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INTRODUCTION 

This task was proposed and established as a result of a pair of 2012 workshops sponsored by 
the DoD Engineered Resilient Systems technology priority area and by the SERC.  The 
workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ 
non-functional requirements, often also called system qualities, properties, levels of service, 
and –ilities.  The term –ilities was often used during the workshops, and became the title of the 
resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).”  As the project 
progressed, the term “ilities” often became a source of confusion, as in “Do your results include 
considerations of safety, security, resilience, etc., which don’t have “ility” in their names?”  
Also, as our ontology, methods, processes, and tools became of interest across the DoD and 
across international and standards communities, we found that the term “System Qualities” 
was most often used.  As a result, we are changing the name of the project to “System Qualities 
Ontology, Tradespace, and Affordability (SQOTA).”  Some of this year’s university reports still 
refer to the project as “iTAP.” 

EXECUTIVE SUMMARY 

Motivation and Context 

One of the key elements of the SERC’s research strategy is transforming the practice of systems 
engineering and associated management practices – “SE and Management Transformation 
(SEMT).”  The Grand Challenge goal for SEMT is to transform the DoD community’s current 
systems engineering and management methods, processes, and tools (MPTs) and practices 
away from sequential, single stovepipe system, hardware-first, document-driven, point-
solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-
oriented, hardware-software-human engineered, model-driven, set-based, full life cycle 
approaches.   

These will enable much more rapid, concurrent, flexible, scalable definition and analysis of the 
increasingly complex, dynamic, multi-stakeholder, cyber-physical-human DoD systems of the 
future.  Four elements of the research strategy for SE Transformation are the following: 

1. Make Smart Trades Quickly: Develop MPTs to enable stakeholders to be able to
understand and visualize the tradespace and make smart decisions quickly that take into
account how the many characteristics and functions of systems impact each other

2. Rapidly Conceive of Systems: Develop MPTs that allow multi-discipline stakeholders to
quickly develop alternative system concepts and evaluate them for their effectiveness
and practicality

3. Balance Agility, Assurance, and Affordability: Develop SE MPTs that work with high
assurance in the face of high uncertainty and rapid change in mission, requirements,
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technology, and other factors to allow systems to be rapidly and cost-effectively 
acquired and responsive to both anticipated and unanticipated changes in the field 

4. Align with Engineered Resilient Systems (ERS):  Align research to leverage DoD’s ERS
strategic research initiative and contribute to it; e.g., ERS efforts to define new
approaches to tradespace analysis.

 “Systems” covers the full range of DoD systems of interest from components such as sensors 
and effectors to systems of systems that are full or parts of net-centric systems of systems and 
enterprises.  “Effectiveness” covers the full range of needed System Qualities (SQs) such as 
reliability, availability, maintainability, safety, security, performance, usability, scalability, 
interoperability, speed, versatility, flexibility, and adaptability, along with composite attributes 
such as resilience, affordability, and suitability or mission effectiveness.  “Cost” covers the full 
range of needed resources, including present and future dollars, calendar time, critical skills, 
and critical material resources.   

The primary focus of RT-137, System Qualities Ontology, Tradespace and Affordability (SQOTA) 
project is on strategy 3, although its capabilities also support strategies 1, 2, and 4.  It 
particularly focuses on the tradespace among a system’s qualities, also called non-functional 
requirements or system Ilities.  The SQs differ from functional requirements in that they are 
systemwide properties that specify how well the system should perform, as compared to 
functions that specify what the system should perform.  Adding a functional requirement to a 
system’s specification tends to have an incremental, additive effect on the system’s cost and 
schedule.  Adding an SQ requirement to a system’s specification tends to have a systemwide, 
multiplicative effect on the system’s cost and schedule.  Also, SQs are harder to specify and 
evaluate, as their values vary with variations in the system’s environment and operational 
scenarios.   

Further, the satisfaction of their specifications is much harder to verify than placing an X in a 
functional traceability matrix, as the verification traces to the entire set of system functions.  It 
also requires considerable effort in analysis across a range of environments and operational 
scenarios.  As a result, it is not surprising that problems in satisfying SQ requirements are the 
source of many DoD acquisition program cost and schedule overruns.  Also, with some 
exceptions such as pure physical systems and pure software systems, there is little technology 
in the form of scalable methods, processes, and tools (MPTs) for evaluating the satisfaction of 
multiple-SQ requirements and their associated tradespaces for complex cyber-physical-human 
systems. 

The increasingly critical DoD need for such capabilities has been identified in several recent 
studies and initiatives such as the AFRL “Technology Horizons” report (Dahm, 2010), the 
National Research Council’s “Critical Code” Report (NRC, 2010), the SERC “Systems 2020” 
Report (SERC, 2010), the “Manual for the Operation of the Joint Capabilities Integration and 
Development System” (JROC, 2012), and the DoD “Engineered Resilient Systems (ERS) 
Roadmap” (Holland, 2012).  The particular need for Affordability has been emphasized in 
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several USD(AT&L) and DepSecDef “Better Buying Power” memoranda BBP 1.0 and 2.0 (Carter 
et al., 2010-2013) and the recent BBP 3.0 White Paper (Kendall, 2014). 

SQOTA Ongoing Contributions in Support of Better Buying Power 3.0 

Here is a summary of the current and projected iTAP  contributions in support of the objectives 
of Better Buying Power 3.0, relative to BBP 3.0 White Paper citations in italics.  Details of the 
contributions are provided in the later section of the report. 

Continue to set and enforce affordability constraints.  Strengthen and expand “should cost” as 
an important tool for cost management.   Building on previous results in RT-6 (Air Force 
Software Cost Modeling) and RT-18 (Valuing Flexibility), SQOTA Phase 3 developed a framework 
and initial quantitative results for tradespace analysis of acquisition and total ownership 
should-costs vs. schedule, functionality, and reliablility, and an overall framework and initial 
population of sources of synergy and conflict among cost, schedule, and other system quality 
attributes.  SQOTA Phase 4 has included upgrading the models to reflect emerging trends such 
as changeability to accommodate increasingly rapid change, maintainability to address total 
cost of ownership, changeability, and availability, and interoperability to accommodate 
increasingly interconnected systems of systems. 

Employ appropriate contract types, but increase the use of incentive-type contracts. “formulaic 
incentives” show a high correlation with better cost and schedule performance.  As above, 
Phases 3 and 4 have been developing and evolving cost-schedule-performance tradespace 
models to provide stronger formulas on which to define formulaic incentives.  Further, the 
Wayne State and Penn State contributions to set-based design and MIT epoch-era analysis 
approach provide frameworks for evolving the models to accommodate predicted and 
unpredicted change. 

Increase the use of performance-based logistics (PBL).  As documented in Appendix A, Enclosure 
A of the 19 Jan 2012 JCIDS Manual, a survey of combat commanders on critical logistics 
attributes identified the key quality attributes for logistics performance as Responsiveness, 
Sustainability, Attainability, Flexibility, Survivability, and Economy, along with several other 
attributes.  Phase 3 developed an ontology of such attributes to provide a stronger basis for 
defining logistics performance.  It has been refined and extended in Phase 4, particularly to 
extend the capabilities to address software logistics.   

Use Modular Open Systems Architecture to stimulate innovation.  SERC has been collaborating 
with TARDEC and NAVSEA in Phases 3 and 4 to define sound properties for set-based design as 
a stronger way to achieve mission-supportive open systems architectures, and to define related 
set-based design processes. 

Provide clear “best value” definitions so that industry can propose and DoD can choose wisely: 
providing industry with information on the value, in monetary terms, of higher levels of 
performance than minimally acceptable or threshold levels.  As above, Phases 3 and 4 have 
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been developing cost-schedule-performance tradespace models to provide stronger formulas 
on which to define the value of higher levels of performance, including life cycle cost effects. 

Improve our leaders’ ability to understand and mitigate technical risk: to minimize the likelihood 
of program disruption and to maximize the probability of fielding the desired product within 
reasonable time and cost.  Phases 3 and 4 research have been extending, applying, and refining 
an iterative Epoch-Era approach to address sources of uncertainty and risk.  A related SERC 
project, Quantitative Risk, is developing improved methods for identifying and quantifying 
leading risk indicators.  The set-based design approach goes beyond design for acquisition, to 
use areas of requirements uncertainty as foci for architecting sets of requirements likely to 
needed post-acquisition.  

Phase 1  Objectives, Approach, and Results 

The major objectives of the initial 5-month Phase 1 activity were to lay strong foundations for 
SQOTA Phase 2, including knowledge of Department of Defense (DoD) SQ priorities; 
foundations and frameworks for SQ tradespace analysis; extension and tailoring of existing 
SQOTA methods, processes, and tools (MPTs); and exploration of candidate Phase 2 pilot 
organizations for ITAP MPTs. 

Four activities were pursued in achieving these objectives: 

1. SQ Definitions and Relationships. Phase 1 included a discovery activity to identify and
analyze DoD and other ility definitions and relationships, and to propose a draft set of
DoD-oriented working definitions and relationships for the project.

2. SQ Foundations and Frameworks.  This effort helped to build SQOTA foundations by
elaborating key frameworks (process-based, architecture-based, means-ends based,
value-based), anticipating further subsequent elaboration via community efforts.

3. SQ-Oriented tool demos and extension plans.  This effort created initial demonstration
capabilities from strong existing SERC SQ analysis toolsets and explored piloting by user
organizations in the DoD Services.

4. Program management and community building.  This effort included coordinating
efforts with complementary initiatives in the DoD ERS, and counterpart working groups
in the International Council for Systems Engineering (INCOSE), the Military Operations
Research Society (MORS), and the National Defense industry Association (NDIA).

The Phase 1 results for activities 1 and 2 included initial top-level sets of views relevant to SQ 
tradespace and affordability analysis that provided an initial common framework for reasoning 
about SQs, similar in intent to the various views provided by SysML for product architectures 
and DoDAF for operational and architectural views.  The views included definitions, stakeholder 
value-based and change-oriented views, views of ility synergies and conflicts resulting from ility 
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achievement strategies, and a representation scheme and support system for view construction 
and analysis. 

Phase 1 also determined that strong tradespace capabilities were being developed for the 
tradespace analysis of physical systems.  However, based on sources such as the JCIDS survey of 
combat commanders’ tradespace needs, it found that major gaps existed between 
commanders’ SQ tradespace needs and available capabilities for current and future cyber-
physical-human systems. The SERC also characterized the benefits and limitations of using 
existing tools to address SQ tradespace issues, via collaboration with other leading 
organizations in the DoD ERS tradespace area, such as the Army Engineer Research and 
Development Center (ERDC) and TARDEC organizations, NAVSEA, the USAF Space and Missile 
Systems Command; DoD FFRDCs such as Aerospace, Mitre, and the Software Engineering 
Institute; and Air Force and Navy participants via the SERC Service academies AFIT and NPS.      

Phase 2 Objectives, Approach, and Results 

As a result, the focus of Phase 2 was to strengthen the conceptual frameworks underlying SQ 
tradespace and affordability analysis, and to apply the methods and tools identified and 
extended in Phase 1 on problems relevant to DoD, using the information available from 
development of a large weapon systems and large automated information systems.  The SERC 
worked with system developers directly and via participation and leadership in Government 
and industry working groups in such organizations as INCOSE, NDIA, and the Army-led Practical 
Systems and Software Measurement organization, to gain a deeper shared understanding of 
the strengths and limitations of the tradespace tools and methods developed under Phase 1 
and elsewhere.    

Task 1: SQOTA Foundations and Frameworks.  Phase 2 activities expanded the set of SQs 
represented in the tradespace, organized them into a more orthogonal value-based, means-
ends hierarchy, obtained initial results in identifying and quantifying the synergies and conflicts 
resulting from strategies to optimize individual SQs, and developed prototype tools for 
representing and applying the results.  

Task 2.  SQOTA Methods and Tools Piloting and Refinement.   The SQ-oriented tool demos 
performed in Phase 1 also led to Phase 2 interactions with DoD organizations, particularly 
TARDEC and NAVSEA, interested in their applicability in enhancing their systems engineering 
capabilities.  These interactions led to refinements of existing methods and tools to address set-
based vs. point design of ground vehicles and ships, and on extensions from physical systems to 
cyber-physical-human systems and to affordability analysis.  Further interactions leading to 
piloting engagements included AFIT’s use of the CEVLCC life cycle cost model and related T-X 
Training System Tradespace Analyses.  The pilot program involved advanced pilot training 
aircraft, simulators and course instructional elements.  Its pilot organizations were the Air Force 
Life Cycle Management Center and the Air Education and Training Command.  GTRI’s 
Framework for Assessing Cost and Technology (FACT) was extended beyond its initial support of 



TO 0037, RT 137 

8  

USMC, and attracted several Army and Navy programs interested in piloting, extending, and 
tailoring its capabilities to other domains. 

Task 3.  Next-Generation, Full-Coverage Cost Estimation Model Ensembles. A third area of 
engagement starting from exploratory discussions in Phase 1 was a new task to develop Next-
Generation, Full-Coverage Cost Estimation Model Ensembles, initially for the space domain, 
based on discussions and initial support from the USAF Space and Missile Systems Center 
(SMC).   Phase 2 work on this topic involved several meetings with SMC and the Aerospace 
Corp. with USC and NPS to set context and initial priorities. These included addressal of future 
cost estimation challenges identified in the SERC RT-6 Software Cost Estimation Metrics Manual 
developed for the Air Force Cost Analysis Agency, and prioritization of research efforts based on 
strength of DoD needs and availability of DoD-relevant data.  Exploratory activities were 
pursued with respect to a scoping of full-coverage of space system flight, ground, and launch 
systems; hardware, software and labor costs; and system definition, development, operations, 
and support costs, along with explorations of sources of data for calibrating the models. 

Phase 3 Objectives, Approach, and Results 

Task 1: SQ Foundations and Frameworks.  MIT’s Phase 2 research refined an SQs semantic 
basis for change-related SQs. and developed prototype tools for formal analysis of the results. 
Phase 3 extended the SQs semantic basis for change-related SQs, resulting from continuing 
literature review of SQs, collaborative work on formalization of the basis, and experience in 
applying the basis in historical cases. Progress and adjustments to the basis have been made as 
a result of feedback from other academic researchers, and specifically in MIT- UVa 
collaboration in their efforts on formalization and development of a REST (representational 
state transfer) web-based service implementation.  This resulted in an expanded and more 
explicit representation for the semantic basis, as well as motivating the need to create a 
translation layer for practical use of the basis.  Phase 3 also refined the SQ definitions, reviewed 
existing SQ definition standards, developed an initial SQs ontology reflecting the reality that the 
ilities have multiple definitions varying by domain, and multiple values varying by system state, 
processes, and relations with other ility levels.  Phase 3 also expanded the initial 4x4 synergies 
and conflicts matrix into a full 7x7 inter-ility-class synergies and conflicts matrix, and 7 smaller 
intra-ility-class synergies and conflicts matrices.   

Task 2: SQ-Oriented tool demos and extension plans.  Phase 2 effort created initial 
demonstration capabilities from strong existing SQ analysis toolsets and explored piloting by 
user organizations, via collaboration with other leading organizations in the DoD ERS 
tradespace area.   Phase 3 broadened and deepened these initial contacts, including with such 
organizations as the Army Engineer Research and Development Center (ERDC) and TARDEC 
organizations, NAVSEA, the USAF Space and Missile Systems Command; DoD FFRDCs such as 
Aerospace, Mitre, and the Software Engineering Institute; and Air Force and Navy participants 
via the SERC Service academies AFIT and NPS. In particular, WSU and PSU advanced the SQOTA 
coordination with the ERS NAVSEA group, working with them to define the specific tradespace 
approaches and priorities for enhanced set-based design for ERS, that will complement and 
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extend the tool and procedures they have been using. TARDEC was actively engaged as a 
partner for co-development, piloting and transition into use.  The GTRI FACT-related capabilities 
were strongly co-funded and enhanced by and for the Army Engineer R&D Center (ERDC), other 
Army, Navy, and further USMC programs, including strengthening and extension of the 
infrastructure for supporting and extending the initial FACT capabilities. 

Task 3: Next-Generation, Full-Coverage Cost Estimation Model Ensembles.  Based on the 
exploratory needs and data assessments in Phase 2, a Phase 3 workshop including Air Force, 
Navy, aerospace industry, and SERC researchers concluded that there were strong needs for 
better estimation of operations and support costs, but that the data available lacked adequate 
cost driver information, except in in the software area.   The workshop recommended that the 
most promising initial areas to pursue would be for software development, systems 
engineering, and the use of systems engineering cost drivers to improve estimation of system 
development costs.  Further research and workshops identified further sources of data and 
some shortfalls in current models in these areas, and developed requirements and draft 
frameworks for the next-generation models.  These have been used in Phase 4 to develop and 
calibrate prototype models for systems and software engineering cost estimation models, and 
to pursue research in the use of the systems engineering model to better estimate system 
development costs. 

Phase 4 Objectives, Tasks, and Results 

Task 1. SQ Foundations and Frameworks 

Rather than attempt a breadth-first elaboration of the 176 SQ Synergies and Conflicts strategies 
in the 7x7 matrix, including its ontology elements of Referents, States, Processes, and Relations 
for each strategy, the USC ontology-based research did a depth-first research effort on a 
particular SQ that touches all of the four major SQ categories.  This SQ is Maintainability.  It 
clearly drives Life Cycle Efficiency, as typically at least 75% of a system’s Total Cost of 
Ownership is spent on operations and maintenance.  It is one of two means for achieving 
Changeability, involving external change vs. the internal change accomplished by Adaptability. 
It is clearly key to Dependability, as Maintainability in terms of Mean Time to Repair (MTTR) is 
the key relation between Reliability in terms of Mean Time Between Failures (MTBF) and 
Availability in the relation Availability = MTBF / (MTBF + MTTR).   And the key systems aspects 
being depended-upon are primarily the components of Mission Effectiveness. 

This depth-first approach thus provided insights on the overall Product Quality ontology 
structure without having to consider all of the 176 strategies in depth.  The insights resulted in 
changes to the SQ terminology, as shown in the main description of the Phase 4 Results. 
Examples are changing Resource Utilization to Life Cycle Efficiency, to be more compatible with 
the Better Buying Power terminology, and changing Flexibility to Changeability, to be better 
aligned with the MIT Quality In Use ontology structure. 
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 The MIT Quality In Use ontology structure was refined to address further semantic aspects, and 
requirements for a translation layer to facilitate its use were developed, as elaborated in the 
main Phase 4 results section.  Similarly, the U. Virginia Phase 4 research on formalizing both the 
MIT and USC ontologies is elaborated in the main Phase 4 results section.  An initial semantic 
diagram relating the USC and MIT terms and relationships is also presented in the main Phase 4 
results section.  

Task 2. SQ-Oriented tool demos and extension plans.  

The USC depth-first exploration of Maintainability identified the need for a better balance of 
attention during the system acquisition phase between optimizing on system acquisition cost-
effectiveness and optimizing on system life-cycle cost-effectiveness, particularly for software, 
due to the major differences between software and software logistical aspects.  This led to the 
development of a proposed framework of Maintainability Readiness Levels for Software-
Intensive Systems.  Again, details are provided in in the main Phase 4 results section. 

Other Task 2 Phase 4 Objectives, Tasks and Results summaries will be provided later. 

Task 3: Next-Generation, Full-Coverage Cost Estimation Model Ensembles.  

The Task 3 Phase 4 Objectives, Tasks and Results summaries will be provided later. 
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SQOTA PHASE 4 RESULTS BY ORGANIZATION 

1. University of Southern California (USC)

. 
1.1 Phase 4 Results 

1.1.1 Foundations: SQ Ontology Extensions and Refinements 

Rather than attempt a breadth-first elaboration of the 176 SQ Synergies and Conflicts strategies 
in the 7x7 matrix, including its ontology elements of Referents, States, Processes, and Relations 
for each strategy, the USC ontology-based research did a depth-first research effort on a 
particular SQ that touches all of the four major SQ categories.  This SQ is Maintainability.  It 
clearly drives Life Cycle Efficiency, as typically at least 75% of a system’s Total Cost of 
Ownership is spent on operations and maintenance.  It is one of two means for achieving 
Changeability, involving external change vs. the internal change accomplished by Adaptability. 
It is clearly key to Dependability, as Maintainability in terms of Mean Time to Repair (MTTR) is 
the key relation between Reliability in terms of Mean Time Between Failures (MTBF) and 
Availability in the relation Availability = MTBF / (MTBF + MTTR).   And the key sysems aspects 
being depended-upon are primarily the components of Mission Effectiveness. 

This depth-first approach thus provided insights on the overall Product Quality ontology 
structure without having to consider all of the 176 strategies in depth.  The insights resulted in 
changes to the SQ terminology, as shown in the main description of the Phase 4 Results. 
Examples are changing Resource Utilization to Life Cycle Efficiency, to be more compatible with 
the Better Buying Power terminology, and changing Flexibility to Changeability, to be better 
aligned with the MIT Quality In Use ontology structure. 

1.1.2 The Key Roles of Maintainability in an Ontology for System Qualities 

Abstract. In our INCOSE IS 2015 paper, “An Initial Ontology for System Qualities,” (SQs), we 
provided an IDEF5 class hierarchy of upper-level SQs, where the top level reflected classes of 
stakeholder value propositions (Mission Effectiveness, Resource Utilization, Dependability, 
Flexibility), and the next level identified means-ends enablers of the higher-level SQs. In 
experimenting with, refining and formalizing the ontology, we focused on a depth-first 
approach on a chosen SQ: Maintainability. It is key to reducing 75% of most systems’ life cycle 
costs. Also Maintainability plays key roles in three of the four top-level SQs: Resource 
Utilization, Dependability, and Flexibility. Dependability also needs Maintainability to relate 
Reliability to Availability; and Flexibility also needs Maintainability to address new system 
challenges and opportunities. This paper summarizes resulting changes in the SQ ontology, and 
also provides examples of Maintainability need and use, quantitative relations where available, 
and summaries and references on improved practices.  
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1. IMPROVEMENTS IN THE SQ ONTOLOGY

The nature of the SQs is best understood with respect to their synonym of non-functional 
requirements. Functional requirements specify the functions that the system shall perform, or 
basically what the system should do. Their effect on system cost is basically additive; adding a 
function adds the cost to develop it, plus another fraction for its contribution to system 
integration and test. A non-functional requirement specifies how well the system should 
perform its functions. Unlike functional requirements, its effect on system cost is system-wide 
and multiplicative. However, functional requirements are much more emphasized in system 
acquisitions, via such practices as traceability matrices (the SQs generally trace to the entire 
system), initial system functional review milestones, function-oriented system definition 
diagrams, functional work breakdown structures and associated earned value milestones. 
Emerging trends such as systems of systems and rapidly-changing competitive needs and 
opportunities present major project challenges for SQs such as Maintainability.  

1.1 Improvements in the Top-level Class Hierarchy. Tables 1 and 2 show the revisions (in 
italics) to the upper levels of the initial SQ stakeholder value-based means-ends class hierarchy 
in our INCOSE IS 2015 paper (Boehm & Kukreja 2015) brought about by our recent 
Maintainability research and formalization of the SQ relationships.  

Table 1. Upper Levels of Initial Stakeholder Value-Based SQ Means-Ends Hierarchy 

Stakeholder Value-Based SQ Ends Contributing SQ Means 

Mission Effectiveness Stakeholders-satisfactory balance of Physical 
Capability, Cyber Capability, Human Usability, Speed, 
Endurability, Maneuverability, Accuracy, Impact, 
Scalability, Versatility, Interoperability 

Resource Utilization Cost, Duration, Key Personnel, Other Scarce 
Resources; Manufacturability, Sustainability  

Dependability Security, Safety, Reliability, Maintainability, 
Availability, Survivability, Robustness 

Flexibility Modifiability, Tailorability, Adaptability 

Composite QAs 

Affordability Mission Effectiveness, Resource Utilization 

Resilience Dependability, Flexibility 

Table 2. Upper Levels of Revised Stakeholder Value-Based SQ Means-Ends Hierarchy 

Stakeholder Value-Based Contributing SQ Means 
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SQ Ends 

Mission Effectiveness Stakeholders-satisfactory balance of Physical Capability, Cyber 
Capability, Human Usability, Speed, Endurability, Maneuverability, 
Accuracy, Impact, Scalability, Versatility, Interoperability, Domain-
Specific Objectives 

Life Cycle Parsimony Development and Maintenance Cost, Duration, Key Personnel, 
Other Scarce Resources; Manufacturability, Sustainability 

Dependability Reliability, Maintainability, Availability, Survivability, Robustness, 
Graceful Degradation, Security, Safety 

Changeability Maintainability, Modifiability, Repairability, Adaptability 

Composite QAs 

Affordability Mission Effectiveness, Life Cycle Parsimony 

Resilience Dependability, Changeability 

The main class of success-critical stakeholders are the system’s mission operators, end-users, 
usage managers, interoperators, and support personnel with respect to the system’s 
operational mission. They will be most concerned with the components of Mission 
Effectiveness above, but also with domain-specific SQs such as Auditability for finance, In-
Process Visibility for supply chains, and Health Maintainability for medical domains.  

Another class of success-critical stakeholders are those who are investing key resources (funds, 
property, materials, personnel, services, etc.) to define, develop, operate, and evolve a system. 
They will have high priority value propositions not only on mission effectiveness but also the 
relative returns on their investments. The combined SQ is often called Cost-Effectiveness and 
the resource expenditures often called Affordability, but the ontology follows INCOSE, NDIA, 
and MORS in interpreting Affordability as a cost-effectiveness composite SQ, and categorizes 
the expenditures as Life Cycle Parsimony, which is explicitly elaborated into both Development 
and Maintenance Costs.  

A further class of success-critical stakeholders are people who are not involved in the system’s 
definition, development, and evolution, but who are depending on the system to avoid their 
loss of property and quality of life during its operational performance (driving a car, boarding an 
airplane, using a chain saw, providing credit card and social security numbers, etc.). The means 
for achieving this Dependability end include protection from vulnerabilities from system 
adversaries (Security); from natural causes, defects and human errors (Safety); from failure to 
deliver needed capabilities (Reliability), and from persistence of such failure for long periods of 
time (Availability, and its enabler Maintainability). Graceful Degradation has been added to 
indicate that Survivability can be full or partial. 

Finally, all of these stakeholders are concerned with the system’s ability to continue to provide 
or improve the desired levels of Mission Effectiveness, Resource Utilization, and Dependability 
as the world around it continues to provide increasing sources of change in technology, 
competition, market demands, organizations, and leadership. We have generalized Flexibility to 
Changeability to be more consistent with the MIT Changeability ontology (Ross & Rhodes, 
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2015). Its mutually-exclusive means are internal change (Adaptability) and external change 
(Maintainability), which includes Modifiability to support Changeability and Repairability to 
support Dependability.  

1.2 Elaboration of Maintainability Relationships. In pursuing the various contributions and 
types of Maintainability as a critical but complex SQ, we have developed Figures 1 and 2 as 
elaborations of Maintainability relationships. Figure 1 focuses on the role of Maintainability in 
support of Changeability. It shows that Maintainability and Adaptability are two alternative 
means of achieving Changeability, external and internal to the system. It also shows that 
Modifiability and Repairability are two alternative means of achieving Maintainability, one for 
changes and one for defects. It also shows some enabling (and), but not alternative (or) 
subclasses of Modifiability, Repairability, and support of verification and validation, called 
“V&V-ity.” These latter are Automated Analysis, Peer Reviews, and Execution Testing; their 
rating scales are provided in (Boehm 2015), where they were taken from the Constructive 
Quality Model for estimating delivered software defect density (Boehm et al. 2000). 

Figure 1. Role of Maintainability for Changeability 

Figure 2 further elaborates on how Maintainability supports both Changeability and 
Dependability, and elaborates on how these two combine to support Resilience. It also 
elaborates the means-ends subclasses of Reliability, and of Testing in support of V&V-ity. 
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Figure 2. Role of Maintainability for Changeability, Dependability, and Resilience 

Figure 2 also emphasizes the many-to-many relationships of Testability, as compared to the 
one-to-many relationship it has in ISO/IEC 25010 (ISO/IEC, 2011), where Testability only 
supports Maintainability. It is clear that Testability is also important to the achievement of 
numerous other SQs, such as the many aspects of Dependability in Figure 2. It also highlights 
the recursive complexities of the SQ hierarchy, as Testability also involves the test software, 
such as its classes (performance, stress, regression, etc.) and capabilities (test drivers, monitors, 
diagnosis aids, data managers, etc.) and the need to ensure its qualities as well, as shown in red 
in Figure 2. 

In summary, Table 1 and Figures 1 and 2 summarize the class hierarchy of the primary 
stakeholder SQ end value classes of Mission Effectiveness, Resource Utilization, Dependability, 
and Flexibility, along with their primary means-ends subclasses, and the primary composite SQs 
of Affordability and Resilience. Each of the SQ classes and subclasses must also be characterized 
by the variation of their values with respect to their variation by Referents, States, Processes, 
and Relations, as will be described next in the context of Maintainability. 

2. MAINTAINABILITY REFERENTS, STATES, PROCESSES AND RELATIONS

All too often, SQs are specified as single numbers, when in general their values vary by Referent 
(primarily by stakeholder viewpoint), by State (the system’s internal state and its external 
environment state), by Process (internal procedures, external operational scenarios), and by 
their Relations with other SQs. These are discussed below in the context of Maintainability.  

2.1. Referents. For Maintainability, all stakeholders will prefer shorter above longer mean times 
to repair or modify, but their duration values will vary by stakeholder. Security-critical 
stakeholders will include the time to recertify the systems security, while less-critical 
stakeholders may be satisfied with the agile proposition that most defects in the current 30-day 
Scrum can be fixed in the next 30-day Scrum. And their value propositions may affect 
Maintainability values if there are constraints on the preservation of other SQs such as the 
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ability to meet real-time performance constraints that require more time and effort to satisfy 
when making modifications. 

2.2. States. The time and effort to effect changes or repair defects will vary by the system’s 
internal state, such as the brittleness of its point-solution architecture, its weak or strong 
modularity, or for software, the level of its Maintainability Index, to be discussed further below. 
The system’s degree of Maintainability would also depend on aspects of its external state, such 
as its need to support multiple systems of systems with different stakeholders, each with 
different priorities and independently-evolving interfaces. 

2.3. Processes. Maintainability values will also vary by the nature of the external processes or 
operational scenarios that the system needs to be involved in, such as the systems of systems 
processes just discussed. For variation by internal processes, a good example is the quality of 
the problem report closure means-ends process, as compared to the process summarized in the 
book Maintainability (Blanchard 1995). It identifies the process steps Detection, Preparation for 
Maintenance, Localization and Isolation, Disassembly (Access), Repair or Removal and 
Replacement, Reassembly, Alignment and Adjustment, and Condition Verification (Checkout). 
These process steps led to the definition of enabling sub-SQs such as Diagnosability, 
Accessibility, Restorability, and V&V-ity.  

2.4. Relations. The 7x7 matrix of SQ Synergies and Conflicts in the INCOSE-IS 2015 paper 
(Boehm&Kukreja, 2015) identifies a number of relations between Maintainability and other 
desired SQs. For example, tightly-coupled High Performance Computing architectures and 
software improve computational Speed but reduce Maintainability. Easiest-first agile methods 
often improve initial Usability, but make architectural commitments that often subsequently 
degrade Scalability, Safety, and/or Security. On the other hand, investments in nanosensor-
based monitoring systems improve both Dependability but also improve Maintainability. For 
example, aircraft autonomic logistics systems can communicate maintenance needs during 
flight and communicate them to the landing field, where the maintainers can prepare to turn 
the aircraft around in hours vs. days.  

We try to quantify such relationships where possible. For example the GAO report (GAO 2015) 
cited in the Abstract identified annual US Government information technology (IT) expenditures 
of $79 billion, of which $58 billion were in operations and maintenance (O&M). Table 3 
provides more detail on fractions of hardware and software costs from the (Redman, 2008) and 
(Koskinen, 2009) studies. 

Table 3. Percentage of Post-Deployment Life Cycle Cost 

Hardware (Redman, 2008) Software (Koskinen, 2009) 
 12% -- Missiles (average)
 60% -- Ships (average)
 78% -- Aircraft (F-16)
 84% -- Ground vehicles (Bradley)

 75-90% -- Business, Command-Control
 50-80% -- Complex platforms as above
 10-30% -- Simple embedded software

More specifically, our SERC Valuing Flexibility study (Boehm-Lane-Madachy, 2011) developed 
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models based on TRW technical debt data for single-system life cycle costs and multiple sources 
on product line investments and life cycle savings. Figure 3 shows how the life cycle costs of 
individual systems decrease when projects invest in a system’s Maintainability in project C, as 
compared to when they do not, as with projects A and B. Figure 4 shows how investments in 
product line architectures and reusable components have life cycle Total Cost of Ownership 
(TCO) savings that increase with product lifetime as well as with number of products in the 
product line, since only the non-reused components need to be separately modified for each 
product. 

Figure 3. TCO’s for Projects A, B, and C (CCPDS-R) Relative to Baseline Costs 

Figure 4. TCO-Product Line sensitivity by ownership duration results. 
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3. MAINTAINABILITY OPPORTUNITY TREES

Here we present and discuss a pair of Opportunity Trees for improving the Modifiability and 
Repairability aspects of Maintainability. We have developed similar Opportunity Trees for 
improving system Cost, Schedule, and Dependability, and find them useful for organizations 
looking for ways to improve their system qualities. The Opportunity Trees also elaborate the 
means-ends relationships between SQs and their enablers.  

3.1. Modifiability Opportunity Tree. Figure 5 provides an opportunity tree for Modifiability. As 
with our other opportunity trees for reducing Cost, reducing Schedule, and improving 
Dependability aspects, it provides a way for systems engineers to improve the system’s 
Modifiability. 

Figure 5. Modifiability Opportunity Tree 

Anticipate Modifiability Needs: Evolution Information and Trend Analysis. Often time the 
requirements for a system acquisition are determined by prioritizing the capabilities, and using 
a Cost As Independent Variable (CAIV) analysis to determine which capability fits with in the 
available budget and are to be included in the Request for Proposal (RFP). This unfortunately 
throws away below-the-line information on the most likely directions of system evolution, 
often leading to a brittle point-solution architecture as the chosen solution. Including the 
below-the-line capabilities in the RFP as candidate Evolution Information, and indicating that it 
should be considered in proposing life cycle architecture is more likely to result in reducing 
operations and maintenance costs. Trend Analysis is another way to identify likely directions of 
system evolution. 

Hotspot (change source) Analysis. Common sources of change include user interface changes, 
device driver changes, external interface changes, and changes in non-developmental items 
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(NDIs). Many commercial-off-the-shelf (COTS) products have new releases every 8-12 months, 
and continue support for only the latest three releases. Systems employing numerous COTS 
products will therefore have numerous changes. 

Modifier Involvement. Lack of modifier involvement often results in key Modifiability enablers 
being either neglected or implemented in incompatible ways. It may take some effort to get the 
modifiers involved, as often they are too busy overcoming the Maintainability shortfalls caused 
by previous projects lacking modifier involvement. 

Addressing Potential Conflicts of Anticipate Modifiability Needs. A previous version of 
Evolution Information was called Evolution Requirements. Considering these below-the-line 
desired capabilities as requirements is too strong a term, as there are likely to be many 
emergent requirements that should have higher priority. Trying too hard to get Modifier 
Involvement may lead to the modifiers sending someone they can easily do without, which is 
often worse than having no representative. 

Design/Develop for Modifiability: Modularization Around Hotspots. The (Parnas, 1979) paper, 
“Designing Software for Ease of Extension and Contraction,” and earlier Parnas papers identify 
this Maintainability strategy. Common sources of change that have been encapsulated in 
modules will contain the change effects within the module rather than having them ripple 
across the other parts of the system. A quantitative model of this strategy’s effect on 
Affordability is shown in Figure 4 above (Boehm-Lane-Madachy, 2011), based on analysis of 
change effort data across several TRW projects.  

Service Orientation; Loose Coupling. Service loose coupling is a design principle that is applied 
to the services in order to ensure that the service contract is not tightly coupled to the service 
consumers and to the underlying service logic and implementation (Sundbo & Gallouj, 2000). 
Basically, the concept of loose coupling provided by a Service–Oriented Architecture (SOA) 
component is that it publishes a contract indicating that if it is furnished with a specified set of 
inputs, it will produce a specified set of outputs, without otherwise interacting with the user’s 
environment (Boehm & Bhuta, 2008; Borges et.al., 2004). 

Apart from this, SOA strongly advocates development of physically independent service 
contracts from the service logic (decoupled contract design pattern (Erl, 2008, 401-407)) in 
favor of interoperability and technology independence. As the contracts are physically 
independent, there is a need to not only look into the coupling between service consumers and 
service contracts but also between service contracts and their underlying logic and 
implementation. This is where the application of this design principle helps in identifying the 
various types of couplings that exist (inter service as well as intra service) and how to design the 
contracts in order to minimize negative coupling types and maximize positive coupling types. A 
service-oriented solution that consists of services having loosely coupled contracts directly 
supports the increased interoperability goals of service-orientation. By having loose coupling, it 
increases Resilience, which is a combination of Changeability and Dependability. 
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Spare Capacity. One technique, which uses spare capacity to create a more reliable and 
maintainable product, is called “passive redundancy”.  Passive redundancy uses excess capacity 
to reduce the impact of component failures.  One usage of this technique is to incorporate it 
with a fault tolerance strategy. Early cost models such as PRICE S (Freiman & Park, 1979) and 
COCOMO (Boehm, 1981) drew on data from (Williman & O’Donnell, 1970) that the cost per line 
of code becomes asymptotically high as software fills up the available execution and storage 
capacity, leading to common requirements for spare capacity and/or easy migration to higher-
performance computing resources. Too small spare capacity will result in unreliable products 
where the software cannot allocate sufficient resource when needed, while too large spare 
capacity will result in unaffordable software. Early analysis of the data in (Williman & O’Donnell, 
1970) indicated that the cost of system overall will be minimized if the software has at least 50 
percent to 100 percent more capacity than it absolutely necessary (Boehm, 1973). As a result, 
having a sufficient spare capacity will provide improvements not only Maintainability, but also 
Resilience, which is the combination of Changeability and Dependability, and Life Cycle 
Efficiency. 

Product Line Engineering. The Total Cost of Ownership benefits from Product Line Engineering 
are shown in Figure 4. Product Line Engineering involves developing a Domain-Specific 
Architecture for the product line by identifying the commonalities and variabilities across a 
range of products; making reusable components for the commonalities, and providing standard 
interfaces for the variabilities. It also involves coordinated evolution of the reusable 
components, providing Spare Capacity for growth and variabilities, and providing asset library 
functions for project users. Good references are (Clements-Northrop, 2002; Jacobson-Griss-
Jonsson, 1997; Poulin, 1998; and Reifer, 1997). 

Domain-Specific Architecture. A domain-specific architecture (DSA) comprises “(a) a reference 
architecture, which describes a general computational framework for a significant domain of 
applications, (b) a component library, which contains reusable chunks of domain expertise, and 
(c) an application configuration method for selecting and configuring components within the 
architecture to meet particular application requirements” (Hayes-Roth et al., 1995). The core 
concept is to generalize knowledge of domain componentry within the same domain so that 
developers can reuse assets and apply common solutions to common problems (Taylor et al., 
2012). This common knowledge or solutions make both development and maintenance easier 
to understand and perform. Developers can focus more on implementing new features and 
spend less time develop more related products. Generalizing DSA across product-line or family 
of applications can be expensive, but one can expect a reduction in application development 
costs (approximately a quarter) and in maintenance cost (approximately a third) (Tracz, 1995). 
DSA enables improvement for not only Maintainability, but also Dependability and Life Cycle 
Parsimony. 

Enable User Programmability. In many circumstances, users have found it easier to develop 
spreadsheet applications for specific needs rather than trying to master and tailor complex 
general applications to fit their needs. Many special devices with numerous options (e.g., 
medical infusion pumps; educational robots) have simple special-purpose languages for 
specifying the options. 
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Addressing Potential Conflicts of Design/Develop for Modifiability. Multi-Domain Architecting. 
Committing to several domain ontologies within a system of systems will complicate both 
Changeability and Dependability, as the special domain assumptions may have incompatibilities 
causing both ease-of change and dependability-of-change problems. For example, a system of 
systems involving ground, air, and space operations may have compatible inputs and outputs, 
but have problems with incompatible internal assumptions in which the ground operations 
assume a flat earth, the air operations a spherical earth, and the space operations an oblate 
earth. Thus, ensuring compatible internal assumptions, or coping with incompatible 
assumptions, will be important for multi-domain architecting. Also, User Programmability may 
have problems: an IBM study found that 44% of a large sample of spreadsheet programs had 
defects that would if exercised have had major negative financial outcomes for the 
organization. 

Improve Modification V&V: Prioritizing and Scheduling Modifications and their V&V). For 
complex systems, incremental development is at least as important for the V&V support system 
as it is for the system under development. Waiting until near the end of development to create 
the V&V support system is likely to cause V&V delays, and it loses the opportunity to perform 
continuous V&V as the system is being developed.  

Modification Compatibility Analysis. As above, the three primary V&V strategies are 
automated analysis, peer reviews, and execution testing. For automated analysis, there are 
various types of tools that can contribute by V&V-ing the proposed changes’ internal 
consistency, external-interface compatibility, race or deadlock avoidance, common-defect-
freedom, or reductions in the software’s Maintainability Index (Oman & Hagemeister, 1992). 
For peer reviews, modification compatibility analysis by experts in the system’s quality-
objective areas would be effective. 

Regression Test Capabilities. Particular capabilities to address are the Testability enablers of 
having cost-effective test plans, test coverage, test drivers, test oracles (e.g., agreement with 
previous regression test results), test data management capabilities, and diagnostic capabilities.  

Addressing Potential Conflicts of Improve Modification V&V. As identified above, waiting until 
near the end of development to create the V&V support system is likely to cause V&V delays, 
and delays in the delivery schedule for the overall system. Another potential conflict with 
Affordability is to treat each test case as equally important. Prioritizing tests by business value 
has been shown to be significantly more cost-effective in testing new releases (Li and Boehm, 
2013). 

b. Repairability Opportunity Tree

Figure 6 provides an opportunity tree for Repairability. It has significant overlaps with the 
opportunity tree for Modifiability, and its discussion will be more concise. The major source of 
differences comes from differences in hardware and software Repairability, which will be 
discussed next. 
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Figure 6. Repairability Opportunity Tree 

The list below summarizes the major differences between hardware and software Repairability. 
Further differences and their discussions are in (Boehm, 1994). 

 Software components to not degrade due to wear and fatigue;

 No imperfections or variations are introduced in making copies of software
components;

 Software interfaces are conceptual rather than physical; there is no easy-to-visualize
three-prong plug and its mate;

 There are many more distinct logic paths to check in software than in hardware;

 The failure modes are generally different. Software failures generally come with no
advance warning, provide no period of graceful degredation, and more often provide no
announcement of their occurrence;
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 Repair of a hardware fault generally restores the system to its previous condition; repair
of a software fault does not.

Some implications of these differences are that hardware repair requires a significant logistics 
activity for replacement of worn or degraded components. In terms of the Anticipate 
Repairability Needs and Design/Develop for Repairability branches of the Repairability 
opportunity tree, hardware repair involves a much larger logistics effort than does software 
repair. On the other hand, software repair generally requires more complex skill levels than 
does hardware repair. Facilities for hardware repair differ significantly from software repair 
facilities, although there are benefits from having a single facility addressing both hardware and 
software and both repairs and modifications. Recent trends in additive manufacturing or 3-D 
printing are simplifying hardware repair logistics (e.g., initiatives underway to put additive 
manufacturing capabilities on Navy ships) and moving hardware and software repair closer 
together. 

Similar initiatives are underway in the Improve Repair Diagnosis branch of the Repairability 
opportunity tree. A good example is the development of smart aircraft-maintainability systems, 
which populate the aircraft with thousands of nanosensors, which can monitor a component’s 
degree of wear, structural integrity, or battery level, and provide the information in advance so 
that necessary repair capabilities are pre-positioned to effect rapid repair when the aircraft 
lands. This provides a much lower mean time to repair and much higher level of Availability, 
showing a strong synergy in increasing both Changeability and Dependability. 

An excellent source on Repairability and Maintainability for hardware and to some extent 
software is the (Blanchard-Verma-Peterson, 1995) book Maintainability. It identifies and 
provides guidance for the many sources of post-acquisition cost lying below the acquisition tip 
of the iceberg. These include operations cost, product distribution cost, maintenance cost, 
training cost, test and support equipment cost, software cost, technical data cost, supply 
support cost, and retirement and disposal cost. For individual cost components such as Repair, 
it identifies and provides guidance on the sequence of key activities involved in repair: 
detection, preparation for maintenance, localization and isolation, disassembly (access), faulty 
item repair or replacement, reassembly, alignment and adjustment, and condition verification 
(checkout). 

Improving Repair V&V is similar to its Modification V&V counterpart above. 

Addressing Potential Conflicts: Repairability. In many cases, organizations will optimize on 
Manufacturability or Endurability at the expense of degrading Repairability.  A good example of 
the tradespace among these SQs is the Smartphone Repairability website at 
https://www.ifixit.com/smartphone-repairability. It shows that the best ratings are 9 out of 10, 
that most smartphones at least make it easy to replace batteries, but some 1 and 2-rated 
smartphones make even battery replacement impossible.  

Another source of Repairability conflicts involves casually-written maintenance contracts that 
pay for time consumed during repair, where the contractor’s incentive is to take longer and 
increase income while increasing mean time to repair and Availability. Preferred contracting 

https://www.ifixit.com/smartphone-repairability
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approaches pay for outcomes rather than labor hours or number of transactions, called 
Performance-Based Logistics in the defense community (Insinna, 2015) and terms such as 
Vested Outsourcing (Vitasek-Ledyard-Manrodt, 2013) in the commercial community.  

4. QUANTIFYING MAINTAINABILITY AND ITS ENABLERS

Where possible, we are trying to provide quantitative information to help projects determine 
how maintenance cost and duration vary as a function of which Maintainability methods, 
processes, and tools (MPTs) to use in which situations. In the past, we have developed various 
partial solutions such as lists of Maintainability-enhancing practices (Boehm et al., 1973, 1978); 
cost model drivers that increase cost to develop but decrease cost to maintain such as required 
reliability and architecture and risk resolution (Boehm et al., 2000); MPTs that reduce life cycle 
technical debt (Boehm-Valerdi-Honour, 2008); and quantification of early-increment 
maintenance costs as sources of later-increment productivity decline in incremental and 
evolutionary development (Moazeni-Link-Boehm, 2013). Some other good sources on SQ 
quantification are (Barbacci et al., 1995; Clements-Kazman-Klein, 2002; Dou et al., 2015; 
Gehlert &Metzger, 2008; Gilb, 1988; Oman & Hagemeister, 1991; Oriol-Marco-Franch, 2014; 
Ross & Rhodes, 2015; and Sitterle et al., 2014). 

In reviewing the literature, we fond that the most widely-used metric was the (Oman & 
Hagemeister, 1992) Maintainability Index (MI). We experimented on evaluating its use in 
evaluating the relative Maintainability of a sample of 97 open-source-software (OSS) projects 
by programming language and application domain (Chen-Shi-Srisopha, 2015). As shown in 
Figures 7 and 8, we found that the MI of the OSS projects varied by programming language with 
moderate statistical significance (p=0.079), and that the MI varied by domain with strong 
statistical significance (p=0.002). 

Fig. 7. MI Variation by Programming Language  Fig. 8. MI Variation by Domain 
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Figure 9. MI Variation by Programming Language and Domain 

Figure 9 summarizes the MI variation by programming language and domain. It indicates that 
PHP may be a good option for projects that desire higher maintainability within the Web 
Development Framework, Security/Cryptography and Audio and Video domains, that Python 
may be a good option for System Administrative Software, and that Java may be a good option 
for Software Testing Tools. 

In performing the evaluations, we also evaluated the completeness of MI as a determinant of 
Maintainability. We found that it did well as a purely automated, easy-to-use metric, but would 
likely be improved with cohesion and coupling metrics such as (Chidamber-Kemerer, 1994). 
Also, some recent technical debt assessment tools such as Cast and Sonar provide more 
complete and specific identification of sources of technical debt or reduced Maintainability. 
However, a mix of automated and human assessments such as the COCOMO II Software 
Understanding components of structure, application clarity, and self-descriptiveness (Boehm et 
al., 2000) would generally be stronger. We are preparing to perform further research in these 
directions.  

5. CONCLUSIONS AND FURTHER RESEARCH

System qualities (SQs) or non-functional requirements are success-critical for many projects. 
They represent major stakeholder needs, but are a major source of project overruns and 
failures. They are a significant source of stakeholder value conflicts. They are poorly defined 
and understood, even in standards documents. Compared to functional requirements, they are 
seriously underemphasized in project management.  

An initial SQ ontology (Boehm&Kukreja, 2015) helps address these problems by clarifying the 
nature of the SQs. A particularly important SQ is Maintainability. It is key to reducing the 
roughly 75% of most systems’ life cycle costs spent on maintenance. Maintainability plays key 
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roles in three of the four top-level SQs: Besides Life Cycle Parsimony, Dependability also needs 
Maintainability to relate Reliability to Availability; and Changeability also needs Maintainability 
to address new system challenges and opportunities. For Life Cycle Parsimony, models are 
presented that show the significant returns on investments in single-system and product line 
Maintainability.  

Means-ends diagrams are provided to clarify how aspects of Maintainability relate to other SQs. 
Complementary means-ends diagrams called Opportunity Trees are provided and elaborated to 
enable systems engineers to develop strategies for improving the various aspects of 
Maintainability. They and other Opportunity Trees for cost reduction, schedule acceleration, 
and Dependability improvement provide a good candidate framework for realizing the vision of 
providing a Qualipedia as a body of knowledge for SQs. 

Some initial experiments in using the (Oman & Hagemeister, 1992) Maintainability Index (MI) to 
evaluate a software system’s maintainability showed promise in evaluating the relative 
maintainability of 97 open-source software systems as functions of their programming language 
and application domain. They also provided insights in identifying complementary methods, 
processes, and tools such as cohesion-coupling analyzers, technical debt analyzers, and human-
assisted system understandability analyzers that could strengthen future abilities to evaluate a 
system’s Maintainability.  
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1.2.2 Task 2: Methods and Tools Piloting and Refinement 

The USC depth-first exploration of Maintainability identified the need for a better balance of 
attention during the system acquisition phase between optimizing on system acquisition cost-
effectiveness and optimizing on system life-cycle cost-effectiveness, particularly for software, 
due to the major differences between software and software logistical aspects.  This led to the 
development of a proposed framework of Maintainability Readiness Levels for Software-
Intensive Systems. 

1.2.2.1 Maintainability Readiness Levels for Software-Intensive Systems 

Abstract 

The US Department of Defense (DoD) Better Buying Power series of memoranda clearly 
emphasizes that its objective is not to obtain minimum-cost, technically acceptable DoD 
capabilities, but to improve the life-cycle cost-effectiveness of DoD capabilities.  A major 
opportunity for such improvement is to improve the cost-effectiveness involved in the life cycle 
maintenance of the system.  One of the major projects of the DoD Systems Engineering 
Research Center focuses on System Qualities (SQs) Tradespace and Affordability, where 
Affordability is defined as life cycle cost-effectiveness.  The project has found that 
Maintainability is a particularly important SQ, not only for Total Cost of Ownership (TCO), but 
also for Dependability, Changeability and Mission Effectiveness support.  In researching 
Maintainability, we have found that significant progress has been made for physical systems 
maintainability such as via performance-based logistics and multisensor-based smart systems, 
but that less progress has been made for software and information-technology aspects of 
systems.  This section elaborates on these findings.  After a context-setting introduction, it 
summarizes the SERC SQ Ontology and discusses the key roles of Maintainability therein.  It 
then proceeds to summarize the differences between hardware and software maintainability 
and the main sources of high software total cost of ownership; presents a proposed Software 
Maintainability Readiness Level (SMRL) framework to focus attention on the sources of added 
system-software maintenance cost; and summarizes the associated conclusions. 

1. Introduction

A recent US General Accountability Office report1 identified software and information 
technology (IT) maintenance as a major target for life cycle cost savings.  It found that of the 
roughly $79 billion in planned US Government expenditures on IT over the next year, roughly 
$58 billion or about 75% of the expenditures were going into IT maintenance.   Some 
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improvements could be made in making the IT maintenance organizations more efficient, but a 
recent systematic technical review2,3 found that most of such expenditures have been due to 
technical debt: a term for delayed technical work or rework that is incurred when short-cuts are 
taken or short-term needs are given precedence over the long-term objectives.  If the debt is 
not paid off, then it will keep on accumulating interest, making it hard to implement changes 
later on. Worldwide, a 2010 Gartner report4 estimated that the Global “IT Debt” was over $500 
billion, and had the potential to grow to $1 trillion by the end of 2015.  Minkiewicz5 provides a 
good summary of the relationship between technical debt and software maintenance costs, 
including such sources of cost as lack of documentation, lack of adherence to processes or 
standards, missing tests, lack of modularization, architecture or design that is not well thought 
out or scalable, and failure to keep up with technology.   

The DoD Better Buying Power (BBP) memoranda, summarized in BBP 3.06, include such 
relevant recommendations as Continuing to set and enforce affordability constraints, 
including production and sustainment affordability caps; Strengthening and expanding 
“should cost” as an important tool for cost management; Increasing the use of 
performance-based logistics (PBL); Removing barriers to commercial technology utilization; 
and Using Modular Open Systems Architecture to stimulate innovation.  The current SERC 
project addressing Systems Qualities (SQs) Tradespace and Affordability has been focusing 
on Maintainability as a key to reducing the high costs of software and IT maintenance 
indicated above.  It has found that the use of PBL is making good progress for the physical 
aspects of systems such as for spare parts management7, but less progress in the software 
and IT aspects due to differences in hardware and software logistics.  In researching the 
root causes of software technical debt, an attractive prospect for addressing them is to 
expand the previous concepts of Technology Readiness Levels (TRLs) and System Readiness 
Levels (SRLs; focused primarily on system performance vs. maintainability)8, to define and 
incorporate the use of Software Maintenance Readiness Levels (SMRLs). 

Section 2 summarizes the current SERC product quality ontology, based on recent insights in 
sorting out the various roles of Maintainability with respect to the primary stakeholder-value 
SQ classes of Mission Effectiveness, Life Cycle Expenditures, Dependability, and Changeability. 
Using Maintainability as an example, it summarizes the major sources of variation in the 
system’s Maintainability values in terms of the system’s Referents, States, Processes, and inter-
SQ Relations. 

Section 3 summarizes the major maintainability differences between a hardware system and a 
software system, and identifies software maintainability as the main target of opportunity for 
reducing Total Cost of Ownership (TCO).   
Section 4 identifies the main sources of high maintenance costs for software-intensive systems, 
and summarizes research into improved Maintainability methods, processes, and tools for 
software-intensive systems, including Opportunity Trees for improving Maintainability and 
relevant quantitative models for estimation of TCO. 
Section 5 presents and discusses a proposed Software Maintainability Readiness Levels (SMRL) 
framework for assessing the extent to which a project is achieving its key enablers to be a 
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highly maintainable software-intensive system. 

2. The Key Roles of Maintainability in the SERC SQ Ontology

Table 1 shows the revised upper levels of the initial SQ stakeholder value-based means-ends 
class hierarchy in our basic SQ ontology paper9, brought about by our recent Maintainability 
research and formalization of the SQ relationships10.  

Table 1. Upper Levels of Revised Stakeholder Value-Based SQ Means-Ends Hierarchy 

Stakeholder Value-Based 
SQ Ends 

Contributing SQ Means 

Mission Effectiveness Stakeholders-satisfactory balance of Physical Capability, Cyber 
Capability, Human Usability, Speed, Endurability, Maneuverability, 
Accuracy, Impact, Scalability, Versatility, Interoperability, Domain-
Specific Objectives 

Life Cycle Efficiency Development and Maintenance Cost, Duration, Key Personnel, 
Other Scarce Resources; Manufacturability, Sustainability 

Dependability Reliability, Maintainability, Availability, Survivability, Robustness, 
Graceful Degradation, Security, Safety 

Changeability Maintainability, Modifiability, Repairability, Adaptability 

Composite QAs 

Affordability Mission Effectiveness, Life Cycle Efficiency 

Resilience Dependability, Changeability 

Within the Department of Defense (DoD), the emphases on Mission Effectiveness and Life Cycle 
Efficiency are highlighted in the Secretary of Defense’s May 2015 Budget Request11, “We at the 
Pentagon must... be open to new ideas and new ways of doing business that can help us 
operate more efficiently and perform more effectively in an increasingly dynamic and 
competitive environment.”  The emphasis on Changeability, and implicitly Dependability, are 
also reflected in the statement, as well as in another DoD senior leadership statement12, 
“Simply delivering what was initially required on cost and schedule can lead to failure in 
achieving our evolving national security mission — the reason defense acquisition exists in the 
first place.”  Similar concerns are emphasized by leaders and commentators in government, 
industry, and services sectors worldwide. 

With respect to Table 1, we have changed Resource Consumption to Life Cycle Efficiency to 
reflect the emphases in DoD and elsewhere.  We have also generalized Flexibility to 
Changeability to be more consistent with the MIT Changeability ontology13 and its formal 
representation14. Its mutually-exclusive means are internal change (Adaptability) and external 
change (Maintainability), which includes Modifiability to support Changeability and 
Repairability to support Dependability, due to its role as Mean Time to Repair (MTTR) in relating 
Reliability as Mean Time between Failures (MTBF) to Availability via the relationship Availability 
= MTBF/(MTBF+MTTR).  Thus, we find Maintainability to be key not only to Changeability and 
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Dependability, but also to Life Cycle Efficiency via Maintenance Cost, and indirectly to Mission 
Effectiveness via Life Cycle Efficiency. 
In pursuing the various contributions and types of Maintainability as a critical but complex SQ, 
we have developed Figures 1 and 2 as elaborations of Maintainability relationships. Figure 1 
focuses on the role of Maintainability in support of Changeability. It shows that Maintainability 
and Adaptability are two alternative means of achieving Changeability, external and internal to 
the system. It also shows that Modifiability and Repairability are two alternative means of 
achieving Maintainability, one for changes and one for defects. It also shows some enabling 
(and), but not alternative (or) subclasses of Modifiability, Repairability, and support of 
verification and validation, called “V&V-ity.” These latter are Automated Analysis, Peer Reviews, 
and Execution Testing; their rating scales are provided in9, where they were taken from the 
Constructive Quality Model (COQUALMO) for estimating delivered software defect density15.  
Figure 2 further elaborates on how Maintainability supports both Changeability and 
Dependability, and elaborates on how these two combine to support Resilience. It also 
elaborates the means-ends subclasses of Reliability, and of Testing in support of V&V-ity. 

Figure 1. Role of Maintainability for Changeability 

Figure 2. Role of Maintainability for Changeability, Dependability, and Resilience 
Figure 2 also emphasizes the many-to-many relationships of Testability, as compared to the 
one-to-many relationship it has in ISO/IEC 25010 (ISO/IEC, 2011), where Testability only 
supports Maintainability. It is clear that Testability is also important to the achievement of 
numerous other SQs, such as the many aspects of Dependability in Figure 2. It also highlights 
the recursive complexities of the SQ hierarchy, as Testability also involves the test software, 
such as its classes (performance, stress, regression, etc.) and capabilities (test drivers, monitors, 
diagnosis aids, data managers, etc.) and the need to ensure its qualities as well, as seen in red 
in Figure 2. 
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Overall, Table 1 and Figures 1 and 2 summarize the class hierarchy of the primary stakeholder 
SQ end value classes of Mission Effectiveness, Life Cycle Efficiency, Dependability, and 
Changeability, along with their primary means-ends subclasses, and the primary composite SQs 
of Affordability and Resilience. Each of the SQ classes and subclasses are also characterized by 
the variation of their values with respect to their variation by Referents, States, Processes, and 
Relations, as summarized below and described in detail in the context of Maintainability in10. 

Using Maintainability and its metric Mean Time to Repair (MTTR) as an example, here are the 
major Ontology sources of variation in the system’s Maintainability values.  They will vary as a 
function of the system’s Referents such as its stakeholders’ priorities for higher or lower MTTR 
by criticality level.  The MTTR will also vary by the system’s States (internal, such as being in a 
live or dormant state; or external, such as needing field repair in the desert, jungle, or icefield); 
by the system’s Processes (internal, such as undergoing a test or operational process; or 
external, such as undergoing a light vs. heavy workload), and by its Relations with other SQs, 
such as how a smartphone’s MTTR will vary if the system is developed for ease of user battery 
replacement or developed for durability, where it is virtually impossible to open without 
extreme damage to its case16. 

3. Differences Between Hardware and Software Maintainability

The list below summarizes the major differences between hardware and software 
maintainability. Further differences and their discussions are in17,18. 

 Software components do not degrade due to wear and fatigue;

 No imperfections or variations are introduced in making copies of software
components;

 Software results are unconstrained by any laws of physics.  If a program expresses the
force of gravity with the wrong sign, the calculations will produce the effect of anti-
gravity;

 Software interfaces are conceptual rather than physical; there is no easy-to-visualize
three-prong plug and its mate;

 There are many more distinct logic paths to check in software than in hardware;

 There are many more distinct entities to check.  Any item in a large database may be a
source of error.

 The failure modes are generally different. Software failures generally come with no
advance warning, provide no period of graceful degredation, and more often provide no
announcement of their occurrence;

 Repair of a hardware fault generally restores the system to its previous condition; repair
of a software fault does not.

The major implication of these differences is that hardware and software maintenance 
strategies, processes, and costs are radically different.   Making a hardware upgrade on a 
million hardware devices requires a million upgrade efforts.  Making a software upgrade on a 
million instances of the software accessible via the Internet requires only one effort to perform 
the upgrade and electronically update the instances.  However, the second-order effects of this 
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disparity are to make as many of the anticipated sources of change be implemented in 
software, making the volume of different software upgrades significantly higher.  Further, the 
complexity and invisibility of the software makes the correct implementations of software 
upgrades much more labor-intensive and skill-intensive.  Representative data19,20 indicate that 
software upgrade costs are highly nonlinear with size, and that 47% of the maintenance effort 
involves understanding the software to be modified.  
In terms of facilities, hardware maintenance involves a much larger logistics effort than does 
software maintenance. On the other hand, software maintenance generally requires more 
complex skill levels than does hardware maintenance. Facilities for hardware maintenance 
differ significantly from software maintenance facilities, although the prevalence of cyber-
physical systems increases benefits from having a single facility addressing both hardware and 
software and both repairs and modifications. Recent trends in additive manufacturing or 3-D 
printing are simplifying hardware repair logistics (e.g., initiatives underway to put additive 
manufacturing capabilities on Navy ships) and moving hardware and software repair closer 
together.  Another good example is the development of smart aircraft-maintainability systems, 
which populate the aircraft with thousands of nanosensors, which can monitor a component’s 
degree of wear, structural integrity, or battery level, and provide the information in advance so 
that necessary repair capabilities are pre-positioned to effect rapid repair when the aircraft 
lands. This provides a much lower mean time to repair and much higher level of Availability, 
showing a strong synergy in increasing both Changeability and Dependability. 
An excellent source on Repairability and Maintainability for hardware and to some extent 
software is the book Maintainability21. It identifies and provides guidance for the many sources 
of post-acquisition cost lying below the acquisition tip of the iceberg. These include operations 
cost, product distribution cost, maintenance cost, training cost, test and support equipment 
cost, software cost, technical data cost, supply support cost, and retirement and disposal cost. 
For individual cost components such as Repair, it identifies and provides guidance on the 
sequence of key activities involved in repair: detection, preparation for maintenance, 
localization and isolation, disassembly (access), faulty item repair or replacement, reassembly, 
alignment and adjustment, and condition verification. 
In terms of opportunities for reducing system maintenance costs, it appears that recent results 
from hardware Performance-Based Logistics7 and trends toward additive manufacturing and 
smart hardware-diagnostic systems indicate that reducing hardware maintenance costs have 
stronger existing opportunities.  Also, more stable software maintenance organizations, 
particularly in maintaining embedded vehicle software, tend to have strong existing domain-
oriented methods, processes, and tools.  Greater software maintenance challenges appear to 
be in more dynamic, software-intensive application areas such as C4ISR, logistics, and 
information services. The next section will address potential counterpart opportunities for 
reducing software maintenance costs in the more diverse and dynamic, software-intensive 
application areas. 

4. High Maintenance Costs for Software-Intensive Systems: Symptoms and Root Causes
Several classes of organizations generally do not have serious problems with high maintenance 
cost for their more diverse and dynamic software-intensive systems.  Some have developers 
who continue with the project through its life cycle.  Some whose business or mission depends 
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critically on high levels of service employ and support highly-capable in-house maintenance 
organizations. 
Classes of organizations most needing to reduce high maintenance costs for their more diverse 
and dynamic  software-intensive systems are those in which Research and Development (R&D) 
and for Operations and Maintenance (O&M) are separately funded and managed, organizations 
which outsource software maintenance to external companies, and organizations with in-house 
software maintenance centers that receive and maintain software developed either elsewhere 
in the organization or elsewhere.  For such organizations, three of the primary symptoms of 
high maintenance costs are (1) unprepared maintainers; (2) underestimated workload; and (3) 
hard-to-modify software. 
(1) Unprepared Maintainers.  Frequently, the maintainers are belatedly notified that the 

software will be theirs to maintain.  They will have been busy on other projects, with 
minimal opportunity to understand or influence the system’s development.  They will have 
minimal budget to prepare before the system enters maintenance.  As a result, their current 
domain expertise, skills, and support environment may be a major mismatch to the 
maintenance needs of the new system. 

(2) Underestimated Workload.  Often, the software will have numerous hasty patches that 
were needed to pass its acceptance tests, a good many of which will have undesirable side 
effects.  There is likely to be a large backlog of change requests and changed interfaces with 
interoperating co-dependent external systems.  The development contract may have 
neglected to specify that the system be delivered with the latest release of the supporting 
COTS products.  In gathering data for the COCOTS cost model, we encountered one project 
with 120 COTS products, 55 of which were using versions that had become unsupported by 
the vendor. 

(3) Hard-to-Modify Software.  The acquirers and developers make ambitious promises with 
respect to budgets, schedules, and deliverables, often on a fixed-price contract.  This 
generally leads to a brittle, point-solution architecture that is minimally documented and 
expensive to modify. 

Once the system enters maintenance, the best the maintainers can do is to address the 
symptoms.  However, much more leverage on the Total Cost of Ownership is available by 
attacking the root causes of the symptoms during acquisition.  Three of the primary root causes 
are (1) Separate funding sources, management foci, and the conspiracy of optimism; (2) 
Inadequate participation of maintainers in the development process; and (3) Inadequate 
preparation of maintenance methods, processes, and tools (MPTs). 
(1) Separate Funding Sources, Management Foci, and the Conspiracy of Optimism.   
Many organizations have separate funding sources for R&D and for O&M.  This tends to cause 
sponsors and performers supported on R&D funds to focus on R&D performance, and for 
sponsors and performers supported on O&M funds to focus on O&M performance.  The R&D 
sponsors compete for finite R&D funds, causing them to be optimistic both on the capabilities 
to be developed and on the funds needed to develop them.  Accordingly, when their project is 
optimistically funded and they are running the competition to select the best supplier, they will 
encourage innovations, but frequently use a “lowest cost, technically acceptable” criterion for 
source selection. 
Naturally, the bidders do not want to lose the competition by bidding too high.  They will 
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therefore apply further optimism in what they promise to deliver and the productivity that will 
minimize the cost.  In general, they will propose a point-solution architecture to provide a 
minimal interpretation of the requirements in the request for proposal.   Frequently, though, 
even with these strategies, they will find that reality will not match their optimistic assumptions 
of getting the A team for development, for technology readiness, for non-developmental items 
(NDIs) to perform as advertised, for the team to stay stable, etc.  This will lead to shortfalls in 
funding the capabilities to be developed, and with limited funds, the priorities will generally 
favor mission capabilities over maintenance capabilities such as diagnostics, version control, 
testing support, and documentation.  
If funding shortfalls require across-the-board cuts, the first project organization to be impacted 
will be Systems Engineering.   The usual result of this will be that they will have insufficient time 
time to specify the rainy-day use cases, to analyse alternative NDI candidates, to address risk, 
and to define complex interface protocols.  Such systems engineering shortfalls have been 
found to be major sources of rework, technical debt, and software maintenance costs5. 
Calibration of the COCOMO II cost model found that added cost of rework and technical debt of 
minimal vs. necessary systems engineering is an exponential function of software size; an 
added 14% of project cost for a 10 KSLOC (thousands of source lines of code); 38% for 100 
KSLOC, 63% of 1000 KSLOC, and 92% for 10,000 KSLOC22.  A good example was a major project 
with 5000 KSLOC and a Conspiracy of Optimism budget of $2 billion.  The project thought that it 
was doing well to allocate 30% of the budget ($600 million) for systems engineering, but the 
project’s actual cost was $8 billion, meaning that the allocation to systems engineering had 
been only 7.5%.   And here also, the necessary budget for maintenance capabilities such as 
diagnostics, version control, testing support, and documentation was severely curtailed. 
(2) Inadequate Participation of Maintainers in the Development Process. 
Although initiatives such as Acquisition Logistics often work well for hardware-intensive 
systems, they tend to work less well for software-intensive systems due to the differences in 
hardware and software maintenance discussed above.  The most severe root cause of 
inadequate participation of maintainers in the development process is the vicious circle caused 
by previous inadequate participation.  On several large projects, requests for maintainer 
participation in defining a new system have been met by regrets that the maintainers are too 
busy keeping up with the results of inadequate participation of maintainers in previous 
development processes. 
Other root causes include the overconcern with the “voice of the customer” in such popular 
methods as Quality Function Deployment (QFD)23.  Its use most often focuses on delighting 
customers and users, and on cost-effective development, while neglecting the voice of the 
maintainer.  Similar overconcern with development often occurs in organizations supported by 
R&D funds.  Related root causes are systems optimized for other qualities that degrade 
maintainability.  For example, tightly-coupled High Performance Computing architectures and 
software improve computational Speed but reduce Maintainability. Easiest-first agile methods 
often improve initial Usability, but make architectural commitments that often subsequently 
degrade Scalability, Safety, and/or Security. Committing to use strong but rapidly-evolving and 
inscrutable components can improve initial mission effectiveness but pose threats to 
maintenance timeliness and dependability. 
A further root cause is the inverse of the well-known Peter Principle24, which says that “In a 
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hierarchy, every employee tends to rise to his level of incompetence.” For software 
maintenance people, the Inverse Peter Principle tends to apply: “People rise to a position in 
which they become indispensible, and get stuck there forever.”  Besides having terminal career 
paths, they are often impacted by the Paul Principle25, “People rise to an organizational position 
in which their technical skills become obsolete in five years.”  This is often compounded by 
misguided attempts to conserve on maintenance costs by limiting expenditures on training, 
continuing education, conference attendance, and professional society memberships.  
Besides increasing the level of participation of maintainers in the development process, the 
next-highest leverage will come from increasing the competence levels of the maintainers.  An 
excellent detailed roadmap for doing this is the CMU-SEI People Capability Maturity Model26. 
As with the CMMs for systems and software engineering, it has a 5-level progression including 
such practise as staffing, work environment, training and development, compensation, 
workforce planning, career development, empowered workgroups, continuous capability 
improvement, and continuous workforce innovation. 
(3) Inadequate Preparation of Maintenance Methods, Processes, and Tools (MPTs). 
Several of the root causes of inadequate preparation of maintenance MPTs have been 
addressed above, such as the primary emphasis on acquisition MPTs and concepts of operation 
vs. their maintenance counterparts; shortfalls in preparing for maintenance facilities and 
infrastructure; optimizing on other qualities such as high performance and easiest-first agility 
but which complicate maintenance; and the effect of development overruns on underdelivery 
of maintenance enablers such as the system’s architecture, traceability information, change 
management capabilities, problem diagnostic capabilities, and test support capabilities.  Other 
root causes include use of obsolete maintenance MPTs, lack of coordination of the MPT’s used 
in developing system components, and development commitment to MPTs that are unscalable 
to the Full Operational Capability. 

5. A Proposed Software Maintainability Readiness Levels (SMRL) Framework

The concepts of Technology Readiness Levels (TRLs)27, Manufacturing Readiness Levels 
(MRLs)28, and System Readiness Levels (SRLs)29,30 have been highly useful in improving the 
readiness of systems to be fielded and operated.  But except for one Systems Readiness Level 
table30 indicating that for Operations and Support, State of the Art systems have high training 
cost and lack of support; State of the Practice systems have training and support readily 
available, and State of the Obsolescence systems have high cost of maintenance and increased 
training cost, the current SRL content does not address system maintainability readiness.  Given 
the discussions above on the high costs, difficulty symptoms, and difficulty root causes of many 
software-intensive systems’ maintainability problems, it appears worthwhile to develop and 
use a similar Software Maintainability Readiness Level (SMRL) framework to improve future 
systems’ continuing operational readiness and Total Cost of Ownership (TCO).  Most likely, its 
content could also help on hardware-intensive systems or cyber-physical-human systems. 

Table 2 on the next page provides a proposed SMRL framework.  Its columns are organized 
around the three root causes of high software-intensive system maintenance costs: the 
maintenance Operational Concept and management aspects; Personnel capabilities and 
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participation aspects, and Enabling MPT capabilities.  In general one would expect a major 
defense acquisition project to be at SMRL 4 at its Materiel Development Decision milestone; at 
SMRL 5 at its Milestone A; SMRL 6 at its Milestone B; and SMRL 7 at its completion of 
Operational Test and Evaluation. Smaller systems would be expected to be at least at SMRL 3 at 
its Materiel Development Decision milestone and at SMRL 4 at its Milestone A.  Note that it 
emphasizes outcome-based maintenance incentives such as with Performance-Based 
Logistics6,7 or Vested Outsourcing31 at SMRL 7, and maintainability data collection and analysis 
(DC&A) at SMRL 8.  Some good examples of DC&A-based improvements in reducing technical 
debt and TCO via modularization around sources of change and identification of product line 
commonalities and variabilities are provided in references32,33,34.  Some other good sources of 
insight in reducing software maintenance costs are35,36.  We are also conducting empirical 
studies of software maintainability metrics via analyses of open-source software systems37.    

6. Conclusions

Major and growing sources of savings in a system’s TCO can be achieved via improvements in 
software maintainability.  Some savings can be achieved by improving software maintenance 
via better MPTs, but much greater savings can be achieved by addressing the root causes of 
increased maintenance costs due to overemphasis on initial acquisition cost-effectiveness.  
These include the maintenance Operational Concept and management aspects; Personnel 
capabilities and participation aspects, and Enabling MPT capabilities. Drawing on the successful 
use of the Technology Readiness Level, Manufacturing Readiness Level, and System Readiness 
Level frameworks, this paper proposes a similar Software Maintenance Readiness Level 
framework, based primarily on cumulative improvement of the three acquisition root causes of 
increased maintenance costs.  Several organizations are interested in experimentally applying 
it. 

Software-Intensive Systems Maintainability Readiness Levels 

SMR 
Level 

OpCon, Contracting: 
Missions, Scenarios, 
Resources, Incentives 

Personnel Capabilities 
and Participation 

Enabling Methods, 
Processes, and Tools 
(MPTs) 

9 

5 years of successful 
maintenance 
operations, including 
outcome-based 
incentives, adaptation 
to new technologies, 
missions, and 
stakeholders 

In addition, creating 
incentives for 
continuing effective 
maintainability. 
performance on long-
duration projects 

Evidence of 
improvements in 
innovative O&M MPTs 
based on ongoing O&M 
experience 
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8 

One year of successful 
maintenance 
operations, including 
outcome-based 
incentives, refinements 
of OpCon. Initial insights 
from maintenance data 
collection and analysis 
(DC&A) 

Stimulating and applying 
People CMM Level 5 
maintainability practices 
in continuous 
improvement and 
innovation in, e.g., 
smart systems, use of 
multicore processors, 
and 3-D printing 

Evidence of MPT 
improvements based on 
maintenance DC&A-
based ongoing 
refinement, and 
extensions of ongoing 
evaluation, initial O&M 
MPTs. 

7 

System passes 
Maintainability 
Readiness Review with 
evidence of viable 
OpCon, Contracting, 
Logistics, Resources, 
Incentives, personnel 
capabilities, enabling 
MPTs, outcome-based 
incentives 

Achieving advanced 
People CMM Level 4 
maintainability 
capabilities such as 
empowered work 
groups, mentoring, 
quantitative 
performance 
management and 
competency-based 
assets 

Advanced, integrated, 
tested, and exercised 
full-LC MBS&SE MPTs 
and Maintainability-
other-SQ tradespace 
analysis  

6 

Mostly-elaborated 
maintainability OpCon, 
with roles, 
responsibilities, 
workflows, logistics 
management plans with 
budgets, schedules, 
resources, staffing, 
infrastructure and 
enabling MPT choices, 
V&V and review 
procedures. 

Achieving basic People 
CMM levels 2 and 3 
maintainability practices 
such as maintainability 
work environment, 
competency and career 
development, and 
performance 
management especially 
in such key areas such 
as V&V, identification & 
reduction of technical 
debt. 

Advanced, integrated, 
tested full-LC Model-
Based Software & 
Systems (MBS&SE) 
MPTs and 
Maintainability-other-
SQ tradespace analysis 
tools identified for use, 
and being individually 
used and integrated. 

5 

Convergence, 
involvement of main 
maintainability success-
critical stakeholders. 
Some maintainability 
use cases defined. 
Rough maintainability 
OpCon, other SCSHs, 
staffing, resource 
estimates. Preparation 
for NDI and outsource 

In addition, 
independent 
maintainability experts 
participate in project 
evidence-based decision 
reviews, identify 
potential maintainability 
conflicts with other SQs 

Advanced full-lifecycle 
(full-LC) O&M MPTs and 
SW/SE MPTs identified 
for use. Basic MPTs for 
tradespace analysis 
among maintainability & 
other SQs, including TCO 
being used. 
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selections. 

4 

Artifacts focused on 
missions. Primary 
maintenance options 
determined, Early 
involvement of 
maintainability SCSHs in 
elaborating and 
evaluating maintenance 
options. 

Critical mass of 
maintainability SysEs 
with mission SysE 
capability, coverage of 
full M-SysE skills areas, 
representation of 
maintainability success-
critical-stakeholder 
organizations. 

Advanced O&M MPT 
capabilities identified 
for use: Model-Based 
SW/SE, TCO analysis 
support. Basic O&M 
MPT capabilities for 
modification, repair and 
V&V: some initial use. 

3 

Elaboration of mission 
Operational Concept 
(OpCon), Architectural 
views, lifecycle cost 
estimation. Key mission, 
O&M, success-critical 
stakeholders (SCSHs) 
identified, some 
maintainability options 
explored.  

O&M success-critical 
stakeholders provide 
critical mass of 
maintainability-capable 
SysEs Identification of 
additional. M-critical 
success-critical 
stakeholders. 

Basic O&M MPT 
capabilities identified 
for use, particularly for 
OpCon, Arch, and Total 
cost of ownership (TCO) 
analysis: some initial 
use. 

2 

Mission evolution 
directions and 
maintainability 
implications explored. 
Some mission use cases 
defined, some O&M 
options explored. 

Highly maintainability-
capable Systems 
Engineers (SysEs) 
included in Early SysE 
team. 

Initial exploration of 
O&M MPT options 

1 

Focus on mission 
opportunities, needs. 
Maintainability not yet 
considered. 

Awareness of needs for 
early expertise for 
maintainability. 
concurrent engr'g, O&M 
integration, Life Cycle 
cost estimation 

Focus on O&M MPT 
options considered 

Table 2. Software-Intensive Systems Maintainability Readiness Levels 
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1.2.3 Task 3: Next-Generation, Full-Coverage Cost Models 

Objectives: 

One long-term objective of Task 3 has been to develop COSYSMO 3.0, an up-to-date model for 
estimating systems engineering costs.  For Phase 4, these were the objectives for COSYSMO 3.0: 

 Develop a complete COSYSMO 3.0 model with these properties:
o Integrates the features of the major previous models (basic cost estimation,

development with reuse, requirements volatility, development for reuse);
o Has been calibrated via expert opinion;
o Models the interoperability property (applicable to systems-of-systems);
o Has reorganized and improved definitions of cost drivers involving

“understanding”;
o Has a plausible body of validation projects (completed projects with actual data

available to the researchers); and
o Is “polished”, in the sense of having minor changes that improve predictive

capability.
 Initial development of a “Rosetta Stone” that allowed estimation parameter values

using earlier versions of COSYSMO to be translated to COSYSMO 3.0 parameter values.
 Initial development of a questionnaire for gathering information for model validation.

Tasks: 
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 Conduct weekly or biweekly teleconferences coordinating model development with a
Working Group of advisors from industry, government, and academia.

 Conduct workshops where the Wideband Delphi technique is used to gather expert
opinion about numeric parameters of the model.

 Conduct other workshops as needed.

Results: 

 Under Task 3, we had developed an initial model that included basic cost estimating;
that served as our baseline for Task 4 development.

 We developed a version of the model that used the Bloom taxonomy to completely
revise the “understanding” cost drivers.  This seemed to improve the definitions of
these cost drivers.  However, it was realized that validation data from previous versions
of the model could not in general be carried forward to COSYSMO 3.0 validation; i.e.,
our objective to improve these definitions was in conflict with our objective to have a
plausible body of validation projects.  We therefore abandoned our effort to improve
the “understanding” definitions, and constrained our remaining changes to allow reuse
of validation data from previous models, which constitutes our plausible body of data.

 We conducted sessions at these workshops, addressing the indicated topics:
o INCOSE International Workshop (Torrance CA, January 26):  Critique of the

improved-understanding-cost-drivers model, plus a Delphi.
o Ground Systems Architecture Workshop, conducted by The Aerospace

Corporation for SMC (Los Angeles, March 4):  Delphi, plus a pilot of the existing
model.

o SERC Technical Research Review at USC (April 2):  Presentation of existing model.
o Annual Research Review at USC (Los Angeles, April 15):  Presentation and

detailed discussion of a model that reverted from the improved-understanding
cost drivers back to older definitions.  This model added CONOPS Understanding,
Interoperability, and Process Capability cost drivers; also a multi-subsystem
model (applicable to systems-of-systems).  Several minor issues were raised,
which were resolved during the year.

o Technical Interchange Meeting with The Aerospace Corporation (Los Angeles,
April 20):  General discussion of the model.

o INCOSE 2015 (Seattle, July 13): Workshop; discussion of model with 
Requirements Volatility added.

o Software and IT Cost IPT Meeting (Washington DC, August 11):  Delphi.
o NDIA Systems Engineering Conference (Washington DC, October 29):

Presentation of model with development-for-reuse.
o COCOMO/Systems and Software Cost Modeling Forum (Washington DC,

November 17):  Discussion of model with development-for-reuse added (the
complete model); Delphi; distribution of initial Rosetta Stone and questionnaire.

 We conducted weekly or biweekly Working Group meetings, where many minor
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changes were raised, discussed, and resolved. 

Technology Piloting: 

 As noted above, we piloted a COSYSMO 3.0 model at the Ground Systems Architecture
Workshop.

1.3 Future Plans for Phase 5 

1.3.1 Task 1, Foundations 

USC will extend its Phase 4 depth-first approach to Maintainability to cover the other 
components of the SQ Ontology, and will collaborate with MIT and U.Virginia in coordinating 
the USC and MIT ontologies and in formalizing the ontologies (also underway in the 
complementary U.Virginia-USC NSF grant).  The table below provides a mapping between the 
current USC ontology’s definitions (Labels) and those of MIT as shown in Figure 3 of the MIT 
report, as a first step toward reconciling the two ontologies. 

USC-MIT Semantic Mappings 

USC Impetus USC Outcome 

Perturbation Agent Nature  Aspect Effect Aspect USC, MIT Labels MIT Differences 

Disturbance Internal Increase Form Same Form 

Defect External Decrease Scope Not-Same Scope 

Opportunity any Re-host any Reduced any 

any any Increased 

any 

Disturbance any Increase any 
same, 
Increased any Resilience Not included 

any any any any not-same any Changeability Same 

Disturbance Internal any any some any Robustness Shift vs. Disturbance 

Disturb, 
Opp'y Internal any any not-same any Adaptability Same 

Defect Internal any any same any Fault-Tolerance Not included 

Defect Internal any any not-same any Self-repairability Not included 

Disturb, 
Opp'y External any any not-same any Modifiability 

Just External (Internal = 
Adaptability) 

Defect External any any any any Repairability Not included 

any External any any any any Maintainability Not included 

any Internal any any Reduced any 
Graceful 
Degredation not included 

any any any Form not-same Form Reconfigurability Similar 

Disturb, 
Opp'y any Increase Scope not-same Scope Extensibility Same - Also Scalability-Up 

Disturb, any Decrease Scope not-same Scope Contractability Not included - Also Scalability-
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Opp'y Down 

Disturb, 
Opp'y any Re-host Form Same Form Portability Not included 

Disturb, 
Opp'y any any Scope Same Scope Versatility Similar 

Survivability Robustness + Adaptability? 

Evolvability Same as Changeability? 

Flexibility External Adaptability? 

Agility Focus on fix speed 

Reactivity Focus on duration of fix needs 

Exchangeability Like Modifiability? 

Variations by 
Value, Form, Function, 
Operation 

1.3.2 Task 2: Methods and Tools Piloting and Refinement 

USC proposes to coordinate the Maintainability Readiness Levels for Software-Intensive 
Systems framework with interested organizations.  The Aerospace Corp. is investigating its use, 
and we are proposing to present it as a keynote address at the Army Practical Systems and 
Software Measurement Users Group Workshop in February, and to present it as a paper at 
CSER 2016 in March.  

1.3.3 Task 3.  Next-Generation Cost Estimation Models 

USC, NPS.  Full definition and early data collection for COSYSMO 3.0 systems engineering cost 
model and major-system version of COCOMO III software cost model, including integration of 
reuse, requirements volatility, systems-of-systems interoperability, agile methods, and model-
based systems and software engineering.  Redefinition of rating scales for distributed 
development, tool support, sizing, and personnel experience 

USC, NPS, GTRI.  Extensions of previous GTRI-USC integration of SysML parametrics with 
COSYSMO for cost-effectiveness analyses. 

Technology Piloting.  The integration of SysML parametrics with COSYSMO serves as a pilot of 
the COSYSMO 3.0 model. 

Transition.  The COSYSMO 3.0 Working Group includes, among others, experienced industrial 
users of previous COSYSMO models and representatives of tool vendors.  Our plans are to 
provide a document defining the COSYSMO 3.0 model to them; thereafter we plan to work with 
them to get the model into industrial use through both paths. 
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2. Massachusetts Institute of Technology (MIT)

2.1 SUMMARY OF PHASES 1 AND 2 RESULTS 

2.1.1 TASK 1.  ILITY FOUNDATIONS

MIT Semantic Basis. 

In Phase 1, MIT built on prior research that aimed to develop a radical new approach for 
defining ilities, rather than simply proposing yet another set of definitions. MIT has proposed 
the use of a semantic basis that can serve as a framework for formulating ility “definitions.” 
Such a basis would provide a common language that would inherently demonstrate how 
various ilities relate to one another and provide an opportunity for discovering new ilities as 
well as provide a new representation for meaning of various ilities beyond English definitions. 
Phase 1 matured the earlier work, resulting in a proposed semantic basis, made up of fourteen 
categories. This basis is believed to span the change-type ility semantic field and excludes the 
architecture-type semantic field that includes “bottom” ilities such as modularity (de Weck, 
Ross, and Rhodes 2012) and “architecture principles” (Fricke and Schulz 2005) such as 
simplicity.  Beginning with the change agent and change effect as two categories for defining a 
change and the resulting applicable ilities, a larger set of categories are proposed for defining a 
larger set of possible changes for a system. The fourteen categories, which together form the 
semantic basis, are intended to collectively define a change in a system, thereby creating a 
consistent basis for specifying change-type ilities in formal statements. A system can be verified 
to display the quality described in the statement and therefore be traceable to a desired higher 
order system property. (An earlier version of this basis is described in Beesemyer 2012). The 
fourteen categories are: cause, context, phase, agent, impetus, impetus nature, impetus 
parameter, impetus destination state size, impetus aspect, outcome effect, outcome 
parameter, outcome destination state size, outcome aspect, level of abstraction, and value 
qualities of the change. Unique choices for each of these categories, when applied to a 
particular system parameter will formulate the change-type ility statement. The fourteen 
categories are illustrated in Figure 1.  
The semantic basis aims to capture the essential differences among change-type ilities through 
specification of the following general change statement with regard to a particular system 
parameter: 
In response to “cause” in “context”, desire “agent” to make some “impetus parameter 
change” in “system” resulting in “outcome parameter change” that is “valuable.” 
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Figure 1. Change-type prescriptive semantic basis in 14 categories. (Ross, Beesemyer, Rhodes 
2011) 
Application of the semantic basis begins with a user generating a change statement.  The 
change statement is refined and assigned categorical choices within the basis, with the 
intention that the applicable ilities will emerge from the specified change statement. In this 
way, a user does not need to use a particular ility label a priori, thereby avoiding the semantic 
ambiguity in the terms. If the basis accurately and completely describes the underlying 
categories for change-type changes, then a user should be able to describe any change-type 
ility through the basis.  Further description of the semantic basis can be found in the RT-46 
Phase 1 Technical Report. The version of the semantic basis above served as the version for 
undertaking further research investigation in collaboration with UVA during Phase 2.  
In Phase 2, based on a critique of the semantic basis provided by UVA, MIT convened an 
internal working group and provided further clarifications and reformulations to address the 
feedback. This working version has addressed a number of critiques from UVA on the MIT 14-
dimension semantic basis, as well as accumulated MIT-internal critiques.  Refined 
understanding of the semantic basis through use cases has also led to enhancements.   
MIT provided UVA with the current working version, and gained feedback from UVA in regard 
to encoding the basis into a formal language as was done of the initial version of the 14-
dimension semantic basis provided by MIT.   In order to carefully consider the points in the UVA 
critique, MIT convened special working sessions with a number of students and researchers 
with prior experience with both ilities and the semantic basis specifically, to review UVA’s 
interpretation and formulation. As a result, MIT recommended clarifications and some changes 
to the basis to fill gaps and provide clarification.  The revised basis has 20 categories as 
developed during Phase 2; it is shown in the figure below.    

Figure 2. The full revised semantic basis (gray row describes “name” label for that category). 
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MIT believes the semantic basis would be used differently in different use cases. During Phase 2 
the team began working on defining various use cases, with a subset of the full category set. 
For example, the full basis might be used when trying to write a very specific requirement 
statement. But that use should not occur until AFTER analysis to determine what should be 
done. Early in the design phase, one would likely leave out the “valuable” categories (as these 
are subjective and depend on outside factors). Additionally, if one is trying to avoid fixating on a 
solution-centric approach, one might want to consider leaving out change mechanism (in order 
to allow engineers to propose their own alternatives).  Several use cases are described in the 
Phase 2 Technical Report.    
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2.2 PHASE 3 RESULTS

2.2.1 TASK 1.  ILITY FOUNDATIONS

In Phase 3, MIT continued efforts on the collaborative research and development of iTAP 
scientific foundations, in the development of more rigorous definitions and quantification of 
ilities and their relationships. Specifically, MIT focused on the continuing development of the 
semantic basis, usability testing of the basis, and collaboration with UVA researchers in 
formalism.    

MIT Semantic Basis. 

In Phase 3, MIT built upon the prior phase efforts on the prescriptive semantic basis for 
consistently representing ilities within a particular semantic field. The semantic basis, evolved 
and tested in Phases 1 and 2, was further developed and tested in Phase 3.  Through successive 
refinement, the categories in the basis were derived from an earlier effort to define a 10, and 
later 14, dimensional basis for describing change-type ilities (Figure 3).  

Figure 3. Basis began with 14 categories. 

Subsequently this was extended to 20 categories based on feedback from collaborators, as well 
as internal review and testing. Beginning with change agent and change effect as two 
categories for defining a change, a larger set of categories in the full basis is proposed for 
defining a larger set of possible changes for a system.  The twenty categories, which together 
form the semantic basis, are intended to collectively define a change in a system, thereby 
creating a consistent basis for specifying change-type ilities in formal statements.  A system that 
can be verified to display the quality described in the statement can then have a traceable and 
consistent means for displaying a verifiable desired ility.  
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The twenty categories are: perturbation, context, phase, agent, impetus (nature, parameter, 
origin states, destination states, aspect), mechanism, outcome (effect, parameter, origin states, 
destination states, aspect), level of abstraction, and value qualities of the change (reaction, 
span, cost, benefit).   
Unique choices for each of these categories will formulate the change-type ility statement.  The 
twenty categories along with their associated choices are illustrated in Figure. 4.  The semantic 
basis aims to capture the essential differences among change-type ilities through specification 
of the following general change statement with regard to a particular system parameter: 
In response to “perturbation” in “context” during “phase”, desire “agent” to make some 
“nature” impetus to the system “parameter” from “origin(s)” to “destinations” in the 
“aspect” using “mechanism” in order to have an “effect” to the outcome “parameter” from 
“origin(s)” to “destination(s)” in the “aspect” of the “abstraction” that are valuable with 
respect to thresholds in “reaction”, “span”, “cost” and “benefit.” 
Application of the semantic basis begins with a user generating a change statement.  The 
change statement is refined and assigned categorical choices within the basis, with the 
intention that the applicable ilities will emerge from the specified change statement.  For this 
use to work, particular combinations of choices in the basis must be assigned an ility term label.  
Such an exercise is similar to assigning definitions for ilities, albeit with an imposed closed form 
“little language” supplied by the basis.  For example, if “agent” is set to “external” then the 
“flexible” label will apply.  In this way, a user does not need to use, or know, a particular ility 
label a priori, thereby avoiding semantic ambiguity in the terms.  If the basis accurately and 
completely describes the underlying categories for change-type changes, then a user should be 
able to describe any change-type ility through the basis consistently. 

Figure. 4. Change-type prescriptive semantic basis in 20 categories 

In order to validate the proposed use of the basis, two activities need to be accomplished: (1) 
refinement of the basis itself, both in terms of complete categories and in terms of choices 
within those categories; and (2) if the use of particular ility terms is ultimately desired, a 
mapping between patterns in the basis and ility terms needs to be generated.  If the latter is 
accomplished, then any usage of the basis for specifying particular change statements will 
result in consistently derived ility term labels.  It is hypothesized that particular change-type 
ilities will correspond to particular choice(s) in this basis.  In this way, a consistent method for 
specifying ilities can be pursued.  An example of using the semantic basis for mapping ility 
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terms is illustrated in Figure 5.  The results in the figure are presently a work in progress and are 
meant for illustration purposes only. 

Figure 5.  Using the semantic basis to consistently identify ility term labels 

Using the basis. The twenty categories can be a bit overwhelming at first; alternative versions 
where the “optional” categories are left out, can be used at different stages of the design 
lifecycle.  For example, leaving out the “mechanism” column means that the statement leaves 
the mechanism ambiguous, allowing engineers to evaluate alternative mechanisms for meeting 
the statement.  Likewise, leaving out the “impetus” categories results in an outcome-oriented 
change statement.  In Phase 3, the team continued work on alternative use cases; these are 
being further defined and will help to generate specific examples. 
Beginning with a desired system parameter change statement, the user makes choices across 
the categories, signified by the double quotation marks (“ ”) in the general form of the 
statement.  It is important that this statement be specific to a chosen system parameter, as 
currently the change-type ilities are conceived as being defined only in relation to particular 
system parameters (i.e. there is no such thing as “generalized flexibility” as one can always find 
exceptions).  Choices in the categories for the particular considered change result in a 
categorized change description.  Optional categories do not have to be used if not of interest 
for the statement use. 
As an example, a simple (optional categories excluded) statement could be: “in response to 
loud noises at night,” desire “owner” to be able to “change the level of volume” of “his stereo” 
“in less than one second.”  This statement requests “flexible” (i.e., external agent is owner) 
“scalability” in “volume” and specifies the value proposition (i.e., what is deemed “valuable” is 
that it take less than one second to execute this change).  Alternative stereos can be evaluated 
on this basis, with those stereos able to change more quickly as being more valuably scalable in 
this regard. If ility labels have been previously mapped to the basis, then one can automatically 
derive the applicable ility terms implied by the categorized change statement (i.e., flexibly 
scalable in this case). The distinction here is important since one could have generated an 
alternative statement that did not specify an external agent (i.e., resulting in “flexible” label), 
rather leaving the agent open or even internal (e.g., the stereo changes its own volume with 
associated design implications, and is labeled “adaptable” instead of “flexible”).  
Each item in double quotes (“ “) corresponds to categories that differentiate the change-type 
ilities. As a prerequisite to specifying a change statement, one must have in mind the 
“parameter” of the “system” that is being affected. The “perturbation” refers to whether the 
change is in response to a perturbation of finite duration (disturbance), or one likely to last 
(shift), or no perturbation at all (none), or if it doesn’t matter (<empty>). The “context” refers 
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to whether the response is desired in a particular case (circumstantial) or many cases (general), 
or it doesn’t matter (<empty>).  The “phase” of the lifecycle when the response occurs has 
choices of pre-ops (before operations), ops (during operations), inter-LC (between lifecycles), or 
doesn’t matter (<empty>). The “agent” is the force that instigates the response through an 
impetus to the system; active response requires a change agent, which can be internal or 
external to the “system” boundary, while passive response doesn’t require an agent (none), or 
it may not matter (<empty>).  
Changes within the statement are framed as “impetus” and “outcome” to capture how one 
might want to specify a range of changes in inputs (impetus), and the resulting range of 
changes in outputs (outcome).  Both the impetus and outcome sections of the statement are 
described by five categories: 1) the “nature” (impetus) or “effect” (outcome) of the change 
(decrease, remain same, increase, not-same, or doesn’t matter=<empty>); 2) what type of 
“parameter” change (in level, set or <empty>); whether there is a target number of 3) “origin” 
states and 4) “destination” states (each ranging from one, to few, to many to <empty>); and 5) 
the “aspect” referring to whether the change is in the form, function, operations, or doesn’t 
matter (<empty>).  The “mechanism” specifies how the outcome is achieved. 
The “abstraction” refers to the level of abstraction of the system, which can be at the 
architecture level (e.g., Boeing 737 aircraft), design level (e.g., 737-800), system level (e.g., 737-
800, tail #: C-FTCZ ), or doesn’t matter (<empty>). Lastly, a grouped set of categories describe 
how the change can be evaluated as valuable. This set of “valuable” categories relates aspects 
of value to thresholds in “reaction” (timing) and “span” (duration), “cost” (resources), and 
“benefit” (utility). “Value” is separated from the rest since it represents a coupled set of 
tradeoffs that can be used to judge the goodness described in a change statement. For 
example, one might be willing to accept later, slower, and more expensive if it provides greater 
utility, but if it provides less utility, then maybe it should be sooner, faster, and cheaper. Many 
combinations of these can result in ility statements representing valuable change. 
A more complete version of the earlier change statement example could then be: In response 
to a loud noise (perturbation) late at night (context), during operations (phase) of system, 
desire owner (agent) to be able to impetus {increase (nature) the knob angle level (parameter) 
from one state (origin) to many states (destination) in the system form (aspect)} through 
turning the knob (mechanism) that results in the outcome {increasing (effect) the volume level 
(parameter) from one state (origin) to many states (destination) in the system function 
(aspect)}in the owner’s stereo system (abstraction) that takes less than 1 second (valuable). 
As research progresses on the prescriptive semantic basis, several open questions remain: 
What types of ilities can be represented in the basis? Can or should the basis be expanded or 
modified? What are the appropriate basis categories? What are appropriate choices within 
each category? 
With regard to mapping specifications within the basis to particular ility term labels, are there 
consensus patterns in matching ilities to the basis given particular definitions for each ility? Are 
there consensus patterns for given ility terms without provided definitions (i.e. is there some 
inherent, general meaning within an ility term that can be more consistently expressed using 
the basis than through traditional English phrase-based definitions)? 
More generally, this research begins to structure the question regarding what semantic fields 
span the general set of ilities. Preliminary results (Ross et al., 2011) indicate that at least three 
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semantic fields may exist in the general set of “ilities” including change-type, architecture-type, 
and new ability-type (the last kind includes such ilities as “auditability,” “learnability,” and 
“drinkability”). Identifying and classifying the current existing ility terms into appropriate 
semantic fields will serve to eliminate ambiguity in meaning, usage, and application, as well as 
allow for the explicit consideration of trade-offs within the semantic field. A consistent basis 
within a field can allow for direct comparison of its members; for example kinship terms clearly 
distinguish between the meaning of uncle and cousin, even though a single person could serve 
in both roles. Using the prescriptive semantic basis approach also allows one to consider 
whether each semantic field can be represented with an internally consistent basis. 
Revisiting the concept of relationships amongst the ilities, the basis can provide a first order 
approximation to clarify semantic differences amongst ilities within a particular semantic field. 
For example the difference between “flexibility” and “adaptability” is whether the change agent 
is external to or internal to the system’s boundary, respectively. The basis will also point out 
how a given change statement can display multiple ilities simultaneously. For example, agility is 
with regard to how quickly the change can be executed, so one could desire an agile, scalable 
change to describe a quick and level-increasing system parameter change. In this way, the 
difficulty in placing “agility” within the means-ends hierarchy study, described above, can be 
clarified, as any change could get labeled as agile, depending on its application and desires of 
the change statement writer. An additional investigation will be needed in order to clarify the 
relationships between different semantic fields. For example, how are members of the 
“architecture-type” semantic field related to the “change-type” semantic field? Preliminary 
work investigating design/architecture principles have begun to describe relationships between 
particular ilities and principles, but a unifying understanding of the relationship between 
semantic fields is not yet mature. Our working hypothesis is that “architecture-type” ilities are 
enablers for “change-type” ilities. 
Given a stable, validated basis, can practitioners or academics use the basis to generate change 
statements, which will automatically label with the appropriate ilities? Do the ility term labels 
resonate with the users? The purpose of the research is not to generate more definitions, but 
rather, unambiguous, verifiable, standardized representations of desired system properties. 
One of the possible emergent results of this work may be the discovery of “new” ilities that do 
not yet have ility term labels, and yet may represent important desired system lifecycle 
properties, such as the distinction between functional versatility and operational versatility 
seen in Figure 6. Inverting the concept shown (i.e., achieving similar function with similar 
operations using multiple forms) results in a “new” ility we can label with “substitutability” and 
is a property displayed in computers, for example, where multiple different disk drives or 
monitors can be substituted for one another. 
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Figure 6 (a) Functional versatility; (b) operational versatility; (c) substitutability as suggested by the 
semantic basis 

The ultimate goal of this research is to develop the basis or bases to be prescriptive 
instrument(s) for spanning the semantic fields whose union encompasses all “ilities.” With such 
an instrument, practitioners can have a consistent and (potentially) complete list of possible 
ilities to consider for their systems, as well as a means to create verifiable requirements and 
system specifications. Academics can have a consistent basis for enhancing ility-related 
research and a means to advance the quantification of and clarification of relationships 
amongst ilities in general, as well as a means to educate future generations of engineering 
students so that one day ilities can become part of the lexicon of successful project managers.   
To realize this goal, usability testing is an important activity. During Phase 3, MIT performed 
continued usability testing of the basis including the conception of a translation to assist in 
communicating the statement into more understandable language.  As a first pass, color-coding 
was used to help parse the full basis change statement, as shown here:

The full basis is used when trying to write a very specific requirement statement, and should 
not occur until after analysis to determine what should be done.  In different use cases of the 
basis, variations on the full statement are useful.  
A subset of the basis with 11 categories can be used if there is a constraint to make use of an 
existing/inherited mechanism, for example.  This leaves open the “valuable” specification, but 
leaves in the “mechanism” category to constrain how the change should occur.   

A subset of the basis with 10 categories is used early in the design phase, in order to not over 
specify the change mechanism.  This allows engineers to propose/evaluate alternatives, or 
impetus. Leaving out the “valuable” part of the statement supports exploration. Later, when 
implications of ility statements are better understood, one can specify subjective thresholds on 
what makes the change “valuable”.   
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A short example is shown below 

Longer variations of this example include: 
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Full use of the semantic basis-derived change statement is clearly a more verbose version of the 
same change.  But the illustration points out the consequences of varying the level of 
specificity. For example, one could have removed the “owner” as the change agent and left that 
category blank, allowing designers to develop a system that as other potential change agents 
(e.g. a software agent, allowing for adaptive volume control by the system itself). Similarly, 
alternative definitions and thresholds for “valuable” could have been used, and always reflect 
tradeoffs (e.g. maybe willing to wait 20 seconds for volume change effects if the dollar 
acquisition cost of the system is substantially less). 
Examples collection  
During this phase of research the team continued capturing descriptive change statements 
from historical systems, mapping them to the semantic basis-derived change statement. This 
also resulted in inferring related “ility labels” (i.e. the ility terms that we currently map to a 
subset of choices within the semantic basis). An example subset of these changes is shown 
here: 

For existing changeable systems, this is a descriptive capture of a change statement.  Based on 
data availability, these statements are captured at various levels of specificity. In reality, the 
most detailed version of the change statement could theoretically be populated given sufficient 
data. 
Collaboration 
During this phase the MIT team interacted with UVa in spiraling on a web service 
implementation of the basis.  The interaction resulted in clarifications needed for the 
categories, including “naming” and optional fields.  Challenges in basis usage highlighted the 
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need for illustrative examples as well as motivating the need for the translation layer. A 
screenshot of the “Ross Model” (i.e. a slightly earlier version of the semantic basis) is shown 
below.  More details on this effort are described in the UVa section of this report. 

Active collaboration with UVA has continued in the effort to refine the semantic basis, as UVA 
worked formalization.  It is recognized that the full verbose statement of the 20-category basis 
is unwieldy when viewed in “English”, and that construction of “plain English” phrasing is partly 
customized based on particular statement.  The research team believes a “translator” would be 
valuable in converting the basis category choices into English.  We see this translation layer and 
underlying “little language” as key contributions of this work. Next phase research will develop 
the translation layer and seek collaboration with team for feedback and testing. Initial efforts 
were made on developing a concept for a translation layer, with examples of statements from 
basis.   
Submitted Publications during this Phase 
1. Ross, A.M., and Rhodes, D.H., “Towards a Prescriptive Semantic Basis for Change-type
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2. Dou, K., Wang, X., Tang, C., Sullivan, K., and Ross, A.M., “Computational Foundations for a

Science of Ilities, Tradeoffs, and Affordability,” 13th Conference on Systems Engineering
Research, Hoboken, NJ, Mar. 2015.
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2.3 PHASES 4 AND 5 PLANS

2.3.1 TASK 1.  ILITY FOUNDATIONS

In FY2015, the MIT team will further refine the ilities semantic basis for change-related ilities, 
building on the work and using feedback from the UVA team.  The team will continue working 
with UVA in their effort to develop a REST (representational state transfer) web-based service 
implementation as a means for formalization and testing of the basis. This will inform potential 
use cases and architecture needs for semantic basis evolution. The evolved semantic basis will 
be validated using historical examples as well as through user feedback.  The historical 
examples will also be used to help illustrate usage of the basis. 
The team will design and develop an interpreter layer for translating the semantic basis into a 
user-friendly interface. The developed interface will be tested with users in order to validate 
the usefulness of the semantic basis. The evolved semantic basis is intended to generate 
repeatable, rigorous change-related ilities statements, along with possible accompanying 
metrics that can be used for verification.  
The team will continue working with UVA both for collaboration on development of the 
translation layer, as well as formalization of the underlying basis. A joint paper is intended as an 
outcome of this work. The team will also work with GaTech to find opportunities for using the 
basis to inform their work. The team will also collaborate with the broader foundations iTAP 
team members for opportunities to inform their ilities research. 
In FY2016, MIT will develop a software-based implementation of the evolved semantic basis for 
potential deployment to government organizations. As the software is developed, further 
refinements to the translation layer will be implemented as necessary. Documentation with 
case examples will be created.  Demonstrations and early adopter training will be conducted. 
Trial use will inform the development of next steps toward a broader transfer and 
implementation strategy. In FY2016, in support of the overall research on the foundations, the 
team will provide critical feedback and review of other iTAP team member research. 

3 University of Virginia (UVa) 
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3.1 Past Results 

In Phases 1, 2 and 3, UVa explored alternative methods of formalizing the SQs and their 
relationships, including development and exercise of prototypes.  This work converged on the 
Coq formalization of entities and relationships, and its application in analyzing the consistency 
of the MIT SQ semantic basis, leading to several improvements in the semantic basis and the 
submission of an accepted paper of CSER 2015. 

3.2 Phase 4 Results 

UVa presented the CSER 2015 paper, and participated in several mini-workshops with USC and 
MIT at CSER 2015, INCOSE IS 2015, and a 3-day working session at USC to apply the Coq 
formalization to the USC stakeholder value-based, means-ends ontology framework.  The result 
was a successful formalization of the Dependability means-ends framework, enabling analysis 
of the degree to which the evidence of the Dependability means (Reliability, Availability, 
Maintainability, Safety, Security, etc.) assured the evidence of the Dependability ends.  UVa 
continued to elaborate the Coq formalization to the rest of the USC stakeholder value-based, 
means-ends ontology framework.   

Based on these results, UVa and USC obtained a joint NSF grant to extend the formalization and 
use it to develop and test an underlying theory enabling consistency analysis of combinations of 
SQs. 

3.3 Phase 5 Plans 

UVa will continue to elaborate the theory, and will develop and test prototype tools for 
performing consistency analysis of SQ combinations, in collaboration with USC and MIT. 

Reference 

Dou, K., Wang, X., Tang, C., Sullivan, K., and Ross, A.M., “Computational Foundations for a 
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4 Wayne State University (WSU) 
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4.1  Introduction 
WSU’s research is focused on developing affordability and tradespace MPT that are tightly 
linked to the activities and decisions made during system acquisition for DoD Programs of 
Record.  Our focus has been on the need to develop and acquire cost-effective systems that are 
operationally suitable and effective when fielded, despite long development lead times, and 
can be cost-effectively upgraded and extended during extended service lives.  Within the DoD 
system acquisition process, these challenges are addressed through the acquisition strategy 
and system requirements.  Our goal in this project is to develop, test, demonstrate and 
transition SE Methods, Procedures and Tools to acquisition commands to solve these 
challenges. 
Our approach is to work with TARDEC/RDECOM and NAVSEA acquisition commands to identify 
needs and challenges, to identify the solution features and capabilities, then to conduct applied 
research and development towards the MPT.  Our research approach has been to engage 
exemplar end-users, TARDEC/RDECOM and NAVSEA, iteratively throughout the process.   
The exemplar DoD customer elements are engaged in all aspects of SE in DoD system 
acquisition.  This helps ensure that the methods, procedures and tools we develop are generally 
applicable to other DoD elements engaged in concept development, requirements specification 
and tradeoffs during engineering and manufacturing development that share the SE functions 
and systems acquisition lifecycle model.   
Our approach is to develop, demonstrate, and transition the MPT working with our early-
adopter partners.  Specific example realizations and applications to demonstrate relevance and 
suitability are in the context of the ground vehicle and surface ship domains.  It is necessary to 
focus on a specific domain in order to be able to get to the level of detail and completeness 
needed to demonstrate that the MPT are practical and relevant in the context of real DoD 
acquisition Programs of Record. 

Past 
Prior to FY2015, we primarily conducted research on needs and challenges, solution features 
and capabilities, support tools, and the vision for MPT to address the needs and challenges. 
This framed our 2015 research.  Key system acquisition tradespace and affordability needs and 
challenges came back to the fundamental problem of changing operational conditions and 
capability needs, and budget priorities, in a world whose changes cycle faster than the DoD 
system acquisition life cycle, and that changes dramatically over the service life of long-lived 
DoD systems. 

Present 
In 2015 we identified solution opportunities in DoD acquisition methods and strategies, and 
solution opportunities requiring implementation by concept and engineering developers.  This 
is a significant difference.    
DoD acquisitions can be structured in such a way that provide the Government with greater 
range of future down-selection options to choose from, and that provide greater modularity 
and adaptability without significant increase in development cost through economic motivation 
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(not incentives, but motivation) for developers.  This method is applies the principles of Set-
Based Design (SBD) to formulate an acquisition strategy.   
We also develop rigorous analytical frameworks for SBD as a design-decision method for 
developers.  One formulation addressed the problem of protracted acquisition.  The other 
formulation addressed the need for adaptability and extensibility in long-lived systems. 

Future 
In FY 2016 we plan to socialize the proposed methods for set-based acquisition, applying the 
principles of SBD to the acquisition strategy and method, with our acquisition command 
transition partners.  Our goals are to clarify and refine the approach, and initiate a trial 
application.  The trial application will demonstrate transition of the methods to a DoD user. 
Further promulgation to the greater acquisition community will proceed from there, 
referencing the application results. 
In FY 2016 we plan to complete the formal framework and MPT applying SBD to the two 
challenge areas, initiate “bench-level” tools, and initiate demonstration applications using a 
recent or current Program of Record.  We anticipate completing the demonstration applications 
in 2017, working with one of the transition partners.  These methods involve complex 
algorithms, and implementation as tools for complex systems is non-trivial.  Obtaining design-
level data is also non-trivial.  We do not anticipate “turn-key” full-system MPT, but rather 
methods that can be judiciously applied to key system design trades and decisions. 

Summary of System Acquisition Challenges Addressed 
Our research is developing analytical tradespace and affordability MPT to address two issues in 
DoD system acquisition: 

(1) During protracted systems acquisition, operational conditions, needs, budgets and 

priorities change, causing turbulence in development, increased time and cost, sub-

optimal system design, and sometimes program cancellation.  In order not to be limited 

to technologies that are mature at the inception of the development program, DoD 

allows concurrent development in which subsystems are matured in parallel with the 

system development program.  This introduces additional uncertainty regarding the 

cost, performance, burdens and compatibility of these technologies.  MPT are needed to 

improve the resilience of system development with respect to these various sources of 

turbulence and uncertainty. 

(2) During the long service lives of DoD systems, operational conditions and needs change, 

and adversaries adapt to avoid our systems’ strengths and exploit our systems’ 

limitations.  We upgrade our systems to adapt to these changes and to incorporate new 

technologies.  The ability to upgrade, and the cost of upgrade, depend on the reserve 

capacity and modularity of the initial design.  Greater reserve capacity and modularity 

increase initial cost, but increases the scope of upgrades, reduces the cost of upgrades, 

and defers the need for a new system development.  Decisions regarding reserve 

capacity and modularity involve complex tradeoffs. 

Summary of Solution Approaches and Progress 
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A significant insight was that if the Government had a greater variety of solutions to choose 
from, with different combinations of performance and cost, the Government could more easily 
adapt to changes in operational conditions and capability needs, budget priorities, technology 
advances, etc.  This would give the Government more options, while allowing the Government 
the flexibility for changing needs and priorities.  We investigated how the Government could 
create this outcome, without significant change in development cost or acquisition procedures. 
We identified changes in acquisition methods or strategy that would produce this result.  When 
we examined the implications for system design and development, we saw that it would also 
produce more versatile, adaptable and extensible systems as a result of the economic 
approaches that contractors would naturally take in their own best economic interests.  This is a 
potentially significant result with large beneficial impacts, yet low cost and technical risk. 

We developed frameworks for rigorous formulation and technical implementation of SBD 
methods.  We developed a stochastic sequential decision-making formulation for SBD during 
protracted design.   To address the challenge of the need for adaptability and extensibility in 
long-lived systems, we re-envisioned the production system (at Milestone C) as the root for a 
set of potential future variants.  This is the historical precedent, but this vision has not been 
used as the basis for selection.  We applied the principles of adversarial risk analysis (an 
offshoot of game theory restricted to the next few moves) to prioritize adaptation/extension 
capability. 

4.1.2  SBD as an Acquisition Principle 
These principles can be applied to address several challenges faced by DoD system acquisition: 

(1) Operational conditions and needs and budget priorities can and do change during 

system development.  The best estimates at Milestones A and B, which are written into 

Technology Development and into Engineering and Materiel Development contracts as 

performance requirements and cost targets, are only estimates of what the needs and 

priorities will be at the Milestone C production decision. 

(2) In an effort to avoid being locked-in to old but mature technologies, contractors are 

allowed to propose new but not fully mature technologies in the expectation that they 

will mature during system development.  The eventual cost, performance, burdens, and 

compatibility of the technologies are somewhat uncertain.  More accurate estimates 

with less uncertainty are developed over time.   

(3) Selection decisions and technology choices that made sense at an earlier milestone 

sometimes prove to “miss the mark” and be expensive to correct at a later milestone 

when conditions and needs have changed and new data on technologies are available. 

(4) Successful DoD systems have long service lives – 60 years for a system and 20 to 60 

years for an individual items of equipment are not uncommon.  During this time, 

operational conditions, needs, and available technologies change.  The systems and 

individual items of equipment are upgraded to add new mission capabilities, extend 

performance with different technologies, and increase the infrastructure capability to 

host added functions and technology burdens.  The cost of upgrades and the limits to 



TO 0037, RT 137 

65  

which a system can be upgraded depend on the design selected at the original 

development decisions. 

Current DoD practice is to publish performance requirements and an AUPC cost target at 
Milestone A for Technology Development, then issue multiple awards against the same 
requirements (“Competitive Prototyping”).  When the conditions, operational capability needs, 
or budget priorities change, the Government is stuck:  they have different solutions to the 
wrong problem.  Sometimes DoD acquisition continues competitive prototyping into EMD, but 
still with the same set of requirements. 
The DoD has attempted to generate solutions with somewhat different capabilities by 
publishing “threshold” and “objective” levels for some performance requirements, and tiered 
requirements with complicated leveling criteria (e.g., Tier 1 requirements are at the threshold 
level for key requirements.  All tier 1 requirements must be met before any credit is given for 
tier 2 requirements.  Tier 2 requirements are the objective level of key requirements. 
Proportional credit is given for partially reaching objective levels.  Tier 2 requirements must be 
met before any credit is given for tier 3 requirements.  Tier 3 requirements are not key and can 
be waived.).  Contractors have objected to this system as being unclear as to how it will be 
applied in award decisions.   While it is designed to give the Government some decision 
flexibility, it can be improved, simplified, and overcome contractor objections. 
Current DoD objectives recognize the need for “resilient” systems that can be upgraded and/or 
adapted for different capabilities and technologies.  Current practice is to address this need by 
requiring (a) some degree of “reserve capacity” (aka “design margin”) in the system 
infrastructure, and (b) consideration of modular design.  This approach is hampered by lack of 
appropriate SE MPT.  There are no SE MPT to decide how much of what type of reserve capacity 
is needed, trading off the cost of providing the reserve capacity versus its potential benefit.  
MPT to evaluate the costs and benefits of different extent and level of modular design are 
lacking.  Consequently, there are no standards and basis to justify costs or make cost-
effectiveness tradeoffs.  (Current DoD practice has also been to acquire families of systems, i.e., 
a set of variants of an underlying system design.  This ensures, to some extent, that the 
underlying design is adaptable and extensible.  It provides a constructive proof.) 
Current DoD practice is commonly to accept a proposal for a single design contract.  In many 
cases a contractor can submit multiple proposals, but each proposal is for a design concept. 
These practices limit the Government’s options to adjust to changes in need, budget priorities, 
etc.  These practices tend to ensure that the Government receives proposals and designs that 
provide very similar capabilities for similar costs.  
The Government could achieve a more robust and resilient acquisition system with minor 
changes to acquisition practices by employing the principles of SBD to the acquisition strategy. 
The guiding principles of SBD are 

(1) To pursue multiple different solutions in parallel, i.e., a set of solutions with different 

characteristics 

(2) To defer specification or down-selection decisions until there is more information to 

make a better decision 
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The goal is to produce greater range of cost and performance options at down-select decision 
points without increasing development cost.  We formulated two methods to incorporate the 
principles of SBD into an acquisition strategy.  The first is a very small change in practice that 
gives some of the benefits of SBD.  The second has greater impact, by structuring the 
acquisition in a way that leads the contractors to generate sets of alternative solutions from 
which the Government can choose.   
Simple Approach 
There is a simple change in acquisition practice that would achieve some of the benefit through 
limited application of SBD principles.  Currently the Government often issues multiple contracts 
for Technology Development for “Competitive Prototyping.”  All contractors get the same 
requirements.  Sometimes this competitive prototyping is continued in EMD.  Because all the 
solutions are designed to the same requirements, they tend to be not much different in cost 
and performance.  If the conditions have changed, if the needed operational capabilities have 
changed, or budget priorities, the Government is stuck:  they have multiple different solutions 
to the same wrong target.  A simple change would give the Government the ability to defer 
final specification of requirements and costs.  Instead of issuing multiple prototyping awards to 
one set of requirements, the Government could issue one award to each of multiple different 
sets of requirements.  Then at down-select the Government would have greater cost and 
performance variety to choose from, and could pick the solution that best met the current 
understanding of needs and budget priorities. 
More Complete Approach 
Several changes to acquisition practice are needed to incorporate SBD as an acquisition 
strategy.  First, instead of publishing point requirements or complicated tiered structures with 
threshold and objective levels, the Government could publish a range for each requirement 
saying that the levels for down-selection at the next milestone are expected to be somewhere 
in that range.  The down-select criteria are not published at contract award, but guidance as to 
the potential range of down-select criteria are published in order have options with a wider 
range of cost and performance.  Second, allow a contractor to propose a set of solutions based 
on common core elements and modular elements, such that different configurations of 
different modular yield designs with difference performance and cost.  Contractors will 
automatically choose an appropriate degree of commonality and modularity that enables them 
to generate designs with a wide range of performance at low cost (This approach is sometimes 
called “kit based design”.  It is the modern approach to automobile and truck design. 
Volkswagen is the lead in this design approach among the auto industry).   Third, at down-
select, when the Government has updated information regarding operational conditions, 
capability needs, cost targets, technology cost and performance, etc., the Government will have 
a wider range of options and can select the option or subset of options most closely matching 
the current understanding of need.  A significant ancillary benefit is that since designs are 
designed as modular assembly variations, they will have been naturally designed to facilitate 
later modification and upgrade. 
The sequence of events within the standard acquisition life cycle model could go something like 
this: 

(1) At Milestone A, the Government publishes capabilities needed, performance 

requirements and cost target as they do now.  The change is that ranges are given for 
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capabilities, performance and cost.  This is not a great change since the Government 

currently does something like this with “threshold” and “objective” values.  The changes 

are to include cost, and to present the requirements range not as “threshold and 

objective” but as the range of what might be used at down-selection at the end of 

Technology Development. 

(2) Contractors are allowed to propose pursuing multiple solutions during Technology 

Development as part of a single proposal, to span the range cost and performance 

range.  Contractor will naturally tend towards modular design of common core elements 

in order to reduce their Technology Development cost and provide a greater range of 

cost and performance realizations in their set of solutions.  Another way of explaining 

this is that contractors can propose a modular solution with common core elements that 

can be configured in different combinations yielding solutions with different 

performance levels and cost. 

(3) At Milestone B, the Government publishes the requirements and cost targets for EMD 

phase.  The new requirements reflect changes in operational needs and budget 

priorities as well as what was learned about costs and capabilities from competitive 

prototyping during Technology Development.  Once again, the requirements and cost 

targets are the ranges of what might be used at the Milestone C decision. 

(4) Contractors are allowed to propose pursuing multiple solutions during EMD as part of a 

single proposal, to span the range cost and performance range.  Contractor will naturally 

tend towards modular design of common core elements in order to reduce their 

Technology Development cost and provide a greater range of cost and performance 

realizations in their set of solutions.  Another way of explaining this is that contractors 

can propose a modular solution with common core elements that can be configured in 

different combinations yielding solutions with different performance levels and cost. 

(5) At Milestone C, the Government selects a configuration (or none) for Low Rate Initial 

Production.  However the operational conditions, budget priorities, etc. have changed, 

these changes are reflected in the configuration selection criteria.  This approach gives 

the Government choices at Milestone C beyond Go/NoGo.  There is an added benefit in 

that this approach will tend to yield a resilient design, i.e., one that can economically be 

modified later because, by design, it could be converted to one of its “siblings” by 

swapping modular elements.  At Milestone C, the Government could consider resilience 

in the selection criteria – the cost of converting to siblings with different performance 

levels. 

This approach does not require the Government to use or require any novel SBD algorithms or 
tools.  It does not require the Government to develop requirements for modularity.  It simply 
uses economic incentives that will cause the contractors to develop modular solutions, to give 
the Government selection options, and allow the Government to defer specifying the final 
decision criteria.  It has the additional benefit of producing solutions that are naturally resilient 
by design.  The implementation requires only a small change in Government acquisition 
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practices:  giving a range of potential performance requirements and cost target, not as 
“threshold” and “objective” but simply that levels somewhere in the range will be used for 
down-selection.  Contractors are allowed to produce a solution with multiple configurations 
than span the range of potential requirements and cost targets. 
4.1.3  SBD in Design for Resilient Development during Protracted DoD System Acquisition 
Summary  
DoD material acquisition is often a protracted process.  Consider the Joint Light Tactical Vehicle 
(JLTV), a tactical truck replacement for the HHHWV:  the Technology Development phase from 
Milestone A to B took 4 years, and the Engineering and Manufacturing Development (EMD) 
phase from Milestone B to C took another 4 years.  Many programs take longer.  During this 
time, operational needs can change, budgets can change, and program management can 
change.  These changes can impact system requirements and priorities.  The JLTV program is an 
example.  Several months before the Milestone B decision, program management decided that 
the average unit production cost (AUPC) target of $600K was untenable, and that the cost had 
to be competitive with an upgraded HMMWV, in the vicinity of $325K.  This required the 
program to quickly explore concept changes and requirements tradeoffs to generate a new 
concept and new requirements for $325K AUPC.  In other cases, such as the Future Combat 
Systems, the concept and requirements were not resilient with respect to changing operational 
needs, and this was a major factor leading to the program being cancelled. 
SBD has been suggested as a development methodology that is resilient with respect to 
changes priorities and operational capabilities during the development process, as well as being 
resilient with respect to new information regarding the cost, capability, and compatibility of 
subsystems and technologies in the system concept.  The principle of SBD for resilient 
development is to carry multiple diverse concepts forward, downselecting and revising the set 
(1) as new information arrives, and (2) as the system development progresses.  However, 
Systems Engineering MPT to select which and how many concepts to carry forward, and at 
what points during development to revise the concept set are lacking.  A rigorous formulation 
for system development SBD is needed, upon which MPT for SBD decisions within the DoD 
system acquisition lifecycle can be developed. 
One of our major research areas in 2015, and going forward during 2016, addresses this 
deficiency.  The research goal is to develop a rigorous analytical formulation of SBD for resilient 
system development, and practical MPT to realize and implement the capability.  In 2015 we 
developed the rigorous analytic formulation, and made substantial progress defining the 
application procedures and beginning to develop the application mathematical tools.  This 
included specifying “helper” tools and data requirements to integrate the use of the SBD 
methods with development program planning and scheduling. 
Details  
This section describes a formalism and approach for developers to employ SBD in concepting 
and design in order to maximize value to the Government at some future decision point.  The 
premise is that at the Government publishes performance requirements and cost targets as 
point values (not ranges as described in the previous section).  The cost targets, performance 
requirements and priorities, etc. may change during the development process.  Updated 
information regarding the cost, performance, burdens and compatibility of some technologies 
may become available during system development.  These uncertain and variable factors are 
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referred to as externalities because they are exogenous inputs to the design process.  They are 
treated as random variables with probability distributions that change over the course of the 
acquisition life cycle. 
We assume there exists a function to calculate the value of a specific design given specific 
values of the externalities.  The value function includes average unit production cost a 
performance on multiple dimensions.  The value function does not include development costs, 
which are treated separately since they are a set property.  The design value function produces 
a scalar output for specific values of the externalities.   
When we have a set of designs to choose from, and specific values of the externalities, the 
value of the set is the maximum value overall the designs in the set, i.e., we get to choose the 
best solution.  During development, the externalities have some probability distribution.  
Applying the set value function for a set of designs yields a distribution of value.  For a given 
solution set, different realizations of the externalities will lead to different choices.  Since the 
externalities have a probability distribution, we get a distribution of set value.  
We need to be able to compare the value of sets under uncertainty to chose the “best” set to 
pursue.  To do this we need to convert the distribution of value to a scalar.  A robust approach 
is to pick a percentile of the distribution as a reference point.  The scalar value of a set under 
uncertainty is then the Nth percentile of the distribution of set value given the distribution of 
the externalities.  Choosing the 50th percentile uses the median value.  Choosing a low 
percentile is risk adverse; choosing the 0th percentile uses the worst-case value.  Choosing a 
high percentile is optimistic; choosing the 99th percentile uses the best-case value. 
(An alternative formulation is possible that compares sets over the distribution of externalities, 
i.e., sets are compared to each other over the distribution of externalities.  This approach is not
being pursued.) 
We consider a framework with three decision points:  Milestones A, B and C.  Prior to Milestone 
A, there is some universe of candidate solutions.  An initial set of solutions is chosen at 
Milestone A.  The cost to develop the set from Milestone A to B is not simply the sum of 
individual costs since some of the solutions in the set may share design elements and 
subsystems.  At Milestone B, the cost to develop a set of solutions to Milestone C depends on 
which solutions were in the set chosen at Milestone A.  Adding a new solution might not cost 
much if it were similar to a solution in the set at A or if it shared features with several different 
solutions.  We assume these data are available. 
At Milestone C all development costs are sunk costs and do enter into consideration.  Prior to 
Milestone C, set selection needs to consider development cost as well as set value.  We assume 
that, prior to Milestone C, there is some function that combines cost to develop to the next 
milestone and set value. 
At this point we can case SBD as a sequential decision process, with a stochastic optimization 
solution.  At Milestone A, we consider all possible solution sets and pick the solution set with 
the highest value assuming that at Milestone B we only prune the set and do not add new 
solution, and at Milestone C we pick a solution from the set remaining after Milestone B.  Value 
includes set development cost from A to B, and development cost for the reduced set from B to 
C.  At Milestone B we again consider all possible solution sets (not just subsets of the set chosen 
at A but can add solutions), and pick the solution set with the highest value assuming that at 
Milestone C we will pick a single solution.  Value includes the set development cost from B to C. 
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At Milestone C we consider only solutions developed up to this point and pick the singleton 
solution with the highest value. 
SBD approach dominates the single-point solution, i.e., the expected outcome is never worse, 
because, as developed, the SBD methodology could yield a singleton set, i.e., a single design in 
the solution set.  Point-based design is a subset of SBD.  SBD has the potential to be more 
efficient and effective because it considers the cost of changing designs and the potential 
performance shortfall with respect to changing requirements.   
4.1.4  MPT to Determine Initial Reserve Capacity Requirements for Long-Lived DoD Systems 
Summary 
DoD systems tend to be long-lived.  Air, land and sea systems are commonly planned to be in 
the use for 30 or more years, but end up being in use for 50 or 60 years.  Individual vehicles, 
aircraft and ships often remain in use (with recapitalization) for twice their intended service life. 
During this time the system designs are upgraded, and individual platforms are upgraded during 
recapitalization to adjust to changing operational needs and available technologies.  As an 
example, the M113 had five major block upgrades during its 60 years in service.   
During development 

- MPT are needed to assess the platform needs to support the range of potential future 

variants’ functional and performance capabilities, and the cost of the upgrades 

- MPT are needed to Analyze the likelihood of future needs relative to the capability 

fielded (e.g., adversarial risk models) 

- MPT are needed for time/cost/risk tradeoffs among initial production and potential 

future upgrade capabilities and costs 

Basic system limitations limit what can be done with them.  The HMMWV was and is a versatile 
platform.  But as we added weapons and an armored cupola, we raised the center of gravity 
(CG) and increased the propensity to roll-over (a very serious problem and cause of loss of life). 
There was no performance envelope for changes in the CG, no requirement for how much the 
CG could shift without causing roll-over in the reference conditions.  When we needed to 
increase protection, mobility was critically degraded because the powertrain, suspension and 
steering did not have the reserve capacity to handle the increase weight and angular inertia of 
additional armor.  A thorough understanding of potential upgrades, their burdens and 
implications for other dimensions of system performance are needed to acquire systems with 
potential to be adapted for evolving operational needs. 
The cost of upgrading a system depends on the original concept and design.  The original 
concept and design enable some upgrades and make others infeasible or unaffordable.  When 
different upgrades and different mission packages are installed, the original platform spawns a 
family of variants for different missions.  The services recognize these dynamics and has begun 
to include requirements for  

(1) Reserve capacity (aka design margin) in the basic platform infrastructure to support 

later upgrades and additional demands for size, weight, power, cooling, etc. 

(2) Modularity to facilitate replacement of subsystems with new technologies, and to be 

able to incorporate new mission packages. 
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Recent ground vehicle acquisitions have included requirements for electrical power reserve 
capacity for X% growth in demand, engine power reserve capacity for X% growth in weight, and 
so on.  The requirements also include a set of mission variants – acquiring a family of systems – 
and thus ensure some degree of mission modularity.  The JLTV and the Armored Multi-Purpose 
Vehicle (AMPV) are recent examples. 
However, the acquisition commands lack the MPT to derive and justify these requirements. 
There are development and AUPC costs to reserve capacity and modularity.  If the costs cannot 
be justified, the requirements can be rejected as “gold plating” – requiring more than is 
needed.  Furthermore, the benefits of reserve capacity will not be realized unless the reserve 
capacity requirements are complete and balanced.  A requirement for electrical power reserve 
capacity for 50% growth should have a companion requirement for cooling reserve capacity for 
50% growth.  A requirement for engine power for 25% weight growth should have companion 
requirements for the suspension and running gear as well as the rest of the drive train.  A 
blanket statement such as “design all subsystems for 25% weight growth” is good at the level of 
a capability development document, but has to be devolved into quantitative subsystem 
requirements organized by the Work Breakdown Structure and system architecture. 
We are conducting research to develop practical and effective MPT to derive and justify 
requirements for reserve capacity and modularity.  In 2015 we focused on reserve capacity and 
plan to complete development of these MPT before expanding to address modularity.  In 2014 
we developed a framework for tradeoff tradespace framework for bi-directional qualitative and 
quantitative relationships between the product design and the requirements specification – to 
inform performance-based requirements and design tradeoff decisions and to ensure complete 
and balanced derived subsystem requirements.  We did not elaborate this framework in 2015, 
but plan to instantiate it in 2016 as a proof of concept and as part of a demonstration of a 
complete package of MPT for reserve capacity requirements. 
Our approach to deriving reserve capacity requirements uses a SBD formulation combined with 
adversarial risk analysis.  The key concept underlying the SBD formulation is that the original 
system design should not be viewed and evaluated as simply as an item with some cost and 
performance, but rather as a both a specific realization with cost and capabilities and set of 
potential variants with conversion costs and differentiating capabilities.  Reserve capacity may 
increase the initial AUPC, but increases the scope of potential variants and reduces their cost.   
Future needs are uncertain, but adversarial risk analysis provides an analytic framework to 
choose a starting point that gives us the capability to adjust to changing operational conditions, 
shape threat options, and limit threat effectiveness.  Adversarial risk analysis assumes that 
future threats will tend to choose conditions, tactics and material that exploit limitations of our 
systems while avoiding our strengths.   The SBD formulation uses a tradespace framework that 
combines a tradespace of system capabilities versus the set of potential variants, together with 
adversarial risk model of likelihood of need, to choose a resilient and cost-effective initial 
design and family of variants vis-à-vis the requirements for reserve capacity. 
Details 
The selection for initial production is the base configuration.  It has some initial production cost, 
some initial capabilities, and retrofit costs to achieve upgraded capabilities (the term “cost” 
refers to both monetary cost and the cost of lives, tactical and strategic advantage lost due to 
delay in fielding higher capability systems).  For a given initial configuration, we can estimate 
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the costs to retrofit/upgrade to achieve different levels of capability in variants (see 
illustration).  This picture is insufficient to inform decision-making because it does not address 
the relative likelihood that the different future capabilities will be needed, and the likely time 
until they will be needed.   

Adversarial risk analysis provides methods to get insight into the relative likelihood of different 
capability needs.  Adversarial risk analysis posits that future adversaries will choose theaters, 
conditions, tactics and materiel to exploit the limitations of our systems while avoiding their 
strengths.  This provides an approach to bound the problem.  It does not address the technical 
or geo-political influences. 
The second figure provides a richer picture.  A system has many different capability dimensions. 
For purposes of illustration, we only consider two in the illustration.   
This picture is insufficient to inform decision-making because it does not address the relative 
likelihood that the different future capabilities will be needed, and the likely time until they will 
be needed.   

A system of some type is meant to fill a role as a member of a larger portfolio of systems.  Each 
has their own range of capability, with some overlap.  Each has a limit.  If it cannot service the 
threat, another system takes over.  If it vastly overmatches the threat, the threat is handed off 
(don’t use a hammer to swat a fly).  For a given system type, there is an upper and lower bound 
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on the level of capability needed to accomplish the range of missions for the niche it fills in our 
portfolio of systems.  This defines the “capability cube” shown in two dimensions. 
The initial operating capability (A) sits at some point in the capability cube, with some AUPC.  It 
can handle any combination of capability needs to the lower left.  In the future, we may need a 
system somewhere else in the cube.   
In the adversarial risk rate model, the rate that some adversary emerges outside of the region 
the initial system (A) can handle is inversely proportional to the region of the cube that system 
(A) can handle. 
The adversarial risk formulation generally assumes adversaries avoid our strengths and exploit 
our weaknesses.  In the figure, our system is weaker in one capability than another, so an 
adversary is more likely to emerge (or more properly, will emerge at a higher rate) needing a 
higher level of service on capability #2.   
We identified three main alternative adversarial models.  Two of them bound the problem, and 
two provide principled reference points. 

- Non-adaptive adversaries.  Adversaries emerge independent of our capabilities.  The 

distribution of adversary situations is uniform across the cube 

- Perfectly adaptive adversaries for this system mission, capability requirements are at 

the upper right hand corner 

- We-were-smart and they-are-smart (We balanced our portfolio of capabilities to overlap 

limiting threat options between what this system can do and what its neighbors can do. 

The potential adversary makes their best choices under these constraints) 

Our initial choice of (A) has an AUPC and some capability on each dimension.  But it is also the 
seed for a family of variants and needs to be evaluated in that context.  From the initial system 
(A) we can transition to variants (B), (C) and (D) that give increase capability at some cost 
depending on the trajectory over time.  A different starting point will have different trajectory 
paths. 
Full analysis of how the shape of the network and costs, and uncertainty as to when what 
capabilities are available and costs, requires further research.  Much of the “data” needed for 
such analyses is speculation, and therefore methods are needed that are robust with respect to 
data accuracy and uncertainty.  
The competing rate model gives some further insight into relative time until a particular 
capability is needed as related to the probability the capability.  In the competing rate model, 
adversaries requiring different capabilities appear at some rate, i.e., there is some mean time 
until they appear, and the time until they appear has a negative exponential distribution.  This 
is sufficient to construct a stochastic time trajectory of what capabilities will be needed when. 
This can be combined with standard “Net Present Value” methods for the time value of money 
to inform cost-effective initial decision.  These “best practice” methods have to be combined 
the non-linear budget ceilings, and motivation considerations:  the Program Manager 
responsible for bringing the initial production in on schedule and within budget will be gone in a 
few years, while the system will be in service long afterwards. 
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5 Georgia Tech Research Institute (GTRI) 

5.1.  SUMMARY OF PHASE 1 AND PHASE 2 RESULTS 

5.1.1 PHASE 1

During Phase I, GTRI investigated relevant, existing tools and their ability to capture –ilities in a 
tradespace environment.  The investigations were initially limited to those toolsets developed 
by SERC members involved in the ITAP Phase 1 work. GTRI investigated prior research in the 
area of web-based analytical tools for systems engineering decision-making.  Of these, the 
GTRI-developed Framework for Assessing Cost and Technology (FACT) was identified as a 
promising toolset example that integrates a model based systems engineering (MBSE) approach 
and methodology to enable tradespace analysis.  GTRI investigators therefore identified key 
aspects of FACT that could be used to help capture and analyze –ilities as their definitions 
matured during the course of the multi-year ITAP effort. 

FACT is an open architecture web-based tool developed to enable tradespace exploration for 
early phase design of military ground vehicles (Browne et al. 2013; Ender et al. 2012; O’Neal et 
al. 2011).  FACT embodies a web services based environment that enables models to be 
interconnected, providing a rapid exploration of the design tradespace in support of systems 
engineering analysis.  FACT is model agnostic and capable of linking disparate models and 
simulations of both government and commercial origin through the application of community 
established data interoperability standards. 

Further, the FACT framework focuses on interoperability and data sharing with the emphasis 
centered on metadata.  FACT was designed on a philosophy of open architecture to enable 
extensibility.  To achieve this, and avoid the encumbrance of licensing fees limiting its use or 
tethering it to a single manufacturer over its lifetime, FACT was built using open source 
software, and the US Government is free to use, modify and distribute it.  FACT’s development 
followed guidance from the Department of Defense, mandating that it be web-based and 
accessible from common computer workstations, be built entirely from open source software, 
and offer an open and extensible architecture (Assistant Secretary of Defense 2007; Assistant 
Secretary of Defense 2009).   

FACT provides decision support tools to help manage risks of cost, schedule, and performance 
through a rapid analysis of alternative technology and materiel using surrogate models, or 
equation regression representations of more complex M&S tools.  It is designed primarily to 
provide tradespace analysis during conceptual design.  Other stages of the system lifecycle can 
benefit from the FACT process, but the conceptual design phase is where both good and bad 
decisions have the greatest impact on cost and performance.  Although FACT’s development 
was originally envisioned for vehicle acquisition programs, the overall process and application is 
independent of vehicles and can be applied to any system-of-systems. 
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The Systems Modeling Language (SysML) was highly leveraged as the point of reference for the 
data schema implemented as FACT was initially developed.  SysML1 is a general-purpose 
graphical modeling language for model-based systems engineering (MBSE) applications that 
supports the specification, design, analysis and verification of a broad range of systems.  It is a 
subset and extension of the Object Management Group’s Unified Modeling Language (UML), 
the industry standard for modeling software-intensive systems, giving systems engineers the 
ability to represent system requirements, structure, behavior and properties using a formal 
diagram syntax.   

The Phase 1 evaluation found that a FACT-like framework and methodology might well 
incorporate extensions to the SERC team’s methods, especially as they are defined to capture -
ilities tradespace of interest.  During the Phase 1 timeframe, however, FACT existed as a specific 
development for application to ground vehicles for the USMC.  The team determined that a 
more flexible and scalable integrating toolset might be better suited to support research and 
integration of –iliities defined as critical to support DoD and other acquisition and design 
processes. 

5.1.2 PHASE 2 

Phase 2 therefore extended the investigation to developed, open-source, web-based analytical 
tools outside of the ITAP effort.  The goals were to identify the best tools and develop a flexible, 
integrated way to support analyses from various starting points in a workflow.  In so doing, 
GTRI’s contributions for the Phase 2 effort focused on two primary fronts: (1) integration of a 
toolset and workflow process to guide early stage design refinement, and (2) directly using this 
toolset and workflow to enable designers to begin assessing some key aspect of resiliency as 
related to evaluating design alternatives.  The toolset was designed and then built to use open 
source technologies, supporting a workflow that would guide early stage design refinement 
while being extendable to more rigorously detailed design exploration.  Conceptually, this built 
heavily from the FACT work cited previously but differed in that the aims were to create a 
flexible, open architecture, and integrating workflow that would support early-stage analytical 
research and method maturation across ITAP extensions as they mature. 

The tools identified for use and integration in to a workflow to enable efficient generation of a 
tradespace and subsequent rational reduction of the design alternatives included SysML, 
described previously, and OpenMDAO.  Recognizing widespread use of SysML across the DoD 
(to include the SERC’s sponsor community), GTRI leveraged previous research for authoring 
SysML models and using those models to execute design tradespace exploration (Browne et al. 
2013).  The integration of these capabilities was extended to allow feedbacks within the design 
process and allow compatibility with NASA’s OpenMDAO framework. 

OpenMDAO is an open-source Multidisciplinary Design Analysis and Optimization (MDAO) 
framework developed by NASA Glenn and Langley Research Centers (OpenMDAO, 2014).  It has 

1 http://www.omgsysml.org/ 
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been developed for use as an integrated analysis and design environment that can be applied 
to many systems engineering applications.  It is capable of linking multiple disparate models or 
other analysis tools in a single design structure matrix that can map system design variables to 
performance attributes in a manner similar to Phoenix Integration’s Model Center2.  Applying 
OpenMDAO’s built-in library of solvers, optimizers and design of experiments generation tools 
allows for rapid generation of design tradespaces of greater fidelity and complexity than in 
some previous efforts.  

A tradespace is defined as a collection of design variables and system attributes, different levels 
of which characterize each design alternative for a given system.  A model or collection of 
models is a mathematical representation of the system and any external variables necessary to 
map the input variables to output variables.  Commonly, input variables are chosen to be 
system design variables while output variables are defined to be system attributes.  This 
relationship may, however, be reversed depending on the mapping.  Variables may be intrinsic 
to the system or dependent on conditions external to the system (e.g., cargo space versus miles 
per gallon).  Some form of cost is also typically derived from the characteristics that describe 
each system design alternative.  This is illustrated in Figure 7, where X and Y are used to 
describe input variables and output variables respectively. 

OpenMDAO is a key element for tradespace generation.  OpenMDAO wrappers can be created 
which extend the analysis performed to externally hosted models.  The software then governs 
the interaction with these models by way of managing the input and output metadata, 
especially in terms of units and allowable ranges, and orders the execution of the various 
analytical blocks, which are then executed sequentially to generate a complete tradespace. 

As an initial proof of concept an open source, web-based toolset was developed to couple a 
rationally guided workflow to existing analysis methods for design tradeoff evaluation.  This 
toolset leverages existing open source web frameworks such as Django3 and D34 to enable the 
rapid development of a complex, database-driven website.  The OpenMDAO framework is used 
to facilitate complex analysis by linking together the separate models used to describe the 
behavior and performance of the system of interest.  In addition to the use of several open 
source software frameworks, the toolset also takes advantage of the SysML modeling language 
to specify the parametric constraints that define system performance. 

The proof of concept was specifically developed to evaluate and begin to test how an –ilities 
related analytical construct might be used within the toolset and workflow.  One of the more 
mature concepts was that of Epoch Era Analysis (EEA) by the MIT ITAP collaborators, which was 
actually developed prior to ITAP.  EEA began as a high-level framework to identify, structure, 
and evaluate the impact of different or changing dimensions on expected suitability or 
performance of systems (Beesmeyer, Ross, and Rhodes 2012; Ross and Rhodes 2008).  These 

2 http://www.phoenix-int.com/software/phx-modelcenter.php 
3 https://www.djangoproject.com/ 
4 http://d3js.org/ 
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dimensions may include broad environmental contexts such as weather, political or financial 
scenarios, and environmental or operational characteristics, as well as stakeholder needs across 
short-term variation (‘epochs’) or longer term, time-ordered sequences (‘eras’).  Different 
analytical methods were then incorporated into EEA over time (as discussed in subsequent 
publications by this group) to help quantify one aspect or another. 

Figure 7:  Defining a Tradespace 

The GTRI team decided that a streamlined modification of EEA might serve as an excellent test 
construct for the process.  Frequently, DoD users do not have sufficient data to flesh out the full 
concept of EEA as described in the literature.  Also, analysts often are not able to specifically 
elucidate and specify a precise timeline with respect to how demands of a system might change 
much less how the relevant data might change over time.  Consequently, the GTRI team 
focused on how to create a highly flexible analytical construct that could readily scale with 
vastly increasing tradespace sizes and yet still capture demands of competing stakeholders or 
changing performance requirements in an intuitive manner.   

The end result of this effort was the development of a Needs Context construct.  A significant 
concern during early phases of acquisition, or during the Pre-Milestone A analysis of the DoD 
Acquisition process is the resiliency of a system design across simultaneously competing or 
sequentially changing requirements on its performance attributes.  A Needs Context is a 
scalable, applied methodology to capture certain dimensions of resiliency related to how well a 
system performs its functions in the face of requirements perturbations.  It is defined based on 
flexible subsets of performance attributes relevant to the stakeholder(s) and ranking of those 
attributes within each.   

Input	Variables			
(Design	Variables)	

x	=	{d,	e}	

where		
Intrinsic	System	Design	Variables:			

d	=	(d1,	d2,	…da)	
Extrinsic	Design	Variables:			

e	=	(e1,	e2,	…	eb)	

Output	Variables			
(System	A ributes)	

y	=	{s,	z}	

where		
Intrinsic	System	A ributes:			

s	=	(s1,	s2,	…sp)	
Externally-Dependent	System	A ributes:			

z	=	(z1,	z2,	…	zq)	

Model	
	

(Mapping	func ons)	

Notes:	
• Each	s	or	z	can	be	a	func on	of	any	d,	e,	or	other	s,	z.	
• Externally	(or	environmentally)-dependent	a ributes	

frequently	characterize	performance.	

Tradespace	of	System	Design	Alterna ves	

System	Design	
Alterna ves	

(SDk)	

System	A ributes	
Cost	

Design	Variables	

Y1	 Y2	 Y3	 …	 Yn	 X1	 X2	 X3	 …	 Xm	

SD1	 --	 --	 --	 --	 --	 $	 --	 --	 --	 --	 --	

SD2	 --	 --	 --	 --	 --	 $	 --	 --	 --	 --	 --	

SD3	 --	 --	 --	 --	 --	 $	 --	 --	 --	 --	 --	

Etc.	 --	 --	 --	 --	 --	 $	 --	 --	 --	 --	 --	

O en	the	Tradespace	is	the	only	data	the	
customer	has	to	analyze.		Full	models	and	
suppor ng	informa on	are	not	always	open	or	

available.	
	

The	delinea on	between	which	design	variables	
are	used	as	input	variables	and	which	are	
derived	via	model	transfer	func ons	as	output	

a ributes	is	not	always	clear.	
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The motivation for the Needs Context is that choices must be made based on what is valued 
most by stakeholders, recognizing that some stakeholders may have a greater influence.  A 
Needs Context can represent different or directly competing objectives for a system’s 
performance for: 

 Different stakeholders, each with different or competing priorities in parallel
 Changes in requirements over time (future performance requirements differ in series)
 Different mission profiles that necessitate different performance objectives, whether in

parallel or in series

Value of a given system attribute is scaled against objective and threshold requirement levels, 
using the Key Performance Parameter (KPP) concept to promote comparability across analyses. 
Value of a system design alternative is then assessed using concepts from multi-attribute utility 
theory (MUAT), synergistic with the concept of evaluating Robustness of Fielded System 
Capabilities and Capacity with respect to Operational Requirements in terms of broad utility. 
Since each Needs Context may be defined using different attributes, and/or different valuations 
and preference weightings, Needs Context utility will have a different value for each system 
design alternative k (SDk) within each individual Needs Context, i.e.: 

[𝑈𝑘 =  𝛼 ∗ 𝑣𝑗(𝑌𝑗𝑘) +  𝛽 ∗ 𝑣𝑚(𝑌𝑚𝑘) + ⋯ + 𝛾 ∗ 𝑣𝑛(𝑌𝑛𝑘)]𝑁𝑒𝑒𝑑𝑠 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑖

where Uk denotes the overall utility of system design alternative k (SDk) for a given Needs 
Context,  Yjk represents system attribute j for system design alternative k, {α, β, γ} are weights 
derived from preference rankings or other means, and each vj is a value function expressing the 
relative value of the given system attribute level to a stakeholder.  Value functions are typically 
linear or exponential expressions but may be any monotonic function.  Cost is also a function of 
system design alternative characteristics, though it depends on other influences and variables 
as well.  Utility and cost are expressed as related dimensions, linked by an underlying SDk.  The 
Needs Context methodology adds a dimension of analysis to the classical utility representation
as shown in Figure 8.  The toolset, workflow, and example operationalized construct were 
described and published as part of INCOSE 2014 (Sitterle, Curry, Freeman, and Ender 2014).   

Figure 8:  Classical 2D vs. Needs Context 3D Utility 
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6 PHASE 2 INSIGHTS 

Specifically, Phase 2 sought to define and develop a capability through which new analytical 
methods may be explored, refined, and linked together in a design space environment.  More 
complex analytical constructs and their subsequent synthesis into systems engineering decision 
aiding processes could be investigated and matured in this framework prior to integration into 
existing customer processes.  This allows for customized performance attributes, especially as 
relating to hard-to-define “-ilities”, to be investigated and matured for specific design domains.   

Phase 2 efforts produced several insights.  For one, starting with formally defined system model 
architectures has implications for structuring an integrated toolset for tradespace exploration. 
Firstly, performance-based attributes (e.g., braking distance) require a system model to couple 
with basic engineering representations of the system’s operation and/or operational 
environment.  The model of the system alone is insufficient to produce all quantitative system 
attributes that are typically important to the decision making process.  

Most standard forms of utility evaluation derive from normalizations of the current design 
space with a single value function for each performance attribute.  The impact is that utility is 
then not comparable from one analysis to the next when different performance attribute 
ranges are generated from differences in input variable ranges or system architecture. 
Similarly, using single value functions for each performance attribute implicitly assumes non-
competing preferences across different stakeholders, mission profiles, etc.   

The Needs Context construct described here avoids both of these limitations.  By scaling to 
defined requirements, given the same contributing attributes (defined the in same way) and 
the same requirement levels, the broad utility measures captured in a Needs Context are 
comparable across analyses.  The flexibility to define different requirement levels for a given 
performance attribute in each Needs Context also allows for simultaneous visualization and 
evaluation of competing objectives.  

5.2.  SUMMARY OF PHASE 3 RESULTS 

Building from the insights gained during Phase 2, the Phase 3 Tradespace Methods Processes 
and Tools (MPT) effort focused on 2 primary fronts.  The first was more academic in nature, and 
investigated a more rigorous grounding as well as a few augmentations to the Needs Context 
method from Phase 2.  The second focused on more robust integration of the processes and 
tools to support future extensibility to additional methods and –ilities-related analyses. 

The first step was to more completely document the rationale for specifying the Needs Context 
in the way chosen during Phase 2 and to more firmly place that into context with the other ITAP 
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work.  There is already an enormous body of work focused on developing decision support 
methods and a tradespace toolset framework architecture in support of the Department of 
Defense’s (DoD) analysis of various large-scale and complex engineering systems.  This includes 
research and development of methodologies to conduct Analysis of Alternatives (AoA) relevant 
to evaluating different dimensions of resiliency for these systems.  Many of these dimensions 
are quite strongly related to the –ilities being investigated under the ITAP effort and the newer 
DoD priority for Engineered Resilient Systems (ERS). 

Towards this end, tradespace analysis is of great importance and requires development and 
maturation of executable and scalable analytical constructs.  These constructs must be 
implementable within the context of a larger workflow, and in tandem with each other, to 
guide trade space exploration and evaluate ERS resiliency concepts.  In order to more clearly 
understand precisely what the Needs Context evaluates, and therefore help the broader 
community understand ways in which it either could or should not be used in conjunction with 
other constructs, we sought to more fully define its focus based on existing ontologies. 

The need to evaluate systems according to requirement needs, changes in those requirements, 
and against some sort of human (or stakeholder) value has been well established in the 
literature.  While by no means an exhaustive list, the following excerpts from literature trace 
this understanding well: 

Challenges in requirements elicitation include: 
– Scope and context to reflect true user needs
– Fostering understanding among different communities affected by the

development of a given system
– Requirements volatility (i.e., Requirements change over time.)

[Christel & Kang 1992] 

“There is… an explicit recognition that designs are created to provide value to 
humans, and design decisions are made in some attempt to maximize that value. 
Decision-based design recognizes the need for human intervention in the design 
process in four areas: determination of human values, determination of the 
relationships to be included in analytical models, assessment of probabilities for 
random events, and creativity through the creation of design options coupled 
with judgment on which options should be given consideration for 
implementation.” 
[Hazelrig, 1998] 

“Knowledge about evolution, and likely future requirements is critical to 
incorporate functional and performance options within an architecture.”    
[Schultz & Fricke 1999] 

“Robustness characterizes a system’s ability to be insensitive towards changing 
environments.  Robust systems deliver their intended functionality under varying 
operating conditions without being changed.” 
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[Fricke & Schultz 2005] 

“Value robustness is the ability of a system to continue to deliver stakeholder 
value in the face of changing contexts and needs.” 
[Ross & Rhodes 2008 (IEEE SysCon)] 

“To achieve value robustness, design systems “… using natural value-centric 
timescales, wherein the context and expectations define the timescales.” 
[Ross & Rhodes 2008 (INCOSE)] 

The Needs Context analytical basis and workflow derive strongly from concepts espoused by 
Hazelrig (1998), conceptually expanded by Fricke and Schultz (1999 & 2005), and further 
delineated by Ross and Rhodes (2008) as EEA.  It was constructed to specifically help evaluate 
robustness in the face of changing or competing stakeholder needs.  As such, the Needs 
Context relates directly to the ERS concepts of a system being “trusted and effective in a wide 
range of contexts” and exhibiting “broad utility” (Goerger et al 2014).   

A broad review on flexibility performed by the AFIT team of ITAP collaborators placed many 
concepts relevant to resiliency into an ontological framework (Ryan et al 2013).  This work 
comprehensively analysed systems engineering literature to arrive at a set of proposed, 
consistent definitions for flexibility, agility, adaptability, and robustness.  The authors found 
consistency with the analytical developments by Fricke and Schultz 2005.  Robustness, for 
example, was subsequently specified as a measure of how effectively a system could maintain a 
given set of capabilities in response to external changes after it has been fielded. 

The Needs Context analytical construct therefore builds from robustness as defined by Ryan et 
al. (2013) and the concept of broad utility advocated by Goerger et al. (2014) to create a 
requirements-based evaluation of a non-cost value of system design alternatives.  Robustness 
of Fielded System Capabilities and Capacity with respect to Operational Requirements is a more 
complete descriptor to aid accuracy and utility of a Needs Context as a building block in future 
analyses. 

We then investigated the relevance of placement of the Needs Context within a larger 
analytical workflow.  The Needs Context process begins by defining any number of Needs 
Contexts, each defined by some individualized subset of the performance attributes defined for 
the system.  The attributes within each Needs Context are assigned threshold and objective 
requirement values as well as a preference ranking (i.e., preference across attributes within the 
given Needs Context) or weighted by any other means.  The same performance attribute may 
be used in multiple Needs Contexts and characterized differently by threshold, objective, and 
rank/ weight values in each one.  

The Needs Context is essentially an analytical filter to rapidly identify the system design 
alternatives that provide the most value to Stakeholders and/or mission needs in a transparent, 
scalable manner that preserves future comparability.  As such, it may apply to a raw, freshly 
generated tradespace or a tradespace that has already been filtered by some other means.  The 
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Needs Context approach and algorithms are robust to either scenario and may be applied at 
any point in an analytical workflow.  It is important to understand, however, what the Needs 
Context does by way of selecting design alternatives based on a Broad Utility evaluation of a 
specific Robustness dimension.  This will allow proper systems engineering of an entire 
analytical workflow such that the information presented to an analyst is consistent with the 
goals and specifications of ERS. 

Consider that a typical tradespace for early-stage design alternatives of defense systems may 
be quite large.  There may be thousands of alternative designs and hundreds of design 
attributes if not more in some cases.  Taken together with the immense flexibility inherent in 
the Needs Context construct, it can be challenging for an analyst to have a good understanding 
of what impact a given Needs Context produces in terms of valuing the design alternatives.  We 
therefore need a way to evaluate the big picture of this impact on a per-Needs-Context basis 
before moving on to evaluation of multiple Needs Contexts and their tradeoffs simultaneously. 

One simple and clear way to achieve this is to create a raw count histogram of the top X% of 
utility scores for a given Needs Context, and overlay these scores with the raw count histogram 
from the “full tradespace” before application of the Needs Context filter.  25% is a good 
example number for this approach to be informative.  Using X% = 25% as an example, this does 
not refer to those design alternatives with utility scores above 0.75 but rather the top 25% of all 
utility scores for the given Needs Context.  This histogram overlay will present a visual graphic 
to an analyst showing the effect of the given Needs Context before accepting those results and 
proceeding to the next Needs Context definition or analysis of all Needs Contexts.  This 
visualization may be displayed alongside a heatmap showing the Spearman correlation 
coefficients from the “full tradespace”.  These correlations will help analyst quickly see positive 
or negative relationships for attributes.  That way, if ‘best’ values are lost for a given attribute 
that was not defined in a Needs Context, we can see how it related to other attributes and 
therefore why.  This knowledge will allow the analyst to decide if this is acceptable or if the 
Needs Context should be adjusted.  The intent is to provide a quick and intuitive “big picture 
understanding for each Needs Context.   

The overall workflow for this process is depicted in Figure 9.  The precise equations and math 
behind these steps have been provided previously in (Sitterle et al. 2014) and GTRI’s 
contributions to the Phase 2 ITAP Final Technical Report. 
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Figure 9:  Graphical depiction of Needs Context Steps and Workflow 

We next investigated different methods that might help modify this approach if the attributes 
specified as part of the value equation were not truly independent from a stakeholder 
perspective.  Most valuations methods still use some version of simple additive weighted (SAW) 
measures – including multi-attribute utility theory (MUAT) methods – which frequently assume 
that no interaction between the valued attributes exists even when that has not been verified. 
Fuzzy methods evolved in part to cope with potential interactions as well as a means of 
handling uncertainty surrounding them.  These methods include non-additive subjective and 
objective functions such as ordered weighted average (OWA) and fuzzy integrals.  The Choquet 
integral is part of this latter category and has been used previously in the context of multi-
criteria decision-making. (Grabisch and Labreuche, 2010)  

Like SAW measures of utility, the OWA and Choquet integral operators are aggregation 
functions.  However, a fundamental difference is the reordering process used for the fuzzy 
methods.  For example, a weight in an OWA aggregation function is not associated with a 
specific argument but rather with its ordered position in the aggregate (Grabisch 1996; Ben 
Hassine-Guetari, Darmont, and Chachat 2010).  In our case, this would correspond to ordering 
the values of specified attributes (i.e., as defined by the attribute’s value function scaled as 
described previously) for a given design alternative, with the weights dependent on the 
placement of the value in that reordering.  This approach does not, however, take into account 
that a decision maker may have very distinct priorities for which attribute is the most important 
that are not reflected by the valuation of that attribute. 

The Choquet integral in its discrete form uses a similar reordering basis and substitutes the 
classical weight vector with a monotone fuzzy set function called a capacity.  These fuzzy 
integrals can represent interaction between criteria because a weight of importance (i.e., a 
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capacity) is attributed to every subset of criteria.  The fuzzy weights assigned to the various 
subsets of n total attributes may be supra-additive, additive, or sub-additive.  However, for an 
alternative with n attributes, (2n – 2) coefficients must be either specified by the analyst or 
determined via some other means to evaluate a Choquet interval (Grabisch & Rouens, 2000; Fu, 
Hall, & Lawry, 2005).  The number of coefficients involved in the fuzzy integral model grows 
exponentially with the number of criteria to be aggregated.  And, the attribute valuations and 
hence integral equation changes with each alternative according to the reordering of the 
specified attributes. 

The exponential complexity of evaluating a design alternative “valuation” using Choquest 
integrals makes the method exceeding difficult to use for large or even moderate numbers of 
contributing attributes.  Additionally, while methods including partial preference ranking and 
information theoretic functions have been employed to calculate the numerous fuzzy weights 
on the subsets and ease the burden otherwise on the analyst, these do not eliminate the need 
to reorder the attribute values that populate the integral structure for each alternative.  Many 
of these methods also depend on some quantifiable characteristics present in the data (i.e., the 
tradespace) at that point in the analytical process.  For example, using a tradespace generated 
measure such as one of the various correlation measures between the attributes may be 
employed to determine supra, simple, or sub-additivity for the capacity relationships. 
Unfortunately, this would eliminate the direct comparability of one tradespace analysis to the 
next since such measures will change not only from one tradespace to the next but also with 
any other analytical “filtering” method applied earlier in the process. 

In light of these experiences, we next chose to consider various ways in which uncertainty could 
be brought into the additive function for broad utility and carried forward as part of the 
analytical process.  In an additive function of weighted valuations on attributes, uncertainty 
could come in on either the valuations or the weights.  Uncertainty on the value functions 
would be expressed in terms of uncertainty associated with the KPP scaling parameters, the 
objective and threshold requirement levels that determined the valuation.  The potential space 
for valuation this could open, however, did not preserve the original intent of this construct and 
process.   

Turning therefore to uncertainty on the weights, we considered two distinct cases:  (i) ordinal 
ranking of attributes was provided but without certainty, or (ii) no ordinal ranks at all were 
provided.  (Recall that a Needs Context by definition specifies only a subset – though any subset 
– of attributes present in the tradespace.  It is so defined in order to provide evaluations of
alternatives based on what is most critical to stakeholders.)  Applying uncertainty to the 
weights for the additive value function creates a stochastic version of the analysis achieved via 
an efficient Monte Carlo on a specified random distribution for (i) and constrained according to 
an ordinally defined convex polytope for (ii).  This approach is well developed and applied to 
multi-attribute additive utility problems throughout the literature.  The approach was well 
defined by Charnetski and Soland (1976 & 1978), Parnell (1999) and then expanded upon 
tremendously by Lahdelma et al. (1998; 2003; Tervonen, Tommi, and Lahdelma, 2007).  The 
benefit of including uncertainty in this manner is that it allows us to move away from 
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deterministic evaluations without requiring in depth knowledge about models or other sources 
of uncertainty that may not be available to the analyst. 

The second primary focus of Phase 3 was to implement the processes and tools in a robust way 
such that the resulting framework can be leveraged in future Phases to further support 
additional methods and –ilitiy-related analyses. One principle tenet to accomplish this focus is 
to recognize that end users have different initial conditions to their problems and require a 
framework that enables them to inject themselves into different points along the generalized 
Systems Engineering workflow.  

For example, one user may already have a high level SysML model describing their problem 
while another may have a set of analysis models that can be executed to generate a 
tradespace. In fact, a user may have previously generated their tradespace data using outside 
analysis codes but need to perform additional analyses as part of a trade study to extract design 
alternatives that satisfy their particular needs.  

While the framework is informed by this desired end user flexibility, specifically for Phase 3 the 
Needs Context analysis formulated in Phase 2 was decomposed into smaller reusable functional 
building blocks. These functional blocks were then implemented in Python as steps in a data 
pipelining tool. Now particular Needs Contexts analyses can be performed by composing these 
blocks together into a pipeline and then passing in a tradespace to analyze. Because of the 
flexible framework, the pipeling step is separate from the tradespace generation step to allow a 
user to inject a previously executed tradespace data set from outside the framework. In the 
future, additional blocks can be developed along a similar paradigm that can be composed with 
the Needs Context analysis to address alternative –ilitiy-related metrics and analyses. 

In addition to the development and implementation of the data pipelining additional effort has 
been to expand on the initial web tool from Phase 2. The web tool explored in Phase 2, and in 
other work, offers a collaborative and distributed way to interact with the flexible framework 
being developed. This interface development work has been to offer additional visual feedback 
to the user about the particular Needs Contexts and tradespace under consideration and 
support filtering of the tradespace based on each design alternative’s utility.  

5.2.1 PHASE 3 INSIGHTS 

A major understanding from this process is that generating a tradespace from various models is 
not a trivial task if the goals are to achieve flexibility, scalability (often via properly orchestrated 
modularity), and efficiency of the process.  Also, a use case has a specific path through the 
networked workflow.  Driving the tool development with a generalized workflow helps ensure 
we can meet the requirements of future use cases.   
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Similarly, a Needs Context is not the same as a use case.  In an operational sense, the latter is a 
defined scenario that captures various exogenous conditions under which the system must 
achieve desired performance.  Use cases are therefore typically unique to the defined 
operational scenario and variable levels/ ranges defined.  In contrast, a Needs Context is 
defined from a stakeholder perspective and based entirely on performance requirements and 
prioritization of those requirements.  It may indeed help evaluate a use case, but the 
definitional basis is distinct.   

In addition, -ilities are often defined according to life cycle stage or blur across several; care 
must be taken to operationalize appropriately.  Specifying the precise way in which any 
analytical construct applies to tradespace analysis and also its specific lifecycle context is critical 
to future synthesis with other methods.  Composability and traceability of constructs is key to 
future maturation using other methods in tandem.  MPTs must be modular, efficient, and 
scalable for same reasons as above. 

Uncertainty was investigated here and applied based on methods found in the literature in 
order to help elucidate how to propagate that through a series of analyses using some of the 
processes and tools described.  The key is not in applying a well-understood concept as much as 
understanding how to blend various sources of uncertainty across constructs in a scalable but 
also meaningful way that can be intuitively brought into visualizations to guide the analyst. 
Methods must pay attention to computational feasibility as the dimensionality of the problem 
increases; else the method should incorporate some sort of dimensionality reduction.   

5.3.  PHASE 4 AND 5 

In previous ITAP phases and on the basis of past lessons learned from other, customer-specific 
toolsets, GTRI has identified and begun maturing the foundations of a design space 
environment and integrated workflow to aid in the investigation of –ility formalisms.  Building 
on existing formalism definitions from across the ITAP team, GTRI further investigated methods 
whereby we may operationalize these formalisms into measureable and executable constructs 
to support Pre-Milestone A analysis.  The work proposed for Phase 5 in FY 2016 seeks to further 
mature these methods, processes, and tools (MPTs) to specify operationally relevant 
dimensions for alternative analysis of early-stage DoD system designs. 

Throughout the development process and method inclusion, this effort and its future 
maturation has sought to preserve an open framework and approach that promotes 
quantitative and qualitative transparency of the tradespace refinement.  Our goals were to 
ensure that the workflow and toolset support easy inclusion of analytical constructs that may 
be developed on other ITAP efforts to evaluate different –ilities in different ways.  Keys to 
synthesizing these constructs are scalability, flexibility, and modularity of the construct as well 
as the workflow and processes we are striving to integrate.  Our objective has been that this 
philosophy will lead to more effective collaboration and traceability while offering a capability 
to both refine and synthesize research constructs for complex tradespace evaluation. 
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Specifically in Phase 4, GTRI continued to mature the previous work under ITAP in two primary 
directions:  1) Maturation of the methods and constructs to analytically execute formalisms, 
and 2) Maturation of the processes and tools that help operationalize these constructs in a 
scalable and traceable manner.  For the first, we added modeling and analysis dimensions 
required to evaluate and produce environmentally dependent system attributes.  Because the 
model of a system alone is insufficient to produce all quantitative system attributes important 
to the decision making process, this step will enables the evaluation of different environment 
influences relevant to fielded operational performance. 

There are many –ilities being investigated across the ITAP teams that can benefit from this 
capability.  Context-dependent notions of risk and identification of feasible sets as being 
investigated by WSU are good examples.  Other –ility metrics include versatility, agility, 
functional persistence, etc. as investigated by AFIT, USC, MIT, and others.  A key to the 
usefulness and broad applicability of incorporating this dimension is how to achieve the link to 
environmentally dependent analytical blocks to help complete a tradespace generation.  This 
must also adhere to concepts of modularity, flexibility, and scalability to support tradespace 
analyses. 

Including the environmental dimension (or rather, the capability to include many different 
environmental dimensions) is also directly in line with DoD Concept of Operations (ConOps) 
needs.  A ConOps is essentially a type of requirements document.  It describes the mission of 
the system, its operational and support environments, and the functions and characteristics of 
the system within an overall operational environment (ANSI/AIAA G-043- 1992, “Guide for the 
Preparation of Operational Concept Documents”).  A ConOps therefore communicates a story 
in terms of needs from the users’ point of view at a given point in the life cycle.  In the Pre-
Milestone A stage, evaluating anticipated system performance against various ConOps helps 
promote early-stage development specification.  In turn, this identifies a much smaller set of 
design alternatives to carry forward for more rigorous and (typically) data-intensive 
evaluations. 

To evaluate the performance of how we incorporate the environmental dimension in the 
workflow and toolset, GTRI continued to mature the Needs Context construct from Phases 2 
and 3.  The Needs Context already adds a dimension to traditional utility analysis.  Instead of 
one utility per design alternative, there are as many utilities as there are Needs Contexts, which 
are representations of requirements across stakeholders and/or operational needs.  However, 
we had not yet been evaluating conditions under which system attributes may be expressed 
differently due to distinct operational environment conditions.  When we add the environment 
dimension, we may, for example, have three different values of a system performance attribute 
for a single system design alternative.  And, the different values may be arrived at through 
different "mapping modules" that calculate environmentally dependent system attributes.  The 
resulting tradespace may be thought of as partitioned: 

{ Intrinsic system attributes | 
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Extrinsic attributes dependent on Environment 1 | 
Extrinsic attributes dependent on Environment 2 | etc.  }. 

This will occur because a system attribute may capture a concept, have the same name, and yet 
be evaluated differently (by distinct mapping equations) and expressed at different quantitative 
levels for a single design alternative.   

Instead of aggregating the various expressions of a given system attribute that may arise 
however, we seek to preserve the different performance information.  Where the existing 
Needs Context construct produces an aggregated utility, the environmentally dependent 
system attributes will not be aggregated.   

Key to successful realization of the above goals has been the supporting computational 
methods, processes, and tools that also required additional research effort.  Partitioned 
tradespaces are high dimensional, nontrivial analysis problems that may require significant 
computational time to detect the set of ideal alternatives in the tradespace.  To reduce the 
analysis effort required, the successful implementation must be scalable and flexible. 
Scalability of these methods includes designing algorithms that are tractable for high 
dimensional problems as well as being able to be executed in a parallel computing 
environment.  The implementation should also be flexible so that it may be reused for different 
problem domains.  This can be partly accomplished by the Phase 4 framework along with 
understanding the algorithms needed and implementing the salient portions in a modular 
fashion. 

5.4.  PLANS FOR PHASE 5 

For Phase 5  in FY 2016, we plan to expand this concept yet again to consider variance within a 
single environment.  For example, a ground vehicle may be designed to operate with certain 
capabilities in a desert environment.  This is usually evaluated at some nominal conditions for 
that environment.  In reality, however, there are variations within that environment that can be 
extreme such as during monsoon season.  Any ground vehicle in such a region would need to 
perform under all conditions in that environment that occur with any degree of significance. 
We therefore propose to develop the framework and MPTs to allow us to evaluate across single 
environment distributions in addition to the multiple environment work performed in Phase 4. 
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5.5 SYSML-BASED COST MODELING (GT, USC, NPS)

This section describes the SysML-based cost modeling work in ITAP being led by Russell Peak 
(GT) and Jo Ann Lane (USC), as well as Ray Madachy (NPS) who recently joined in this 
collaboration. 

5.5.1 INTRODUCTION & ITAP CONTEXT 

One key ITAP research goal is to create a framework that enables a wide variety of -ility models 
to come together to support system trade studies (including cost modeling as one aspect of 
affordability). In this particular task we are bringing together four main bodies of work (BWj) 
toward this goal: 

 (BW1) The FACT work (which T. Ender et al. bring to the RT113 team) provides front-end
trade study capability.

 (BW2) The MIM work (which R. Peak et al. bring to the RT113 team) provides fine-grain
associativity capability to connect diverse models (including leaf-level design models and

http://openmdao.org/
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analysis models), as well as knowledge representation patterns to fold in all kinds of "-ility" 
models. This could potentially enhance the backend of FACT (ultimately leading to a more 
generalized method beyond MIM). [Peak et al. 2010] 

 (BW3) The cost/effort modeling work (which B. Boehm, J. Lane, R. Madachy, et al. bring to
the RT113 team) is one key type of "-ility" model that can be represented in the above
framework (e.g., to incorporate cost analysis with other analyses and trade study aspects
involving diverse comprehensive "-ility" considerations). This includes cost modeling for
systems engineering (COSYSMO), COSYSMO for systems of systems (SoS), software
development effort modeling (COCOMO), and related work. [Lane, 2009; Madachy, 1997; et
al.]
 Other ITAP team members can potentially provide expertise with other models that can 
be similarly represented (e.g., as others have recently implemented via SysML for 
manufacturability, environmental sustainability, and end-of-life recyclability [Romaniw and 
Bras, 2010; 2011] and [Culler, 2010]). 

 (BW4) The overall SysML/MBE/MBSE technology area (which R. Peak, T. Ender, et al.
represent on the RT113 team) provides a practical means to embody and deliver the above
technology and concepts. [www.omgsysml.org]

See the ITAP Phase 2 report (for CY2013) for further background context and examples of the 
above bodies of work and their envisioned combination in ITAP. 

5.5.2 APPROACH TOWARDS SYSML-BASED COST MODELING WITHIN MIM AND FACT 

During Stage 1 of this task (Oct-Dec 2013) the focus was both (i) to define the big picture 
context as highlighted above, and (ii) to implement an initial example (Case Study 1). 

During Stage 2 (Jan-Dec 2014), which this current report covers, we have focused on the 
following: 

 Enhancing and refining the generic SysML-based cost modeling building blocks from Stage 1.
These building blocks and their underlying cost modeling principles are generic and thus can
be applied to practically any system (not just Case Study1 or Case Study2).

 Updating the Case Study1 implementation where needed as one means to re-verify the
updated building blocks.

 Implementing a new case study, Case Study2 [Lane, 2010], which has more complexity and
exercises more facets of the above cost modeling building blocks.

 Exploring additional technologies that can make interacting with these models more
intuitive and comfortable for people who do not have much background with SysML.

 Investigating how to interface with the growing body of SysML-based system models. The
goal is to wire together a SysML-based system model with a SysML-based cost model,
including automating the calculation of the cost drivers and size drivers that a COSYSMO
model requires. In contrast, today the typical practice is to manually estimate those values
and provide them as manual inputs into a COSYSMO model.

file:///C:/Users/LoanerLaptop/Desktop/tmp-rsp/2013-10-gtri-serc-itap/1_Contract/Phase2/Final_Report/3_ITAP_Overall_Report/1_Prep/www.omgsysml.org
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 Identifying potential additional future applications, both in terms of analysis capabilities and
case studies. For example, we should be able to support risk analysis (Madachy 1997, 2013)
by leveraging the same cost and size driver building blocks we have already created.

The sections below highlight this Stage 2 work. 

5.5.3 KNOWLEDGE CAPTURE VIA GENERAL-PURPOSE SYSML BUILDING BLOCKS 

As given in the ITAP Phase 2 report (Dec 2013), in Stage 1 we took the COSYSMO-SoS cost 
modeling concepts described in [Lane, 2009] and captured them as general-purpose SysML 
building blocks. During Stage 2 we refined these building blocks, including correcting and 
generalizing some calculations (which were not exercised in Case Study1). We also identified 
additional useful parameters that can be derived from the existing parameters, such as metrics 
regarding the quantities of various types of requirements at different SoS levels. We 
implemented a few of these new parameters in Stage 2, and we plan to implement more during 
Stage 3.  

5.5.4 CANDIDATE EXTENSIONS, ADDITIONAL APPLICATIONS, AND CASE STUDIES 

Our team has also explored several potential extensions to be considered for Stage 3 (CY2015) 
and beyond. One key extension deals with how to provide alternative interfaces to interact with 
these SysML-based cost models. SysML provides nice modeling capabilities with flexible 
structure and rich semantics. However, people who do not know SysML may find it challenging 
to interact with all of that power in its native SysML format. Therefore, several organizations 
have developed technologies over the past few years that connect SysML models to more 
traditional front-ends including interactive web pages and auto-generated documents. One of 
the most promising implementations is Open-MBEE (https://github.com/Open-MBEE), which 
NASA JPL has developed and uses internally on its projects.  JPL has recently released this 
technology to the public. We have installed this environment at Georgia Tech recently and have 
learned the basics. During Stage 3 we will investigate creating interactive front-ends that are 
spreadsheet-like and easy-to-use, yet which maintain all the power of SysML building blocks 
behind them. 

Another extension area is additional capabilities that leverage the same cost and size driver 
building blocks we have already created. For example, previous research indicates that we 
should be able to support risk analysis (Madachy 1997, 2013), and other work has shown that 
total system cost can be derived from the systems engineering effort calculated by COSYSMO, 
the Constructive Cost Model (COCOMO) for software, as well as COCOMO extensions for 
quality.  Efforts are currently underway to update the COSYSMO and COCOMO cost models 
(COSYSMO 3 and COCOMO III).  When these new cost model calibrations are complete, they 
can be migrated to the SysML based cost modeling framework. 
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Other envisioned applications, some based on planned upgrades to COSYSMO and COCOMO, 
include: 

 Analysis of alternatives
o Subsystem/component upgrades
o Levels of capability option performance within SoS
o Interoperability assessments for alternatives

 System/component retirement (or replacement) assessments

 Capabilities vs. costs

Furthermore, we have identified several case studies for potential future work. One pool of 
candidates involves simply taking existing SysML-based system models and wiring in the above 
cost modeling building blocks. For example, there is a hybrid SUV model described in the SysML 
spec itself that most vendors implement. We also have multiple SysML system models covering 
various domains that are available from MBSE/SysML-oriented academic classes at Georgia 
Tech. We have presented the Stage 1 work at several venues [Peak and Lane, 2014], and have 
had resulting discussions with several companies in the DoD supply chain who are interested to 
try it on their SysML-based projects. Note that DoDAF/UPDM-based models (which leverage 
SysML) are additional candidates, including the search & rescue model that is part of the UPDM 
spec. 

Two other specific case study candidates are illustrated in Figure 10. 

Figure 10 – Candidate future case studies. 

Case: Emergency Response SoSCase: Military Operations SoS

Ambulance:
• Cardiac monitor
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In-Patient 
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5.5.5 SUMMARY 

In summary, we have created cost modeling building blocks in SysML that leverage the 
COSYSMO-SoS/COCOMO legacy and experiences. We have successfully validated this 
knowledge capture via two healthcare SoS case studies: base complexity (Case Study1) and 
increased complexity (Case Study2). 

Benefits of this approach include the following: 
• Enables better knowledge capture:

– More modular, reusable, precise, maintainable, and complete (e.g., units).
– Acausal; better verification & validation vs. spreadsheets.

• Enables swapping in/out alternative subsystem designs.
• Provides patterns that are easy-to-apply with practically any system or SoS.
• Provides a basis to integrate with existing body of system models, including executable

system models represented in SysML and/or DoDAF/UPDM. Methods to automate this
integration are WIP in RT113/ITAP for Stage 3 (CY2015).

The above building blocks and case study applications effectively demonstrate how the basic 
MIM approach incorporates COSYSMO-SoS and related concepts in a modular SysML building 
block fashion. This then puts COSYSMO-SoS capabilities within the broader MIM context that 
can be built upon in future ITAP phases and tied together with FACT for larger-scale case 
studies involving multiple “–ility” considerations.  
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6 Penn State University (PSU) 

6.1 Activity 1 (Summary of Phases 1 and 2 Results   (summarizing the counterpart 
Phase 2 report content for the activity) 

Under Phase 2, PSU has developed a preliminary formal model of design as a sequential 
decision process of initially considering broad ranges of potential solutions to the design 
problem at a low level of detail, and then sequentially reducing the space of design solutions 
considered while increasing the detail. More specifically, we consider how the computational 
models used to support decision making evolve from simple models for early conceptual 
analyses (e.g., Excel spreadsheets running on desktop computers) to extraordinarily detailed 
models running on supercomputers (e.g., coupled aero and structural analyses). Key 
considerations in establishing a workflow (and addressed in this work) include the nonrecurring 
cost to create the models, the recurring cost to exercise them across a trade space, and the 
reduction in trade space that can be achieved with the models. As each level of modelling 
requires different levels of detail, the rate of increase of detail is also critical. Finally, how the 
models couple to form a sequential chain of analyses is considered.  

http://www.pslm.gatech.edu/projects/incose-mbse-msi/


TO 0037, RT 137 

96  

The model of decision making developed in this work 
has has its roots in the domain of marketing, which is 
fundamentally concerned with how consumers 
choose. While there are many different approaches 
to modeling the consumer’s choice process, a 
common thread is that the consumer goes through a 
process of sequentially reducing the space of 
considered choices through a number of discrete 
sets. Shocker et al. [5] define a model that has been 
widely adopted in the field, directly informing our 
efforts (see Fig. 1). The initial set is the universal set 
and is the set of all possible choices. The awareness 
set consists of the subset of items for which the DM 
becomes aware. It is a subset of the universal set and 
is likely a strict subset. A consideration set is a 
purposefully constructed set of potential solutions – 
so creating this set took effort by the DM. The idea of 
a consideration set is a critical one, as it reflects the 
concept that the DM makes a preliminary choice in 
forming the consideration set prior to a final choice. 
The choice set is defined as the final consideration set – it is the set of alternatives that are 
considered prior to a final choice. Although only one consideration set is shown in Fig. 1, there 
can be many intermediate sets, each smaller than the predecessor and subject to more 
scrutiny. The strategies for forming each set is expected to evolve adaptively based on the 
numbers of alternatives and attributes as per adaptive strategy selection research [14-16]. 

This choice model has since been extended by the authors to explicitly include the effort to use 
computational modeling to guide a DM (Decision Maker) in their search through the trade 
space [9]. The basic premise is that DMs and their team start with low fidelity designs subjected 
to low fidelity analyses. This phase identifies regions of interest and culls other regions from 
further consideration using some heuristic such as compensatory or non-compensatory [1]. The 
process is repeated while subjecting the reduced size set to further and further analyses. The 
final choice set is analyzed at the maximum fidelity. Figure 2 shows an intermediate step in the 
larger convergence process.  

In executing a TSE (Trade Space Exploration) exercise and selection process against a particular 
consideration set, the DM down-selects to a smaller consideration set thus forming a decision 
epoch — their final decision is the single choice. The entire process can be viewed as a series of 
decision epochs, with each epoch incurring an allocation of time and resources resulting in a 
smaller consideration set for the next stage. Each epoch retains a set Graphically, the core 
product of phase 2 is the design flow in the figure below. 

Figure 11. Model of decision making in marketing 
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6.2 Phase 3 and 4 Results 

PSU has developed a preliminary formal model of design as a sequential decision process of 
initially considering broad ranges of potential solutions to the design problem at a low level of 
detail, and then sequentially reducing the space of design solutions considered while increasing 
the detail. More specifically, we consider how the computational models used to support 
decision making evolve from simple models for early conceptual analyses (e.g., Excel 
spreadsheets running on desktop computers) to extraordinarily detailed models running on 
supercomputers (e.g., coupled aero and structural analyses). Key considerations in establishing 
a workflow (and addressed in this work) include the nonrecurring cost to create the models, the 
recurring cost to exercise them across a trade space, and the reduction in trade space that can 
be achieved with the models. As each level of modelling requires different levels of detail, the 
rate of increase of detail is also critical. Finally, how the models couple to form a sequential 
chain of analyses is considered. 

The core of the modelling problem and analysis approach adopted here is that we start with a 
fixed, finite of discrete points defining the tradespace, the consideration set. Each discrete point 
is defined by a set of n parameters, thus the set forms a cloud of points in an n-dimensional 
tradespace. No restriction is put on the form of the parameters other than that we can form a 
rank ordering over them. So a parameter can be anything from the real number line to discrete 
numbers, to choices of colors, as long as they can be ordered. 

Models/analyses are applied to points in the tradespace, with the results used to decide which 
tradespace points to carry forward and which ones to eliminate from further consideration. 
Early models and analyses either do not incorporate all of the physics of the problem or do not 
consider all of the parameters of the points, i.e., they consider a reduced level of detail of the 
tradespace points. For this reason, reduced order models are incapable of completely reducing 
a tradespace to a final solution. Instead, they can only decrease the size of the consideration 
set. The remaining consideration set is then subject to further analysis by more expensive 
modelling efforts that consider more parameters and more physics, resulting in further 
decrease in the size of the set. In the final model/analysis stage, a choice of a single point in the 
tradespace is made. 

In the flow from a conceptual level model to a detailed model, we constrain the conceptual 
level model to only remove points that are guaranteed to not be the final choice when run 
through the final detailed model. Since the concept level model will be analysing trade points 
based on fewer numbers of parameters, the requirement that points are guaranteed to be 
removed in more detailed analyses tightly couples the levels of analyses. How the concept 
model is used is heavily dependent on what the detailed model is and how it will be used. They 
have to be considered as a flow. 

Within this flow, then, all of the modelling stages prior to the final one serve only to cull the 
tradespace. A particular level of model, when applied to either the original consideration set or 
a reduced subset of it, will only remove the points in the set it is capable of removing. Each 
model has a certain discriminatory power which is tied to the total number of points from the 
original consideration set that it will remove. From a cost-of-modeling perspective, a reasonable 
expectation is that the greater the discriminatory power of a model, the greater the recurring 
and non-recurring costs of its use. 

As this work is preliminary in nature, assumptions used in order to focus on the key aspects of 
the modelling approach include 
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 Discrete pre-determined sets of design points
 All points described by the same set of parameters
 The concept of discriminatory power and the restricted ability of models to remove

design points
 No uncertainty in the models (such as could be modelled by a probability distribution)

NOMENCLATURE 

Zi the ith consideration set of designs 
qi  size of the ith set |Zi| 
Mi The ith modelling effort used to analyse a consideration set and cull it to a smaller set 
X vector input to a concept model 
Y vector of input to a detailed model 
gc(x)   concept model 
gd (x,y)  detailed model 

6.2.1 Formal Model of the Sequential Process 

Start with a random list that represents finite parameter trade space, Z, and where each 
element of Z corresponds to a parameter of a design.  An example would be spherical tank 
design where the three parameters are radius, wall thickness, and material choice and so Z = 
[radius, thickness, material] and each of the parameters can take values from some set of 
possibilities. 

The space of Z has an ideal point z* . The ideal point is the point that would be chosen if there 
were time and ability to analyse every point in Z with the most detailed modelling effort. We 
apply a “modelling effort” M to Z and this refines and localizes the position of . The modeling 
effort can be more or less discriminatory, with differing results for each case. So if we have 
efforts  and  and  and is more discriminatory, then using  results in a smaller next 
set as compared to using . 

Modelling efforts also have cost. The cost of an effort is decomposed into a fixed cost for 
initially establishing a model and a variable cost proportional to the size of the set Z that the
model is applied to. We will use a linear approximation to cost, so cost of model  is

, where  is the size of the set Z. Label the size of the set as qi , then

ci = a i + biqi  .
The simple linear cost model neglects factors such as learning curves, where the cost per 
analysis should decrease with each analysis conducted. It also neglects sustainment costs 
merely for having a model in hand, such as annual licensing costs for software and hardware. 
These can be added to increase accuracy. 

6.2.2 The Modeling Effort M 

The modeling effort M is all of the cost and time to define designs and to identify and acquire 
computational models to the point of being able to use them, the time and effort to train the 
people in using the tools, along with the cost and time to exercise the models, analyze the 
results, and down-select the trade space. The discriminatory power of the modeling effort is a 
function both the tools used to execute it and the people executing the effort. So for example 
the same toolset used by senior users empowered by the final decision maker would likely have 
more discriminatory power than a group is less trusted users. In summary, the modeling effort 

z*

M1 M 2 M 2 M 2

M1

ci M i

ai + bi Zi Z
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includes a technology element for populating the tradespace and visualizing it, and a human 
element for analyzing the results and making a decision. The model has a fixed and variable 
cost. Furthermore, the model has a discriminatory power, which is reflected in its ability to 
localize the ideal point . 

An important restrictive modeling assumption adopted for this preliminary work is that 
applying a model to a space reduces the space to a subset of the original q, not by a percentage 
of the remaining qi . Therefore, there are no gains to be realized by repeatedly exercising the 
same model. Similarly, the size of the set realized by running a model is independent of set it is 
run over, unless the set’s size is smaller than qi . This is a restrictive assumption that can be 
relaxed and modified in later models. 

6.2.3 Single stage modeling versus two stage modeling 

Look at the case where we have two efforts,  and , assume that  is of the quality that 
applying  to all of  will identify exactly   The effort  will not identify exactly where 
is, but will cull the space of Z to some smaller region  where  , or equivalently . If

 is run against Z first, then when  is run, it need only be run over  since we know that  
does not lie in the set .  This results in a cost savings in running since the run cost 
depends on the size of the space to run it on. This is the fundamental key to executing the 
multi-step modeling, the reduction in size of the set considered by the next stage of analysis. 

So what must hold with regards to the costs of  and  and the reduction in set size by  in 

order to justify using a two-step process? The cost of a single step process is . The 

cost for a two-step process is 

 . 

Solving for results in the following relationship: 

   . 

So needs to restrict the space to  or less in order to justify using it in a two-stage process. 

6.2.4 Multi-stage process 

The sequential process can have arbitrarily many modeling steps. Consider the case of having 
three potential models to employ. There are four potential configurations to consider (note 
that all four sequences end with ): 

In general, if there are n models to choose from then there is an upper bound of  possible 
configurations to consider. This upper bound is loose, however, and can be tightened 
considerably. Considering all of the alternatives, the cost of each is the following:  

z*

M1 M 2 M 2

M 2 Z z*. M1 z*
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M1 M 2 Z1 z*
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The alternative paths can be laid out as a graph through a state space, with ’s as states and 
the models used as arcs in the graph. 

Figure 12. Sequencing of models 

Adopting the nomenclature , the best modeling approach to get to state  can be 
calculated as 

 

while the best modeling approach to get to state  is 

 

and the only approach to get to  is to use M1  . In general, if there are N models, then there 
are potentially 2N-1 configurations to choose from, but one only needs to actually consider

 N + + 3+ 2 +1= (N 2 +N) / 2  possible values, which can be written as 

number of combinations =
N +1

2

æ

è
ç

ö

ø
÷  . 

6.2.5 Example: wing design for light civil aircraft 

The performance of a wing is primarily a function of its geometry, which for typical light civil 
aircraft can be characterized by its airfoil properties, span, and chord. Given a wing that uses 
the same airfoil shape throughout, and the 2-D airfoil has a known rate of change a of cl  with 
respect to angle of attacka of cl = ala , then a first order approximation to the behavior of the 3-
D wing is the relationship 

aw =
al

1+
al

peAR
where e is the Oswald coefficient and AR is the aspect ratio, 
which is based on the wing span b and the wing area S. This 
model only has the variables b and S; and the equation to 
determine aw  is in simple closed form. It can be considered a 
concept model. 
An improved model of wing performance can achieved by using 
lifting line theory [17] to model the wing is a series of finite 1-D 
wing segments with vortices from each segment influencing the 

c3 = a3 + b3q

c13 = a1 +a3 + b1q + b3q1

c23 = a2 +a3 + b2q + b3q2

c123 = a1 +a2 +a3 + b1q + b2q1 + b3q2

qi

M iM j®M ij
q3

M123 = min M1M3,M12M3,M3[ ]

q2

M12 = min M1M2,M2[ ]
q1
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other (Error! Reference source not found.). This improved modeling approach involves both 
increasing the number of design variable to be specified (the wing chord for each segment) and 
the computationally complexity (the algorithm solves a linear system of size equal to the 
number of segments the wing is divided into). Whereas the concept model was a simple closed 
form equation, a lifting line model dividing the wing into m segments requires solving a set of m 
linear equations with a typical algorithmic complexity O(n3). Additionally, the wing chord at the 
m locations must be specified. The ability to choose the discretization m offers a relatively 
smooth continuum of models of increasing detail to consider. 

We define the initial consideration set Z to be a set of 5000 different wing designs, each with a 
unique choice of 2-D airfoil (setting al ), a fixed span b and a set of 200 chord values along the 
wing. We can arbitrarily choose three levels of models to consider, the concept model, a lifting 
line model with m=20 unique wing segments, and a lifting line model with m = 200 segments, 
i.e., maximum detail.
Table 4. Models of wing to form a sequence from 

Model Description Variables Complexity Accuracy 
M1 Closed form 

equation 
al, b, S O(1) Low 

M2 Lifting line with 20 
chord segments 

al, b, 
chord1,…,chord20 

O(203) Medium 

M3 Lifting line with 200 
chord segments 

al, b, 
chord1,…,chord200 

O(2003) Final 

Assuming that the design problem consists of finding some ideal combination of wing 
aerodynamic performance with mass, cost, aircraft space requirements, etc., we would want 
to use the cheaper models as much as possible to remove as many of the designs in Z as 
possible prior to running the more expensive models. All model sequences must end with 
M3, however, as only it can discriminate between the wing designs. 

6.2.6 Connection between Concept & Detailed 

Consider the simple wing model above, and the relationship between M1 and M2. The concept 
model only has the three input variables, while the (relatively) detailed model has 21. There are 
potentially many wing designs in Z that are unique with respect to M2 but have the same three 
values of input with respect to M1.  

A similar property holds between M2 and M3.  We say that to fully describe a wing requires 
setting 201 attributes. When a wing has fixed only the 20 chord values needed for M2, we in 
essence have fixed 21 of the 201 attributes that fully describe a wing, and have 180 degrees of 
freedom remaining. The 180 degrees of freedom reflect on deferred decisions. When we run 
M2, we are leaving the other 180 variables free to take a value to be determined later. This is in 
a way uncertainty, but it is fundamentally different from the uncertainty associated with 
unmodeled physics or random events, and cannot appropriately be modeled by a probability 
distribution. Instead, it should be modeled by an interval. The formal model of the relationship 
follows. 

6.2.7 Formal Model of Relationship between Concept & Detailed 

Assume there is a detailed model and a conceptual model. The detailed model has as input a 
set of vector-valued variables x and y from discrete sets of parameters  X = {x1, ,xN} and 

 Y = {y1, ,yM}  and returns a scalar value v  that is to be minimized, 
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v = gd (x,y) . 
The complementary conceptual model only takes as input x and that has the following form: 

v = gc(x).
The decision problem is to find some optimal choice of x and y satisfying 

v* = min
x,y
gd (x,y)

x*,y* = argmin
x,y

gd (x,y)

Further assume that the detailed model is expensive to exercise, and that finding the optimum 
requires an exhaustive search of all possible values for X and Y. In order to reduce the search 
time, we’d like to use the lower order (conceptual) model to cull as much of the search space as 
possible prior to running the detailed model. The complementary conceptual model that has 
the following form 

vc = gc(x)  
The concept model takes as input a subset of the inputs to the detailed model. The goal is to 
use the concept model to eliminate values of X that are guaranteed not to contain x* . An 
example ideal concept model would be implemented as (or be equivalent to) 

gc(x) = min
y
gd (x,y)  . 

Such a model would identify x*  directly, leaving only a search over Y to complete the 
optimization. However by our problem definition this would require actually running the 
detailed model exhaustively over the space of possible Y values for each X, which would result 
in exactly the same number of evaluations as running the detailed model and optimizing over X 
and Y in the first place. 

Typically concept models are lower order models and almost always taking as input a subset (X) 
of the total number of inputs that would run in a detailed model, meaning they do not contain 
all of the details of relationships that are in the detailed model. Much work has been done on 
“model uncertainty” but in this instance uncertainty is not the correct term, since what really 
remains when we pick a value from X is interval, i.e., there are remaining degrees of freedom as 
we still need to ultimately pick a value from Y. 

Instead of a single concept model, we propose to have a concept interval returned by the 
conceptual model.  

vl = gl (x)

vu = gu (x)
 . 

For a particular value of X, the upper and lower bounds have the property
gl (x) £ min

y
gd (x,y) £ gu (x). So the concept model forms an upper and lower bound on the best 

possible value achievable with gd given X is fixed. The bounds define an interval in which the 

ideal point x*  must lie. The concept model(s) can then be used to exclude regions of X that x*  is 
guaranteed not to lie. 

"xi ÎX :  if $ x j ÎX  s.t. gl (xi ) > gu(x j ) : xi Ïconsideration set  
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In plain English, for a point xi  if there is another point x j such that the best possible result of

gd (xi ,y)  is worse than the worst possible result with gd (x j ,y)  then we know that xi ¹ x* , i.e., we 

can remove it from the consideration set of candidates 
for x*. 

Figure 13 shows a graphic example of the principle. The 
grey region is the projection of all values of v = gd (x,y), 

while orange curve and the blue curve are the lower and 
upper bounding curves respectively on the best possible 

value of gd (x,y) for a given fixed x. 

Reconsidering the wing design problem, let each of 201 parameters of  {al ,chord1 ,chord200}  take 
one of 10 possible values. So there are potentially 10200 points in the initial consideration set Z  
if we were to explicitly enumerate all possible combinations. Treating the models M2 and M3 as 
concept and detailed respectively, then 

 

X = {al ,chord1 ,chord20}

Y = {chord21 ,chord200}
. 

The model M3 takes in all of M2’s variables plus additional ones. For M 2  to be a proper 

conceptual model with respect toM 3  it should return two values, 

M2l
(x) £ min

y
M3(x,y) £M2u

(x) . 

6.3  Phase 5 plans 

This effort contains two key contributions to the design community; a model of design as a 
sequential decision process of refinement using progressively more accurate and expensive 
models, and a connection approach for how conceptual models couple with detailed models. A 
number of assumptions were used to simplify developing and understanding the modeling 
approach. One was that a discrete pre-determined set of design points formed the 
consideration set Z. However, even in the simple wing problem the size of Z would be 10200, 
which could never be exhaustively enumerated. There are no obvious hindrances to extending 
the modelling approach to continuous spaces. Another assumption is that all points are 
described by the same set of parameters. An obvious counter-example is where a concept 
model for a ship is created in an Excel spreadsheet with a fixed set of parameters (X) but then a 
solid geometry model is created for the detailed design, which differ from other detailed design 
by gigabytes of data. The key is the fact that after xÎX  has been specified, many degrees of 
freedom remain, and do the concept model should return ranges, not single values. 

The assumption that models have a discriminatory power and a restricted ability of models to 
remove design points aligns well with the idea that trade spaces are culled at least initially using 
non-compensatory strategies such as applying requirements/constraints to candidate designs 
and removing them if they violate. The final assumption is that there is no uncertainty in the 
models. There is no inherent reason that uncertainty cannot be included - the purpose in this 
assumption is just to clearly highlight that the models need to provide bounds and intervals as 
output rather than points due to the remaining degrees of freedom of the decision process. 
Including uncertainty would have the impact of making the upper and lower bounds 
probabilistic rather than deterministic, otherwise the fundamental approach remains the same. 

Figure 13. Model value space 
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The next step in research is to identify candidate models across many domains and attempt to 
categorize their recurring and nonrecurring costs and discriminatory power, forming them into 
sequences and exploring methods to create optimal model flows. Methods to easily create the 
upper and lower concept models are also a near-term target. Last is the introduction of 
multiple objectives into the mix, which will greatly complicate the definition of an upper and 
lower bound, replacing a simple greater/less than relationship with a dominance one. 

6.2.7 Phase 4 End Results 

Specifically in Phase 4, PSU focused their efforts on validating the Sequential Decision Process 
model against a series of case studies of increasing complexity. The case studies will in turn 
drive the next steps in exploration. We implemented the simple wing design model with 
varying number of wing segments from 10s to thousands, and treated it as both a value 
optimization problem (linear-weighted sum or other scalar function) and as a multi-objective 
problem with Pareto optimality as the defining metric. We are preparing to publish at 
upcoming conferences, and to submit to a journal our detailed results. 

Under separate funding, PSU experimentally deployed the techniques developed here to both 
the US Army Capital Planning Model effort and the DOD Rapid Composition of Cost Models 
effort. These complementary efforts offered a first opportunity to prove out the techniques on 
practical problems. 

6.2.8 Phase 5 plans 

With phase 4 focused on validation and extension, Phase 5 will be focused on deployment. PSU 
will develop questionnaire templates to help organizations understand their sequential 
modeling process, along with computational tools to help them understand the principles of 
fidelity increase versus trade space decrease. Finally, we will deploy decision tools to help 
program managers and system engineers plan the Model-Based System Engineering processes. 
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7 Air Force Institute of Technology (AFIT) 

7.1 Phase 1 and 2 Results 

Phase 1 focused on the development and application of the CEVLCC model referenced below.  
Phase 2 focused on the initial work on the application to the Air Force Advanced Trainer (T-X) 
Concept described below. 

7.2 Phase 3 Results  

7.2.1 APPLICATION PROJECT – A METHOD FOR EVALUATING DESIGN FLEXIBILITY EARLY IN DESIGN

APPLIED TO AIR FORCE ADVANCED TRAINER (T-X) CONCEPT 

This research concluded that a methodology could be developed that quantitatively measures 
design flexibility and the expected impact to Life Cycle Cost (LCC) based upon era realization. 
The methodology builds on the stochastic life cycle cost work done by Ryan et al, [Ryan, E., 
“Cost-Based Decision Model for Valuing System Design Options,” PhD Dissertation, Air Force 
Institute of Technology, Wright-Patterson AFB, OH, September 2012] and applies it to the Air 
Force Advanced Trainer (T-X) Concept, with subject matter support from the AF Life Cycle 
Management Center.  Variations of an Air-Force-only trainer development program were 
considered based on potential requirements for Navy, Heavy (multi-engine) and Special 



TO 0037, RT 137 

106  

Operations trainers.  Varying probabilities for the realization of these requirements were 
considered as well as the cost impact from incorporating “hooks” for these requirements in the 
baseline AF-only design.  These “hooks,” such as a stronger and heavier structure to 
accommodate Navy carrier operations or a multi-engine configuration to support a heavy 
aircraft requirement, had adverse impacts on both acquisition and sustainment costs, which 
was not always offset by economies of scale in the acquisition and sustainment phases.   
The quantitative measurement was accomplished by using LCC as a proxy metric for design 
flexibility.  Probability of occurrence for the requirements realizations, the cost impact of 
design flexibility, and cost modifiers associated with economies of scale (for both production 
and sustainment) were large drivers of expected LCC.  Sensitivity analysis was performed to 
identify how robust the preferred solution was to variations in the event probabilities and/or 
cost impact parameters.   Given the assumptions of the study, this method and application 
demonstrated that when expected LCC is used to infervalue of design flexibility, a quantifiable 
return on investment can be measured. The results of this research were briefed to AF Materiel 
Command Headquarters (AFMC/EN) and the Development Planning office of the AF Life Cycle 
Management Center and were documented in the AFIT MS Thesis (AFIT-ENV-14-M-05) entitled 
“Exploring a Method to Quantitatively Measure Design Flexibility Early in the Defense 
Acquisition Life Cycle” by Captain Joseph Kim.  Extensions to this work are looking to create and 
demonstrate stronger linkages between the system/concept architecture and the design 
impacts, as well as to provide sufficient input data for higher fidelity cost estimating models. 

7.2.2.Methodology Development With Application – Evaluating the Impact of Requirements 
Changes on Design and Acquisition Effort 

Military systems have traditionally been designed to satisfy a small set of initial 
requirements.  This approach often causes an inability for the system to easily meet future 
requirements.  This research introduces a modeling method which uses architecture analysis to 
assess the impact of change on a system module or component due to a specific requirements 
change.  It attempts to inform the designer/decision-maker as to strategies that are more likely 
to mitigate the impact of potential requirements changes.  The method modifies the 
Generational Variety Index [Martin, M. V., & Ishii, K. (2002). Design for variety: developing 
standardized and modularized product platform architectures. Research in Engineering Design, 
13, 213-235] methodology by including uncertainty in (1) the likelihood of a specific 
requirements change, and (2) the impact of that requirements change on a system module.  In 
addition to requirements changes, per se, we consider two types of design changes that can 
result from a requirements change—scalable changes, which are incremental in nature, and 
modifiable changes, which are more radical.  Our probabilistic model examines (1) how a 
specific requirements change impacts a module, (2) how a given module is impacted by a 
combination of requirements changes, (3) how a specific requirements change impacts the 
entire system, and (4) how the system is impacted by a combination of requirements changes. 
Examples of architectural information used by this approach include requirements traceability 
to system functionality, allocation decisions tying functions to components, and identification 
of interfaces and/or design dependencies between components or modules.  Results obtained 
from our method can further inform decisions regarding resource allocation and system design 
in the face of uncertainty regarding future system requirements. 
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The following investigative questions are considered by this research: 

1. What are various system-level architecture options that allow a system

architecture/design to meet current and possible future requirements?  The system

architecture provides traceability from the requirements to system functionality to

system modules or components.  The terms “component” and “module” are used

interchangeably for purposes of this research.  A module is defined as an “an

independent building block of a larger system with a specific function and well-defined

interfaces” [Hölttä-Otto, K. (2005). Modular Product Platform Design. Espoo, Finland:

Helsinki University of Technology ].

2. How does a type of requirements change impact a module/component?

3. How is the module/component impacted by a combination of requirement changes?

The two previous questions provide the necessary information for a decision maker to 

understand the impacts on modules as a result of requirements changes.  This information 

allows system designers to determine where change mitigation should occur and how it should 

occur.    

4. How does a type of requirements change impact the system as a whole?

5. How is the system impacted by a combination of requirement changes?

These two questions use the same information available to the component impact 
questions but instead focus the results on how the requirements impact the system rather than 
components.  This information provides the necessary information for a decision maker to 
prioritize the management of requirements change and then determine strategies on how to 
reduce the impact of changes due to requirements.  

The proposed methodology as described by this paper only considers the initiating point 
of functional change and the direct/indirect impact of that functional change on linking 
functions in the system.  The research demonstrates the model use through the analysis of a 
flexible munition system architecture case study.  

This effort will continue under Phase IV of RT-113.  A Masters Thesis by Captain Jason 
Altenhofen will be provided in the March 2015 timeframe, and a paper/presentation based on 
this work has been accepted for the Industrial and Systems Engineering Conference (ISERC) in 
May 2015.  Additional work associated with a flexible weapons cost modeling approach is 
ongoing as part of this effort, and will be completed under Phase IV. 

7.2.3 Theoretical Development – Energy and Information Impacts on System Functionality 
and Effectiveness 
While system functions and functionality are widely used concepts in systems engineering, 
there is significant diversity in their definitions and no unified approach to measurement. This 
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research establishes a systems engineering method for measuring impacts to functionality in 
dynamic engineered systems based on changes in kinetic energy. This metric is applied at 
particular levels of abstraction and system scales, consistent with the established multi-scale 
nature of systems. By measuring system behavior in context with expected scenarios, it is 
possible to estimate expected functionality or set bounds on a system's maximum 
functionality. This measurement can be used to evaluate system robustness and resiliency, 
compare systems, examine impacts to functionality based on energy or information availability, 
and guide development of system architecture.   
An initial investigation in this new research area explores the relationship between energy and 
system functionality to assess the robustness of an operational system in the face of variations 
associated with energy available.  Results from this initial investigation have been submitted to 
the INCOSE Systems Engineering Journal and for presentation at the Industrial and Systems 
Engineering Conference (ISERC) in May 2015.  Additional work in this area will continue under 
Phase IV, and will address connections to information content, information availability, and 
system complexity.  The principal author for this work is Jason Clark, an AFIT doctoral student 
supported in part by RT-113. 

7.3  Phase 4 Work - Combined AFIT and NPS RT-137 Task for 2015 
AFIT and NPS are developing a common application and integrated effort for validating 

several of the approaches they have been developing and refining under RT-46 and RT-113. 
The application will involve heterogeneous teams of autonomous and cooperative agents for 
ISR missions.  A System-of-System level architecture will be developed encompassing a variety 
of tactical ISR missions that must be conducted in contested and denied environments. 
Environments that affect the functionality and/or performance of communications, 
surveillance, and navigation environments present unique challenges for ISR UAV CONOPs with 
respect to UAV system capabilities (communications, sensing, data processing, command and 
control, navigation).  Actors associated with this architecture will include not only variants of 
autonomous/cooperative agents, but command and control and adversarial elements as well. 
The architecture will be developed to support analysis of effectiveness and robustness given 
uncertain future scenarios and possible design approaches for the autonomous/cooperative 
agents and their associated command and control system.  The architecture will also be 
developed to support software and system cost estimating approaches in order to assess cost 
effectiveness as well as mission effectiveness.  This effort will build upon several prior efforts at 
AFIT and NPS: 

 AFIT has modeled System-of-System level architecture behavior and effectiveness in
both the Arena and MATLAB environments.  These efforts have shown the value of
architecture-based modeling to aid in requirements definition and design decisions.
While these efforts have been successful, they have required a mapping from the
architecture definition to the modeling and simulation environment, and they have
typically not integrated cost estimation into the analysis.  The current proposed effort
will utilize new Model Based Systems Engineering tools to eliminate the need for a
transition from the architecture to an executable model.  Tools such as Magic Draw
and/or the Monterey Phoenix approach developed by NPS will be considered for the
proposed task.



TO 0037, RT 137 

109  

 NPS has pioneered the Monterey Phoenix (MP) approach to developing executable
architectures that can be used to evaluate performance, expose design problems, and
uncover problems associated with emergent behavior.  The approach can be used to
auto-generate a range of scenarios based on the behaviors of the various actors,
allowing the architect/system designer to modify the systems to either accommodate
favorable scenarios or eliminate the possibility of unfavorable scenarios.  The intent
with MP is to support a complete cycle of automated system verification/validation that
is currently not possible using existing UML/SysML approaches.

 AFIT has been applying MIT’s Epoch Era Analysis for capturing uncertain future
requirements and environments.  This has been combined with a stochastic life cycle
cost modeling approach to estimate an expected value of the life cycle cost given
probabilities for the future epochs and cost estimates to adapt or modify the systems to
accommodate the epochs.  An initial application looked at the Air Force advanced
trainer concept, and a current application is applying the methodology to an Air Force
concept for Flexible Weapons (GBU-X).  The current GBU-X effort is identifying the
architectural features essential for estimation of both acquisition and
operations/support costs of the systems, and seeks to create a business case analysis
that compares the legacy munitions approach to a more flexible architecture.

 NPS has been developing approaches for improving integrated systems and software
cost models and connecting them directly to tradespace analysis tools. During RT46,
they prototyped a web service for the COQUALMO cost/quality model and in this phase
are developing SysML constructs for computing COSYSMO and COCOMO II cost/risk
(with USC and Georgia Tech).  The ISR UAV architectural system requirements can be
automatically fed into COSYSMO for systems engineering cost/risk. Software size also
needs to be captured.  MP can compute function point measures for software size, and
this capability will be evaluated.  It will also be assessed for deriving systems engineering
inputs.

The proposed AFIT-NPS Phase 4 tasks were performed as follows: 
Develop a baseline Operational and System Architecture to capture a set of military 
scenarios, using new Model-based Systems Engineering (MBSE) tool(s). 

For a representative multi-agent UAS system within the environments of interest, this effort 
produced a baseline set of SysML views. In particular, a Parametric View will be produced to 
support the cost and analysis models that will become part of the overall effort.   

Transition the baseline architecture to the Monterey Phoenix environment. The MP 
process was used to identify alternate events for each actor in each scenario.  With this 
“superset” of information, we can automatically generate all possible use case variants 
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within the scope to provide a scenario coverage that far exceeds what could be done with 
only a manual effort.  This provides a more substantial reference data set the system 
architecture must satisfy (containing many more possible behaviors, including off nominal 
cases) and a more complete set of input data to ensuing cost and performance analyses. 

Phase 5 Plans 

Utilize the executable architecture modeling framework of MP to perform automated 
assertion checking and find counterexamples of behavior that violate the expected 
system's correctness. This supports a complete cycle of automated system 
verification/validation impossible with existing SysML/UML technologies. 
Exhaustive/representative sets of scenarios generated by MP will be transformed by 
automated tools into implementation testing suites, another huge benefit providing the 
continuity of design from the early architecture models to the implementation.  

Design and Demonstrate ISR UAV tradespace.  The power of new tools such as MagicDraw 
and ModelCenter is the integration with analysis tools, across a network or on the same 
machine.  SysML has traditionally only captured and documented the operational concept, 
system requirements, activities/tasks, organizations and information flows, including 
possible physical instantiations.  New MBSE tools facilitate analysis such as optimization, 
simulation,  design of experiments, assessment, sensitivity analysis and statistical 
hypothesis testing and regression.  For this project, such trades and characterizations could 
examine collaborative and vehicle swarming algorithms, increasing autonomy on multi-
vehicle, and single operator operations.  Likewise, the effects on environmental variables 
within the architecture, such as communications and/or GPS jamming, air defenses, 
evasion, camouflage, and other factors could define the scenarios.  These types of trades 
demonstrate how a business case for varying technologies, capabilities or designs could be 
accomplished, if cost information is included.  

Develop life cycle cost models for the various components of the architecture, and embed 
them within a larger stochastic life cost estimating approach to evaluate cost 
effectiveness in an uncertain future environment.  Cost data will be attached to every 
actor and event in every possible scenario, computing the cost of each scenario, were it to 
occur.  A probability of occurrence for each possible scenario will be generated, providing 
for highly refined overall cost estimates (for operations, for maintenance, and perhaps 
earlier lifecycle phases) within a specified confidence interval.   

8 Naval Postgraduate School (NPS) 

8.1 - Summary of Phases 1 and 2 Results 
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The NPS Phase 2 activities improved and piloted several existing ITA analysis toolsets based on 
the results of Phase 1.  The focus for iTAP MPT extensions and applications was in the Ships and 
Aircraft domains, and making provisions for Space Systems in Phase 3.   

We met the following goals for research as detailed in the Phase 2 report [2]: 

 Experimented with tailoring existing or new tradespace and affordability MPTs for use
by an early adopter organization

 Trained early adopters in its use, monitor their pilot usage, and determined areas of
strengths and needed improvements, especially in the MPTs’ ilities

 Extended the MPTs to address the top-priority needed improvements

 Worked with early adopters to help transition the improved MPTs into their use

 Identified and pursued further improvements for the early adopters or for more general
usage.

The tools were tailored for software product line cost modeling, and total ownership cost for 
integrated engineering activities.  The early adopters represented NAVAIR and NAVSEA. An 
array of improvements for our models and tools were identified for going forward in Phase 3 
for ility tradeoffs.  

We supported outreach meetings to summarize and demonstrate iTAP capabilities to potential 
early-adopter organizations.  These included visits to the Army Engineer Research and 
Development Center (ERDC) in Vicksburg, MS, and NAVSEA CREATE-Ships personnel in 
Carderock associated with DoD Engineered Resilient Systems (ERS). 

We also engaged in new community-building activities with NAVAIR stakeholders.  NPS and USC 
began collaboration with the NAVAIR avionics software product line FACE program.  We are 
supporting their surveys with recommendations, data collection, interpreting software lifecycle 
cost models and calibrations of the COPLIMO product line cost model [8].   

This MPT transitioning is an outgrowth from RT-46 Phase 1 and RT-18 product line cost 
modeling.  This application is a highly relevant example of modeling product line benefits for 
the DoD.  See the Appendix - Product Line Modeling Background for more detail as this is core 
model is applied and extended in later phases. 

A previous shortfall of our TOC toolset was lacking the capability to estimate operations and 
maintenance.  We added parametric maintenance models into our system cost model suite for 
systems engineering, software engineering, hardware development and production.  The initial 
maintenance models are for systems and software.  

Cost uncertainty modeling was also extended via improvements in Monte Carlo analysis. 
Additional size inputs were made available for probabilistic distributions, as well as a wider 
array of distribution types.  This feature works in tandem with the new lifecycle extensions for 
maintenance. 
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We began a ship case study for design and cost tradeoffs with military students at NAVSEA.  The 
group is designing a new carrier and integrating RT-46 cost models into a Model-Based Systems 
Engineering (MBSE) dashboard for Total Ship Systems Engineering (TSSE).  Part of the applied 
research is a comparison and refinement of potential ship cost models for affordability 
tradeoffs in the MBSE framework. 

Initial comparisons of MIL-STD 881 Work Breakdown Structures (WBS) were performed to find 
commonalities and variabilities across DoD domains, and identify suggested improvements. 
This analysis informs us how to best structure canonical TOC tools to address multiple DoD 
domains efficiently.  Additionally, a detailed review and critique of the recent MIL-STD 881 UAV 
WBS was done and deficiencies noted for autonomy trends which are of increasing importance.  

NPS further extended Phase 1 cost models for breadth of engineering disciplines to include 
systems engineering, software engineering and hardware.  We also added Monte Carlo risk 
analysis for a subset of cost parameters in the integrated SE/SW/HW cost model. 

To better the address full lifecycle costs we improved TOC capabilities by adding lifecycle 
maintenance models.  We started on extensions of general cost models for DoD system types 
starting with ships and space systems. 

NPS supported startup efforts with USC, SMC and the Aerospace Corp. for researching and 
incrementally developing the next-generation full-coverage space systems cost estimation 
model COSATMO.  A prototype mockup for an existing satellite cost model was developed to 
support tool usage scenario discussions. 

The recently updated MIL-STD 881C [13] standard WBS for UAVs was critiqued by NPS and 
assessed for cost modeling.  Recommendations were identified to better address autonomy 
trends for the DoD, as these are increasingly important and crossing into the Ship domain for 
mixed Navy systems.   

See the Phase 2 report for underlying details of the WBS critique [2].  A UAV oriented pilot 
application is planned for Phase 4.  This critique will help inform the cost modeling aspect for 
UAV systems. 
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8.2 - Phases 3 and 4 Results 

On Task 2 we reached out to DoD organizations and sought MPT piloting opportunities.  Task 3 
activities added incremental capability enhancements to our suite of system cost models and 
tools.  Phase 3 included the successful adoption of the Constructive Product Line Model 
(COPLIMO) at NAVAIR resulting in follow-on research funding to extend the software cost 
model.  This example application of a model and tool is an outgrowth of both Task 2 for 
piloting, and Task 3 to develop an ensemble of DoD-relevant cost models. 
Task 2: MPTs and Piloting 
This task is a continuation of RT46 Method, Processes and Tools (MPT) development and pilot 
applications.  It continued some Phase 2 work seeking to further apply concurrent cyber-
physical-human system ilities tradespace analysis and design to NAVSEA and Army TACOM 
systems.  We supported the NAVSEA collaboration activities, helping prepare for the NAVSEA 
Technical Interchange meeting on cost modeling capabilities but couldn’t attend.   
After investigations to collaborate with the CREATE-SHIPS program in Phase 2, we sought to 
pilot MPTs in the Navy Ship domain for affordability tradeoffs with NAVSEA ship design. This 
continued in Phase 3 along with further targets of opportunity at NAVSEA.  We also continued 
integration and community-building activities with Engineering Resilient Systems (ERS) and 
other DoD programs. 
We also continued collaboration with the NAVAIR avionics software product line cost modeling, 
defining goals of the overall FACE business case analysis.  For this we studied NAVAIR’s air 
platform scenarios and COPLIMO variation for model validation purposes.  A  multi-module and 
multi-mission extension to support the avionics software product line cost analysis was defined. 
See the Appendix - Product Line Modeling Background for further details of the model 
foundation. 

We helped validate the preliminary parametric approach adopted by NAVAIR and their 
assumptions.  We identified and discussed survey improvements for product line organizational 
maturity assessment for the FACE consortium for NAVAIR. 
For MPTs we also explored application of SysML architecture models to support costing in ship 
and space system domains, and canvas for existing SysML models for deconstruction. 
Monterey Phoenix (MP) [5][6] was identified as an alternative modeling approach for 
tradespace analysis. 

We continued assessment of the MP architectural modeling approach in conjunction with 
SySML.  We also evaluated the feasibility of using web service-based cost models in the MP 
environment.  Potential domain applications were evaluated and we chose a UAV swarm pilot 
supporting an ISR mission.  We defined a corresponding tradespace demonstration project 
using MBSE tools with AFIT for Phase 4. 

Supporting details of the NAVSEA and NAVAIR pilot applications are next. 

NAVSEA Ship Design Pilot Application 
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We continued NAVSEA collaboration activities by demonstrating the NPS Dashboard for Total 
Ship Systems Engineering (TSSE), in support of NAVSEA and the Army Materiel Systems Analysis 
Activity (AMSAA) application to watercraft cost modeling and tradespace analysis. 

NPS has a TSSE MBSE Dashboard platform suitable for MPT piloting, extending and transitioning 
research.  We can extend the TSSE MBSE infrastructure for affordability trades to complement 
and interoperate physical tradespace with TOC models.  This is feasible since the MBSE models 
encapsulate ship or air vehicle requirements and factors linkable to parametric cost models for 
two-way integration. 

The TSSE dashboard implements a methodology for effectiveness-based engineering design 
including: 

 Integration of systems architecture, combat systems, and combat operations, as well as
related life cycle design and cost considerations

 Impact of system trade offs

 Impact of decision options for ship design, cost, and effectiveness in multiple criteria
trade space analysis.

The system design output is based on needed combat capabilities (mission effectiveness), 
engineering feasibility (ship synthesis), and cost.  The dashboard focus is early in life cycle, and 
to provide assistance to a decision maker.  It is conceptually overviewed in Figure 14. 

Currently two Excel-based ship cost models exist for 1) a very simple cost model within an 
existing ship synthesis model, and 2) an NPS ship cost model derived from more detailed 
outside sources.  The team can study and implement aspects of each and the web-based cost 
modeling tool. 

The MBSE dashboard project was web demonstrated by NPS researchers in Phase 3 to potential 
adopters at AMSAA for a new Maneuver Support Vessel.  The dashboard was well received, but 
it wasn’t good adoption timing due to imminent watercraft program milestones. 

There was extensive NAVSEA and ERS coordination effort with WSU, also enlisting support from 
Cliff Whitcomb at NPS as we sought the pilot application with AMSAA.  Discussions with Jeff 
Hough at NAVSEA indicated they already have a large staff supporting analysis of the new 
watercraft with no immediate need for assistance. There is currently no viable opportunity for 
piloting but we will continue discussions to reach better understandings. These activities are co-
reported with supporting details in the WSU section. 
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Figure 14: MBSE Design Process 

NAVAIR Software Product Line Modeling Pilot Application 

NPS and USC have been collaborating with NAVAIR stakeholders involved in avionics software 
product line architectures on the Future Airborne Capability Environment (FACE™) initiative. 
The FACE approach, via common standards, standardization of software interfaces and 
software re-use, offers a number of benefits such as increased competition, reduced software 
development times, greater innovation, and lower cost of doing business [12]. 

FACE is a technical standard that defines a common operating environment supporting 
portability and reuse of software components across DoD aviation systems.  The FACE 
Ecosystem is intended to provide the following: 

 An open technical standard that defines/specifies a reference architecture which is in
alignment with DoD Open Architecture guidance (modular, open, partitionable)

 Thoroughly defined, standardized, verifiable, open APIs at key interfaces
 A process for conformance  verification and certification
 A registry of certified FACE conformant software.
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FACE describes the standard framework upon which capabilities can be developed as Software 
Product Lines (SPLs) to enhance portability, speed to field, reuse, and tech refresh, while 
reducing duplicative development.  The FACE initiative ties SPLs, architectures and business 
principals together into a coherent process for use across DoD.  The FACE standard also 
describes a Reference Architecture that supports several technical "ilities" to include flexibility, 
scalability, reusability, portability, extensibility, conformance testability, modifiability, usability, 
interoperability, and integrateability.  

By using the FACE technical standard, decoupling the software from its interfaces, and adding 
the required layers of abstraction, the software can be reused across multiple platforms for 
very little cost beyond the initial development costs for both new development and life cycle 
updates.  

Benefits to the government from a SPL approach include: 

 Reduced development and life cycle costs

 Reduced time to field

 Reduce vendor lock

 Reduced redundant development

 Increased competition and competitive
avionics software marketplace

 Increased opportunities for reuse

 Testable OSA requirements

Industry benefits from a SPL include: 

 Companies can avoid “locking in loss” in a
time of decreasing budgets

 Opens previously closed markets to all
vendors

 Innovative companies can preserve market
share due to reduced vendor lock

 Allows small businesses more opportunity to
provide capabilities

 Allows air frame vendors to focus on what
they do best

 Facilitates interoperability between industry
partners in support of teaming
arrangements

Delphi Survey 
The goal of gathering industry responses is to determine current software development costs, 
development processes and reuse practices in the defense avionics software industry.  This can 
be used to forecast potential cost savings and process improvements brought about by the 
FACE common operating environment.  The Delphi surveys are to obtain a consensus view 
identifying: 

 The current software effort drivers in this sector

 Their level of influence on software development effort

 The impact of FACE on software effort drivers.

This information be used to calibrate Government software cost estimation models by 

 Adding or changing effort drivers for FACE

 Calibrating the influence of particular effort drivers for estimates of programs using
FACE.
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The final results will be used to develop and refine a Business Case Analysis (BCA) that will 
estimate cost avoidance over the lifecycle of a FACE conformant platform.  An earlier, 
preliminary Delphi showed the representative impacts of the FACE product line approach in 
Figure 15.  Note this CER applies only to software engineering effort and is an adjustment factor 
applied to estimates of effort to develop “new” or "modified" interface software code. The 
FACE CER is not to be applied to reused code (business logic), hardware, testing or other types 
of costs. 

Figure 15: Representative Impact of FACE Architecture on Effort 

We are supporting the fuller Delphi effort to better define the cost parameters and usage 
scenarios using the more detailed COPLIMO baseline parameters. 

At the end of Phase 3 the next FACE industry survey was still under refinement.  It is currently 
composed of the following sections: 

 Section 1 - Company (Division) & Software Engineering Unit Background

 Section 2 - Software Engineering Unit Operations (Practices)

 Sections 3 - Software Effort Drivers prior to the FACE Initiative

 Section 4 - Introduction to the FACE Initiative

 Sections 5 - Software Effort Drivers in the FACE Environment

 Section 6 - Study Close & Opportunity for Feedback

Parametric Modeling 
By interpeting COPLIMO for this unique environment, this collaboration has also identified the 
following extensions to better model the avionics software product line approach: 

 Treat only a portion of the overall software system as product-line software.  The
original COPLIMO assumes sizes are 100% inherited from product commonality.

 Account for additional equivalent size for the integration layer requirements and
associated effort, which must be included with system-specific requirements/effort.

These new model aspects were pursued in Phase 3 along with supporting a revised Delphi 
survey.  The specific NAVAIR extensions and instantiations of COPLIMO are summarized below: 
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 Five aircraft platforms need updates to their current Flight Management System (FMS):
1. Jet
2. Cargo Plane
3. Multi-mission Helicopter
4. Support Helicopter
5. New Jet Fighter (does not yet exist, i.e. a Gen X Fighter)

 For each platform updates are needed on one or more of the following possible FMS
capabilities:

1. Guidance
2. Hover
3. Landing System
4. Auto Rerouter
5. Military Flight Management (MIL FM)
6. Civilian Flight Management (CIV FM)
7. Navigation Database (NAV DB)

 Task Order (Used for Process Maturity/ Learning)
1. Updates performed one platform at a time in the order listed above.
2. Applicable FMS capabilities for each platform will be updated one at a time in the

order the capabilities are listed above.

The parametric cost modeling and survey enhancement activities continued into Phase 4. 
Assumptions were evaluated and parameter values refined.  The ongoing study results 
continued to provide insights into sources of cost savings. 

Task 2 also continued a collaboration with AFIT for a joint Intelligence, Surveillance and 
Reconnaissance (ISR) mission application involving heterogenous teams of autonomous and 
cooperative agents.  NPS provided cost modeling expertise, tools and Monterey Phoenix (MP) 
modeling support.  A focus will be on translations between models/tools in MBSE, specifically 
mapping architectural elements into cost model inputs. 

AFIT and NPS will continue to develop and refine a common application and integrated effort for 
validating several of the approaches they have been developing and refining during Phases 3 and 
4. A System-of-System level architecture will be refined encompassing a variety of tactical ISR
missions that must be conducted in contested and denied environments.  Environments that 
affect the functionality and/or performance of communications, surveillance, and navigation 
environments present unique challenges for ISR UAV CONOPs with respect to UAV system 
capabilities (communications, sensing, data processing, command and control, navigation).   

Actors associated with this architecture will include not only variants of autonomous/cooperative 
agents, but command and control and adversarial elements as well.  The architecture will be 
developed to support analysis of effectiveness and robustness given uncertain future scenarios 
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and possible design approaches for the autonomous/cooperative agents and their associated 
command and control system.  The architecture will also be developed to support software and 
system cost estimating approaches in order to assess cost effectiveness as well as mission 
effectiveness.   

This effort will build upon several prior efforts at AFIT and NPS: 

 AFIT has modeled System-of-System level architecture behavior and effectiveness in both
the Arena and MATLAB environments.  These efforts have shown the value of architecture
based modeling to aid in requirements definition and design decisions.  While these efforts
have been successful, they have required a mapping from the architecture definition to the
modeling and simulation environment, and they have typically not integrated cost
estimation into the analysis.  The current proposed effort will utilize new Model Based
Systems Engineering tools to eliminate the need for a transition from the architecture to
an executable model.  Tools such as Magic Draw and/or the Monterey Phoenix approach
developed by NPS will be considered for the proposed task.

 NPS has pioneered the Monterey Phoenix (MP) approach to developing executable
architectures that can be used to evaluate performance, expose design problems, and
uncover problems associated with emergent behavior.  The approach can be used to auto-
generate a range of scenarios based on the behaviors of the various actors, allowing the
architect/system designer to modify the systems to either accommodate favorable
scenarios or eliminate the possibility of unfavorable scenarios.  The intent with MP is to
support a complete cycle of automated system verification/validation that is currently not
possible using existing UML/SysML approaches.

 AFIT has been applying MIT’s Epoch Era Analysis for capturing uncertain future
requirements and environments.  This has been combined with a stochastic life cycle cost
modeling approach to estimate an expected value of the life cycle cost given probabilities
for the future epochs and cost estimates to adapt or modify the systems to accommodate
the epochs.  An initial application looked at the Air Force advanced trainer concept, and a
current application is applying the methodology to an Air Force concept for Flexible
Weapons (GBU-X).  The current GBU-X effort is identifying the architectural features
essential for estimation of both acquisition and operations/support costs of the systems,
and seeks to create a business case analysis that compares the legacy munitions approach
to a more flexible architecture.

 NPS has been developing approaches for improving integrated systems and software cost
models and connecting them directly to tradespace analysis tools. Earlier on RT46 they
prototyped a web service for the COQUALMO cost/quality model and in this phase are
developing SySML constructs for computing COSYSMO and COCOMO II cost/risk (with USC
and Georgia Tech).  The ISR UAV architectural system requirements can be automatically
fed into COSYSMO for systems engineering cost/risk. Software size also needs to be
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captured.  MP can compute function point measures for software size, and this capability 
will be evaluated.  It will also be assessed for deriving systems engineering inputs. 

8.3  Phase 4 Results 

 Developed an initial baseline Operational and System Architecture to capture a set of
military scenarios, using new Model-based Systems Engineering (MBSE) tool(s).  For a
representative multi-agent UAS system within the environments of interest, capture a
baseline set of SySML views. In particular, began developing the Parametric View.

 Transitioned the initial baseline architecture to the Monterey Phoenix environment. The
MP process can be used to identify alternate events for each actor in each scenario.  With
this “superset” of information, we can automatically generate all possible use case variants
within a scope limit to provide a scenario coverage that far exceeds what could be done
with only a manual effort.  This provides a more substantial reference data set the system
architecture must satisfy (containing many more possible behaviors including off nominal
cases), and a more complete set of input data to ensuing cost and performance analyses.
MP can also provide cost attributes.

 Utilized the executable architecture modeling framework of MP to perform initial
automated assertion checking and find counterexamples of behavior that violate the
expected system's correctness. This supports a complete cycle of automated system
verification/validation impossible with existing SysML/UML technologies. Initial sets of
scenarios generated by MP were transformed by automated tools into implementation
testing suites, another huge benefit providing the continuity of design from the early
architecture models to the implementation.

 Designed and Demonstrated an initial ISR UAV tradespace.  The power of new tools such
as MagicDraw and ModelCenter is the integration with analysis tools, across a network or
on the same machine.  SySML has traditionally only captured and documented  the
operational concept, system requirements, activities/tasks, organizations and information
flows, including possible physical instantiations.  New MBSE tools facilitate analysis such as
optimization, simulation,  design of experiments, assessment, sensitivity analysis and
statistical hypothesis testing and regression.  For this project, such trades and
characterizations can examine collaborative and vehicle swarming algorithms, increasing
autonomy on multi-vehicle, and single operator operations.  Likewise, the effects on
environmental variables within the architecture, such as communications and/or GPS
jamming, air defenses, evasion, camouflage, and other factors can define the scenarios.
These types of trades demonstrate how a business case for varying technologies,
capabilities or designs could be accomplished, if cost information is included.

 Developed initial life cycle cost model interfaces for the various components of the
architecture, and embed them within a larger stochastic life cost estimating approach to
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evaluate cost effectiveness in an uncertain future environment.  Experimented with 
attaching cost data to every actor and event in every possible scenario, computing the cost 
of each scenario, were it to occur. With the above steps and Phase 5 extensions, this 
application will use MP with cost modeling to enhance tradespace analysis of UAV systems. 
The executable integrated architecture will provide for evaluation of UAV technologies 
and/or design alternatives across a range of operational scenarios utilizing MBSE tools and 
notations.   

Current commercial MBSE tools support creation of a very small number of operational scenario 
instances compared to what is possible.  The validity of these tradespace analyses, however, 
stands to be substantially improved by expanding the number of scenario variants considered, to 
include a wider range of possible nominal and off nominal behaviors in both the system under 
design and the environment.  In particular, resulting cost estimates (e.g., for UAV software 
development, as well as UAV missions during operations & maintenance) are impacted by 
underrepresentation of possible scenarios and the lack of probability data on those scenarios.  One 
of our objectives is to increase the resolution of source data used for cost model computations. 
We plan to compare, contrast, and possibly integrate methods in Phase 5 for cost modeling in MP 
and SysML based on the Phase 4 results. 

The technical approach involves cycling AFIT-developed operational scenarios through the MP 
modeling process, whereby alternate events are captured for each actor in each scenario.  This 
produces a superset of scenario variants from the behavior models, suitable for input to 
tradespace analysis models and cost model hooks developed in SysML. 

With this we can capture lifecycle cost attributes for each function point in the architecture, based 
on internal and external interactions in the MP models.  We can also capture cost attributes for 
each actor and each event in each generated scenario for use in mission cost effectiveness 
analyses.  Phase 5 will develop further improvements to MP.  Based on Phase 4 results these may 
include an improved event trace generator and a user-friendly GUI. 

8.4  Phase 5 Plans 

 Continue to evolve the initial Operational and System Architecture to capture a set of
military scenarios, using new Model-based Systems Engineering (MBSE) tool(s).  For a
representative multi-agent UAS system within the environments of interest, capture a
baseline set of SySML views. In particular, continue to develop the Parametric View.

 Continue to migrate the initial baseline architecture to the Monterey Phoenix
environment.

 Extend the initial executable architecture modeling framework of MP to perform
automated assertion checking and find counterexamples of behavior that violate the
expected system's correctness.
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 Continue to Extend and Demonstrate the Initial ISR UAV tradespace.  The tradespace
capabilities will include new MBSE tools facilitate analysis such as optimization, simulation,
design of experiments, assessment, sensitivity analysis and statistical hypothesis testing
and regression.  For this project, such trades and characterizations could examine
collaborative and vehicle swarming algorithms, increasing autonomy on multi-vehicle, and
single operator operations.  Likewise, the effects on environmental variables within the
architecture, such as communications and/or GPS jamming, air defenses, evasion,
camouflage, and other factors could define the scenarios.  These types of trades
demonstrate how a business case for varying technologies, capabilities or designs could be
accomplished, if cost information is included.

 Continue to extend and evolve life cycle cost model interfaces for the various
components of the architecture, and embed them within a larger stochastic life cost
estimating approach to evaluate cost effectiveness in an uncertain future environment.
Use the results of Phase 4 to attach cost data to every actor and event in every possible
scenario, computing the cost of each scenario, were it to occur.  A probability of
occurrence for each possible scenario will be generated, providing for highly refined overall
cost estimates (for operations, for maintenance, and perhaps earlier lifecycle phases)
within a specified confidence interval.

With the above steps, this application will use MP with cost modeling to enhance tradespace 
analysis of UAV systems.  The executable integrated architecture will provide for evaluation of UAV 
technologies and/or design alternatives across a range of operational scenarios utilizing MBSE 
tools and notations.   

One of our objectives is to increase the resolution of source data used for cost model 
computations.  We plan to compare, contrast, and possibly integrate methods in Phase 5 for cost 
modeling in MP and SysML based on the Phase 4 results. 

The technical approach involves cycling AFIT-developed operational scenarios through the MP 
modeling process, whereby alternate events are captured for each actor in each scenario.  This will 
produce a superset of scenario variants from the behavior models, suitable for input to tradespace 
analysis models and cost model hooks developed in SysML. 

With this we can capture lifecycle cost attributes for each function point in the architecture, based 
on internal and external interactions in the MP models.  We can also capture cost attributes for 
each actor and each event in each generated scenario for use in mission cost effectiveness 
analyses.  Phase 5 will develop further improvements to MP.  Based on Phase 4 results these may 
include an improved event trace generator and a user-friendly GUI. 

Task 3.  Next-Generation, Full-Coverage Cost Estimation Model Ensembles 
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NPS will continue extending the scope and tradespace interoperability of cost models and tools 
in Phases 4 and 5.  This is based on stakeholder feedback in earlier phases for parametric model 
enhancements and tool automation improvements.  

Leveraging Phase 3 cost driver research, Phase 4 developed prototype systems engineering and 
software cost models and tools for piloting and refinement, and extend the estimation 
capabilities toward full-coverage in conjunction with USC.   

The cost modeling activities engaged domain experts for Delphi estimates, evolved baseline 
detailed definitions of the cost driver parameters and rating scales for use in data collection, 
and gather initial data and determine areas needing further research to account for wide 
differences between estimated and actual costs.  Phase 5 will continue the extension in scope 
of the models and tools and their piloting and refinement. 

For tool interoperability, Phase 5 will integrate cost models in different ways with MBSE 
architectural modeling approaches and as web services (also part of Task 2 piloting).  We will 
also automate systems and software risk advisors that operate in conjunction with the cost 
models. 

We will expand on earlier phase results for cost modeling web services. We previously 
developed a working prototype web service for Orthogonal Defect Classification Constructive 
Quality Model (ODC COQUALMO) supporting tool interoperability (costing in the cloud). 
COQUALMO was demonstrated in Phase 1 with only a subset of cost factors.  Per interested 
stakeholders we will develop full implementations of selected parametric cost models in Phase 
5. 

NPS will provide domain expertise to USC and Georgia Tech for the SysML cost model 
integration effort.  We will add the COCOMO software cost model formulas, and risk 
assessment capabilities for Expert COSYSMO [3] and Expert COCOMO [4] in Phase 5, and will 
continue those and evaluate Monte-Carlo approaches within SySML. 

This task is also tied to Task 2 piloting with MBSE cost model interfaces.  In Phases 4, we 
experimented with extending MP with cost modeling capabilities.  In Phase 5 we will assess MP 
for automatically providing cost information from the architectural models.  This is analogous to 
the SySML method for extracting attributes and they will be compared.  MP will be used to 
extract software sizing information.  It will generate function point measures which will be 
input into COCOMO.  We will also assess how MP architectural elements can be mapped into 
systems engineering cost model inputs. 
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Appendix - Product Line Modeling Background 

A product line approach provides multiple benefits with respect to ilities across all DoD 
domains.  Affordability gains accrue from reusing common pieces in different systems/products 
that share features.  Furthermore, systems can be fielded faster leading to increased overall 
mission effectiveness.  Flexibility is enhanced increasing the option space. These benefits occur 
because previously built components reduce the effort and enable more rapid development. 

Relevant MPT frameworks for assessing product line aspects are described next.  These 
parametric approaches determine the TOC for various levels of investment in product line 
architecting.   The investment effort is the analysis of the commonalities and variabilities across 
a product line of similar systems, and building in flexibility to enable reuse or easy adaptation of 
common components, and plug-compatible interfaces for the variable components.   

Product Line Modeling for Affordability and Ility Trades 
The Constructive Product Line Investment Model (COPLIMO) is used to assess the costs, 
savings, and return on investment (ROI) associated with developing and reusing software 
product line assets across families of similar applications [8] COPLIMO is based on the well-
calibrated COCOMO II model [7] with 161 data points.   

It includes parameters which are relatively easy to estimate early and be refined as further 
information becomes available. One can perform sensitivity analyses with the model to see 
how the ROI changes with different parameters. 

Most product line cost models focus on development savings, and underestimate the savings in 
Total Ownership Costs (TOC).  COPLIMO consists of a product line development cost model and 
an annualized post-development life cycle extension to cover full lifecycle costs. It models the 
portions of software that involve product-specific newly-built software, fully reused black-box 
product line components, and product line components that are reused with adaptation.  

More elaborate versions of COPLIMO include additional reuse parameters while covering 
software maintenance as well as development.  Additional features such as present-value 
discounting of future savings and Monte Carlo probability distributions have been added. 

The COPLIMO framework has been instantiated and extended at the systems level, used to 
assess flexibility and ROI tradeoffs.  Some of these extensions and applications are described 
next. 

TOC Models for Valuing Product Line Flexibility 

The following approaches extend COPLIMO for a TOC analysis for a family of systems.  The 
value of investing in product-line flexibility using Return On Investment (ROI) and TOC is 
assessed with parametric models adapted from the basic COPLIMO model. The models are 

implemented in separate tools available to all SERC collaborators: 
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 System-level product line flexibility investment model.

 Software product line flexibility investment model.  The detailed software model
includes schedule time with NPV calculations.

Figure 16 shows the inputs and outputs for the system-level product line model. 

Figure 16: Systems Product Line Flexibility Value Model 

The example shown below represents a family of seven related systems with three-year 
ownership durations.  It is assumed annual changes are 10% of the development cost.  Within 
the family of systems, each is comprised of 40% unique functionality, 30% adapted from the 
product line and 30% reused as-is without changes.  Their relative costs are 40% for adapted 
functionality and 5% for reused. The up-front investment cost in flexibility of 1.7 represents 
70% additional effort compared to not developing for flexibility across multiple systems. Figure 
17 shows the consolidated TOC and ROI outputs. 
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Figure 17: Product Line Flexibility TOC and ROI Results 

However, it is desired to evaluate ranges of options and assess the sensitivity of TOC.  The tools 
allow for a range of relative costs as shown in Figure 18 for sensitivity runs.  The results show 
that the model can help projects determine “how much product line investment is enough” for 
their particular situation.  In the Figure 18 situation, the best level of investment in developing 
for reuse is an added 60%. 
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Figure 18: Example Sensitivity Analysis (ROI Only) 

Other types of sensitivity analyses can be conducted.  Figure 19 shows example results of 
assessing the sensitivity of TOC across a range of product ownership durations.   

Figure 19: TOC Sensitivity by Ownership Duration Results 

The TOC model can also be used in an acquisition decision situation to show that if a project 
proposes a stovepipe single-product point solution in an area having numerous similar 
products, and has not done an analysis of the alternative of investing in a product line 
approach, the project’s TOC will represent a significantly higher cost to DoD and the taxpayers. 

The general model was enhanced to handle specific DoD application domains, and added initial 
Monte Carlo simulation capabilities.  It incorporates the life cycle cost ratios for Operations and 
Support (O&S) for hardware O&S cost distributions were derived from [9] and software from 
[10]. 
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Setting the life cycle cost ratios as a function of system type in the tables impacts the general 
TOC Product Line model inputs for Ownership Time and Annual Change Cost.  The user chooses 
a system type and ownership time, which invokes a calculated annual change costs for the 
relevant domain.   

The next example illustrates a domain-specific analysis for a missile system with a 
demonstration of Monte Carlo simulation.  The initial case study was for a general system, but 
in this scenario the user specifies a missile system for O&S life cycle cost defaults.   

A missile product line development with three year ownership time is being evaluated.  The 
user chooses the Missile System Type, and sets Ownership Time to 3 years.  With these inputs, 
the pre-calculated Annual Change Cost = 12%/3 years = 4%.  The results are in Figure 20. 

Shown also are the optional Monte Carlo results from varying the relative cost of developing for 
flexibility.  The means are listed with the ROI distribution graph.   All input parameters are open 
to variation for more sophisticated Monte Carlo analysis in follow-on work, per the next section 
on proposed next steps. 
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Figure 20: DoD Application Domain and Monte Carlo TOC-PL Results 

Summary 
The TOC system product line models provide strong capabilities for analyzing alternative 
approaches to system acquisition and the effects on TOC.  They show that if total life cycle costs 
are considered for development and maintenance, product lines can have a considerably larger 
payoff, as there is a smaller base to undergo corrective, adaptive, and perfective maintenance. 

There are other significant product line benefits besides life cycle cost savings, such as rapid 
development time and adaptability to mission changes.  The models provide an easy-to-use 
framework for performing these broader ility and affordability analyses. 

The models also demonstrate that not all attempts at product line reuse will generate large 
savings.  A good deal of domain engineering needs to be done well to identify product line 
portions of the most likely to be product-specific, fully reusable, or reusable with adaptation. 
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Much product line architecting needs to be done well to effectively encapsulate the sources of 
product line variation.   

Extensions can be added including the effects of varying product sizes, change rates, product 
line investment costs, and degrees of reuse across the products in the product line.  The models 
could be combined with other complementary models involving real options, risk assessments, 
or tradeoffs among flexibility aspects such as evolvability, interoperability, portability, or 
reconfigurability; or between flexibility aspects and other –ilities such as security, safety, 
performance, reliability, and availability. 




