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We examine the effect of traffic pollution on student outcomes by leveraging variation in wind 

patterns for schools the same distance from major highways. We compare within-student 

changes in achievement for students transitioning between schools near highways, where one 

school has greater levels of pollution because it is downwind of a highway. As students graduate 

from elementary/middle school to middle/high school, their test scores decrease, behavioral 

incidents increase, and absence rates increase when they attend a downwind school, relative to 

when they attend an upwind school in the same zip code. Even within zip codes, microclimates 

can contribute to inequality. 
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I. Introduction 

Over 6.4 million children attend public school within 250 meters of a major roadway 

(Kingsley et al. 2014), and nearly one in five schools that opened in the 2014–2015 school year 

were built near a busy road (Hopkins 2017). Proximity to highways may make the land cheaper, 

but school districts and parents are often unaware of the health risks of highway pollution. 

Understanding the impact of traffic pollution in schools is critically relevant for social policy. 

Influences on academic achievement are largely absent from Environmental Protection Agency 

(EPA) estimates of the social costs of pollution, perhaps because relatively little research 

examines how pollution exposure over primary and secondary school influences human capital 

accumulation.   

We build on earlier work by estimating the impact of attending a school with higher 

ambient pollution levels on the academic and behavioral outcomes of public school students. We 

use a novel identification strategy that leverages variation in pollution exposure caused by 

movement through the Florida school system as students transition from elementary to middle 

school or middle school to high school. We compare achievement in students moving between 

schools near highways, where one school has had greater levels of pollution because it is 

downwind of a highway, in models with zip code, grade, year, and student fixed effects.  

Recent evidence demonstrates that even mild health shocks during gestation and early life 

can substantially affect long-term human capital outcomes (Almond, Edlund, and Palme 2009; 

Bharadwaj et al. 2017; Black et al. 2019; Currie, Greenstone, and Moretti 2011; Persico, Figlio, 

and Roth 2016; Sanders 2012), but we know much less about how pollution exposure between 

early life and adulthood affects human capital formation and child development. There are a few 

studies that document how acute, short-term exposure to air pollution on testing days affects test 
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score performance. Marcotte (2017) used variation in air quality on different testing days and 

found that children who took tests on worse days for pollen and fine airborne particulate matter 

had worse test outcomes. Similarly, Roth (2016) found that pollution on testing days affected 

college students’ performance in the United Kingdom, and Ebenstein, Lavy, and Roth (2016) 

found that pollution affected performance on high school exit exams in Israel. However, the 

present paper is the first to examine year-to-year exposure to pollution. 

To implement our natural experiment, we use a unique administrative dataset on the 

universe of public school students born in Florida from 1992–2002. We follow students over 

time, observing rich information on their behavioral, demographic, and academic characteristics. 

We find that attending school where prevailing winds place it downwind of a nearby highway 

more than 60% of the time is associated with 3.98% of a standard deviation lower test scores, a 

4.09 percentage point increase in behavioral incidents, and a 0.53 percentage point increase in 

the rate of absences over the school year, compared to attending a school upwind of a highway 

the same distance away. Given the size and diversity of the state of Florida, we can also examine 

these impacts by race, socioeconomic status, and gender.  

Our research design contrasts with earlier papers that only examined either the influence 

of long-term in-utero exposure on test scores or the direct short-term effect of “day of test” 

exposure. Along with Persico and Venator (2019), we are one of the first papers to estimate the 

impact of medium-term, year-to-year variation in pollution exposure on child achievement 

throughout childhood, and the first to do so using policy-generated moves through a school 

system as an identification strategy. Finally, we are the first paper to look at the causal impact on 

achievement of school districts locating schools downwind of major highways. Such policies 
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expose students to higher levels of pollution, and we therefore shed light on policy implications 

related to school location decisions.1  

These contributions are relevant to broader discussions in the fields of the economic 

analysis of children, inequality, and health. As Almond, Currie, and Duque (2018) point out in 

their literature review, even mild health shocks in early life can lead to substantial long-term 

negative outcomes, but we know substantially less about the impacts  of exposure to shocks in 

the intervening period between early life and adulthood. Likewise, most studies on pollution use 

larger geographic areas than the zip code level. Recent research suggests that there is significant 

within-commuting zone variation in intergenerational inequality (Rothstein 2019), and small 

geographic variations in childhood pollution exposure could be one factor behind this pattern. 

II. Background 

A growing literature has linked pollution to asthma attacks (Simeonova et al. 2019), 

bronchitis (Beatty and Shimshack 2011), and mortality (Chay and Greenstone 2003; Currie and 

Neidell 2005; Deryugina et al. 2016; Knittel, Miller, and Sanders 2015). Much of this literature 

focuses on either the very young or the elderly. Younger populations are potentially of interest 

because investments in child health could result in greater later-life productivity. While we know 

that early life health shocks can substantially affect long-term outcomes, we know very little 

about the impacts of exposure to health shocks in the years between early life and adulthood. A 

few exceptions include Aizer, Currie, Simon, and Vivier (2018), who find that early exposure to 

lead in preschool affects later test scores; Persico and Venator (2019), who find that being near 

 
1 This work likewise complements a descriptive literature in sociology and environmental health 

that finds a negative correlation between the distance of schools to sources of pollution and 

school performance. See London et al. (2016) for a comprehensive review. 
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an industrial plant harms tests scores and increases suspensions; and Simon (2016), who finds 

that early life exposure to cigarette smoke harms childhood health.  

A few economists have focused on the effects of exposure to wind-based traffic pollution. 

Herrnstadt and Muehlegger (2015) argue that traffic pollution influences impulse control. They 

showed that short-term hourly variation in wind direction in Chicago lead to higher crime in 

areas downwind of highways than on the opposite upwind side. In a study similar to ours, 

Anderson (2015) documented that long-term exposure to being downwind of a highway was 

associated with higher mortality rates among the elderly, though housing characteristics were 

similar on either side of the road. 

Pollution shocks during the school year could impede human capital formation through 

several channels. First, health effects may reduce attendance. Currie et al. (2009) found that high 

levels of carbon monoxide were associated with reduced school attendance under a difference-in-

differences strategy accounting for persistent school and year effects. Ransom and Pope (1992) 

similarly found a relationship between pollution and school attendance, with more small 

particulate matter in the air associated with more absences. Second, exposure during periods of 

brain development could affect children in ways that persist even after the child is removed from 

a high-pollution environment. Finally, pollution could cause short-term cognitive and health 

disruptions in either children or teachers during the school day that affect performance and 

accumulate over the course of the school year. There is growing evidence in the economic 

literature that pollution has short-term impacts on cognition, productivity, and behavior. Chang 

et al. (2016; 2019) used hourly variation to show that increased exposure to fine particulate 

matter decreases productivity per hour of pear packers and call center workers, while Archsmith, 
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Heyes, and Saberian (2018) showed that baseball umpires make more mistakes on days with 

higher pollution. 

School districts and parents are often unaware of the risks of highway pollution, 

particularly because there are not many studies of the effects of traffic pollution on childhood 

health and achievement. In addition to examining the causal relationship between these factors, 

this paper presents a timely evaluation of the effects of locating schools near highways.  

III.  Identification Strategy  

Naïve correlations between air pollution and academic outcomes cannot be interpreted as 

causal because pollution is not randomly assigned. In particular, students could sort into schools, 

such that pollution is associated with poor performance, but does not cause poor performance. 

However, there are many times where, within the same school district, students (or their parents) 

do not choose to move schools, but they instead must move into a new school due to district 

policy. A student who graduates from elementary school (in grade 5) to middle school (in grade 

6) will switch school locations. Without necessarily moving to a new home, some of these 

students move from an upwind to a downwind school, some move from a downwind to an 

upwind school, and some move within the same category. 

Our identification strategy follows children over time, comparing their outcomes as they 

transition from elementary/middle school to middle/high school when both schools are near a 

highway, but where some schools are upwind and others are downwind of the highway. Using 

zip code fixed effects, we identify the impact of small moves between geographically proximate 

schools near the same highway. By either applying first-differences or student fixed effects 

models, we likewise identify within-student changes over time. With this in mind, we think of 

our strategies as a type of difference-in-differences approach: we compare within-child 
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differences in an outcome before versus after changing schools for children who attend a 

downwind relative to an upwind school in the same zip code.  

To focus on moves to middle/high school we limit the sample to those students who 

attend elementary school in fifth grade before moving to a middle school the next year in sixth 

grade or those who attend a middle school in eighth grade and move to a high school the next 

year in ninth grade. To motivate our use of panel data, imagine the case where we did not follow 

students over time. In such circumstances, we could consider the following conceptual cross-

sectional model: 

(1)   𝑌𝑖𝑠𝑗𝑔𝑡 = 𝛽0 + 𝛽1𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑠𝑗𝑔𝑡 + 𝑋𝑖𝑡𝜌 + 𝑆𝑠𝑡𝜔 + 𝐷𝑠𝛾 + 휃𝑖 + 𝜏𝑔 + 𝛿𝑗 + 𝜎𝑡 + 휀𝑖𝑠𝑗𝑔𝑡 

where 𝑌𝑖𝑠𝑗𝑔𝑡  is test scores for student i, attending school s, located in zip code j, in grade g and in 

year t. Because this is a case of repeated cross sections, 휃𝑖 is unobserved (and time invariant) 

student ability. To adjust for fixed differences in test scores between grades, we use grade fixed 

effects 𝜏𝑔. Due to our sample restrictions, a student’s grade is either 5, 6, 8 or 9. We adjust for 

changes over time using year fixed effects 𝜎𝑡 and for time-invariant characteristics of zip codes 

using fixed effect 𝛿𝑗. The vector 𝑆𝑠𝑡 controls for time-varying school characteristics.2 The vector 

𝐷𝑠 controls for two time-invariant school characteristics related to location: a vector of 0.1-mile-

bin distance dummies measured from the nearest highway (0–0.1 miles, 0.1–0.2 miles, 0.2–0.3 

miles, and 0.3–0.4 miles) and a linear control for number of highways within a one-mile radius.3 

 
2 The time-varying controls we use include percent Black, percent Hispanic, average maternal 

education, percent of children from married families, percent of teachers with a master’s degree 

by school; school size in hundreds of students; and the school’s stability rate, where the stability 

rate is defined as the percentage of students in October who are still present in the February 

membership count. 
3 The count of roads provides an estimate of the density of roads in the area. Using the one-mile 

distance balances between not being collinear with number of nearest roads in our “downwind” 

model, while still capturing urban density.  
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The vector 𝑋𝑖𝑡 controls for time-varying individual characteristics: free-and reduced-price lunch 

(FRL) status and an indicator for whether the student moved to a new school that year. Schools 

that are downwind more than 60% of the time are defined as “downwind” through a binary 

indicator. All other schools where 𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑 = 0 are referred to throughout as “upwind.” Our 

key coefficient (𝛽1) therefore estimates the effect of attending a downwind school relative to an 

upwind school in the same zip code, independent of the effect of moving. 

A problem with such a repeated cross-sectional model is that Estimates of 𝛽1will suffer 

from omitted variable bias if unobserved student ability (휃𝑖) is correlated with within zip-code 

sorting into schools. Therefore, rather than employing a cross-sectional model, we take two 

approaches to estimate within-student changes. In both approaches, we interpret the coefficient 

𝛽1 as the differential change in test scores for a student who moves to a middle (high) school 

with a different prevailing wind direction relative to one who moves but whose school’s wind 

direction does not change. 

Our first approach to operationalize the thought experiment behind our identification 

strategy is to estimate a simple model of differences: regressing changes in wind status on 

changes in test scores. This is achieved through transforming Equation 1 by taking within-child 

differences between consecutive grades: 

(2)   ∆𝑦𝑖𝑠𝑗𝑔𝑡 = 𝛽1∆𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑠𝑗𝑔𝑡 + ∆𝑋𝑖𝑡𝜌 + ∆𝑆𝑠𝑡𝜔 + ∆𝐷𝑠𝛾 + ∆𝜏𝑔 + ∆𝛿𝑗 + ∆𝜎𝑡 + ∆휀𝑖𝑠𝑗𝑔𝑡  

We estimate separate models for downwind and upwind moves. Specifically, in the case 

of a downwind move, we exclude students from the sample who moved from downwind to 

upwind in the move to either middle/high school but include those who never changed wind 

status as controls. Similarly, for upwind moves, we exclude those who moved from upwind to 
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downwind.4 We define ∆𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑠𝑗𝑔𝑡 as 0 when wind status does not change, 1 for a 

downwind move (in the downwind move regression), and -1 for an upwind move (in the upwind 

regressions). A negative value on 𝛽1 indicates that the outcome is lower when the child is 

downwind.  

Our second and preferred approach is to directly account for student ability using fixed 

effects models. Here we operationalize Equation 1 by including all observed fifth, sixth, eighth, 

and ninth graders (again dropping K–12 schools) but leverage the longitudinal aspect of our data 

to directly estimate 휃𝑖 as a student fixed effect. We identify the effect of being exposed to more 

highway pollution using both moves from upwind to downwind schools and moves from 

downwind to upwind schools. The primary difference between these two models is that the first 

differences model is identified off of consecutive changes in wind status, with the coefficient 

being the weighted average of two different potential moves (5th to 6th grade and 8th to 9th grade). 

Conversely, the fixed effects averages over ability and wind status for every year the student is 

observed in grades 5, 6, 8, and 9.5 In both models, we multi-way cluster all standard errors at the 

zip code and student level.  

A. Downwind Status 

 To operationalize assigning downwind status, we define a major highway as a U.S. 

interstate or U.S. highway and their immediate feeder routes.6 Pollutants from car/truck exhaust 

 
4 Once we make our sample restrictions, there are no cases that students who are observed in both 

sixth and eighth grade change their wind status between these grades.  
5 For example, in the first-differences model, a student who attended an upwind elementary, 

downwind middle, and downwind high school would contribute to the estimated treatment effect 

in the grade 5 to 6 move but would be counted as a control in their grade 8 to 9 move. In the 

fixed effect model, their upwind score in grade 5 would be compared to their average downwind 

scores across grades 6, 8, and 9 in the fixed effect model.   
6 We use Florida Department of Transportation (FDOT) shape files that have defined road 

segments along each highway. In a few cases, such road segments extend beyond the official 
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can be blown hundreds of meters by the wind from such highways, particularly nitrogen oxide 

(NO), nitrogen dioxide (NO2), and ultrafine particles (UFP); the maximum distance we would 

expect pollutants to be blown is about 0.4 miles (Karner, Eisinger, and Niemeier 2010).7 We thus 

limit our sample to only schools within 0.4 miles from the highway to ensure that our treated and 

control schools are similar in unobservable characteristics that might differ between schools near 

and far from a highway. This is the same as the cutoff in Anderson (2015), who found similar 

housing prices on either side of highways in Los Angeles, while the downwind side of the 

highway had higher pollution and higher mortality among the elderly. In a supplementary 

analysis, we use EPA data to directly document that pollution is elevated downwind of major 

highways in Florida. 

We classify a school as downwind if the wind consistently blows across the highway and 

towards that school. Figure 1 illustrates our analytical strategy. In Panel A, the bold gray line 

represents a major highway in an anonymized part of the state. The dots represent schools. If the 

dominant wind pattern blows east to west in this part of the state, schools to the left of the 

vertical major highway will be exposed to additional pollution. Schools to the right of the 

highway, though still exposed to similar traffic, noise,8 or other characteristics that come with 

being proximate to a major highway, will receive substantially less pollution exposure. Students 

 

designation to include main feeder roads that we also include as a “highway” in our sample. We 

get similar results when excluding these roads. We provide more details on how we make use of 

the FDOT highway shape files in the Online Data Appendix available at http://jhr.uwpress.org/.   
7 NO/NO2 blow up to 565 meters (0.35 miles) and UFP (defined as particulate matter 0.1 

micrometers or less in diameter) blow up to 910 meters (0.57 miles) downwind, while larger 

particles do not travel as far (Karner et al., 2010). Other studies find that traffic pollution 

potentially travels further when pushed by wind. Currie and Walker (2011) examined exposure 

within 1.12 miles, and other work suggests that even two miles is possible in some cases (Hu et al. 

2009). We limit our analysis to 0.4 miles to remain conservative and to not compare schools near 

a highway to those that are further away.  
8 Traffic noise does not vary significantly with wind direction (Allen et al. 2009).  
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who attend a school upwind in, say, elementary school move to a new school when they switch 

from fifth to sixth grade. If that middle school is downwind of a major highway, that student is 

now treated, and the analysis compares their outcomes before and after treatment within the 

same zip code relative to students who move between schools and do not change their 

up/downwind status. Panel B of Figure 1 displays the distribution of interstates and U.S. 

highways across Florida. 

We proxy prevailing school-day winds using 2010 data from the U.S. Meteorological 

Assimilation Data Ingest System (MADIS), a part of the National Oceanic and Atmospheric 

Administration (NOAA).9 For each hour of the school day, we define a school as downwind of a 

given highway if the wind direction blows within 45 degrees of a ray running from the nearest 

point on the highway to the school. Some schools are near multiple major highways. Taking the 

nearest five highway segments, we next measure whether a school is downwind of at least one of 

the nearest five major highway segments in a given hour. We then collapse the data over the year 

to obtain the percent of time a school is downwind from any nearby major highway during the 

 
9 See the Online Data Appendix for more details on the wind monitor, pollution monitor, and 

downwind status classification. Each MADIS station includes wind readings once per minute, 

and we take the first observation per hour. There were 1,029 stations in the state of Florida in 

2010, and we connect each school to its nearest station and assign it that station’s hourly wind 

data. We also match wind direction data to pollution monitor data. We use the 2010 wind data to 

proxy the other years because it is the most complete year available within the time frame of our 

education data. There were many fewer wind monitors in the early years, so we lack the power to 

reliably use annual variation in wind direction. Further, there were many more anomalous and 

missing wind direction readings for the wind monitors that we did have in the earlier years, 

making us concerned that using this data will add significant noise to our estimates. Finally, 

wind monitors were being non-randomly added in geographic areas over time in a way that could 

be correlated with other characteristics. We are therefore concerned that using an unbalanced 

panel of wind monitors could introduce bias into our estimates. With the wind monitor data we 

have, we verify that wind direction is consistent across years; for instance, the correlations 

between our annual wind direction measures in 2010 and 2012 is 0.81. 
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school day over the course of the year. We provide more explicit details in the Online Data 

Appendix.10  

We create a binary variable to delineate treated from non-treated schools, using a cutoff 

of 60% of time downwind. We originally chose the cutoff of 60% to capture schools that are 

downwind a large amount of the time and therefore get the most consistent exposure to pollution 

over the school day. Further, by focusing on schools that are downwind a high proportion of the 

time, we make it more likely that students are regularly exposed throughout the day, as there is 

likely variation over the school day, depending on school and student schedules, in terms of 

when pollution matters the most for learning and cognition.11 We test the robustness of this 

choice to other cutoffs empirically in the Results section. From here on we refer to “downwind” 

as a school that is downwind 60% or more of the time and any other school as “upwind,” unless 

we explicitly say otherwise. Overall there are 59 downwind schools and 750 upwind schools in 

our sample. 

B. Identifying Assumptions 

We make two main identifying assumptions. First, we assume that, after implementing 

our difference-in-differences model, there are no factors other than differences in pollution levels 

that affect child outcomes when students transition to or from downwind schools. For example, 

 
10 Online Data Appendix can be found at http://jhr.uwpress.org/. 
11 Because 2010 is just one representative year, focusing on schools that are downwind the majority 

of the time in 2010 makes it more likely that we are capturing prevailing winds. As Figure A1 in 

the Online Appendix shows, there is fair amount of variation over time in wind direction and 

breaks from pollution exposure over the course of a day could provide respite. By focusing on 

schools that are downwind a high proportion of the time, we make it more likely that students are 

regularly exposed throughout the day. Another possibility is that there is a tipping point over which 

pollution exposure matters for academic performance. Compounding both of these issues is that 

measurement error in capturing the prevailing wind direction could downwardly bias estimates, 

and we are less likely to be capturing prevailing winds at low levels of percent of time downwind.  
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any identification strategy that relies on student moves might be biased if families select into 

moving. All of our models employ student fixed effects to account for any constant student 

ability or other constant family characteristics, but our results would still be biased if students 

who will, for unobserved reasons, have lower test scores in a given year systematically attend 

downwind schools. To help avoid such potentially choice-driven moves, we focus on changes 

between schools that occur as part of the “policy-induced” transition of graduating from 

elementary schools that feed into a middle school or from middle schools that directly feed into 

high schools. These students did not choose to move when their trajectories were changing; 

instead, their move was determined by district policy. In addition, we show the results of several 

balancing tests below. 

Second, we assume that in the absence of switching to a downwind or upwind school, 

other school switchers (to schools of the same downwind status) can serve as a valid 

counterfactual over the same time period. Our estimates will be biased if students who transition 

to/from a downwind school are on a different trajectory relative to their peers who did not make 

such a transition. We directly test for differential trends between treated and control students 

using an event study design. Because estimating event studies requires defining a discrete move 

from an upwind to a downwind school (or the reverse) and looking only at students who have 

non-missing test scores over a balanced panel, the samples and specifications are slightly 

different from our main model. We discuss our methodology for the event study in detail in the 

Online Data Appendix. 

The treatment that we measure is a student attending a school that is downwind. This 

makes it difficult to separate the direct impact of individual level student pollution exposure from 

the impact of attending a school that has had longer-term high-level exposure to pollution. It is 
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therefore important to interpret our baseline reduced form results as capturing the casual effect of 

both student pollution exposure and of attending a school that has had extended pollution 

exposure.  

Finally, the results may be biased towards zero if exposure effects are long-lasting. For 

example, even after a student moves from a downwind school to an unexposed upwind school, 

the student might continue to have lower academic performance because of the permanent 

damage pollution might have done (e.g., if the student gets asthma, they will have it for life). 

This scenario would bias our estimates towards zero, so we will explore the differences in to-

upwind versus to-downwind moves in detail below.  

IV.  Student Data Description 

 Our sample contains the universe of students who were born in Florida in 1992–2002 and 

attended a Florida public school within 0.4 miles of a major U.S. highway in 1996–2012. The 

data came from the Florida Department of Education (FDOE). This administrative data provides 

rich demographic characteristics and student-level outcomes not typically available in the 

literature. We exclude virtual academies where the physical location of a school is unrelated to 

student pollution exposure, as well as adult education centers, schools for troubled youths and 

teen parents, schools for children with disabilities, and juvenile justice centers.  

Our primary outcome of interest is individual-level scores on the annual Florida 

Comprehensive Assessment Test (FCAT) in math and reading. Students took the FCAT in math 

and reading in grades 3 to 10 in 2001–2012, and we take the average of the two test scores.12 We 

 
12 Scores are standardized by year and grade at the state level for each test, with a mean of zero 

and a standard deviation of one, and we average the math and reading scores by year to create one 

summary measure of academic performance. We take the average of the two scores rather than 

estimating them separately to reduce noise and guard against Type 1 error from multiple 
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also examine two additional outcomes (only available in years 2002–2011): whether the 

student was written up for a behavioral incident during the year and the annual absence rate for 

students on a zero to one scale.13 FDOE data includes individual-level characteristics such as 

race, ethnicity, gender, and free- or reduced-price lunch (FRL) eligibility. The Online Data 

Appendix contains additional information about the data sets and variable construction. 

Column 1 of Table 1 shows the means for all children born in Florida. Since we observe a 

student multiple times (at most once per year), we average over these observations for every 

student in Florida. Column 2 shows the means for all children attending school within 0.4 miles 

of a highway, and Column 3 shows the mean characteristics of those students when they are in 

fifth, sixth, eighth, or ninth grades and attending a school within 0.4 miles of a highway 

(dropping K–12 schools). Column 3 is identical to our main analysis sample.14  

V. Results 

A. Main Results 

Table 2 presents our main results. The sample is based on our preferred specification with 

policy-induced movers to middle school (grades 5–6) and high school (grades 8–9). Panels A 

and B present our first-differences estimation, while Panel C is our preferred fixed effect model. 

In all models, the coefficient indicates the difference in outcomes in downwind schools, relative 

to upwind schools.  

 

hypothesis testing. When looking at these outcomes separately, they both follow the same overall 

pattern. 
13 Some students are also missing an observation in one variable, but not the others, within the 

same year. This causes small differences in sample sizes across these three outcomes in addition 

to the differences caused by yearly differences in data availability.  
14 The sample size declines from Columns 2 to 3 both from dropping K–12 schools and because 

some students only attend a school near a highway in, for example, first through fourth grade and 

therefore aren’t in our analysis sample. 
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 The different specifications present broadly similar results: being downwind of a major 

highway is associated with lower average FCAT scores, a higher likelihood of having a 

behavioral incident, and a higher absence rate. When modeled separately, the move from upwind 

to downwind (Panel A) is larger in absolute terms than the opposite move from downwind to 

upwind (Panel B). In our preferred fixed effect model (Panel C), attending a school that is 

downwind of a major highway is associated with a 3.98 percent of a standard deviation decrease 

in scores, relative to attending a school that is not. There is a 4.09 percentage-point increase in 

the likelihood of having a behavioral incident and a 0.53 percentage-point increase in the 

absence rate. Given that the average rate of absences in Florida schools is 5.6 percent, this is a 

9.5 percent increase in the rate of absences from school. Because moving to a school that is 

downwind is associated with a slightly larger effect on test scores than moving from a downwind 

school to an upwind school, our main specification can be interpreted as a lower bound of the 

effects on traffic pollution on test scores. 

Appendix Table A1 displays a specification with all movers across all grades, rather than 

with the policy-induced movers.15 Appendix Table A2 shows additional specifications for 

downwind status beginning only with a core set of fixed effects and controls, then gradually 

adding additional controls for school quality and demographic characteristics. If being downwind 

 
15 All Appendix tables and figures can be found at http://jhr.uwpress.org/. The drawback of our 

preferred approach in Table 2 is that we can only estimate effects for those who change their 

exposure status from fifth to sixth grade or eighth to ninth grade. We thus re-estimate Equation 1 

for all students in all grades (3-12), regardless of whether they move, as long as they attend school 

within 0.4 miles of a highway. We show these results in the Appendix. Here, the coefficient 𝛽1 on 

𝐷𝑜𝑤𝑛𝑤𝑖𝑛𝑑𝑖𝑠𝑗𝑔𝑡  captures the change in test scores for a student who moves to any new school (for 

whatever reason) with a different prevailing wind direction. In this model both those who move 

and do not change wind direction as well as those who do not move at all are part of our 

counterfactual group, though we directly control for the effect of moving with an indicator 

variable.   
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in our model was correlated with school characteristics due to student sorting or other reasons, 

we would expect the coefficient on downwind to change as we add these controls. We find 

similar results regardless of the specification. For the remainder of our paper, we show results 

using our preferred fixed effects specification with policy-induced moves and the full set of 

controls. 

We chose the 60% cutoff for downwind status because we believe schools that 

experience particularly consistent wind pattern exposure over the school day are the ones most 

likely to show detectable effects on student outcomes. Figure 2 directly tests this by presenting 

point estimates for average test scores using our main specification by the percent of time 

downwind, grouping schools into bins of downwind status: 0–20% of time downwind (the 

reference group), 20–30%, 30–40%, 40–50%, 50–60%, 60–70%, or more than 70% of the time. 

The effects are close to zero at low- to mid-levels of time spent downwind, while those schools 

downwind 60–70% or more than 70% of the year have larger negative effects on test scores.  

 We next test our parallel trends assumption in an event study on the move from 

elementary to middle school.16 This will make it transparent if those students who moved into a 

school with a different prevailing wind direction in sixth grade were on a different trajectory in 

achievement. Furthermore, the associated graphs help us understand how outcomes change 

relative to the timing of pollution exposure. We include all students observed continuously 

between third and seventh grade (dropping K–12 schools). We estimate our equation jointly for 

upwind and downwind movers (our treated students), including students who never change wind 

status as a control group: 

 
16 We focus on the move to middle school because it is a relatively transparent way of showing 

pre-trends for one of the major sources of policy-induced variation in the study.  
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(3)  𝑦𝑖𝑠𝑗𝑔𝑡 = 𝛽0 + ∑ 𝜋𝑔 𝟏(𝜅𝑖𝑔 = 𝑔)

7

𝑔=3

+ ∑ 휂𝑔 𝟏(휁𝑖𝑔 = 𝑔)

7

𝑔=3

+ 𝑋𝑖𝑡𝜌 + 𝑆𝑠𝑡𝜔 + 𝐷𝑠𝛾 + 휃𝑖 + 𝜏𝑔 + 𝛿𝑗 + 𝜎𝑡 + 휀𝑖𝑠𝑗𝑔𝑡  

where 𝜅𝑖𝑔  is a set of dummies equal to 1 when a “downwind mover” is in grade 𝑔, and zero in all 

other cases. A downwind mover is defined as a student who will move from upwind to 

downwind in grade 6, and otherwise is equal to zero. Likewise, 휁𝑖𝑔 are equal to 1 when student i 

is both an “upwind mover” (one who moves from downwind to upwind in grade 6) and is in 

grade 𝑔. In both cases, the year before treatment (𝑔 = 5) is the excluded dummy normalized to 

zero. Notably, 𝜅𝑖𝑔  and 휁𝑖𝑔 always equal zero for students who never change wind direction. 

Therefore, the coefficients 𝜋𝑔 and 휂𝑔 capture the differential effect of being in grade 𝑔 for a 

student who changes wind status in sixth grade, relative to students who does not change wind 

status. We provide more details on how we construct this event study in the Online Data 

Appendix. We get similar estimates when we model upwind and downwind moves in separate 

equations. 

Figure 3 shows these results. Several key patterns stand out. First, we see a relatively flat 

pre-trend in FCAT scores for both groups across grades 3–5. Second, scores drop sharply when 

students move to a downwind school in grade 6. Third, while there seems to be a slight increase 

in scores for students moving from a downwind to an upwind school, the impact is small and 

statistically insignificant. One explanation for this pattern is that the effects of pollution exposure 

may be persistent beyond the period of direct exposure. This would be the case if exposure to 

pollution in earlier grades has persistent effects on either cognition or skill acquisition that last 

even after pollution is alleviated. We also see a similar relatively flat pre-trend and sharp 

increase in behavioral incidents, with a more distinct effect of moving from downwind to 

upwind. Finally, the pre-period is mostly flat for percent of time absent, though there is a decline 
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in absences in fifth grade followed by a sharp increase for those moving into a downwind school. 

We see a similar pattern if we instead use all student movers rather than our policy-induced 

movers.17 We take these event studies as evidence that differential trends between students who 

move downwind (or upwind) and those who do not change treatment status are not driving our 

results.  

B. Effects by Subgroup   

 We next examine several potential subgroups of interest. Different socioeconomic groups 

may have different access to resources to ameliorate the effects of pollution, such as academic 

help for more affluent students. Conversely, advantaged students are less likely to be exposed to 

pollutants at home, potentially leading to a larger marginal impact of attending a polluted school. 

Table 3 examines our preferred estimation for several subgroups: by race/ethnicity (White, non-

Hispanic, Panel A; Black students, Panel B; Hispanic students, Panel C); by frequency that 

students identify as on free- or reduced-price lunch (always on FRL, Panel D; sometimes on 

FRL, Panel E; never on FRL, Panel F), and by gender (Panels G and H).  

White, non-Hispanic students and Hispanic students have larger declines in FCAT when 

exposed to pollution, whereas Black students have larger behavioral incident and absence results. 

These differences in outcomes between White, Black and Hispanic students are all statistically 

significant. The largest test score effects are for the never-FRL students, with lower effects for 

the always-FRL students. The sometimes-FRL students fall between these groups. There is no 

statistical effect on behavioral incidents or absence for the never-FRL students. The behavioral 

effects are large and statistically about the same between the sometimes- and always-FRL 

 
17 Appendix Figure A2 presents results for using variation from all moves for students who move 

from an upwind school (year -1) to a downwind school (year 0) in any grade (i.e., not only those 

students transitioning from elementary to middle school).  
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students, though the sometimes-FRL estimate does not statistically differ from zero. The absence 

rate effect is driven by the always-FRL students. Always and sometimes FRL students have 

statistically significant differences in test scores from never-FRL students. There is no clear 

pattern of differences between boys and girls.  

Overall, these patterns suggest that the test scores of more-advantaged students are the 

most harmed by pollution exposure. While it is difficult to say for certain, this may be because 

disadvantaged students are already exposed to other sources of pollution. On the other hand, the 

less-advantaged are more likely to have higher behavioral incidents and absence rates. The larger 

effects on behavioral incidents might reflect a differential reaction by administrators and teachers 

to writing up disadvantaged students.   

C. Testing for Sorting into Schools 

To test for sorting into schools, we first demonstrate that wind direction does not 

systematically predict school or student demographic characteristics. Figure 4 plots the 

relationship in raw means between the time a school spends downwind and several key school-

level characteristics. These figures show that spending more time downwind is not consistently 

associated with being negatively selected on observable socioeconomic demographic 

characteristics. Table 4 shows a balancing test where we estimate Equation 1 with various 

demographic characteristics as the outcome variable of interest regressed on our measures of 

downwind status. The coefficients on downwind status are statistically insignificant. The 

coefficients are of mixed signs relative to being associated with lower socioeconomic status 

characteristics. We also see no effect of wind status on the accountability grade Florida assigns 
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the school (Column 9).18 While attending a downwind school lowers test scores, the effects are 

not large enough to drive changes in high-stakes accountability grades, one of the key signals of 

school quality that families use. Finally, the coefficients on many of the most important 

covariates related to socioeconomic status are small and relatively precisely estimated. For 

example, in the “maternal education” regression, the coefficient on being “downwind” is only 

0.02 years out of an average of around 12 years of mother’s education. The lower bound of the 

95% confidence interval suggests that at most being downwind is associated with a 0.1 fewer 

years of mother’s education.19 To get a sense if school characteristics are jointly associated with 

being downwind, we do a balancing test on predicted test scores and find no relationship.20    

The above test is consistent with sorting based on pollution being less of an issue with 

sorting into schools than residential sorting into neighborhoods. Selecting into schools based on 

traffic pollution is also less likely than some other forms of pollution because small pollutants 

such as CO, UFP, and nitrogen oxides are not perceptible by human senses and are only 

detectable with scientific equipment. Larger, more perceptible particles do not disperse as far 

from highways. Finally, due to the coastal wind patterns and the peninsular shape of the state, 

prevailing winds tend to shift during the school day relative to the evening. Thus, even if a 

 
18 Schools receive a grade of A through F in Florida’s high stakes accountability system, which we 

transform into a linear variable such that A=5, B=4, etc. We estimate that a 0.04 standard deviation 

decline in test scores at the school level would only be associated with 0.068 of a high stakes 

accountability grade level decrease. 
19 Another key indicator of socioeconomic characteristics if the fraction of FRL students. Here the 

coefficient suggests that being downwind causes the percent of FRL students to decline by 1 

percentage point (out of a mean of 67 percent). The standard errors are such that we can rule out 

that being downwind increases the percent of FRL students by more than 0.8 percentage points.  
20 Test scores are predicted in a supplementary model using the school characteristics from 

Equation 1 along with quadratics and first order interactions between each of the other control 

variables.   
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school is downwind over the course of a school day it does not necessarily mean the 

neighborhood it is located in is systematically downwind.  

Zip code fixed effects help account for student sorting between zip codes. Our balancing 

test shows that within-zip code schools are similar based on observable demographic and quality 

characteristics, and the event study shows that treatment and control students are on comparable 

trajectories. One serious remaining concern is that our results could be driven by within-zip code 

sorting. We can formally test this by dropping all zip codes in which there are choices between 

elementary/middle/high schools in terms of being downwind 60% or more of the time. We begin 

by dropping the control-only zip codes without any downwind schools. Of the remaining zip 

codes, we next drop all those in which there are choices between elementary/middle/high schools 

that are both upwind and downwind. This limits the geographic coverage of our sample such that 

external validity is a concern, but an advantage of this approach is that now our results are 

exclusively identified off of cases where there is no room, within our observed sample, for 

within-zip code sorting. Table 5 shows these results. The negative effects of attending a 

downwind school are larger than our baseline results and statistically significant, with a -9.01 

percent of a standard deviation impact on test scores. There are also larger effects on behavioral 

incidents and absences. However, the standard errors are roughly double, making it unclear if the 

estimates substantially differ from our core results. Importantly, if within-zip code sorting was 

driving our results, we would expect to see smaller effects in this sample with few attendance 

choices.  

In a related test, we drop all zip codes without at least one downwind school to address 

concerns that the “downwind more than 60% of the time” variable is comparing a large number 

of control schools to a small number of treated schools. Once we drop these zip codes, roughly 
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25% of the schools in the sample are downwind. Results are in Appendix Table A3 and are 

largely similar to our core results.  

D. Additional Robustness Checks 

If our results are driven by traffic pollution, we would expect students to do worse if they 

are downwind of more heavily-trafficked roads. We operationalize this by examining the impact 

of being downwind of the road nearest to the school in order to categorize schools by traffic 

volume. We then estimate our main model by interacting the “downwind more than 60%” 

indicator with three different Annual Average Daily Traffic (AADT) bins (<50,000 average cars 

per day, 50,000–75,000 average cars per day, and >75,000 average cars per day). We include the 

un-interacted bins as controls. Figure 5 plots the coefficients on the interactions. The estimates 

indicate that being downwind of the lower-traffic-volume roads has a small positive effect on test 

scores. The coefficient for being downwind of middle-traffic road is close to zero. There is a 

large negative effect of being downwind of the highest-volume roads, and this effect statistically 

differs from the lowest-volume estimate (p-value of interaction=0.000). Overall, the main effects 

appear to be driven by the highest-trafficked roads.  

 We next perform placebo tests to provide additional evidence that our results are not 

spurious. These placebo tests also guard against a related concern that, in spite of employing 

difference-in-differences, our estimates are somehow capturing the negative effects of changing 

schools.21 We run a placebo 500 times per outcome. For each estimate, schools were randomly 

assigned a percent of time downwind from the empirically observed distribution,22 which was 

 
21 As another test against this concern, we also tried controlling for “moving school” dummies up 

to three years out. Our results were robust to this specification.  
22 We use a normal distribution, with the mean and variance of percent of time downwind 

estimated from the observed sample. 
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then translated into an indicator variable equal to one if the placebo percent downwind was 

greater than 60%. The sample was limited to schools within 0.4 miles of a highway that were not 

downwind. To ensure variation with zip and student fixed effects, each placebo set had to have at 

least 21 zip codes with variation and at least 46 placebo-treated schools. The results of these 

placebo tests are presented in Appendix Figure A3, and we find no consistent placebo effects. 

Only 20 of the 500 FCAT estimates (4%), two of the behavioral incident estimates (0.4%) and 31 

of the absence rates estimates (6.2%) are larger in the predicted direction than estimates from our 

primary specification. 

 Table 6 runs a number of additional robustness tests across our models using the average 

FCAT outcome to address a variety of concerns. The first column is a replication of the preferred 

results from Table 2. Following Anderson (2015), the second column excludes schools that may 

be misclassified due to small errors in geolocation data. We do this by dropping schools within 

0.03 miles of the highway, and the results do not substantially change after dropping these 

schools. Column 3 presents results from a placebo test where we replace our “downwind” 

measure with an indicator variable equal to one if the wind is blowing parallel along the road 

segment sixty percent or more of the time. This should capture whether there are any effects 

related to strong prevailing winds in a location that is not directly associated with increased 

pollution exposure; however, the coefficient on test scores is small and not statistically 

significant.  

 One worry with the analysis is that parents move their children in ways systematically 

related to achievement, even within the same school district. Though we do not know where 

students live, we know their school address, and in Column 4, we limit the sample to only 

students who stay in the same zip code in our observed data. Here, any differences cannot be 
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driven by differential effects on cross-zip movers at any point through the end of high school. 

We have lower power due to a lower N, but the estimate for being downwind more than 60% of 

the time is larger in magnitude.  

Another concern with our analysis is that the long-run equilibrium of downwind schools 

is worse than in upwind schools, such that the downwind effect is actually a combination of 

pollution effects and negative peer effects. Although this would not change the policy 

implication that downwind schools are bad, it would be an important caveat in interpreting our 

results. We test this, as best as we can, by controlling for peer test scores as a “bad control.” 

Specifically, when we add the average FCAT results for each school-year as a control in Column 

5, the results do not change from the main specification, suggesting that it is pollution and not 

peer test scores that drive our results. In addition, Appendix Table A4 also shows the results 

where we add controls for distance of the move from the prior year’s school and use a number of 

alternative definitions of distance pollution traveled, as well as specifications using a measure of 

wind intensity exposure as an alternate measure of downwind status.23 In Appendix Table A5, 

we also show that our results are robust to grade-by-year fixed effects in Panel A and district-by-

grade fixed effects in Panel B. 

As a final robustness check, we examine different ways of clustering our standard errors. 

Appendix Table A6 shows that our core results are robust to a range of different clustering 

schemes in addition to our baseline multi-way clustering on student and zip-code for average 

FCAT. This includes clustering on school, student, zip-code, and student-school. We have tried 

different types of clustering on the other outcomes, and they follow a similar pattern. 

 
23 Details on our measure of wind intensity exposure are discussed in the Online Data Appendix. 
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E. Pollution Estimates 

So far, we have focused on the reduced form effects of being downwind of a major 

highway. We can also approximately examine the first stage of pollution. We cannot directly 

apply our model to estimate pollution exposure because we cannot track changes in student-level 

exposure over time. Instead, we use hourly EPA pollution monitor and hourly MADIS wind data 

to examine how much pollution increases when the monitor is downwind of a highway in 2010. 

Our preferred specification uses month and site fixed effects, such that the effect is interpreted as 

the level of pollution for hours when a monitor is downwind of a major highway, relative to 

hours when the wind blows such that the same monitor is upwind. We provide more details on 

this pollution data and on our exact estimating equation in the Online Data Appendix.  

We do not have measures for UFP pollutants of less than 0.1 micrometers in diameter, 

which are known to affect both cognition and health. These pollutants travel farther distances on 

the wind than heavier particles. We do have data on several heavier particles (PM10, CO, and 

NO2) that we would expect to be blown by the wind but travel a smaller distance (Karner, 

Eisinger, and Niemeier 2010). We take logs of these three pollutants so we can interpret the 

coefficient as percent changes; results are similar using levels. We expect PM10 and CO to travel 

a maximum of about 0.12 miles, while NO2 might travel up to 0.34 miles on the wind. We also 

examine a pollution index that normalizes each of these individual pollutants to have a mean of 

zero and a standard deviation of one over all pollution monitors, and then takes the simple 

average for each site-hour observation. 

Table 7 presents the results. We include pollution monitors within 0.4 miles of a highway 

(Column 1) to match our main specification and pollution monitors within 0.1 miles (Column 2) 

to focus on the likely distance traveled of the particular pollutants we have available in the data. 
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While Column 1 has more observations, we expect Column 2 to more consistently estimate these 

pollutants. The rows of the various pollution types include the estimated effect of being 

downwind at a given site in a given hour.  

Broadly, across most measures, the table confirms the general pattern that being 

downwind increases pollution exposure. For instance, in the preferred 0.1 mile range, when a site 

is downwind of a major highway, the pollution index increases by 0.187 standard deviations, 

relative to the hours of the day the site is not downwind. For the specific pollutants, PM10 

increases by 11.2 percent when the monitor is downwind of a major highway, CO increases by 

8.9 percent, and NO2 increases by a statistically insignificant 7.8 percent. The results are in the 

same direction but smaller when we expand the radius to 0.4 miles.  

Very roughly, we approximate that downwind schools experience a 25% higher level of 

ambient traffic pollution in a day, relative to upwind schools.24 We can combine our reduced 

form student achievement estimates with the estimated impacts of being downwind on pollution 

to derive a “two stage least squares” type of parameter. Scaling our preferred estimate of a 

policy-induced move to a downwind school that has a 25 percent higher level of pollution 

implies that increasing the ambient traffic pollution exposure of a school by 10 percent per day 

over the course of a school year causes students who attend this school to experience a 1.6% of a 

 
24 Students attending schools that are downwind 60% or more of the time are downwind on average 

76% of the day or 6.08 hours of the school day, whereas other students are only downwind 2.16 

hours (27% of the time). Therefore, “treated” students are downwind an average of 3.92 hours 

more than control students. Taking the pollution index measure of a 0.187 standard deviation 

increase in pollution for exposure in an hour, we calculate 0.187*3.92 = 0.73 standard deviations, 

or 25% of the pollution distribution applying the properties of a standard normal distribution. 
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standard deviation decrease in test scores.25 Similarly, a 10% increase in traffic pollution causes 

a 1.6 percentage point increase in behavioral incidents, corresponding to 4.6% of the mean.26  

We can use the above estimates to compare our work to prior research on the impact of 

testing-day pollution exposure (e.g., Ebenstein, Lavy, and Roth 2016; Marcotte 2017; Roth 

2016). Marcotte (2017) finds that doubling test day PM2.5 exposure from an average day (25) to 

an unhealthy day (above 50) leads to a decrease in test scores of 2%, suggesting that a 10% 

increase leads to a 0.2% decline. Similarly, Roth (2016) finds that a 10% increase in PM10 on the 

day of the test results in a 1% decline in test scores.27 Therefore, our impacts of prolonged 

exposure are roughly 1.5 times the size of test day exposure that Roth (2016) finds or 8 times the 

effect that Marcotte (2017)finds. That being said, it is possible that traffic pollution in aggregate 

is worse than either PM2.5 or PM10 individually. It is also worth noting that both other studies use 

different samples, and differences in results could reflect different local average treatment 

effects.  

As an alternative, we directly estimate short-term impacts through using our research 

design but with variation in wind direction based on the timing of the annual test. Similar to the 

above, we find effects that are two to four times smaller than our estimates of annual exposure; 

these results and the methodology associated with them are discussed in the Online Data 

 
25 Calculated by dividing a 0.0398 standard deviation decrease in test scores by a 25 percent 

increase in pollution and then multiplying by 0.10.   
26 We can also approximate the additional exposure to ultrafine particulate matter using the 

atmospheric sciences literature. Based on estimates from the Karner et al. meta-analysis, schools 

downwind within 0.207 miles of a highway (the average for our sample) would experience an 

increase in ultrafine particulate matters that is 2.5 times the background levels. 
27 We convert this to effects relative to the mean for comparability. From Table 2, Roth (2016) 

estimates a 0.3 percent decline in scores (0.055 points) based off of 1 ug/m3 increase (if 3.41 points 

is 20% of a standard deviation, then 0.055 points is 0.3% of a standard deviation). In Table 1, the 

average PM10 is 33.35 units, so a 1 unit increase is a 3% increase. Therefore, a 10% increase in 

PM10 implies a 1% decrease in test scores (0.003*0.1/.03=0.01). 
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Appendix and Table A7. A serious limitation of this exercise is that we assign weekly winds 

based only on the 2010 wind monitor data we have available. Therefore, we take these estimates 

as suggestive given that they are likely attenuated due to measurement error.  

VI. Conclusion 

 This is the first study, to our knowledge, to show negative academic effects of pollution 

related to repeated daily exposure during the school year to traffic, rather than just exposure on 

the day of the test. We leverage the microclimates that exist within zip codes and the policy-

induced changes in school attendance for middle and high school to study how localized 

pollution exposure can harm school children. Using within-child variation in exposure, we show 

that children who attend a school downwind of a major highway have lower test scores and a 

higher likelihood of behavioral incidents and missing school than when those same children 

attended schools with similar characteristics that were not downwind of a major highway. The 

effects are larger for more heavily-trafficked roads, and the effects appear to last even after the 

child moves away from a downwind school. This suggests that once damage from pollution is 

done, even during middle childhood, it might persist, potentially affecting outcomes far into the 

future.  

 In addition, the magnitudes of these effects are substantively important, especially when 

one considers that 6.4 million children (or about 12.6 percent of public and secondary school 

students) attend school within 250 meters of a major roadway. To put this in context, Chetty, 

Friedman and Rockoff (2014) find that a one standard deviation improvement in teacher quality 

increased test scores by 0.1 standard deviations. This suggests that removing exposure to local 

highway pollution would increase test scores as much as increasing teacher quality by 40 percent 

of a standard deviation. Our findings are about one-fifth of the magnitude of the Tennessee 
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STAR experiment (Krueger 1999), which found that reducing class sizes from 22 to 15 students 

increased test scores by about 0.2 standard deviations.  

We can also use our estimates to evaluate the academic impact of environmental 

regulations that have decreased traffic emissions by applying our estimate that a 10% decrease in 

traffic pollution leads to a 0.016 standard deviation increase in scores. The EPA estimates 

increased auto and truck regulations as part of the Clean Air Act reduced traffic emissions by 

70% between 1970 and 2015 (EPA 2015), which implies a large 0.11 standard deviation increase 

in test scores.28 These estimates would suggest that the reductions in traffic pollution over the 

past three decades are on par with major education interventions in a way that has not been 

catalogued by EPA welfare estimates.  

There is reason to believe that our estimates are a lower bound on the true effects of 

highway pollution. For instance, our study’s findings are identified from children who attended 

school within 0.4 miles of a major road for at least two school years. While that includes about 

36% of our study population in Florida, we do not include effects for children who move from 

schools very far from a major highway to being directly downwind of such a road. Conceivably, 

such children are exposed to less ambient pollution when they are farther away from roads, so 

the change in pollution exposure may be related to even larger effect sizes for them. However, 

selection issues prevent us from exploring this possibility further. We note, however, that our 

estimates show negative effects for all students. In addition, our results will be biased towards 

zero if the effects of pollution exposure are long-lasting. Then, even after a student moves from a 

 
28 See https://www.epa.gov/clean-air-act-overview, last accessed on 7/23/2018. While we believe 

this provides one application for understanding our estimates, there are some caveats to 

interpreting our results in this way. Our parameter is estimated off of our specific natural 

experiment, and more research would be needed to understand how to apply this more broadly.  

https://www.epa.gov/clean-air-act-overview
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downwind school to an unexposed upwind school, the student might continue to have lower 

academic performance. 

Our results also imply several important policy lessons. First, districts may want to 

consider the benefits of placing schools away from major highways. Districts may be unable to 

move already-existing schools, but compensatory measures such as air filtration systems may 

reduce the amount of in-school pollution exposure for schools located near highways (South 

Coast Air Quality Management District 2013; Gilraine 2020). Schools downwind of a major 

highway are not the only ones exposed to pollution, so these measures may be beneficial for 

schools in polluted areas more broadly. Finally, recent work by Chetty et al. (2014) suggests that 

there is massive heterogeneity in intergenerational mobility across cities. However, there is 

reason to consider that even within zip codes, there are forces that create unequal outcomes due 

to, for example, the placement of schools. More broadly, pollution exposure is not evenly 

distributed across the socioeconomic spectrum. Given that low-income and minority students are 

more likely to be exposed to pollution and live near major roads, our demonstrated relationship 

between pollution and academic achievement may provide insight into why academic 

achievement gaps persist in the United States.  
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Tables 

Table 1: Characteristics of children attending school within 0.4 miles of a highway  

  

(1)  

All children 

born in Florida 

(2) 

All children 

attending school 

within 0.4 miles 

of a highway  

(3) 

Children in 5th, 6th, 8th or 

9th grades within 0.4 

miles of a highway, 

dropping K-12 schools. 

School size (in 100s) 9.59   9.38 11.03 
    

Percent of teachers with  0.315 0.319  0.331 

  an MA degree    

Percent of time free  0.517 0.578 0.553 

  or reduced price lunch    

Stability rate 0.940 0.938 0.938 

    

Percent Black 0.224 0.319 0.326  
   

Percent Hispanic 0.240 0.204 0.187 

    

Average maternal education  12.37 12.26 12.29 

 
   

Percent mothers who are  0.643 0.563 0.576 

   married    

N Students 1,682,489 481,706 107,463 
Notes: Observations are at the student-year level. Column 1 shows the means for all children in Florida. Column 2 

shows means for children attending school within 0.4 miles of a highway; and Column 3 shows means for children 

0.4 miles from a highway only using observations in grades 5, 6, 8, and 9 and dropping K-12 schools. Column 3 is 

identical to our analysis sample. 
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Table 2: Impact of attending school downwind 

 (1) 

Average FCAT 

(2) 

Behavioral 

incident (0/1) 

(3) 

Rate of absence  

Panel A: First differences, to downwind 

 

 to Downwind more than 

60%:  

Downwind=1 

-0.0723** 

(0.0248) 
0.0247  
(0.0266) 

0.0058**  

(0.0027) 

    

Observations 74,316 62,476 61905 

N students 65,088 55,332 54,842 

Mean of outcome 0.0684 0.3319 0.0568 

    

Panel B: First differences, to upwind 

 

 from Downwind more 

than 60%: 

Downwind= 1 

-0.0465*** 

(0.0177) 

-0.0061 

(0.0119) 

-0.0004 

(0.0012) 

 

Observations 74,358 62,506 61,917 

N students 65,185 55,424 54,958 

Mean of outcome 0.0684 0.3319 0.0569 

    

Panel C: Fixed effects specification 

 

Downwind more than 

60%  

-0.0398** 

(0.0192) 

0.0409** 

(0.0197) 

0.0053* 

(0.0029) 

    

Observations 273,229 237,684 234,614 

N students 107,463 94,324 93,249  

Mean of outcome 0.0206 0.3558 0.0618 
Notes: Each row and column shows results from a different regression. Panel A shows first differences for moves to 

a downwind school (excluding upwind movers). Panel B shows first differences for a move to an upwind school 

(excluding downwind movers). Panel C uses student fixed effects instead of first differences (includes upwind and 

downwind moves). All models include grade fixed effects, zip code fixed effects, year fixed effects, distance from 

nearest highway dummies, a grade-moved indicator, the number of highways within a mile, school demographic 

characteristics, other school-level characteristics (percent of teachers with a master’s degree, size, and stability rate), 
and whether the student was on FRL that year. These controls are all differenced in the first-differences model and 

enter linearly into the FE model. Standard errors clustered on zip and student are in parentheses. Coefficients of 

interest are an indicator variable for whether a student’s school was downwind 60% or more of the time. All models 

are estimated by dropping “K through 12” schools and limiting the sample only to students who change schools 

from fifth to sixth or eighth to ninth grade. *p < 0.1 ** p < 0.05, *** p < 0.01
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Table 3: Effects by demographic subgroups 

 (1) 

Average FCAT 

(2) 

Behavioral incident 

(0/1) 

(3) 

Rate of absence 

Panel A: White, non-Hispanic students 

Downwind more than 60%  -0.0829*** 

(0.0307) 

0.0432 

(0.0306) 

0.0022 

(0.0033) 

    

Panel B: Black non-Hispanic students 

Downwind more than 60%  -0.0034 

(0.0210) 

0.0563*** 

(0.0176) 

0.0134*** 

(0.0035) 

    

Panel C: Hispanic students 

Downwind more than 60%  -0.049** 

(0.0250) 

0.0247 

(0.0275) 

-0.0006 

(0.0036) 

    

Panel D: Always FRL students 

Downwind more than 60%  -0.0242 

(0.0187) 

0.0418** 

(0.0191) 

0.0065* 

(0.0035) 

    

Panel E: Sometimes FRL students 

Downwind more than 60%  -0.0378 

(0.0254) 

0.0482 

(0.0355) 

0.0018 

(0.0042) 

    

Panel F: Never FRL students 

Downwind more than 60%  -0.0781** 

(0.0312) 

0.0162 

(0.0142) 

-0.0010 

(0.0022) 

 

Panel G: Girls 

Downwind more than 60%  -0.0357* 

(0.0189) 

0.0491** 

(0.0235) 

0.0048* 

(0.0029) 

    

Panel H: Boys 

Downwind more than 60%  -0.0451** 

(0.0214) 

0.0336* 

(0.0183) 

0.0060* 

(0.0035) 
Notes: The panel indicates the subgroup stratified on. All models are estimated using our fixed effects specification, 

dropping “K through 12” schools and limiting the sample only to students who change schools from fifth to sixth or 

eighth to ninth grade. All models include grade fixed effects, zip code fixed effects, student fixed effects, year fixed 

effects, distance from nearest highway dummies, a grade-moved indicator, the number of highways within a mile, 

school demographic characteristics, other school-level characteristics (percent of teachers with a master’s degree, 

size, and stability rate), and whether the student was on FRL that year. Standard errors clustered on zip and student 
are in parentheses. *p < 0.1 ** p < 0.05, *** p < 0.01 
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Table 4: Balancing test 

 (1) 

School 

size 

(in 100s) 

(2) 

School 

stability 

(3) 

Fraction 

teachers 

with 

master’s 

degree 

(4) 

Fraction 

FRL 

students 

(5) 

Mean years 

of mothers’ 

education 

by school 

(6) 

Fraction 

Black by 

school 

(7)  

Fraction 

mothers 

married at 

birth by 

school 

(8)  

Fraction 

Hispanic 

by school 

(9) 

School 

Accountability 

Grade 

(10) 

Predicted 

Average 

FCAT 

 

Downwind 
more than 

60% 

-0.1541 
(0.7797) 

-0.0012 
(0.0043) 

-0.0105 
(0.0162) 

-0.0088 
(0.0104) 

0.0246 
(0.0829) 

0.0076 
(0.0092) 

-0.0033 
(0.0046) 

0.0106 
(0.0182) 

0.0357 
(0.1217) 

0.007 
(0.006) 

Obs. 273,229 273,229 273,229 273,229 273,229 273,229 273,229 273,229 263,155 273,229 

N students 107,463 107,463 107,463 107,463 107,463 107,463 107,463 107,463 103,933 107,463 

Notes: Each column shows results from a different regression using our fixed effects model. Each column uses a different variable as an outcome to verify that 

treatment status is not related to observable characteristics. All models include grade fixed effects, zip code fixed effects, student fixed effects, year fixed effects, 

a grade-moved indicator, the number of highways within a mile, and distance from nearest highway dummies. The models also include the school-level 

characteristics, whether the student was on FRL that year, and school demographic characteristics, except when that variable is the outcome. Standard errors 

clustered on zip and student are in parentheses. Column 9 shows results limiting to schools where we observe their accountability grade: we code accountability 

as a linear variable (A=5, B=4, etc). Since we don’t have grades for all schools the sample falls slightly in this specification. Column 10 shows results from a 

regression in which we predict FCAT using our baseline covariates and their quadratics/interactions. We then use the predicted FCAT values as an outcome 

variable in Column 10. *p < 0.1 ** p < 0.05, *** p < 0.01  
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Table 5: Test for school sorting: including only zip codes without school choices near a 

highway 

 (1) 

Average FCAT 

(2) 

Behavioral incident 

(0/1) 

(3) 

Rate of absence 

Downwind more than 60%  -0.0901** 

(0.0401) 

0.1064*** 

(0.0410) 

0.0076 

(0.0084) 

Observations 8,304 7,470 7,385 

N Students 5,893 5,415 5,358 
Notes: Each column shows results from a different regression using our fixed effects model. All models include 

grade fixed effects, zip code fixed effects, student fixed effects, year fixed effects, a grade-moved indicator, the 

number of highways within a mile, distance from nearest highway dummies, school demographic characteristics, 

other school-level characteristics (percent of teachers with a master’s degree, size, and stability rate), and whether 

the student was on FRL that year. Standard errors clustered on zip and id are in parentheses. Coefficient of interest is 

an indicator variable for whether a student’s school was downwind 60% or more of the time. All models are 

estimated using only moves to middle/high school by dropping “K through 12” schools and limiting the sample only 

to students who change schools from fifth to sixth or eighth to ninth grade, only in zips where there is no “choice” 

on which type of school (upwind/downwind) a student attends in a given grade. *p < 0.1 ** p < 0.05, *** p < 0.01  
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Table 6: Additional robustness and validity tests for average FCAT 

 (1) 

Baseline 

model  

(2) 

Drop schools 

<0.03 miles from 

highways 

(3) 

Parallel 

wind 

placebo 

(4) 

Drop 

students 

changing 

school-

zips, grades 
5–10 

(5) 

Controlling 

for average 

FCAT by 

school 

Panel A: Downwind more than 60% of the time  

 

Downwind more than 60% of the 

time 

-0.0398** 

(0.0192) 

-0.0349* 

(0.0194) 

NA -0.0801*** 

(0.0251) 

-0.0462*** 

(0.0135) 

Observations 273,229 230,340  53,603 273,229 

N Students 107,463 92,817  20,689 107,463 

       

Panel B: Winds blow parallel 60% of the time (placebo) 

 

Winds blow parallel 60% of the 

time 
 

NA NA 0.0070 

(0.0096) 

NA NA 

Observations   273,229   

N Students   107,463   

Baseline model Yes No No No No 

Drop schools <0.3 miles from 

highways 

No Yes No No No 

Parallel wind placebo No No Yes No No 

Drop students changing school-

zips, grades 5–10 

No No No Yes No 

Controls for school-level FCATs No No No No Yes 

Notes: Each column and row show results from a different regression with average FCAT as the dependent variable 

using our fixed effects model. Column 1 replicates our results from Table 2. Column 2 drops schools within 0.03 

miles (50 meters) of a road. Column 3 is a placebo test replacing our wind exposure measure with winds blowing 
parallel to the highway 60% of the time or more as the variable of interest. Column 4 drops any student whose 

school changes zip codes in grades 5 through 10. Column 5 adds controls for school-level FCATs. Otherwise, the 

regression includes all of the controls in our baseline models. Standard errors clustered on zip and student in 

parentheses.  *p < 0.1 ** p < 0.05, *** p < 0.01 
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Table 7: Pollution and wind direction 

 (1) 

Monitors within 0.4 

miles of road 

 (2) 

Monitors within 0.1 

miles of road 

Outcome 1: Pollution index  

Downwind  0.043** 

(0.022) 

 0.187*** 

(0.039) 

# of Observations 36,979  11,505 

    

Outcome 2: Log PM10  

Downwind  0.023 

(0.019) 

 0.112***   

(0.031) 

# of Observations 13,244  5,520 

    

Outcome 3: Log CO 

Downwind  0.049** 

(0.021) 

 0.089** 

(0.035) 

# of Observations 13,966  2,777 

 

Outcome 4: Log NO2 

Downwind  0.047 

(0.035) 

 0.078 

(0.089) 

# of Observations 5,805  590 

Month FE Yes  Yes 

Site FE Yes  Yes 

Total # of monitors 15  5 
Notes: The data used in this table is 2010 hourly MADIS wind monitor data merged with hourly pollution monitor data for 

all monitors within 0.4 miles of a highway. Each row and column shows results from a different regression. Downwind is 

an indicator for the pollution monitor being downwind in that hour. Within 0.4 miles, there are five PM10 monitors, three 

NO2 monitors, and seven CO monitors. Within 0.1 miles, there are two PM10 monitors, two CO monitors, and one NO2 

monitors. Standard errors (in parentheses) are clustered at the site-date level.  
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Figures 

Figure 1: Identification of upwind and downwind schools 

Panel A Panel B 

 

 

Notes: Panel A is an anonymized map of a portion of Florida that shows the relationship of some of the schools in 

our sample (the blue dots) relative to a major highway (the solid gray lines). Panel B is a map created from the 

Florida Department of Transportation shape files showing the interstates (in black) and U.S. highways (in gray) in 

Florida, which we define as “major highways” for the purpose of our research design.  
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Figure 2: Effects by percent of time downwind 

 

Notes: This figure shows the effect of percent of time downwind relative to a major highway on average FCAT for 

those moves generated by a “policy-induced” move to middle or high school. Each point plots the coefficient on a 

dummy for that bin of percent of time downwind. All models include grade fixed effects, zip code fixed effects, 

student fixed effects, year fixed effects, distance from nearest highway dummies, a grade-moved indicator, the 

number of highways within a mile, school demographic characteristics, other school-level characteristics (percent of 

teachers with a master’s degree, size, and stability rate), and whether the student was on FRL that year. Includes 

95% confidence intervals based on standard errors clustered on zip and student. 
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Figure 3: Sixth grade move event study by mover type 

 
 
Note: This figure shows the effect of a move out of fifth grade of a student transitioning either to or from a school that 

is downwind more than 60% of the time. The Y-axis plots interactions between being in a given grade and the type of 

mover. Being a student who does not switch wind status is the excluded group to avoid collinearity with the student 

fixed effects. All models include grade fixed effects, zip code fixed effects, student fixed effects, year fixed effects, 

distance from nearest highway dummies, a year-mover indicator, the number of highways within a mile, school 

demographic characteristics, other school-level characteristics (percent of teachers with a master’s degree, size, and 

stability rate), and whether the student was on FRL that year. Includes 95% confidence intervals based on standard 

errors clustered on zip and student. See the text for more details. 
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Figure 4: School demographics over percent of time downwind 

 

Notes: This figure plots mean demographic characteristic for each school in our sample relative to the percent of 

time the school spends downwind of nearby highways. We fit a line to the data (the red lines), and plot its associated 

standard errors. Percent time spent downwind is based on 2010 wind monitor data matched with school location 

relative to the five nearest major highways.  
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Figure 5: Effects of being downwind 60% of the time by traffic 

 

Notes: This figure shows how our estimates vary based on the effect of being downwind of the closest road segment 

with varying levels of average annual daily traffic (AADT) counts. AADT data comes from 2010 FDOT traffic 

monitor data. The Y-axis plots the coefficients on the interaction between being downwind of a road segment with 

the stated AADT bin. This model include AADT bin dummies, grade fixed effects, zip code fixed effects, student 

fixed effects, year fixed effects, distance from nearest highway dummies, a grade-moved indicator, the number of 

highways within a mile, school demographic characteristics, other school-level characteristics (percent of teachers 

with a master’s degree, size, and stability rate), and whether the student was on FRL that year. Includes 95% 

confidence intervals based on standard errors clustered on zip and student. The mean AADT is 27,535 for the 
<50,000 bin, 59,160 for the AADT 50,000–75,000 bin, and 165,086 for the AADT >75,000 bin. 


