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ABSTRACT 

The U.S. National Institute of Standards and Technology (NIST) has initiated a 

process to standardize a “lightweight” cryptographic algorithm. Lightweight algorithms 

are designed for use in gate and performance-limited devices. This report compares an 

Application Specific Integrated Circuit (ASIC) implementation of the NIST Advanced 

Encryption Standard-128 (AES-128) and a competition finalist, Xoodyak. 

Implementations were written in SystemVerilog. Testing was performed using 

Vivado field programmable gate array simulations. Twenty six instances of AES and 

Xoodyak were built. These builds were optimized for throughput, clock frequency, and 

cell area, respectively. Size and performance benchmarks were obtained from builds 

using an 5nm and 16nm ASIC technology. Results indicate Xoodyak is capable of 

higher throughput than AES-128 while using a lower cell area. 
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EXECUTIVE SUMMARY 

The National Institute of Standards and Technology is holding a competition to 

create a lightweight cryptography standard. The scope of the competition contains both 

authenticated encryption with associated data, and hashing. Xoodyak is a cryptographic 

algorithm and finalist in the competition. 

In this work, we wrote register transfer level code to reflect behavior for Xoodyak 

at a synthesizable hardware level. The complete module is operable by a user and capable 

of processing arbitrary length and numbered strings. We also wrote register transfer level 

code for the Advanced Encryption Standard, which is similarly operable. Centaur 

Technologies of Austin, Texas created 26 application specific integrated circuit builds 

based on this code, which were then compared on a throughput, cell area, and leakage 

power basis. The results show that Xoodyak builds can be optimized for size or throughput, 

and these tailored builds are either significantly smaller or faster than Advanced Encryption 

Standard across both 5nm and 16nm technology. Algorithm security was not evaluated 

within the scope of this research. 
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I. INTRODUCTION 

A. OVERVIEW 

Encryption has been used to ensure the secrecy of information since antiquity. Two 

thousand years after the Caesar Cipher, the National Institute of Standards and Technology 

(NIST) adopted a subset of the Rijndael cipher as Advanced Encryption Standard (AES) 

[1]. AES is the most common and thoroughly vetted block cipher available today. Block 

ciphers ensure data confidentiality, but not integrity or authenticity.  

TLS 1.3 and other modern security systems require Authenticated Encryption with 

Associated Data (AEAD), which provides integrity and authenticity in addition to 

confidentiality [2]. The use of AES with AEAD requires more than the AES block cipher 

alone1 [3]. These additional requirements can limit throughput and add computational 

burden to resource-constrained devices. The NIST  Lightweight Cryptography 

Competition (LWC) seeks to alleviate these concerns by creating a standard for both 

AEAD and hashing [4].  

Daemen et al. created Rijndael as well as Xoodyak, which is one finalist in the 

NIST competition [5]. Xoodyak is a family of mathematical functions that are 

synthesizable in hardware. Xoodyak can be used for both AEAD and hashing. The 

principal characteristic in Xoodyak is a 384-bit State. The State undergoes minor 

modification at the start of every function call and is then distributed by a permute function 

which performs various Boolean XORs and round key additions in 12 iterations. The 

output is then combined with an input text to “absorb” a string or generate an output text. 

This process repeats, perhaps multiple times, depending on the length of the input string, 

until all text is processed. ASIC benchmarking can determine the performance relationship 

between Xoodyak and AES, which is the primary goal of this work. 

 
1 NIST recommends the use of Galois Counter Mode to mode to perform AEAD with an AES core, as 

described in ref. [3], NIST Special Publication 800–38D Ch 7: GCM Specification 
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B. MOTIVATION  

The Fleet has a need for lightweight, scalable encryption to support time-critical 

and Internet of Things applications. Higher throughput is one of the goals of the LWC, 

which translates to smaller encryption delays in operational use. If selected as the 

lightweight cryptographic standard, Xoodyak will be positioned to provide AEAD with 

low latency to fill these requirements. Quantifying the relative gain over the existing 

standard, AES, is a critical benchmark for assessing algorithm performance. 

The hardware builds which we created will also provide the NIST Lightweight 

Cryptography Competition with ASIC benchmarking data. This data will better inform 

NIST decision makers about real performance marks for Xoodyak in an isolated standard-

to-proposed-standard comparison in relation to AES-128. 

C. SCOPE 

This research evaluated the performance and size of the AES-1282 standard in 

comparison to the Xoodyak cryptography suite.3  

This comparison was selected because AES is the established technical standard, 

and Xoodyak is a proposed technical standard for lightweight cryptography. Consequently, 

the direct comparison is between an established and proposed standard.  

ASIC benchmarks were performed by Centaur Technologies of Austin, Texas. Our 

research was concerned with implementing cores and measuring parameters to assess 

performance. These parameters were cell area, cell count, and clock frequency. The 

research did not evaluate any dynamic power consumption or security claims. 

 
2 In the context of this document, “AES,” “AES core,” or “AES standard” refers to statements about 

the entire Advanced Encryption Standard regardless of key size (128, 192, or 256 bits). Every use of AES 
refers to the block cipher only, not AES as a part of a larger AEAD scheme such as that described in the 
NIST Recommendation [3]. “AES-128” specifically refers to an AES standard algorithm using a 128-bit 
key size, or a build that only supports 128-bit true keys.  

3 As described in “Xoodyak, a Lightweight Encryption Scheme.” - Algorithm 2, page 9 [5]. The suite 
includes every possible combination of functions with arbitrary input lengths and arbitrary order, so long as 
the order is algorithmically feasible.  
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D. THESIS ORGANIZATION 

Chapter II describes the control implementation of the AES core, which includes 

the KeyExpansion, Encrypt, and Decrypt modules. Chapter III describes the Xoodyak 

algorithm in theory and hardware architecture. Chapter IV describes full benchmarking 

results and comparisons. Chapter V is the conclusion. Appendix A contains a link to the 

author’s GitHub repository containing the full register transfer level (RTL) description for 

both AES and Xoodyak. Appendix B is a reproduction of the Xoodoo Permute function as 

described in [3]. Appendix C is an example series of function calls, evaluated using the 

Xoodyak hardware instance. Appendix D provides the technical build methodology 

employed by Centaur Technologies in creating the hardware instances. Appendix E 

contains the full list of AES-128 and Xoodyak builds and benchmarking data. Appendix F 

provides selected die plot images of various hardware builds.  
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II. BACKGROUND 

A. OVERVIEW 

The purpose of this research was to evaluate Xoodyak performance in relation to 

AES. A direct evaluation required RTL instantiations of both algorithms and subsequent 

builds for benchmarking. A “build” is the collection of transistors and wires which perform 

the described function, demonstrating the size and performance on any resulting silicon 

chip. Only minor steps remain before a build can be released into manufacturing. This 

chapter concerns the AES instance, from both a structural overview and user operation 

perspective.  

The AES algorithm supports 128, 192, and 256-bit key lengths, but the 196 and 

256-bit key lengths require more hardware to implement. They also require more rounds, 

or iterations of the algorithm, to complete an encryption cycle, which increases cell area 

and decreases throughput. Xoodyak only claims 128 bits of security. Our AES 

implementation therefore only supports 128-bit key lengths to obtain a more equivalent 

perspective. 

The AES structure is designed to accomplish one AES round every clock, as 

described in the AES Standard. We also made several design decisions, particularly 

regarding substitution-boxes (S-boxes) which are discussed in more detail in Section II.C.  

The separate KeyExpansion, Encrypt, and Decrypt modules are wired together in a 

manner that supports continuous operation. The full AES module is fully operational; users 

can expand keys, then encrypt or decrypt an arbitrary length string.  

Lastly, the completed AES instance was verified using a combination of the sample 

test vectors in the AES Standard and hand verification using MATLAB.  

B. AES IMPLEMENTATION 

NIST FIPS - 197 forms the basis of AES [1]. AES, including AES-128, is publicly 

understood. Our discussion regarding AES is therefore limited to general approach, 

functionality, and notable design decisions.  
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1. Round Based 

Our implementation of AES sought to match the technical requirements of [1] in a 

functional, ASIC-instantiated RTL model. The implemented datapath closely resembles 

the steps in [1] for all modules. Each module uses a round-based approach, where one clock 

completes one round. For example, one clock in the Encrypt module accomplishes one 

SubBytes, ShiftRows, MixColumns, and AddRoundKey transformation. Ten clocks are 

required to accomplish the entire Cipher (Encrypt) operation. Inverse Cipher (Decrypt) and 

KeyExpansion require ten and 11 clocks respectively under the same paradigm.  

2. Functionality 

Our AES-128 implementation includes hardware to implement the KeyExpansion, 

Encrypt, and Decrypt functions. The modules are interlinked for operational use. Users can 

call various functions based on a 2-bit opcode. The appropriate data must be provided 

synchronously with the function call. The opcodes are listed in Table 1. 

Table 1. AES-128 Function Call Decodes 

 
 

Ingesting a valid opcode creates a text output for Encrypt or Decrypt calls. Function 

durations are counter-based and determinate. Opcode 3 calls for KeyExpansion create no 

output text because the expanded keys are held in the module for future use. However, an 

output text decoder informs the user when KeyExpansion is complete. The return decode 

is provided synchronously with the output text for Encrypt and Decrypt calls. Table 2 is a 

full readout of output function decodes. Throughput and cell area results are detailed in 

Chapter IV.  

Opcode AES
0 Idle
1 Encrypt
2 Decrypt
3 Keys

Functions [1:0]
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Table 2. AES-128 Function Return Decodes 

 
 

C. HARDWARE DESIGN DECISIONS 

Several design decisions had to be made when designing the AES hardware 

instance. For example, accomplishing one AES round per clock was a conscious choice. 

Two deliberate choices involved how to handle the forward and inverse S-box, and whether 

to reverse certain commutable steps in the Decrypt module. The most significant design 

choice was to hold expanded keys in a register, rather than generate keys “on the fly.”  

1. S-box Instance 

The Encrypt module contains a forward Rijndael S-box instance. The S-box is 

shared with the KeyExpansion module for use in key generation. The Inverse S-box is 

separately instanced in the Decrypt module, rather than being computed as a derivative of 

the forward S-box.  

2. Default Cipher Configuration 

Certain AES steps are commutable [1]. This implementation performed the 

standard function flows with no use of “equivalencies.” The Encrypt/Decrypt datapath 

flows are summarized in Table 3. 

Decode AES
0 Invalid
1 Ciphertext
2 Plaintext
3 Keys

Returns [1:0]
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Table 3. AES Datapath Flow Order 

 
Table reflects both the default datapath per the AES Standard, and the implementation in 
the Encrypt and Decrypt Modules.  Adapted from [1]. 

3. Vector Key Generation 

Keys are provided in a complete set to the Encrypt and Decrypt modules. Calls to 

Encrypt or Decrypt use the stored keys for computation. One key is generated on every 

clock. The expansion is complete when all 11 keys are generated. The keys are held in 

registers, comprising 11 128-bit registers in total. These stored keys comprise a large part 

of the KeyExpansion hardware. The keys are not “flushed” after an encryption cycle. This 

allows multiple cipher operations to use the same key vector. Figure 1 visualizes both how 

key vectors are shared with both Encrypt and Decrypt, and shows the high-level structure 

of the AES-128 module.  

 
Figure 1. Top Level AES-128 Process Diagram 

Step Encrypt Decrypt
1 SubBytes InvShiftRows
2 ShiftRows InvSubBytes
3 MixColumns AddRoundKey
4 RoundKey InvMixColumns

AES Flow
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D. AES BEHAVIORAL VERIFICATION  

Our AES-128 instance supports three function calls and idle. Vivado is an RTL 

design suite by Xilinx for analysis and synthesis of RTL logic [6]. Each function was 

individually verified through Vivado using MATLAB, [1], and [7]. The MATLAB script 

in [7] was assumed to be correct after our detailed visual inspection and verification of 

intermediate and final outputs from the sample test vectors in [1]. Our individual vector 

results were verified by hand using a combination of the MATLAB code in [7] and Vivado 

waveform simulation. The waveform window was examined for correct output text, 

opcode/decode/operation congruence, and timing. Figure 2 visualizes this process. 

 
Figure 2. Function Verification Process Flow Diagram 

After individual functions were validated, all possible sequences of function calls 

were performed in Vivado with MATLAB verification. The data used was the default test 

vector in the AES Standard [1]. The nine distinct function transitions were performed to 

directly test for errors in control logic. Table 4 describes every possible function transition. 

Idle transitions are not included because they are no-ops. The output pins were then 

examined for correctness across the entire function sequence.  
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Table 4. Validated Function Transitions 

 
 

E. SUMMARY 

This chapter discussed a stable control to compare with Xoodyak, the proposed 

lightweight cryptography standard. Our hardware instance of AES-128 serves as that 

control basis. This operational AES-128 module forms a basis on which to compare to an 

operational Xoodyak module. The algorithmic definition and hardware construction of 

Xoodyak is the topic of the next chapter.  

  

Call N Call N+1
KeyExpansion KeyExpansion
KeyExpansion Encrypt
KeyExpansion Decrypt

Encrypt KeyExpansion
Encrypt Encrypt
Encrypt Decrypt
Decrypt KeyExpansion
Decrypt Encrypt
Decrypt Decrypt

Function transitions
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III. METHODS 

A. OVERVIEW 

The purpose of this research was to benchmark the Xoodyak suite against the AES-

128 block cipher. The principal component of this work was the development of a Xoodyak 

hardware instance. Creating the Xoodyak instance required two main efforts. The first part 

was understanding the Xoodyak algorithm and making design decisions on supportability. 

This required a thorough investigation of the formal algorithm definitions which make up 

Xoodyak which are described in Section B. 

The second part was writing the RTL code that supported those requirements. 

Section E describes the implementation from a structural and operational perspective using 

RTL logic in synthesizable SystemVerilog. Appendix A contains links to the full RTL 

description. These new implementations were built using the same tools and circuit 

modules as our AES-128 instance.  

The Xoodyak module is fully operational, just like our AES-128 instance. This 

includes the capability to handle arbitrary length strings across all AEAD and hashing 

functions using two inputs, text, and opcode. Verification was conducted by hand 

examination and C code. An example series of function calls with associated data is 

available in Appendix C.  

B. THE XOODYAK ALGORITHM  

The Xoodyak algorithm is an instance of the Cyclist algorithm with specific 

parameters [5]. Cyclist is made up of a series of mathematical function calls. The 

algorithmic instantiation of Xoodyak is given in Figure 3. 
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Figure 3. Definition of Xoodyak as Cyclist with Parameters. Source: [5]. 

Xoodyak, being a derivative of the Cyclist algorithm, operates through what we 

termed “level 1” function calls.4  We have parsed these functions according to levels for 

clarity, but this is not a distinction that exists in the NIST submission. All functions, and 

their precise relationships, are given in Algorithm 2 of [5]. Level 1 function calls are similar 

to KeyExpansion, Encrypt, or Decrypt function calls in AES. Level 1 functions take user 

inputs and create outputs. Lower-level functions are described in Algorithm 3 of [5] as 

“internal interfaces.” 

The higher-level function calls heavily overlap with lower-level calls. Two 

examples of level 1 functions include Encrypt and Decrypt, which both call the Crypt 

function on level 2. Every level 1 function call calls Xoodoo, the Permute core of Xoodyak, 

if the phase is “DOWN” at the start of the call.5  This also sets the Xoodyak phase to “UP.” 

Table 5 shows the relative relationship between all the various nested functions. 

 
4 Function calls in this section specifically refer to algorithm function calls, not hardware functions 

called by an opcode and supplied by a user. 
5 Xoodoo and Permute are used interchangeably in this document. Likewise, permutation refers to the 

results of Xoodoo, and the verb “to permute” a string means to provide a State input to Xoodoo and collect 
the result.  
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Table 5. Organization of Xoodyak Function Calls. Adapted from [5]. 

 
 

 The Daemen et al. formal Xoodyak submission is described by a specific series of 

function calls. However, users can call functions in arbitrary order. For example, while 

{Cyclist, Crypt, Crypt, Absorb, Squeeze, Absorb} is not a series of function calls in the 

AEAD or hash submission, it is still algorithmically possible.  The formal AEAD and hash 

function calls for the submission are described, along with their parameters, in Figures 4 

and 5.  

When used in hash mode as described in Figure 3, the Xoodyak algorithm can 

produce any n-byte hash value, based on the absorption of any arbitrary length associated 

data input x [5]. The Cyclist function generates a string of all zeros as the arguments are 

null. The Absorb function call described absorbs an arbitrary length string x into the State. 

The Squeeze function call generates an n-byte length hash, depending on the State.  

 
Figure 4. Use of Xoodyak Functions for Hashing. Source: [5]. 

Figure 4 describes the use of Xoodyak in AEAD. The fundamentals of the process 

are the same, supplying arguments represented by a variable name. AEAD requires a key 

AbsorbKey Decrypt Squeeze Ratchet
Absorb Encrypt SqueezeKey -

AbsorbAny Crypt SqueezeAny -

Split Down Up -

f (Xoodoo) - - -

Top Level Instantiation

Level 1

Level 2

Level 3

Core

Cyclist (keyed) Cyclist (Hash)
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K, which is null in hash mode. Several inputs are parameterized. The parameters are 

discussed in greater detail in the implementation, Section E.1.  

 
Figure 5. Use of Xoodyak Functions for AEAD. Adapted from [5]. 

C. PRIMITIVES 

A common thread unites Xoodyak operations: the relationship between two objects 

and a permutation. The first object is the State, which is a vector that changes value 

depending on every function call since instantiation. The second are color bytes, which 

provide domain separation at the start of each function call. In any function, the State 

undergoes a color byte modification, is permuted, and then has another color byte 

modification.6   

1. State (as a concept) 

The State is the fundamental object described in Xoodyak. The State has three 

properties: value, length, and phase. In Xoodyak, the State is always 384 bits long and the 

value is determined by process history. The process history is the sequence of function 

calls, in order, with arguments, up to the present call. The phase of State is either “UP” or 

“DOWN.” The phase can be flipped from “UP” to “DOWN” by the Down internal 

function, or from “DOWN” to “UP” by the Up internal function. Applying the Up function 

 
6 The color bytes are only active the first “pass” through a function. For strings of greater length than 

the maximum operation length (given by parameters in Figure 3, Table 6) multiple passes are required.  
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to State whose phase is “UP” creates a no-op. Applying the Down function to State whose 

phase is “DOWN” is not algorithmically possible.  

2. Color Bytes 

An Up color byte, CU, is applied via bitwise XOR to the least significant byte of the 

State depending on the function called. For operations with multiple calls to Up and Down, 

the CU is only applied before the first call to Up.  

3. Core f  

The f function is an instance of the Xoodoo/Permute function summarized by 

Algorithm 1 [5]. It manipulates the State based on a set operation and pre-defined round 

constants. The State manipulation performed by Xoodoo forms the core of the Xoodyak 

algorithm. For Xoodyak, 12 rounds are required to complete the f function. Algorithm 1 is 

reproduced fully in Appendix B.  

D. DESCRIBING A FUNCTION CALL 

Level 1 function calls perform a modification of the State, then permute the State 

through Up and then Down. Function calls with large-sized arguments endure this process 

multiple times. The precise nature of whether an Up function is used on a call, or what 

modifications are performed before or after it, are specific to the function, the length of the 

function call, and the phase of the State when the call is processed. Each level of function 

call must be described in detail. The discussion must begin at the lowest level with 

Permute, and end at the highest level with Cyclist, because each function can call all lower-

level functions. 

1. Level 3 Function Calls 

a. UP 

Up calls permute, change the phase to “UP,” and updates the value of the State with 

the post-permute value. Setting the phase to “UP” prevents a subsequent Up call until a 

Down function processes. Up accepts |Yi| and the Up color byte CU as inputs, where |Yi| is 
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the size of the desired return value in bytes. In practice this is a parameter based on the 

function call. 

CU is not applied to the State in hash mode, but it is applied to the least significant 

byte of the State in keyed mode. The returned value from Up is the most significant |Yi| 

bytes of the state, after the permute. Figure 6 gives the formal definition for Up. 

 
Figure 6. Up Function Definition. Source: [5]. 

b. DOWN 

The Down function performs post-permute processing. At a high level, the Down 

function creates a vector, then XORs that vector with the State. The output of this XOR is 

the new State.  

The entire post-permute processing has four parts concatenated together in a 

specific order. In Xoodyak, this concatenated vector is 384 bits long and articulates which 

bits to flip in the State.   The first is the input data, Xi, is of variable length and can be zero. 

The second is 0x01. The third is an extended 0x00 which spans the distance from the end 

of the second part to the final byte. The last part is a Down color byte (CD), which also 

contains a logical AND with 0x01 in hash mode.7  CD varies depending on the function 

call. Figure 7 describes this process in formal terms, where both the phase and state (s) are 

assigned.  

 
7 Contextually, the impact of the logical AND 0x01 in hash mode only means that CD is zero for all 

hash mode functions, except for the first pass through a call to Absorb. Recall that the only valid functions 
in hash mode are Cyclist, Absorb, and Squeeze.  
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Figure 7. Down Function Definition. Source: [5]. 

c. SPLIT 

The Split function breaks the input string X into n sized pieces. Argument n is the 

maximum length that can be operated on at a single time and is variable depending on the 

function called. An n-sized piece of the string is processed for every sequential alteration 

through Down and Up until the entire input string X is exhausted.  

2. Level 2 Function Calls 

The level 2 functions are called by the level 1 functions. Level 2 function calls 

perform a modification of the State, then permute the State through Up, then perform 

another modification of the state through Down. The process is repeated depending on the 

input strings. The difference between the level 2 functions is the nature of the arguments 

supplied to the modifications in pre- or post-permute processing, and the length of the 

parameters supplied to those modifications. 

a. AbsorbAny 

AbsorbAny adds an input string to the state. Like every level 2 function, arguments 

are supplied by the level 1 functions. Until the input string is exhausted, AbsorbAny will 

break the first input into |X/r| sized chunks through the Split function, then apply the Up 

(which includes the permute) and Down functions to the state for every chunk. If the phase 

is “UP” at the start of the function call, the Up function is not called and the function 

proceeds directly to Down. 

The CD is zero for every run through the Up and Down function beyond the first 

one. Regardless of input string size, AbsorbAny always terminates with the state in the 

“DOWN” phase. Figure 8 gives the formal definition for AbsorbAny. 
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Figure 8. AbsorbAny Function Definition. Source: [5]. 

b. Crypt  

Crypt performs either the encrypt or decrypt operation. The calling level 1 function 

supplies text I and a Boolean value indicating whether the text is to be enciphered into the 

State (0 for encrypt), or whether the text is ciphertext to replace in the State (1 for decrypt).  

The text is broken into (I/|Rkout|) chunks, rounded up, through Split as described 

before. Then for each chunk, Up is performed on the state.  

For Encrypt operations, the argument supplied to the Down function is the input 

text, parted into chunks. For Decrypt operations, the input to the Down function is input 

text XORed with the most significant |Rkout| bytes of the State. Behaviorally, this means 

that the first |Rkout| bytes of the state are replaced with the input chunk in Decrypt 

operations. Figure 9 gives the formal definition for Crypt. 

 
Figure 9. Crypt Function Definition. Source: [5]. 

c. Squeeze 

Squeeze produces an l-byte hash of the state. Like all level 2 functions, the supplied 

arguments are defined by the level 1 functions. The first Up call permutes the State, and 

the most significant |Rsqueeze| bytes are held as the hash output. If l is smaller than Rsqueeze 

then L is used instead.  
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If the size of the hash is less than the desired value l, the Down function applies, 

which as defined in Squeeze only flips the eighth most significant bit in the state due to the 

specific arguments supplied. 

The Up function is then called again, and once more the first |Rsqueeze| bytes are 

appended to the hash. The cycle of Down followed by Up continues until the desired hash 

length is obtained. 

In every case the phase ends with “UP” when Squeeze is called. Figure 10 gives the 

formal definition for SqueezeAny. 

 
Figure 10. SqueezeAny Function Definition. Source: [5]. 

3. Level 1 Function Calls 

Level 1 function calls supply arguments to and invoke the level 2 function calls. As 

such, their descriptions are curt.  

a. AbsorbKey 

AbsorbKey is called to bring the secret key into the state. AbsorbKey can only be 

called as part of the initial state instantiation. AbsorbKey initializes the state in keyed mode, 

and applies the defined parameters, Rkin and Rkout, to Rabsorb and Rsqueeze (the Absorb and 

Squeeze rate every permutation).  

The items are supplied to AbsorbAny as a single argument. They take the form (K 

|| id || enc8(|id|)), where K is the key, || is the concatenation operator, and enc8(|id|) is the 
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modulo 256 value of the size of the optional identifier, id. Xoodyak default parameters 

presume id to be null . 

The second argument is Rabsorb is always 16 bytes or Xoodyak AEAD, and 0x02 is 

the color byte for AbsorbKey. The counter field is used as another way to absorb a nonce 

as described in [5]. Figure 11 gives the formal definition for AbsorbKey. 

 
Figure 11. AbsorbKey Function Definition. Source: [5]. 

b. Absorb 

Absorb is the level 1 function the user invokes to absorb a string X into the state. 

Its only function is to immediately call the level 2 function AbsorbAny, where the 

arguments are the input string X, the parameter Rabsorb as defined in the Cyclist call to 

AbsorbKey, and ‘03’ for the color byte. Figure 12 gives the formal definition for Absorb. 

 
Figure 12. Absorb Function Definition. Source: [5]. 

c. Encrypt 

The only argument for Encrypt is the text to be encrypted. Encrypt can only be 

called in keyed mode. It passes the text to Crypt as well as a Boolean 0 to indicate 

encryption vice decryption. Figure 13 gives the formal definition for Encrypt. 
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Figure 13. Encrypt Function Definition.  Source: [5]. 

d. Decrypt  

The only argument for Decrypt is the text to be decrypted. It can only be called in 

keyed mode. It passes the text to Crypt as well as a Boolean 1 to indicate decryption vice 

decryption. Figure 14 gives the formal definition for Decrypt. 

 
Figure 14. Decrypt Function Definition.  Source: [5]. 

e. Squeeze 

The only argument in Squeeze is the desired hash length in bytes. It passes the hash 

length and the round constant 0x40 to SqueezeAny. Figure 15 gives the formal definition 

for Squeeze. 

 
Figure 15. Squeeze Function Definition.  Source: [5]. 

f. SqueezeKey 

The only argument in SqueezeKey is the desired hash length in bytes. It can only be 

called in keyed mode. It passes the hash length and the round constant 0x20 to SqueezeAny 

and exists to generate a key. Figure 16 gives the formal definition for SqueezeKey. 
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Figure 16. SqueezeKey Function Definition. Source: [5]. 

g. Ratchet 

Ratchet accepts no input. It can only be called in keyed mode. The first argument 

supplied to AbsorbAny is the first lratchet bytes of the permuted State. Behaviorally, the 

series of function calls permutes the state with f, then overwrites the lratchet most significant 

bytes in the state with zero. Figure 17 gives the formal definition for Ratchet. 

 
Figure 17. Ratchet Function Definition.  Source: [5]. 

4. Top Level Instance 

The instance of Xoodyak is determined by a call to the Cyclist function. Initially, 

state is instanced to be all zeros, and the phase is instanced as up. The mode is set to hash, 

and Rhash is assigned to be the Rabsorb and Rsqueeze parameter. In keyed mode, these values 

are overwritten in the call to AbsorbKey, but if there is no supplied key then the state 

remains in hash mode. Figure18 gives the Cyclist formal definition. 

 
Figure 18. Cyclist Function Instantiation. Source: [5]. 
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E. IMPLEMENTATION  

This research implemented the ability to invoke every function call with the 

opcodes described in the level 1 functions. Function calls are made by supplying an 

operational code (opcode) to the input ports with the accompanying data. All opcodes are 

four bits long and expressed in hexadecimal. For example, the hardware will enter the 

Cyclist function in keyed mode by ingesting opcode 0x01, and Cyclist in hash mode by 

ingesting opcode 0x09.  

Broadly speaking, our hardware structure is built around the level 2 functions, the 

inputs for which are modified depending on the exact function called. Every function 

except for Split is allocated hardware, which is administered by the user. The hardware 

structure is not able to recognize where one string of information begins or ends, and it is 

only capable of processing a finite amount of data on every function call. Since this split 

in data must occur regardless of how long or short a string is, the user is responsible for 

keeping track of when strings begin or end.8  

1. Instance Parameters 

The Xoodyak Implementation operates as a series of function calls. The Xoodyak 

algorithm allows for some variable length fields, such as the message text. This 

implementation used fixed length vector lengths based on parameters described in [5] and 

summarized in Table 6. 

 
8 However, no organization is required on the part of the user apart from properly aligning the data 

input vector and opcodes. Subsequent calls for the same function {Absorb(X), Absorb(Y)} can be 
discriminated by inserting a single idle opcode for one clock (on a clock that the hardware is accepting 
inputs). Without this step, the hardware will process the data as {Absorb(X || Y)}, which is not the same 
operation because of color bytes and ensuing avalanche effect in the Permute hardware. 
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Table 6. Xoodyak Parameter Length Summary. Adapted from [5] 

 
 

2. State Machines 

Operations are governed through three distinct finite state machines. The first state 

machine determines whether the state is in hash or keyed mode. The second machine 

handles function calls. The final state machine handles the “Shadow State” which stores 

the previous function call. The Shadow State is important for administering color bytes. 

The state machine and “shadow state machine” can proceed directly from one function call 

to another. Returning to the idle state will wipe the shadow state, allowing for an identical 

function with a broken string. Table 7 summarizes valid opcode combinations. 

Table 7. Xoodyak Opcode Decode and Mode Restriction. 

 
The “Nonce” function performs an Absorb with a different parameter length, per Table 6. 

Object Length (Bytes) Length (bits)
Rabsorb (hash) 16 128

Rabsorb (AEAD) 44 352
Mlength 24 192

Key Size 16 128
Nonce 16 128

Rsqz 16 128

Function Call Opcode Keyed Mode Only
Cyclist (keyed) 1 -
Cyclist (hash) 9 -

Nonce 2 YES
Absorb 3 -
Encrypt 4 YES
Decrypt 5 YES
Squeeze 6 -
Ratchet 7 YES

SqueezeKey 8 YES
Idle All Others -
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3. User Operation of Xoodyak 

Xoodyak completes functions in either one clock, four clocks, or 12 clocks 

depending on the hardware build and the function call.  These distinctions are discussed in 

the next section. These counts do not include startup queuing delays.9 

a. Startup Delays and Timing 

There is an additional two-clock startup delay to sample and alter the state machine.  

Therefore, a function call completes three, six, or 14 clocks after a function call is queued 

at the front of the module.10 This means that in all cases the next function will be sampled 

while the previous function is still running, unless the state machine is in the idle state.   

Any function that uses the Permute module completes in four or 12 clocks. The 

four or 12 clocks required for operation depends on the build used.11  Both approaches 

fully satisfy the round requirement levied by the Xoodyak algorithm. 

Not every function call requires Permute, which triggers a one clock operation. 

Functions that end with an “UP” state as defined by [5] cause the next function called to 

not use Permute. Multiple calls to the same function do not trigger this case. For 

example, generating a 256-bit digest requires two sequential calls to Squeeze. Each call 

requires Permute, and two calls are required, for a total of ten clocks to generate the 

entire string.12 A following function such as Absorb (or other) will not require Permute 

as such the next input text and opcode will be sampled on the very next clock. Tables 8, 

9, and 10 summarize stream clock delays based on function calls.  

 
9 All modules support streaming operations. Accordingly, startup delays are not included in any clock 

related description outside Ch III.E.3.a, Startup Delays, unless explicitly stated otherwise. CH IV.C.3 
refers. 

10 Alternatively, two, five, or 13 clocks after the sampling register. That is, if the sampling clock is not 
counted in the total. If applicable, output texts are provided synchronously on this clock, which is two, five, 
or 13 clocks after the sampling.  

11 Ch III.E.4.b describes how these build differences impact the required clocks. Appendix E contains 
the full list of builds. Tables 13–16 contain selected builds with both build versions. 

12 For the four-clock build: a two-clock startup delay, followed by four clocks of operation for the first 
call. The subsequent call to Squeeze only requires four clocks through streaming operations, having been 
sampled on clock 5 while the first Squeeze was operating. Clock 10 generates the last set of output text. 
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Table 8. Functions with 1-Clock Stream Delays. 

 

Table 9. Functions That Make the Next Non-Identical Function Have a 1-
Clock Stream Delay. 

 
 

Table 10. Functions with a 4-Clock or 12-clock Stream Delay by Default 

 
 

4. Structural Datapath  

There are three parts to the datapath, Pre-Permute, Permute, and Post-Permute. 

Each section loosely relates to different stages in the level 2 functions. Hardware in the 

Pre-Permute module performs exception handling. Pre-Permute, Permute, and Post-

Permute collectively perform all functions. The user performs Split on the data, but the 

hardware will track whether a function call is continuous. The user can indicate a string for 

a function by continuously asserting the same opcode when the hardware completes 

function calls. This allows the user to handle arbitrary length function calls, provided those 

lengths are multiples of the parameters specified. The user can provide padding to meet 

those multiples.  

Function Call Opcode
Cyclist (keyed) 1
Cyclist (hash) 9

Function Call Opcode
Cyclist (hash) 9

Squeeze 6
SqueezeKey 8

Function Call Opcode
Nonce 2
Absorb 3
Encrypt 4
Decrypt 5
Squeeze 6
Ratchet 7

SqueezeKey 8
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a. Pre-Permute 

The purpose of the Pre-Permute stage is to generate the 384-bit vector that enters 

the Permute module. Figure 19 provides a high-level process overview of the hardware 

structure that handles the per Permute stage. By default, the State is the contents of a 384-

bit vector which is the output of the previous function call. There are several exceptions, 

and the Pre-Permute stage handles all of them in a multiplexer. The exceptions are 

summarized in the next section. Multiple exceptions cannot occur at the same time, so 

dedicated exception handling hardware is reused in several cases. 

 A round constant is then applied to the output, depending on the function call, as 

described in Algorithm 2 [5]. The round constant is only added for the first permutation of 

a string.  

 
Figure 19. Pre-Permute Process Diagram 
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b. Exception handling 

There are two exceptions to handle edge cases. The cause of the edge cases is that 

the hardware does not track the algorithmic phase - “UP” or “DOWN.”  Rather, each pass 

through the hardware accomplishes both the Up and Down functions, which creates issues 

when one of those functions is not used. There are two ways this can occur. The first way 

is after a Squeeze function. Recalling Figure 16, see that regardless of the string length l, 

the phase ends in the “UP” state at the completion of the function call. Since the user is 

performing the Split function, the user delimits the end of the Squeeze function by simply 

providing the next function and associated data. Inside the hardware, the Shadow State is 

shadow_squeeze, and the actual state machine is not in the Squeeze state, which triggers 

the exception. The impact is that the next function call, delimited by the next ingested 

opcode other than 4’h6 (Squeeze) or 4’h8 (SqueezeKey), will not perform the Up function 

and associated Permute. Additionally, the value held in the State register will be invalid, 

and the value in the exception register will be used instead. We speculate this exception 

will not be especially relevant, since performing a Squeeze or SqueezeKey is a hash of the 

existing State, which implies the operation is complete. However, it is included for 

completeness of operation. 

The second exception is in the first Absorb function call after State instantiation 

with opcode 4’h9, Cyclist (hash). Unlike the hardware keyed mode Cyclist function, which 

also performs the algorithmic AbsorbKey function, the hardware hash Cyclist function 

merely only creates a 384-bit vector of all zeros. Accordingly, the first Absorb after this 

only requires an algorithmic Down function and is completed in a single clock.13 

 
13 We considered including the first hash-based Absorb in the Cyclist instantiation, requiring the user 

to supply the first round of Absorb data at instantiation. This would theoretically cause a one clock 
advancement of any function sequence, but we decided against it because this would be combining two 
different top-level functions at once, which is not consistent with the proposed standard [5]. This is directly 
in opposition to the associated key absorption innate in the keyed Cyclist function, which directly calls the 
first Absorb without further top level involvement and therefore does not trigger an exception under our 
rules. 
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c. Permute 

The Permute module is made up of three parts, a round, round constant vector, and 

a register. The Permute inputs are fed to the Permute module and registered every clock. 

Figure 20 provides a high-level view of this process. Multiple Permute rounds can be 

instanced in sequence. This research specifically built one-Permute instances and three-

Permute instances.14 12 rounds must be accomplished in total, and the addition of multiple 

Permute instances reduces the number of clocks required to complete a permutation.  

 
Figure 20. Permute Process Diagram 

 
14 See CH IV for build analysis. See Appendix E for full list of builds. 
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Execution of a Permute round is exactly as described in [5], with a noted exception 

in the way certain indices are referenced. The test vector and software indexing are reversed 

compared to SystemVerilog conventions. This drastically changes Permute results. Figure 

21 is a direct excerpt from the RTL code that shows this reversal.  

 

 
Figure 21. Reconcatenation Logic 

d. Post Permute. 

The output of the Permute module is unregistered; the register is the beginning of 

the intermediate rounds rather than the end. The vector subject to post-permute operations 

depends on the function presented. Not every function requires a permute. Functions that 

require Permute use the outputs of Permute. Functions that do not require Permute use the 

Permute input vector before the round constant is added.  

The Down function is computed for every type of function in parallel. The final 

output is selected via a multiplexer controlled by the State Machine. Since several functions 

are similar in form, each Down operator can accomplish multiple function variants.  Figure 

22 provides a high level view of this process, from input to output data. 

Output text is only valid for certain function calls. For these functions, a multiplexer 

performs a modification of the Down output to generate the output text.  
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Figure 22. Post-Permute Process Diagram 

5. Verification 

The Xoodyak implementation supports nine function calls and idle. Verification 

was performed by hand for timing, function returns, and data manipulation. Further 

verification was performed via Sean B. Palmer’s software implementation “Xoocycle,” 

published as part of the NIST submission package [8]. Vectors were hand-examined via 

Xoocycle and Vivado waveform simulation. The waveform window was examined for 

expected output text, output decode, and timing across a wide variety of function calls. In 

total, each callable function was performed and checked for accuracy, including using 

strings that are too long to process in a single operation. Figure 23 shows a subjective view 
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of the process. Appendix C shows an example of a sequence of function calls, complete 

with input data and State values between each function.  

 
Figure 23. Xoodyak Data Verification Process 

F. SUMMARY 

This chapter examined the algorithmic definition, hardware structure, and 

verification process for Xoodyak. The RTL code which implements Xoodyak is an 

operational module capable of arbitrary length and number of function calls, subject to 

certain parameters. The Xoodyak module has also survived non-exhaustive verification by 

hand. The instance as implemented forms a thorough basis for detailed performance and 

cell area comparisons with our AES-128 module. These detailed comparisons are the topic 

of the next chapter.  
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IV. RESULTS 

Our comparison between AES-128 and Xoodyak has three main dimensions:  

functionality, throughput, and size. The build data does not include dynamic power, which 

is important for some applications. However, leakage power is included in the build data.  

Direct comparisons between our AES-128 and Xoodyak requires certain rules. 

These include baseline assumptions on what qualifies a build for a detailed comparison, or 

a subjective assessment on which builds are more competitive than others. It also includes 

basic benchmarking rules, such as the decision to use stream encryption as the primary 

throughput benchmark, and the use of cell area vice die area as the primary size metric.  

Functionality is assessed on support for cryptographic capabilities which include 

authentication, encryption, hashing, and associated data support. Throughput is assessed in 

bits processed per second. Size is assessed in terms of cell area. Lastly, there is a brief 

discussion on alternative comparisons between the algorithms which were not 

implemented. 

A. COMPARATIVE FUNCTIONALITY ANALYSIS 

Our AES build can support full AEAD and hashing through the NIST 

recommendation [3]. However, AES as described in the AES Standard is only capable of 

block encryption and decryption [1]. The Xoodyak suite includes full AEAD and hashing 

support by default. All Xoodyak builds in this research implement the full Xoodyak suite, 

as summarized in Table 11. 
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Table 11. Function Comparison - Xoodyak and AES-128 

 
The Xoodyak suite, when combined in the manner specified by Daemen et al., fully 

implements the NIST requirement for AEAD and hashing [5].15 Function calls can take 

place in any arbitrary sequence as defined by the user.16 The actual capability delivered by 

Xoodyak is therefore highly flexible and exceeds the minimum NIST AEAD and hash 

requirements. There is no loss in claimed security with any of these builds. Both AES-128 

and the Xoodyak implementation require 128-bit keys and claim 128 bits of security.17  

B. SUBJECTIVE STRUCTURAL ANALYSIS 

AES and Xoodyak have distinct hardware structures. AES is defined by rounds; 

each round uses a RoundKey generated by KeyExpansion and is comprised of four well-

defined mathematical steps in sequence. The round calculation is repeated 10 times in 

AES-128. The calculations are applied directly to the plaintext or ciphertext, along with 

the expanded keys. 

The main cryptographic operation in Xoodyak is the Xoodoo/Permute function. 

The permutation is applied to the State, not the input text. The value of the State depends 

on the process history, including the order of function calls and data absorbed since State 

instantiation. The text is applied via XOR after 12 permute rounds, like an AES 

 
15 Algorithmic use of Xoodyak in AEAD mode is described in Section 3.2.3 – Authenticated  

Encryption [5]. Use of hash mode is described in Section 3.1 – Hash  mode. 
16 The Xoodyak algorithm and implementation can handle any arbitrary sequence of function calls. 

However, an arbitrary series of calls is not guaranteed to be a valid use of AEAD/hash or other 
cryptographic significance.  

17 The NIST competition submission algorithm uses a 128-bit key as a parameter. Instantiating a 
Xoodyak state requires the use of a 128-bit key in the implementation. A longer key can be appended 
through the Xoodyak Absorb function. The additional security of such an addition is not evaluated. 

Xoodyak AES
Encrypt KeyExpansion
Decrypt Encrypt
Absorb Decrypt
Squeeze No equiv.

SqueezeKey No equiv.
Ratchet No equiv.

Functions
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AddRoundKey.18 Substantial combinational logic outside permute is required to support 

function calls. Every function modifies the State before permutation, and further 

modifications are applied after Permute. 

There are two implemented structures of Xoodyak builds. The differences in the 

builds stem from the way they handle the permute function. Xoodyak X-05N and X-07N 

series builds require 12 clocks to complete. Xoodyak X-06N and X-08N series builds 

accomplish three permute rounds in one clock and thus require only four clocks to 

complete. 

This improved throughput performance comes at the cost of additional hardware. 

Jim Donahue at Centaur Technology Inc. built both the AES and Xoodyak variants [9]. 

Builds were done in both a 16nm technology and a 5nm technology to identify any 

algorithm related throughput, size, or leakage current differences due to technology. 

The build recipes were similar to those used by Centaur for internal designs. These 

builds are complete for a design decision usage, but do not have the final tapeout 

adjustments including design rule check fixes, hold time fixes, or pad cells.  

C. IMPORTANT CONSIDERATIONS FOR BENCHMARKING  

1. Build Qualification for Benchmarking 

A total of 26 build variations were generated between AES-128 and Xoodyak. 

Comparing each build was not feasible. The intent of the various build configurations was 

to find the fastest realistic frequency for a design and to perform design comparisons at 

similar clock frequencies. From those build results, comparisons can be drawn for the most 

competitive builds with a certain baseline. The baseline requirements for detailed 

comparison were a clock frequency above 2 GHz, and a leakage current lower than 1mW.  

 
18 The nature of the input text depends on the function called, whether plaintext, associated data, or 

otherwise. 
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2. Precision Limitations on Results 

While official build results are highly specific, they are not necessarily precise. The 

build results should be interpreted as working examples rather than sole truths. Multiple 

builds of the same assumptions and RTL code could have variable performance. Variability 

in clock speed could be as high as +/- 50MHz. Tabulated results therefore round results at 

100MHz. The full results in Appendix E do not round these values.  

3. Startup Delays, Streaming Mode, and Performance 

Both the AES-128 and Xoodyak implementations require startup delays before 

function execution. AES-128 requires a one-clock delay. Xoodyak requires a two-clock 

delay. These delays exist to register input data and opcodes and initialize state machines. 

Non-streaming operations are required to account for these delays, but streaming 

operations are not.  

All implementations support streaming mode. Startup delays can be eliminated for 

streaming operations because the modules will accept new input data while a previous 

operation is ongoing.  

For example, the AES-128 Encrypt and Decrypt modules carry a 11-clock delay 

between input sample to output text generation. However, the state machine will allow the 

next text vector to be registered on clock 10. The startup clock cycles are paid in parallel 

with the previous encrypt cycle. The streaming delay for AES Encrypt and Decrypt is 

therefore 10 clocks rather than 11. Streaming startup delays in Xoodyak can be ignored for 

the same reason.  

An arbitrary number of encryptions can be performed with only one two-clock 

startup delay under this construct. This is insignificant across a large operation. 

Accordingly, they are neglected in streaming throughput computations. 

4. Adjustments for AES KeyExpansion 

The AES instance includes a KeyExpansion module. For ease of implementation, 

keys are not generated “on the fly.” Key generation requires a 11-clock delay from input 

to output register. Combined with the 10-clock stream delay for Encrypt and Decrypt 
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modules, this means there is a 21-clock delay from the point a true key is supplied to 

generate output text using that key. However, when computing the throughput performance 

for AES the KeyExpansion clocks are not included.  

D. PARAMETER ANALYSIS 

All instances of Xoodyak included the full Xoodyak suite with both AEAD and 

hash functionality. Tables 12 – 17 provide an overview of the throughput, size, and leakage 

power results for certain builds. While all tables contain every parameter, builds in Tables 

12–15 are selected for throughput analysis and builds in tables 16–17 are selected for cell 

area analysis. When referenced by build, A-series builds refer to AES-128 and X-series 

builds refer to Xoodyak. Builds with 5nm technology, vice 16nm technology, can be 

identified by the “5n” in the build name. Appendix E contains the full raw results, and the 

following subsections contain the relevant discussion. 

Table 12. Streaming Results—5nm Technology. Adapted from [9] 

 

Table 13. Streaming Results—16nm Technology. Adapted from [9] 

 

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW  GHz. Clks/Op Bits/op Gbits/s

AES-128 A-5n03d 2,800 0.83 4.0 10 128 51
Xoodyak X-5n06a 2,200 0.86 2.9 4 192 140
Xoodyak X-5n05g 2,100 0.77 5.1 12 192 82

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW  GHz. Clks/Op Bits/op Gbits/s

AES-128 A-03c 7,400 0.81 2.4 10 128 31
Xoodyak X-08a 6,300 2.50 2.2 4 192 106
Xoodyak X-07d 4,200 0.78 3.4 12 192 54

Clock



38 

Table 14. Non-Streaming Results—5nm Technology. Adapted from [9] 

 

Table 15. Cell Area Results—16nm Technology. Adapted from [9] 

 

Table 16. Cell Area Results - 5nm Technology. Adapted from [9] 

 

Table 17. Cell Area Results - 16nm Technology. Adapted from [9]  

 

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW  GHz. Clks/Op Bits/op Gbits/s

AES-128 A-5n03d 2,800 0.83 4.0 11 128 47
Xoodyak X-5n06a 2,200 0.86 2.9 6 192 93
Xoodyak X-5n05g 2,100 0.77 5.1 14 192 70

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW  GHz. Clks/Op Bits/op Gbits/s

AES-128 A-03c 7,400 0.81 2.4 11 128 28
Xoodyak X-07b 3,300 0.23 2.4 14 192 33
Xoodyak X-08a 6,300 2.50 2.2 6 192 70
Xoodyak X-07d 4,200 0.78 3.4 14 192 47

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW  GHz. Clks/Op Bits/op Gbits/s

AES-128 A-5n03d 2,800 0.83 4.0 10 128 51
AES-128 A-5n03f 2,200 0.20 2.1 10 128 27
Xoodyak X-5n05c 1,200 0.25 3.4 12 192 54
Xoodyak X-5n05e 1,600 0.44 5.0 12 192 80
Xoodyak X-5n05g 2,100 0.77 5.1 12 192 82
Xoodyak X-5n06a 2,200 0.86 2.9 4 192 140
Xoodyak X-5n06b 1,900 0.64 2.6 4 192 125

Clock

Algorithm Build # Cell Area Leakage Width Thruput
- - µm2 mW  GHz. Clks/Op Bits/op Gbits/s

AES-128 A-03c 7,400 0.81 2.4 10 128 31
AES-128 A-03d 7,100 0.46 2.1 10 128 27
AES-128 A-03f 11,300 7.47 3.6 10 128 46
Xoodyak X-07b 3,300 0.23 2.4 14 192 33
Xoodyak X-07c 3,500 0.43 2.9 12 192 46
Xoodyak X-07d 4,200 0.78 3.4 12 192 54

Clock
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1. Throughput Analysis 

X-5n06a has the highest throughput of any build. The high throughput value stems 

from the three Permute rounds instantiated in series. This allows any hardware stream 

function call, including Encrypt and Decrypt, to be completed in four clocks.19 X-6n06a 

strikes the best balance between clock speed and clock count to achieve the highest possible 

throughput with a feasible clock rate. 

Per Table 14, X-5n06a has a stream throughput factor of 2.7 times A-5n03d, the 

highest-throughput AES-128 build. This throughput factor includes a 192-bit data width 

for Xoodyak. Normalizing Xoodyak performance at 128-bits of true data per function cycle 

requires a downward revision to 1.8. 

Performance gains at the 16nm technology level are less decisive. Build X-08a is 

the highest throughput 16nm Xoodyak build with a throughput value of 106 Gbit/s, but its 

leakage current value is 2.5mW— far above the soft 1mW specification. This also means 

that there were no qualified three-Permute 16nm builds. Hence, we move to the one-

Permute 16nm instances for comparisons to AES. 

The highest throughput 16nm build with less than a 1mW leakage is X-07d. X-07d 

is a one-Permute build with half the throughput of X-08a, its three Permute competitor. X-

07d does claim a throughput factor of 1.74 over AES build A-03c, but this includes a wider 

Xoodyak data width. Normalizing to a 128-bit data width for Xoodyak reduces that factor 

to 1.16. 

2. Cell Area Analysis  

The various AES-128 and Xoodyak instances were built using the ASIC flow build 

process described in Appendix D. Die plots are shown in Appendix F. While every build 

has a die size, the isolated builds are not reflective of the die size in a real chip. For example, 

all inputs and outputs are registered in every research build. This may not be necessary if 

 
19 All X-series (Xoodyak) builds with a 4 or 6 in the “Clks/Op” column has three permute rounds 

instantiated in series. X-series builds that require 12 or 14 clocks have one permute round only. Broadly 
speaking, builds with three permute rounds were intended to maximize throughput and builds with one 
permute round were intended to minimize cell area. 
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these modules were built within a larger chip because the input vector may be able to make 

timing without an input register. The surrounding circuitry context is required to determine 

this possibility. 

Also, a real chip may have more accessible layers which reduces the required die 

area footprint. “Cell area” is the sum of all the area of all combinational logic and registers. 

Cell area is therefore unaffected by this circuit context. Accordingly, “cell area” as opposed 

to “die area” was the evaluated logic size metric. 

X-5n05e and X-07b contain the lowest cell area for their respective technologies, 

with cell areas of 1,600µm2 and 3,300µm2 respectively. Compared with the most cell-area-

efficient AES-128 builds, Xoodyak provides a 28% cell area reduction with 5nm 

technology and a 53% reduction with 16nm technology. These reductions were achieved 

by the instance of a single Permute round, which necessitated a 12-clock function call to 

achieve the necessary 12 rounds. The green and white cells in Figures 25 and 26, which 

represent Permute hardware, illustrate the impact of having a single Permute instance 

versus three in series.  

Tables 17 and 18 also empirically demonstrate the positive relationship between 

operational frequency, cell area, and leakage current. This difficult balance is best shown 

in the differences between builds A-03c and A-07f, two AES-128 builds where A-07f 

generated the highest throughput of any AES-128 build. Unfortunately, the circuitry 

required to make this timing meant that the cell area requirements was 11,300µm2, and the 

7.47mW leakage current value meant that this build was unqualified for a throughput 

benchmark under our rules. 

E. ALTERNATIVE COMPARISONS 

1. Alternative: Xoodyak and AES-Galois Counter Mode (AES-GCM) 

The full Xoodyak suite has full AEAD functionality. The AES core does not. Ref 

[3] recommends AES-GCM for AEAD and is in common use but is not a formal NIST 

standard. AES-GCM is a more functionally direct comparison to Xoodyak. Implementing 

AES-GCM was beyond the scope of this research, but AES-GCM would have required 
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additional cell area, and possibly lower throughput, to provide total equivalent functionality 

to Xoodyak. 

2. Alternative: Enc/Dec Xoodyak only and AES Core 

A Xoodyak instance with only the AbsorbKey, Encrypt and Decrypt functions 

defined may be a more functionally-direct comparison to the AES core. Limited 

functionality might reduce the cell area required and increase clock frequency, improving 

the comparisons given in Tables 13–18. However, the full permute instance is required 

regardless of functionality because every function uses the same permute function. Large 

performance gains, and size and power reductions associated with these functionality 

reductions are unlikely. 

F. SUMMARY 

This chapter discussed the performance comparisons of our AES-128 and Xoodyak 

modules, as built by Jim Donahue of Centaur Technologies. The results show that Xoodyak 

builds optimized for throughput can achieve approximately 3:1 throughput gains over 

AES-128 for both 5nm and 16nm ASIC technology. Results also show that Xoodyak builds 

optimized for cell area occupy approximately half of the cell area required by AES-128 for 

16nm technology, and are 28% smaller for 5nm technology. Appendix E contains a full 

readout of all 26 discrete builds.   
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V. CONCLUSION

The NIST Lightweight Cryptography Competition created interest in lightweight 

cryptographic algorithms. Examination of proposed standards involved a comparison to 

AES, the established standard. Our research benchmarked AES-128, as a standard, against 

Xoodyak, the proposed lightweight cryptography standard.  RTL code was written to 

support these implementations, which was then built by Centaur Technologies.  

A. ASSESSMENT OF GOALS

Our results showed that selected Xoodyak modules outperformed AES-128 in

direct comparisons, while also demonstrating AEAD and hashing support. For Xoodyak 

builds optimized for performance, results showed in a throughput factor of 2.7 for 5nm 

technology and 1.7 for 16nm technology. Likewise, Xoodyak builds optimized for cell area 

carry a 28% reduction in 5nm technology, and a 53% reduction in 16nm technology. These 

results do not guarantee identical gains when integrated, but they provide a valuable 

benchmark of relative strength when written by the same author and built by the same tools 

at Centaur. Our work was successful in quantifying these advantages and provides 

additional information to inform the NIST competition.  

B. FUTURE WORK

1. Remove Fixed Length String Requirement

One of the assumptions made in the hardware is that every input vector is presumed 

to be the same length – specifically, the maximum length given by Xoodyak parameters. 

This simplified debugging and may have reduced the hardware requirement. The algorithm 

does not require input strings to be even multiples of the parameter lengths. An additional 

input vector specifying the length of the input string may be enough to fully capture this 

fidelity. Since the largest Split parameter in Xoodyak is in Absorb with a value of 352 bits, 

an additional 6-bit vector is large enough to specify any parameter length in Xoodyak. 
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2. Perform a More Extensive Verification 

Xoodyak is a new algorithm and test vectors are difficult to come by. The 

verification methods used in this work were therefore quite rudimentary and primarily 

involved pen and paper verification and waveform inspection on a bit-by-bit and clock-by-

clock basis. While a non-trivial number of vectors and function calls were tested, we were 

limited to discretely checking only a very small number of functions, such as those 

specifically listed in Figures 4 and 5. More robust methods would be required if these 

modules were to enter production. 

3. Reduce the Xoodyak Startup Clocks from Two to One 

Xoodyak requires two startup clocks compared to one for AES as discussed in 

Chapters III and IV. We believe this can be reduced to one through a modification of the 

state machine and associated registers. This reduction would not improve streaming 

throughput, but it would improve “one off” throughput and further optimize the code. 

4. Perform an ASIC Benchmarking of AES with Galois Counter Mode  

We performed standard to proposed standard comparison between AES and 

Xoodyak. This may have been unfair to Xoodyak, as a functionally equivalent comparison 

with AES should include AES with the NIST recommendation for Galois Counter Mode. 

It is certain that AES-GCM will occupy more cell area than the AES core as implemented, 

and it is possible that the throughput will be negatively affected as well. If this is the case, 

then the throughput and size factors computed in this work are in fact lower bounds. 
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APPENDIX A. CODE REPOSITORY 

Open-source AES code repository. 
GitHub: https://github.com/MikeWakeland/AES-SV 
POCs: Michael.C.Wakeland@gmail.com, ccw@nps.edu 
 
Open-source Xoodyak code repository.  
GitHub: https://github.com/MikeWakeland/Xoodyak-HW/tree/main/Xoodyak_functions 
POCs: Michael.C.Wakeland@gmail.com, ccw@nps.edu 
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APPENDIX B, DEFINITION OF XOODOO 

The Xoodoo definition is an excerpt from “Xoodyak, a lightweight cryptography scheme.” 
Source: [5]. 
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APPENDIX C VECTOR EXAMPLE 

The Xoodyak implementation correctly performs an arbitrary series of function calls, each of arbitrary length.20 Long strings 

must be ingested in a piecemeal fashion as described in the algorithm. This is an example of how:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ( 𝐾𝐾, 𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐿𝐿) 

K is the 128 bit string:  
38393a3b3c3d3e3f3031323334353637 

X is the 704 bit string:  

6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c 

6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c 

P is the 352 bit string: 

4d4e4f5051525354555657584142434445464748494a4b4c4d4e4f5051525354555657584142434445464748494a4b4c 

 
 
 
 
 
 

 
20 Subject to individual parameter length requirements - user provides padding. 
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Function
Cyclist Instance (Keyed Mode) -  opcode 1

Registered Input Text [351:0]
38393a3b3c3d3e3f303132333435363700000000000000000000000000000000000000000000000000000000

Input State [383:0]
Undefined

Output State [383:0]
38393a3b3c3d3e3f30313233343536370001000000000000000000000000000000000000000000000000000000000002

Function
Absorb - opcode 3

Registered Input Text [351:0]
6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c

Input State [383:0]
38393a3b3c3d3e3f30313233343536370001000000000000000000000000000000000000000000000000000000000002

Output State [383:0]
0ccb63f23dc3114bcb8c36b63cef99564339ffadac0fbb2f741fe9a5d9b9de250690b87018c5b3b541c0996293e436a8
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Function
Absorb - opcode 3

Registered Input Text [351:0]
6162636465666768696a6b6c6d6e6f706162636465666768696a6b6c6d6e6f706162636465666768696a6b6c

Input State [383:0]
0ccb63f23dc3114bcb8c36b63cef99564339ffadac0fbb2f741fe9a5d9b9de250690b87018c5b3b541c0996293e436a8

Output State [383:0]
1b43a7cd6fa2e21dac4688e1d8a7206c023ac58e5af69245303387eefad068bc9f90ee310414057f2d5a18c68a307c4c

Function
Encrypt - opcode 4

Registered Input Text [351:0]
4d4e4f5051525354555657584142434445464748494a4b4c0000000000000000000000000000000000000000

Input State [383:0]
1b43a7cd6fa2e21dac4688e1d8a7206c023ac58e5af69245303387eefad068bc9f90ee310414057f2d5a18c68a307c4c

Output State [383:0]
5a7623842abdf7a08558bc7ad19c93913cb711728192562aed97c6bf7bd9e1547f48ad7dbafef8bf2cc790d1e3b3f9f0
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Function
Encrypt - opcode 4

Registered Input Text [351:0]
4d4e4f5051525354555657584142434445464748494a4b4c0000000000000000000000000000000000000000

Input State [383:0]
5a7623842abdf7a08558bc7ad19c93913cb711728192562aed97c6bf7bd9e1547f48ad7dbafef8bf2cc790d1e3b3f9f0

Output State [383:0]
5bdef9a0659765e8241872a1e59ff766c4fca03d31ace48e1c9a300fc8b57420d4435bbfa2efdb0a01afb869ec8cfa54

Function
Squeeze Key - opcode  8

Registered Input Text [351:0]
Don't Care

Input State [383:0]
5bdef9a0659765e8241872a1e59ff766c4fca03d31ace48e1c9a300fc8b57420d4435bbfa2efdb0a01afb869ec8cfa54

Output State [383:0]
9bd1c096d76a4f742a7f1037f7a697de6ad3187b8ac831a7fceedddb339d5e7a6a4a2f3ce365c931bbd154dde2914c4b
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APPENDIX D. AES AND XOODYAK BUILD METHODOLOGY  

Adapted from Jim Donahue, Centaur Technologies [9]. 
------------------------------------------------------------------------ 
BUILD METHODOLOGY                  JimD 2021–10-06 
------------------------------------------------------------------------ 
 
Technology & Tools 
------------------------------------------------------------------------ 
Tools (all June 2021 release S-2021.06) used: 
Synopsys Design Compiler NXT in topographic mode 
 - mapping RTL to technology target library of stdcells 
Synopsys ICC2 
 - import gates from DC-NXT 
 - create floorplan with user constraints 
 - place gates  
 - build clock tree then route & optimize it 
 - initial route 
 - route optimization 
Synopsys StarRC 
 - parasitic (RC) extraction 
Synopsys Primetime 
 - signoff-quality timing tool 
 
Technology used: 
TSMC 16nm with 13 layers of metal plus AP top-level 
Centaur-designed 12-track stdcell library 
AES builds limited to M2-M7 for routing, to keep 
 upper layers of metal free for global routes 
 
The flow, meaning the sequence of operations and tcl-scripts which 
control it, is a shared Centaur-specific flow that is based on 
Synopsys’ “Recommended Methodology” download. 
 
We are not implementing scan chains in this exploratory build. 
 
Once a user has customized the flow for an individual block’s 
requirements, fully building the block from RTL to a final physical 
implementation timed in a signoff-quality is a single “make” command 
much like the compilation of any software. 
 
Target technology is a prevous-generation commodity process available 
on the open market which we used for a recent chip design at Centaur. 
Stdcell and hard macro (custom block) libraries are Centaur-developed 
- our own layout and timing characterization. 
 
 
Build steps for new RTL: 
------------------------------------------------------------------------ 
1) Initial mapping RTL to stdcells 
2) Create floorplan 
3) Map RTL to stdcells with floorplan 
4) Import stdcells into physical implementation tool 
5) Place stdcells and optimize 
6) Build clock tree, route & optimize it 
7) Route all nets 
8) Extract parasitics and run sign-off timing tool 
 
Initial DC-NXT compile with NO FLOORPLAN and a loose cycletime to 
create technology-mapped gates and initial timing feedback. Optionally, 
a second pass without a floorplan could be run at a tighter cycletime 
since a tighter cycletime might require a larger stdcell area. The goal 
here is to have gates to use in creation of a floorplan. 
 
A floorplan is created based on initial gates and block 
requirements. Since we don’t know yet what dimensions the block will 
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be when it is instantiated in a larger framework, we can build roughly 
square with inputs on the left and outputs on the right. We’ll also 
keep the I/O timing constraints loose so the placement of I/O pins 
won’t be a problem for timing or routing. 
 
DC-NXT is run again to map RTL to gates, but with a floorplan this 
time. We run in SPG mode (Synopsys Physical Guidance?) topgraphic mode 
so the compiler understands the physical world - e.g., placement, metal 
layer parasitics. An initial compile is followed by two incremental 
compiles - more compiles might produce better final timing results but 
two incremental compiles is often sufficient. 
 
DC-NXT can bank registers, but in this build we’re banking registers 
using ICC2 during placement. Our library supports two to four 
registers banked into a single standard cell (stdcell aka leaf cell). 
 
In DC-NXT we permit register replication, boundary optimization 
(optimizing logic between hierarchicies i.e. RTL modules), sequential 
output inversion (inverting nets passing between hierarchies), 
automated layer assignment (choose the likely metal layer critical 
nets will be routed on). During exploratory work we do not permit 
DC-NXT to dissolve hierarchical boundaries, to help with understanding 
the reported paths. In a large design we can often improve the final 
timing by ~5% by permitting dissolution of boundaries (aka 
auto-ungrouping). 
 
Importing gates from DC-NXT into the physical implementation tool 
(ICC2) is a simple and fast step that requires no user optimization. 
 
ICC2 places and optimizes the gates for timing, routability, and 
power. We discard the placement coming from DC because ICC2 generally 
does a better job restarting with its own coarse placement alogrithm. 
We run a two-pass placement, allow ICC2 to assign “NDRs” (non-default 
rules i.e., choosing upper layers of metal and/or wider nets), and 
implement register banking. We also enable CCD (concurrent clock & 
data) optimization which is free to push/pull register and macro 
clocks foward or backwards to optimize timing. 
 
ICC2 builds a clock tree, routes it, and optimizes it. There is almost 
no user customization here although we also allow CCD optimization 
here. 
 
ICC2 routes and optimizes the remaining non-clock nets. We run 
multiple optimization passes to improve timing and route quality, 
allow CCD optimization in early passes but not in later passes. 
 
Finally the ICC2 output is extracted in STAR to provide actual RCs 
(including cross-coupling between routes) which are then fed into 
Primetime for analysis at our typical setup & hold corners. For 
sign-off we use many additional corners but typical setup & hold are 
considered adequate for exploring new RTL designs. 
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APPENDIX E. BUILD RESULTS  

 
Adapted from: Jim Donahue, Centaur Technologies [9]. 
 
Physical Builds 
---------------------- 
Three versions of the code (AES, Xoodyak 1 round/clock, Xoodyak 3 
rounds/clock) were built by Jim Donahue at Centaur Technology Inc. In order to identify any 
differences due to technology, builds were done in both a 16nm technology and a 5nm 
technology. The build “recipes” 
(details in Appensix Q) were basically the same as used by Centaur for other internal  
designs. 
 
Within each technology, the only thing changed across the builds for a particular code 
version were the target clock frequency (and a few floorplan size changes thathad no affect 
on the results). Across the three code versions, fourteen build variations were done in 
16nm, and twelve in 5nm. The intent of the various build configurations were to find (1) 
the fastest realistic frequency for a design, and (2) comparisons across the designs at the 
same (roughly) frequency. Appendix y summarizes the data from all builds and the following 
table show the versions that of particular interest for this study. 
 
------------------------------------------------- 
target = Target GHz for build 
x y  = build die area, not necessarily indicative of real are actually needed  
real freq = the mhz the build  
produced area = total area of standard cells used without wiring, etc. 
util = cell utilization % vs available die area, not critical until above 70%  
leak = static leakage in mW, rule-of-thumb cutoff is around 1mW for small circuits like Xoo 
total power = leakage + dynamic.  
leakage is telling us what type of cells are being used.  
 
X == Selected runs for detailed comparison 
------------------------------------------------ 
Tabulated results on next page 
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table--------------------------------------- 
 
exp        target   x y       real freq    area   util  leak   X 
--------   ------- -------   ----------   ---    ----  ----   - 
aes 
a.03d    2.00  138 138  2.06     7073    38 0.46   
a.03c    2.35  138 138  2.42     7432    40   0.81 X          
a.03b    3.64  138 138  3.56    10365   55   5.34  
a.03g    2.67  138 138  2.69     7782    42   1.24   
a.03h    2.86  138 138  2.91     8147    44  1.93   
a.03i    3.33  138 138  3.37     9307    50   3.71   
a.03e    4.00  138 138  3.60    11313   61   7.47  
a.03f    5.00  138 138  3.82    12025   64  9.30  
 
a.5n03f  2.00    64  64   2.07    2171    55    0.20 X  
a.5n03c  2.86    64  64   2.95     2342    59    0.36  
a.5n03d  4.00    64  64   4.00     2782    71    0.83 X           
a.5n03e    5.00    80  80   4.33     3736    60    1.81  
 
xoo 1 perm 
x.07a      2.11   61  92   2.12    3380    63    0.23  
x.07b      2.35   61  92   2.40    3298    61    0.23 X   
x.07c      2.86  122 107   2.89    3508    27    0.43  
x.07d      3.33  122 107   3.38    4162    33    0.78 X  
x.07e      4.00  122 107   4.04    4722    37    1.64   
x.07h      5.00   92  107   4.18    5769    61    3.58   
 
 
x.5n05a    2.86   45  45   3.05     1173    61    0.22  
x.5n05c    3.33   45  45   3.42     1180    62    0.25  
x.5n05d    4.00   45  45   4.27     1368    71    0.33  
x.5n05e    5.00   45  45   5.03     1560    81    0.44 
x.5n05g    5.00  60  60   5.09     2060    60    0.77 X 
 
 
x00 3-perm 
x.08a      2.11  123 107   2.15    6347    50   2.51 X 
x.08b      2.35  123 107   2.42    7712    60    4.65  
x.08c      2.67  123 107   2.33    9429    74    6.41  
 
x.5n06b    2.50   85 85    2.60     1860    26    0.64 
x.5n06a    2.86   85 85    2.92     2212    32    0.86 X  
x.5n06c    3.33   85 85    3.07     2583    37    1.30 
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APPENDIX F. SAMPLE BUILD IMAGES 

 
(a) Blue cells - Decrypt logic. (b) Green cells - Encrypt logic. (c) Red cells - KeyExpansion  

Figure 24. A-03c Die Space. Source: [9]. 
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(a) Green cells - permute round logic. (b) White cells - permute support logic. (c) Gray cells - All 
other combinational logic. (d) Blue cells - input ports. (e) Red cells - output ports. [9] 

Figure 25. X-07b Die Space. Source: [9] 
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(a) Green cells - permute round logic. (b) White cells - permute support logic. (c) Gray cells - All 
other combinational logic. (d) Blue cells - input ports. (e) Red cells - output ports. [9] 

Figure 26. X-08a Die Space. Source: [9] 
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