
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-03

ASIC BENCHMARKING FOR PROPOSED
LIGHTWEIGHT CRYPTOGRAPHY STANDARD XOODYAK

Wakeland, Michael C.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/69718

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ASIC BENCHMARKING FOR PROPOSED
LIGHTWEIGHT CRYPTOGRAPHY STANDARD

XOODYAK

by

Michael C. Wakeland

March 2022

Thesis Advisor: Gaylord Henry
Co-Advisor: Chad A. Bollmann

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2022

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
ASIC BENCHMARKING FOR PROPOSED LIGHTWEIGHT
CRYPTOGRAPHY STANDARD XOODYAK

5. FUNDING NUMBERS

6. AUTHOR(S) Michael C. Wakeland

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The U.S. National Institute of Standards and Technology (NIST) has initiated a process to standardize a

“lightweight” cryptographic algorithm. Lightweight algorithms are designed for use in gate and
performance-limited devices. This report compares an Application Specific Integrated Circuit (ASIC)
implementation of the NIST Advanced Encryption Standard-128 (AES-128) and a competition finalist,
Xoodyak. Implementations were written in SystemVerilog. Testing was performed using Vivado field
programmable gate array simulations. Twenty six instances of AES and Xoodyak were built. These builds
were optimized for throughput, clock frequency, and cell area, respectively. Size and performance
benchmarks were obtained from builds using an 5nm and 16nm ASIC technology. Results indicate Xoodyak
is capable of higher throughput than AES-128 while using a lower cell area.

14. SUBJECT TERMS
lightweight, encryption, lightweight encryption, benchmarking, NIST, security, throughput,
cell area, AES, Xoodyak, hardware, ASIC, SystemVerilog, hardware description

15. NUMBER OF
PAGES

83
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ASIC BENCHMARKING FOR PROPOSED LIGHTWEIGHT CRYPTOGRAPHY
STANDARD XOODYAK

Michael C. Wakeland
Lieutenant, United States Navy

BS, University of Illinois at Urbana-Champaign, 2015

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2022

Approved by: Gaylord Henry
 Advisor

 Chad A. Bollmann
 Co-Advisor

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The U.S. National Institute of Standards and Technology (NIST) has initiated a

process to standardize a “lightweight” cryptographic algorithm. Lightweight algorithms

are designed for use in gate and performance-limited devices. This report compares an

Application Specific Integrated Circuit (ASIC) implementation of the NIST Advanced

Encryption Standard-128 (AES-128) and a competition finalist, Xoodyak.

Implementations were written in SystemVerilog. Testing was performed using

Vivado field programmable gate array simulations. Twenty six instances of AES and

Xoodyak were built. These builds were optimized for throughput, clock frequency, and

cell area, respectively. Size and performance benchmarks were obtained from builds

using an 5nm and 16nm ASIC technology. Results indicate Xoodyak is capable of

higher throughput than AES-128 while using a lower cell area.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW ...1
B. MOTIVATION ..2
C. SCOPE ..2
D. THESIS ORGANIZATION ..3

II. BACKGROUND ..5
A. OVERVIEW ...5
B. AES IMPLEMENTATION...5

1. Round Based ...6
2. Functionality ...6

C. HARDWARE DESIGN DECISIONS ..7
1. S-box Instance ..7
2. Default Cipher Configuration ...7
3. Vector Key Generation ..8

D. AES BEHAVIORAL VERIFICATION ..9
E. SUMMARY ..10

III. METHODS ...11
A. OVERVIEW ...11
B. THE XOODYAK ALGORITHM ..11
C. PRIMITIVES ...14

1. State (as a concept) ...14
2. Color Bytes ...15
3. Core f ...15

D. DESCRIBING A FUNCTION CALL ..15
1. Level 3 Function Calls ...15
2. Level 2 Function Calls ...17
3. Level 1 Function Calls ...19
4. Top Level Instance ...22

E. IMPLEMENTATION ...23
1. Instance Parameters ..23
2. State Machines ..24
3. User Operation of Xoodyak ..25
4. Structural Datapath ...26
5. Verification ...31

F. SUMMARY ..32

viii

IV. RESULTS ...33
A. COMPARATIVE FUNCTIONALITY ANALYSIS33
B. SUBJECTIVE STRUCTURAL ANALYSIS ...34
C. IMPORTANT CONSIDERATIONS FOR BENCHMARKING35

1. Build Qualification for Benchmarking35
2. Precision Limitations on Results ..36
3. Startup Delays, Streaming Mode, and Performance36
4. Adjustments for AES KeyExpansion ..36

D. PARAMETER ANALYSIS...37
1. Throughput Analysis ...39
2. Cell Area Analysis ..39

E. ALTERNATIVE COMPARISONS ...40
1. Alternative: Xoodyak and AES-Galois Counter Mode

(AES-GCM) ..40
2. Alternative: Enc/Dec Xoodyak only and AES Core41

F. SUMMARY ..41

V. CONCLUSION ..43
A. ASSESSMENT OF GOALS..43
B. FUTURE WORK ...43

1. Remove Fixed Length String Requirement43
2. Perform a More Extensive Verification44
3. Reduce the Xoodyak Startup Clocks from Two to One44
4. Perform an ASIC Benchmarking of AES with Galois

Counter Mode...44

APPENDIX A. CODE REPOSITORY ..45

APPENDIX B, DEFINITION OF XOODOO ...47

APPENDIX C VECTOR EXAMPLE ..49

APPENDIX D. AES AND XOODYAK BUILD METHODOLOGY53

APPENDIX E. BUILD RESULTS ...55

APPENDIX F. SAMPLE BUILD IMAGES ..57

LIST OF REFERENCES ..61

INITIAL DISTRIBUTION LIST ...63

ix

LIST OF FIGURES

Figure 1. Top Level AES-128 Process Diagram ...8

Figure 2. Function Verification Process Flow Diagram ..9

Figure 3. Definition of Xoodyak as Cyclist with Parameters. Source: [5].12

Figure 4. Use of Xoodyak Functions for Hashing. Source: [5].13

Figure 5. Use of Xoodyak Functions for AEAD. Adapted from [5].14

Figure 6. Up Function Definition. Source: [5]. ...16

Figure 7. Down Function Definition. Source: [5]. ..17

Figure 8. AbsorbAny Function Definition. Source: [5]. ..18

Figure 9. Crypt Function Definition. Source: [5]. ...18

Figure 10. SqueezeAny Function Definition. Source: [5]. ...19

Figure 11. AbsorbKey Function Definition. Source: [5]. ..20

Figure 12. Absorb Function Definition. Source: [5]. ..20

Figure 13. Encrypt Function Definition. Source: [5]. ..21

Figure 14. Decrypt Function Definition. Source: [5]. ..21

Figure 15. Squeeze Function Definition. Source: [5]. ..21

Figure 16. SqueezeKey Function Definition. Source: [5]. ...22

Figure 17. Ratchet Function Definition. Source: [5]. ...22

Figure 18. Cyclist Function Instantiation. Source: [5]. ...22

Figure 19. Pre-Permute Process Diagram ...27

Figure 20. Permute Process Diagram ..29

Figure 21. Reconcatenation Logic...30

Figure 22. Post-Permute Process Diagram..31

Figure 23. Xoodyak Data Verification Process ...32

x

Figure 24. A-03c Die Space. Source: [9]. ...57

Figure 25. X-07b Die Space. Source: [9] ..58

Figure 26. X-08a Die Space. Source: [9] ..59

xi

LIST OF TABLES

Table 1. AES-128 Function Call Decodes ...6

Table 2. AES-128 Function Return Decodes ...7

Table 3. AES Datapath Flow Order ...8

Table 4. Validated Function Transitions ..10

Table 5. Organization of Xoodyak Function Calls. Adapted from [5].13

Table 6. Xoodyak Parameter Length Summary. Adapted from [5]24

Table 7. Xoodyak Opcode Decode and Mode Restriction.24

Table 8. Functions with 1-Clock Stream Delays. ..26

Table 9. Functions That Make the Next Non-Identical Function Have a 1-
Clock Stream Delay. ..26

Table 10. Functions with a 4-Clock or 12-clock Stream Delay by Default26

Table 11. Function Comparison - Xoodyak and AES-128 ..34

Table 12. Streaming Results—5nm Technology. Adapted from [9]37

Table 13. Streaming Results—16nm Technology. Adapted from [9]37

Table 14. Non-Streaming Results—5nm Technology. Adapted from [9]38

Table 15. Cell Area Results—16nm Technology. Adapted from [9]38

Table 16. Cell Area Results - 5nm Technology. Adapted from [9]38

Table 17. Cell Area Results - 16nm Technology. Adapted from [9]38

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AEAD authenticated encryption with associated data
AES Advanced Encryption Standard
AES-128 Advanced Encryption Standard, 128-bit security variant
ASIC application specific integrated circuit
FSM finite state machine
LWC Lightweight Cryptography Competition
NIST National Institute of Standards and Technology
RTL register transfer level
S-box substitution box

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

EXECUTIVE SUMMARY

The National Institute of Standards and Technology is holding a competition to

create a lightweight cryptography standard. The scope of the competition contains both

authenticated encryption with associated data, and hashing. Xoodyak is a cryptographic

algorithm and finalist in the competition.

In this work, we wrote register transfer level code to reflect behavior for Xoodyak

at a synthesizable hardware level. The complete module is operable by a user and capable

of processing arbitrary length and numbered strings. We also wrote register transfer level

code for the Advanced Encryption Standard, which is similarly operable. Centaur

Technologies of Austin, Texas created 26 application specific integrated circuit builds

based on this code, which were then compared on a throughput, cell area, and leakage

power basis. The results show that Xoodyak builds can be optimized for size or throughput,

and these tailored builds are either significantly smaller or faster than Advanced Encryption

Standard across both 5nm and 16nm technology. Algorithm security was not evaluated

within the scope of this research.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

ACKNOWLEDGMENTS

I wish to thank my advisors, G. Glenn Henry and Commander Chad Bollmann, for

their mentorship over the last eighteen months. They showed great interest and vigor which

inspired superior results. However, I think the most important thing is that I both learned

something and thoroughly enjoyed the process. They greatly facilitated both goals. The

experience was similarly valuable; not many had the chance to get a build of their graduate

school projects.

I also wish to specifically recognize the efforts and resources of Jim Donahue and

Centaur Technologies in making the builds. His builds furthered the success of this project

and gave us the hard data we needed.

Lastly, I offer thanks for the fellowship of the following friends and colleagues who

materially impacted my journey, both directly and indirectly.

LT Brandy Allain, USN

Ms. Marcea Ascencio, USAF

CAPT William Clive Blodgett, Jr., USN

CAPT Garrett Farman, USN

CAPT Dave Huljack, USN

Capitão-tenente Madjer & Juliana Martins, MDB

LT Karina Monroe, USN

Professor John Roth

CAPT Zoah Scheneman, USN

ENS Wyatt Smith, USN

LT Tim Stevenson, USN

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. OVERVIEW

Encryption has been used to ensure the secrecy of information since antiquity. Two

thousand years after the Caesar Cipher, the National Institute of Standards and Technology

(NIST) adopted a subset of the Rijndael cipher as Advanced Encryption Standard (AES)

[1]. AES is the most common and thoroughly vetted block cipher available today. Block

ciphers ensure data confidentiality, but not integrity or authenticity.

TLS 1.3 and other modern security systems require Authenticated Encryption with

Associated Data (AEAD), which provides integrity and authenticity in addition to

confidentiality [2]. The use of AES with AEAD requires more than the AES block cipher

alone1 [3]. These additional requirements can limit throughput and add computational

burden to resource-constrained devices. The NIST Lightweight Cryptography

Competition (LWC) seeks to alleviate these concerns by creating a standard for both

AEAD and hashing [4].

Daemen et al. created Rijndael as well as Xoodyak, which is one finalist in the

NIST competition [5]. Xoodyak is a family of mathematical functions that are

synthesizable in hardware. Xoodyak can be used for both AEAD and hashing. The

principal characteristic in Xoodyak is a 384-bit State. The State undergoes minor

modification at the start of every function call and is then distributed by a permute function

which performs various Boolean XORs and round key additions in 12 iterations. The

output is then combined with an input text to “absorb” a string or generate an output text.

This process repeats, perhaps multiple times, depending on the length of the input string,

until all text is processed. ASIC benchmarking can determine the performance relationship

between Xoodyak and AES, which is the primary goal of this work.

1 NIST recommends the use of Galois Counter Mode to mode to perform AEAD with an AES core, as

described in ref. [3], NIST Special Publication 800–38D Ch 7: GCM Specification

2

B. MOTIVATION

The Fleet has a need for lightweight, scalable encryption to support time-critical

and Internet of Things applications. Higher throughput is one of the goals of the LWC,

which translates to smaller encryption delays in operational use. If selected as the

lightweight cryptographic standard, Xoodyak will be positioned to provide AEAD with

low latency to fill these requirements. Quantifying the relative gain over the existing

standard, AES, is a critical benchmark for assessing algorithm performance.

The hardware builds which we created will also provide the NIST Lightweight

Cryptography Competition with ASIC benchmarking data. This data will better inform

NIST decision makers about real performance marks for Xoodyak in an isolated standard-

to-proposed-standard comparison in relation to AES-128.

C. SCOPE

This research evaluated the performance and size of the AES-1282 standard in

comparison to the Xoodyak cryptography suite.3

This comparison was selected because AES is the established technical standard,

and Xoodyak is a proposed technical standard for lightweight cryptography. Consequently,

the direct comparison is between an established and proposed standard.

ASIC benchmarks were performed by Centaur Technologies of Austin, Texas. Our

research was concerned with implementing cores and measuring parameters to assess

performance. These parameters were cell area, cell count, and clock frequency. The

research did not evaluate any dynamic power consumption or security claims.

2 In the context of this document, “AES,” “AES core,” or “AES standard” refers to statements about

the entire Advanced Encryption Standard regardless of key size (128, 192, or 256 bits). Every use of AES
refers to the block cipher only, not AES as a part of a larger AEAD scheme such as that described in the
NIST Recommendation [3]. “AES-128” specifically refers to an AES standard algorithm using a 128-bit
key size, or a build that only supports 128-bit true keys.

3 As described in “Xoodyak, a Lightweight Encryption Scheme.” - Algorithm 2, page 9 [5]. The suite
includes every possible combination of functions with arbitrary input lengths and arbitrary order, so long as
the order is algorithmically feasible.

3

D. THESIS ORGANIZATION

Chapter II describes the control implementation of the AES core, which includes

the KeyExpansion, Encrypt, and Decrypt modules. Chapter III describes the Xoodyak

algorithm in theory and hardware architecture. Chapter IV describes full benchmarking

results and comparisons. Chapter V is the conclusion. Appendix A contains a link to the

author’s GitHub repository containing the full register transfer level (RTL) description for

both AES and Xoodyak. Appendix B is a reproduction of the Xoodoo Permute function as

described in [3]. Appendix C is an example series of function calls, evaluated using the

Xoodyak hardware instance. Appendix D provides the technical build methodology

employed by Centaur Technologies in creating the hardware instances. Appendix E

contains the full list of AES-128 and Xoodyak builds and benchmarking data. Appendix F

provides selected die plot images of various hardware builds.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND

A. OVERVIEW

The purpose of this research was to evaluate Xoodyak performance in relation to

AES. A direct evaluation required RTL instantiations of both algorithms and subsequent

builds for benchmarking. A “build” is the collection of transistors and wires which perform

the described function, demonstrating the size and performance on any resulting silicon

chip. Only minor steps remain before a build can be released into manufacturing. This

chapter concerns the AES instance, from both a structural overview and user operation

perspective.

The AES algorithm supports 128, 192, and 256-bit key lengths, but the 196 and

256-bit key lengths require more hardware to implement. They also require more rounds,

or iterations of the algorithm, to complete an encryption cycle, which increases cell area

and decreases throughput. Xoodyak only claims 128 bits of security. Our AES

implementation therefore only supports 128-bit key lengths to obtain a more equivalent

perspective.

The AES structure is designed to accomplish one AES round every clock, as

described in the AES Standard. We also made several design decisions, particularly

regarding substitution-boxes (S-boxes) which are discussed in more detail in Section II.C.

The separate KeyExpansion, Encrypt, and Decrypt modules are wired together in a

manner that supports continuous operation. The full AES module is fully operational; users

can expand keys, then encrypt or decrypt an arbitrary length string.

Lastly, the completed AES instance was verified using a combination of the sample

test vectors in the AES Standard and hand verification using MATLAB.

B. AES IMPLEMENTATION

NIST FIPS - 197 forms the basis of AES [1]. AES, including AES-128, is publicly

understood. Our discussion regarding AES is therefore limited to general approach,

functionality, and notable design decisions.

6

1. Round Based

Our implementation of AES sought to match the technical requirements of [1] in a

functional, ASIC-instantiated RTL model. The implemented datapath closely resembles

the steps in [1] for all modules. Each module uses a round-based approach, where one clock

completes one round. For example, one clock in the Encrypt module accomplishes one

SubBytes, ShiftRows, MixColumns, and AddRoundKey transformation. Ten clocks are

required to accomplish the entire Cipher (Encrypt) operation. Inverse Cipher (Decrypt) and

KeyExpansion require ten and 11 clocks respectively under the same paradigm.

2. Functionality

Our AES-128 implementation includes hardware to implement the KeyExpansion,

Encrypt, and Decrypt functions. The modules are interlinked for operational use. Users can

call various functions based on a 2-bit opcode. The appropriate data must be provided

synchronously with the function call. The opcodes are listed in Table 1.

Table 1. AES-128 Function Call Decodes

Ingesting a valid opcode creates a text output for Encrypt or Decrypt calls. Function

durations are counter-based and determinate. Opcode 3 calls for KeyExpansion create no

output text because the expanded keys are held in the module for future use. However, an

output text decoder informs the user when KeyExpansion is complete. The return decode

is provided synchronously with the output text for Encrypt and Decrypt calls. Table 2 is a

full readout of output function decodes. Throughput and cell area results are detailed in

Chapter IV.

Opcode AES
0 Idle
1 Encrypt
2 Decrypt
3 Keys

Functions [1:0]

7

Table 2. AES-128 Function Return Decodes

C. HARDWARE DESIGN DECISIONS

Several design decisions had to be made when designing the AES hardware

instance. For example, accomplishing one AES round per clock was a conscious choice.

Two deliberate choices involved how to handle the forward and inverse S-box, and whether

to reverse certain commutable steps in the Decrypt module. The most significant design

choice was to hold expanded keys in a register, rather than generate keys “on the fly.”

1. S-box Instance

The Encrypt module contains a forward Rijndael S-box instance. The S-box is

shared with the KeyExpansion module for use in key generation. The Inverse S-box is

separately instanced in the Decrypt module, rather than being computed as a derivative of

the forward S-box.

2. Default Cipher Configuration

Certain AES steps are commutable [1]. This implementation performed the

standard function flows with no use of “equivalencies.” The Encrypt/Decrypt datapath

flows are summarized in Table 3.

Decode AES
0 Invalid
1 Ciphertext
2 Plaintext
3 Keys

Returns [1:0]

8

Table 3. AES Datapath Flow Order

Table reflects both the default datapath per the AES Standard, and the implementation in
the Encrypt and Decrypt Modules. Adapted from [1].

3. Vector Key Generation

Keys are provided in a complete set to the Encrypt and Decrypt modules. Calls to

Encrypt or Decrypt use the stored keys for computation. One key is generated on every

clock. The expansion is complete when all 11 keys are generated. The keys are held in

registers, comprising 11 128-bit registers in total. These stored keys comprise a large part

of the KeyExpansion hardware. The keys are not “flushed” after an encryption cycle. This

allows multiple cipher operations to use the same key vector. Figure 1 visualizes both how

key vectors are shared with both Encrypt and Decrypt, and shows the high-level structure

of the AES-128 module.

Figure 1. Top Level AES-128 Process Diagram

Step Encrypt Decrypt
1 SubBytes InvShiftRows
2 ShiftRows InvSubBytes
3 MixColumns AddRoundKey
4 RoundKey InvMixColumns

AES Flow

9

D. AES BEHAVIORAL VERIFICATION

Our AES-128 instance supports three function calls and idle. Vivado is an RTL

design suite by Xilinx for analysis and synthesis of RTL logic [6]. Each function was

individually verified through Vivado using MATLAB, [1], and [7]. The MATLAB script

in [7] was assumed to be correct after our detailed visual inspection and verification of

intermediate and final outputs from the sample test vectors in [1]. Our individual vector

results were verified by hand using a combination of the MATLAB code in [7] and Vivado

waveform simulation. The waveform window was examined for correct output text,

opcode/decode/operation congruence, and timing. Figure 2 visualizes this process.

Figure 2. Function Verification Process Flow Diagram

After individual functions were validated, all possible sequences of function calls

were performed in Vivado with MATLAB verification. The data used was the default test

vector in the AES Standard [1]. The nine distinct function transitions were performed to

directly test for errors in control logic. Table 4 describes every possible function transition.

Idle transitions are not included because they are no-ops. The output pins were then

examined for correctness across the entire function sequence.

10

Table 4. Validated Function Transitions

E. SUMMARY

This chapter discussed a stable control to compare with Xoodyak, the proposed

lightweight cryptography standard. Our hardware instance of AES-128 serves as that

control basis. This operational AES-128 module forms a basis on which to compare to an

operational Xoodyak module. The algorithmic definition and hardware construction of

Xoodyak is the topic of the next chapter.

Call N Call N+1
KeyExpansion KeyExpansion
KeyExpansion Encrypt
KeyExpansion Decrypt

Encrypt KeyExpansion
Encrypt Encrypt
Encrypt Decrypt
Decrypt KeyExpansion
Decrypt Encrypt
Decrypt Decrypt

Function transitions

11

III. METHODS

A. OVERVIEW

The purpose of this research was to benchmark the Xoodyak suite against the AES-

128 block cipher. The principal component of this work was the development of a Xoodyak

hardware instance. Creating the Xoodyak instance required two main efforts. The first part

was understanding the Xoodyak algorithm and making design decisions on supportability.

This required a thorough investigation of the formal algorithm definitions which make up

Xoodyak which are described in Section B.

The second part was writing the RTL code that supported those requirements.

Section E describes the implementation from a structural and operational perspective using

RTL logic in synthesizable SystemVerilog. Appendix A contains links to the full RTL

description. These new implementations were built using the same tools and circuit

modules as our AES-128 instance.

The Xoodyak module is fully operational, just like our AES-128 instance. This

includes the capability to handle arbitrary length strings across all AEAD and hashing

functions using two inputs, text, and opcode. Verification was conducted by hand

examination and C code. An example series of function calls with associated data is

available in Appendix C.

B. THE XOODYAK ALGORITHM

The Xoodyak algorithm is an instance of the Cyclist algorithm with specific

parameters [5]. Cyclist is made up of a series of mathematical function calls. The

algorithmic instantiation of Xoodyak is given in Figure 3.

12

Figure 3. Definition of Xoodyak as Cyclist with Parameters. Source: [5].

Xoodyak, being a derivative of the Cyclist algorithm, operates through what we

termed “level 1” function calls.4 We have parsed these functions according to levels for

clarity, but this is not a distinction that exists in the NIST submission. All functions, and

their precise relationships, are given in Algorithm 2 of [5]. Level 1 function calls are similar

to KeyExpansion, Encrypt, or Decrypt function calls in AES. Level 1 functions take user

inputs and create outputs. Lower-level functions are described in Algorithm 3 of [5] as

“internal interfaces.”

The higher-level function calls heavily overlap with lower-level calls. Two

examples of level 1 functions include Encrypt and Decrypt, which both call the Crypt

function on level 2. Every level 1 function call calls Xoodoo, the Permute core of Xoodyak,

if the phase is “DOWN” at the start of the call.5 This also sets the Xoodyak phase to “UP.”

Table 5 shows the relative relationship between all the various nested functions.

4 Function calls in this section specifically refer to algorithm function calls, not hardware functions

called by an opcode and supplied by a user.
5 Xoodoo and Permute are used interchangeably in this document. Likewise, permutation refers to the

results of Xoodoo, and the verb “to permute” a string means to provide a State input to Xoodoo and collect
the result.

13

Table 5. Organization of Xoodyak Function Calls. Adapted from [5].

 The Daemen et al. formal Xoodyak submission is described by a specific series of

function calls. However, users can call functions in arbitrary order. For example, while

{Cyclist, Crypt, Crypt, Absorb, Squeeze, Absorb} is not a series of function calls in the

AEAD or hash submission, it is still algorithmically possible. The formal AEAD and hash

function calls for the submission are described, along with their parameters, in Figures 4

and 5.

When used in hash mode as described in Figure 3, the Xoodyak algorithm can

produce any n-byte hash value, based on the absorption of any arbitrary length associated

data input x [5]. The Cyclist function generates a string of all zeros as the arguments are

null. The Absorb function call described absorbs an arbitrary length string x into the State.

The Squeeze function call generates an n-byte length hash, depending on the State.

Figure 4. Use of Xoodyak Functions for Hashing. Source: [5].

Figure 4 describes the use of Xoodyak in AEAD. The fundamentals of the process

are the same, supplying arguments represented by a variable name. AEAD requires a key

AbsorbKey Decrypt Squeeze Ratchet
Absorb Encrypt SqueezeKey -

AbsorbAny Crypt SqueezeAny -

Split Down Up -

f (Xoodoo) - - -

Top Level Instantiation

Level 1

Level 2

Level 3

Core

Cyclist (keyed) Cyclist (Hash)

14

K, which is null in hash mode. Several inputs are parameterized. The parameters are

discussed in greater detail in the implementation, Section E.1.

Figure 5. Use of Xoodyak Functions for AEAD. Adapted from [5].

C. PRIMITIVES

A common thread unites Xoodyak operations: the relationship between two objects

and a permutation. The first object is the State, which is a vector that changes value

depending on every function call since instantiation. The second are color bytes, which

provide domain separation at the start of each function call. In any function, the State

undergoes a color byte modification, is permuted, and then has another color byte

modification.6

1. State (as a concept)

The State is the fundamental object described in Xoodyak. The State has three

properties: value, length, and phase. In Xoodyak, the State is always 384 bits long and the

value is determined by process history. The process history is the sequence of function

calls, in order, with arguments, up to the present call. The phase of State is either “UP” or

“DOWN.” The phase can be flipped from “UP” to “DOWN” by the Down internal

function, or from “DOWN” to “UP” by the Up internal function. Applying the Up function

6 The color bytes are only active the first “pass” through a function. For strings of greater length than

the maximum operation length (given by parameters in Figure 3, Table 6) multiple passes are required.

15

to State whose phase is “UP” creates a no-op. Applying the Down function to State whose

phase is “DOWN” is not algorithmically possible.

2. Color Bytes

An Up color byte, CU, is applied via bitwise XOR to the least significant byte of the

State depending on the function called. For operations with multiple calls to Up and Down,

the CU is only applied before the first call to Up.

3. Core f

The f function is an instance of the Xoodoo/Permute function summarized by

Algorithm 1 [5]. It manipulates the State based on a set operation and pre-defined round

constants. The State manipulation performed by Xoodoo forms the core of the Xoodyak

algorithm. For Xoodyak, 12 rounds are required to complete the f function. Algorithm 1 is

reproduced fully in Appendix B.

D. DESCRIBING A FUNCTION CALL

Level 1 function calls perform a modification of the State, then permute the State

through Up and then Down. Function calls with large-sized arguments endure this process

multiple times. The precise nature of whether an Up function is used on a call, or what

modifications are performed before or after it, are specific to the function, the length of the

function call, and the phase of the State when the call is processed. Each level of function

call must be described in detail. The discussion must begin at the lowest level with

Permute, and end at the highest level with Cyclist, because each function can call all lower-

level functions.

1. Level 3 Function Calls

a. UP

Up calls permute, change the phase to “UP,” and updates the value of the State with

the post-permute value. Setting the phase to “UP” prevents a subsequent Up call until a

Down function processes. Up accepts |Yi| and the Up color byte CU as inputs, where |Yi| is

16

the size of the desired return value in bytes. In practice this is a parameter based on the

function call.

CU is not applied to the State in hash mode, but it is applied to the least significant

byte of the State in keyed mode. The returned value from Up is the most significant |Yi|

bytes of the state, after the permute. Figure 6 gives the formal definition for Up.

Figure 6. Up Function Definition. Source: [5].

b. DOWN

The Down function performs post-permute processing. At a high level, the Down

function creates a vector, then XORs that vector with the State. The output of this XOR is

the new State.

The entire post-permute processing has four parts concatenated together in a

specific order. In Xoodyak, this concatenated vector is 384 bits long and articulates which

bits to flip in the State. The first is the input data, Xi, is of variable length and can be zero.

The second is 0x01. The third is an extended 0x00 which spans the distance from the end

of the second part to the final byte. The last part is a Down color byte (CD), which also

contains a logical AND with 0x01 in hash mode.7 CD varies depending on the function

call. Figure 7 describes this process in formal terms, where both the phase and state (s) are

assigned.

7 Contextually, the impact of the logical AND 0x01 in hash mode only means that CD is zero for all

hash mode functions, except for the first pass through a call to Absorb. Recall that the only valid functions
in hash mode are Cyclist, Absorb, and Squeeze.

17

Figure 7. Down Function Definition. Source: [5].

c. SPLIT

The Split function breaks the input string X into n sized pieces. Argument n is the

maximum length that can be operated on at a single time and is variable depending on the

function called. An n-sized piece of the string is processed for every sequential alteration

through Down and Up until the entire input string X is exhausted.

2. Level 2 Function Calls

The level 2 functions are called by the level 1 functions. Level 2 function calls

perform a modification of the State, then permute the State through Up, then perform

another modification of the state through Down. The process is repeated depending on the

input strings. The difference between the level 2 functions is the nature of the arguments

supplied to the modifications in pre- or post-permute processing, and the length of the

parameters supplied to those modifications.

a. AbsorbAny

AbsorbAny adds an input string to the state. Like every level 2 function, arguments

are supplied by the level 1 functions. Until the input string is exhausted, AbsorbAny will

break the first input into |X/r| sized chunks through the Split function, then apply the Up

(which includes the permute) and Down functions to the state for every chunk. If the phase

is “UP” at the start of the function call, the Up function is not called and the function

proceeds directly to Down.

The CD is zero for every run through the Up and Down function beyond the first

one. Regardless of input string size, AbsorbAny always terminates with the state in the

“DOWN” phase. Figure 8 gives the formal definition for AbsorbAny.

18

Figure 8. AbsorbAny Function Definition. Source: [5].

b. Crypt

Crypt performs either the encrypt or decrypt operation. The calling level 1 function

supplies text I and a Boolean value indicating whether the text is to be enciphered into the

State (0 for encrypt), or whether the text is ciphertext to replace in the State (1 for decrypt).

The text is broken into (I/|Rkout|) chunks, rounded up, through Split as described

before. Then for each chunk, Up is performed on the state.

For Encrypt operations, the argument supplied to the Down function is the input

text, parted into chunks. For Decrypt operations, the input to the Down function is input

text XORed with the most significant |Rkout| bytes of the State. Behaviorally, this means

that the first |Rkout| bytes of the state are replaced with the input chunk in Decrypt

operations. Figure 9 gives the formal definition for Crypt.

Figure 9. Crypt Function Definition. Source: [5].

c. Squeeze

Squeeze produces an l-byte hash of the state. Like all level 2 functions, the supplied

arguments are defined by the level 1 functions. The first Up call permutes the State, and

the most significant |Rsqueeze| bytes are held as the hash output. If l is smaller than Rsqueeze

then L is used instead.

19

If the size of the hash is less than the desired value l, the Down function applies,

which as defined in Squeeze only flips the eighth most significant bit in the state due to the

specific arguments supplied.

The Up function is then called again, and once more the first |Rsqueeze| bytes are

appended to the hash. The cycle of Down followed by Up continues until the desired hash

length is obtained.

In every case the phase ends with “UP” when Squeeze is called. Figure 10 gives the

formal definition for SqueezeAny.

Figure 10. SqueezeAny Function Definition. Source: [5].

3. Level 1 Function Calls

Level 1 function calls supply arguments to and invoke the level 2 function calls. As

such, their descriptions are curt.

a. AbsorbKey

AbsorbKey is called to bring the secret key into the state. AbsorbKey can only be

called as part of the initial state instantiation. AbsorbKey initializes the state in keyed mode,

and applies the defined parameters, Rkin and Rkout, to Rabsorb and Rsqueeze (the Absorb and

Squeeze rate every permutation).

The items are supplied to AbsorbAny as a single argument. They take the form (K

|| id || enc8(|id|)), where K is the key, || is the concatenation operator, and enc8(|id|) is the

20

modulo 256 value of the size of the optional identifier, id. Xoodyak default parameters

presume id to be null .

The second argument is Rabsorb is always 16 bytes or Xoodyak AEAD, and 0x02 is

the color byte for AbsorbKey. The counter field is used as another way to absorb a nonce

as described in [5]. Figure 11 gives the formal definition for AbsorbKey.

Figure 11. AbsorbKey Function Definition. Source: [5].

b. Absorb

Absorb is the level 1 function the user invokes to absorb a string X into the state.

Its only function is to immediately call the level 2 function AbsorbAny, where the

arguments are the input string X, the parameter Rabsorb as defined in the Cyclist call to

AbsorbKey, and ‘03’ for the color byte. Figure 12 gives the formal definition for Absorb.

Figure 12. Absorb Function Definition. Source: [5].

c. Encrypt

The only argument for Encrypt is the text to be encrypted. Encrypt can only be

called in keyed mode. It passes the text to Crypt as well as a Boolean 0 to indicate

encryption vice decryption. Figure 13 gives the formal definition for Encrypt.

21

Figure 13. Encrypt Function Definition. Source: [5].

d. Decrypt

The only argument for Decrypt is the text to be decrypted. It can only be called in

keyed mode. It passes the text to Crypt as well as a Boolean 1 to indicate decryption vice

decryption. Figure 14 gives the formal definition for Decrypt.

Figure 14. Decrypt Function Definition. Source: [5].

e. Squeeze

The only argument in Squeeze is the desired hash length in bytes. It passes the hash

length and the round constant 0x40 to SqueezeAny. Figure 15 gives the formal definition

for Squeeze.

Figure 15. Squeeze Function Definition. Source: [5].

f. SqueezeKey

The only argument in SqueezeKey is the desired hash length in bytes. It can only be

called in keyed mode. It passes the hash length and the round constant 0x20 to SqueezeAny

and exists to generate a key. Figure 16 gives the formal definition for SqueezeKey.

22

Figure 16. SqueezeKey Function Definition. Source: [5].

g. Ratchet

Ratchet accepts no input. It can only be called in keyed mode. The first argument

supplied to AbsorbAny is the first lratchet bytes of the permuted State. Behaviorally, the

series of function calls permutes the state with f, then overwrites the lratchet most significant

bytes in the state with zero. Figure 17 gives the formal definition for Ratchet.

Figure 17. Ratchet Function Definition. Source: [5].

4. Top Level Instance

The instance of Xoodyak is determined by a call to the Cyclist function. Initially,

state is instanced to be all zeros, and the phase is instanced as up. The mode is set to hash,

and Rhash is assigned to be the Rabsorb and Rsqueeze parameter. In keyed mode, these values

are overwritten in the call to AbsorbKey, but if there is no supplied key then the state

remains in hash mode. Figure18 gives the Cyclist formal definition.

Figure 18. Cyclist Function Instantiation. Source: [5].

23

E. IMPLEMENTATION

This research implemented the ability to invoke every function call with the

opcodes described in the level 1 functions. Function calls are made by supplying an

operational code (opcode) to the input ports with the accompanying data. All opcodes are

four bits long and expressed in hexadecimal. For example, the hardware will enter the

Cyclist function in keyed mode by ingesting opcode 0x01, and Cyclist in hash mode by

ingesting opcode 0x09.

Broadly speaking, our hardware structure is built around the level 2 functions, the

inputs for which are modified depending on the exact function called. Every function

except for Split is allocated hardware, which is administered by the user. The hardware

structure is not able to recognize where one string of information begins or ends, and it is

only capable of processing a finite amount of data on every function call. Since this split

in data must occur regardless of how long or short a string is, the user is responsible for

keeping track of when strings begin or end.8

1. Instance Parameters

The Xoodyak Implementation operates as a series of function calls. The Xoodyak

algorithm allows for some variable length fields, such as the message text. This

implementation used fixed length vector lengths based on parameters described in [5] and

summarized in Table 6.

8 However, no organization is required on the part of the user apart from properly aligning the data

input vector and opcodes. Subsequent calls for the same function {Absorb(X), Absorb(Y)} can be
discriminated by inserting a single idle opcode for one clock (on a clock that the hardware is accepting
inputs). Without this step, the hardware will process the data as {Absorb(X || Y)}, which is not the same
operation because of color bytes and ensuing avalanche effect in the Permute hardware.

24

Table 6. Xoodyak Parameter Length Summary. Adapted from [5]

2. State Machines

Operations are governed through three distinct finite state machines. The first state

machine determines whether the state is in hash or keyed mode. The second machine

handles function calls. The final state machine handles the “Shadow State” which stores

the previous function call. The Shadow State is important for administering color bytes.

The state machine and “shadow state machine” can proceed directly from one function call

to another. Returning to the idle state will wipe the shadow state, allowing for an identical

function with a broken string. Table 7 summarizes valid opcode combinations.

Table 7. Xoodyak Opcode Decode and Mode Restriction.

The “Nonce” function performs an Absorb with a different parameter length, per Table 6.

Object Length (Bytes) Length (bits)
Rabsorb (hash) 16 128

Rabsorb (AEAD) 44 352
Mlength 24 192

Key Size 16 128
Nonce 16 128

Rsqz 16 128

Function Call Opcode Keyed Mode Only
Cyclist (keyed) 1 -
Cyclist (hash) 9 -

Nonce 2 YES
Absorb 3 -
Encrypt 4 YES
Decrypt 5 YES
Squeeze 6 -
Ratchet 7 YES

SqueezeKey 8 YES
Idle All Others -

25

3. User Operation of Xoodyak

Xoodyak completes functions in either one clock, four clocks, or 12 clocks

depending on the hardware build and the function call. These distinctions are discussed in

the next section. These counts do not include startup queuing delays.9

a. Startup Delays and Timing

There is an additional two-clock startup delay to sample and alter the state machine.

Therefore, a function call completes three, six, or 14 clocks after a function call is queued

at the front of the module.10 This means that in all cases the next function will be sampled

while the previous function is still running, unless the state machine is in the idle state.

Any function that uses the Permute module completes in four or 12 clocks. The

four or 12 clocks required for operation depends on the build used.11 Both approaches

fully satisfy the round requirement levied by the Xoodyak algorithm.

Not every function call requires Permute, which triggers a one clock operation.

Functions that end with an “UP” state as defined by [5] cause the next function called to

not use Permute. Multiple calls to the same function do not trigger this case. For

example, generating a 256-bit digest requires two sequential calls to Squeeze. Each call

requires Permute, and two calls are required, for a total of ten clocks to generate the

entire string.12 A following function such as Absorb (or other) will not require Permute

as such the next input text and opcode will be sampled on the very next clock. Tables 8,

9, and 10 summarize stream clock delays based on function calls.

9 All modules support streaming operations. Accordingly, startup delays are not included in any clock

related description outside Ch III.E.3.a, Startup Delays, unless explicitly stated otherwise. CH IV.C.3
refers.

10 Alternatively, two, five, or 13 clocks after the sampling register. That is, if the sampling clock is not
counted in the total. If applicable, output texts are provided synchronously on this clock, which is two, five,
or 13 clocks after the sampling.

11 Ch III.E.4.b describes how these build differences impact the required clocks. Appendix E contains
the full list of builds. Tables 13–16 contain selected builds with both build versions.

12 For the four-clock build: a two-clock startup delay, followed by four clocks of operation for the first
call. The subsequent call to Squeeze only requires four clocks through streaming operations, having been
sampled on clock 5 while the first Squeeze was operating. Clock 10 generates the last set of output text.

26

Table 8. Functions with 1-Clock Stream Delays.

Table 9. Functions That Make the Next Non-Identical Function Have a 1-
Clock Stream Delay.

Table 10. Functions with a 4-Clock or 12-clock Stream Delay by Default

4. Structural Datapath

There are three parts to the datapath, Pre-Permute, Permute, and Post-Permute.

Each section loosely relates to different stages in the level 2 functions. Hardware in the

Pre-Permute module performs exception handling. Pre-Permute, Permute, and Post-

Permute collectively perform all functions. The user performs Split on the data, but the

hardware will track whether a function call is continuous. The user can indicate a string for

a function by continuously asserting the same opcode when the hardware completes

function calls. This allows the user to handle arbitrary length function calls, provided those

lengths are multiples of the parameters specified. The user can provide padding to meet

those multiples.

Function Call Opcode
Cyclist (keyed) 1
Cyclist (hash) 9

Function Call Opcode
Cyclist (hash) 9

Squeeze 6
SqueezeKey 8

Function Call Opcode
Nonce 2
Absorb 3
Encrypt 4
Decrypt 5
Squeeze 6
Ratchet 7

SqueezeKey 8

27

a. Pre-Permute

The purpose of the Pre-Permute stage is to generate the 384-bit vector that enters

the Permute module. Figure 19 provides a high-level process overview of the hardware

structure that handles the per Permute stage. By default, the State is the contents of a 384-

bit vector which is the output of the previous function call. There are several exceptions,

and the Pre-Permute stage handles all of them in a multiplexer. The exceptions are

summarized in the next section. Multiple exceptions cannot occur at the same time, so

dedicated exception handling hardware is reused in several cases.

 A round constant is then applied to the output, depending on the function call, as

described in Algorithm 2 [5]. The round constant is only added for the first permutation of

a string.

Figure 19. Pre-Permute Process Diagram

28

b. Exception handling

There are two exceptions to handle edge cases. The cause of the edge cases is that

the hardware does not track the algorithmic phase - “UP” or “DOWN.” Rather, each pass

through the hardware accomplishes both the Up and Down functions, which creates issues

when one of those functions is not used. There are two ways this can occur. The first way

is after a Squeeze function. Recalling Figure 16, see that regardless of the string length l,

the phase ends in the “UP” state at the completion of the function call. Since the user is

performing the Split function, the user delimits the end of the Squeeze function by simply

providing the next function and associated data. Inside the hardware, the Shadow State is

shadow_squeeze, and the actual state machine is not in the Squeeze state, which triggers

the exception. The impact is that the next function call, delimited by the next ingested

opcode other than 4’h6 (Squeeze) or 4’h8 (SqueezeKey), will not perform the Up function

and associated Permute. Additionally, the value held in the State register will be invalid,

and the value in the exception register will be used instead. We speculate this exception

will not be especially relevant, since performing a Squeeze or SqueezeKey is a hash of the

existing State, which implies the operation is complete. However, it is included for

completeness of operation.

The second exception is in the first Absorb function call after State instantiation

with opcode 4’h9, Cyclist (hash). Unlike the hardware keyed mode Cyclist function, which

also performs the algorithmic AbsorbKey function, the hardware hash Cyclist function

merely only creates a 384-bit vector of all zeros. Accordingly, the first Absorb after this

only requires an algorithmic Down function and is completed in a single clock.13

13 We considered including the first hash-based Absorb in the Cyclist instantiation, requiring the user

to supply the first round of Absorb data at instantiation. This would theoretically cause a one clock
advancement of any function sequence, but we decided against it because this would be combining two
different top-level functions at once, which is not consistent with the proposed standard [5]. This is directly
in opposition to the associated key absorption innate in the keyed Cyclist function, which directly calls the
first Absorb without further top level involvement and therefore does not trigger an exception under our
rules.

29

c. Permute

The Permute module is made up of three parts, a round, round constant vector, and

a register. The Permute inputs are fed to the Permute module and registered every clock.

Figure 20 provides a high-level view of this process. Multiple Permute rounds can be

instanced in sequence. This research specifically built one-Permute instances and three-

Permute instances.14 12 rounds must be accomplished in total, and the addition of multiple

Permute instances reduces the number of clocks required to complete a permutation.

Figure 20. Permute Process Diagram

14 See CH IV for build analysis. See Appendix E for full list of builds.

30

Execution of a Permute round is exactly as described in [5], with a noted exception

in the way certain indices are referenced. The test vector and software indexing are reversed

compared to SystemVerilog conventions. This drastically changes Permute results. Figure

21 is a direct excerpt from the RTL code that shows this reversal.

Figure 21. Reconcatenation Logic

d. Post Permute.

The output of the Permute module is unregistered; the register is the beginning of

the intermediate rounds rather than the end. The vector subject to post-permute operations

depends on the function presented. Not every function requires a permute. Functions that

require Permute use the outputs of Permute. Functions that do not require Permute use the

Permute input vector before the round constant is added.

The Down function is computed for every type of function in parallel. The final

output is selected via a multiplexer controlled by the State Machine. Since several functions

are similar in form, each Down operator can accomplish multiple function variants. Figure

22 provides a high level view of this process, from input to output data.

Output text is only valid for certain function calls. For these functions, a multiplexer

performs a modification of the Down output to generate the output text.

31

Figure 22. Post-Permute Process Diagram

5. Verification

The Xoodyak implementation supports nine function calls and idle. Verification

was performed by hand for timing, function returns, and data manipulation. Further

verification was performed via Sean B. Palmer’s software implementation “Xoocycle,”

published as part of the NIST submission package [8]. Vectors were hand-examined via

Xoocycle and Vivado waveform simulation. The waveform window was examined for

expected output text, output decode, and timing across a wide variety of function calls. In

total, each callable function was performed and checked for accuracy, including using

strings that are too long to process in a single operation. Figure 23 shows a subjective view

32

of the process. Appendix C shows an example of a sequence of function calls, complete

with input data and State values between each function.

Figure 23. Xoodyak Data Verification Process

F. SUMMARY

This chapter examined the algorithmic definition, hardware structure, and

verification process for Xoodyak. The RTL code which implements Xoodyak is an

operational module capable of arbitrary length and number of function calls, subject to

certain parameters. The Xoodyak module has also survived non-exhaustive verification by

hand. The instance as implemented forms a thorough basis for detailed performance and

cell area comparisons with our AES-128 module. These detailed comparisons are the topic

of the next chapter.

33

IV. RESULTS

Our comparison between AES-128 and Xoodyak has three main dimensions:

functionality, throughput, and size. The build data does not include dynamic power, which

is important for some applications. However, leakage power is included in the build data.

Direct comparisons between our AES-128 and Xoodyak requires certain rules.

These include baseline assumptions on what qualifies a build for a detailed comparison, or

a subjective assessment on which builds are more competitive than others. It also includes

basic benchmarking rules, such as the decision to use stream encryption as the primary

throughput benchmark, and the use of cell area vice die area as the primary size metric.

Functionality is assessed on support for cryptographic capabilities which include

authentication, encryption, hashing, and associated data support. Throughput is assessed in

bits processed per second. Size is assessed in terms of cell area. Lastly, there is a brief

discussion on alternative comparisons between the algorithms which were not

implemented.

A. COMPARATIVE FUNCTIONALITY ANALYSIS

Our AES build can support full AEAD and hashing through the NIST

recommendation [3]. However, AES as described in the AES Standard is only capable of

block encryption and decryption [1]. The Xoodyak suite includes full AEAD and hashing

support by default. All Xoodyak builds in this research implement the full Xoodyak suite,

as summarized in Table 11.

34

Table 11. Function Comparison - Xoodyak and AES-128

The Xoodyak suite, when combined in the manner specified by Daemen et al., fully

implements the NIST requirement for AEAD and hashing [5].15 Function calls can take

place in any arbitrary sequence as defined by the user.16 The actual capability delivered by

Xoodyak is therefore highly flexible and exceeds the minimum NIST AEAD and hash

requirements. There is no loss in claimed security with any of these builds. Both AES-128

and the Xoodyak implementation require 128-bit keys and claim 128 bits of security.17

B. SUBJECTIVE STRUCTURAL ANALYSIS

AES and Xoodyak have distinct hardware structures. AES is defined by rounds;

each round uses a RoundKey generated by KeyExpansion and is comprised of four well-

defined mathematical steps in sequence. The round calculation is repeated 10 times in

AES-128. The calculations are applied directly to the plaintext or ciphertext, along with

the expanded keys.

The main cryptographic operation in Xoodyak is the Xoodoo/Permute function.

The permutation is applied to the State, not the input text. The value of the State depends

on the process history, including the order of function calls and data absorbed since State

instantiation. The text is applied via XOR after 12 permute rounds, like an AES

15 Algorithmic use of Xoodyak in AEAD mode is described in Section 3.2.3 – Authenticated

Encryption [5]. Use of hash mode is described in Section 3.1 – Hash mode.
16 The Xoodyak algorithm and implementation can handle any arbitrary sequence of function calls.

However, an arbitrary series of calls is not guaranteed to be a valid use of AEAD/hash or other
cryptographic significance.

17 The NIST competition submission algorithm uses a 128-bit key as a parameter. Instantiating a
Xoodyak state requires the use of a 128-bit key in the implementation. A longer key can be appended
through the Xoodyak Absorb function. The additional security of such an addition is not evaluated.

Xoodyak AES
Encrypt KeyExpansion
Decrypt Encrypt
Absorb Decrypt
Squeeze No equiv.

SqueezeKey No equiv.
Ratchet No equiv.

Functions

35

AddRoundKey.18 Substantial combinational logic outside permute is required to support

function calls. Every function modifies the State before permutation, and further

modifications are applied after Permute.

There are two implemented structures of Xoodyak builds. The differences in the

builds stem from the way they handle the permute function. Xoodyak X-05N and X-07N

series builds require 12 clocks to complete. Xoodyak X-06N and X-08N series builds

accomplish three permute rounds in one clock and thus require only four clocks to

complete.

This improved throughput performance comes at the cost of additional hardware.

Jim Donahue at Centaur Technology Inc. built both the AES and Xoodyak variants [9].

Builds were done in both a 16nm technology and a 5nm technology to identify any

algorithm related throughput, size, or leakage current differences due to technology.

The build recipes were similar to those used by Centaur for internal designs. These

builds are complete for a design decision usage, but do not have the final tapeout

adjustments including design rule check fixes, hold time fixes, or pad cells.

C. IMPORTANT CONSIDERATIONS FOR BENCHMARKING

1. Build Qualification for Benchmarking

A total of 26 build variations were generated between AES-128 and Xoodyak.

Comparing each build was not feasible. The intent of the various build configurations was

to find the fastest realistic frequency for a design and to perform design comparisons at

similar clock frequencies. From those build results, comparisons can be drawn for the most

competitive builds with a certain baseline. The baseline requirements for detailed

comparison were a clock frequency above 2 GHz, and a leakage current lower than 1mW.

18 The nature of the input text depends on the function called, whether plaintext, associated data, or

otherwise.

36

2. Precision Limitations on Results

While official build results are highly specific, they are not necessarily precise. The

build results should be interpreted as working examples rather than sole truths. Multiple

builds of the same assumptions and RTL code could have variable performance. Variability

in clock speed could be as high as +/- 50MHz. Tabulated results therefore round results at

100MHz. The full results in Appendix E do not round these values.

3. Startup Delays, Streaming Mode, and Performance

Both the AES-128 and Xoodyak implementations require startup delays before

function execution. AES-128 requires a one-clock delay. Xoodyak requires a two-clock

delay. These delays exist to register input data and opcodes and initialize state machines.

Non-streaming operations are required to account for these delays, but streaming

operations are not.

All implementations support streaming mode. Startup delays can be eliminated for

streaming operations because the modules will accept new input data while a previous

operation is ongoing.

For example, the AES-128 Encrypt and Decrypt modules carry a 11-clock delay

between input sample to output text generation. However, the state machine will allow the

next text vector to be registered on clock 10. The startup clock cycles are paid in parallel

with the previous encrypt cycle. The streaming delay for AES Encrypt and Decrypt is

therefore 10 clocks rather than 11. Streaming startup delays in Xoodyak can be ignored for

the same reason.

An arbitrary number of encryptions can be performed with only one two-clock

startup delay under this construct. This is insignificant across a large operation.

Accordingly, they are neglected in streaming throughput computations.

4. Adjustments for AES KeyExpansion

The AES instance includes a KeyExpansion module. For ease of implementation,

keys are not generated “on the fly.” Key generation requires a 11-clock delay from input

to output register. Combined with the 10-clock stream delay for Encrypt and Decrypt

37

modules, this means there is a 21-clock delay from the point a true key is supplied to

generate output text using that key. However, when computing the throughput performance

for AES the KeyExpansion clocks are not included.

D. PARAMETER ANALYSIS

All instances of Xoodyak included the full Xoodyak suite with both AEAD and

hash functionality. Tables 12 – 17 provide an overview of the throughput, size, and leakage

power results for certain builds. While all tables contain every parameter, builds in Tables

12–15 are selected for throughput analysis and builds in tables 16–17 are selected for cell

area analysis. When referenced by build, A-series builds refer to AES-128 and X-series

builds refer to Xoodyak. Builds with 5nm technology, vice 16nm technology, can be

identified by the “5n” in the build name. Appendix E contains the full raw results, and the

following subsections contain the relevant discussion.

Table 12. Streaming Results—5nm Technology. Adapted from [9]

Table 13. Streaming Results—16nm Technology. Adapted from [9]

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW GHz. Clks/Op Bits/op Gbits/s

AES-128 A-5n03d 2,800 0.83 4.0 10 128 51
Xoodyak X-5n06a 2,200 0.86 2.9 4 192 140
Xoodyak X-5n05g 2,100 0.77 5.1 12 192 82

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW GHz. Clks/Op Bits/op Gbits/s

AES-128 A-03c 7,400 0.81 2.4 10 128 31
Xoodyak X-08a 6,300 2.50 2.2 4 192 106
Xoodyak X-07d 4,200 0.78 3.4 12 192 54

Clock

38

Table 14. Non-Streaming Results—5nm Technology. Adapted from [9]

Table 15. Cell Area Results—16nm Technology. Adapted from [9]

Table 16. Cell Area Results - 5nm Technology. Adapted from [9]

Table 17. Cell Area Results - 16nm Technology. Adapted from [9]

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW GHz. Clks/Op Bits/op Gbits/s

AES-128 A-5n03d 2,800 0.83 4.0 11 128 47
Xoodyak X-5n06a 2,200 0.86 2.9 6 192 93
Xoodyak X-5n05g 2,100 0.77 5.1 14 192 70

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW GHz. Clks/Op Bits/op Gbits/s

AES-128 A-03c 7,400 0.81 2.4 11 128 28
Xoodyak X-07b 3,300 0.23 2.4 14 192 33
Xoodyak X-08a 6,300 2.50 2.2 6 192 70
Xoodyak X-07d 4,200 0.78 3.4 14 192 47

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW GHz. Clks/Op Bits/op Gbits/s

AES-128 A-5n03d 2,800 0.83 4.0 10 128 51
AES-128 A-5n03f 2,200 0.20 2.1 10 128 27
Xoodyak X-5n05c 1,200 0.25 3.4 12 192 54
Xoodyak X-5n05e 1,600 0.44 5.0 12 192 80
Xoodyak X-5n05g 2,100 0.77 5.1 12 192 82
Xoodyak X-5n06a 2,200 0.86 2.9 4 192 140
Xoodyak X-5n06b 1,900 0.64 2.6 4 192 125

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW GHz. Clks/Op Bits/op Gbits/s

AES-128 A-03c 7,400 0.81 2.4 10 128 31
AES-128 A-03d 7,100 0.46 2.1 10 128 27
AES-128 A-03f 11,300 7.47 3.6 10 128 46
Xoodyak X-07b 3,300 0.23 2.4 14 192 33
Xoodyak X-07c 3,500 0.43 2.9 12 192 46
Xoodyak X-07d 4,200 0.78 3.4 12 192 54

Clock

39

1. Throughput Analysis

X-5n06a has the highest throughput of any build. The high throughput value stems

from the three Permute rounds instantiated in series. This allows any hardware stream

function call, including Encrypt and Decrypt, to be completed in four clocks.19 X-6n06a

strikes the best balance between clock speed and clock count to achieve the highest possible

throughput with a feasible clock rate.

Per Table 14, X-5n06a has a stream throughput factor of 2.7 times A-5n03d, the

highest-throughput AES-128 build. This throughput factor includes a 192-bit data width

for Xoodyak. Normalizing Xoodyak performance at 128-bits of true data per function cycle

requires a downward revision to 1.8.

Performance gains at the 16nm technology level are less decisive. Build X-08a is

the highest throughput 16nm Xoodyak build with a throughput value of 106 Gbit/s, but its

leakage current value is 2.5mW— far above the soft 1mW specification. This also means

that there were no qualified three-Permute 16nm builds. Hence, we move to the one-

Permute 16nm instances for comparisons to AES.

The highest throughput 16nm build with less than a 1mW leakage is X-07d. X-07d

is a one-Permute build with half the throughput of X-08a, its three Permute competitor. X-

07d does claim a throughput factor of 1.74 over AES build A-03c, but this includes a wider

Xoodyak data width. Normalizing to a 128-bit data width for Xoodyak reduces that factor

to 1.16.

2. Cell Area Analysis

The various AES-128 and Xoodyak instances were built using the ASIC flow build

process described in Appendix D. Die plots are shown in Appendix F. While every build

has a die size, the isolated builds are not reflective of the die size in a real chip. For example,

all inputs and outputs are registered in every research build. This may not be necessary if

19 All X-series (Xoodyak) builds with a 4 or 6 in the “Clks/Op” column has three permute rounds

instantiated in series. X-series builds that require 12 or 14 clocks have one permute round only. Broadly
speaking, builds with three permute rounds were intended to maximize throughput and builds with one
permute round were intended to minimize cell area.

40

these modules were built within a larger chip because the input vector may be able to make

timing without an input register. The surrounding circuitry context is required to determine

this possibility.

Also, a real chip may have more accessible layers which reduces the required die

area footprint. “Cell area” is the sum of all the area of all combinational logic and registers.

Cell area is therefore unaffected by this circuit context. Accordingly, “cell area” as opposed

to “die area” was the evaluated logic size metric.

X-5n05e and X-07b contain the lowest cell area for their respective technologies,

with cell areas of 1,600µm2 and 3,300µm2 respectively. Compared with the most cell-area-

efficient AES-128 builds, Xoodyak provides a 28% cell area reduction with 5nm

technology and a 53% reduction with 16nm technology. These reductions were achieved

by the instance of a single Permute round, which necessitated a 12-clock function call to

achieve the necessary 12 rounds. The green and white cells in Figures 25 and 26, which

represent Permute hardware, illustrate the impact of having a single Permute instance

versus three in series.

Tables 17 and 18 also empirically demonstrate the positive relationship between

operational frequency, cell area, and leakage current. This difficult balance is best shown

in the differences between builds A-03c and A-07f, two AES-128 builds where A-07f

generated the highest throughput of any AES-128 build. Unfortunately, the circuitry

required to make this timing meant that the cell area requirements was 11,300µm2, and the

7.47mW leakage current value meant that this build was unqualified for a throughput

benchmark under our rules.

E. ALTERNATIVE COMPARISONS

1. Alternative: Xoodyak and AES-Galois Counter Mode (AES-GCM)

The full Xoodyak suite has full AEAD functionality. The AES core does not. Ref

[3] recommends AES-GCM for AEAD and is in common use but is not a formal NIST

standard. AES-GCM is a more functionally direct comparison to Xoodyak. Implementing

AES-GCM was beyond the scope of this research, but AES-GCM would have required

41

additional cell area, and possibly lower throughput, to provide total equivalent functionality

to Xoodyak.

2. Alternative: Enc/Dec Xoodyak only and AES Core

A Xoodyak instance with only the AbsorbKey, Encrypt and Decrypt functions

defined may be a more functionally-direct comparison to the AES core. Limited

functionality might reduce the cell area required and increase clock frequency, improving

the comparisons given in Tables 13–18. However, the full permute instance is required

regardless of functionality because every function uses the same permute function. Large

performance gains, and size and power reductions associated with these functionality

reductions are unlikely.

F. SUMMARY

This chapter discussed the performance comparisons of our AES-128 and Xoodyak

modules, as built by Jim Donahue of Centaur Technologies. The results show that Xoodyak

builds optimized for throughput can achieve approximately 3:1 throughput gains over

AES-128 for both 5nm and 16nm ASIC technology. Results also show that Xoodyak builds

optimized for cell area occupy approximately half of the cell area required by AES-128 for

16nm technology, and are 28% smaller for 5nm technology. Appendix E contains a full

readout of all 26 discrete builds.

42

THIS PAGE INTENTIONALLY LEFT BLANK

43

V. CONCLUSION

The NIST Lightweight Cryptography Competition created interest in lightweight

cryptographic algorithms. Examination of proposed standards involved a comparison to

AES, the established standard. Our research benchmarked AES-128, as a standard, against

Xoodyak, the proposed lightweight cryptography standard. RTL code was written to

support these implementations, which was then built by Centaur Technologies.

A. ASSESSMENT OF GOALS

Our results showed that selected Xoodyak modules outperformed AES-128 in

direct comparisons, while also demonstrating AEAD and hashing support. For Xoodyak

builds optimized for performance, results showed in a throughput factor of 2.7 for 5nm

technology and 1.7 for 16nm technology. Likewise, Xoodyak builds optimized for cell area

carry a 28% reduction in 5nm technology, and a 53% reduction in 16nm technology. These

results do not guarantee identical gains when integrated, but they provide a valuable

benchmark of relative strength when written by the same author and built by the same tools

at Centaur. Our work was successful in quantifying these advantages and provides

additional information to inform the NIST competition.

B. FUTURE WORK

1. Remove Fixed Length String Requirement

One of the assumptions made in the hardware is that every input vector is presumed

to be the same length – specifically, the maximum length given by Xoodyak parameters.

This simplified debugging and may have reduced the hardware requirement. The algorithm

does not require input strings to be even multiples of the parameter lengths. An additional

input vector specifying the length of the input string may be enough to fully capture this

fidelity. Since the largest Split parameter in Xoodyak is in Absorb with a value of 352 bits,

an additional 6-bit vector is large enough to specify any parameter length in Xoodyak.

44

2. Perform a More Extensive Verification

Xoodyak is a new algorithm and test vectors are difficult to come by. The

verification methods used in this work were therefore quite rudimentary and primarily

involved pen and paper verification and waveform inspection on a bit-by-bit and clock-by-

clock basis. While a non-trivial number of vectors and function calls were tested, we were

limited to discretely checking only a very small number of functions, such as those

specifically listed in Figures 4 and 5. More robust methods would be required if these

modules were to enter production.

3. Reduce the Xoodyak Startup Clocks from Two to One

Xoodyak requires two startup clocks compared to one for AES as discussed in

Chapters III and IV. We believe this can be reduced to one through a modification of the

state machine and associated registers. This reduction would not improve streaming

throughput, but it would improve “one off” throughput and further optimize the code.

4. Perform an ASIC Benchmarking of AES with Galois Counter Mode

We performed standard to proposed standard comparison between AES and

Xoodyak. This may have been unfair to Xoodyak, as a functionally equivalent comparison

with AES should include AES with the NIST recommendation for Galois Counter Mode.

It is certain that AES-GCM will occupy more cell area than the AES core as implemented,

and it is possible that the throughput will be negatively affected as well. If this is the case,

then the throughput and size factors computed in this work are in fact lower bounds.

45

APPENDIX A. CODE REPOSITORY

Open-source AES code repository.
GitHub: https://github.com/MikeWakeland/AES-SV
POCs: Michael.C.Wakeland@gmail.com, ccw@nps.edu

Open-source Xoodyak code repository.
GitHub: https://github.com/MikeWakeland/Xoodyak-HW/tree/main/Xoodyak_functions
POCs: Michael.C.Wakeland@gmail.com, ccw@nps.edu

46

THIS PAGE INTENTIONALLY LEFT BLANK

47

APPENDIX B, DEFINITION OF XOODOO

The Xoodoo definition is an excerpt from “Xoodyak, a lightweight cryptography scheme.”
Source: [5].

48

49

APPENDIX C VECTOR EXAMPLE

The Xoodyak implementation correctly performs an arbitrary series of function calls, each of arbitrary length.20 Long strings

must be ingested in a piecemeal fashion as described in the algorithm. This is an example of how:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐾𝐾, 𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐿𝐿)

K is the 128 bit string:
38393a3b3c3d3e3f3031323334353637

X is the 704 bit string:

6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c

6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c

P is the 352 bit string:

4d4e4f5051525354555657584142434445464748494a4b4c4d4e4f5051525354555657584142434445464748494a4b4c

20 Subject to individual parameter length requirements - user provides padding.

50

Function
Cyclist Instance (Keyed Mode) - opcode 1

Registered Input Text [351:0]
38393a3b3c3d3e3f303132333435363700

Input State [383:0]
Undefined

Output State [383:0]
38393a3b3c3d3e3f303132333435363700010002

Function
Absorb - opcode 3

Registered Input Text [351:0]
6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c

Input State [383:0]
38393a3b3c3d3e3f303132333435363700010002

Output State [383:0]
0ccb63f23dc3114bcb8c36b63cef99564339ffadac0fbb2f741fe9a5d9b9de250690b87018c5b3b541c0996293e436a8

51

Function
Absorb - opcode 3

Registered Input Text [351:0]
6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c

Input State [383:0]
0ccb63f23dc3114bcb8c36b63cef99564339ffadac0fbb2f741fe9a5d9b9de250690b87018c5b3b541c0996293e436a8

Output State [383:0]
1b43a7cd6fa2e21dac4688e1d8a7206c023ac58e5af69245303387eefad068bc9f90ee310414057f2d5a18c68a307c4c

Function
Encrypt - opcode 4

Registered Input Text [351:0]
4d4e4f5051525354555657584142434445464748494a4b4c00

Input State [383:0]
1b43a7cd6fa2e21dac4688e1d8a7206c023ac58e5af69245303387eefad068bc9f90ee310414057f2d5a18c68a307c4c

Output State [383:0]
5a7623842abdf7a08558bc7ad19c93913cb711728192562aed97c6bf7bd9e1547f48ad7dbafef8bf2cc790d1e3b3f9f0

52

Function
Encrypt - opcode 4

Registered Input Text [351:0]
4d4e4f5051525354555657584142434445464748494a4b4c00

Input State [383:0]
5a7623842abdf7a08558bc7ad19c93913cb711728192562aed97c6bf7bd9e1547f48ad7dbafef8bf2cc790d1e3b3f9f0

Output State [383:0]
5bdef9a0659765e8241872a1e59ff766c4fca03d31ace48e1c9a300fc8b57420d4435bbfa2efdb0a01afb869ec8cfa54

Function
Squeeze Key - opcode 8

Registered Input Text [351:0]
Don't Care

Input State [383:0]
5bdef9a0659765e8241872a1e59ff766c4fca03d31ace48e1c9a300fc8b57420d4435bbfa2efdb0a01afb869ec8cfa54

Output State [383:0]
9bd1c096d76a4f742a7f1037f7a697de6ad3187b8ac831a7fceedddb339d5e7a6a4a2f3ce365c931bbd154dde2914c4b

53

APPENDIX D. AES AND XOODYAK BUILD METHODOLOGY

Adapted from Jim Donahue, Centaur Technologies [9].
--
BUILD METHODOLOGY JimD 2021–10-06
--

Technology & Tools
--
Tools (all June 2021 release S-2021.06) used:
Synopsys Design Compiler NXT in topographic mode
 - mapping RTL to technology target library of stdcells
Synopsys ICC2
 - import gates from DC-NXT
 - create floorplan with user constraints
 - place gates
 - build clock tree then route & optimize it
 - initial route
 - route optimization
Synopsys StarRC
 - parasitic (RC) extraction
Synopsys Primetime
 - signoff-quality timing tool

Technology used:
TSMC 16nm with 13 layers of metal plus AP top-level
Centaur-designed 12-track stdcell library
AES builds limited to M2-M7 for routing, to keep
 upper layers of metal free for global routes

The flow, meaning the sequence of operations and tcl-scripts which
control it, is a shared Centaur-specific flow that is based on
Synopsys’ “Recommended Methodology” download.

We are not implementing scan chains in this exploratory build.

Once a user has customized the flow for an individual block’s
requirements, fully building the block from RTL to a final physical
implementation timed in a signoff-quality is a single “make” command
much like the compilation of any software.

Target technology is a prevous-generation commodity process available
on the open market which we used for a recent chip design at Centaur.
Stdcell and hard macro (custom block) libraries are Centaur-developed
- our own layout and timing characterization.

Build steps for new RTL:
--
1) Initial mapping RTL to stdcells
2) Create floorplan
3) Map RTL to stdcells with floorplan
4) Import stdcells into physical implementation tool
5) Place stdcells and optimize
6) Build clock tree, route & optimize it
7) Route all nets
8) Extract parasitics and run sign-off timing tool

Initial DC-NXT compile with NO FLOORPLAN and a loose cycletime to
create technology-mapped gates and initial timing feedback. Optionally,
a second pass without a floorplan could be run at a tighter cycletime
since a tighter cycletime might require a larger stdcell area. The goal
here is to have gates to use in creation of a floorplan.

A floorplan is created based on initial gates and block
requirements. Since we don’t know yet what dimensions the block will

54

be when it is instantiated in a larger framework, we can build roughly
square with inputs on the left and outputs on the right. We’ll also
keep the I/O timing constraints loose so the placement of I/O pins
won’t be a problem for timing or routing.

DC-NXT is run again to map RTL to gates, but with a floorplan this
time. We run in SPG mode (Synopsys Physical Guidance?) topgraphic mode
so the compiler understands the physical world - e.g., placement, metal
layer parasitics. An initial compile is followed by two incremental
compiles - more compiles might produce better final timing results but
two incremental compiles is often sufficient.

DC-NXT can bank registers, but in this build we’re banking registers
using ICC2 during placement. Our library supports two to four
registers banked into a single standard cell (stdcell aka leaf cell).

In DC-NXT we permit register replication, boundary optimization
(optimizing logic between hierarchicies i.e. RTL modules), sequential
output inversion (inverting nets passing between hierarchies),
automated layer assignment (choose the likely metal layer critical
nets will be routed on). During exploratory work we do not permit
DC-NXT to dissolve hierarchical boundaries, to help with understanding
the reported paths. In a large design we can often improve the final
timing by ~5% by permitting dissolution of boundaries (aka
auto-ungrouping).

Importing gates from DC-NXT into the physical implementation tool
(ICC2) is a simple and fast step that requires no user optimization.

ICC2 places and optimizes the gates for timing, routability, and
power. We discard the placement coming from DC because ICC2 generally
does a better job restarting with its own coarse placement alogrithm.
We run a two-pass placement, allow ICC2 to assign “NDRs” (non-default
rules i.e., choosing upper layers of metal and/or wider nets), and
implement register banking. We also enable CCD (concurrent clock &
data) optimization which is free to push/pull register and macro
clocks foward or backwards to optimize timing.

ICC2 builds a clock tree, routes it, and optimizes it. There is almost
no user customization here although we also allow CCD optimization
here.

ICC2 routes and optimizes the remaining non-clock nets. We run
multiple optimization passes to improve timing and route quality,
allow CCD optimization in early passes but not in later passes.

Finally the ICC2 output is extracted in STAR to provide actual RCs
(including cross-coupling between routes) which are then fed into
Primetime for analysis at our typical setup & hold corners. For
sign-off we use many additional corners but typical setup & hold are
considered adequate for exploring new RTL designs.

55

APPENDIX E. BUILD RESULTS

Adapted from: Jim Donahue, Centaur Technologies [9].

Physical Builds

Three versions of the code (AES, Xoodyak 1 round/clock, Xoodyak 3
rounds/clock) were built by Jim Donahue at Centaur Technology Inc. In order to identify any
differences due to technology, builds were done in both a 16nm technology and a 5nm
technology. The build “recipes”
(details in Appensix Q) were basically the same as used by Centaur for other internal
designs.

Within each technology, the only thing changed across the builds for a particular code
version were the target clock frequency (and a few floorplan size changes thathad no affect
on the results). Across the three code versions, fourteen build variations were done in
16nm, and twelve in 5nm. The intent of the various build configurations were to find (1)
the fastest realistic frequency for a design, and (2) comparisons across the designs at the
same (roughly) frequency. Appendix y summarizes the data from all builds and the following
table show the versions that of particular interest for this study.

target = Target GHz for build
x y = build die area, not necessarily indicative of real are actually needed
real freq = the mhz the build
produced area = total area of standard cells used without wiring, etc.
util = cell utilization % vs available die area, not critical until above 70%
leak = static leakage in mW, rule-of-thumb cutoff is around 1mW for small circuits like Xoo
total power = leakage + dynamic.
leakage is telling us what type of cells are being used.

X == Selected runs for detailed comparison
--
Tabulated results on next page

56

table---------------------------------------

exp target x y real freq area util leak X
-------- ------- ------- ---------- --- ---- ---- -
aes
a.03d 2.00 138 138 2.06 7073 38 0.46
a.03c 2.35 138 138 2.42 7432 40 0.81 X
a.03b 3.64 138 138 3.56 10365 55 5.34
a.03g 2.67 138 138 2.69 7782 42 1.24
a.03h 2.86 138 138 2.91 8147 44 1.93
a.03i 3.33 138 138 3.37 9307 50 3.71
a.03e 4.00 138 138 3.60 11313 61 7.47
a.03f 5.00 138 138 3.82 12025 64 9.30

a.5n03f 2.00 64 64 2.07 2171 55 0.20 X
a.5n03c 2.86 64 64 2.95 2342 59 0.36
a.5n03d 4.00 64 64 4.00 2782 71 0.83 X
a.5n03e 5.00 80 80 4.33 3736 60 1.81

xoo 1 perm
x.07a 2.11 61 92 2.12 3380 63 0.23
x.07b 2.35 61 92 2.40 3298 61 0.23 X
x.07c 2.86 122 107 2.89 3508 27 0.43
x.07d 3.33 122 107 3.38 4162 33 0.78 X
x.07e 4.00 122 107 4.04 4722 37 1.64
x.07h 5.00 92 107 4.18 5769 61 3.58

x.5n05a 2.86 45 45 3.05 1173 61 0.22
x.5n05c 3.33 45 45 3.42 1180 62 0.25
x.5n05d 4.00 45 45 4.27 1368 71 0.33
x.5n05e 5.00 45 45 5.03 1560 81 0.44
x.5n05g 5.00 60 60 5.09 2060 60 0.77 X

x00 3-perm
x.08a 2.11 123 107 2.15 6347 50 2.51 X
x.08b 2.35 123 107 2.42 7712 60 4.65
x.08c 2.67 123 107 2.33 9429 74 6.41

x.5n06b 2.50 85 85 2.60 1860 26 0.64
x.5n06a 2.86 85 85 2.92 2212 32 0.86 X
x.5n06c 3.33 85 85 3.07 2583 37 1.30

57

APPENDIX F. SAMPLE BUILD IMAGES

(a) Blue cells - Decrypt logic. (b) Green cells - Encrypt logic. (c) Red cells - KeyExpansion

Figure 24. A-03c Die Space. Source: [9].

58

(a) Green cells - permute round logic. (b) White cells - permute support logic. (c) Gray cells - All
other combinational logic. (d) Blue cells - input ports. (e) Red cells - output ports. [9]

Figure 25. X-07b Die Space. Source: [9]

59

(a) Green cells - permute round logic. (b) White cells - permute support logic. (c) Gray cells - All
other combinational logic. (d) Blue cells - input ports. (e) Red cells - output ports. [9]

Figure 26. X-08a Die Space. Source: [9]

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

LIST OF REFERENCES

[1] Advanced Encryption Standard (AES), NIST FIPS - 197, National Institute of
Standards and Technology, 2001

[2] D. McGrew, “An interface and algorithms for authenticated encryption,” IETF
Datatracker, Jan. 2008. [Online]. Available: https://datatracker.ietf.org/doc/html/
rfc5116#section-1

[3] M. Dworkin, “Recommendation for block cipher modes of operation: Galois/
counter mode (GCM) and GMAC,” National Institute of Standards and
Technology , Gaithersburg, MD, USA, NIST Special Publication 800–38D,
2007, pp. 1–39.

[4] Computer Security Division, K. A. McKay, L. Bassham, M. S. Turan, and N.
Mouha, NISTIR 8114, Report on Lightweight Cryptography. National Institute of
Standards and Technology, pp. 1–27. https://doi.org/10.6028/NIST.IR.8114

[5] J. Daemen, S. Hoffert, M. Peters, G. Van Assche, and R. Van Keer, “Xoodyak, a
lightweight cryptographic scheme,” Lightweight Cryptography Round 2
Candidates, 29-Mar-2019. [Online]. Available: https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-
spec-round2.pdf

[6] Vivado Design Suite, 2020.2. San Jose, CA, USA: Xilinx, April 2012. [Online].
Available: https://www.xilinx.com/support/download.html, Accessed on: 2019–
2021.

[7] David Hill, MathWorks. 2021. Advanced Encryption Standard (AES)-128,192,
256, ver. 1.0.4 [Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/73412-advanced-encryption-standard-aes-128-192-256

[8] S. B. Palmer, Github. 2021. Xoocycle, [ONLINE], Available: https://github.com/
sbp/xoocycle

[9] J. Donahue, Build Results 21OCT, Centaur Technologies. Unpublished.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Mar_Wakeland_Michael_First8
	22Mar_Wakeland_Michael
	I. INTRODUCTION
	A. Overview
	B. Motivation
	C. SCOPE
	D. Thesis Organization

	II. Background
	A. Overview
	B. AES Implementation
	1. Round Based
	2. Functionality

	C. Hardware Design decisions
	1. S-box Instance
	2. Default Cipher Configuration
	3. Vector Key Generation

	D. AES BEHAVIORAL Verification
	E. summary

	III. Methods
	A. Overview
	B. The Xoodyak Algorithm
	C. Primitives
	1. State (as a concept)
	2. Color Bytes
	3. Core f

	D. Describing a Function Call
	1. Level 3 Function Calls
	a. UP
	b. DOWN
	c. SPLIT

	2. Level 2 Function Calls
	a. AbsorbAny
	b. Crypt
	c. Squeeze

	3. Level 1 Function Calls
	a. AbsorbKey
	b. Absorb
	c. Encrypt
	d. Decrypt
	e. Squeeze
	f. SqueezeKey
	g. Ratchet

	4. Top Level Instance

	E. Implementation
	1. Instance Parameters
	2. State Machines
	3. User Operation of Xoodyak
	a. Startup Delays and Timing

	4. Structural Datapath
	a. Pre-Permute
	b. Exception handling
	c. Permute
	d. Post Permute.

	5. Verification

	F. Summary

	IV. RESULTS
	A. Comparative Functionality Analysis
	B. Subjective Structural Analysis
	C. Important Considerations for Benchmarking
	1. Build Qualification for Benchmarking
	2. Precision Limitations on Results
	3. Startup Delays, Streaming Mode, and Performance
	4. Adjustments for AES KeyExpansion

	D. Parameter Analysis
	1. Throughput Analysis
	2. Cell Area Analysis

	E. Alternative Comparisons
	1. Alternative: Xoodyak and AES-Galois Counter Mode (AES-GCM)
	2. Alternative: Enc/​Dec Xoodyak only and AES Core

	F. Summary

	V. Conclusion
	A. Assessment of Goals.
	B. Future Work
	1. Remove Fixed Length String Requirement
	2. Perform a More Extensive Verification
	3. Reduce the Xoodyak Startup Clocks from Two to One
	4. Perform an ASIC Benchmarking of AES with Galois Counter Mode

	appendix A. Code repository
	Appendix B, Definition of Xoodoo
	Appendix C Vector example
	APPENDIX D. AES and xoodyak BUILD METHODOLOGY
	aPPENDIX E. Build results
	APPENDIX F. SAMPLE BUILD IMAGES
	List of References
	initial distribution list

