
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-03

DEVELOPING AN EXPANDABLE GUI TOOL TO
ENHANCE NETWORKING EDUCATION:
GRAPHICAL USER INTERFACE FOR SHELL
ENTRY (GUISE)

Anderson, Clinton J.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/69609

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun



 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

DEVELOPING AN EXPANDABLE GUI TOOL TO 
ENHANCE NETWORKING EDUCATION: GRAPHICAL 

USER INTERFACE FOR SHELL ENTRY (GUISE) 

by 

Clinton J. Anderson 

March 2022 

Thesis Advisor: Amela Sadagic 
Co-Advisor: John D. Fulp 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188 

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington, DC, 20503. 
 1. AGENCY USE ONLY 
(Leave blank)  2. REPORT DATE 

 March 2022  3. REPORT TYPE AND DATES COVERED 
 Master’s thesis 

 4. TITLE AND SUBTITLE 
DEVELOPING AN EXPANDABLE GUI TOOL TO ENHANCE 
NETWORKING EDUCATION: GRAPHICAL USER INTERFACE FOR 
SHELL ENTRY (GUISE) 

 5. FUNDING NUMBERS 
 
  

 6. AUTHOR(S) Clinton J. Anderson 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

 8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
N/A 

 10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
 12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.  12b. DISTRIBUTION CODE 

 A 
13. ABSTRACT (maximum 200 words)     
 The lack of systemic education dedicated to computer networks and the general inadequacy of students’ 
comprehension of the structure and the dynamics of the networks are arguably issues in most public schools. 
In the situation where the internet is a commodity, the increase in the threat of global attacks on many 
computing resources is exceptionally high, and so is the consequential importance of the global cyber 
workforce. Most people achieve their basic understanding through their routine use of computers at home, 
and it is both pragmatic and more effective to consider using basic home tools because of their didactic 
benefits. We designed and developed GUISE (GUI for Shell Entry) as an intuitive interface that makes 
command entry and network analysis easier for masses of users. GUISE leverages the operating system’s 
capabilities and allows inexperienced users with no expertise in the computer networking domain to acquire 
enhanced network situational awareness in a competent manner. The ultimate benefit of the GUISE tool is 
providing its users with an educational aspect focused on the networking elements of their home computer 
infrastructure. That approach has the potential to directly support the growth of their networking literacy and 
proficiency, and their navigation of the networking landscape with enhanced confidence and safety. 

 14. SUBJECT TERMS 
network analysis, visualization, user interface  15. NUMBER OF 

PAGES 
 99 
 16. PRICE CODE 

 17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

 18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 
Unclassified 

 19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

 20. LIMITATION OF 
ABSTRACT 
 
 UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

DEVELOPING AN EXPANDABLE GUI TOOL TO ENHANCE NETWORKING 
EDUCATION: GRAPHICAL USER INTERFACE FOR SHELL ENTRY (GUISE) 

Clinton J. Anderson 
Civilian, Scholarship for Service 

BA, University of California, Berkeley, 2013 
MS, University of Southern California, 2018 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 
March 2022 

Approved by: Amela Sadagic 
 Advisor 

 John D. Fulp 
 Co-Advisor 

 Gurminder Singh 
 Chair, Department of Computer Science 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 The lack of systemic education dedicated to computer networks and the general 

inadequacy of students’ comprehension of the structure and the dynamics of the networks 

are arguably issues in most public schools. In the situation where the internet is a 

commodity, the increase in the threat of global attacks on many computing resources is 

exceptionally high, and so is the consequential importance of the global cyber workforce. 

Most people achieve their basic understanding through their routine use of computers at 

home, and it is both pragmatic and more effective to consider using basic home tools 

because of their didactic benefits. We designed and developed GUISE (GUI for Shell 

Entry) as an intuitive interface that makes command entry and network analysis easier for 

masses of users. GUISE leverages the operating system’s capabilities and allows 

inexperienced users with no expertise in the computer networking domain to acquire 

enhanced network situational awareness in a competent manner. The ultimate benefit of 

the GUISE tool is providing its users with an educational aspect focused on the 

networking elements of their home computer infrastructure. That approach has the 

potential to directly support the growth of their networking literacy and proficiency, and 

their navigation of the networking landscape with enhanced confidence and safety. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. PROBLEM SPACE ...................................................................................1 
B. RESEARCH QUESTIONS .......................................................................2 
C. MOTIVATION ..........................................................................................3 

1. Home or Job Situational Awareness ............................................3 
2. Educational Maturity ....................................................................4 
3. Indication of Compromised Systems ............................................4 

D. SCOPE ........................................................................................................6 
E. METHODOLOGY ....................................................................................6 
F. THESIS STRUCTURE .............................................................................7 
G. CHAPTER SUMMARY ............................................................................8 

II. BACKGROUND AND LITERATURE REVIEW .............................................9 
A. INTRODUCTION......................................................................................9 
B. RELATED CYBER INCIDENTS ............................................................9 

1. DarkSide Ransomware Attack on Colonial Pipeline ..................9 
2. Hackers Poison Water Plant Remotely ......................................10 

C. CYBER PEDAGOGY THROUGH APPS.............................................10 
1. Office Minefield ............................................................................11 
2. Packet Tracer Simulation Tool as Pedagogy to Enhance 

Learning of Computer Science Concepts ..................................12 
D. COMMAND LINE INTERFACE (CLI) / POWERSHELL ................13 
E. CHAPTER SUMMARY ..........................................................................15 

III. NETWORK MONITORING TOOLS ...............................................................17 
A. INTRODUCTION....................................................................................17 
B. TOOLS FOR HOME USE ......................................................................18 

1. Microsoft Network Status ...........................................................18 
2. Apple AirPort Utility ...................................................................19 
3. Cross-comparison ........................................................................20 

C. COMMERCIAL NETWORK MONITORING TOOLS .....................21 
1. Wireshark (with MaxMind Geolocation) ..................................21 
2. TShark ..........................................................................................23 
3. Network Performance Monitors: SolarWinds, Dynatrace, 

PRTG Analyzer ............................................................................24 
4. Cross-comparison ........................................................................26 

D. TOOLS FOR EDUCATION ...................................................................26 



viii 

1. Books Dedicated to Networking .................................................26 
2. University Classes ........................................................................27 
3. Internet Search and Tutorials.....................................................27 
4. Cisco Packet Tracer .....................................................................27 

E. CHAPTER SUMMARY ..........................................................................28 

IV. USER INTERFACE DESIGN ............................................................................31 
A. INTRODUCTION....................................................................................31 
B. PROTOTYPE IDEATION: PERSONAL CYBER-

CONNECTIVITY PICTURE (PCCP) ...................................................33 
1. PCCP Assorted Applications ......................................................34 
2. PCCP Initial Command Prompt Display ..................................35 
3. PCCP Transition to GUISE ........................................................37 

C. DESIGN OF GUISE DISPLAY ..............................................................38 
D. GUISE LAYOUT .....................................................................................41 
E. GUISE MENUS AND USER INTERACTIONS ..................................43 

1. Commands Menu .........................................................................43 
2. Services Menu...............................................................................45 
3. Simple and Parameterized Options Menus ...............................45 
4. Manual Text Entry ......................................................................46 
5. Tooltips..........................................................................................47 

F. VISUALIZATION OF GUI ELEMENTS .............................................47 
1. Unity as a Development Environment .......................................47 
2. GUISE Features ...........................................................................47 
3. Options Layout .............................................................................48 
4. Color Scheme and Sizing .............................................................48 
5. GUISE GUI Layout and Operation ...........................................50 

G. CHAPTER SUMMARY ..........................................................................53 

V. SYSTEMS INTEGRATION AND IMPLEMENTATION ..............................55 
A. INTRODUCTION....................................................................................55 
B. GUISE C# DEVELOPMENT IN UNITY..............................................55 
C. NAMING CONVENTIONS ....................................................................56 
D. JSON DATA .............................................................................................57 
E. DATALOADER AND DATAVISUALIZER SCRIPTS ......................58 
F. STATUSNODES: CONTEXT FOR INDEXES, PAGES, AND 

GROUPS ...................................................................................................60 
1. Indexes ..........................................................................................61 
2. Pages ..............................................................................................61 
3. Groups ...........................................................................................62 



ix 

G. BACKSPACE AND CONTEXT SWITCHING ...................................63 
H. TOOLTIPS AND TOOLTIP TRIGGERS ............................................63 
I. OUTPUT TO FILE / INPUT TO SCREEN ..........................................64 
J. CHAPTER SUMMARY ..........................................................................65 

VI. CONCLUSIONS AND RECOMMENDATIONS .............................................67 
A. PRINCIPAL THESIS CONCLUSIONS ...............................................67 
B. ADDRESSING RESEARCH QUESTIONS ..........................................67 

1. Research Question 1: Interface for enhanced situational 
awareness ......................................................................................67 

2. Research Question 2: Application that is extendible ................68 
C. LIMITATIONS ........................................................................................70 
D. RECOMMENDATIONS FOR FUTURE USE .....................................71 

1. GUISE as a Security Management Tool ....................................71 
2. GUISE as an Educational Tool ...................................................72 
3. Microsoft Windows Integration..................................................72 
4. Open-Source Project ....................................................................73 

E. FUTURE WORK .....................................................................................73 
1. Usability Study .............................................................................73 
2. User Study Focused on Learning Effectiveness ........................73 
3. Implementation on Other Operating Systems ..........................73 

LIST OF REFERENCES ................................................................................................75 

INITIAL DISTRIBUTION LIST ...................................................................................79 

 

  



x 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



xi 

LIST OF FIGURES  

Figure 1. Malwarebytes home.  Source: BECS Software Solutions (2020). ...............5 

Figure 2. Malwarebytes’ after-action report. Source: BECS Software Solutions 
(2020). ..........................................................................................................5 

Figure 3. Changing directories in Command Prompt and PowerShell. Source: 
Hoffman (2017). ........................................................................................14 

Figure 4. Nmap, a networking command uncommon to normal users. Source: 
Wouk (2021). .............................................................................................15 

Figure 5. Microsoft Network Status ..........................................................................19 

Figure 6. Apple AirPort Utility’s cursory yet “pretty” interface. Source: Lee 
(2016). ........................................................................................................20 

Figure 7. Wireshark showing extensive contents of a full packet. Source: 
Wireshark (n.d.). ........................................................................................22 

Figure 8. TShark showing computer interfaces.  Source: Kothari (2021). ...............23 

Figure 9. SolarWinds screen showing various networking elements. Source: 
SolarWinds (2022). ....................................................................................24 

Figure 10. Dynatrace with depictions of cloud and network services. Source: 
Dynatrace (2022). ......................................................................................25 

Figure 11. PRTG Analyzer showing worldwide network status. Source: 
Paessler (2022). ..........................................................................................25 

Figure 12. Packet Tracer featuring 4 LANs and their connections. Source: Cruz 
Sendy (2015). .............................................................................................28 

Figure 13. Idea for MS Network Status opening applications graphically .................34 

Figure 14. Four Main Requirements of PCCP ............................................................35 

Figure 15. PCCP options, tooltips, flow, and end .......................................................36 

Figure 16. Jet fighter cockpit interior Source: World War Wings (2022). .................39 

Figure 17. Flight simulator in-game screen vs. initial GUISE layout Source: 
Kellerer et al. (2011). .................................................................................40 



xii 

Figure 18. Early PCCP Mockup #1: Showing depressed (grey) buttons, and 
how simple / parameter options and tooltips work ....................................41 

Figure 19. PCCP Mockup #2: Showing tooltips (in purple) on options, 
replacing separate “usage” button ..............................................................42 

Figure 20. PCCP Mockup #3: Showing InputField to replace parameter buttons, 
and TargetName to input strings ................................................................42 

Figure 21. Later PCCP version with newer tooltips, arrow bars, TargetName, 
and InputField ............................................................................................43 

Figure 22. GUISE blueprint ........................................................................................43 

Figure 23. Ping using /? to show its help menu, options, and their descriptions ........45 

Figure 24. Color scheme of GUISE buttons................................................................49 

Figure 25. Button positioning based on Command 0 ..................................................50 

Figure 26. Final GUISE interface................................................................................51 

Figure 27. GUISE after running a command, hovering over an option ......................52 

Figure 28. GUISE UI elements within the Unity game engine ...................................56 

Figure 29. Expanded menu (left) and collapsed method conventions (right) .............57 

Figure 30. Overview of JSON Fields ..........................................................................58 

Figure 31. Expanded JSON data showing fields for commands and options .............58 

Figure 32. StatusNode Layout showing Groups, Pages within Groups, and 
Indexes within Pages..................................................................................61 

Figure 33. Dynamic Tooltips extending downwards (left) and to center (right) ........64 

  



xiii 

LIST OF TABLES 

Table 1. GUISE sizes and colors .............................................................................49 

Table 2. Datavisualizer methods and their descriptions ..........................................59 

 



xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xv 

LIST OF ACRONYMS AND ABBREVIATIONS 

CLI command line interface 
GUI graphical user interface 
GUISE Graphical User Interface for Shell Entry 
HTML hypertext markup language 
IP internet protocol 
LAN local area network 
MAC OS X Apple Operating System 
MS Microsoft 
OS operating system 
OSI Open Sources Interconnection 
PCCP Personal Cyber-Connectivity Picture 
UI user interface 
URL Uniform Resource Locator 



xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xvii 

ACKNOWLEDGMENTS 

This material is based upon activities supported by the National Science 

Foundation under Agreement No 1565443. Any opinions, findings, and conclusions or 

recommendations expressed are those of the author(s) and do not necessarily reflect the 

views of the National Science Foundation.  

I would like to thank Dr. Sadagic for taking me on as a student, giving me access 

to the lab room (tons of long nights spent there), and sharing so much of your knowledge 

to make me a better UI developer and more of a professional. Your bright spirits and 

constant suggestions were inspiring. I also give my thanks to J.D. Fulp, my co-advisor, 

the Naval Postgraduate School’s best teacher and just an awesome person to be around. 

Both of you were outstanding advisors, mentors, and co-authors on this thesis—the most 

intensive and comprehensive project I have ever worked on in my life. With your specific 

direction and exceptional guidance, you made this project challenging while at the same 

time fun. It was a blast to work with you two. I wish you the best with your future 

students, with your remaining time at NPS, and in your personal lives. 

Eric, you have been outstandingly supportive, as you always have been during my 

entire academic career, as were Haipeng and Haiyan, my Monterey host family. My SFS 

cohort, Andrea, Sutter, and Elyssa, and the other members of the Fantastic Four, Aria and 

Josh—thank you for sharing this ride and for being so encouraging. I also want to thank 

the SFS faculty at NPS, including Dr. Irvine, Dr. Davis, and Cecelia Davis for showing 

nothing but support from day one of arriving in Monterey as well as Michele and other 

TPO staff. Though most of it was online due to the Covid-19 pandemic, you all showed 

high professionalism getting all the students through during that unconventional time. 

Finally, I would like to thank the National Science Foundation and the other staff 

and teachers at the Naval Postgraduate School for making the Monarch Scholarship 

possible. I came to NPS to learn, grow, and make myself a better programmer and cyber 

specialist. I am leaving NPS even more confident than I had hoped to. 

Go NAVY! Go BEARS! Fight On! 



xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



1 

I. INTRODUCTION 

A. PROBLEM SPACE 

Analyzing network connections and network status is a daunting task for even 

experienced network analysts and non-specialists. The average home personal computer 

user or novice network student has little to no knowledge of the jargon, application, or 

operation of the fundamental protocols or tools used within the networking domain. 

Common questions such as, “How does a router work?,” “What is an IP Address?,” and 

“How many computers are connected to my LAN?” are answered by an average user 

superficially, at best. 

Just as public knowledge about cars and engines has grown with the progression 

of the automobile industry, so too should fundamental networking knowledge grow 

among public computer users. Why? Benefits range from helping a home user understand 

what malware is and how to prevent it, increasing the baseline knowledge of job seekers 

interested in joining the cyber workforce, and providing more effective support and initial 

training to cyber students. Progress toward this goal could begin by instituting a solid 

picture of the fundamental networking concepts—What is a router? What are the network 

stacks? How do machines communicate through a network? How does the Domain Name 

System work? Cybersecurity attacks within American companies are at an all-time high 

and are set to increase, becoming one of the most exposed and prolific methods of attack 

on the country. Thus, inculcating greater understanding among the growing number of 

network users should help mitigate this risk. 

Many of the topics from the cybersecurity realm are explained in the literature to 

computer users, yet many have no interest in learning about the concepts, likely due to 

two main reasons. The first is that the introduction of some of the interfaces is presented 

in a complicated way, scaring newcomers off. Secondly, few of the underlying technical 

concepts are presented to average users via their daily use of computing platforms to 

develop their growth. Though some of the underlying concepts can be complicated to 

understand, we feel that fundamental improvement in situational awareness can be 



2 

achieved if the neophyte home user is provided with an easy-to-use way to interact with 

their computer’s ongoing state of connectivity. 

This thesis examines the design and use of a home-use shell input method, and by 

extension, a network analysis tool when scripted with the right commands, that leverages 

the operating system’s capabilities and allows naïve users who have no expertise in the 

computer networking domain to use advanced capabilities in a more intuitive and easier-

to-use format. The feasibility study at the center of this research effort seeks to design 

and develop an in-house network analysis tool, provisionally named GUISE (GUI for 

Shell Entry). This tool’s capability is achieved by wrapping a range of OS commands in a 

graphical user interface (GUI). The tool allows the users to select different commands in 

a full range of their capabilities and, over time, learn more about them. The in-house, 

expandable tool includes a simple-to-use GUI with embedded help features and delivers 

enhanced network situational awareness to the user.  

The primary purpose of this effort is to improve the efficiency of the network 

monitoring tasks that learners and forensic analysts face and improve the overall 

understanding of the relations and causalities of events related to network operations. Our 

attention is on naïve users—people unfamiliar with the operating system (OS) 

commands, command line, or commercial tools used to analyze network status. The same 

tool can be used by users who understand OS commands but need to refresh that 

knowledge without using manuals. 

B. RESEARCH QUESTIONS  

The research questions addressed in this thesis are: 

• What type of graphical user interface and user interactions can provide 

enhanced comprehension of OS commands and their capabilities to novice 

users? 

• Could the underlying system architecture and user interface be designed to 

support a variety of classes of OS commands and services beyond the 

network analysis? 



3 

C. MOTIVATION 

Network capability is manifested in different forms depending on the type of user. 

In general, most people can benefit from short and non-complicated network tasks, and 

the tool designed for this thesis can apply to all these users. More professional users need 

a distinct, comprehensive set of tools, which requires that our tool be extendable to 

support their needs while not confusing the less technically savvy users. 

1. Home or Job Situational Awareness 

Most home users have limited knowledge of what happens behind the scenes of 

their system and internet browser. When asked what happens when one connects to the 

internet, in general, there may be some knowledge of interacting with a URL or search 

engine, and some even have knowledge of web HTML when it is presented. Virus 

scanners tend to be known to be operating silently in the background. The plane of these 

few facts represents a good portion of the average user’s knowledge base. 

More advanced users use precautions such as a “firewall” to block undesired 

incoming traffic, use a “proxy” for anonymous searches, use secure settings for outbound 

searches, and apply settings to prevent “cookies.” These terms (firewall, proxy, cookies, 

etc.) represent substantial professional ability. However, general usage and the 

modification of these settings are not common knowledge. 

Many workplaces do not have enterprise-level cybersecurity systems that can 

detect, modify, and change network-connections in an easy-to-understand fashion. While 

big companies have an expert who defends their computer systems, smaller companies or 

those without a dedicated security employee do not, and they stand to benefit from 

having access to tools that make their jobs easier. 

A tool like the one in this thesis can provide unskilled workers with some selected 

expert abilities, can introduce services that were unknown before, and serve to gradually 

escalate knowledge to increase home cyber defense or present an additional layer of 

defense for the workplace. 



4 

2. Educational Maturity 

While our tool has a general value and it can be useful to anyone who picks it up, 

it is best suited for those who have a necessity for being involved in networking, 

particularly: 

• Naïve Users—Home users and average computer users at most jobs are 

the most populous while also being the ones who need the most assistance. 

• 1st-Year College Students—Particularly those studying cybersecurity or 

computer science. 

• Cyber Professionals—This tool can mainly be used for those who could 

use the quick GUI for simple or trivial tasks. These professionals can also 

write scripts for continuous defense tasks and provide those scripts to non-

technical company employees. 

The United States’ adversaries in this field tend to have training programs, with 

numbers seeming to increase dramatically as years continue. 

3. Indication of Compromised Systems 

Procmon, Regmon, and Sysinternals are also comprehensive networking and 

processing tools that are widely regarded by our limited cybersecurity engineer force 

(Russinovich, 2022). These applications provide more than enough capability to perform 

almost any task, such as malware tracking and network monitoring.  

When something does go wrong, users need to be aware of those events. Problem 

examples include compromised systems (whether malicious or not), unauthorized 

accesses, or uploading of malware. A virus detection and removal program like 

Malwarebytes can help (Malwarebytes, 2022). It works out of the box by simply 

downloading the software and clicking a single “Scan” button, with images shown in 

Figure 1 and Figure 2: 



5 

 
Figure 1. Malwarebytes home.  

Source: BECS Software Solutions (2020). 

 
Figure 2. Malwarebytes’ after-action report. 

Source: BECS Software Solutions (2020). 



6 

Initially, the users can run Malwarebytes as a first step toward networking 

knowledge progression. Though simplistic, even the use of this simple one-button 

program introduces keywords such as scanning, ransomware, PUPs (potentially 

unwanted programs) and PUMs (potentially unwanted modifications). They may notice 

differences in traffic, increased CPU usage, or recognize an unknown application in the 

Task Manager. Using this program, do users have the tools to really uncover the root of a 

problem? Usually not.  

Professional tools like Sysinternals are designed for professionals, and although 

virus scanners are a great first step as they are better than nothing, they tend to be too 

simplistic in their delivery and a deeper dive is needed. Our application can slowly 

introduce how to find a virus by using internal tools native to the operating system while 

also providing a host of options that are not usually provided with superficial scanner 

software like Malwarebytes. 

D. SCOPE 

The scope of this feasibility study is to design and prototype a home-use network 

analysis tool that allows naïve users to employ a range of OS commands and acquire an 

enhanced network situational awareness. 

E. METHODOLOGY  

In recent years networking technologies have advanced rapidly, yet the common 

person’s understanding of how a network works has not grown with this trend. This 

thesis will systematically review the frameworks that knowledge can be presented in 

within common operating systems, and then design and develop an application that can 

be integrated fluidly. Specifically, we will execute the following tasks: 

1. Conduct literature review. 

2. Execute an analysis and study of networking tasks. 

3. Create a conceptual design of the system and identify the capabilities that 

will be supported. 



7 

4. Identify all system requirements for developing and prototyping, including 

research on prototype design and Application Programming Interfaces 

(APIs). 

5. Design and implement the prototype tool and associated GUI. 

6. Identify lines of future work and produce recommendations for potential 

approaches. 

F. THESIS STRUCTURE 

Chapter II provides several highlights of the recent cyber-attacks against the U.S. 

and addresses the necessity of an easy-to-use network monitoring tool. It compares and 

discusses existing technology and highlights their advantages and disadvantages 

regarding the thesis purposes.  

Chapter III provides an overview of the current monitoring tools found on the 

major operating systems, Windows Home and Mac OS X, and the two main ways to 

monitor traffic, overviewing the native OS command line and current commercial 

software.  

Chapter IV outlines the design goals to achieve the desired results of this effort 

and presents the elements of GUISE tool design—the layout of its elements and user 

interactions.  

Chapter V elaborates the elements of the system development, including listing 

specifics within the JSON modules, showing how they relate to script classes, describing 

the naming of elements, depicting flowcharts of methods and variables, and the 

interconnection with the Unity interface. 

Chapter VI highlights the conclusions of the work on this thesis and suggests 

future work. 



8 

G. CHAPTER SUMMARY 

Chapter I covered the problem space addressed by this thesis, the specific 

research problem that was examined, motivation for the work, research questions, scope 

of the thesis, and the methodology that was used to address the research questions. 

 

 



9 

II. BACKGROUND AND LITERATURE REVIEW 

Cyber-attacks have become rampant in recent years due to the ease with which 

they can be accomplished, the anonymity of the attackers, and the relative gains that can 

be procured. 

A. INTRODUCTION 

Recent 2020–2021 cyber incidents have taken the U.S. by surprise. The attacks 

have shown how vulnerable the U.S. economy is to simple hacking methods that cost a 

fraction of the damage done. The following examples illustrate how anonymous users can 

cause major damage with very little attribution. 

B. RELATED CYBER INCIDENTS 

1. DarkSide Ransomware Attack on Colonial Pipeline 

DarkSide is a hacking group that caused a major upset in the U.S. in May of 2021 

when it caused a ransomware attack on Colonial Pipeline. Colonial Pipeline owns a 

5,500-mile East Coast oil pipeline that controls up to 45% of the fuel on the coast, and 

because DarkSide had exfiltrated shared internal data, the decision was made to shut 

down the system until resolution (Bing, 2021). The prices of oil spiked until a 5 million 

dollar settlement was made (Wilke, 2021).  

Despite the sophistication of the attack, the root cause was a case of a normal 

employee who was unfamiliar with the benefits of up-to-date patching, safely copying, 

and performing correct backups. Additionally, the case may be more elementary than 

that. According to Reuters, an employee password was stolen, and the company did not 

use multi-factor authentication (Kelly & Resnick-ault, 2021). 

Training for these situations is a staple of any cyber defense coordinator, and the 

fact that so much damage could have been caused by such a simple mistake is 

indefensible. This problem has an easily correctible fix that we must ensure becomes 

implemented among the public.  



10 

2. Hackers Poison Water Plant Remotely  

According to CNN, an unknown culprit gained entry to the IT systems at a water 

treatment facility in the small town of Oldsmar, Florida. The hackers were able to take 

control of the water system utilities with “TeamViewer,” a remote access tool that had 

not seen usage by the plant in over six months. Using remote software controls, they 

increased the sodium hydroxide chemicals in the water to dangerous levels, up to 100 

times normal (Marquardt et al., 2021).  

The attack was caught in time, and no damage was done. However, an attack like 

this highlights the need for increased user awareness of common cyber-attacks, their 

methods from simple to complex, the threat opportunities that emerge from remote 

access, and the absolute necessity to monitor a network by a non-expert. 

C. CYBER PEDAGOGY THROUGH APPS 

Starting from a very young age, humans experience many activities that are 

complicated to grasp, yet due to continual and pervasive operation, the functions are 

learned without ever going through formal instruction. Some of these activities are 

swimming, using Microsoft Excel, or even reading a roadmap. Once learned, the actions 

seem simple enough to be trivial, but for a person new to the activity—say a landlocked 

individual for swimming or an older person who is new to computers in general—their 

first interaction with the activity might be enough of an obstacle to make them quit 

altogether or make them consider it too difficult to learn enough to be competent. 

When considering technical activities, like programming mathematical functions 

in Microsoft Excel spreadsheets, what makes systems so easy to learn is the design that 

goes into providing the system through “affordance” (Gibson & Carmichael, 1966). 

When some system should be used a certain way (as in you expect certain system 

behaviors), the system is designed such that the interaction seems natural. A key portion 

of this is the word ‘natural,’ meaning no instruction manual or assistance outside of the 

application is necessary. The effort to accomplish the goal is not hindered by the 

complication of its usage. 



11 

1. Office Minefield 

A few applications come to mind when considering ease of use coming inherently 

from good design. In Joel Garreau’s article “Office Minefield,” he discusses two games 

that come pre-installed on Microsoft, Solitaire and Minesweeper, to surreptitiously teach 

new computer users the basic function of navigating a computer, such as how to use a 

mouse with its left and right clicks, how to navigate to small icons, and how to use the 

various menus (Garreau, 1994). Even the fact that you had a timer, which means you had 

to do these actions quickly, added to the expertise being built with each play. Lizzy 

Duzan, a lead product manager for entertainment, stated that, “it soothed people 

intimidated by the operating system, ... giving them something fun to do while also 

teaching them how to use a mouse” (Garreau, 1994). 

If one was to ask a common computer user how or even when they learned how to 

use the computer, including how to use a mouse, type in Excel, or navigate the operating 

system, many may not be able to recall it. That demonstrates a good design. 

Unfortunately, the same situation could be said of command prompt usage. 

Although being capable of swiftly moving around in that environment would be highly 

beneficial for most if not all computer users, the ‘intimidation of the system’ shuns many 

non-technical people away. Although hard statistics could not be found on how few 

people use the command line, it is not out of the question to think that fewer people use it 

on a regular basis than those who do.  

One reason for this might be that outside of performing computer security, there 

just are not that many requirements to use the terminal. Many applications can be 

downloaded online and immediately installed through GUI windows. Even still, many 

network features such as connecting to the internet or virus scanning are simply 

performed by the operating system with almost no interaction from the user, except for a 

few button clicks to acknowledge warnings or perform updates. 

What is lost in that ease of access is the user’s systemic capability to really use 

their computer, which is learned through consistent use the shell, i.e., the command line. 

We therefore exchange expertise of our system—forgoing memorizing folder locations, 



12 

account hierarchies, and commands and utilities—to save time and confusion. This lack 

of knowledge eventually hurts normal workers and home users later in life when they are 

faced with a scarce but destructive cyber-attack. 

2. Packet Tracer Simulation Tool as Pedagogy to Enhance Learning of 
Computer Science Concepts 

Teacher and researcher Dr. Vijayalakshmi begins his topic introduction by stating, 

“...a working knowledge of networking is essential to computer science graduates—an 

opinion put forth in the Computer Engineering Curricula 2016-ACM guidelines” 

(Vijayalakshmi et al., 2016). This baseline education in networking is therefore (or rather, 

should be) required for anyone going into cyber, such as the security analysts, IT techs, 

and researchers so far discussed. He implies that students would do well if their short 

time spent studying in upper-level security courses were spent on advanced techniques 

and practice, rather than spending it on fundamentals. He also states that the imagination 

level of students should be high as well. That is important because networks cover vast 

bodies of knowledge and experience, and to keep track of it all requires a healthy dose of 

system knowledge, practical experience, and mental visualization. 

Any course covering networking in sufficient detail requires a fundamental 

understanding of diverse subjects such as electronic devices, software concepts and 

communication technology. Dr. Vijayalakshmi used a tool called Cisco Packet Tracer for 

his research, which covered that knowledge base well. After guiding the students in his 

university class through using the tool on fundamental topics like demonstrating network 

commands, interpreting ping and traceroute output, troubleshooting and resolving 

network issues, examining the functionality of TCP, UDP, and application layer 

protocols, Dr. Vijayalakshmi found that students had an 85% attainment of objectives, a 

significant increase from around 65% before the activity. 

The idea behind this is that even though Packet Tracer is a GUI, and the provided 

exercises are geared to classroom education, once students are familiar with a basic 

network setup and can visualize different configurations in their head, swapping to a text-

based approach will not be as daunting.  



13 

D. COMMAND LINE INTERFACE (CLI) / POWERSHELL 

According to Lifewire.com, the Command Prompt is a particularly useful 

program to users and administrators to execute commands. It can be opened through the 

Start Menu, by using the Run command, or by opening it from its folder location, usually 

C:\Windows\system32\cmd.exe. Officially called “Windows Command Processor,” it is 

also known as the command shell or simply the command prompt. “It’s used to execute 

entered commands. Most of those commands automate tasks via scripts and batch files, 

perform advanced administrative functions, and troubleshoot or solve certain kinds of 

Windows issues” (Fisher, 2022). Using a CLI is preferred over a GUI among developers 

and administrators, particularly when developing software, configuring hardware, or 

using the extended capabilities that the GUI developers had not included in their version 

(Campion, 2020). 

Windows has two command shells: the basic familiar Command shell that has 

existed for decades (with a black background), and an upgraded version with advanced 

scripting language capabilities and additional features (with a blue background), called 

PowerShell (Microsoft | Docs, 2022).  

According to How-to-Geek’s Chris Hoffman, despite PowerShell being more 

complicated, requiring more memorization and incorporating new elements like ‘cmdlets’ 

to be learned, it is preferred over the traditional Command shell because it allows access 

to a host of expanded features, and users can be more explicit. Windows began including 

PowerShell on all Windows operating systems since Windows 7 and has since become 

the default choice for inputting commands through a shell since Windows 10 (Hoffman, 

2017). Figure 3 shows both shells.  



14 

 
Figure 3. Changing directories in Command Prompt and PowerShell. 

Source: Hoffman (2017). 

Many computer users are at least familiar with Windows’ Command Prompt, and 

even with a few of the more popular commands such as “ping” or “ipconfig.” The 

command “nmap” with a website as an argument is shown in Figure 4. A journalist at 

TechGenix promotes at least 11 commands every Admin should know (Posey, 2017). 

More of these commands should be common knowledge. 



15 

 
Figure 4. Nmap, a networking command uncommon to normal users. 

Source: Wouk (2021). 

Using text-based command lines requires memorized knowledge or extensive use 

of the ‘help’ feature to describe what commands do. Command shells are available on all 

common operating systems, though possibly named something different. For example, on 

Unix-based shells like Linux and Mac the shell interface could be called the “Terminal.” 

There is a large correlation between Windows commands vs. Unix commands. 

For instance, the command to display status about a host computer is called ipconfig on 

Windows and ifconfig on OS X. Other differences come down to a difference in 

companies, however, and most desired computing results can be crafted from some 

manipulation of the basic commands on either. 

E. CHAPTER SUMMARY 

This chapter details several recent cyber-attacks against the U.S. We covered the 

advantages that a widespread and user-friendly network monitoring tool could bring to 

workforces that depend on remote traffic in their daily operations. We also discussed the 

ways in which computer users learn about computer networks and the basic functionality 

of the command line interface.  



16 

THIS PAGE INTENTIONALLY LEFT BLANK 



17 

III. NETWORK MONITORING TOOLS 

A. INTRODUCTION 

Owing to the prevalence of mobile and home network-capable devices, analysis 

of network packets arriving-to and departing-from one’s computer is among the most 

useful cybersecurity exercises that the public might engage in. Today the Internet is 

considered a commodity with stricter demands and expectations regarding the quality of 

its services. There are two distinct communities: a) the user community that includes 

most of the population who have only a basic understanding of computer networks, and 

b) the much smaller (by proportion) professional community that enjoys much deeper 

technical understanding borne of formal education and/or on-the-job experience. The 

professional community employs tools to understand traffic at a much deeper level; they 

understand network traffic from endpoint to endpoint, troubleshoot broken connections, 

and comprehend the operation and consequences of malware. Even today, basic computer 

networking education is not widespread in the classrooms, so most people learn their 

skills from their personal experiences. It would, therefore, be beneficial to provide an 

educational aspect focused on the networking elements for the less-knowledgeable 

individuals. That would support the growth of their networking literacy, proficiency, and 

navigation of the networking landscape with enhanced confidence and safety. 

Currently, Network Status on Microsoft and some form of Airport Utility on Mac 

OS devices are used by most people when called upon to examine their personal network. 

Outside of formal classes or self-tutoring, that type of functionality represents the outer 

edge of what they know about the inner working of the internet. To address that situation, 

we propose an application like these programs in the simplicity of the user interface, but 

that uses the advanced capabilities of the native command shell to provide extra 

information about network traffic, and about how and with whom their computer is 

communicating. 



18 

B. TOOLS FOR HOME USE 

Several attempts have been made to provide users with a baseline knowledge of 

their networks, albeit minimal in terms of overview and interaction. This section reviews 

the most notable examples in that category. 

1. Microsoft Network Status 

Microsoft Network Status is a common view for many home computer users. It is 

found by clicking an icon in the lower right-hand screen of most Windows taskbars. You 

can then navigate a few links to change the network settings. While this page displays the 

most basic settings—like whether the computer in question is connected to the internet or 

not—none of the shown icons are clickable (i.e., selectable) and there are only a few 

buttons to either change a simple setting or fix a broken connection. After that, the 

computer goes through a wizard to perform any functions for the user. Figure 5 shows the 

status page in Windows 10. 



19 

 
Figure 5. Microsoft Network Status  

The computer and network are shown with basic clipart and no color. Some of the 

items on the page and further into the search could be considered jargon. For instance, the 

figure above states “change adapter options.” It is highly likely that most people do not 

even know what an adapter is (as it pertains to a network). Other user interface elements, 

like a solid line that means ‘connected’ or a dashed line that means ‘broken’, are simple 

enough. Markedly, this image forms the basis, but also the limit, of many users’ entire 

networking knowledge. 

2. Apple AirPort Utility 

When showing the details about their networks, the Apple operating system 

(MacOS) provides an informative user interface to their users; it presents the network 

several levels deep, with connected computers as well as routers. Figure 6 shows Apple’s 

more graphical interface. 



20 

 
Figure 6. Apple AirPort Utility’s cursory yet “pretty” interface. 

Source: Lee (2016). 

The internet is shown as a three-dimensional (3D) globe, and the background has 

a gradual fade. Computer icons are shown as 3D objects as well. A green light is shown 

beside each device to indicate its good connection status. A dashed line shows wireless 

connections while a solid line shows wired connections. 

3. Cross-comparison 

The MacOS network display seems more aesthetically pleasing than Microsoft’s 

and it shows more features; that could be an indication that their user design team thought 

this application would have a higher usage among their base users. This may be because 

of the shared branding within their ecosystem among their phones, laptops, desktops, 

capsules, and routers—in comparison to a peer household that might only use Microsoft 

for its OS only within the user’s entire collection of electronic gadgets. 



21 

Both systems have access to firewall and virus settings, and both can be used to 

fix the problems automatically. Neither, however, provides an in-depth operation, such as 

live network monitoring or access to any devices outside the home system. 

C. COMMERCIAL NETWORK MONITORING TOOLS 

Business and Open-Source companies have made headway in the presentation of 

cyberspace as well. Software developers have created applications that can provide the 

missing networking details to those who need it, albeit specialized and slightly more 

complicated than native apps developed through home operating systems like Microsoft 

and Apple. 

1. Wireshark (with MaxMind Geolocation) 

The Wireshark application’s homepage states it is the “world’s foremost and 

widely-used network protocol analyzer” (Wireshark, n.d.). The software monitors 

incoming and outgoing traffic, and presents it in a text-based, easy-to-read layout that can 

be paused and scrolled through, analyzed by a user, filtered, and saved. A screenshot of 

Wireshark is shown in Figure 7. It is a prolific tool used by university students and cyber 

professionals alike. 



22 

 
Figure 7. Wireshark showing extensive contents of a full packet. 

Source: Wireshark (n.d.). 

When using a text-heavy packet capture tool such as Wireshark to comprehend 

the communication, a user typically reads rows of traffic, looking at the IP addresses to 

get a sense of ‘the speakers.’ One then turns to the ports and protocols to see what type of 

dialog is being communicated, and then considers each row (packet) to understand the 

specifics of the payloads more completely. When looking for abnormalities, the users 

look for patterns that are indicative of maliciousness. 

Undoubtedly, to truly grasp the sought-after traffic requires understanding 

Wireshark’s particular color-coding and knowing which networking layer is expected to 

contain whatever specific information is being sought. One also requires much filtering 

of irrelevant rows to find packets of interest. Therefore, it is not uncommon to have to sift 

through dozens of rows to find a single indication of improper communication. For those 

who only want to understand the communication outside of searching for malware, this 

might include browsing through hundreds of rows of packets. Depending on the sites 



23 

open in the browser during the network up-time, that could include ads, frivolous 

services, and other information. 

There are options to filter the information if the IP address of concern is known or 

if you want to follow a particular protocol exchange like TCP (Transmission Control 

Protocol). However, to understand the long captures, it takes a considerable manual effort 

to scroll through hundreds of rows (i.e., multiple screens) of traffic, back and forth, until 

an idea is refined as to which filters would be most applicable. A module called 

“MaxMind” can even provide geolocation. 

2. TShark 

TShark is a well-known network protocol analyzer which allows capturing of data 

packets from a live network (Chandel, 2020). Figure 8 shows using tshark with the -D 

command, displaying the computer’s interfaces. It is a text-based version of Wireshark, 

which in turn is a GUI-version of the common networking command “tcpdump.” 

Tcpdump is a tool to display traffic from the Command Prompt.  

 
Figure 8. TShark showing computer interfaces.  

Source: Kothari (2021). 

TShark is based on Tcpdump output, adding some powerful decoders and filters, 

and written on the console, a stark contrast to Wireshark’s GUI. 



24 

3. Network Performance Monitors: SolarWinds, Dynatrace, PRTG 
Analyzer  

Several applications have been made to monitor user traffic. They include intense 

analysis with tabular charts with extensive headers, graphs in various forms, historical 

data, mapping, troubleshooting capability, and ability to capture logs. Figures 9, 10, and 

11 show screenshots of SolarWinds, Dynatrace, and PRTG Analyzer, representative 

software showing those characteristics. While the native command prompts and base OS 

network settings tend to be free, these commercial products tend to cost more which is in 

line with their advances in features. 

 
Figure 9. SolarWinds screen showing various networking elements. 

Source: SolarWinds (2022). 



25 

 
Figure 10. Dynatrace with depictions of cloud and network services. 

Source: Dynatrace (2022). 

 
Figure 11. PRTG Analyzer showing worldwide network status. 

Source: Paessler (2022). 



26 

4. Cross-comparison 

Many of these tools fit the requirement for what they were designed for. 

Command Prompt comes as a native text-input tool, with PowerShell being more 

advanced. The network analyzers are used extensively by cyber professionals to have 

easy access to the hundreds or even thousands of computers under their purview. TShark 

and Wireshark fall somewhere in the middle and can find some usage for almost anyone, 

ranging from curious home users to hackers to forensic specialists.  

D. TOOLS FOR EDUCATION 

Many of the varied tools shown thus far have a steep learning curve. So far, this 

learning is not generally familiar to home users, and information quickly scales up in 

difficulty as the cyber ladder is progressed. Dedicated education approaches can come in 

many forms, with some popular ones demonstrated below. 

1. Books Dedicated to Networking 

Books tend to be the initial introduction to networking that many professionals 

experience. The specialized topics they teach, such as navigating routing tables and 

border gateways or calculating checksums, are not generally passed down tribally as the 

concepts are harder to relay and visualize from a peer to a different coworker. 

The downside is that the books tend to be costly and thick, are not as interactive 

as other methods, and are typically seen as the least engaging learning tool. While the 

table of contents is helpful, there are no opportunities to quickly find a sought-after topic 

that modern users are used to, like scrolling or using Control-F to find keywords in the 

body. 

Books are great to record general long-term knowledge. However, the users under 

consideration will likely need to find their problem in real-time, for instance, if their 

network goes down or if they think they are being attacked. In that scenario, the book 

goes from being “less useful” to being “unusable.” 



27 

2. University Classes 

Relevant classes tend to mainly be attended by cybersecurity students, with even 

computer science students in other disciplines tending to take the more popular 

programming or hard-engineering classes. It is well known that cybersecurity jobs have 

great success in securing applicants who learned their skill by taking much cheaper 

certifications or bootcamps. These applicants tend to apply much later in life after their 

initial degree, which is often in something completely different than the cyber domain. 

Classes also carry the high cost of tuition, and therefore, tend to be more theoretical to 

legitimize their increased price from cheaper alternatives. 

3. Internet Search and Tutorials 

YouTube videos and paid sites like Skillshare (Skillshare, 2022) and Udemy 

(Udemy, 2022) provide excellent tutorials and offer the broad knowledge base to prepare 

its users for a cyber job, or at least to understand the basics of a home network. Unlike 

college classes and books, it is easy to browse interesting topics and skip over 

unnecessary details. One problem is they tend not to offer knowledge as in-depth as 

books or classes. Also, some of their best video contributors present the material on only 

a small series on a topic, or present videos that last just a few minutes. Online tutorials 

can prove to be scattershot in creating competent users on a topic. 

4. Cisco Packet Tracer 

Learning in diverse environments can be a major benefit to cyber beginners, and 

one of the best at providing these environments is Cisco Packet Tracer. That application 

does an excellent job of visualizing a packet’s path through a network. A screenshot 

shown in Figure 12 shows a typical network layout created in Packet Tracer. 



28 

 
Figure 12. Packet Tracer featuring 4 LANs and their connections. 

Source: Cruz Sendy (2015). 

While a tool like Packet Tracer is not used outside of a classroom setting, the 

initial visualization will stay with a user, and the images represented through this tool 

will be remembered long after the user’s eventual transition to text-based input. 

E. CHAPTER SUMMARY 

Aside from networking, some tools have been assimilated so well and are so 

common that their assumed usage becomes standard. For instance, car rental companies 

assume people with Class C driver’s licenses can drive any of the rental cars, and 

smartphones are designed such that regardless of their different screen layouts and menu 

configurations, usually the instruction manual is not consulted. When it comes to 

networking, there is a place in society for all tools described in this chapter. But there are 

also significant weaknesses with each that prevent them from making networking 

command knowledge commonplace among all computer users. The range of currently 

available solutions is wide, yet imperfect: From slower page-based books to long-

duration classes; from expensive commercial products to wordy applications and “user-

unfriendly” consoles. Each tool has a certain function in society and can be best-in-class 



29 

for a particular audience and a particular situation. However, none of those tools shows a 

potential of becoming a go-to tool that could be widely adopted by an arbitrary user, and 

be noted for its simplicity, comprehensiveness, and visual appeal. 

  



30 

THIS PAGE INTENTIONALLY LEFT BLANK 



31 

IV. USER INTERFACE DESIGN 

A. INTRODUCTION 

The basic way in which a user can interact with the operating system is via its 

text-based terminal called the “command line interface,” or CLI. Popular usage of the 

interface began around the computer revolution in the mid-1960s and has been a 

mainstay on all PCs, more than 60 years later. Despite the command prompt’s longevity, 

the use of the control prompt is not widely employed among all types of computer users, 

and it is relegated to the system and network administrators. One possible reason for that 

is the popularity and the ease with which the users can download digital resources from 

the internet through a GUI. The long history and current usage in CLI basic form without 

much change are also testaments to how well the command prompt works for the small 

group of expert users who use it consistently (Campion, 2020).  

It may take a large, concerted effort to change the normality of using the 

command prompt. In the book “Diffusion of Innovation,” Dr. Everett Rogers discusses 

several factors that can influence the diffusion of innovations like novel ideas, methods, 

physical objects, or digital systems (Rogers, 2003). Rogers and his research team 

identified and classified many factors that influence the spread (adoption) of the 

innovation by a newer audience or the change in habits of the current users to that new 

system (Rogers, 2003). The factor that reflects the attributes of innovation as they are 

perceived by the adopters includes the following five elements: 

• Relative advantage—the benefits that an innovation brings over the 

current solution,  

• Compatibility—the degree of being consistent with the norm,  

• Complexity—the simpler it is to understand and use the innovation, the 

faster it will be adopted,  

• Trialability—incremental, gradual, trials result in easier adoption and 

higher adoption rates, 



32 

• Observability—the results of adoption being visible to other adopters. 

In essence, for the large-scale adoption of the user interface, the users’ 

preferences are highly likely to gravitate towards an interface that is close to what is 

already in use (it does not introduce radically new concepts), simpler than the current 

solution, while also offering a noticeable advantage, such as speed and ease of use. 

Therefore, to compete with the long-time incumbent, a new interface must access what 

makes the old system popular and iterate in a way that makes the system familiar, yet 

better.  

Unwin et. al states that command line interfaces are preferred for three main 

reasons (Unwin & Hofmann, 1999). Primarily, it is because they provide precision when 

writing exact commands. Secondly, they provide the ability to repeat prior commands, 

either by pressing up on the keyboard or by typing “history” to view past results. The 

final reason is that they can provide easy input when it comes to writing complicated 

parameters.  

Although these benefits are justified, Unwin delineates the drawbacks of the 

command line, stating that commands can be exceedingly intricate and non-intuitive. 

Only people who can memorize these complex commands can get the whole value, and 

even then, they can mistype. Tognazzini (1992) elucidates that these memorization tasks 

force the user to abandon the cognitive process on the primary task and instead give 

attention to the secondary task (of command syntax). GUIs can be created to solve some 

of these problems due to the fact they are easier to learn and allow users to focus on 

recognition rather than recall. An additional but secondary feature is that GUIs are 

beneficial for exploratory analysis, and present graphics for those who prefer interacting 

with images (Computer Hope, 2021). Keeping all these GUI advantages and command 

line disadvantages in mind, we explore the design of an intuitive GUI to replace the 

traditional command line. 



33 

B. PROTOTYPE IDEATION: PERSONAL CYBER-CONNECTIVITY 
PICTURE (PCCP) 

A well-designed and developed console visualization tool can be used to increase 

basic knowledge of network analysis terms and their functions and provide a better 

understanding of machine communication. By iterating on what is useful to know while 

providing ease of access, our goal is to improve people’s comprehension of how 

computers interact with each other through a network and to educate individuals to 

become savvier home-users, more qualified job candidates, and more mature novice 

networking students.  

Originally called “Personal Cyber-Connectivity Picture,” or PCCP, the GUISE 

application went through several layout iterations of its user interface. Each iteration 

improved the delivery of the most important networking information to a novice user in 

an informational way. Unless a user is an experienced programmer, hunting through the 

lines of data on analyzers such as Wireshark can be a particularly daunting task. The 

alternative is to use the native but insufficient OS GUI software, complicated and non-

real-time terminal commands, or specialized and costly commercial tools.  

Therefore, our design goals are: 

1. The user interface will provide fast and efficient probing of the most 

effective commands on the same interface. 

2. The interface will employ the types of user interactions that are simple, 

easy to use, and familiar to users with no technical expertise. 

3. The interface will be capable of providing general education so that a user 

who is thoroughly familiar with the software would understand 

fundamental networking concepts. 

4. The user interface will provide a clear situational awareness at any point 

of user interaction: a user will know the options offered via the interface, 

the way to abandon the current action, and the way to execute a desired 

course of action. 



34 

5. While the interface will be focused on networking commands, its design 

will support easy extensions to include other groups of commands like 

forensic commands, file and directory navigation, and pipes and filters. 

The basic command prompt does not support probing of unknown commands, 

does not provide simple interactions, does not have an educational role, nor does it 

provide easy-to-acquire situational awareness. Therefore, our goal is to take advantage of 

the basic output of the shell while providing extra functionality to achieve our goals. For 

this, we must design our prototype with these features in mind from the ground up. 

1. PCCP Assorted Applications 

An initial idea was to examine extending the functionality of Microsoft’s bare 

Network Status utility with an ability to open our application upon the click of the 

represented computer icon, shown in Figure 13. In current forms of Microsoft Windows, 

the icon is not selectable. 

 
Figure 13. Idea for MS Network Status opening applications graphically 

The various menus would have selectable icons themselves, which would open 

specific software applications or run pre-written commands. For instance, the proposed 

Network button would open and instantly run Wireshark, while Hostname would show 

the host name based on the data from running ‘hostname’ in the command prompt.  



35 

More sections could have been created, and they would link to various on and off-

console applications like Wireshark or off-the shelf commercial software like Dynatrace 

or PRTG Analyzer, or even native GUI applications like Process Monitor or Task 

Manager. As shown in Figure 13, most of the written networking requests depended on 

inputs to the command prompt, and thus the decision was made to tighten the focus and 

highlight those commands, forgoing the approach with components that link to separate 

applications. 

2. PCCP Initial Command Prompt Display  

Before the actual development of the interface, the first consideration was to 

determine how the program would be activated (by clicking the computer icon of MS 

Network Status) and what would be displayed. Figure 14 shows the initiation of PCCP in 

the upper left corner. 

 
Figure 14. Four Main Requirements of PCCP 

The main portion of PCCP, starting at the Home screen, is imagined to look like a 

standard console. However, this is just a space for visual system feedback and not an 

interactable shell. Buttons wrap around the console and can be pressed to print text on the 

screen in real-time, building a working command line, as imagined in the bottom left 

corner of Figure 15. If the wrong input is selected, that will not produce any result 



36 

(through code). That could happen, for instance, by starting a command with an invalid 

button or by pressing an option button before its associated command is selected.  

 
Figure 15. PCCP options, tooltips, flow, and end 

As an alternative to allowing (and dealing with) invalid input, one approach 

would be to grey out any button that cannot be used. However, this would cause constant 

flickering of buttons (between ‘valid’ and ‘invalid’ colors), even on the correct input. 

Good design would have much of the screen unchanged, limiting transitions from the 

prevalent view as much as possible. Therefore, because most of the user input selections 

are expected to be correct, it is unnecessary to inform a user of mistakes or otherwise put 

“guard rails” on their input choices. 

Starting at the ‘Home’ level, the user sees all available commands. Once they 

select the desired command, the entire menu would shift to that command’s menu, and a 

user would be provided with choices specific to that command only. Ideally, there would 

be buttons for examples, information, usage, and information specific to this command so 

that a user could feel confident in the usage of the command. As the user selects the 

elements within this context, that information is held in memory (i.e., pushed onto a stack 

data structure). Once done, there would be a Return button to go back to the Home menu 

level, with the display area reserved for the system feedback (i.e., the center screen) 

continuing to show the text from the command menu. As the user types more commands 



37 

this way (going back and forth between the Home menu and some Command menu), the 

center screen is replaced with the appended chain (commands plus any of its attendant 

parameters), with the user typing up to “N” commands. After the entire text is entered, 

consisting of possibly multiple commands chained together, a Run button will allow the 

user string (of a properly formatted command) to execute. A script reads the text, clears 

the screen’s content, executes the command, and displays the result back to the screen. If 

the returned text comes back with more words than the provided display area, a scroll bar 

provides the option to see more of the lower result. After the command is completed and 

results displayed, the application will automatically return to the Home screen again, 

ready to receive commands, and the press of any button would clear the prior 

information. The screen is cleared because after entering a command, there is a tendency 

to try a completely different command instead of appending to the old one, and the prior 

information could be useless. We determined that it is better to have each screen contain 

only the result of the last command selection rather than have portions of information 

from prior commands take up screen space. 

A peculiarity of the Windows command prompt is that after running a command 

and seeing a particularly long result in a small window, the text with a desired (selected) 

command may be out of view. Windows allows simply pressing the up key on the 

computer to review what was typed. However, considering the educational aspect of our 

application, constant display of the typed command is instructive, especially for longer 

commands that are new to the user, so the PCCP leaves the command displayed even 

after its information is provided, until a new command is entered.  

If another command is requested, the screen is first cleared, and the new 

information is displayed. If the user’s mind changes about the command, there will be a 

Back button to return from the Console-N menu to the Home screen, offering all 

command buttons again. 

3. PCCP Transition to GUISE 

Although the first idea of presenting a network as an easy-to-read and navigable 

‘Picture’ is a noble one, it is ultimately outside the scope of this thesis. The second design 



38 

iteration of PCCP was easier to implement; it had graphical elements to present and 

receive text-based results. We realized that there was too much focus explaining the 

commands by providing a secondary menu (a “Picture”) that was ‘two-levels deep.’ We 

wanted something simpler than that. The basic remnant of PCCP’s design remained, 

however, and we created a graphical outer shell for the command prompt that is not as 

daunting as the bare command prompt and not as complicated as a menu with 

subsections. Since mimicking a shell command is the basic function of our application we 

decided to repackage and rename the program “GUI for Shell Entry” with the acronym 

GUISE. The definition of the word—not the acronym—guise is “a general external 

appearance; aspect; semblance” (Dictionary.com, 2022), which is the concept of what we 

desired to accomplish for the shell. 

C. DESIGN OF GUISE DISPLAY 

Continuing from the basic tenets of our initial ideas, the design of an interface 

inside the fighter jets developed by the DVI Aviation company has provided additional 

inspiration in designing an optimal layout for our interface (DVI Aviation, 2022). 

A considerable amount of deliberation went into crafting a jet aircraft’s small 

interior, as shown in Figure 16. Many professionals needed to be engaged in that task. As 

the experts from the DVI Aviation company suggest, the architecture must be economical 

with the placement of the various switches and buttons so the pilot can make split-second 

decisions (DVI Aviation, 2022). Their human factor experts consulted pilots on the best 

layout for a jet cockpit. It was found that certain characteristics could help define critical 

controls to assist the pilot in efficient recognition of where each item in the cockpit was. 

The company suggested the following guidelines for the elements of that user interface: 



39 

 
Figure 16. Jet fighter cockpit interior 

Source: World War Wings (2022). 

• Control Shape. Shape was used to differentiate the purpose of the 

controls, with tactile cues indicating the control’s purpose. They suggested 

the use of an airfoil or wing shape to control the aircraft’s flaps or a 

miniature wheel for the landing gear retraction. 

• Control Size. Controls of different sizes also allow differentiation. That, 

however, provides less advantage than shape changes because the 

distinguishable difference in size might not be identified as quickly.  

• Location. Controls should be separated by enough distance to distinguish 

each element of the user interface. 

• Colors. The colors red, orange, yellow, green, and blue are easy to discern 

by a human operator. That understanding drove the selection of the final 

set of colors in the user interface. For instance, improper/dangerous 

operation and warning lights were red or amber, and a green color 

signified proper operation or the position of the landing gear. 



40 

• Mode of Operation. The “way” in which the controls operate can also 

help categorization. For instance, when comparing two controls like a 

push-pull type vs. a rotary type, though they might have similarities in 

colors, sizes, shapes, etc., they will still be very distinguishable because 

they operate so differently. 

• Labeling. Names should be clearly labeled and unambiguous. 

While not all these characteristics are used in this thesis, the DVI list can guide 

the construction of a usable computer interface. We can develop a menu with easily 

recognizable elements by using coloring schemes that contrast and make sense, varying 

the button sizes based on function, and grouping buttons far apart. 

The depicted flight simulator in Figure 17 shows many of the highlights 

mentioned in DVI’s layout suggestions. Although the entire interior of a jet plane was not 

used on the in-game screen, the basic features are displayed prominently (i.e., distancing 

of the buttons, the type of operation between the rotary, single push and dual-push 

buttons, their sizes, and the color contrast on and off-screen.) The basic design of our 

final prototype is based on these tried-and-tested elements. 

 

 
Figure 17. Flight simulator in-game screen vs. initial GUISE layout 

Source: Kellerer et al. (2011). 



41 

D. GUISE LAYOUT 

The GUISE layout consists of menu buttons for commands positioned at the top, 

services (on the left), single options (on the right), and parameterized options (at the 

bottom). Arrow buttons are at either end of the menu to allow scrolling through each, and 

a descriptive label provides the menu’s name. The action buttons—‘Run’, ‘End’, and 

‘Back’—are in isolated locations and have a color that contrasts with the other Menu 

buttons. Several earlier versions are shown in Figures 18, 19, 20, and 21, with the final 

blueprint shown in Figure 22. 

 
Figure 18. Early PCCP Mockup #1: Showing depressed (grey) buttons, and 

how simple / parameter options and tooltips work 



42 

 
Figure 19. PCCP Mockup #2: Showing tooltips (in purple) on options, 

replacing separate “usage” button 

 
Figure 20. PCCP Mockup #3: Showing InputField to replace parameter 

buttons, and TargetName to input strings 



43 

 
Figure 21. Later PCCP version with newer tooltips, arrow bars, TargetName, 

and InputField 

 
Figure 22. GUISE blueprint 

E. GUISE MENUS AND USER INTERACTIONS 

1. Commands Menu 

The hub of the application, the “Commands Menu,” consists of ten buttons along 

the top of the GUI. Catering to the top networking commands would provide the greatest 

chance of being useful for a user, thus allowing for the most practice. Once these are 

verified to work, the system can be designed to be customizable, providing a method to 



44 

add any arbitrary command with any option. Between consulting the suggested popular 

networking commands from EDUCBA (Swade, 2020), TechGENIX (Posey, 2017), and 

Microsoft Documentation (Microsoft | Docs, 2022), we settled on the following ten 

baseline commands: 

• ping  Test host capacity to interact with another host  

• tracert  Gets network packets sent and received  

• arp  Info like address, flags, mask, interface, hardware, etc.  

• ipconfig Basic details about Internet Protocol (IP) configuration  

• whoami Displays users, groups, and privileges information 

• route  Provide devices routing tables  

• hostname Gets computer name, domain system, aliases, etc.  

• nslookup Namespace lookup, obtain info about servers  

• net  Manage and configure the OS from the command line 

• netstat  Statistics and info  

The label used for this part of the menu is called “Networking Commands.” Ten 

corresponding buttons are displayed together as a Networking “Group.” Arrow buttons 

were created to the left and right of these groups to provide reach and rotate through 

different groups. Other groups that were considered as the extension of the basic set of 

networking commands were “Forensics” (commands to investigate a drive for malware 

or unanticipated events), “System” (for hardware and networking artifacts), and 

“Processes” (to display and interact with running programs). The Networking Commands 

group is the only one that was fully implemented, and implementation of other groups of 

commands was outside the scope of this thesis. 



45 

2. Services Menu 

Services are augmentations to standard commands that can provide extended 

information or additional complexity outside the purpose of the command. These include 

help and find features, or showing the directory or processes, among others. 

The help menu can be shown at the terminal by typing a “-h,” “--help,” or “/?” 

just after any command, as Figure 23 shows for the ping command. Sometimes just 

typing the command with no input and pressing enter can get to the help screen. Help can 

be used to show more details on how to use any command.  

 
Figure 23. Ping using /? to show its help menu, options, and their descriptions 

3. Simple and Parameterized Options Menus 

Some commands, like ipconfig or hostname, may take no options (no arguments) 

and simply provide the status of your computer. Other commands like ping need 



46 

arguments, several of which are shown in Figure 23. The ping command interacts with 

devices outside of the home router, and needs a name, an IP address, or a location finder 

of some kind to establish a connection with the outside. Options generally come in two 

forms: a single option itself (usually a dash followed by a letter or word), or a 

parameterized option, which is an option (a dash and a letter or word) followed by an 

argument belonging to the option. The extra information gives the option more context. 

An example of a simple option is “-a,” while the parameterized “-n count” demonstrates 

that the –n option (n standing for number) would need to be followed by an integer 

(count) representing the number of echo requests—pings—to send. 

Most commands can generally chain several options together to form a much 

longer and more specific filter. One example of an extended command using multiple 

types of options would be “ping -n 3 -i 5 www.google.com.” Upon review of the 

descriptions seen in Figure 23, we see that this would result in ‘pings’ of the Google Web 

server with three echo requests, with a time to live of five (seconds) each. 

In creating the data used in GUISE, the exact descriptions from the help menu 

were copied and pasted into the tooltips and descriptions of the software. However, using 

the above help features was not always available; for instance, the perfmon command has 

no help feature. When the native help menu was not clear or present, we found 

documentation online (perfmon’s description was taken from Microsoft’s 

documentation). 

4. Manual Text Entry 

Many commands finally end with a target of some sort, like an IP address. To 

support the manual entry of the text like an IP address, GUISE includes a long bar across 

the bottom of the interface. This capability is useful when looking for a website, inputting 

a numeric internet address, or typing the name of a document with its extension. While 

simple applications could be created that only consisted of button presses or drag and 

drop actions, the most useful commands have arguments for arbitrary text, and the 

projected users of our application will need this feature. 



47 

The menu labels with white text are provided near their respective buttons. The 

label for the group of main commands is emphasized—its text is colored yellow, and it is 

in a bigger font. The alternating arrow buttons are presented adjacent to each group of 

buttons to allow reach and rotation through additional groups of the same type of element 

(‘paging through’). 

5. Tooltips 

Tooltips are created by making a Unity sprite (a triangular image) as a UI button 

and placing it in the upper left-hand corner of each menu button, as a child. Each has a 

script component with fields called “header” and “content,” which respectively provide a 

readable name and description of the parent button. 

F. VISUALIZATION OF GUI ELEMENTS 

The prototype GUI consists of a replica console in blue (mimicking PowerShell), 

with various buttons surrounding it that use scripts to imitate typing arbitrary commands 

on a console. 

1. Unity as a Development Environment 

Unity is one of the world’s leading cross-platform gaming engines (Unity 

Technologies, 2022a). It is used to perform modeling in graphics-focused applications, 

from simple 2D art and 3D interactive environments to real-time photorealistic movies. 

Unity was selected to support user interaction and display graphical elements because of 

its simple interface, wide choice of coloring schemes, fast rendering (requiring almost no 

compilation time for the simple images and buttons we require), free usage, and cross-

platform support. 

2. GUISE Features 

Several features were selected as a general approach for the GUI: 

• Black/Blue command prompt display  

• Commands and options shown in real time as typed  



48 

• Provide major networking commands  

• Provide options  

• “Single” click for individual options  

• “Settings” to type in values for numbers or strings  

• Tooltips over each button  

• Maximum of two levels deep  

• Return ‘through’ exit of program  

• Optional: Custom button, advanced vs. beginner settings 

3. Options Layout 

Command scenes have options surrounding the main screen to allow building 

lengthier and more complicated commands. A full list of available options can be shown 

by visiting any command’s help menu. The two types of buttons for the options, called 

“Single” and “Parameterized,” are distinguished by location; they have the same shape 

since they basically accomplish the same thing. The parameterized buttons are placed 

along the bottom, with an area for a manual text input below that group. Tooltips attached 

to each option describe their features in detail. 

4. Color Scheme and Sizing 

In complying with the Jet Cockpit methodology mentioned earlier in this section, 

we selected standard colors used in other software applications. The “Main” groups of 

buttons consist of Commands, Services, Single options, and Parameterized options; each 

menu option is represented as an orange button with corresponding text distinguishable 

from other elements of the GUI. “Action” buttons have uniquely distinct colors. The blue-

shaded ‘Back’ (backspace) button, which removes characters, is visibly contrasted from 

the Main buttons. The ‘Run’ button, which runs the commands on the screen, is green 

while red is used for ending the program with the ‘End’ button. The Arrow button, used 



49 

to simply rotate through pages of commands and options is stylized in plain white with 

black characters. The screen background is created in matte blue, and the overall 

background is dark blue, to be complementary with the Microsoft’s currently 

recommended command prompt, PowerShell. Representative buttons are shown in Figure 

24, and the exact sizes and RGB color schemes are shown in Table 1. 

 
Figure 24. Color scheme of GUISE buttons 

Unity’s “autosize” feature allowed us to constrain the text font size between 10 

and 24, which allowed smaller strings like “-a” to be seen clearly, and large strings like 

“/fo table” to shrink and fit within the button surface. Anything larger than that was 

truncated or abbreviated. 

Table 1. GUISE sizes and colors 

Element Width x Height (units) RGB Color 

Command Button 100 x 25 210, 105, 30 

Service Button 75 x 50 210, 105, 30 

Option Button 50 x 50 210, 105, 30 

(Up) Arrow Button 20 x 50 255, 255, 255 



50 

Element Width x Height (units) RGB Color 

Run Button 60 x 50 35, 140, 35 

End Button 60 x 50 255, 0, 0 

Input Field 625 x 30 255, 255, 255 

 

Sizing was provided in integer increments, as seen in Figure 25. The formation 

was ensured to be standard by isolating a single menu group, then setting its first element 

to position (x: 0, y: 0). Sizes of other buttons were adjusted based on this initial reference. 

Five spaces of margin were given between elements within menus and from the edge of 

the canvas or scroll area. Afterward, the edge of the scroll area within the canvas was 

calculated based on the total distance traveled of the margins plus the sides of the menu 

buttons. 

  
Figure 25. Button positioning based on Command 0  

5. GUISE GUI Layout and Operation 

The layout of the GUI, as illustrated in Figure 26, included the middle scroll area 

(the effective command prompt reserved for system feedback) equivalent to the width 

and height of the native command prompt upon opening. The excess margins were added 

around the edges of the space in the middle to accommodate various menus and their 

buttons. The entire GUI takes up about 1/2 of the width and height of a 15” laptop screen, 

which allows for legible text and easy selection of each GUI element. 



51 

 
Figure 26. Final GUISE interface 

The application opens at a terminal prompt called “GUISE >.” A user can begin 

selecting commands by pressing one of the top Command buttons and if desired, keep 

adding Single Options (seen on the right) to make a more complex statement. 

Alternatively, one of the Parameter Options can instead be selected (if available for that 

command); however, it must be followed by entering an argument in the text input field 

below it. The field provides its ‘parameter’. Unity’s input field allows it to be registered 

by either pressing the Enter key or clicking anywhere within the application with the 

mouse. This way, long and complicated statements can be created from a single 

command and several single and parameterized options. Services from the left menu can 

‘chain’ complicated statements by using pipes or redirections, just like in an ordinary 

command line. Alternatively, a command can be selected, followed by the ‘Help’ 

command (from the Services menu) and then the ‘Run’ button right after. Figure 27 

shows an example of running the system after typing in the ping command with several 

arguments. The system feedback is the text that shows the command prompt’s help 

features. 



52 

 
Figure 27. GUISE after running a command, hovering over an option 

If an error is made while selecting different buttons from any menu, the ‘Back’ 

button can be pressed to delete the last user entry. For instance, if the user sequentially 

clicks “ping -a,” selecting the ‘Back’ button once would remove the ‘-a’ element, and 

clicking it again will remove the entire word ‘ping.’ Once the desired command and its 

options are all selected, pressing the ‘Run’ button will execute the command and the 

results are shown on the screen. The application is then ready to receive the next 

command. Clicking any button clears the screen and starts the process over. 

Finally, GUISE’s most powerful feature comes in the form of tooltips. Each menu 

button has a smaller section in the upper left-hand corner that provides context for the 

underlying command. Providing instantaneous information is helpful in learning about 

hitherto unknown commands, providing education, or saving time when uncertain of a 

command’s operation, thus increasing performance. Currently we only provide the name 

and description, but additional content can swiftly be added. Additional content could 

include specific examples or demonstrating the structure of how to write a complex 

command. Abiding by Fitts’s Law (Fitts, 1954), we made the tooltip large enough to be 

easily found and referenced, but small enough to ensure they would not distract users 

during normal usage if tooltip consultation was not needed. 



53 

G. CHAPTER SUMMARY 

This chapter provided details about the initial prototype of GUISE, originally 

called Personal Cyber-Connectivity Picture (PCCP), the follow-on design of GUISE 

based on a fighter pilot layout, and the several iterations GUISE has undergone. We 

provided specifics of the layout of GUISE including the purposes of the various menus, 

their placement, sizes, shapes, and colors, and explained the basic operation of entering 

commands and their buttons’ tooltips. 

  



54 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



55 

V. SYSTEMS INTEGRATION AND IMPLEMENTATION 

A. INTRODUCTION 

Once the design features of the interface were determined, we proceeded with the 

prototype development. The final product has six C# scripts, one text file for the output, 

and one JavaScript Object Notation file for data. While the inclusion of audio could be 

considered to make the application more multimodal, that was not a pertinent goal of our 

work, and it was not added. The inclusion of audio for button clicks and swiping sounds 

is more suited for games, like Solitaire, and is typically not supported in professional 

applications like Word, Excel, or other production software. The final GUISE application 

GUI was shown in the prior section, in Figure 26. 

B. GUISE C# DEVELOPMENT IN UNITY 

The first task was to create a GUISE interface design (the layout of all visual 

elements) in a Unity ‘Scene’, which is the environment that all the interactive application 

elements operate in. All visual elements like buttons and text are placed on a UI Canvas, 

with simple drag-and-drop actions. The Scroll Area, which mimics the console, was the 

first item to be placed in the center.  

The next part of the prototype consisted of making the interface interactive. The 

TextMeshPro module is used to format the text; that is the newer version of Unity’s 

legacy UI Text system, with advanced text rendering and better styling and texturing 

(Unity Technologies, 2022b). The buttons and the scroll area all contain this new 

rendering system to make the text within them appear sharper and more visually 

appealing. The “Menus” system has ten UI TextMeshPro buttons at the top for the 

commands, five on the left side for the Services, five on the right side for the simple 

options, and five across the bottom for the parameterized options. There is an elongated 

input field underneath the parameters for specifying values like internet addresses, 

numbers, files, or processes. Eight buttons for arrows are placed adjacent to each series of 

menu buttons, and respective labels are placed nearby. The “action” buttons for ‘Run’, 

‘End’, and ‘Back’ are placed opposite each other with unique colors. Finally, smaller 



56 

yellow triangular buttons are placed within each of the menu buttons, facing the upper 

left corner, to provide the tooltip functionality for each button. The layout shown in 

Unity, with the hierarchy of UI elements on the left side and before running, is shown in 

Figure 28. An example of navigating to a TextMeshPro UI button is also shown. 

 
Figure 28. GUISE UI elements within the Unity game engine 

C. NAMING CONVENTIONS 

In order to support the overall structure of the interface, the names, elements, and 

functions are created in the practical programming method of first labeling the name with 

the type (e.g., “button,” “inputField”) or action (e.g., “rotate,” “set”). Other best 

programming practices were taken from standard C# coding paradigms (Avantgarde 

Software, 2019) such as using camelCase, access modifiers like private and public, and 

placing comments above every method, among many others as shown in Figure 29. 



57 

 
Figure 29. Expanded menu (left) and collapsed method conventions (right) 

D. JSON DATA 

Once the interface layout was complete, the meta data set was copied into a 

JavaScript Object Notation (JSON) file, as shown in Figure 30 and Figure 31. That data 

set consisted of the textual descriptions for each command, the characters for options and 

parameters, and the descriptions of each option. The information was gathered from 

various sources, the main one being the help menu from the Windows command prompt. 

If sufficient information was still missing, the necessary data were gathered from 

docs.microsoft.com as a secondary source. The author provided clarifications in very few 

instances, for example, if the command’s definition was common knowledge or there was 

a better formulation online. Approximately 1000 lines of JSON data were manually typed 

in the end. 



58 

 
Figure 30. Overview of JSON Fields 

 
Figure 31. Expanded JSON data showing fields for commands and options 

E. DATALOADER AND DATAVISUALIZER SCRIPTS 

The Dataloader and Datavisualizer scripts provide the main way in which the 

application is run. Dataloader has classes that match every heading and subheading in the 



59 

JSON data. When the application is started, Dataloader imports the entire JSON 

information into a single in-script variable called “data.” The script then calls 

Datavisualizer with this data as an argument. If one understands the classes as a 

programming concept, simple programming will easily allow adding more data to the 

JSON and, as a result, have more command groups. Combined with the ability to scroll 

through each command group with the rotational arrow buttons, these features allow the 

GUISE application to be easily extendible. 

Various methods inside Datavisualizer initiate system reactions (system feedback) 

when buttons are pressed. Although about 40 methods were needed to complete the full 

functionality of the GUISE interface, they are usually grouped by their similar operations 

in four groups of four—one for each menu type. In Table 2, “assign<Menu>“ means 

Menu is a stand-in for the four types of Menus: assignCommands, assignServices, 

assignSingleOptions, and assignParameterOptions. All methods are described in Table 2: 

Table 2. Datavisualizer methods and their descriptions 

Method Name Description 

loadJSON Loader calls this 1st, provides data 

assign<Menu> Applies an entire group’s text on buttons 

assign<Menu>Tooltips Applies an entire group’s tooltips 

assign<Menu>ButtonName Helper applies text to an individual button 

assign<Menu>ButtonNameTooltips Helper for tooltip’s header & content 

resetScrollArea Erases console information 

writeScrollArea Applies console text 

getCommandString Get global variable commandString value 

backspace Delete entire last element (e.g., “ping”) 

setRunText Applies result of a command to console 



60 

Method Name Description 

clearFile Erases (prior) output.txt content 

set<Menu>Text Applies the words on a button to console 

storeStatus Saves current Group, Index, & Page 

rotate<Command/Service>Groups Arrow button slides entire group left/right 

rotate<Menu> Arrow button slides single page left/right 

executeCommand System returns results of user’s command 

writeString Inputs results of command to output.txt 

readInputString Reads user’s typed input and clears field 

 

F. STATUSNODES: CONTEXT FOR INDEXES, PAGES, AND GROUPS 

If a Command is selected—for example, command-1—its Single and Parameter 

options are shown around the right and bottom edges. However, if instead of selecting a 

Single or Parameter option for command-1, a user selects another command—i.e., selects 

command-2— then those Single or Parameter buttons would no longer be applicable to 

that Command. Therefore, both option menus are switched to represent the Single or 

Parameter buttons associated with the new Command. This entire state of the screen—the 

Services shown on the left, and the selected Command shown on the top with its Single 

and Parameterized options around the right and bottom edge—is called a “context.” The 

StatusNode class was created to save the contexts, indexes, pages, and groups associated 

with the buttons of a scene, as seen in Figure 32. We introduce and explain each term in 

sections that follow. 



61 

 
Figure 32. StatusNode Layout showing Groups, Pages within Groups, and 

Indexes within Pages 

1. Indexes 

Each menu button has an index that is associated with it. The ping command is 

the first in the list in the JSON data set, and so it has Command Index value of 0 (there 

are ten commands in one set). Service Index value of 0 (out of 15 total services) relates to 

the grep (global regular expression print) service, and so on. To describe a certain 

element, one would have to know where it is indexed in the JSON data set. Afterward, 

the assigned function uses that value to find it in the Datavisualizer’s data variable and 

replaces the button’s value as characterized in the JSON database. 

2. Pages 

Menu buttons come in groups of five (or ten for the Command menu), starting 

with Index 0, so all index values between 0 and 4 would be shown together. If an arrow 

button is clicked, we “slide” buttons 0 through 4 off screen and show the items with 

index values 5 through 9. This association of a set of indexes is called a Page. While we 



62 

do not necessarily need to change the numbering of indexes, it helps identify the exact 

button that is activated. 

All buttons are labeled from the initial interface with a certain unchanging 

number. The upper Single Option button has a button index value of 0, and the upper 

right Command button has index value of 4 (since it is the 4th one from the top, going 

right). These buttons must relate to the JSON data on each click (selection). 

Let us explain the functionality of using Index and Page with an example. 

Assume the Option menu is on the second Page, showing Index values 5–9. The top 

Option button of the layout is 0 and it will never change. That numeric value is provided 

to the script, so we must find a way to indicate that this layout button 0 relates to JSON 

Index 5. That is where the usefulness of paging comes in. Since we are on the second 

Page, we notice that each Page counts as a multiple of the number of buttons in the menu, 

so we can deduce the Page’s value correctly. Indexes 0, 5, and 10 would now be (Button 

0, Page 0), (Button 0, Page 1), and (Button 0, Page 2). Writing scripts to use the paging 

approach ensures that buttons can maintain their hardcoded values in the Unity Editor. It 

also allows us to write our functions solely based on which button is pressed with its 

easily referenced Page number, using simple math. 

3. Groups 

Groups is another field that allows for extendibility. We chose ten similar 

networking commands as a well-rounded set, but we can easily create commands for a 

different set of activities like forensics, processes, or even local commands. That type of 

extension is possible because the implementation for the Options and Services concepts 

remains the same. Adding new sets of commands would simply consist of appending new 

information to the JSON. The Service menu has different groups as well. Grouping of 

options is not required, as a command’s various options are only accessed through 

paging. 



63 

G. BACKSPACE AND CONTEXT SWITCHING 

Pressing a new command changes the application’s state and requires the system 

to feature that command’s options, and thus the need to switch the system state to a new 

context. Initially, we only appended text to an array upon each click of a menu button. 

While that provides a valid string, it inadvertently did not provide a mechanism for going 

back to a prior layout, a prior state, a prior context, upon backspacing. For example, when 

“ping -4” is selected, all options available to the GUI belong to ping. If the user decides 

to add to the command, and use piping (e.g., “| arp -a”), then the final command will be 

“ping -4 | arp -a” and all options will be specific to arp. Now, because backspace only 

deletes the group of characters associated with the last button click, if we were to 

backspace 3 times our command would state “ping -4” again. Yet because we did not 

remodify the application state, all options would still belong to arp. That would be 

incorrect from the standpoint of the application state (i.e., options should be specific to 

“ping”). 

Therefore, we must add and delete words, and add and delete entire contexts. The 

extra class StatusNode contains fields for Groups, Indexes, and Pages; that node acts as a 

global variable for any change done with the buttons. New nodes are created and stored 

in an array when a user selects additional Menu buttons, and ‘Back’ deletes the last 

element in the array, then consults the element that now just became the new ‘end’ and 

replaces the context as appropriate. 

H. TOOLTIPS AND TOOLTIP TRIGGERS 

The Tooltip system functionality displays a header and content when a user’s 

cursor hovers over a small yellow triangle positioned in the left upper corner of the menu 

buttons; the only exceptions are buttons with arrows, and the ‘Run’, ‘Back’, and ‘End’ 

buttons. The author provides credit for the programming of the scripts for the Tooltip, 

Tooltip System, and Tooltip Triggers to Game Dev Guide, a highly valuable YouTube 

programming series that explains everything needed to make the tooltips more flexible 

and give them a professional appearance, from demonstrating straightforward actions like 

canvas creation and screen-size scaling, to more sophisticated activities like dynamic 



64 

anchoring and event handling (Game Dev Guide, 2020). Examples of the dynamic ability 

of the tooltips is shown in Figure 33. 

 
Figure 33. Dynamic Tooltips extending downwards (left) and to center (right) 

Data needed for the tooltips are again imported automatically from JSON and 

placed on a dynamic grey canvas. The bold black header is the name of the button, and 

the blue content is that item’s description. The “dynamic” feature positions the tooltip 

more to the right if the cursor was hovering over a button far to the left, and closer to the 

center if the cursor was hovering over one of the top command buttons, so that nothing is 

cut off by the edge of the window created to accommodate the GUISE GUI. As the text is 

written the tooltip width expands up to a certain predetermined length, then begins word 

wrapping to accommodate the longer content. While the exact details of the 

implementation are beyond the scope of this study, it is worth mentioning that we 

developed this functionality by following the instructions provided in the 10-minute 

YouTube video, and the final product resulted in a fully functioning Tooltip Trigger 

script that could be attached to each tooltip button. 

I. OUTPUT TO FILE / INPUT TO SCREEN 

A problem when reading the result of the ExecuteCommand method is that the 

result comes back as some abstruse string. Copying and pasting the results into the scroll 

menu results in a disarranged output, with characters such as tabs and spaces at improper 

widths. One workaround was to save the output as a text file (called “output.txt”), which 



65 

does properly format the output. The file can then be read as a string and posted to the 

scroll area, with proper looking text results.  

J. CHAPTER SUMMARY 

This chapter provided details about the software solutions that were used to 

develop the GUISE GUI and application. We provided specifics of the naming 

conventions, discussed how JSON data acts as a retainer for information, explained how 

Unity C# scripts allow for interaction with the GUI buttons, and showed the use of 

dynamic tooltips. 

  



66 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 



67 

VI. CONCLUSIONS AND RECOMMENDATIONS 

A. PRINCIPAL THESIS CONCLUSIONS 

The GUI for Shell Entry (GUISE) application represents a novel way to interact 

with the shell. It incorporates an interface with the most common commands for 

networking, especially suited to support the educational needs of novice users and 

management needs of professional users. The menu buttons that circumnavigate the 

console-like center screen provide access to guided commands, as do their easy-to-use 

tooltips, which in turn, help the user narrow down the available choices and extend the 

commands to be more specific or complex. 

B. ADDRESSING RESEARCH QUESTIONS 

This thesis has set out to achieve five design goals detailed in the chapter 

dedicated to the design of the GUISE application and its GUI. 

1. Research Question 1: Interface for enhanced situational awareness 

“What type of graphical user interface and user interactions can provide enhanced 

comprehension of OS commands and their capabilities to novice users?” 

We addressed this research question by defining a set of design goals that we 

followed. We list and comment on each design goal individually. 

• Design Goal 1: The user interface will provide fast and efficient probing 

of the most effective commands on the same interface. 

A design goal was to prototype a user interface to provide fast and efficient 

probing of the commonly used shell commands. The ten most popular networking 

commands are chosen based a on careful selection from several reputable websites and 

Microsoft documentation. They are placed dominantly at the top of the application as a 

starting set of commands offered to the users. Alternate “Command Groups” are placed 

on the second page, with the possibility of adding new groups of commands. That feature 

made the application extendible. With this prototype as the backdrop, their conspicuously 



68 

placed tooltips allowed quick reviewing of each command so choices can be made 

efficiently and instantly. 

• Design Goal 2: The interface will employ the types of user interactions 

that are simple, easy to use, and familiar to users with no technical 

expertise. 

GUISE is a graphical user interface, and it does not rely solely on text; that opens 

the application to an audience that is averse to using the command line. The most popular 

commands are already shown at the top, and the fact that command descriptions can 

easily be read from the tooltips alleviates the memorization to use commands. Users have 

easy access to commands and their Service Options by selecting (clicking) the buttons 

available via the GUI; if ever in doubt, she can check the tooltips to get necessary 

information. 

• Design Goal 3: The user interface will provide a clear situational 

awareness at any point of user interaction: a user will know the options 

offered via the interface, the way to abandon the current action, and the 

way to execute a desired course of action. 

The commands are shown at the GUISE prompt at the top of the scroll area in real 

time as the user types, and the action buttons for ‘Run’, ‘End’, and ‘Back’ are clearly 

shown in unique colors. All Service options available via the menu are context sensitive. 

The user selection of the ‘Back’ button is followed by an appropriate change of the 

command context, resulting in correct Command or Service options being available for 

user selection. 

2. Research Question 2: Application that is extendible 

“Could the underlying system architecture and user interface be designed to 

support a variety of classes of OS commands and services beyond the network analysis?” 

• Design Goal 4: While the interface will be focused on networking 

commands, its design will support easy extensions to include other groups 



69 

of commands like forensic commands, file and directory navigation, and 

pipes and filters. 

GUISE system architecture and interface design fully support a diverse set of 

commands via its construct of Groups. The initial set shows ten networking commands, 

and a user can reach another group of commands with one simple click. A comprehensive 

set of complete commands were left out of GUISE but can be constructed. For example, 

it is easy to add a “Reconnaissance Group” with the most-used commands related to 

network discovery. GUISE does include the tracert, ping, and route commands to provide 

some level of reconnaissance, but a fully usable set would need to include telnet, ftp, 

nmap, and a download of external CLI exploitation tools like Metasploit. Again, this 

prototype focused on a user’s personal network and building the structure of the system. 

Nonetheless, Metasploit is another prime example of how a user’s lack of memorized 

commands and phrases can be a hinderance to popularity, and the authors look forward to 

bringing GUISE’s demonstrative interface to text-based exploitation and reconnaissance 

tools. 

Our most pertinent goal was in providing general networking education through 

using our program continually, so that a user could gradually retain fundamental 

networking concepts and learn how to use the command line more proficiently. Even 

while creating this prototype, the author—a second year master’s student in 

cybersecurity—began learning many concepts and commands that had up to then been 

unfamiliar, despite several years of computer science study. Our team learned that once a 

command is clicked, there is a strong inclination to also click other buttons along the side 

of the menus to “see what they do.” I might have known of the whoami command, which 

shows my computer name. But with /priv, /user, /use, and /logonid buttons off to the side, 

those would also likely be clicked while I explore my personal network. Even though 

those specific items might not have been desired during this round of requests, seeing 

their operation at least once lets me know those features are available and contributes to 

heightened knowledge of commands in general. 



70 

C. LIMITATIONS 

GUISE users experience a short delay when running a command selected via the 

GUI. The script needs to go through several lines of GUI code and must open and close a 

text file to present the result (i.e., system feedback for the selected command). This 

results in a time delay. For example, while pinging an IP address shows results instantly 

through the usual command prompt, it takes several seconds before results are shown 

through GUISE. However, for the people it was designed for, this would not be a 

problem for the ‘relatively’ simple lines of code they will be creating. 

The execution of commands run through GUISE can take a long time to have 

results returned, via either processing a command that returns long text or if there is an 

infinite loop. An infinite loop does not necessarily indicate a problem. For instance, the 

command “ping -t www.google.com” will ping Google indefinitely. An action/capability 

that is an absolute requirement is one that facilitates the stopping of such a running 

program. This is done on the Windows command line by pressing Control-C, however 

this functionality was not implemented in GUISE. With further development, that 

capability can easily be added as an additional Service. 

There are limitations to how we can add options. GUISE has a hardcoded space 

after each button click, so for an unimplemented option that is irregular, we must type the 

exact wording. An example of this is the dir command. For its attribute option, instead of 

using “-a” as is normal, it uses a backslash, “/A” as well as one of several extended 

attributes. There is a colon (“:”) between the attribute and its extension, and it cannot 

have any spacing in between. In order to include these options and their extensions, we 

had to write each as an individual option: /A:H for hidden files, /A:S for system files, etc. 

Additionally, we could not include the ‘-’ (which means ‘not’) in front of the option for 

the same reason, so negative options must also be written out separately. 

Although many appropriate commands are highly important for networking and 

administration, several commands that may qualify as such were not included.  

• Deeper net, whoami, and other long-option Commands are too 

complicated to fully provide all their options. Although basic options are 



71 

scripted to allow users to gain familiarity with simple usage, a complete 

set is better suited for future evolutions of this application.  

• Whois, TShark, and other commands that must first be downloaded 

have a setup that is too intricate for our goals. A more complete 

installation can be included as a package in the future. 

Our software concerns personal cyber-connectivity, focusing on verifying and 

exploring network information of a single host. That work did not include modifying any 

settings via commands in this iteration of GUISE. More useful commands than the ones 

we included would simply require appending to the JSON a few levels deeper than we 

went, or they may require the addition of another field or method in the C# script. While 

these actions are achievable now, we kept the baseline of all commands as similar as 

possible; each of our Menu items chains a simple or parameterized option with a possible 

final target string. Anything outside of that is beyond the scope of the thesis. 

D. RECOMMENDATIONS FOR FUTURE USE 

The opportunity statement of GUISE can be shown below. 

1. GUISE as a Security Management Tool 

With GUISE put in the hands of a novice user, we hope the easy-to-read buttons, 

quick referencing of commands through tooltips and error correction, as well as its 

extensibility, will make it a valuable product. Beginners and non-technical workers in 

charge of cyber-vulnerable equipment should find very good use for this. 

With GUISE operated by amateur computer users, we hope this could be their 

first introduction to networking as they slowly but gradually memorize commands and 

become power users. Indeed, they would see high value for the custom buttons that could 

be created for their most common CLI commands. 

With GUISE operated by a professional cyber administrator, reconnaissance can 

be scripted and performed easily and quickly through the custom buttons. Company 

scripts can be created by the administrator and passed on to workers so they can perform 



72 

complex cyber validations with only a few buttons and zero command memorization. 

This activity could have been beneficial in the examples of the Colonial Pipeline and 

Florida Water hacks mentioned in the Background chapter; a few select buttons could 

have been crafted for non-IT users to occasionally monitor remote connections and kill or 

suspend suspicious processes. 

2. GUISE as an Educational Tool 

The GUISE application can serve as a pedagogical tool to learn about the 

networks and swiftly use relevant commands. The convenient display of the most popular 

commands and their options, shown in plain view, is the main way users can increase 

their knowledge of the system, followed by reading the normally hidden tooltips. The 

unassuming and colorful layout of GUISE gives it a welcoming appearance, and our hope 

is that users of all age levels will not be apprehensive to use it, from the 10-year-old 

turning on his first PC to the office worker who notices her screen start to flicker.  

Tutorials can be created that ask random questions to build networking maturity, 

such as, “Type the commands to determine if your computer can connect to 

www.nps.edu.” The software could guide a user to hints and, most importantly, give 

answers immediately. GUISE can also be used to support other game-like experiences. 

With objective goals presented to them as a challenge, users can have fun by repeatedly 

clicking and learning. Amusing games can also be crafted where a user must use our 

software to find the problem with a faulty network or to hunt down an exploiter on the 

system.  

3. Microsoft Windows Integration  

We suggest including this application in each new Microsoft operating system, 

starting with the home version, as an add-on or free download. This backward capability 

allows the years of collected troubleshooting information to remain relevant to our 

software as well since GUISE runs through executing the same Microsoft command 

prompt command, while ingraining all visible buttons in memory with each usage.  



73 

4. Open-Source Project 

There is much room to customize and create new command groups and make this 

an open-source project. That would include continuous expansion of the code for more 

features, covering additional operating systems, providing more examples when needed, 

and fixing bugs.  

E. FUTURE WORK 

We recommend the following extensions of the work presented in this thesis. 

1. Usability Study 

While no user study was performed using GUISE, an investigation can be 

constructed to determine the efficiency of finding the correct commands compared to 

traditional command prompt use, and the effectiveness of typing in more complex (with 

more sequential and varying options) and chained commands, using pipes and redirects. 

The same study would also collect subjective responses on user satisfaction with different 

design solutions available in the GUI, the functionality of the application, and potential 

improvements of the GUISE interface. 

2. User Study Focused on Learning Effectiveness 

Studies on the learning effectiveness and recall after not using the system for an 

extended time could also be executed. Ideally, we want a user familiar with using GUISE 

at home to maintain the knowledge learned from home-use, even if using the command 

prompt on a computer at work. The same skill level should ideally be maintained for 

some time, even if one is not using GUISE or the command line daily. Additionally, users 

should not have difficulty using GUISE again after an extended period of non-use. 

3. Implementation on Other Operating Systems 

Because the execution can be specific to an operating system, we ran our software 

only on the Microsoft Windows operating system. The JSON data has a field that dictates 

the current operating system, and code can easily be modified to change based on the 



74 

type of OS the user is running. That could be a worthwhile endeavor with the increasing 

number of Mac OS X home users and the popularity of UNIX-based servers. 



75 

LIST OF REFERENCES 

Avantgarde Software. (2019, December 17). [Unity] Coding guidelines & basic best 
practices. https://avangarde-software.com/unity-coding-guidelines-basic-best-
practices/ 

BECS Software Solutions. (2020, October 30). Malwarebytes free vs premium | is 
malwarebytes free good enough? https://www.becs.co.uk/malwarebytes-free-vs-
premium/ 

Bing, C. J. M. (2021, June 8). U.S. seizes $2.3 mln in bitcoin paid to Colonial Pipeline 
hackers. Reuters. https://www.reuters.com/business/energy/us-announce-
recovery-millions-colonial-pipeline-ransomware-attack-2021-06-07/ 

Campion, N. (2020, October 30). Pros and cons of a command-line interface. The Iron.Io 
Blog. https://blog.iron.io/pros-and-cons-of-a-command-line-interface/ 

Chandel, R. (2020, February 9). Beginners guide to TShark (Part 1). Hacking Articles. 
https://www.hackingarticles.in/beginners-guide-to-tshark-part-1/ 

Computer Hope. (2021, August 16). Command line vs. GUI. 
https://www.computerhope.com/issues/ch000619.htm 

Cruz Sendy, S. (2015, January 12). Create computer network with Cisco Packet Tracer 
Part 1 [Video]. www.youtube.com, https://www.youtube.com/watch?v=q-
UUbPk6fYo 

Dictionary.com. (2022). Guise. In Dictionary.com. 
https://www.dictionary.com/browse/guise 

DVI Aviation. (2022). Airplane, aircraft cockpit design experts. 
http://www.dviaviation.com/aircraft-cockpit-design.html 

Dynatrace. (2022). Dynatrace comparison. 
https://www.dynatrace.com/platform/comparison 

Fisher, T. (2022, February 4). Command Prompt: What is it and how to use it? Lifewire. 
https://www.lifewire.com/command-prompt-2625840 

Fitts, P. M. (1954). The information capacity of the human motor system in controlling 
the amplitude of movement. Journal of Experimental Psychology, 47(6), 381–
391. https://doi.org/10.1037/h0055392 

Game Dev Guide. (2020, November 4). Designing a responsive tooltip system in Unity 
[Video]. https://www.youtube.com/watch?v=HXFoUGw7eKk 



76 

Garreau, J. (1994, March 9). Office Minefield. The Washington Post. 
https://www.washingtonpost.com/archive/lifestyle/1994/03/09/office-
minefield/3b74132a-5f0a-455f-a04e-6171d023149b/ 

Gibson, J. J., & Carmichael, L. (1966). The senses considered as perceptual systems. 
Boston: Houghton Mifflin. 

Hoffman, C. (2017, August 28). How PowerShell differs from the Windows command 
prompt. How-to-Geek. https://www.howtogeek.com/163127/how-powershell-
differs-from-the-windows-command-prompt/ 

Kellerer, J., Nikolaus Rabi, A., Neujahr, H., Möller, C., & Sandl, P. (2011). Panoramic 
displays: The next generation of fighter aircraft cockpits. SAE International 
Journal of Aerospace, 751–761. https://doi.org/10.4271/2011-01-2526 

Kelly, S., & Resnick-ault, J. (2021, June 8). One password allowed hackers to disrupt 
Colonial Pipeline, CEO tells senators. Reuters. 
https://www.reuters.com/business/colonial-pipeline-ceo-tells-senate-cyber-
defenses-were-compromised-ahead-hack-2021-06-08/ 

Kothari, J. (2021). Comprehensive guide on TShark. GNite Technologies. 
https://dl.packetstormsecurity.net/papers/general/tshark.pdf 

Lee, C. (2016, January 26). Apple updates Airport Utility for IOS with new features and 
improvements. IDownloadBlog.Com. 
https://www.idownloadblog.com/2013/02/07/apple-updates-airport-app/ 

Malwarebytes. (2022). Malwarebytes cybersecurity for home and business | Anti-
malware & antivirus. https://www.malwarebytes.com/ 

Marquardt, A., Levenson, E., & Tal, A. (2021, February 10). Florida water treatment 
facility hack used a dormant remote access software, sheriff says. CNN. 
https://www.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html 

Microsoft | Docs. (2022, January 4). Windows commands. https://docs.microsoft.com/en-
us/windows-server/administration/windows-commands/windows-commands 

Paessler. (2022). Take control of your bandwidth | Network traffic monitoring with 
PRTG. https://www.paessler.com/network_traffic_analyzer 

Posey, B. (2017, August 17). 11 Networking commands every windows admin should use. 
TechGenix. https://techgenix.com/top-11-networking-commands/ 

Rogers, E. M. (2003). Diffusion of Innovations. Simon and Schuster. 

Russinovich, M. (2022, February 16). Sysinternals - Windows Sysinternals. Microsoft | 
Docs. https://docs.microsoft.com/en-us/sysinternals/ 



77 

Skillshare. (2022). Explore thousands of hands-on creative classes. 
https://www.skillshare.com 

SolarWinds. (2022). Network performance monitor. 
https://www.solarwinds.com/network-performance-monitor 

Swade, T. (2020). Networking commands | Top 9 commands of networking. EDUCBA. 
https://www.educba.com/networking-commands 

Tognazzini, B. (1992). TOG on interface. Pearson Education. 

Udemy. (2022). Udemy. https://www.udemy.com 

Unity Technologies. (2022a). Unity real-time development platform | 3D, 2D VR & AR 
engine. https://unity.com 

Unity Technologies. (2022b, March 12). Unity—manual: TextMeshPro. 
https://docs.unity3d.com/Manual/com.unity.textmeshpro.html 

Unwin, A., & Hofmann, H. (1999). GUI and command-line—Conflict or synergy? 
Computing Science and Statistics, Proceedings of the 31st Symposium on the 
Interface, 246–253. 
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FE38A63D4210377E3
DE084588D3F4562?doi=10.1.1.31.1928&rep=rep1&type=pdf 

Vijayalakshmi, M., Dasai, P., & Raikar, M. (2016). Packet Tracer Simulation Tool as 
pedagogy to enhance learning of computer network concepts. 2016 IEEE 4th 
International Conference on MOOCs, Innovation and Technology in Education, 
71–76. https://doi.org/10.1109/MITE.2016.024 

Wilke, C. (2021, June 8). Colonial Pipeline paid $5 million ransom one day after 
cyberattack, CEO tells senate. CNBC. 
https://www.cnbc.com/2021/06/08/colonial-pipeline-ceo-testifies-on-first-hours-
of-ransomware-attack.html. 

Wireshark. (n.d.). About Wireshark. https://www.wireshark.org 

World War Wings. (2022). 100 Years of fighter plane evolution is truly eye opening. 
https://worldwarwings.com/the-evolution-of-fighter-planes-in-the-last-century-is-
beyond-stunning 

Wouk, K. (2021, December 3). How to scan your local network with terminal on MacOS. 
Maketecheasier. https://www.maketecheasier.com/scan-local-network-with-
terminal-macos/ 

 



78 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

  



79 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	22Mar_Anderson_Clinton_First8
	22Mar_Anderson_Clinton
	I. INTRODUCTION
	A. PROBLEM SPACE
	B. RESEARCH QUESTIONS
	C. MOTIVATION
	1. Home or Job Situational Awareness
	2. Educational Maturity
	3. Indication of Compromised Systems

	D. SCOPE
	E. METHODOLOGY
	F. THESIS STRUCTURE
	G. chapter summary

	II. BACKGROUND AND LITERATURE REVIEW
	A. INTRODUCTION
	B. RELATED CYBER INCIDENTS
	1. DarkSide Ransomware Attack on Colonial Pipeline
	2. Hackers Poison Water Plant Remotely

	C. CYBER PEDAGOGY THROUGH APPS
	1. Office Minefield
	2. Packet Tracer Simulation Tool as Pedagogy to Enhance Learning of Computer Science Concepts

	D. command line interface (cli) / powershell
	E. chapter summary

	III. NETWORK MONITORING TOOLS
	A. INTRODUCTION
	B. TOOLS FOR HOME USE
	1. Microsoft Network Status
	2. Apple AirPort Utility
	3. Cross-comparison

	C. COMMERCIAL NETWORK MONITORING TOOLS
	1. Wireshark (with MaxMind Geolocation)
	2. TShark
	3. Network Performance Monitors: SolarWinds, Dynatrace, PRTG Analyzer
	4. Cross-comparison

	D. TOOLS FOR EDUCATION
	1. Books Dedicated to Networking
	2. University Classes
	3. Internet Search and Tutorials
	4. Cisco Packet Tracer

	E. Chapter summary

	IV. user interface DESIGN
	A. Introduction
	B. prototype ideation: Personal Cyber-Connectivity Picture (PCCP)
	1. PCCP Assorted Applications
	2. PCCP Initial Command Prompt Display
	3. PCCP Transition to GUISE

	C. design of guise display
	D. guise layout
	E. guise menus and user interactions
	1. Commands Menu
	2. Services Menu
	3. Simple and Parameterized Options Menus
	4. Manual Text Entry
	5. Tooltips

	F. visualization of Gui elements
	1. Unity as a Development Environment
	2. GUISE Features
	3. Options Layout
	4. Color Scheme and Sizing
	5. GUISE GUI Layout and Operation

	G. chapter summary

	V. systems integration and implementation
	A. introduction
	B. GUISE C# Development in unity
	C. naming conventions
	D. json data
	E. dataloader and datavisualizer Scripts
	F. statusnodes: Context for indexES, pages, and groups
	1. Indexes
	2. Pages
	3. Groups

	G. backspace and context switching
	H. tooltips and tooltip triggers
	I. output to file / input to screen
	J. chapter summary

	VI. conclusions and recommendations
	A. PRINCIPAL thesis conclusions
	B. addressing research questions
	1. Research Question 1: Interface for enhanced situational awareness
	2. Research Question 2: Application that is extendible

	C. limitations
	D. recommendations FOr future use
	1. GUISE as a Security Management Tool
	2. GUISE as an Educational Tool
	3. Microsoft Windows Integration
	4. Open-Source Project

	E. future work
	1. Usability Study
	2. User Study Focused on Learning Effectiveness
	3. Implementation on Other Operating Systems


	List of References
	initial distribution list


