures 40
2. Materials
expenditures

 40

3. Program funding
status

 20

1. Contracts approval
decisions

 1

Subtotal 61 80 100 1
2. PMA 1. CDP decisions 1

2. CDP funding
documents

6

3. Program priorities
status

20

4. hardware/software
selection

1

5. DT/OT reports 1
Subtotal 29

3. Project
Team (PT)

1. Project status 40
2. Project metrics 20
3. Personnel work
status

40

1. Critical design
review status

 1

282

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

2. Senior management
reviews

 5

Subtotal 100 6
4. BFM 1. Project funding

status
20

2. Funding document
status

40

1. Labor hour
expenditure status

 40

2. Materials
expenditure status

 40

Subtotal 60 80
5.
Contracting
Unit (CU)

1. Contracts status 20
2. RFP status 20
3. Statement of work
status

40

Subtotal 80
6.
Contractor
Unit

1. Work performed
status

 40

2. Bill hours reports 40
1. Contract funding
status

 20

1. Contract fulfillment
status

 1

Subtotal 80 20 1
7. T/F Unit 1. EDT schedules 2

2. Software anomaly
reports

 20

3. Fleet requirements
priority reports

 2

Subtotal 24
8. DT/OT
Unit

1. DT status 1
2. OT status 1
Subtotal 2

9. SDU 1. Software submission
schedules

 20

2. Software distribution
status

 6

1. Software release
status

 20 20

283

 Communication of
information

Frequency
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

Subtotal 26 20 20
 Total 269 69 29

0
120 2 20 20

Table C-8. Levels of importance of the communications during the first 20
months of the development phase

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

1. IPT 1. Program operations
status

 2

2. Program funding
status

 3

3. CDP submission 5
1. Contracts status 1
2. Lab operations
status

 2

3. Project personnel
status

 3

1. Labor expenditures 3
2. Materials
expenditures

 3

3. Program funding
status

 3

1. Contracts approval
decisions

 5

2. PMA 1. CDP decisions 5
2. CDP funding
documents

5

3. Program priorities
status

3

4. Hardware/software
decisions

3

5. DT/OT report 4
3. Project
Team

1. Project status 1
2. Project metrics 2

284

 Communication of
information

Level of importance
IPT PMA PT BFM CU T/F

Unit
DT/
OT
Unit

3. Personnel work
status

2

1. Critical design
review status

 3

2. Senior management
review

 3

4. BFM 1. Project funding
status

1

2. Funding document
status

1

1. Labor hour
expenditure status

 3

2. Materials
expenditure status

 3

5.
Contracting
Unit (CU)

1. Contracts status 1
2. RFP status 1
3. Statement of work
status

1

6.
Contractor
Unit

1. Work performed
status

 2

2. Bill hours report 2
1. Contract funding
status

 1

1. Contract fulfillment
status

 1

7. T/F Unit 1. EDT schedule 2
2. Software anomaly
reporting

 4

3. Fleet requirements
priority report

 3

8. DT/OT
Unit

1. DT status 2
2. OT status 2

9. SDU 1. Software
submission schedule

 2

2. Software
distribution status

 1 1 1

285

Table C-9 shows the calculations of organizational complexity of each

organizational unit. We sum up the contribution of organizational complexity from each of

the nine organizational units during the period of 20 months and obtain the total

organizational complexity of 7.65.

Table C-9. Organizational complexity of each organizational unit in the B8
Project

Organizational
Unit

IF Total

1. IPT interacts
with PMA, PT,
BFM, and CU.

PMA:
[(2)(40)+(3)(20)
+(5)(1)]/[(5)(61
)]=0.475

PT:
[(1)(20)+(2)(2
0)+(3)(40)]/[(
5)(80)]=0.45

BFM:
[(3)(40)+(3)(4
0)+(3)(20)]/[(
5)(100)]=0.6

CU:
(1)(5)
/(5)(1
) =1

2.52

2. PMA interacts
with IPT.

IPT:
[(5)(1)+(5)(6)+(3)(20)+(3)(1)+(4)(1)]/[(5)(29)]=0.703

0.703

3. PT interacts
with IPT and
PMA.

IPT:
[(1)(40)+(2)(20)+(2)(40)]/[(5)(10
0)]=0.32

PMA:
[(3)(1)+(3)(6)]/[(5)(7)
]=0.6

0.92

4. BFM interacts
with IPT and PT.

IPT:
[(1)(20)+(1)(40)]/[(5)(60)]=0.2

PT:
[(2)(20]+(2)(40)]/[(5)
(60)]=0.4

0.6

5. CU interacts
with IPT.

IPT: [(1)(20)+(1)(20)+(1)(40)]/[(5)(80)]=0.2 0.2

6. Contractor
Unit interacts
with PT, BFM,
and CU.

PT:
[(2)(40)+(2)(40)]/
[(5)(80)]=0.4

BFM:
[(1)(20)]/[(5
)(20)]=0.2

CU:
[(1)(1)]/[(5)(1)]=0.2

0.8

7. T/F Unit
interacts with PT.

PT: [(2)(2)+(4)(20)+(3)(2)]/[(5)(24)]=0.75 0.75

8. DT/OT Unit
interacts with
PMA.

PMA: [(2)(1)+(2)(1)]/[(5)(2)]=0.4 0.4

9. SDU interacts
with PT, T/F
Unit, and DT/OT
Unit.

PT:
[(2)(20)+(1)(6)]
/[(5)(26)]=0.354

T/F Unit:
[(1)(20)]/[(5)(
20)]=0.2

DT/OT Unit:
[(1)(20)]/[(5)(20)]=0.2

0.754

Total
Contribution

 7.65

286

4. Geographical Distribution of Teams Measure

Table C-10 shows the geographical distribution of teams from the nine

organizational units in the B8 Project. We sum up the number of sites, locations, and time

zones. We obtain the value of 20 for the measure of geographical distribution of teams.

Table C-10. Geographical distributions of teams in the B8 Project

 Number
of Sites

Location Time
Zone

1. PMA 1 East-coast city Eastern
time

2. IPT 1 Southwest-1city Pacific
time

3. PT 4 Southwest-1 city Pacific
time

4. BFM 1 Southwest-1 city Pacific
time

5. CU 1 Southwest-1 city Pacific
time

6.
Contractor
Unit

2 Southwest-1 city Pacific
time

7. T/F
Unit

1 Northwest city Pacific
time

8. DT/OT
Unit

2 East-coast city and
Southwest-2 city

Eastern
time and
Pacific
time

9. SDU 1 Southwest-1 city Pacific
time

Total 14 4 2

287

5. Requirements Volatility Measure

Table C-11 show the requirements metrics during the 20 months of the

development phase. As presented in Table C-10, the project starts with a baseline of 2,822

requirements. During a 20-month period, the B8 Project has 1,029 change requests (533

new + 32 modifications + 464 deletions) and 2,822 requirements. The overall requirements

volatility measure is computed as 0.36 (RVM = 1,029 / 2,822).

Table C-11. B8 Project requirement metrics during the first 20 months
of the development phase

 Requirement (CRi) BR = 2,822 requirements
Baseline New Modification Deletion Total # of

requirements
Requirements

volatility
(CRi/BR)

0 2,822 0
1 26 2,848 0.009
2 5 2,853 0.001
3 5 4 2,854 0.003
4 62 22 2,894 0.029
5 20 2 2,912 0.008
6 21 18 2,915 0.013
7 24 24 6 2,933 0.019
8 53 1 2 2,984 0.019
9 11 53 2,942 0.022
10 23 43 2,922 0.023
11 107 138 2,891 0.087
12 23 5 40 2,874 0.024
13 2 4 2,872 0.002
14 24 59 2,837 0.029
15 2 1 2,838 0.001
16 25 22 2,841 0.017
17 21 8 2,854 0.01
18 19 1 17 2,856 0.013
19 58 1 11 2,903 0.024
20 2 14 2,891 0.006

Total 533 32 464

288

 6. Number of Different Job Position Types

The B8 Project plan shows 44 types of job positions that are identical to those in

the B4 Project, as shown in Table A-14, Appendix A. Thus, the measure of different job

position types (JPT) is 44.

7. B8 Project Complexity

Tables C-12, C-13, C-14, C-15, C-16, and C-17 show the scores and associated

levels of complexity of six complexity metrics in the PCMM. Similar to the B6 Project, we

use a Likert scale [32] of 1 to 5 to map the scores of the PCMM metrics to the associated

levels of complexity as shown in Tables C-12, C-13, C-14, C-15, C-16, and C-17.

Table C-12. The score and associated level of complexity of the
measure of the number of personnel required for the B8 Project

Metric PCMM value Number of

people per year

can be funded

(PMI)

Score Complexity Level

1. Number of

personnel required

for the development

effort (people)

 1 to 7 1 Simple

8 to 15 2 Complicated

16 to 27 3 Low complexity

30.66 28 to 34 4 Moderate complexity

 > 34 or unknown 5 High complexity

289

Table C-13. The score and associated level of complexity of the
measure of defect density in the B8 Project

Metric PCMM Value Defects / KLOC

(software industry

standard)

Score Complexity Level

2. Defect

density

(defects /

KLOC)

0.109 0 to 0.5 1 Simple

 0.51 to 1.1 2 Complicated

1.2 to 2 3 Low complexity

2.1 to 3 4 Moderate

complexity

> 3 or unknown 5 High complexity

Table C-14. The score and associated level of complexity of the
measure of organizational complexity in the B8 Project

Metric PCMM

value

IF (Schwandt’s study

[158])

Score Complexity Level

3. Organizational

complexity

 0 to 1.8 1 Simple

1.9 to 3.7 2 Complicated

3.8 to 5.5 3 Low complexity

7.65 5.6 to 8.1 4 Moderate complexity

 More than 8.1 or

unknown

5 High complexity

290

Table C-15. The score and associated level of complexity of the
measure of geographical distribution of teams in the B8 Project

Metric PCMM

value

GD (guide from the Allen curve

[119] and the IPT roles [197])

Score Complexity

Level

4.

Geographical

distribution of

teams

 1 to 3 1 Simple

4 to 10 2 Complicated

11 to 19 3 Low

complexity

20 20 to 40 4 Moderate

complexity

 More than 40 or unknown 5 High

complexity

Table C-16. The score and associated level of complexity of the
measure of requirements volatility in the B8 Project

Metric PCMM Value RVM (best practice

in the software

industry [162])

Score Complexity

Level

5.

Requirements

volatility

 0 to 0.2 1 Simple

0.36 0.21 to 0.42 2 Complicated

 0.43 to 0.66 3 Low complexity

0.67 to 1 4 Moderate

complexity

More than 1 or

unknown

5 High complexity

291

Table C-17. The score and associated level of complexity of the
measure of number of different job position types in the B8 Project

Metric PCMM

value

JPT (guide from the IPT

roles [197])

Score Complexity

Level

6. Number of

different job

position types

 1 to 15 1 Simple

16 to 30 2 Complicated

44 31 to 45 3 Low complexity

 46 to 65 4 Moderate

complexity

More than 65 or unknown 5 High complexity

The overall project complexity of the B8 Project is computed as the average

complexity scores of the six measures in the PCMM as shown in Tables C-18. With the

average complexity scores of 3, the overall complexity level of the B8 Project is low as

shown in Table C-18.

292

Table C-18. The complexity level of the B8 Project

Metric PCMM

value

Complexity

Score

Complexity

Level

1. Number of personnel required for the

development effort (people)

30.66 4 Moderate

2. Defect density (defects / KLOC) 0.109 1 Simple

3. Organizational complexity 7.65 4 Moderate

4. Geographical distribution of teams 20 4 Moderate

5. Requirements volatility 0.36 2 Complicated

6. Number of different job position types 44 3 Low

Overall complexity level of the B8 Project 3 Low

We use Table A-22 to score the six metrics in Tables C-12, C-13, C-14, C-15, C-

16, and C-17. The overall risk level of the B8 Project is computed as the average of the six

risk scores of the six measures in the PCMM, which is 1.5 as shown in Table C-19. With

the overall project risk score of 1.5 as shown in Table C-19, the overall risk level of the B8

Project is low.

293

Table C-19. The risk level of each metric in the B8 Project

Metric Score Risk Level

1. Number of personnel required for the development

effort (people)

2 Medium

2. Defect density (defects / KLOC) 1 Low

3. Organizational complexity 2 Medium

4. Geographical distribution of teams 2 Medium

5. Requirements volatility 1 Low

6. Number of different job position types 1 Low

Overall risk level of the B8 Project 1.5 Low

294

THIS PAGE INTENTIONALLY LEFT BLANK

295

APPENDIX D. CSE QUESTIONS

In this dissertation, we have provided answers to certain questions about measures

of complexity in engineered complex systems.

1. Under what conditions does complexity arise?

Complexity can occur in time, space, and interactions. From this dissertation, we

know that complexity arises when all of the seven features (nonlinearity, non-equilibrium,

numerosity, diversity, interdependence, connectedness, and adaptivity) are present in the

system. We also know that complexity arises because of intermediate values of these

features. In the three software projects presented, we have shown that structural

complexity, organizational complexity, temporal complexity, and technological

complexity are four major sources that contribute to complexity in the Navy software

projects. We can draw parallels from these four factors of complexity to 4 of the 7 building

blocks of complexity―numerosity, connectedness, interdependence, and diversity.

2. What are the practical measures of complexity?

In this dissertation, we covered dozens of proposed measures of complexity from

relevant literature. We discussed a few that have proven useful in any application, and none

have been useful in every application. However, from the three software projects presented,

the PCMM and associated methods to measure complexity demonstrated a practical

approach to develop a complexity profile of an engineering project that consists of multiple

complexity measures for project risk assessment. This could lead to a potential

standardized complexity measurement for engineered systems.

3. What are the causes of emergence in a complex system?

Emergence is closely tied to complexity, nonlinearity, and constrained generating

procedures (i.e., use of agents that interact with one another according to specific rules).

We expect complex systems to exhibit emergence, and there are many paths leading to

emergence. Thus, there are many types and “degrees” of emergence. As noted in the

Chapter II literature review, potential emergent system elements include the following:

296

swarms, trails, task allocation and reallocation, mosaic images, crystallization, melting,

film formation, connection generation, bridges, herding, driving, sorting, networks,

synchronization, and distributed clustering [23]. Although we can use analogy to predict

the results of similar systems, emergence is likely to pose many challenges to complex

systems engineers.

4. What are the techniques to control complex systems?

To maintain control, complex systems require simplification or limits to their

operational range. Some forms of prediction can also help to control complex systems.

Fuzzy control, based on fuzzy logic, is another way to control complex systems. We may

be able to impose control in many cases using these techniques, but such techniques will

likely fail for some types of complex systems. We need additional research in complex

systems control.

297

APPENDIX E. HEURISTIC APPROACHES TO REDUCING
COMPLEXITY

In this dissertation, we sought to measure project complexity and suggest ways to

reduce complexity. In this section, we list some heuristic approaches to reduce system

complexity. Reducing complexity is not easy, nor is the process it requires. The following

are heuristic approaches to reduce system and project complexity:

• Design modular hierarchical systems.

• Create many small assemblies with a reduced number of interfaces.

• Use distributed controls and processes when possible.

• Reduce the number of requirements and redundancies in the system.

• Simplify the design by reducing interdependence of components and use fewer

types and kinds of parts.

• Use standard tools, procedures, and techniques.

• Enlist management and project sponsor support for project methodology.

• Involve users early in the project design cycle to minimize system requirement

changes.

• Reduce the frequency of change in requirements, design environment, and

system configuration.

• Improve clarity of communication.

• Use extensive modeling and simulation of SoI.

• Create prototypes and adapt proven designs.

• Learn from other industries.

• Train engineers so they become familiar with the system in development.

• Use social science principles to control the socio-political complexity.

• Implement Gaussian and power law analysis on a project problem.

• Reduce the geographical distances and time-zone discrepancies among team

members.

• Change the problem definition or approach in such possible ways that reduces

complexity of project activities.

298

• Combine and eliminate some reporting tasks and review activities.

• Clarify organizational roles and decision-making processes to best serve the

project teams while also streamline on business processes and information

systems.

299

LIST OF REFERENCES

[1] F. J. Dyson, “Is science mostly driven by ideas or by tools?” Science Magazine,
vol. 338, no. 6113, pp. 1426–1427, December 14, Washington, DC, USA: AAAS,
2014. [Online]. Available:
https://safe.menlosecurity.com/doc/docview/viewer/docNF8D7DD95FD3Bb1e00
622456a532d69f9b231c2d3056d1d48104a74fce517c5cfc8f22b085b60

[2] C. N. Calvano and P. John, “Systems engineering in an age of complexity,”
System Engineering, vol. 7, no. 1, pp. 25–34, 2004. [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=06021E51FF8187F1E3
FE8001F419CE5B?doi=10.1.1.137.8013&rep=rep1&type=pdf

[3] M. V. Arena, O. Younossi, K. Brancato, I. Blickstein, and C. A. Grammich, “A
macroscopic examination of the trends in U.S. military aircraft costs over the past
several decades,” RAND Corp. Report, 2008. [Online]. Available:
http://www.rand.org/content/dam/rand/pubs/monographs/2008/RAND_MG696.p
df

[4] O.I. Olayode, L. K. Tartibu, and M. O. Okwu, “Application of artificial
intelligence in traffic control system of non-autonomous vehicles at signalized
road intersection,” Procedia CIRP Design Conference 2020, pp. 194–200, vol. 91,
August 18, New York, NY, USA: Elsevier Science Ltd., 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2212827120308076

[5] R. N. Charette, “This car runs on code,” Feb. 1, New York, NY, USA: IEEE
Spectrum, 2009. [Online]. Available:
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

[6] T. Shale-Hester, “Driverless cars will require one billion lines of code, says JLR,”
Auto Express, April 16, Alfred Place, London: Dennis Publishing Ltd., 2019.
[Online]. Available: https://www.autoexpress.co.uk/car-news/106617/driverless-
cars-will-require-one-billion-lines-of-code-says-jlr

[7] J. Gertler, “F-35 Joint Strike Fighter (JSF) Program,” RL30563, ver. 79, May 27,
Washington, D.C., USA: Congressional Research Service, 2020. [Online].
Available: https://crsreports.congress.gov/product/pdf/RL/RL30563

[8] R. Harwood, “Meet the autonomous vehicle development 10x complexity
challenge,” ANSYS Blog, September 23, 2020. [Online]. Available:
https://www.ansys.com/zh-cn/blog/meet-autonomous-vehicle-10x-complexity?

https://safe.menlosecurity.com/doc/docview/viewer/docNF8D7DD95FD3Bb1e00622456a532d69f9b231c2d3056d1d48104a74fce517c5cfc8f22b085b60
https://safe.menlosecurity.com/doc/docview/viewer/docNF8D7DD95FD3Bb1e00622456a532d69f9b231c2d3056d1d48104a74fce517c5cfc8f22b085b60
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=06021E51FF8187F1E3FE8001F419CE5B?doi=10.1.1.137.8013&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=06021E51FF8187F1E3FE8001F419CE5B?doi=10.1.1.137.8013&rep=rep1&type=pdf
http://www.rand.org/content/dam/rand/pubs/monographs/2008/RAND_MG696.pdf
http://www.rand.org/content/dam/rand/pubs/monographs/2008/RAND_MG696.pdf
https://www.sciencedirect.com/science/article/pii/S2212827120308076
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://www.autoexpress.co.uk/car-news/106617/driverless-cars-will-require-one-billion-lines-of-code-says-jlr
https://www.autoexpress.co.uk/car-news/106617/driverless-cars-will-require-one-billion-lines-of-code-says-jlr
https://crsreports.congress.gov/product/pdf/RL/RL30563
https://www.ansys.com/zh-cn/blog/meet-autonomous-vehicle-10x-complexity

300

[9] M. Gottfredson and K. Aspinall, “Innovation versus complexity: what is too much
of a good thing?” Harvard Business Review, Boston, MA, USA: Harvard
Business Publishing, November 2005. [Online]. Available:
https://hbr.org/2005/11/innovation-versus-complexity-what-is-too-much-of-a-
good-thing?registration=success

[10] F. C. Mish (editor in chief), Webster’s Ninth New Collegiate Dictionary,
Merriam-Webster, Springfield, MA, USA, 1990.

[11] S. Wolfram, A New Kind of Science, Champaign, IL, USA: Wolfram Media, 2002

[12] E. Crawley, B. Cameron, and D. Selva, System Architecture: Strategy and
Product Development for Complex Systems, First Edition, Boston, MA, USA:
Pearson Education, 2016.

[13] S. E. Page, Diversity and Complexity, Princeton, NJ, USA: Princeton University
Press, 2011

[14] D. Baccarini, “The concept of project complexity- a review,” International
Journal of Project Management, vol. 14, no. 4, pp. 201–204, New York, NY,
USA: Elsevier Science Ltd., 1996. [Online]. Available:
http://ieg.ifs.tuwien.ac.at/~aigner/projects/planninglines/evaluation/Project_Mana
gement/papers/baccarini96complexity.pdf

[15] L. A. Vidal and F. Marle, “Understanding project complexity: implications on
project management,” Kybernetes, vol. 37, no. 8, pp. 1094–1110, Bingley, UK:
Emerald Publishing Ltd., September 2008. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01215364/document

[16] K. Remington, R. Zolin and R. Turner, “A model of project complexity:
distinguishing dimensions of complexity from severity,” Proceedings of the 9th
International Research Network of Project Management Conference, October 11–
13, Berlin, Germany, 2009. [Online]. Available:
https://eprints.qut.edu.au/29011/1/c29011.pdf

[17] B. P. Dao, “Exploring and measuring project complexity,” Ph.D. Dissertation,
Texas A&M University, College Station, TX, USA, August 2016. [Online].
Available:
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158012/DAO-
DISSERTATION-2016.pdf?sequence=1&isAllowed=y

[18] S. Page, “Understanding complexity,” The Great Courses, video lecture series
available from The Teaching Company, Chantilly, VA, USA, 2009.

[19] E. Chaisson, Cosmic Evolution: The Rise of Complexity in Nature, Cambridge,
MA, USA: Harvard University Press, 2001.

https://hbr.org/2005/11/innovation-versus-complexity-what-is-too-much-of-a-good-thing?registration=success
https://hbr.org/2005/11/innovation-versus-complexity-what-is-too-much-of-a-good-thing?registration=success
http://ieg.ifs.tuwien.ac.at/%7Eaigner/projects/planninglines/evaluation/Project_Management/papers/baccarini96complexity.pdf
http://ieg.ifs.tuwien.ac.at/%7Eaigner/projects/planninglines/evaluation/Project_Management/papers/baccarini96complexity.pdf
https://hal.archives-ouvertes.fr/hal-01215364/document
https://eprints.qut.edu.au/29011/1/c29011.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158012/DAO-DISSERTATION-2016.pdf?sequence=1&isAllowed=y
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158012/DAO-DISSERTATION-2016.pdf?sequence=1&isAllowed=y

301

[20] DARPA, “Breakthrough technologies for national security,” March 2015.
[Online]. Available: https://www.darpa.mil/attachments/DARPA2015.pdf

[21] DARPA, “Adaptive vehicle make (AVM),” 2014. [Online]. Available:
https://www.darpa.mil/program/adaptive-vehicle-make

[22] O. L. de Weck, “Fundamental of systems engineering,” Massachusetts Institute of
Technology: MIT Open Courseware 16.842, MIT, Massachusetts, USA, Dec.
2015 [Online]. Available: https://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/lecture-
notes/MTI16_842F15_Ses12_FutofSE.pdf

[23] M. R. Blackburn and S. Ray, “Reducing verification costs through practical
formal methods: A survey,” Stevens Institute of Technology, Hoboken, New
Jersey, USA, Dec. 2010. [Online]. Available: https://
www.researchgate.net/publication/303676169_Reducing_Verification_Costs_thro
ugh_Practical_Formal_Methods_A_Survey

[24] R. Valerdi, “Constructive systems engineering cost model (COSYSMO),” Ph.D.
Dissertation, University of Southern California, Los Angeles, USA, August 2005.
[Online]. Available:
https://www.researchgate.net/publication/242452004_The_constructive_systems_
engineering_cost_model_COSYSMO

[25] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying software project
risks: an international Delphi study,” Journal of Management Information
Systems, vol. 17, no. 4, pp. 5–36, Philadelphia, PA, USA: Taylor & Francis
Group, 2001. [Online]. Available:
https://www.researchgate.net/profile/Kalle_Lyytinen/publication/220591356_Iden
tifying_Software_Project_Risks_An_International_Delphi_Study/links/00b7d517
ae60719bc2000000/Identifying-Software-Project-Risks-An-International-Delphi-
Study.pdf

[26] L. Wallace, M. Keil and A. Rai, “Understanding software project risk: a cluster
analysis,” Information & Management, vol. 42, pp. 115–125, New York, NY,
USA: Elsevier Science Ltd., March 2004. [Online]. Available: http://www-
public.imtbs-tsp.eu/~gibson/Teaching/Teaching-
ReadingMaterial/WallaceKeilRai04.pdf

[27] R. Giachetti, Design of Enterprise Systems: Theory, Architecture, and Methods,
CRC Press, Boca Raton, FL, USA: Taylor and Francis Group, LLC, 2010.

https://www.darpa.mil/attachments/DARPA2015.pdf
https://www.darpa.mil/program/adaptive-vehicle-make
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/lecture-notes/MTI16_842F15_Ses12_FutofSE.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/lecture-notes/MTI16_842F15_Ses12_FutofSE.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-842-fundamentals-of-systems-engineering-fall-2015/lecture-notes/MTI16_842F15_Ses12_FutofSE.pdf
http://www.researchgate.net/publication/303676169_Reducing_Verification_Costs_through_Practical_Formal_Methods_A_Survey
http://www.researchgate.net/publication/303676169_Reducing_Verification_Costs_through_Practical_Formal_Methods_A_Survey
https://www.researchgate.net/publication/242452004_The_constructive_systems_engineering_cost_model_COSYSMO
https://www.researchgate.net/publication/242452004_The_constructive_systems_engineering_cost_model_COSYSMO
https://www.researchgate.net/profile/Kalle_Lyytinen/publication/220591356_Identifying_Software_Project_Risks_An_International_Delphi_Study/links/00b7d517ae60719bc2000000/Identifying-Software-Project-Risks-An-International-Delphi-Study.pdf
https://www.researchgate.net/profile/Kalle_Lyytinen/publication/220591356_Identifying_Software_Project_Risks_An_International_Delphi_Study/links/00b7d517ae60719bc2000000/Identifying-Software-Project-Risks-An-International-Delphi-Study.pdf
https://www.researchgate.net/profile/Kalle_Lyytinen/publication/220591356_Identifying_Software_Project_Risks_An_International_Delphi_Study/links/00b7d517ae60719bc2000000/Identifying-Software-Project-Risks-An-International-Delphi-Study.pdf
https://www.researchgate.net/profile/Kalle_Lyytinen/publication/220591356_Identifying_Software_Project_Risks_An_International_Delphi_Study/links/00b7d517ae60719bc2000000/Identifying-Software-Project-Risks-An-International-Delphi-Study.pdf
http://www-public.imtbs-tsp.eu/%7Egibson/Teaching/Teaching-ReadingMaterial/WallaceKeilRai04.pdf
http://www-public.imtbs-tsp.eu/%7Egibson/Teaching/Teaching-ReadingMaterial/WallaceKeilRai04.pdf
http://www-public.imtbs-tsp.eu/%7Egibson/Teaching/Teaching-ReadingMaterial/WallaceKeilRai04.pdf

302

[28] R. E. Giachetti, “Understanding interdependence in enterprise systems: A model
and measurement formalism,” Department of Industrial & Systems Engineering,
Florida International University, Miami, Florida, USA, September 2006. [Online].
Available:
https://www.researchgate.net/publication/225229234_Understanding_Interdepend
ence_in_Enterprise_Systems_A_Model_and_Measurement_Formalism

[29] R. C. Harney, “Introduction to complexity and complex systems engineering,”
class notes for Complex Systems Engineering, Department of Systems
Engineering, Naval Postgraduate School, Monterey, CA, USA, fall 2017.

[30] A. M. Rustad, K. G. Hanssen, “Machine learning in control systems: an overview
of the state of the art,” Artificial Intelligence XXXV, pp. 250–265, 38th SGAI
International Conference on Artificial Intelligence, December 11–13, Cambridge,
UK, 2018

[31] The Mathworks website. “What is deep learning?” [Online]. Available:
https://www.mathworks.com/discovery/deep-
learning.html#:~:text=Deep%20learning%20is%20a%20machine,a%20pedestrian
%20from%20a%20lamppost.

[32] Wikipedia. “Likert scale.” [Online]. Available:
https://en.wikipedia.org/wiki/Likert_scale

[33] N. Subramanian and L. Chung, “Metrics for software adaptivity,” Department of
Computer Science, University of Texas, Dallas, Texas, USA. [Online]. Available:
https://personal.utdallas.edu/~chung/ftp/sqm.pdf

[34] CANES, “What are non-equilibrium systems,” King’s College, London, UK.
[Online]. Available: https://www.kcl.ac.uk/noneqsys/about-us/what-are-non-
equilibrium-systems

[35] J. B. Clark and D. R. Jacques, “Practical measurement of complexity in dynamic
systems,” New Challenges in Systems Engineering and Architecting Conference
on Systems Engineering Research (CSER), St. Louis Missouri, USA, March
2012. [Online]. Available:
https://www.researchgate.net/publication/257719321_Practical_measurement_of_
complexity_in_dynamic_systems

[36] Investopedia. “Definition of nonlinearity.” [Online]. Available:
https://www.investopedia.com/terms/n/nonlinearity.asp

[37] Wikipedia. “Definition of nonlinear systems.” [Online]. Available:
https://en.wikipedia.org/wiki/Nonlinear_system

[38] S. H. Strogatz, Nonlinear Dynamics and Chaos, Second Edition, Boulder, CO,
USA: Westview Press, 2015.

https://www.researchgate.net/publication/225229234_Understanding_Interdependence_in_Enterprise_Systems_A_Model_and_Measurement_Formalism
https://www.researchgate.net/publication/225229234_Understanding_Interdependence_in_Enterprise_Systems_A_Model_and_Measurement_Formalism
https://www.mathworks.com/discovery/deep-learning.html#:%7E:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost.
https://www.mathworks.com/discovery/deep-learning.html#:%7E:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost.
https://www.mathworks.com/discovery/deep-learning.html#:%7E:text=Deep%20learning%20is%20a%20machine,a%20pedestrian%20from%20a%20lamppost.
https://en.wikipedia.org/wiki/Likert_scale
https://personal.utdallas.edu/%7Echung/ftp/sqm.pdf
https://www.kcl.ac.uk/noneqsys/about-us/what-are-non-equilibrium-systems
https://www.kcl.ac.uk/noneqsys/about-us/what-are-non-equilibrium-systems
https://www.researchgate.net/publication/257719321_Practical_measurement_of_complexity_in_dynamic_systems
https://www.researchgate.net/publication/257719321_Practical_measurement_of_complexity_in_dynamic_systems
https://www.investopedia.com/terms/n/nonlinearity.asp
https://en.wikipedia.org/wiki/Nonlinear_system

303

[39] H. Lee, V. Padmanabhan, and S. Whang, “Information distortion in a supply
chain: The Bullwhip effect,” Management Science, InformsPubsOnline,
Catonsville, MD, USA, April 1997. [Online]. Available:
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.43.4.546

[40] S. A. Sheard, “Assessing the impact of complexity attributes on system
development project outcomes,” p. 10, Ph.D. Dissertation, Stevens Institute of
Technology, Hoboken, NJ, USA, 2012.

[41] L. Hoogduin, “A review of common characteristics of complex systems,”
Decision Making in a Complex and Uncertain World, an online course,
University of Groningen,” Groningen, Netherlands, 2020. [Online]. Available:
https://www.futurelearn.com/courses/complexity-and-uncertainty/0/steps/1836

[42] CAGW Staff, “California’s $100 billion nightmare high-speed rail project,”
Washington, DC, USA: CAGW, July 1, 2020. [Online]. Available:
https://www.cagw.org/thewastewatcher/californias-100-billion-nightmare-high-
speed-rail-project

[43] R. Pallardy, “Deepwater horizon oil spill,” Chicago, IL, USA: Britannica Group,
July 9, 2010. [Online]. Available: https://www.britannica.com/event/Deepwater-
Horizon-oil-spill

[44] P. Checkland, Systems Thinking, Systems Practice, Chichester, UK: J. Wiley,
1981.

[45] J. H. Holland, Emergence: From Chaos to Orders, New York, NY, USA: Oxford
University Press, 2000.

[46] J. H. Miller and S. E. Page, Complex Adaptive Systems, Princeton, NJ, USA:
Princeton University Press, 2007, p. 3, p. 35 & pp. 40–43.

[47] Dictionary. “Definition of limited predictability.” [Online]. Available:
https://www.dictionary.com/browse/predictability

[48] R. E. A. van Emmerik, S. W. Ducharme, A. C. Amado, and J. Hamill,
“Comparing dynamical systems concepts and techniques for biomechanical
analysis,” Journal of Sport and Health Science, vol. 5, issue 1, pp. 3–13, New
York, NY, USA: Elsevier Science Ltd., March 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2095254616000156

[49] Magazine of the University of Utah, “A New Hope.” [Online]. Available:
https://magazine.utah.edu/issues/winter-2020/a-new-hope/

https://pubsonline.informs.org/doi/abs/10.1287/mnsc.43.4.546
https://www.futurelearn.com/courses/complexity-and-uncertainty/0/steps/1836
https://www.cagw.org/thewastewatcher/californias-100-billion-nightmare-high-speed-rail-project
https://www.cagw.org/thewastewatcher/californias-100-billion-nightmare-high-speed-rail-project
https://www.britannica.com/event/Deepwater-Horizon-oil-spill
https://www.britannica.com/event/Deepwater-Horizon-oil-spill
https://www.dictionary.com/browse/predictability
https://www.sciencedirect.com/science/article/pii/S2095254616000156
https://magazine.utah.edu/issues/winter-2020/a-new-hope/

304

[50] F. Heylighen, edited by M. Bates and M. N. Maack, “Complexity and self-
organization,” Free University of Brussels in Belgium, Philadelphia, PA, USA:
Taylor & Francis Group, 2008. [Online]. Available:
http://pespmc1.vub.ac.be/Papers/ELIS-complexity.pdf

[51] N. Raichman, T. Gabay, Y. Katsir, Y. Shapira, and E. Ben-Jacob, “Engineered
self-organization in natural and man-made systems,” School of Physics and
Astronomy, Tel-Aviv University, Tel-Aviv, Israel: January 2004. [Online].
Available: https://www.academia.edu/12230502/Engineered_Self-
Organization_In_Natural_and_Man-Made_Systems

[52] P. Bak, How Nature Works: The Science of Self-Organized Criticality, New York,
NY, USA: Copernicus Press, 1996.

[53] Wikipedia. “Definition of uncertainty.” [Online]. Available:
https://en.wikipedia.org/wiki/Uncertainty

[54] N. P. Suh, Axiomatic Design: Advances and Applications, New York, NY, USA:
Oxford University Press, 2001.

[55] M. Bordo and A. Redish, “Putting the ‘system’ in the international monetary
system,” VOX CEPR policy portal, June 2013. [Online]. Available:
https://voxeu.org/article/putting-system-international-monetary-system

[56] Infoplease. “International Finance: The international monetary system.” [Online].
Available: https://www.infoplease.com/homework-help/social-
studies/international-finance-international-monetary-system

[57] J. R. San Cristóbal, L. Carral, E. Diaz, J. A. Fraguela, and G. Iglesias,
“Complexity and project management: a general overview,” vol. 2018, London,
UK: Hindawi Ltd., October 2018. [Online]. Available:
https://www.hindawi.com/journals/complexity/2018/4891286/

[58] INCOSE Complex Systems Working Group, “A complexity primer for systems
engineers,” INCOSE, July 2015. [Online]. Available:
https://www.aiaa.org/uploadedFiles/Events/Complexity%20Primer%20for%20SE
%20July%202015.pdf

[59] T. Healy, “The unanticipated consequences of technology,” Santa Clara
University, CA, USA: Markkula Center for Applied Ethics, April 6, 2005.
[Online]. Available: https://www.scu.edu/ethics/focus-areas/technology-
ethics/resources/the-unanticipated-consequences-of-technology/

[60] J. Horgan, “From complexity to perplexity,” Scientific American, June 1995.
[Online]. Available:
http://www2.econ.iastate.edu/tesfatsi/hogan.complexperplex.html

http://pespmc1.vub.ac.be/Papers/ELIS-complexity.pdf
https://www.academia.edu/12230502/Engineered_Self-Organization_In_Natural_and_Man-Made_Systems
https://www.academia.edu/12230502/Engineered_Self-Organization_In_Natural_and_Man-Made_Systems
https://en.wikipedia.org/wiki/Uncertainty
https://voxeu.org/article/putting-system-international-monetary-system
https://www.infoplease.com/homework-help/social-studies/international-finance-international-monetary-system
https://www.infoplease.com/homework-help/social-studies/international-finance-international-monetary-system
https://www.hindawi.com/journals/complexity/2018/4891286/
https://www.aiaa.org/uploadedFiles/Events/Complexity%20Primer%20for%20SE%20July%202015.pdf
https://www.aiaa.org/uploadedFiles/Events/Complexity%20Primer%20for%20SE%20July%202015.pdf
https://www.scu.edu/ethics/focus-areas/technology-ethics/resources/the-unanticipated-consequences-of-technology/
https://www.scu.edu/ethics/focus-areas/technology-ethics/resources/the-unanticipated-consequences-of-technology/
http://www.cs.cmu.edu/%7Espot/nab/perplexity.html
http://www.cs.cmu.edu/%7Espot/nab/perplexity.html

305

[61] O. Maimon and D. Braha, “Communications: a proof of the complexity of
design,” Kybernetes, vol. 21, no. 7, pp. 59–62, Bingley, UK: Emerald Publishing
Ltd., July 1992.

[62] D. Braha and O. Maimon, “On the complexity of the design synthesis problem,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 26, no. 1, 1996.

[63] D. Braha and Y. Bar-Yam, “The structure and dynamics of complex product
design in complex engineered systems: A new paradigm in complex engineered
systems,” Cambridge, MA, USA: Springer, NECSI, 2006, pp. 40–71.

[64] J. R.A. Maier and G. M. Fadel, “Understanding the complexity of design in
complex engineered systems: A new paradigm in complex engineered systems,”
Cambridge, MA, USA: Springer, NECSI, 2006, pp. 122–140.

[65] S. A. Sheard and D. A. Mostashari, “A complexity typology for systems
engineering,” Hoboken, NJ, USA: Stevens Institute of Technology, 2010.
[Online]. Available:
https://www.researchgate.net/publication/228741550_A_Complexity_Typology_f
or_Systems_Engineering

[66] R. Stevens, “Engineering enterprise systems: challenges and prospects,” McLean,
VA, USA: The MITRE Corporation, 2006. [Online]. Available:
https://www.mitre.org/sites/default/files/pdf/06_0342.pdf

[67] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala, “A model-based
method for organizing tasks in product development,” MIT, Research in
Engineering Design, vol. 6, issue 1, pp. 1–13, New York, NY, USA: Springer
March 1994. [Online]. Available:
https://dspace.mit.edu/bitstream/handle/1721.1/2468/swp-3569-
29894176.pdf?sequence=1

[68] S. H. Strogatz, Nonlinear Dynamics and Chaos, Second Edition, Boulder, CO,
USA: Westview Press, 2015.

[69] M. E. J. Newman, Networks: An Introduction, Oxford, UK: Oxford University
Press, 2010.

[70] A. L. Barabási, Linked, New York, NY, USA: Penguin Books, 2003.

[71] P. Erdős, and A. Renyi, “On random graphs,” Publicationes Mathematicae. vol.
6, pp. 290–297, University of Debrecen, Debrecen, Hungary, 1959.

[72] B. Bollobas, Random Graphs, second edition, New York, NY, USA: Cambridge
University Press, 2001

https://www.researchgate.net/publication/228741550_A_Complexity_Typology_for_Systems_Engineering
https://www.researchgate.net/publication/228741550_A_Complexity_Typology_for_Systems_Engineering
https://www.mitre.org/sites/default/files/pdf/06_0342.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/2468/swp-3569-29894176.pdf?sequence=1
https://dspace.mit.edu/bitstream/handle/1721.1/2468/swp-3569-29894176.pdf?sequence=1

306

[73] M. J. Jeger, M. Pautasso, O. Holdenrieder, M. W. Shaw, “Modelling disease
spread and control in networks: implications for plant sciences,” New Phytologist,
vol. 174, issue 2, pp. 279–297, April 2007. [Online]. Available:
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2007.02028.x

[74] D. J. Watts, “Small worlds,” Princeton, NJ, USA: Princeton University Press,
2003.

[75] D. J. Watts and S. H. Strogatz, “Collective dynamics of small world networks,”
Nature, vol. 393, p. 440, June 1998.

[76] G. Caldarelli, Scaled-Free Networks, Oxford, UK: Oxford University Press, 2007

[77] M. Faloutsos, P. Faloutsos, P. and C. Faloutsos, “On power law relationships of
the internet topology,” Computer Communications Review, vol. 29, no. 251, 1999.

[78] W. Weaver, “Science and complexity,” American Scientist, vol. 36, pp. 536–544,
Research Triangle Park, NC, USA: Sigma Xi, The Scientific Research Honor
Society, 1948. [Online]. Available:
http://people.physics.anu.edu.au/~tas110/Teaching/Lectures/L1/Material/WEAVE
R1947.pdf

[79] A. A. Minai, D. Braha and Y. Bar-Yam, “Complex engineered systems: a new
paradigm in complex engineered systems,” Cambridge, MA, USA: Springer,
NECSI, pp. 1–21, pp. 224–232 & pp. 234–235, 2006.

[80] A. Clauset, “Inference, models and simulation for complex systems,” lecture
notes, Computer Science Department, Santa Fe Institute, Santa Fe, NM, USA,
summer 2011. [Online]. Available:
http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001_2011_L2.pdf

[81] M. Mitchell, Complexity: A Guided Tour, New York, NY, USA: Oxford
University Press, 2009.

[82] C. Weber, “What is ‘complexity’?” Proceedings of the 15th International
Conference on Engineering Design (ICED 05), August 15–18, Melbourne,
Australia, 2005. [Online]. Available:
https://www.designsociety.org/publication/23103/WHAT+IS+%E2%80%9CCO
MPLEXITY%E2%80%9D%3F

[83] T. M. Williams, “The need for new paradigms for complex projects,”
International Journal of Project Management, vol. 17, no. 5, pp. 269–273, New
York, NY, USA: Elsevier Science Ltd and IPMA, 1999. [Online]. Available:
http://ieg.ifs.tuwien.ac.at/~aigner/projects/planninglines/evaluation/Project_Mana
gement/papers/williams99complexity.pdf

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/j.1469-8137.2007.02028.x
http://people.physics.anu.edu.au/%7Etas110/Teaching/Lectures/L1/Material/WEAVER1947.pdf
http://people.physics.anu.edu.au/%7Etas110/Teaching/Lectures/L1/Material/WEAVER1947.pdf
http://tuvalu.santafe.edu/%7Eaaronc/courses/7000/csci7000-001_2011_L2.pdf
https://www.designsociety.org/publication/23103/WHAT+IS+
https://www.designsociety.org/publication/23103/WHAT+IS+
http://ieg.ifs.tuwien.ac.at/%7Eaigner/projects/planninglines/evaluation/Project_Management/papers/williams99complexity.pdf
http://ieg.ifs.tuwien.ac.at/%7Eaigner/projects/planninglines/evaluation/Project_Management/papers/williams99complexity.pdf

307

[84] K. Remington and J. Pollack, Tools for Complex Projects, Oxford, UK:
Routledge, February 2008.

[85] G. Lee, W. Xia, “Development of a measure to assess the complexity of
information systems development projects,” Twenty-Third International
Conference on Information Systems, 2002.
http://ieg.ifs.tuwien.ac.at/~aigner/projects/planninglines/evaluation/Project_Mana
gement/papers/0211_100102.pdf Accessed on June 21, 2019.

[86] B. P. Dao, “Exploring and measuring project complexity,” Ph.D. Dissertation,
Texas A&M University, August 2016.
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158012/DAO-
DISSERTATION-2016.pdf?sequence=1&isAllowed=y Accessed on June 21,
2019.

[87] M. E. Conway, “How do committees invent?” Datamation, Nashville, TN, USA:
TechnologyAdvice, April 1968. [Online]. Available:
https://www.melconway.com/Home/pdf/committees.pdf

[88] R. J. Heaslip, “Managing organizational complexity: how to optimize the
governance of programs and projects to improve decision making,” PMI White
Papers, April 2015. [Online]. Available:
https://www.pmi.org/learning/library/managing-organizational-complexity-11139

[89] O. U. Ugbomhe and A. B. Dirisu, “Organizational structure: dimensions,
determinants and managerial implication,” International Journal of Economic
Development Research and Investment, vol. 2, no. 2, Ikot Ekpene, Akwa Ibom
State, Nigeria: International Centre for Integrated Development Research, August
2011. [Online]. Available:
http://www.icidr.org/ijedri_vol2no2_august2011/Organizational%20Structure%2
0Dimensions,%20Determinants%20and%20Managerial%20Implication.pdf

[90] S. Lloyd, “Measures of complexity: A non-exhaustive list,” IEEE Control
Systems Magazine, August 2001. [Online]. Available:
http://csc.ucdavis.edu/~cmg/Group/readings/SL-MeasOfComplexity.pdf

[91] W. Weaver and C. E. Shannon, “Recent contributions to the mathematical theory
of communication,” pp. 4–9, September 1949. [Online]. Available:
https://pdfs.semanticscholar.org/c4ee/686f5dd14ac83c4b10a8bce9a62341ea0a3a.
pdf

[92] M. Gell-Mann and S. Lloyd, “Information measures, effective complexity, and
total information,” Complexity, vol. 2, issue 1, pp. 44–52, September 1996.

[93] B.M. Arteta and R. E. Giachetti, “A measure of agility as the complexity of the
enterprise system,” Robotics and Computer-Integrated Manufacturing, New
York, NY, USA: Elsevier Science Ltd., 2004.

http://ieg.ifs.tuwien.ac.at/%7Eaigner/projects/planninglines/evaluation/Project_Management/papers/0211_100102.pdf
http://ieg.ifs.tuwien.ac.at/%7Eaigner/projects/planninglines/evaluation/Project_Management/papers/0211_100102.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158012/DAO-DISSERTATION-2016.pdf?sequence=1&isAllowed=y
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158012/DAO-DISSERTATION-2016.pdf?sequence=1&isAllowed=y
https://www.melconway.com/Home/pdf/committees.pdf
https://www.pmi.org/learning/library/managing-organizational-complexity-11139
http://www.icidr.org/ijedri_vol2no2_august2011/Organizational%20Structure%20Dimensions,%20Determinants%20and%20Managerial%20Implication.pdf
http://www.icidr.org/ijedri_vol2no2_august2011/Organizational%20Structure%20Dimensions,%20Determinants%20and%20Managerial%20Implication.pdf
http://csc.ucdavis.edu/%7Ecmg/Group/readings/SL-MeasOfComplexity.pdf
https://pdfs.semanticscholar.org/c4ee/686f5dd14ac83c4b10a8bce9a62341ea0a3a.pdf
https://pdfs.semanticscholar.org/c4ee/686f5dd14ac83c4b10a8bce9a62341ea0a3a.pdf

308

[94] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Problems of Information Transmission, vol. 1, no. 1, pp. 3–11,
1965. [Online]. Available:
https://www.tandfonline.com/doi/pdf/10.1080/00207166808803030

[95] DARPA “Historical schedule trends with complexity.” [Online]. Available:
https://media.springernature.com/original/springer-
static/image/chp:10.1007%2F978-3-319-38756-
7_9/MediaObjects/327865_1_En_9_Fig10_HTML.gif

[96] IFPUG. “A. Albrecht of IBM, function point analysis.” [Online]. Available:
https://www.ifpug.org/about-function-point-analysis/

[97] International Function Point Users Group (IFPUG), “Function point counting
practices manual 4.1,” 1999. [Online]. Available:
http://csevgi.bilkent.edu.tr/courses/ctis359/IFPUG_Counting_Practices_Manual_
4.1.pdf

[98] Parvathy, “Function point analysis – introduction and fundamentals,” January 09,
New York, NY, USA: Fingent, 2020. [Online]. Available:
https://www.fingent.com/blog/function-point-analysis-introduction-and-
fundamentals/

[99] K. Sinha, “Structural complexity and its implications for design of cyber-physical
systems,” Ph.D. Dissertation, Massachusetts Institute of Technology,
Massachusetts, USA, 2014.

[100] H. A. Simon, “The architecture of complexity,” Proceedings of the American
Philosophical Society, vol. 106, issue 6, pp. 467–482, December 1962. [Online].
Available:
http://www2.econ.iastate.edu/tesfatsi/ArchitectureOfComplexity.HSimon1962.pd
f

[101] J. E. McCann and D. L. Ferry, “An approach to assessing and managing inter-unit
interdependence,” Academy of Management Review, vol. 4, pp. 113–119, 1979.

[102] B. Victor and R. S. Blackburn, “Interdependence: an alternative
conceptualization,” Academy of Management Review, vol. 12, pp. 486–498, 1987.
[Online]. Available:
https://www.researchgate.net/publication/242546051_Interdependence_An_Alter
native_Conceptualization

[103] S. Lloyd and H. Pagels, “Complexity as thermodynamic depth,” Annals of
Physics, vol. 188, pp. 186–213, November 1988.

[104] C. Perrow, Normal Accidents: Living with High-Risk Technologies, Princeton, NJ,
USA: Princeton University Press, 1999, pp. 62–100.

https://www.tandfonline.com/doi/pdf/10.1080/00207166808803030
https://media.springernature.com/original/springer-static/image/chp:10.1007%2F978-3-319-38756-7_9/MediaObjects/327865_1_En_9_Fig10_HTML.gif
https://media.springernature.com/original/springer-static/image/chp:10.1007%2F978-3-319-38756-7_9/MediaObjects/327865_1_En_9_Fig10_HTML.gif
https://media.springernature.com/original/springer-static/image/chp:10.1007%2F978-3-319-38756-7_9/MediaObjects/327865_1_En_9_Fig10_HTML.gif
https://www.ifpug.org/about-function-point-analysis/
http://csevgi.bilkent.edu.tr/courses/ctis359/IFPUG_Counting_Practices_Manual_4.1.pdf
http://csevgi.bilkent.edu.tr/courses/ctis359/IFPUG_Counting_Practices_Manual_4.1.pdf
https://www.fingent.com/blog/function-point-analysis-introduction-and-fundamentals/
https://www.fingent.com/blog/function-point-analysis-introduction-and-fundamentals/
http://www2.econ.iastate.edu/tesfatsi/ArchitectureOfComplexity.HSimon1962.pdf
http://www2.econ.iastate.edu/tesfatsi/ArchitectureOfComplexity.HSimon1962.pdf
https://www.researchgate.net/publication/242546051_Interdependence_An_Alternative_Conceptualization
https://www.researchgate.net/publication/242546051_Interdependence_An_Alternative_Conceptualization

309

[105] R. Lopez-Ruiz, H. Mancini, and X. Calbet, “A statistical measure of complexity,”
Physics Letters A, vol. 209, pp. 321–326, 1995. [Online]. Available:
https://arxiv.org/pdf/1009.1498.pdf

[106] SEJ, “What are Google algorithms?” Boca Raton, FL, USA: Search Engine
Journal, June 15, 2021. [Online]. Available:
https://www.searchenginejournal.com/google-algorithm-history/

[107] Wikipedia. “PageRank.” [Online]. Available:
https://en.wikipedia.org/wiki/PageRank

[108] A. Thevenot, “Particle swarm optimization (PSO) visually explained,” Towards
Data Science, Dec. 21, 2020. [Online]. Available:
https://towardsdatascience.com/particle-swarm-optimization-visually-explained-
46289eeb2e14

[109] M. G. Alonso and P. Duysinx, “Particle swarm optimization (PSO): an alternative
method for composite optimization,” 10th World Congress on Structural and
Multidisciplinary Optimization, May 19–24, 2013, Orlando, FL, USA. [Online].
Available: https://mae.ufl.edu/mdo/Papers/5334.pdf

[110] C. H. Bennett, “Logical depth and physical complexity,” in The Universal Turing
Machine: A Half-Century Survey by R. Herken, New York, NY, USA: Oxford
University Press, 1988, pp. 227–257. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4331&rep=rep1&ty
pe=pdf

[111] F. Allgöwer, “Definition and computation of a nonlinearity measure,” IFAC
Nonlinear Control Systems Design, Tahoe City, CA, USA, 1995. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1474667017468406

[112] Wikipedia. “Definition of multimodality.” [Online]. Available:
https://en.wikipedia.org/wiki/Multimodality

[113] A. V. Deshmukh, J. J. Talavage, and M. M. Barash, “Complexity in
manufacturing systems. Part 1: analysis of static complexity,” IIE Transactions,
pp. 645–655, July 1998.

[114] G. Frizelle and E. Woodcock, “Measuring complexity as an aid to develop
operational strategy,” International Journal of Operation & Production
Management, vol. 15, no. 5, pp. 26–39, May 1995.

[115] S. Sivadasan, J. Efstathiou, G. Frizelle, R. Shirazi, and A. Calinescu, “An
information-theoretic methodology for measuring the operational complexity of
supplier–customer systems,” International Journal of Operation & Production
Management, vol. 22, no. 1, pp. 80–102, 2002.

https://arxiv.org/pdf/1009.1498.pdf
https://www.searchenginejournal.com/google-algorithm-history/
https://en.wikipedia.org/wiki/PageRank
https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14
https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14
https://mae.ufl.edu/mdo/Papers/5334.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4331&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4331&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/pii/S1474667017468406
https://en.wikipedia.org/wiki/Multimodality

310

[116] M. Meyer and A. Lehnerd, The Power of Product Platforms, Florence, MA, USA:
Free Press, March 1997.

[117] L. Minati et al., “Connectivity influences on nonlinear dynamics in weakly-
synchronized networks: insights from Rössler systems, electronic chaotic
oscillators, model and biological neurons,” IEEE Access, vol. 7, pp. 174793-
174821, New York, NY, USA: IEEE, December 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8918231/

[118] M. Bailey, R. Cao, T. Kuchler, J. Stroebel, and A. Wong, “Social connectedness:
measurement, determinants, and effects,” Journal of Economic Perspectives, vol.
32, number 3, pp. 259–280, 2018. [Online]. Available:
http://pages.stern.nyu.edu/~jstroebe/PDF/JEP_SCI.pdf

[119] T. J. Allen, “Managing the flow of technology: technology transfer and the
dissemination of technological information within the R&D organization,”
Cambridge, MA, USA: MIT Press, 1984.

[120] M. Greenwood-Nimmo, V. H. Nguyen, and Y. Shin, “Measuring connectedness
of the global economy,” Department of Economics, University of Melbourne,
Melbourne, Australia, January 2015. [Online]. Available:
http://www.greenwoodeconomics.com/(MG4)GNS_GC.pdf

[121] M. M. Danziger, A. Bashan, Y. Berezin, L. Shekhtman, and S. Havlin, “An
introduction to interdependent networks,” International Conference on Nonlinear
Dynamics of Electronic Systems, Communications in Computer and Information
Science, vol 438. pp. 189–202, Cham, Switzerland: Springer International
Publishing, July 2014. [Online]. Available:
https://www.researchgate.net/publication/278712957_An_Introduction_to_Interde
pendent_Networks

[122] J. F. Amaral J. Dias, and J. C. Lopes, “Complexity as interrelatedness: an input-
output approach,” EcoMod/IIOA Conference: Input-Output and General
Equilibrium (Data, Modeling and Policy Analysis) September 2–4, Brussels,
Belgium, 2004. [Online]. Available:
https://www.researchgate.net/publication/228430598_Complexity_as_Interrelated
ness_an_Input-Output_Approach

[123] J. C. Domercant, and D. N. Maviris, “Measuring the architectural complexity of
military systems-of-systems,” Aerospace Systems Design Laboratory, Georgia
Institute of Technology, Atlanta, GA, USA, Dec. 2010. [Online]. Available:
https://ieeexplore-ieee-
org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=5747653

[124] W. R. Ashby, “An introduction to cybernetics,” Second Impression, London, UK:
Chapman & Hall Ltd., 1957. [Online]. Available:
http://pespmc1.vub.ac.be/books/IntroCyb.pdf

https://ieeexplore.ieee.org/document/8918231/
http://pages.stern.nyu.edu/%7Ejstroebe/PDF/JEP_SCI.pdf
http://www.greenwoodeconomics.com/(MG4)GNS_GC.pdf
https://www.researchgate.net/publication/278712957_An_Introduction_to_Interdependent_Networks
https://www.researchgate.net/publication/278712957_An_Introduction_to_Interdependent_Networks
https://www.researchgate.net/publication/228430598_Complexity_as_Interrelatedness_an_Input-Output_Approach
https://www.researchgate.net/publication/228430598_Complexity_as_Interrelatedness_an_Input-Output_Approach
https://ieeexplore-ieee-org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=5747653
https://ieeexplore-ieee-org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=5747653
http://pespmc1.vub.ac.be/books/IntroCyb.pdf

311

[125] T. Broekel, “Using structural diversity to measure the complexity of
technologies,” PLOS One Journal, San Francisco, CA, USA: PLOS, May 2019.
[Online]. Available:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216856

[126] S. Chan, “Complex adaptive systems,” Research Seminar in Engineering
Systems, November 2001. [Online]. Available:
http://web.mit.edu/esd.83/www/notebook/Complex%20Adaptive%20Systems.pdf

[127] A. Siddiqa, M. A. Shah, H. A. Khattak, A. Akhunzada, I. Ali, Z. B. Razak, and A.
Gani, “Social internet of vehicles: complexity, adaptivity, issues and beyond,”
IEEE Access, New York, NY, USA: IEEE, Nov. 2018. [Online]. Available:
https://ieeexplore-ieee-
org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=8478269

[128] M. Tamersoy, E. E. Ekinci, R. C. Erdur, and O. Dikenelli, “A requirements model
for adaptive multi-organizational systems,” 11th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, Washington, DC, USA: IEEE
Computer Society, 2017. [Online]. Available: https://ieeexplore-ieee-
org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=8064028

[129] “Defense acquisitions: Stronger management practices are needed to improve
DOD’s software-intensive weapon acquisitions,” Highlights of GAO-04-393, a
report to the Committee on Armed Services, U.S. Senate, March 2004. [Online].
Available: https://www.govinfo.gov/content/pkg/GAOREPORTS-GAO-04-
393/html/GAOREPORTS-GAO-04-393.htm

[130] “Weapon systems annual assessment: Limited use of knowledge-based practices
continues to undercut DOD’s investments,” GAO-19-336SP, a report to
Congressional Committees, May 2019. [Online]. Available:
https://www.gao.gov/assets/700/698933.pdf

[131] K. B. Hass and L. B. Lindbergh, “The bottom line on project complexity:
applying a new complexity model,” PMI Global Congress, Newtown Square, PA,
USA: Project Management Institute, October 2010. [Online]. Available:
https://www.pmi.org/learning/library/project-complexity-model-competency-
standard-6586

[132] E. Oviedo, “Control flow, data flow and program complexity,” Proceedings of the
IEEE COMPSAC, pp. 146–152, 1980.

[133] J. K. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M.A. Adler,
“Software complexity measurement,” vol. 29, no. 11, Communication of the
ACM, New York, NY, USA, November 1986. [Online]. Available:
http://sunnyday.mit.edu/16.355/kearney.pdf

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216856
http://web.mit.edu/esd.83/www/notebook/Complex%20Adaptive%20Systems.pdf
https://ieeexplore-ieee-org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=8478269
https://ieeexplore-ieee-org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=8478269
https://ieeexplore-ieee-org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=8064028
https://ieeexplore-ieee-org.libproxy.nps.edu/stamp/stamp.jsp?tp=&arnumber=8064028
https://www.govinfo.gov/content/pkg/GAOREPORTS-GAO-04-393/html/GAOREPORTS-GAO-04-393.htm
https://www.govinfo.gov/content/pkg/GAOREPORTS-GAO-04-393/html/GAOREPORTS-GAO-04-393.htm
https://www.gao.gov/assets/700/698933.pdf
https://www.pmi.org/learning/library/project-complexity-model-competency-standard-6586
https://www.pmi.org/learning/library/project-complexity-model-competency-standard-6586
http://sunnyday.mit.edu/16.355/kearney.pdf

312

[134] Wikipedia. “Sources line of code.” [Online]. Available:
https://en.wikipedia.org/wiki/Source_lines_of_code

[135] N. Arshad, “Software metrics,” LUMS, Lahore, Pakistan. [Online]. Available:
http://suraj.lums.edu.pk/~cs563/metrics.pdf

[136] A. H. Watson and T. J. McCabe, “Structured testing: a testing methodology using
the cyclomatic complexity metric,” p. 10, pp. 15–33, p. 96, September 1996.
[Online]. Available: http://mccabe.com/pdf/mccabe-nist235r.pdf

[137] Sourceforge. “Eclipse metrics plugin.” [Online]. Available: http://eclipse-
metrics.sourceforge.net/

[138] Github. “ReSharper plugin.” [Online]. Available:
https://github.com/JetBrains/resharper-cyclomatic-complexity

[139] M. H. Halstead, Elements of Software Science, Rochester, NY, USA: Elsevier
North-Holland, 1977.

[140] McCabe. “McCabe software tools.” [Online]. Available:
http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf

[141] S. Henry and D. Kafura, The evaluation of software systems’ structure using
quantitative software metrics, software: Practice and experience, vol. 14, issue 6,
pp. 561–573, John Wiley & Sons, June 1984. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380140606

[142] S. Henry, “Information flow metrics for the evaluation of operating systems’
structure,” pp. 64–66, pp. 92–94, PhD. Dissertation, Iowa State University, Ames,
IA, USA, 1979. [Online]. Available:
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=8212&context=rtd

[143] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”
Sloan School of Management, MIT, Massachusetts, USA, pp. 12–27, December
1993. [Online]. Available: http://www.eso.org/~tcsmgr/oowg-
forum/TechMeetings/Articles/OOMetrics.pdf

[144] R. Shatnawi and W. Li, “The effectiveness of software metrics in identifying
error-prone classes in post-release software evolution process,” Journal of
Systems and Software, vol. 81, no. 11, pp. 1868–1882, January 2008. [Online].
Available:
https://www.academia.edu/29908210/The_effectiveness_of_software_metrics_in_
identifying_error-prone_classes_in_post-release_software_evolution_process

https://en.wikipedia.org/wiki/Source_lines_of_code
http://suraj.lums.edu.pk/%7Ecs563/metrics.pdf
http://mccabe.com/pdf/mccabe-nist235r.pdf
http://eclipse-metrics.sourceforge.net/
http://eclipse-metrics.sourceforge.net/
https://github.com/JetBrains/resharper-cyclomatic-complexity
http://www.mccabe.com/pdf/McCabe%20IQ%20Metrics.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380140606
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=8212&context=rtd
http://www.eso.org/%7Etcsmgr/oowg-forum/TechMeetings/Articles/OOMetrics.pdf
http://www.eso.org/%7Etcsmgr/oowg-forum/TechMeetings/Articles/OOMetrics.pdf
https://www.academia.edu/29908210/The_effectiveness_of_software_metrics_in_identifying_error-prone_classes_in_post-release_software_evolution_process
https://www.academia.edu/29908210/The_effectiveness_of_software_metrics_in_identifying_error-prone_classes_in_post-release_software_evolution_process

313

[145] H. A. Sahraoui, R. Godin and T. Miceli, “Can metrics help to bridge the gap
between the improvement of OO design quality and its automation?” Proceedings
of 16th IEEE International Conference on Software Maintenance, 2000. [Online].
Available: https://www.iro.umontreal.ca/~sahraouh/papers/ICSM00.pdf

[146] E. E. Ogheneovo, "On the relationship between software complexity and
maintenance costs," Journal of Computer and Communications, vol. 2, no. 14,
Nov. 21, 2014. [Online]. Available: https://www.semanticscholar.org/paper/On-
the-Relationship-between-Software-Complexity-and-
Ogheneovo/84a809cb18443457eb91e175f3bc42fa240c4d4f

[147] Y. Shi and S. Xu, "A new method for measurement and reduction of software
complexity," Tsinghua Science and Technology, vol. 12, no. S1, pp. 212-216, July
2007, New York, NY, USA: IEEE. [Online]. Available: https://ieeexplore-ieee-
org.libproxy.nps.edu/document/6074053

[148] T. A. Khalid, E. Yeoh, “Early cost estimation of software reworks using fuzzy
requirement-based model,” 2017 International Conference on Communication,
Control, Computing and Electronic Engineering (ICCCCEE), January 16–18,
2017.

[149] R. C. Martin, Agile Development: Principles, Patterns, and Practices, Upper
Saddle River, NJ, USA: Prentice Hall, 2003

[150] N. Ahmad and P. A. Laplante, “Employing expert opinion and software metrics
for reasoning about software,” Third IEEE International Symposium on
Dependable, Autonomic and Secure Computing, pp. 119–124, Columbia, MD,
USA, September 2007. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4351396

[151] W. C. Josey and K. England, “Utilizing a project profile matrix to determine
project management requirements,” PMI Global Congress 2009, Newtown
Square, PA, USA: Project Management Institute, Oct. 2009. [Online]. Available:
https://www.pmi.org/learning/library/utilizing-project-profile-matrix-pm-
requirements-10598

[152] M. Deery, “How much will I earn as a full-stack developer in 2021?” April 30,
2021. [Online]. Available: https://careerfoundry.com/en/blog/web-
development/full-stack-developer-salary-guide/

[153] “The true cost of hiring developers in the U.S., the UK, Germany, the
Netherlands,” Daxx, April 1, 2021. [Online]. Available:
https://www.daxx.com/blog/development-trends/how-much-costs-hire-developer

https://www.iro.umontreal.ca/%7Esahraouh/papers/ICSM00.pdf
https://www.semanticscholar.org/paper/On-the-Relationship-between-Software-Complexity-and-Ogheneovo/84a809cb18443457eb91e175f3bc42fa240c4d4f
https://www.semanticscholar.org/paper/On-the-Relationship-between-Software-Complexity-and-Ogheneovo/84a809cb18443457eb91e175f3bc42fa240c4d4f
https://www.semanticscholar.org/paper/On-the-Relationship-between-Software-Complexity-and-Ogheneovo/84a809cb18443457eb91e175f3bc42fa240c4d4f
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6074053
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6074053
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4351396
https://www.pmi.org/learning/library/utilizing-project-profile-matrix-pm-requirements-10598
https://www.pmi.org/learning/library/utilizing-project-profile-matrix-pm-requirements-10598
https://careerfoundry.com/en/blog/web-development/full-stack-developer-salary-guide/
https://careerfoundry.com/en/blog/web-development/full-stack-developer-salary-guide/
https://www.daxx.com/blog/development-trends/how-much-costs-hire-developer

314

[154] S. M. Rowlinson, “An analysis of factors affecting project performance in
industrial building,” Ph.D. Dissertation, Brunel University, London, UK, 1988.
[Online]. Available:
https://www.academia.edu/25339950/AN_ANALYSIS_OF_FACTORS_AFFEC
TING_PROJECT_PERFORMANCE_IN_INDUSTRIAL_BUILDING_with_parti
cular_reference_to_Design_Build_contracts

[155] G. Stark, P. Oman, A. Skillicorn, and R. Ameele, “An examination of the effects
of requirements changes on software maintenance releases,” Journal of Software
Maintenance Research and Practice, vol. 11, pp. 293–309, Hoboken, New jersey,
USA: John Wiley & Sons, 1999. [Online]. Available:
https://www.researchgate.net/publication/220674128_An_Examination_of_the_E
ffects_of_Requirements_Changes_on_Software_Maintenance_Releases

[156] C. Brockmann and G. Girmscheid, “Complexity of megaprojects,” Conference
paper, May 14–18, CIB World Building Congress, Cape Town, South Africa,
2007. [Online]. Available: https://www.research-
collection.ethz.ch/bitstream/handle/20.500.11850/4495/eth-845-01.pdf

[157] H. Wood and P. Ashton, “The factors of project complexity,” pp. 69–80, 18th
CIB World Building Congress, Salford, UK: CIB, Jan. 2010. [Online]. Available:
https://www.irbnet.de/daten/iconda/CIB_DC24048.pdf

[158] V. A. Schwandt, “Measuring organizational complexity and its impact on
organizational performance – a comprehensive conceptual model and empirical
study,” Ph.D. Dissertation, University of Berlin, Germany, July 2009. [Online].
Available: https://d-nb.info/1000048349/34

[159] Y. K. Malaiya and J. Denton, “Requirements volatility and defect density,”
Proceedings 10th International Symposium on Software Reliability Engineering
(Cat. No. PR00443), pp. 285–294, Boca Raton, FL, USA: IEEE, 1999. [Online].
Available: https://www.cs.colostate.edu/~malaiya/reqvol.pdf

[160] A. M. Neufelder, “Current defect density statistics,” Bluffton, SC, USA: SoftRel,
LLC, 2007. [Online]. Available:
http://www.softrel.com/Current%20defect%20density%20statistics.pdf

[161] D. Pfahl and K. Lebsanft, “Using simulation to analyze the impact of software
requirement volatility on project performance,” Information and Software
Technology, vol. 42, issue 14, pp. 1001–1008, New York, NY, USA: Elsevier
Science Ltd., November 2000. [Online]. Available:
https://www.researchgate.net/publication/221219179_Using_Simulation_to_Visu
alise_and_Analyse_Product-
Process_Dependencies_in_Software_Development_Projects

https://www.academia.edu/25339950/AN_ANALYSIS_OF_FACTORS_AFFECTING_PROJECT_PERFORMANCE_IN_INDUSTRIAL_BUILDING_with_particular_reference_to_Design_Build_contracts
https://www.academia.edu/25339950/AN_ANALYSIS_OF_FACTORS_AFFECTING_PROJECT_PERFORMANCE_IN_INDUSTRIAL_BUILDING_with_particular_reference_to_Design_Build_contracts
https://www.academia.edu/25339950/AN_ANALYSIS_OF_FACTORS_AFFECTING_PROJECT_PERFORMANCE_IN_INDUSTRIAL_BUILDING_with_particular_reference_to_Design_Build_contracts
https://www.researchgate.net/publication/220674128_An_Examination_of_the_Effects_of_Requirements_Changes_on_Software_Maintenance_Releases
https://www.researchgate.net/publication/220674128_An_Examination_of_the_Effects_of_Requirements_Changes_on_Software_Maintenance_Releases
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/4495/eth-845-01.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/4495/eth-845-01.pdf
https://www.irbnet.de/daten/iconda/CIB_DC24048.pdf
https://d-nb.info/1000048349/34
https://www.cs.colostate.edu/%7Emalaiya/reqvol.pdf
http://www.softrel.com/Current%20defect%20density%20statistics.pdf
https://www.researchgate.net/publication/221219179_Using_Simulation_to_Visualise_and_Analyse_Product-Process_Dependencies_in_Software_Development_Projects
https://www.researchgate.net/publication/221219179_Using_Simulation_to_Visualise_and_Analyse_Product-Process_Dependencies_in_Software_Development_Projects
https://www.researchgate.net/publication/221219179_Using_Simulation_to_Visualise_and_Analyse_Product-Process_Dependencies_in_Software_Development_Projects

315

[162] H. Parsons-Hann and K. Liu, “Measuring requirements complexity to increase the
probability of project success,” Proceedings of the Seventh International
Conference on Enterprise Information Systems, vol. 3, pp. 434–438, Miami, USA,
2005. [Online]. Available:
https://www.scitepress.org/Papers/2005/25481/25481.pdf

[163] S. W. Azim, “Understanding and managing project complexity,” Ph.D. Thesis,
University of Manchester, Manchester, UK, 2010. [Online]. Available:
https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-
man-scw:121030&datastreamId=FULL-TEXT.PDF

[164] B. Waber, J. Magnolfi, and G. Lindsay, “Workspaces that move people,” Harvard
Business Review, pp. 69–77, Boston, MA, USA: Harvard Business Publishing,
Oct. 2014, [Online]. Available: https://hbr.org/2014/10/workspaces-that-move-
people

[165] Project Smart, 2014. “The Standish Group report CHAOS.” [Online]. Available:
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

[166] N. Nurmuliania, D. Zowghi and S. Fowell, “Analysis of requirements volatility
during software development life cycle,” AWRE, Adelaide, Australia, 2006.
[Online]. Available:
http://www.robertfeldt.net/courses/reqeng/papers/nurmulian_2004_analysis_of_re
q_volatility.pdf

[167] B. Sharif, S. A. Khan, and M. W. Bhatti, “Measuring the impact of changing
requirements on schedule variance: an empirical investigation,” 2012
International Conference on Software and Computer Applications, Singapore,
2012. [Online]. Available: https://studylib.net/doc/13136319/measuring-the-
impact-of-changing-requirements-on-schedule

[168] H. Dev and R. Awasthi, “A systematic study of requirement volatility during
software development process,” IJCSI International Journal of Computer Science
Issues, vol. 9, issue 2, no 1, March 2012. [Online]. Available:
http://ijcsi.org/papers/IJCSI-9-2-1-527-533.pdf

[169] M. Peña and R. Valerdi, “Characterizing the impact of requirements volatility on
systems engineering effort,” 25th Annual COCOMO Forum, Los Angeles, CA,
USA: University of Southern California, November 2010. [Online]. Available:
http://dspace.mit.edu/bitstream/handle/1721.1/84023/CPS_101104_Pena_Valerdi
_COCOMO.pdf.pdf;sequence=1

[170] J. M. Feland III and L. J. Leifer, “Requirement volatility metrics as an assessment
instrument for design team performance prediction,” The International Journal of
Engineering Education, vol. 17, no. 4–5, pp. 489–492, Chicago, IL, USA:
Templus Publications, 2001. [Online]. Available:
https://www.ijee.ie/articles/Vol17-4and5/IJEE1238.pdf

https://www.scitepress.org/Papers/2005/25481/25481.pdf
https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:121030&datastreamId=FULL-TEXT.PDF
https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:121030&datastreamId=FULL-TEXT.PDF
https://hbr.org/2014/10/workspaces-that-move-people
https://hbr.org/2014/10/workspaces-that-move-people
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
http://www.robertfeldt.net/courses/reqeng/papers/nurmulian_2004_analysis_of_req_volatility.pdf
http://www.robertfeldt.net/courses/reqeng/papers/nurmulian_2004_analysis_of_req_volatility.pdf
https://studylib.net/doc/13136319/measuring-the-impact-of-changing-requirements-on-schedule
https://studylib.net/doc/13136319/measuring-the-impact-of-changing-requirements-on-schedule
http://ijcsi.org/papers/IJCSI-9-2-1-527-533.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/84023/CPS_101104_Pena_Valerdi_COCOMO.pdf.pdf;sequence=1
http://dspace.mit.edu/bitstream/handle/1721.1/84023/CPS_101104_Pena_Valerdi_COCOMO.pdf.pdf;sequence=1
https://www.ijee.ie/articles/Vol17-4and5/IJEE1238.pdf

316

[171] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system
defect density,” 27th International Conference on Software Engineering, May
15–21, St. Louis, Missouri, USA: ACM, 2005. [Online]. Available:
https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/icse05churn.pdf

[172] W. V. Heydebrand, “Comparative organizations: the results of empirical inquiry,”
Englewood Cliffs, NJ, USA: Prentice-Hall Inc., 1973.

[173] J. D. Caprace and P. Rigo, “A complexity metric for practical ship design,” 11th
International Symposium on Practical Design of Ships and Other Floating
Structures, vol. 1, Brazil, 2010. [Online]. Available:
https://www.researchgate.net/publication/258835031_A_Complexity_Metric_for_
Practical_Ship_Design

[174] P. Leukert, “IT complexity: model, measure and master,” Capco Thoughts white
paper, New York, NY, USA: Capco, July 27, 2011. [Online]. Available:
https://www.slideshare.net/CapcoGlobal/it-complexity-model-measure-and-
master

[175] J. C. Domerçant and D. N. Mavris, "Measuring the architectural complexity of
military Systems-of-Systems," 2011 Aerospace Conference, 2011, pp. 1-16, New
York, NY, USA: IEEE. [Online]. Available:
https://ieeexplore.ieee.org/document/5747653

[176] P. Malone and L. Wolfarth, "Measuring system complexity to support
development cost estimates," 2013 IEEE Aerospace Conference, 2013, pp. 1-13,
New York, NY, USA: IEEE. [Online]. Available: https://ieeexplore-ieee-
org.libproxy.nps.edu/document/6496853

[177] B. N. Tie and J. Bolluijt, "Measuring project complexity," 2014 9th International
Conference on System of Systems Engineering (SOSE), 2014, pp. 248-253, New
York, NY, USA: IEEE. [Online]. Available: https://ieeexplore-ieee-
org.libproxy.nps.edu/document/6892496

[178] G. Schuh, S. Rudolf and C. Mattern, "Conceptual framework for evaluation of
complexity in new product development projects," 2016 IEEE International
Conference on Industrial Technology (ICIT), 2016, pp. 1022-1027, New York,
NY, USA: IEEE. [Online]. Available: https://ieeexplore-ieee-
org.libproxy.nps.edu/document/7474894

[179] C. Fang, F. Marle and M. Xie, "Applying importance measures to risk analysis in
engineering project using a risk network model," in IEEE Systems Journal, vol.
11, no. 3, pp. 1548-1556, Sept. 2017, New York, NY, USA: IEEE. [Online].
Available: https://ieeexplore-ieee-org.libproxy.nps.edu/document/7441987

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/icse05churn.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/icse05churn.pdf
https://www.researchgate.net/publication/258835031_A_Complexity_Metric_for_Practical_Ship_Design
https://www.researchgate.net/publication/258835031_A_Complexity_Metric_for_Practical_Ship_Design
https://www.slideshare.net/CapcoGlobal/it-complexity-model-measure-and-master
https://www.slideshare.net/CapcoGlobal/it-complexity-model-measure-and-master
https://ieeexplore.ieee.org/document/5747653
https://ieeexplore.ieee.org/document/5747653
https://ieeexplore.ieee.org/document/5747653
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6496853
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6496853
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6496853
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6892496
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6892496
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6892496
https://ieeexplore-ieee-org.libproxy.nps.edu/document/6892496
https://ieeexplore-ieee-org.libproxy.nps.edu/document/7474894
https://ieeexplore-ieee-org.libproxy.nps.edu/document/7474894
https://ieeexplore-ieee-org.libproxy.nps.edu/document/7441987

317

[180] C. Ellinas, N. Allan and A. Johansson, "Toward project complexity evaluation: a
structural perspective," in IEEE Systems Journal, vol. 12, no. 1, pp. 228-239,
March 2018, New York, NY, USA: IEEE. [Online]. Available: https://ieeexplore-
ieee-org.libproxy.nps.edu/document/7482752

[181] S. Tamaskar, K. Neema and D. Delaurentis, “Framework for measuring
complexity of aerospace systems,” Research in Engineering Design, vol. 25, issue
2, New York, NY, USA: Springer, February 22, 2014. [Online]. Available:
https://www.deepdyve.com/lp/springer-journals/framework-for-measuring-
complexity-of-aerospace-systems-AK7meeeqhf

[182] M. A. Horning, R. E. Smith, and S. Shidfar, “Mission engineering and prototype
warfare: operationalizing technology faster to stay ahead of the threat,”
Proceedings of the 2018 Ground Vehicle Systems Engineering and Technology
Symposium (GVSETS), August 7–9, 2018, Novi. Michigan, USA. [Online].
Available: http://gvsets.ndia-
mich.org/documents/SE/2018/Mission%20Engineering%20and%20Prototype%20
Warfar%20-
%20Operationalizing%20Technology%20Faster%20to%20Stay%20Ahead%20of
%20the%20Threat.pdf

[183] J. D. Moreland, “Mission engineering integration and interoperability,” Naval Sea
Systems Command, NSWC Dahlgren Division, Washington Navy Yard, DC,
USA. [Online]. Available: https://www.navsea.navy.mil/Home/Warfare-
Centers/NSWC-Dahlgren/Dahlgren-Resources/Leading-Edge/I-I-Leading-
Edge/Moreland/

[184] A. Alice, “Gaps in the body of knowledge of systems,” 22nd Annual INCOSE
International Symposium, Rome, Italy, 9–12 July 2012. [Online]. Available:
https://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2012.tb01449.x

[185] Project Management Institute, “A guide to the project management body of
knowledge,” Sixth Edition, Newtown Square, PA, USA: Project Management
Institute, 2017. [Online]. Available:
https://www.engineeringmanagement.info/2018/08/pmbok-guide-sixth-edition-
summarized-pdf.html

[186] E. Bradner, G. Mark, and T. D. Hertel, “Effects of team size on participation,
awareness, and technology choice in geographically distributed teams,”
Proceedings of the 36th Hawaii International Conference on System Sciences
(HICSS), p. 10, January 6–9, Big Island, Hawaii, USA, 2003. [Online].
Available:
https://d2f99xq7vri1nk.cloudfront.net/legacy_app_files/pdf/2003%20Bradner%20
HICSS.pdf

https://ieeexplore-ieee-org.libproxy.nps.edu/document/7482752
https://ieeexplore-ieee-org.libproxy.nps.edu/document/7482752
https://ieeexplore-ieee-org.libproxy.nps.edu/document/7482752
https://ieeexplore-ieee-org.libproxy.nps.edu/document/7482752
https://www.deepdyve.com/lp/springer-journals/framework-for-measuring-complexity-of-aerospace-systems-AK7meeeqhf
https://www.deepdyve.com/lp/springer-journals/framework-for-measuring-complexity-of-aerospace-systems-AK7meeeqhf
http://gvsets.ndia-mich.org/documents/SE/2018/Mission%20Engineering%20and%20Prototype%20Warfar%20-%20Operationalizing%20Technology%20Faster%20to%20Stay%20Ahead%20of%20the%20Threat.pdf
http://gvsets.ndia-mich.org/documents/SE/2018/Mission%20Engineering%20and%20Prototype%20Warfar%20-%20Operationalizing%20Technology%20Faster%20to%20Stay%20Ahead%20of%20the%20Threat.pdf
http://gvsets.ndia-mich.org/documents/SE/2018/Mission%20Engineering%20and%20Prototype%20Warfar%20-%20Operationalizing%20Technology%20Faster%20to%20Stay%20Ahead%20of%20the%20Threat.pdf
http://gvsets.ndia-mich.org/documents/SE/2018/Mission%20Engineering%20and%20Prototype%20Warfar%20-%20Operationalizing%20Technology%20Faster%20to%20Stay%20Ahead%20of%20the%20Threat.pdf
http://gvsets.ndia-mich.org/documents/SE/2018/Mission%20Engineering%20and%20Prototype%20Warfar%20-%20Operationalizing%20Technology%20Faster%20to%20Stay%20Ahead%20of%20the%20Threat.pdf
https://www.navsea.navy.mil/Home/Warfare-Centers/NSWC-Dahlgren/Dahlgren-Resources/Leading-Edge/I-I-Leading-Edge/Moreland/
https://www.navsea.navy.mil/Home/Warfare-Centers/NSWC-Dahlgren/Dahlgren-Resources/Leading-Edge/I-I-Leading-Edge/Moreland/
https://www.navsea.navy.mil/Home/Warfare-Centers/NSWC-Dahlgren/Dahlgren-Resources/Leading-Edge/I-I-Leading-Edge/Moreland/
https://onlinelibrary.wiley.com/doi/10.1002/j.2334-5837.2012.tb01449.x
https://www.engineeringmanagement.info/2018/08/pmbok-guide-sixth-edition-summarized-pdf.html
https://www.engineeringmanagement.info/2018/08/pmbok-guide-sixth-edition-summarized-pdf.html
https://d2f99xq7vri1nk.cloudfront.net/legacy_app_files/pdf/2003%20Bradner%20HICSS.pdf
https://d2f99xq7vri1nk.cloudfront.net/legacy_app_files/pdf/2003%20Bradner%20HICSS.pdf

318

[187] T. J. Allen and G. Henn, “The organization and architecture of innovation:
managing the flow of technology,” p. 152, Burlington, MA, USA: Butterworth-
Heinemann, 2006.

[188] K. Day and M. Hancock, “DIA hits significant construction cost overruns,” CBS4
Denver, USA, April 29, 2014. [Online]. Available:
https://denver.cbslocal.com/2014/04/29/dia-hits-significant-construction-cost-
overruns/

[189] J. P. Byrne, “Project management: how much is enough?” PM Network, vol. 13,
pp. 49–52, Newtown Square, PA, USA: PMI, February 1999. [Online]. Available:
https://www.pmi.org/learning/library/project-management-much-enough-
appropriate-5072

[190] T. Mochal, “Project management,” Tech Decision Maker, TechRepublic
Premium, August 5, 2008. [Online]. Available:
https://www.techrepublic.com/blog/tech-decision-maker/use-this-process-to-
estimate-a-projects-effort-hours/

[191] “What is CMMI?” Broadsword Solutions Corporation, San Diego, CA, USA.
[Online]. Available: https://broadswordsolutions.com/what-is-cmmi/

[192] E. Ng’ang’a and I. Tonui, “A survey on software sizing for project estimation,”
International Journal of Software Engineering and Knowledge Engineering, vol.
5, Issue 4, Hackensack, NJ, USA: World Scientific Publishing, January 2015.
[Online]. Available:
https://www.researchgate.net/publication/275837351_A_Survey_on_Software_Si
zing_for_Project_Estimation

[193] H. Van Heeringen, “Software size measures and their usefulness for software
project estimation,” ICEAA, June 8, San Diego, USA, 2015. [Online]. Available:
http://www.iceaaonline.com/ready/wp-content/uploads/2015/06/SW14-
Presentation-VanHeeringen-Software-Size-Measures.pdf

[194] M. Alfadel, A. Kobilica and J. Hassine, “Evaluation of Halstead and cyclomatic
complexity metrics in measuring defect density,” 2017 9th IEEE-GCC
Conference and Exhibition (GCCCE), pp. 1–9, May 8–11, Manama, Bahrain:
IEEE, 2017. [Online]. Available: https://ieeexplore.ieee.org/document/8447959

[195] M. A. E. Latif, S. Kholeif, and K. A. Elwahab, “Identify and manage the software
requirements volatility,” International Journal of Advanced Computer Science
and Applications, vol. 7, no. 5, West Yorkshire, UK: SAI, 2016. [Online].
Available: https://thesai.org/Downloads/Volume7No5/Paper_10-
Identify_and_Manage_the_Software_Requirements_Volatility.pdf

https://denver.cbslocal.com/2014/04/29/dia-hits-significant-construction-cost-overruns/
https://denver.cbslocal.com/2014/04/29/dia-hits-significant-construction-cost-overruns/
https://www.pmi.org/learning/library/project-management-much-enough-appropriate-5072
https://www.pmi.org/learning/library/project-management-much-enough-appropriate-5072
https://www.techrepublic.com/blog/tech-decision-maker/use-this-process-to-estimate-a-projects-effort-hours/
https://www.techrepublic.com/blog/tech-decision-maker/use-this-process-to-estimate-a-projects-effort-hours/
https://broadswordsolutions.com/what-is-cmmi/
https://www.researchgate.net/publication/275837351_A_Survey_on_Software_Sizing_for_Project_Estimation
https://www.researchgate.net/publication/275837351_A_Survey_on_Software_Sizing_for_Project_Estimation
http://www.iceaaonline.com/ready/wp-content/uploads/2015/06/SW14-Presentation-VanHeeringen-Software-Size-Measures.pdf
http://www.iceaaonline.com/ready/wp-content/uploads/2015/06/SW14-Presentation-VanHeeringen-Software-Size-Measures.pdf
https://ieeexplore.ieee.org/document/8447959
https://thesai.org/Downloads/Volume7No5/Paper_10-Identify_and_Manage_the_Software_Requirements_Volatility.pdf
https://thesai.org/Downloads/Volume7No5/Paper_10-Identify_and_Manage_the_Software_Requirements_Volatility.pdf

319

[196] N. Nurmuliania, D. Zowghi and S. P. Williams, “Requirements volatility and its
impact on change effort: evidence-based research in software development
projects,” Proceedings of the 2004 Australian Software Engineering Conference,
Sydney, Australia, 2004. [Online]. Available:
https://pdfs.semanticscholar.org/55e3/af26a74cc268cd79ab67141894d5a27188f5.
pdf

[197] G. B. Monk, “Integrated product team effectiveness in the department of
defense,” Master thesis in Management, Naval Postgraduate School, Monterey,
CA, USA, March 2002. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a402700.pdf

[198] Wikipedia. “Dependency injection.” [Online]. Available:
https://en.wikipedia.org/wiki/Dependency_injection

[199] J. H. Panchal, C. J. J. Paredis, J. K. Allen, and F. Mistree, “Managing design
process complexity: a value-of-information based approach for scale and decision
decoupling,” paper no. DETC2007-35686, pp. 633–647, ASME Digital
Collection, May 20, 2009. [Online]. Available:
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-abstract/IDETC-
CIE2007/48078/633/330304

[200] C. Haskins (CSEP and editor), INCOSE Systems Engineering Handbook ver. 3.2,
INCOSE‐TP‐2003‐002‐03.2, San Diego, CA, USA: INCOSE, January 2010.
[Online]. Available: https://www.incose.org/products-and-publications/se-
handbook

https://pdfs.semanticscholar.org/55e3/af26a74cc268cd79ab67141894d5a27188f5.pdf
https://pdfs.semanticscholar.org/55e3/af26a74cc268cd79ab67141894d5a27188f5.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a402700.pdf
https://en.wikipedia.org/wiki/Dependency_injection
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-abstract/IDETC-CIE2007/48078/633/330304
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-abstract/IDETC-CIE2007/48078/633/330304
https://www.incose.org/products-and-publications/se-handbook
https://www.incose.org/products-and-publications/se-handbook

320

THIS PAGE INTENTIONALLY LEFT BLANK

321

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	21Dec_Ton_Cuong_First8
	21Dec_Ton_Cuong
	I. introduction
	A. MOTIVATION AND BACKGROUND
	1. Definition
	a. Complexity
	b. Complex Systems
	c. Project Complexity

	2. Characteristics of Complexity
	a. Numerosity
	b. Connectedness
	c. Interdependence
	d. Diversity
	e. Adaptivity
	f. Non-equilibrium
	g. Nonlinearity

	3. Characteristics of Complex Systems
	a. Emergence
	b. Nonlinearity
	c. Limited Predictability
	d. Evolutionary Dynamics
	e. Self-Organization
	f. Uncertainty
	g. Spontaneous Order

	4. Factors that Cause an Increase in Complexity
	5. Effects of Complexity on Projects and Systems

	B. research relevance and objective
	C. Contributions and Benefits to the body of knowledge in systems engineering
	D. overview of the WORK

	II. literature review
	a. SOURCES OF COMPLEXITY
	1. Complexity of the Problem
	2. Complexity of the Environment
	3. Complexity of the System
	4. Complexity of the Design of the System
	5. Complexity of the Engineering Process

	B. BACKGROUND AND HISTORY OF COMPLEXITY SCIENCE
	C. Previous Work
	1. Structural Complexity
	2. Organizational Complexity
	3. Temporal Complexity
	4. Technological Complexity
	5. Seven Building Blocks of Complexity
	(1) Nonlinearity
	(2) Non-equilibrium
	(3) Numerosity
	(4) Connectedness
	(5) Interdependence
	(6) Diversity
	(7) Adaptivity

	6. Software Complexity Measurement
	a. Lines of Code (LOC):
	b. McCabe Cyclomatic Complexity Measures
	c. Halstead’s Complexity Metrics
	d. The Complexity Metric of Henry and Kafura
	e. The Complexity Metrics of Chidamber and Kemerer
	f. Function Point

	7. Project Complexity
	a. Organizational Complexity
	b. Requirements Complexity
	c. Temporal complexity
	d. Technological, Social, Cultural, and Task Complexity

	8. Review of Additional Literature Related to Engineered Systems
	9. Extension of Previous Work

	D. CHAPTER SUMMARY

	III. Project Complexity measurement Model (PCMM)
	A. research approach
	1. Structural Complexity
	2. Organizational Complexity
	3. Temporal Complexity
	4. Technological Complexity

	B. methodology
	1. Project Complexity Measurement Model (PCMM)
	a. Measure of Number of Personnel Required for the Development Effort
	b. Defect Density Measure
	c. Organizational Complexity Measure
	d. Geographical Distribution of Teams Measure
	e. Requirements Volatility Measure
	f. Number of Different Job Position Types

	2. Acquisition of Test Data to Perform the Complexity Measurements
	3. Methodology of applying the PCMM to Assess Project Complexity
	a. Measure of Number of Personnel Required for the Development Effort
	b. Defect Density Measure
	c. Organizational Complexity Measure
	d. Geographical Distribution of Teams Measure
	e. Requirements Volatility Measure
	f. Number of Different Job Position Types

	4. B1 Project Complexity Profile

	c. Sensitivity Analysis
	D. COMPLEXITY REDUCTION AND MITIGATION
	E. cHAPTER SUMMARY

	IV. Project Data TO DEMONSTRATE THE VALIDITY OF THE PCMM
	A. B4 WINDOWS-BASED DATABASE software Program
	1. Measure of the Number of Personnel Required for the B4 Project
	2. Defect Density Measure
	3. Organizational Complexity Measure
	4. Geographical Distribution of Teams Measure
	5. Requirements Volatility Measure
	6. Number of Different Job Position Types
	7. B4 Project Complexity Profile

	B. B6 Windows-based Database SOFTWARE Program
	1. Measure of the Number of Personnel Required for the B6 Project
	2. Defect Density Measure
	3. Organizational Complexity Measure
	4. Geographical Distribution of Teams Measure
	5. Requirements Volatility Measure
	6. Number of Different Job Position Types
	7. B6 Project Complexity Profile

	C. B8 Windows-based Database SOFTWARE Program
	1. Measure of Number of Personnel Required for the B8 Project
	2. Defect Density Measure
	3. Organizational Complexity Measure
	4. Geographical Distribution of Teams Measure
	5. Requirements Volatility Measure
	8. Comparison of Complexity Profile of Three Engineering Projects
	9. Sensitivity Analysis
	10. Analysis of Three Main PCMM Measures Related to Project Cost, Schedule, and Performance
	11. Analysis of the PCMM Measures Related to the Risk Levels of the Project
	12. Complexity Reduction and Mitigation for the B6 Project

	E. cHAPTER SUMMARY

	V. CONCLUSION and future work
	A. SUMMARY
	B. conclusionS
	C. AREAS FOR FUTURE RESEARCH
	D. FINAL REMARKS

	Epilogue
	appendix A. COMPLEXITY MEASURES of the B4 Project
	1. Measure of the Number of Personnel Required for the Development Effort
	2. Defect Density Measure
	3. Organizational Complexity Measure
	4. Geographical Distribution of Teams Measure
	5. Requirements Volatility Measure
	6. Number of Different Job Position Types
	7. B4 Project Complexity

	appendix B. COMPLEXITY MEASURES of THE B6 project
	1. Measure of the Number of Personnel Required for the Development Effort
	2. Defect Density Measure
	3. Organizational Complexity Measure
	4. Geographical Distribution of Teams Measure
	5. Requirements Volatility Measure
	6. Number of Different Job Position Types
	7. B6 Project Complexity

	appendix c. COMPLEXITY MEASURES of THE B8 project
	1. Measure of the Number of Personnel Required for the Development Effort
	2. Defect Density Measure
	3. Organizational Complexity Measure
	4. Geographical Distribution of Teams Measure
	5. Requirements Volatility Measure
	6. Number of Different Job Position Types
	7. B8 Project Complexity

	appendix D. CSE QUESTIONS
	appendix E. HEuRISTIC APPROACHES TO REDUCing COMPLEXITY
	List of References
	initial distribution list

