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ABSTRACT 

 Modern advancements in text to speech and voice conversion techniques make it 

increasingly difficult to distinguish an authentic voice from a synthetically generated 

voice. These techniques, though complex, are relatively easy to use, even for 

non-technical users. It is important to develop mechanisms for detecting false content that 

easily scale to the size of the monitoring requirement. Current approaches for detecting 

spoofed audio are difficult to scale because of their processing requirements. Individually 

analyzing spectrograms for aberrations at higher frequencies relies too much on 

independent verification and is more resource intensive. Our method addresses the 

resource consideration by only looking at the residual differences between an audio file’s 

smoothed signal and its actual signal. We conjecture that natural audio has greater 

variance than spoofed audio because spoofed audio’s generation is conditioned on trying 

to mimic an existing pattern. To test this, we develop a classifier that distinguishes 

between spoofed and real audio by analyzing the differences in residual patterns between 

audio files. 
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Executive Summary

In an increasingly interconnected world, the United States is becoming more vulnerable
to attacks targeted at disrupting social cohesion as adversaries leverage the information
space to discredit public figures. One type of attack is the use of deepfakes, where bad
actors can digitally manipulate videos, images and audio to appear as if originating from
target individuals. As deepfake technology becomes more accessible throughout the online
community, it is important we develop mechanisms for detecting false content that easily
scales to the monitoring requirement.

This thesis addresses the concern for scalability by reducing the question of false content
to its audio component. We introduce a method that is simple to implement and therefore
easy to scale. This method is based on our theory that real audio has more natural variation
than synthetic audio and that this discrepancy can be captured using the distribution of
an audio file’s residuals. Using discrete wavelet transforms (DWT) of different wavelet
families, we reconstruct smoothed approximations of the original audio signal to extract the
residuals. The summary statistics from the audio file’s resultant distribution of residuals are
then analyzed by the gradient boosted-tree model (GBM) classifier to determine whether
the analyzed audio is genuinely representative of a human voice or has been synthetically
manipulated to sound like that human voice.

We applied this method to two distinct datasets, the Fake-or-Real (FoR) dataset, and the 2015
Automatic Speaker Verification and Spoofing Countermeasures Challenge (ASVSpoof)
dataset. Both datasets challenged the classifier to correctly classify synthetic audio files
that were generated by algorithms excluded from the train set. In our experiments, we ob-
served that the wavelet used to train the best performing classifier changed depending on
which spoofing algorithms were used in the validation set. The FoR validation set only used
Google’s Cloud Text-to-Speech (TTS) with Wavenet algorithm to create its synthetic files.
Consequently, out of 105 wavelet families, the best classifiers for the FoR validation set
was provided by the coiflet-14 DWT. In contrast, the 2015 ASVSpoof tested the classifier
on five spoofing algorithms excluded from the train set. Results from these sets of experi-
ments suggested that the selection of wavelets to build the classifier involves compromising
between identifying voice conversion (VC) spoofing algorithms and TTS algorithms.

xv



Lastly, we used the 2015 ASVSpoof dataset to construct a classifier to analyze the deepfake 
spoofing attack on the Ukrainian president, Volodmyr Zelensky, that was uploaded to social 
media on March 16, 2022. In this deepfake, President Zelensky reportedly calls on Ukrainian 
defenders to surrender to Russian forces during the first month of the 2022 Russia-Ukraine 
military conflict. B y t raining t he c lassifiers on  in dividual sp oofing alg orithms, and  by 
consolidating the scores of relevant classifier results, we produced evidence that the audio 
portion of the deepfake attack on President Zelensky was the product of a VC spoofing 
algorithm.
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CHAPTER 1:
Introduction

Russia has operationalized the concept of perpetual adversarial competition in
the information environment by encouraging the development of a disinforma-
tion and propaganda ecosystem . . . Disinformation is a quick and fairly cheap
way to destabilize societies and set the stage for potential military action.

– U.S. Department of State, 2022

We live in a world where voice-enabled technology is increasingly prevalent and increas-
ingly vulnerable to spoofing attacks. Bad actors’ false assumption of a person’s vocal identity
through spoofing creates consequences ranging from petty identity theft to the erosion of
social trust in important public figures (Chesney and Citron 2019a). This furthers an envi-
ronment of uncertainty that is only accelerated by the increased use of online communication
platforms. We need to develop more effective ways for combating that uncertainty and in a
manner capable of processing the large volume of digitally enabled interactions.

This thesis explores a new method for developing a classifier that can distinguish between
spoofed and authentic digital audio recordings of human speakers. This method for clas-
sification primarily relies on analyzing the audio files’ residuals between the actual audio
and various compression techniques. In the paper, we apply this method to two separate
sets of spoofed or real datasets and highlight differences between fully synthetic text-to-
speech (TTS) methods and voice conversion (VC) methods. Lastly, we show how this method
demonstrates the inauthenticity of a widely debunked deepfake video through audio-only
analysis.

1.1 Motivation
When impersonators spoof a target speaker’s voice, they electronically mimic a person’s
vocal characteristics such that artificially generated utterances are ascribed to a target
speaker. In other words, not only can people modify their voice to mask individual identities,
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but they can also assume the vocal identities of other people. Advancements in TTS and
VC techniques leveraging deep neural networks (DNN) make it increasingly difficult to
distinguish a natural sounding voice from a synthetic voice (Reimao and Tzerpos 2019).
These techniques, though complex, have “the potential to proliferate widely. Commercial
and even free deepfake services have already appeared in the open market...The capacity to
create professional-grade forgeries will come within reach of nearly anyone with sufficient
interest and the knowledge of where to go for help”(Chesney and Citron 2019b, p. 2).
Therefore, we expect increased propagation of spoofed voices leveraged for either nefarious
purposes or mainstreamed personal entertainment. Countering this falsified information
will require more resources for early detection that can scale beyond operator-centric, case-
by-case scrutiny.

Our method addresses the resource consideration by only looking at an audio file’s residuals
when determining if it is sourced to the targeted speaker. In this paper, residuals are
the differences between an audio file’s smoothed waveform and its actual waveform. We
theorize that natural audio has greater variance than spoofed audio because spoofed audio’s
generation relies on mimicking an existing pattern. To test this, we develop a classifier
based on various summary statistics of the residuals for both authentic and spoofed audio
that assigns a binary probability to whether an unidentified audio file is believed to be fake.
This thesis explores the potential of this technique to identify unnatural audio that was likely
spoofed.

1.2 Relevance
In a world of modern convenience, the incorporation of synthetic audio has accelerated with
recent advances in small form computing. Commonly recognized phrases, such as “Siri,”
“Alexa” and “Hey Google,” can activate voice-enabled interactions with small devices that
have large implications. Using just their voice, people turn on vacuum cleaners, manage
security features in smart homes and even remotely authenticate online financial transac-
tions. While this is convenient, it creates considerable vulnerabilities as each digital-enabled
conversation provides opportunities for training an algorithm that fingerprints to a speaker’s
individual vocal identity. If bad actors successfully spoof that vocal identity, these house-
hold conveniences become liabilities. Additionally, propagation of fraudulently attributed
voice clips threatens the public credibility of spoofed speakers.
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Unfortunately, spoofing technology is becoming more available to the online community
and is becoming better integrated with the growing phenomena of increasingly sophisticated
deepfakes and its potentially far-reaching consequences. Historically, the label “deep fake”
refers to the use of “deep learning” and neural networks to generate the artificial content.
For example, one variation of deep learning uses iterative tuning from within generative ad-
versarial networks (GAN) where a “generator” algorithm is pitted against a “discriminator”
algorithm producing digital voices that sound highly realistic (Chesney and Citron 2019a).
Although deepfakes are increasingly less cost prohibitive, they are not the only spoofed
audio-visuals in public circulation. Our classifier looks at a range of spoofing techniques
not limited to deep learning algorithms. For this reason, this thesis uses the deepfake la-
bel more broadly, “as shorthand for the full range of hyper-realistic digital falsification of
images, video, and audio” (Chesney and Citron 2019a, p. 4).

While people normally associate deepfakes with swapping the faces of speakers in video
media (Agarwal et al. 2019), it is important to note that people also respond profoundly
to audio-only information. This influence is not limited to radio shows and podcasts but
extends to simple sound files no longer than a minute in length. In 2014, a secretly recorded
audio-only clip of a NBA team owner, Donald Sterling, speaking disparagingly about
minorities resulted in the forced sale of the Los Angeles Clippers and a lifetime ban
from the NBA. In 2016, a leaked Access Hollywood tape of a lewd 2005 conversation
between then-presidential candidate Donald Trump and a television host was effectively
used to polarize support between political parties. Most recently, when Russia invaded
Ukraine in February 2022, the defiant audio-only response of Ukrainian soldiers on Snake
Island to a Russian Warship generated a groundswell of support for Ukrainian resolve and
was even immortalized in a Ukrainian national stamp (Guardian,The 2022). Clearly, in
appropriate contexts, small audio clips are powerful purveyors of impactful information
when authenticated as real.

Given the impact of both audio and video information in the public space, it is under-
standable that adversaries use the information space to discredit opponents. This contested
information space contributes to an environment of informational uncertainty. In this public
context, information uncertainty refers to “uncertainty regarding the truth of signals in a
distorted media environment” and people are more likely to question the veracity of media
presented to them due to the widespread multivariate nature of the information and the
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author biases (Schiff et al. 2021, p. 7). The application of deepfakes, both successful and
unsuccessful, leverages this information uncertainty to present unique social, political, and
security challenges.

Socially, deepfakes provide opportunities for groups to strongly react to fake video or audio
directly attributed to other figures. Such reactions can easily become hyperbolized as social
media not only decentralizes the propagation of digital media, but also encourages large
populations to respond emotionally and cumulatively to compressed packets of information.
In many cases, online communities center around positions or perspectives of influential
public figures. Not only can inflammatory deepfakes disrupt leadership hierarchies, scaled
population reactions reinforce stereotyped, oppositional narratives. Target audiences for
insurgent groups are already susceptible to messages furthering discontent (Chesney and
Citron 2019b). Deepfakes that are not quickly and decisively debunked can accelerate biases
and foment potential instability.

Deepfakes, even when debunked, exacerbate the public mistrust of media signals that is
characteristic of information uncertainty. The consequences of this reluctance to accept
information leads to vulnerabilities when political figures claim the “liars’ dividend” to
discredit any compromising information as fake news. Ideologically, the existence of this
uncertainty incentivizes polarized groups to retreat further into information bubbles that
reinforce their beliefs (Schiff et al. 2021). Ironically, these echo chambers foster the ac-
ceptance and propagation of inflammatory deepfakes to increase polarization and potential
instability.

Recent real-world examples illustrate these emerging challenges and their potential impact
on security. In June 2020, a faked audio message attributed to the Ghana’s president,
Nana Akufo-Addo, went viral on social media. The quickly debunked audio claimed that
President Akufo-Addo warned Ghanans of a corporate driven attempt to use COVID-19 to
depopulate the world (Premium Times 2020). Four months later, Ghana’s National Cyber
Security Center debunked a fake audio clip that spoofed an international news outlet’s
report on a falsified story of government money laundering (Appiah-Dolphyne 2020). Most
recently on March 16, 2022, a deepfake of Ukrainian President Zelensky was boosted
on Russian social media calling for Ukrainian soldiers to surrender to Russia. Although
western social media platforms quickly debunked and de-platformed the deepfake, experts
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still expressed concern about the impact of this this type of disinformation in the future
(National Public Radio 2022).

Although in the above examples the adverse impacts of spoofing public figures were
quickly and successfully minimized, continued success cannot rely on a system of indi-
vidual scrutiny, predicated on the deepfake already going viral. The dynamics of the social
media environment make rapid detection even more important. The expanse of digital space
from which initial information can be generated drastically reduces the probability for rapid
detection. The scale at which that information can be initially propagated is far too variable
for humans to consistently process. If a false narrative remains unchecked, we cannot under-
estimate the exponential speed at which certain emotional elicitations accelerate at a viral
spread. As current online communication platforms evolve to facilitate increased variety in
user-generated content, it is important we develop mechanisms for detecting false content
that easily scales to the size of the monitoring requirement.

The method explored in this thesis addresses this concern for scalability by reducing the
question of false content to its audio component. Instead of conducting frame-by-frame
video analysis to detect inconsistencies in the synchronization of lips, expressions and vocal
patterns, our classifier seeks to raise flags on possible signatures for manipulated audio. If
successful, the classifier can support the triage of digital media requiring further review, or
make outright determinations of authenticity when comparing authentic audio files of the
same speaker.

In the next two sections, we provide a general background on the current methods for
spoofing audio. We also discuss contemporary methods for how audio experts are already
attempting to distinguish between real and fake audio. This background information provides
a strong foundation for the follow-on chapters where we outline our methodologies and
describe the results of the follow-on experiments.
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1.3 Literature Review
The upcoming sections provide a general overview of the spoofing methods that will be
challenged by our classifier in upcoming chapters. The last sections of this chapter discuss
the current methods for detecting spoofed audio and provides perspective on how these
methods inform or contrast with the methodology outlined in this thesis.

1.3.1 Background on Spoofing Methods
This section outlines three methods for synthesizing speech that can be easily integrated into
deepfake videos. The first two methods, which rely on speech synthesis (SS) and VC, arise
directly out of efforts to bypass speech-based biometrics systems. The third method uses
deep-learning-based speech algorithms for TTS audio files designed to be indistinguishable
from human speakers (Reimao and Tzerpos 2019). This third method highlights an evolution
in synthetic speech attacks because it departs from previous methods’ reliance on the
utterances of targeted human speakers. All these methods for synthetically generating natural
sounding human speech contribute to the problem of spoofing and highlight the need to
ground detection techniques in features common to all methods.

Public interest in spoofing has evolved since the advent of speech-based biometric sys-
tems and its identifying role in granting access to authenticated user. In their paper, Paul
et al. (2017) summarizes the four types of spoofing efforts for circumventing these secu-
rity measures: mimicry, replay, speaker-adapted SS and VC. While these methods vary
in effectiveness, the individualized nature of secure access enables Automatic Speaker
Verification (ASV) to simply be another layer integrated into a personalized system for ver-
ification. Additionally, specific training data sets using proprietary parameters built around
an individual’s unique utterances make it more difficult for spoofing software to capture a
target’s unique acoustic features (Poddar et al. 2018). Despite spoofing’s declining ability
to bypass security systems, SS and VC can easily be adapted to support the development of
convincing deepfakes and merit discussion in the following paragraphs.

Voice Conversion
VC is generally understood as taking the speech signal from a source speaker and the mod-
ifying that signal to sound as if it is pronounced by a different speaker. In earlier research,
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Stylianou et al. (1998) noted that speaker-specific information such as speaking rate, pitch
contour, or other overall speech dynamics are individualized into respective spectral en-
velopes and acknowledged that analysis of these spectral envelopes at the segmental level
led to efficient discrimination for distinct speakers. Their paper looked at ways to statistically
map and thereby introduce mechanisms for control of the relations between distinct spectral
envelopes. This control at the segmental level would constitute one of the earlier methods
for conversion to reduce audible discrimination between speakers.

Subsequent researchers built on this earlier mapping of distinct spectral envelopes and
generalized beyond the constraint of parallel utterances between speakers. Dutoit et al.
(2007) used the Viterbi algorithm to select sequences of frames from a target speaker
database that matches segments within the speech of the spoofing speaker. In this way,
components of speech from a target speaker can be used to refine elements of another
speaker’s distinct sequence to be closer to the target speaker. Another method uses insights
from Fukada et al. (1992) about an algorithm that can converge mel-cepstral coefficients
such that the slopes of the source spectrums between speakers are more similar. While the
previous two VC methods looked to leverage segmented similarities between two speakers,
Saito et al. (2012) proposed a tensor method that adapts a spoofer’s voice to the target using
a vectorized speaker space constructed from many pre-stored speakers. Although more
complicated VC techniques exist, these examples provide context for how VC algorithms
map and mirror elements from source to target speakers.

Speech Synthesis
In contrast to voice conversion’s reliance on previously spoken phrases, SS uses select
target utterances as the building blocks for constructing entirely unique sentences still
sounding like the target. The idea to break utterances into their most basic sounds and
storing them as building blocks in a database of diphon waveforms is an old concept.
In the late 20th century, Charpentier and Stella (1986) were already improving on existing
Linear Predictive Coding (LPC) methods for concatenating these waveforms into intelligible
syllables. As summarized in their paper, LPC-coded speech utilized the predictive prosodies
(or rhythms) in speech elements to smooth transitions of disparate diphone waveforms at
the excitation signal level. Their proposal, however, provided a better overlap of diphones by
representing the waveforms through a short time Fourier transform (STFT). Representing
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the waveform using STFT enabled researchers to match the pitch marks in the waveforms.
In turn, this addressed LPC’s difficulty with voiced fricatives (i.e., consonant transitions)
and allowed the text-to-speech to sound more natural.

Despite the clear utility in TTS applications for assisting machine-communication, the
resulting robotic quality of the voices meant TTS would not provide viable samples for
effective spoofing until the early 21st century. However, computer assisted granularity
in signal processing provides more opportunities for generalizing patterns across larger
datasets. The Panda and Nayak (2017) paper on using vowel onset point based waveform
concatenation techniques is a good example for how TTS methods develop in natural
tonality. While the paper focuses on Indian languages, the concept of analyzing the duration
of consonant units between vowel transitions shows how more rules can be applied to
generalize across similarities in the speech patterns embedded in various languages.

Although researchers have demonstrated growing capability for developing algorithms to
better capture the rhythms unique to various languages, the issue remains that modifying the
timbre of the speech is necessary for capturing the emotional tenor for target speakers. To
address this, Japanese researchers used contextual Hidden Markov Models (HMM) in 1999
to train on large datasets of acoustic features (Yoshimura et al. 1999). Along with other
methods, this concept for incorporating the human acoustic range into synthetic speech
has undergone continuous refinement and presentation during annual Blizzard Challenges
that started in 2005 (Fraser and King 2007). For example, researchers in 2009 used a
speaker adaptive approach that trained an average voice model from several speakers.
Their method showed how a space speaker-adaptive training (SAT) algorithm reduced the
negative influence of speaker differences in the data set. This meant the researchers could
use that averaged speaker model to assist in training on the utterances of a target speaker.
Therefore, while other methods required thirty minutes of target speaker utterances, this
approach produced natural-sounding synthetic speech with only six minutes of target speaker
utterances (Yamagishi et al. 2009). As researchers find more ways to generalize different
speaker data to fill out the emotional spectrum for target speaker patterns, the gap between
a voice actor’s natural resonance and the tinniness commonly detected in TTS continues to
narrow.
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Deep Learning Text-to-Speech
The last generation method we discuss is similar to voice adapted speech synthesis but
involves deep learning, characterized by its use of neural networks. This section looks
at two types of deep learning TTS. The first type is designed to train on and sound like
an individual speaker, and the second type generates entirely unique voices that sound
virtually indistinguishable from generic human speakers. Due to the growing success of
neural networks’ utility for transforming text to dramatically better natural sounding speech,
companies are commercializing the potential for engaging voice-enabled smart devices
(Cambre and Kulkarni 2019). This means more synthetic voices, of a greater variety, are
being evaluated less on the ability for spoofing target phrases, but on the ability to expand
synthetic voices’ range of natural human conversation. Consequently, priorities are shifting
to rely less on side-by-side comparisons between a spoofed voice and its target. Rather,
the popular challenges for effective speech-file testing evaluate the collection of unpaired
human and synthetic voices from which the classifier must agnostically identify signature
elements defining synthetic speech.

While deep learning TTS algorithms have been effectively commercialized to support user-
integration with generic human-sounding voices, the parallel deep learning elements to
support speech processing remain very effective at mimicking a target speaker. One good
example is the /textitDeepVoice3 that was developed by Baidu Labs. In his book, Taylor
(2009) provides a general breakdown for how the TTS process develops a multi-stage,
hand-engineered pipeline. This systematic pipeline transforms text to an audio represen-
tation (usually a spectrogram) that is then converted to audio through an audio waveform
synthesis vocoder method. Neural networks help manage the myriad of features through
various hidden layer combinations and transformations that result in pipelines with fewer
components and higher quality synthetic speech. While there is no consensus on an optimal
neural network architecture for TTS, Baidu researchers noticed that sequence-to-sequence
methods such as Tacotron demonstrated ways for incorporating random initialization of
<text, audio> pairs to accelerate training the model (Wang et al. 2017). Although recurrent
neural networks (RNN) are still used to translate a text-character representation to spec-
trograms representations, Baidu /textitDeepVoice3 researchers proposed ways for using
convolutional neural networks (CNN) to scale the method across very large data sets (Ping
et al. 2017). This ability to utilize and generalize different speaker data sets to accelerate
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training on one speaker may seem similar to the techniques introduced in the 2008 Blizzard
Challenge (Yamagishi et al. 2009) mentioned in the last section. The use of deep learning
architecture, however, means that more datasets can be incorporated at a greater scale, and
the generalizations across datasets are not as intuitive because the transformations occur
within various hidden layers.

The utility for extracting generalizable and applicable acoustic features from massive
amounts of agnostic speaker data is not limited to quickly training models for spoofing
voices of target speakers. Large cloud computing companies like Google and Amazon Web
Services (AWS) use these techniques to refine and expand the linguistic range for propri-
etary synthetic voices. The Speech Technology Research Department of Google stresses
that it prioritizes making “speaking to devices around you, devices you wear, devices with
you ubiquitous and seamless” (Google 2022). Google’s declared passion for “computing
scale and data” pairs extremely well with its ability to grow its datasets with “millions of
users talking to Voice Search or the Android Input everyday” (Google 2022). Additionally,
Google TTS services allow people to upload a Speech Synthesis Markup Language (SSML)
that can support the individual tailoring of emphasis or breaktimes (Reimao and Tzerpos
2019). These improvements feed not only into algorithms that better process speaker-to-
device input but also enable Google Home and other smart devices to communicate more
fluidly in over 55 languages around the world. Similarly, AWS Polly, a service charging
for every character converted to speech, has created two unique brand voices for Kentucky
Fried Chicken Canada and National Australia Bank. As synthetic voices continue to improve
their natural speaking tenors using generative neural networks, more companies will realize
the commercial value in adopting brand voices that can “adopt different speaking styles in
different contexts, improving customer experiences” (Gantenbein 2020).

This trend supports the value of research examining datasets that do not prioritize spoofing
attacks on select speakers. This may appear counterintuitive considering the paper’s em-
phasis on countering spoofed speech. However, the audible quality in computer-to-human
interactions clearly show an accelerating convergence of TTS methods that approaches
the resonant complexity of voice actor conversions. Using voice conversion to transform
a human-indistinguishable TTS speech sample to target speakers is the logical next step.
Therefore, it is important for classifiers to be effective in agnostically identifying synthetic
speech without the predicated alert of an individualized targeted spoofing attack. The next
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session provides a brief overview of the elements within synthetic audio that were suffi-
ciently distinct from natural human speech to discriminate themselves using conventional
classification methods.

1.3.2 Background on Detection Methods
The most widely known community-sourced effort to combat spoofing attacks is the
bi-annual Automatic Speaker Verification and Spoofing Countermeasures Challenge
(ASVSpoof) that started in 2015. This competition provides researchers an opportunity
to test new approaches for distinguishing between synthetic and real audio. The most recent
event concluded in September 2021 and included challenges for producing or detecting
methods to capture and reproduce audio originating through a microphone or in a physical
space and repurposed to bypass security authentication measures. Another challenge was to
effectively distinguish between synthetic and natural audio files in a variety of conditions
and without speaker verification (Wu et al. 2017a). In the following paragraphs we dis-
cuss two methods that have been successful in detecting synthetic audio files because they
narrow in on distinct aspects within the generation of synthetic audio. We also highlight
the advantage of neural networks for agnostic detection of audio not predicated on paired
speaker comparisons. The last detection method has the most similarity to the methodology
proposed in the following chapter because it exploits the predictive nature of audio and the
retention of spectral features in signals across time.

One conventional approach for detecting synthetic audio examines the audio files that are
translated onto visual spectrograms measuring amplitudes at varying frequencies across
tiny snapshots in time. The most typical result from this type of analysis shows a tendency
for synthetic audio to reveal inconsistencies at higher frequencies. This can be detected by
understanding that spoofing algorithms tend towards the Mel scale that prioritizes distinc-
tions in the lower human audible frequencies (Umesh et al. 1999). Therefore, gaps in the
synthesis of audio have been more readily identified at higher frequencies after researchers
adjusted the weights of frequencies in the Mel scale (Paul et al. 2017). This distinction at
higher frequencies makes it easier for comparisons with target speaker examples and can
also be generalized to binary classification of synthetic audio voices.
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The second successful method uses Gaussian Mixture Models (GMM) to represent the
emission densities from the HMM parameters extracted from audio files (Lu et al. 2011).
The GMM-based classifier works as follows. The state of the underlying HMM captures
both the phoneme being uttered and the authenticity of the audio clip. The state of HMM
can also include which generator was used to create a synthetic piece of audio clip, if
this information is produced. Given the HMM’s state, which provides information on the
phoneme and the veracity of the audio clip, the observed audio sample is assumed to be
drawn from a mixture of Gaussian distributions with state dependent parameters. These state
dependent parameter are estimated when training the model. Then, at test time, estimating
the state of the HMM from samples of an audio clip provides an estimate of the audio clip’s
authenticity, or to which distribution hit belongs (Povey et al. 2011). In most cases, the
distributions would be classified into two categories, either natural or synthetic. However,
the classification of distributions can be extended to make it possible to distinguish between
different spoofing methods. This is possible because HMM captures the dynamic features
for both the excitation parameters and spectral parameters for targeted speech using a multi-
space probability distribution (Yamagishi et al. 2009). The excitation signal is the source
sound that takes on the qualities of the spectral filter (or vocal tract) through which it is
processed (Narendra and Rao 2015). The HMM parameters capture a wide range of acoustic
qualities such as magnitude-based features, phase-based features, pitch-pattern features, and
modulation patterns (De Leon et al. 2012). These qualities extend beyond the discrimination
at higher frequencies that was stressed in the last paragraph. Because the HMM parameters
for these features often form the basis for creating a similar sounding synthetic audio,
GMM’s ability to incorporate the HMM parameters made it very successful in identifying
spoofed audio.

Recently, neural networks have become very effective in classifying falsified speech (Yu
et al. 2017). One of the shortcomings of the insights from ASVSpoof challenges was
the tendency for detecting algorithms to rely on prior knowledge of spoofing types. The
degradation in efficacy from known to unknown attacks was particularly noticeable using
the GMM classifier despite using Deep Neural Networks (DNN) to extract the relevant
features (Yu et al. 2017). An advantage of using neural networks to analyze files is the
networks’ use of hidden layers to automatically learn features from audio input signals. In
other words, neural networks are reacting to and incorporating classifications of acoustic
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features along with previous methods to form a more robust conclusion. For example, Zhang
et al. (2017) showed how combinations of CNN and RNN to integrate feature extractions
and modeled long term dependencies improved earlier abilities for agnostically identifying
spoofed audio. Despite these considerably sophisticated advances in the granular analysis
of audio, neural network analyses’ success for detecting spoofed audio was comparable to
conventional spectrogram analysis in its prioritization for discrimination between higher
and lower frequencies (Reimao and Tzerpos 2019).

Given the use of neural networks to both generate and detect synthetic speech, the last
detection method discussed here prioritizes tracing the audio features that are unique to
the generative process in speech synthesis. In other words, the detection method looks for
features that are present in synthetic audio but absent in natural audio. Motivated by the
understanding that modern synthesized speech passes through different layers in a neural
network, Singh and Singh (2021) used a combination of cepstral and bispectral statistics
to explore whether autocorrelative features can be identified in synthetic audio. These
insights led to the current method’s focus on “studying the relationship between past and
current audio samples” and the extent to which previous samples predict the next sample
(Borrelli et al. 2021, p. 3). While this predictive element was popularized in earlier LPC
compression methods, researchers were now able to simultaneously compare short-term
(sequenced samples) and long-term (fundamental voice sounds) predictors within the same
audio file. This means that researchers could identify the extensions of micropatterns in
series of pairwise sequences to entire utterances that are consistent with the signature of a
synthetic generation method.

This method’s emphasis on temporal features has the most similarities to the methodology
used in this thesis because it prioritizes the predictive value of how, in human speech, the
resonant quality of previous utterances carries forward into future speech. However, predic-
tive trace methods suffer the same issues as predecessors because they require breaking the
audio signal into a plethora of complementary features within which the classifier hunts for
specific aberrations. This remains an issue because spoofing advancements will continue to
correct on the microscopic inconsistencies identified by current detection methods. In the
next chapter, we provide the theoretical background to this thesis’ proposed methodology
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that addresses the concern that the growing complexity for synthetic audio detection may
not scale well to the corresponding complexity and variety with which spoofed audio is
created. We do this by redirecting the focus from “What in the audio is spoofed” to “Is the
audio spoofed?” This distinction relies primarily on using a machine to evaluate a piece of
audio as “too good” and not on “what is wrong.”
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CHAPTER 2:
Technical Background and Methodology

In the previous chapter, we saw that the creation and detection of synthetic audio is increas-
ingly nuanced in its detection of minute acoustic features within the audio. This leads to
potential problems of scale as the variety of detection methods, variety in generation meth-
ods, and sheer volume of digital voices threaten to outpace manual attempts to distinguish
between synthetic and real human audio.

This chapter introduces a method for analyzing audio that will be simple to implement
and therefore easy to scale. This method is based on our theory that real audio has more
natural variation than synthetic audio and that this discrepancy can be captured using
the distribution of an audio file’s residuals. Residuals are the differences between an audio
file’s actual amplitude and the amplitude of its compressed form. This analysis of differences
between compressed signals and the actual audio is the distinguishing feature of the methods
presented in this thesis.

The first section describes the theory’s motivation in terms of basic audio features. The
second section describes our use of wavelet smoothing methods to extract the audio residuals
on which we test our theory. The third section introduces the classifier and the analyzed
features supporting the identification of fake audio. By the end of this chapter, the reader
will understand the underlying principles of the theory, our approach to extracting residuals
from an audio file, and our use of a gradient-boosted tree model (GBM) to analyze the
residuals. This thesis uses the GBM as the classifier to determine if an audio file originated
from either a synthetic generation method or a human speaker. The next chapter covers our
specific implementation and experimental results.

2.1 Technical Problem Description
We propose that natural variation in spoofed audio is less than in real audio of a human
speaker. This variation can be measured by analyzing the differences in amplitude between
an original audio and its compressed signal, which we call the residual. The compressed
signal is a simplified representation f the actual signal from which the residual is calculated.
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Given the appropriate compression algorithm, this thesis conjectures that the resulting
distribution of residuals for spoofed audio will have less variance than the distribution of
residuals for real audio. Consequently, our goal is to show that distinctions in residuals are
useful in distinguishing real and fake audio when used as inputs to a feature-based classifier.

In this thesis, compression of digital audio refers to interpolation of the discrete points of
amplitude representing signals stored as a function of time in a digital audio file. Because
of the natural oscillations in human speech, this interpolation will have a natural curve that
approximates the general waveform representation of an audio file. Additionally, this curve
will tend to be smoother than the pattern of originally sampled points. For this reason,
we will treat smoothed signals and compressed signals as synonyms when referring to the
interpolating curve that represents an approximation of the original signal. Points that lie
along the smoothed signal are referred to as 𝑥smooth(𝑡) and exist as a function of time (𝑡). In
contrast the actual sample is represented by 𝑥(𝑡) and the residual error is captured as 𝑒(𝑡).
This gives us the following equation:

𝑒(𝑡) = 𝑥(𝑡) − 𝑥smooth(𝑡).

Given this expression, we anticipate the residuals to have less variation for synthetic audio.
Figure 2.1 depicts this theory with a representation of two hypothetical audio files composed
of audible samples represented by pressure amplitude across time. The figure shows a
representation of synthetic audio and of natural audio. The actual audio signals are the blue
points, and the compressed signal is the green line. For this hypothetical example, we can
easily differentiate between the synthetic audio and the natural audio by comparing the
absolute values of their residuals. This data-driven approach to classifying files as real or
synthetic provides a level of reproducibility and statistical rigor that manual classification by
subject matter experts does not. The example in Figure 2.1 is artificial because the samples
in both audio signals are randomly generated from different probability distributions with
the mean centered along the sine curve. However, it highlights a key characteristic of
the compression algorithm that is central to our theory: For the residuals to inform our
assessment of an audio file’s variation, the compression algorithm must smoothly interpolate
the audio samples. In other words, the residuals should capture the difference between the
original audio and a smoothed version of that audio.
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Figure 2.1. Residual Values in Synthetic and Natural Audio. Comparing the
differences between a compression algorithm’s predictions and actual values
(i.e., the residuals) will help distinguish between fake and real.

The theory that synthetic audio has less variation than real audio is grounded in the following
mathematical understanding of optimal prediction. The task of generating synthetic audio
can be cast as one of predicting a sequence of audio samples using various inputs. In this
way, generating synthetic audio can be viewed as a sequence of regression problems. Let 𝑌
be a random variable which represents an audio sample to predict and 𝑋 a random variable
which represents the coding of contextual information relevant to that prediction, such as the
words spoken or the acoustic environment. The optimal predictor of𝑌 given 𝑋 has probably
less variance than 𝑌 . Indeed, if X and Y are random variables, and we seek to predict 𝑌
using an observation 𝑥 of 𝑋 , the optimal predictor of 𝑌 with respect to mean squared error
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is E[𝑌 |𝑋 = 𝑥] (Shalizi 2019). Moreover, from the law of total variance

Var(𝑌 ) = E[Var(𝑌 | 𝑋)] + Var (E[𝑌 | 𝑋]) ≥ Var(E[𝑌 | 𝑋]),

where the inequality follows from the fact that Var(𝑌 |𝑋) is nonnegative. This shows that the
optimal predictor E[𝑌 |𝑋] has less variance than the original random variable 𝑌 . Thus we
expect any data driven estimate of 𝐸 [𝑌 |𝑋] to follow a similar trend. In summary, generation
of synthetic audio can be cast as one of optimal prediction of a numeric quantity, and the
theory of optimal prediction demonstrates that the predicted values will have less variance
than authentic audio.

In practice, to test the theory that audio spoofing of a human speaker has less variation than a
recording of a natural speaker, we extract residuals derived by comparing the actual samples
with a smoothed representation. The algorithms for creating these smoothed representation
are what we refer to as methods for audio compression. An audio compression method
creates a simplified representation of the audio signal that interpolates the original samples.

If we can identify compression methods that best represent the outputs of the algorithms
generating synthetic audio, the residuals for synthetic audio should have less variance. This
is because the compression method’s prediction of the audio will more consistently represent
the pattern of the actual audio samples across time. By identifying the right compression
method, we narrow the scope for what features are processed by a classifier to discriminate
between synthetic and real audio.

In our research, we explore the use of wavelets as the compression method to create a
smoothed representation of audio from which we extract an audio file’s residuals to conduct
our analysis. Our use of wavelets and its relevance to our testing for natural signal variation
within audio files are explained in the next section.

2.2 Wavelet Transforms
In this section, we introduce wavelets and show how they can be used as a smoother for a
sequence of audio samples. We also elaborate on the properties of wavelets that make them
ideal building blocks for representing audio both locally and across the entire file. We explain
that while these building blocks are limited to one type of wavelet, we can vary how closely
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the wavelet reconstruction matches the pattern of the original audio by thresholding some
of the wavelet coefficients within different frequency sub-bands. Although this smoothing,
also referred to as denoising, alters the original audio, it reduces the requirements for digital
storage since the wavelet coefficients are sparse. The last part of this section shows how
different smoothing parameters create different reconstructions of an audio file, each of
which can be used to derive residuals for follow-on analysis.

2.2.1 Introducing Wavelets
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Figure 2.2. Periodic Amplitudes in Audio. As a function of time, amplitude
appears wave-like, especially when viewed on a small time scale.

Wavelets are representations of short oscillations, each with different shape. They are used
to match specific wave patterns along a single axis of measurement (Hellemans 2021).
For audio files, this single axis is represented by time, and the variation along this axis
is measured by pressure amplitudes. When an audio file is played, the sounds we hear
are the oscillating pressure of air particles that stimulate the eardrum (Schremmer et al.
2000). Figure 2.2 provides a close-up of this oscillation in a waveform representation of a
sound file, and highlights a wavelike nature to audio files when stored as measurements of
amplitude over time.
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To approximate this wavelike nature of audio, we can fit a specific type of wavelet to the
overall patterns that are occurring throughout the file. There are many different types of
wavelets which are distinguished by unique combinations of the frequency, the wavelength,
and a specific shape. Figure 2.3 illustrates how the distinct shapes and frequency structures
within wavelets are categorized into different families.

Figure 2.3. An Example of Different Wavelet Families. Source: Hellemans
(2021).

The oscillatory pattern in an audio file of human and the variety of different waveforms
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that can be represented using wavelets make wavelet transforms a strong candidate for
both locally and generally approximating digital speech. These approximations are possible
because wavelets are compact functions that vanish outside a certain interval and are well-
suited to capture local variations. (Schremmer et al. 2000). In other words, wavelets can be
treated like finite and sequential building blocks and pieced together to represent both high
and low frequency ranges in an audio signal. This piecing together of wavelets to represent
an audio signal is referred to as a wavelet transform. In the next subsection, we elaborate
further on the wavelet properties that enable these transforms.

2.2.2 Discrete Wavelet Transforms
A wavelet transform decomposes a function into a set of coefficients, each of which is
associated with a wavelet. These wavelets have been scaled (expanded or compacted), shifted
laterally or both (Talebi 2020). Wavelets can be used in this way to uniquely decompose
a function into coefficients because they are orthonormal (Cohen and Kovacevic 1996).
Additionally, wavelets capture local variations in a function because each wavelet vanishes
outside of a closed interval. In this way, wavelets contrast with trigonometric decompositions
of a function; Figure 2.4 illustrates a wavelet that is zero outsides of a closed interval whereas
a sine wave is not. Finally, a wavelet function’s integral over time is zero, meaning it must
be oscillatory (all positive values offset by negative values), which gives it that wave-like
form (Valens 1999).

Figure 2.4. Sine Wave vs Wavelet. While sine waves are infinitely long,
wavelets are localized in time. Source: Taspinar (2018).

Figure 2.5, using a symlet wavelet, shows that the time-frequency locality condition also
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enables the wavelet form to be scaled such that the wavelet runs out of energy at shorter or
longer durations.
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Figure 2.5. Scaling a Symlet Wavelet. Top: The wavelet has a beginning
and end centered on zero. Bottom: Scaling the wavelet stretches the form
to cover different time periods.

In the case of an audio file, the function to be decomposed into wavelet coefficients is the
audio signal’s amplitude sampled across fixed time intervals. However, this brings us to
the main reason why approximating digital audio is limited to discrete wavelet transforms
(DWT), the Discrete Wavelet Transform. Digital audio signals are stored as discrete samples
of the waveform representation of an audio clip. In contrast to continuous wavelets, discrete
wavelets are represented as a series of wavelet coefficients that are matched to specific
point along the wavelet and “can only be scaled and transformed in discrete steps” (Valens
1999, p. 8). The coefficients in this type of wavelet decomposition allow one to decompose
a discretely sampled function (pressure as a function of time, in our setting) into a set
of discrete wavelet coefficients. By selectively thresholding these discrete coefficients, we
can adjust the extent to which an audio file reconstructed from the corresponding DWT
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coefficients matches the sampled points in the original audio file. This is called wavelet
smoothing and is explained in the next subsection.

2.2.3 Wavelet Smoothing
Although we can use the DWT to fit a sequence of audio samples, the wavelet coefficients
can only incorporate specific wavelets. For example, we cannot create a decomposition that
uses coefficients from both the symlet and daubechies wavelet families. This restriction
extends to wavelets belonging to the same family. While wavelets have been categorized
into different families due to their similarities in shape and frequency structure, wavelets
within each family are still considered distinct. Figure 2.6 provides an example of nine
distinct wavelets which cannot be united in a single wavelet decomposition despite being
introduced by the same researcher (Ingrid Daubechies).

Figure 2.6. Daubechies Family. Despite their similar names, these wavelets
belong to different families and therefore cannot be united in a singled
wavelet decomposition. Source: Singh et al. (2011).
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One key to the success of the wavelet transform is its ability to capture local oscillations of
a signal at varying frequencies. This can be achieved by scaling a fixed wavelet function so
that the local oscillation of the scaled wavelet occurs at the frequency of interest. This fixed
wavelet, from which other wavelets are derived, is called the mother wavelet. When we
scale a wavelet, we adjust the time interval on which the wavelet is nonzero. This alters the
frequency at which the wavelet detects oscillations, which in turn allows us to decompose
the original signal into a set of coefficients corresponding to the various scaled wavelets.
Because wavelets are non-zero in a closed interval, by translating a scaled wavelet we can
detect local frequency content in a signal. These translated and scaled wavelets are also
incorporated into the set of coefficients representing the DWT. However, in a signal there are

Figure 2.7. Symlet-5 Wavelet Decomposition (level 1-5) of Chirp Signal.
Left: Schematic Representation of High Pass and Low Pass Filters. Right:
Approximation and Detail Coefficients applied for level of the chirp signal.
After reconstruction, the final wavelet is represented by the detail coefficients
for all levels and the approximation coefficients for the last level. Source:
Taspinar (2018).
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potentially many frequencies which a scaled wavelet may need to fit. Fortunately, the DWT,
where the original signal is discretely sampled in time, limits the range of discrete wavelet
scalings/translations by passing the signal through a sequence of bandpass filters. After
passing through the filter, we apply the DWT to the filtered signal at a reduced frequency
band. For each frequency band, we extract a new array of coefficients, all of which contribute
to the overall DWT’s filter bank of coefficients. In this way, a discrete wavelet can be stored
as a filter bank with arrays of coefficients corresponding to different frequency bands. This
process is illustrated in Figure 2.7.

To better understand scaled wavelets’ role in frequency bands, we use Figure 2.7 to illustrate
applying a symlet-5 discrete wavelet transform to a signal whose frequency increases with
time, also known as a chirp signal. This illustration will also help explain our use of
two parameters, decomposition levels and thresholding, that provide the flexibility for
smoothing a wavelet that was introduced in the last paragraph. Because the chirp signal
increases frequency over time, it helps to illustrate how the wavelet decomposition level
for a frequency band corresponds to a sequence of applications of low pass and high pass
filters.

We note that every level increase results in halving the number of coefficients, both for the
approximation and detail coefficients. The number of coefficients decrease because when
you halve the frequency band, you only need to sample every other point along the array to
analyze the frequency behavior in that band. At each level, a high pass and low pass filter
are applied to split the frequency band in half between high and low frequencies after the
wavelet is fit to the original signal.

The filter ensures that the lower band of frequency (low pass) still represents the wavelet
transform but only at that lower band of frequency. The detail coefficients (high pass)
correspond to the values that were extracted from the approximation coefficients representing
the DWT deconstruction at an earlier level. The remaining approximation coefficients at
the low pass then represent the DWT within the lower frequency band. If we increase the
level of decomposition, another DWT is applied to the current low pass approximation
coefficients and a new series of low pass (approximation coefficients) and high pass (detail
coefficients) filters will be represented at the next level.
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Applying a wavelet transform to a chirp signal in Figure 2.7 helps us visualize the partitioning
of frequency activity because we notice the detail coefficients shifting further to the left as
we increase the number of decomposition levels. This is explained by the fact that higher
levels of decomposition mean that wavelet transform activity is represented at a lower
frequency band. Since the chirp signal increases frequency over time, the chirp signal’s
high frequency values in later time periods are not being analyzed because they exceed
the low pass frequency band at the higher levels of decomposition. In fact, the decreasing
activity in detail coefficients show how there is less and less detail at higher levels because
there is less frequency information to remove. Therefore, we can see that at higher levels
of decomposition, more information about the DWT is captured at the lower levels of
frequency.

This frequency information, stored as coefficients in the DWT’s filter bank for frequency
bands, to is used to reconstruct the audio signal. We can change the reconstructed signal
by selectively adjusting the coefficients prior to reconstruction in a process called thresh-
olding. During reconstruction, the detail coefficients provide additional information about
the wavelet that is not represented by approximation coefficients from the lowest frequency
band. This thresholding of detail coefficient values removes frequency information about
the wavelet and the resultant smoothing of the wavelet peaks is also referred to as denoising.

This thresholding of wavelet coefficients at different decomposition levels can be determined
by setting a thresholding parameter. If the thresholding parameter value is greater than
the absolute value of the detail coefficients, then the detail coefficient is set to zero. If
the thresholding value is less than the absolute value of the detail coefficient, then the
detail coefficient is either left unaltered (hard thresholding) or shrunk towards zero (soft
thresholding). The more detail coefficients that are set to zero, the more aggressively we
smooth the original sample. This can happen with both large values of the thresholding
parameter and large levels of decomposition because at large levels of decomposition, the
approximation coefficients (untouched by the threshold parameter adjustments) are using
a lower frequency band corresponding to less coefficients in the decomposition. This is
illustrated in Figure 2.8 and shows how different levels and threshold parameters impact a
DWT’s reconstructed signal relative to the original audio samples.
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Figure 2.8. Thresholding/Level Comparisons. Higher decomposition levels
and larger threshold parameters result in more detail coefficients being set
to zero. This diminishes how closely the DWT fits the original audio sample.

As Figure 2.8 illustrates, our choice of smoothing parameters gives us a lot of flexibility for
how to reconstruct a DWT that can provide different approximations for patterned activity
within an audio file. This extends naturally to how every audio file allows us to extract
and consolidate residuals for further analysis. Figure 2.9 shows this by contrasting the
differences between an audio clip’s original signal and the reconstructed signal from a Haar
DWT. For every sampled point in the audio file, we extract a residual that, when plotted on
a histogram, forms a unimodal distribution.

While Figure 2.8 demonstrated how different smoothing parameters led to different approx-
imations of an audio file using the same mother wavelet, other distinct wavelets can be used
to approximate audio, but with a different pattern of residuals. For example, the symlet-2
wavelet in Figure 2.9 reduces the observed residuals in Figure 2.10 despite using the same
thresholding and level parameters used in the Haar DWT.

As we can see, different wavelets can be used to create different approximations of the
sequence of sampled amplitudes contained in a digital audio file. Additionally, Figures
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2.9 and 2.10 both show how an audio file’s residuals can be aggregated into unimodal
distributions with distinct statistical properties despite their similarities in appearance.
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Figure 2.9. Haar DWT to Audio Sample. Aggregated residuals between the
Haar DWT reconstruction and the actual audio signal form a unimodal dis-
tribution centered around zero.
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Figure 2.10. A Closer Approximation Using the Symlet-2 DWT. Fitting a
wavelet with greater variation in its peaks reduced the overall residuals de-
spite keeping the same smoothing parameters.
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2.2.4 Extracting Residuals
In this section, we provided a brief background on wavelets and their utility in approximating
the pattern of sampled amplitudes in a digital audio file. We also showed how we can adjust
parameters in the wavelets to create unique approximations of the audio file. As a result, we
now have many ways for collecting unique patterns of residuals from a sampled audio file.
This variability is important because each approximation represented by a specific wavelet
transform may be capturing different predictive elements within the audio file. In the next
section we introduce and explain the classifier that we use to analyze these residuals.

2.3 Gradient Boosted Trees
As Figures 2.9 and 2.10 show, every audio file can be reduced to a distribution of residual
values. To use this information, we need to train a classifier using supervised machine
learning (SML). Prior to classifying unknown data, SML learns how to map inputs 𝑥 to
outputs 𝑦 by using algorithms that analyze previous samples with known values for 𝑥

and 𝑦. For this research, 𝑦 is the probability that the given audio sample is fake. During
training, every 𝑦𝑖 is assigned either a probability value of 0 or 1 according to its known
classification. The goal of the classifier is to approximate a function 𝑓 with 𝑥 inputs such
that 𝑦 = 𝑓 (𝑥). While 𝑦 is restricted to a scalar value between 0 and 1, 𝑥 is a vector of
components [𝑥1, 𝑥2, ..𝑥𝑛] called features and in our setting captures statistical properties of
the residuals’ sample distribution. We extract the mean, variance, skew, kurtosis, quartiles
and min/max values from the residuals. In this paper, we will use GBM to learn how these
features 𝑥 can be mapped onto a probability 𝑦 that measures to what extent a given audio
file is synthetically generated.

GBM, “as the de facto choice of ensemble method,” has been widely popularized in data-
science competitions “to capture the complex data dependencies and scalable learning sys-
tems that learn the model of interest from large datasets” (Chen and Guestrin 2016, p. 785).
As an ensemble method, GBM uses classification and regression tree (CART) models to
combine the predictions from weak classifiers into a stronger prediction (Opitz and Maclin
1999). However, GBM is distinct from another popular ensemble CART random forest
model because the overall prediction is not aggregated from simultaneous tree-structure
prediction models grown from the same data distribution (Breiman 2001). Rather, the GBM
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sequentially trains, or “boosts,” a new CART model that will incrementally improve the
model’s prediction result because it is trained on the previous iteration’s prediction error
(Freund and Schapire 1997).

Algorithmically, this means throughout the GBM model, there are consistent rules for
governing how the GBM selects CART trees prior to each training iteration (Torlay et al.
2017). These rules are generalized into three tuning parameters that determine how many
CART models to grow, the level of complexity within each CART model, and the learning
rate (or loss function) of the overall model (i.e., how quickly the residuals are reduced for
every iteration). In their paper titled, XGBoost: A Scalable Tree Boosting System, Chen and
Guestrin (2016) formalize the relationship between learning rate and complexity using the
following function 𝐿 representing the “regularized learning objective.”

𝐿 (𝜙) =
∑︁
𝑖

𝑙 (�̂�𝑖, 𝑦𝑖) +
∑︁
𝑘

Ω( 𝑓𝑘 )

where Ω( 𝑓 ) = 𝛾𝑇 + 1
2
_ ∥𝑤∥2

On the right hand side of the equation, the following expression∑︁
𝑖

𝑙 (�̂�𝑖, 𝑦𝑖)

refers to the loss function which measures the difference between prediction 𝑦𝑖 and the
actual value 𝑦𝑖 . Contained within the function 𝑙 are “learning measures” for governing
how quickly to reduce the error every iteration. These learning measures determine to what
extent each decision tree remains a “weak hypothesis learner that is slightly better than
random guessing” (Freund and Schapire 1997, p. 120). In statistical learning, models that
learn slowly tend to perform better because they are resistant to overtraining.

Within the equation, ∑︁
𝑘

Ω( 𝑓𝑘 )

addresses the two parameters for 𝑘-number of CART models and the subsequent regular-
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ization of tree complexity, Ω( 𝑓𝑘 ). Ω( 𝑓𝑘 ) is broken up into

𝛾𝑇 + 1
2
_ ∥𝑤∥2

where the penalty parameter 𝛾 is assigned to the number decision leaves 𝑇 in the CART
and the penalty parameter _ is assigned to the 𝑤 vector of scores for every leaf in CART 𝑘 .

The penalties in the regularization portion of the equation “help to smooth the final learned
weights to avoid over-fitting” and support selecting a model “employing simple and pre-
dictive functions” (Chen and Guestrin 2016). In their article, Chen and Guestrin (2016, p.
786) explain how the XGBoost model uses algorithms for selecting tree-splits, handling
incomplete data within features per observation, and how their algorithms enable “parallel
and distributed computing. . . which enables quicker model exploration.” The last feature,
along with historical success in previous data competitions, is a strong motivator for our
use of the XGBoost GBM classifier for our research.

To summarize Chapter 2, we have explained our theory for why we expect algorithmically
generated synthetic audio to have less natural variation than a real human voice. Additionally,
we described our use of DWT to reconstruct audio signals that closely approximate the
original audio. By comparing the reconstructed signal and original signal we extract the
residuals from which we can assess the audio file’s natural variation. Lastly, we provided
a theoretical background for the GBM classifier that we use to extract patterns from audio
samples with known fake/real classifications in a train set. This trained classifier then
analyzes a test audio file’s summary statistics from its distribution of residuals to assign a
probability declaring to what extent the test file is assessed to be synthetically generated. In
Chapter 3, we will explain how we executed these processes using select packages within
the python programming language and how they informed our experimental results.
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CHAPTER 3:
Experimentation and Results

Chapter 2 described how we use the discrete wavelet transforms (DWT) and its smoothed
reconstruction of a digital audio file to extract that audio file’s residuals. We then explained
our use of the gradient-boosted tree model (GBM) classifier to analyze the residuals and
thereby determine the probability that audio file has been synthetically generated. In this
chapter, we apply this methodology to two datasets and assess our ability to distinguish
between synthetically manipulated audio and audio files capturing the recorded voice of
authentic human speakers.

Section 3.1 describes what packages we use in the Python programming language for
applying DWT to digital audio samples and for implementing the GBM to analyze a
residual distribution’s summary statistics across thousands of samples. Section 3.2 analyzes
the 2019 Fake-or-Real Dataset introduced by Reimao and Tzerpos (2019), and Section 3.3
analyzes the data from the 2015 ASVSpoof Competition. Lastly, Section3.4 uses the third
section’s dataset to build a classifier that decisively demonstrates that the recorded voice
in the March 16, 2022 deepfake video calling for Ukrainian troops to surrender did not
originate from the Ukrainian president Volodmyr Zelensky.

3.1 Python Implementation
This section explains the three primary python programming packages that we used to
conduct our experimentation: librosa, pywavelets, and xgboost.

3.1.1 Librosa
We used the librosa package to convert the various digital audio formats, such as .flac
or .wav, into an array of sampled points corresponding to amplitude values (McFee et al.
2015). The librosa python package not only has the advantage of converting multiple audio
formats to a single-channel array, but also normalizes the information in the array and there-
fore allows us to downsample all digital files to a consistent sampling rate. For example,
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both the Fake-or-Real (FoR) and 2015 Automatic Speaker Verification and Spoofing Coun-
termeasures Challenge (ASVSpoof) datasets provide .wav files sampled at a rate of 16000
measurements per second. Audio for the deepfake analysis, however, was downloaded from
YouTube and had a sample rate of 44100 measurements per second. The librosa package
allows us to ensure that our experimentation methods are applied to audio files with a
uniformly consistent sampling rate.

3.1.2 Pywavelets
To create a smoothed wavelet representation of an audio file’s original array of sampled
amplitudes, we used the pywavelets package (Lee et al. 2019). This open source python
package enables us to convert an array of amplitude values into DWT coefficients. We then
apply the soft thresholding operator (described in Section 2.2.2) to the wavelet coefficients.
Afterwards, pywavelets processes those adjusted coefficients to reconstruct an approxima-
tion of the original audio file. Pywavelets provides 105 distinct wavelet families which can
be used to perform the DWT. We provide the names for these wavelet famileis in Table 3.1.

Table 3.1. Pywavelets Discrete Wavelet Families. Pywavelet provides the ca-
pability to apply 105 different DWTs to one digital audio file. Each wavelet
family’s reconstruction of audio can be adjusted by thresholding the coeffi-
cients of the DWT.

Wavelets Families
Biorthogonal 1.{1,3,5} Reverse Biorthogonal 1.{1,3,5}
Biorthogonal 2.{2,4,8} Reverse Biorthogonal 2.{2,4,8}
Biorthogonal 3.{1,3,5,7,9} Reverse Biorthogonal 3.{1,3,5,7,9}
Biorthogonal 4.4 Reverse Biorthogonal 4.4
Biorthogonal 5.5 Reverse Biorthogonal 5.5
Biorthogonal 6.8 Reverse Biorthogonal 6.8
Coiflet {1,2,...,17} Haar
Daubechies {1,2,...,38} Discrete Meyer
Symlet {2,3,...,20}
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3.1.3 XGBoost
After extracting a residual for every sampled point in an audio file, we examine the distri-
bution of residuals and acquire the following statistical features: mean, standard deviation,
min, quartiles, max, skew and kurtosis. From this information, we build a dataframe where
every row corresponds to an audio file and each column gives ones of these statistical
features. This dataframe is processed into the gradient-boosted tree model (GBM) using the
xgboost python package (Brownlee 2019). To train the classifier, we created an 80/20-split
of train files consisting of audio files with known fake/real labels. This 80/20-split enables
xgboost to iteratively improve on the errors in the 20% of train files set aside as a test set.
After training the model, xgboost examines a new dataframe of residuals for audio files
with unknown labels and assigns a scalar value between 0 and 1 to each audio file in the
validation set. A larger value indicates the classifier is increasingly confident that the audio
file has been synthetically generated.

The next three sections explain how we use these packages to analyze different sets of
data. The general pattern for analysis begins by using the audio files with known syn-
thetic/authentic classifications to identify a set of wavelet parameters that perform well on
a test set. However, each dataset has different information available about the audio files.
For example, one dataset indicates the spoofing method used to synthetically generate the
audio sample and identifies the target speaker. Other datasets may contain speech files from
different speakers but provides no information on which speaker is associated with each
audio file. The next section looks at a dataset that, while using the latest synthetic audio
generation methods, does not provide these speaker level details.

3.2 Fake-or-Real
Of the two datasets we assess in this thesis, only the FoR dataset introduced by Reimao
and Tzerpos (2019) uses synthetic audio generated from deep-learning algorithms. Reimao
and Tzerpos (2019) originally created this dataset because they determined that the current
datasets for training complex classifiers had several deficiencies. Previous datasets were
primarily focused on detecting spoofed utterances targeted at bypassing ASV systems.
Using only speaker/attacker datasets when training the classifier potentially biases the
classifier to rely on speaker-specific characteristics as opposed to general patterns of speech.

35



Consequently, the classifier may have more difficulty generalizing to datasets with unknown
speakers. Additionally, the researchers assessed that the current sets of utterances were
“typically not sufficient to train complex neural network models” because they did not cover
a broad enough spectrum of speech (Reimao and Tzerpos 2019, p. 3). Lastly, Reimao and
Tzerpos (2019) wanted to provide a dataset using state-of-the-art speech algorithms not
necessarily tied to a spoofing attack. In summary, the researchers wanted to create a dataset
where speaker data facilitates building classifiers which are agnostic to both speaker identity
and generation mechanism. Given this background, our experiments for this dataset will
not attempt to distinguish between methods or speakers but focus on assessing whether our
classifiers identify which files are fake or real in their respective train, test, and validation
sets. We divide our exploration of this dataset into three parts. First, we explain the primary
features of these data and how they are structured. Second, we articulate our process for
choosing which wavelet family and corresponding set of parameters will be used to assess
the validation set. Lastly, we show the results of those experiments on the files in the
validation set.

3.2.1 The Dataset
When building the FoR dataset, Reimao and Tzerpos (2019) wanted to ensure that clas-
sification models were not being trained on specific words/phrases but on the generalized
differences between synthetic and real speech. Therefore, despite the overall dataset con-
taining over 150,000 English phrases, there are no repeated utterances or phrases in the
dataset. The audio files corresponding to real speakers that provided voice samples for the
following well-known open source datasets: Arctic Dataset (Anumanchipalli et al. 2011),
LJSpeech Dataset (Ito and Johnson 2017), and the VoxForge Dataset (VoxForge 2019).
The researchers selected phrases from a variety of speakers from both genders and various
accents. The quality of speakers ranged from professional voice actors to online volunteers
independently recording and submitting utterances to a dataset.

Because the FoR dataset creators were not focused on classifiers targeting specific spoofing
attacks, the synthetically generated audio files in the FoR dataset only originated from
TTS methods where spoken phrases are generated from manual keyboard entries. The TTS
methods represented a total of seven synthetic generative voice algorithms representing 33
voices. All synthetic audio samples were acquired from commercial computing companies
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such as Baidu, Google, AWS and Microsoft. To provide multiple data points of contrast
between a variety of generative speech algorithms at varying stages of advancement, the
researchers ensured the synthetic samples in their data widely ranged in natural sounding
quality. For example, while Baidu Labs allows for open source distribution of its DeepVoice3
Wavenet algorithm, it also offers a commercial Baidu Cloud TTS service using proprietary
software. While Google did not release an open source code for its TTS service, people can
easily create synthetic audio clips using the Google Translate website. However, Google
also offers a premium Google Cloud TTS with Wavenet service for creating more natural
sounding audio. Microsoft and AWS offer similar services and marketing strategies as well.
The FoR Dataset contains synthetically generated audio from all these methods.

In addition to the sampled audio phrases being acquired from a wide variety of synthetic
and real digital voices, the authors standardized each audio file to a sample rate of 16 kHz
(16000 measurements per second), stored as a single channel .wav file. The authors also
cropped each file to ensure no silences at either the beginning or end of the audio file.
While both synthetic and real audio samples consisted of complete utterances, the synthetic
audio samples were consistently shorter in length. To address this, researchers created
another version of the dataset using only 2-second truncations for both synthetic and real
audio files. Lastly, each version of the dataset was balanced so that genders, speakers and
generation methods were evenly distributed. When conducting our experiments, we trained
the classifier on the train folder and validated our classifier on the test folder for both versions
of the FoR dataset. Table 3.2 summarizes this data below:

Table 3.2. Number of Files in the Normalized and 2-Second Versions of the
FoR Dataset. Audio files in all folders have an even distribution of speakers,
and genders. We use the train folder to identify suitable wavelet families and
parameters.

Normalized 2-Sec Truncated

Train Folder
Synthetic 26927 6978
Real 26939 6978

Test Folder
Synthetic 2370 544
Real 2264 544
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For this dataset’s series of experiments, the train folder contained synthetic audio files using
only 6 of the 7 TTS generation methods. While the test folder (on which we validate our
classifier) contained utterances from real speakers who were not in the train folder, all the
synthetic audio test files were created using the remaining, and arguably most advanced,
TTS method, which is Google’s Cloud TTS with Wavenet. The challenge for this dataset,
therefore, was to build a classifier capable of detecting and generalizing to unseen TTS
algorithms set apart from the train folder.

3.2.2 Selecting Best Parameters
Prior to applying trained classifiers to the validation set of audio files in the test folder,
we needed to identify wavelet families, decomposition levels, and thresholding parameters
with success in the train set that generalizes to the test folder. To do this, we conducted a
test on 800 randomly sampled files within the 2-sec Truncated Train folder. This set had an
equal number of fake and real files. For each of these tests, we trained a classifier using 400
files and subsequently validated the classifier on the remaining 400 files in the subset. We
scored the results of the mini validation by taking the proportion of files that were correctly
classified.

We individually applied this test to the 2-sec Truncated Train Folder subset of 800 files
using 105 wavelet families. For every wavelet, we tested levels for decomposition from three
through six. Within every level, we examined the 45 different thresholding parameters. The
first ten thresholding parameters ranged from 0.01 and 0.10 and were evenly spaced by .01.
The remaining 35 parameters ranged from 0.15 to 0.5 and were separated by 0.1. In summary,
for 400 files in the 2-sec Truncated Train Folder, we conducted 14,700 experiments that
individually returned scaler values between 0 and 1. These scalar values informed us to the
extent to which a classifier trained using the given parameters and wavelet family generalizes
to a different set of 400 files within the same folder.

From these 14,700 experiments, we needed to identify a subset of wavelet/parameter candi-
dates that had the best potential for detecting the unseen Google’s Cloud TTS with Wavenet
speech algorithm used in the FoR test set. To do this, we first grouped the wavelets in the
following categories based on their names and specific shapes.
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• Group 1: Biorthogonal
• Group 2: Coiflets
• Group 3: Daubechies
• Group 4: Reverse Biorthogonal | Haar | Discrete Meyer
• Group 5: Symlets

Next, for every level and for every wavelet group, we graphed the wavelet’s performance on
the 400 files as a function of all the thresholding parameters in that wavelet. To keep this
graph from being too busy, we have only included wavelet families which correctly classified
at least 320 files of the 400 considered for at least one value of threshold parameters. Figure
3.1 is an example of the Reverse Biorthogonal grouping using a Level 6 decomposition.
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Figure 3.1. FoR Wavelet Candidates for Validation Set. Of the 17 wavelets
in this Reverse Biorthogonal Grouping, 12 wavelets correctly classified more
than 80% of the audio files in the train set for at least one of the thresholding
parameters at Level 6 decomposition after being trained on the 400 files in
the same folder.
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Figure 3.1 represents one of potentially 20 different graphs (5 wavelet groupings across
4 Levels of decomposition) that we could examine to identify candidates for building a
classifier to challenge the validation set of files in FoR’s test folder. We note, however,
an important trend where the relative success for each wavelet/parameter peaks around a
thresholding value near or around 0.3. This trend is consistent for other wavelet groupings
and across other levels. In Table 3.3, we show how many wavelet/parameter candidates
achieve a success rate of at least 80% for the 400 audio files in the test set.

Table 3.3. Number of Wavelet Candidates. At Level 5 decomposition, there
appears to be the most wavelet/parameter combinations that successfully
classified at least 80% of the 400 test files in the train folder.

Group 1 Group 2 Group 3 Group 4 Group 5
Level 3 12 1 0 3 0
Level 4 25 0 23 37 1
Level 5 82 180 321 149 148
Level 6 40 25 43 75 31

Table 3.3 shows that if we only consider wavelet/parameter combinations with at least
an 80% success rate, there are still 1196 candidates. We also notice that most candidates
among all the wavelet groupings are at decomposition level 5. However, we do not yet know
how well these wavelets generalize to the unknown TTS method used to generate synthetic
audio files in FoR’s validation set. Therefore, instead of focusing on the decomposition
level with the greatest number of wavelet/parameter candidates, we build classifiers using
the top performing wavelet/parameter combination for each subgrouping. Our first round of
classifiers to assess the audio files in FoR’s validation set will be built using the following
wavelets with their corresponding parameters and are displayed in Table 3.4.

3.2.3 Validation Set Results
In contrast to the classifiers that were built in Section 3.2.2 for the sake of choosing training
parameters, the classifiers assessing the validation set of files in FoR’s test folder will be
trained on all the audio files in the Normalized and 2-Sec Truncated train folders. For every
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Table 3.4. Initial Wavelet/Parameters for Classifier. In this table, each
wavelet and its corresponding combination of parameters will be used to
build a classifier that assesses the synthetic nature of audio files in the FoR’s
test folder. Of the wavelet categories defined by Level/Group intersection in
Table 3.3, the wavelet/combinations in this table had the highest percentage
accuracy scores.

Wavelet Level Thresholding % Correct
Biorthogonal 1.3 L3 0.31 0.8175
Coiflet 14 L3 0.32 0.80125
Reverse Biorthogonal 3.1 L3 0.26 0.8125
Biorthogonal 1.1 L4 0.28 0.8225
Daubechies 1 L4 0.28 0.8225
Reverser Biorthogonal 1.1 L4 0.28 0.8225
Symlet 2 L4 0.3 0.81875
Biorthogonal 2.8 L5 0.29 0.84
Coiflet 2 L5 0.25 0.85625
Daubeches 19 L5 0.27 0.85625
Reverse Biorthogonal 3.1 L5 0.31 0.85
Symlet 15 L5 0.27 0.8475
Biorthogonal 1.1 L6 0.32 0.83125
Coiflet 1 L6 0.3 0.82125
Daubechies 1 L6 0.32 0.83125
Reverse Biorthogonal 3.1 L6 0.3 0.86
Symlet 9 L6 0.29 0.81875

wavelet and its corresponding set of parameters in Table 3.4, we train two classifiers. The
classifier trained using the 53,866 audio files in the Normalized Train Folder will use the
4,634 audio files in the Normalized Test Folder as the validation set. Correspondingly, the
other classifier, trained on the 13,956 audio files in the 2-Sec Truncated Train Folder, will
use as a validation set the 1088 audio files in the 2-Sec Truncated Test Folder.

However, even though we train two classifiers using two variations of the dataset, our
determination on the best wavelet/parameters will be based on the combined area under the
relative operating characteristic (ROC) curve (AUC) scores from the classifiers’ performance
on their respective datasets. We justify combining the AUC scores because the audio files
within their respective dataset variations are only distinguished by their differing lengths.
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In fact, because the normalized variation of the dataset uses synthetic audio utterances that
are consistently shorter in length than the real speaker audio samples, we anticipate the
classifiers assessing the normalized dataset to perform better on average. The results for
Table 3.4’s initial selections of wavelet/parameter combinations for classifiers are displayed
in Figure 3.2 and Table 3.5.
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Figure 3.2. Initial Results on Fake-or-Real Validation Set.Despite the coiflet-
14 at Level 3 decomposition having the lowest accuracy in the 2-Sec Train
Set, it has the highest combined AUC score of the 2-Sec and Normalized
Validation Sets.

Both Figure 3.2 and Table 3.5 confirm our intuition that the 2-Sec Validation AUC scores
consistently perform worse than the Normalized AUC scores. The on-average shorter lengths
of the synthetic files in the normalized FoR version are being used by the classifier to more
accurately identify fake files. We also notice that while the reverse biorthogonal-3.1 wavelet
at Decomposition Level 6 performed the strongest in the train set, its AUC scores in the
validation sets were by far the worst of all the wavelet combinations. This suggests that the

42



Table 3.5. Initial Results on Fake-or-Real Validation Set. The green and red
cells correspond to the highest and lowest scores in their respective columns.
The wavelet/parameter combination with the strongest performance in the
train set scored the lowest in the validation set and vice-versa.

Wavelet Level Thresholding % Train Accuracy Norm_ROC 2-Sec_ROC
Biorthogonal 1.3 L3 0.31 0.8175 0.81721 0.750846
Coiflet 14 L3 0.32 0.80125 0.840549 0.787449
Reverse Biorthogonal 3.1 L3 0.26 0.8125 0.674878 0.606251
Biorthogonal 1.1 L4 0.28 0.8225 0.797794 0.739986
Daubechies 1 L4 0.28 0.8225 0.797794 0.739986
Reverser Biorthogonal 1.1 L4 0.28 0.8225 0.797794 0.739986
Symlet 2 L4 0.3 0.81875 0.821933 0.746607
Biorthogonal 2.8 L5 0.29 0.84 0.795525 0.717518
Coiflet 2 L5 0.25 0.85625 0.819873 0.75715
Daubeches 19 L5 0.27 0.85625 0.777416 0.664269
Reverse Biorthogonal 3.1 L5 0.31 0.85 0.68658 0.649664
Symlet 15 L5 0.27 0.8475 0.809961 0.685829
Biorthogonal 1.1 L6 0.32 0.83125 0.785834 0.650507
Coiflet 1 L6 0.3 0.82125 0.772395 0.677102
Daubechies 1 L6 0.32 0.83125 0.785834 0.650507
Reverse Biorthogonal 3.1 L6 0.3 0.86 0.590846 0.566043
Symlet 9 L6 0.29 0.81875 0.768839 0.700011

combination was overtrained to known TTS methods in the train folder and was unable to
generalize to the unknown TTS method in the test folder.

The most interesting observation, however, was the strong performance of the coiflet-14
wavelet (Group 2) at Level 3 decomposition on the validation files in the test folder. If we
look back at Table 3.3, the only wavelet/parameter combination to make the cutoff in Group
2 at Level 3 decomposition was the coiflet-14 wavelet. When discarding the Norm-AUC
scores below 0.7, we also note that the drop off in performance from the Norm AUC score
to the 2-Sec AUC score is also the least when using the coiflet-14 combination.

With these observations in mind, we lowered the cutoff value for Group 2 at Level 3
decomposition to 75% accuracy and took the top 25 train set coiflet/parameter combinations
that correctly classified at least 300 files in the train folder using the tests described in Section
3.3.2. Additionally, we expanded the window of wavelet/parameter candidates to include
the top 40 train-set performers across all 4 Levels of decomposition and did not limit it to
the 5 wavelet groupings. Using this expanded set of wavelet/parameter combinations, we
individually trained new classifiers on the both the 2-Sec Truncated and Normalized Train
folders and tested the classifiers on the validation set in the FoR test folders. To visualize
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the comparison between wavelet/parameter combinations we sorted the performance by
combined 2-sec/normalized AUC values. Figure 3.3 shows the resulting stacked barplot of
combined AUC scores and wavelet/parameter combinations.
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Figure 3.3. Fake-or-Real Validation using Coiflets. This figure shows that
the top performing wavelet/parameters combinations are variations on the
coiflet-14 wavelet.

At the conclusion of our experiments with the Fake-or-Real dataset, the wavelet/parameters
combination with the best results on the validation set of audio files in the FoR test folder
was the coiflet-14 wavelet at a Level 3 decomposition level with thresholding at 0.48. The
AUC scores for the Normalized and 2-Sec Test Folders were 0.861 and 0.844 respectively.
Additionally, 22 of the top 25 combined 2-sec/Normalized Validation AUC scores used a
classifier trained on a coiflet-14 wavelet at Level 3 decomposition. Except for the biorthog-
onal 1.3 wavelet at Level 5 decomposition, the only wavelet/parameter combinations with
AUC scores greater than 0.8 for audio files in both the 2-Sec Truncated and Normalized
Test folder were coiflet wavelets at Level 3 decomposition.

In summary, we notice multiple variations on one wavelet family (albeit using different
parameters) that consistently has the highest AUC score in both the 2-Sec and Normalized
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Validation sets. When we pair these observations with the understanding that the validation
set only uses one spoofing algorithm, we have evidence that different wavelet types may be
more appropriate to different synthetic generation methods. We explore this further in the
next section where the dataset consists of audio samples that can be partitioned by either its
speaker label or its ten generation techniques.

3.3 ASVSpoof 2015 Dataset
In this section, we examine a dataset that supported the first bi-annual Automatic Speaker
Verification and Spoofing Countermeasures Challenge (ASVSpoof) created in 2015. While
the dataset in Section 3.2 focused on the speaker and generation method agnostic detection of
synthetically generated human speech, the 2015 ASVSpoof dataset is specifically predicated
on its synthetic speech files being spoofing attacks on identified human speakers. The
ASVSpoof competition challenges researchers to develop methods for combating attempts
to bypass audio-based security authentication measures. To support this challenge, the
dataset allows us to separate audio files by human speakers and by the spoofing methods
used to synthetically generate the audio.

Our exploration of this dataset is divided into three subsections: First, we explain how
the dataset is organized with respect to train/develop/evaluate partitions for speakers and
spoofing methods. Second, we develop classifiers trained on individual speakers and/or
spoofing algorithms and identify the extent to which our classifier detects similar spoofing
attacks on different speakers. The last part of this section tackles the actual 2015 ASVSpoof
Challenge to see if a classifier trained on a subset of five spoofing algorithms and 60 speakers
can generalize to detecting spoofing attacks on an entirely different subset of 46 speakers
using unknown methods.
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3.3.1 The Dataset

Table 3.6. Synthetic / Real Files in 2015 ASVSpoof Dataset. For every
human speaker, there are many more spoofing attacks than samples of au-
thentic human speech.

Train Develop Evaluate
Fake 12625 49875 184000
Real 3750 3497 9404

The 2015 ASVSpoof dataset divides it audio files into three sets of folders: Train, Develop
and Evaluate. Although the Train and Develop folders share the same algorithms for gener-
ating spoofing attacks, they do not share the same speakers. The Evaluate folder, in addition
to having the same methods for spoofing audio as in the Train/Develop folders, also has
audio files created using five spoofing methods that are unique to that folder. Like the dataset
in Section 3.2, all audio files were stored as .wav files and sampled at a rate of 16000 Hz.
However, as Table 3.6 shows, the distributions of synthetic and real files are heavily skewed
toward synthetic files for all folders.

Although there are many more fake files than real files, Figure 3.4 shows that for every
speaker there is an even number of spoofing algorithms per speaker. The ten spoofing
algorithms in the 2015 ASVSpoof dataset are labelled from S1 through S10.
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Figure 3.4. Spoofing Method Breakdown by Speaker. For the 106 different
speakers (45 males and 61 females), there was an even distribution of spoof-
ing algorithms relative to the respective Train/Develop/Evaluate folders.

As Figure 3.4 shows there are clearly more spoofing algorithms in the Evaluate folder than
the Train/Develop folders. The Train and Develop folders used five spoofing algorithms that
fell under the voice conversion (VC) or speech synthesis (SS) category and are labeled and
described below:

• S1. A simplified frame-selection based VC algorithm.
• S2. A VC algorithm adjusting the spectrum of frequencies towards its target.
• S3. A SS algorithm using HMM-based speech synthesis and adaptation techniques

using only 20 utterances.
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• S4. The same SS algorithm as S3 but using 40 adaptation utterances.
• S5. A VC algorithm implemented using the publicly available Festvox Toolkit.

In addition to using spoofing algorithms, S1-S5, the evaluate folder had synthetic files gen-
erated from five other spoofing algorithms (S6-S10). A brief description of these algorithms
is below:

• S6. A VC algorithm using Gaussian Mixture Models
• S7. A VC algorithm similar to S6 that uses line-spectrum pairs as opposed to mel

spectrum coefficints
• S8. A tensor based VC algorithm trained on a Japanese speaking database.
• S9. A VC algorithm using a kernel-based partial least squares approach.
• S10. A SS algorithm using the open source MARY TTS system that concatenates

diphone waveforms.

In their paper detailing the results of the 2015 ASVSpoof Challenge, Wu et al. (2017a)
provide more background on these spoofing methods. Because the dataset allows us to
organize files by either speakers {T1-T25, D1-D35, E1-46} and/or spoofing algorithms
{S1-S10}, we have a lot of flexibility on experiments to conduct. In Section 3.3.2, we
examine our classifier’s ability to authenticate the speakers from which a classifier has
been trained, or to generalize detection of known spoofing algorithms targeting unknown
speakers.

3.3.2 Experiments with Known Spoofing Algorithms
For this set of experiments, we used a female speaker labelled in the dataset as “T1.” The
goal for this experiment was to identify which wavelet/parameters combination is most
successful in correctly classifying files for the T1 speaker in a randomized environment
consisting of other speakers and their respective spoofing attacks. These experiments train
and test on synthetic files that have only been generated from the spoofing algorithms S1-S5.
When a spoofing algorithm creates a synthetic audio file that is subsequently trained on by
the classifier, that spoofing algorithm is referred to as a "known spoofing algorithm."

Since we are only training a classifier on speaker T1, however, we are limited to how many
files that can be used to both train and validate the classifier. For speaker T1, we have
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500 spoofed audio samples and 155 authentic recordings. If we build a classifier without
correcting for this imbalance between fake and real files, the classifier may be biased toward
classifying audio files as fake. To address this, we reduce the train set to 200 files that have
been evenly split between fake and real. However, now we may not have enough audio files
to sufficiently train the classifier. This concern is compounded by the classifier only being
able to incorporate the 20 spoofed examples from 5 synthetic algorithms (100 fake files to
balance 100 real files). This approach also would mean we are discarding the 400 other
spoofed examples for speaker T1.

To address the concerns of either having an imbalanced train set or having too few files
on which to train the classifier, we added authentic speaker recordings from the Fake-or-
Real normalized folder. We justify adding real speech audio files from a different data
source because we want to the classifier to maximize training on spoofed audio files. Our
original theory suggested that naturally generated audio had a greater variance irrespective of
individual speakers. Synthetic audio, however, was hypothesized to have more of its variation
dependent on its generative algorithm. Therefore, in a fake/real balance, the classifier would
more effectively incorporate the relevant information from synthetic examples that used the
same spoofing algorithm than from random speakers not targeted by the spoofing attacks.
With this in mind, we conducted a series of tests where files were distributed as follows:

• The train set had 800 total files with 400 spoofing attacks on the T1 speaker, 100
authentic T1 speaker files, and 300 authentic speaker files from the FoR Normalized
training folder.

• The test set had 200 total files with 100 spoofing attacks on the T1 speaker, 50
authentic T1 speaker files and 50 authentic speaker files from the FoR Normalized
training folder.

When running this classifier using all the wavelets and a range of thresholding parameters
at Level 3 decomposition, we observed the following accuracy scores on the test set using
different coiflet families within the wavelet grouping for coiflets (Group 2).
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Figure 3.5. T1 Speaker Test Results. A large number of wavelet/parameter
combinations for the T1-specific classifier successfully identified over 90% of
the audio files in the test set.

Similar to the tests in Section 3.2.2, we tested the classifier’s ability to accurately identify
files that were in the same folders as the audio files used to train the classifier. However, the
classifiers on the 2015 ASVSpoof train had more consistent success in identifying synthetic
audio files than the mini-tests in the FoR dataset. We also noticed that in the 0.01 to 0.10
(separated by .01) band of thresholding parameters, there was much greater variance in
accuracy results. These strong accuracy scores at Level 3 Decomposition were consistent
across the other wavelet groupings.

For the next series of tests, we assessed the extent to which the classifier overtrains to the
speaker and the extent to which the speaker-trained classifier generalizes to other speakers.
To support this assessment, we increased the number of files to train the classifier from 800
to 895. We withheld 5 authentic T1-speaker files and 55 spoofing attacks on that speaker for
the validation set. To test the classifier’s ability to generalize to new speakers we added 200
files from the Develop Folder to the validation set–giving us a total of 260 files on which
to test the classifier. While the new files use the same spoofing algorithms, the classifier
has no prior information on the new files’ speakers or spoofing attacks. After running the
classifier on the validation set, we separated the T1 speaker files into their own subset and
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considered the audio samples from the Develop Folder as a separate group. For additional
analysis, we evaluated which spoofing algorithms were successfully identified as synthetic
regardless of the targeted speaker.

For our first round of tests using this method, we used a wavelet/parameter combination that
had one of the highest accuracy scores (0.97) during the mini-tests at Level 3 decomposition.
The results of using this coiflet-1 wavelet with a thresholding parameter of 0.3 are illustrated
in Figure 3.6 below:
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Figure 3.6. Speaker T1 Trained Classifier Results using the Coiflet-1 Wavelet.
Top: Out of the 200 files from the Develop Folder, only 14 files were mis-
classified. For the T1 speaker, 3/60 files were misclassified. Bottom: The S1,
S3 and S4 algorithms had misclassification errors. Most of the errors in the
methods breakdown are due to the 14 false positives in the subset of 105
authentic human speaker files.

In the top chart, the T1 speaker and the other speakers are separated into different clusters.
The barplot columns show that the percentages within each real/fake/overall category that
were correctly identified. For example, the classifier incorrectly attributed one of the spoof
attacks on T1 to be a real file and claimed two authentic T1 speaker audio files to be a
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spoofing attack. The lower bar chart shows that the S5 spoofing algorithm generated the
most synthetic speaker audio files that fooled the classifier. Additionally, the largest number
of errors when looking at results by methods were false positives of spoofing attacks (i.e.
14/105 authentic human speaker files were classified as spoofed files).

Ot
he

r T1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Proportion Correctly Identified by Subset of Speakers

Overall
Real %
Fake %

S1 S2 S3 S4 S5 human
Spoofing Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Proportion Correct by Spoofing Algorithm

Figure 3.7. Speaker T1 Trained Classifier Results using Low Performer. Of
the 200 Develop folder and 55 T1 speaker files, the classifier respectively
misclassified 19 and 3 audio files. Additionally most of the spoofing methods
had at least one misclassification error and the false positive rate for authen-
tic human speaker files remained constant.

While these results showed great promise in generalizing the identification of known spoof-
ing algorithms to other speaker (all categories in the high 80s/ low 90s), we conducted an
additional test to check if other high performing wavelets in the tests improve the results for
the T1 speaker. However, the other wavelet/parameter combinations at Level 3 decomposi-
tion that had similarly promising results to Figure 3.5 were unable to train a classifier that
perfectly classified the T1 speaker files.

As an additional experiment, we tried a wavelet/parameter combination (biorthogonal-5.5,
Level 3 decomposition, 0.15 threshhold) that performed the most worst on the test with 0.58
accuracy. In Figure 3.5, we saw a wide range of accuracies within the tests and wanted to
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see if this range is reflected in our validation set. The results are displayed in Figure 3.7.

As expected, the overall results for the classifier in Figure 3.7 were lower than the results
in Figure 3.6. However, the drop-off in results were less than anticipated. The test’s accu-
racy of .58 did not extend to the validation set in the develop folder. The drop in results
primarily were spoofing attacks on other speakers being labelled as authentic. While it still
scored lower than the top performing wavelet combinations, the overall rate around 91-95%
accuracy is still much higher than the earlier observed 58%.

The comparatively low variation in results from Figures 3.6 and 3.7 gives us low confidence
that we can find an optimal wavelet/parameter combination at only Level 3 decomposition to
correctly classify the speaker on which it was trained. To see if we could observe differences
across different levels of parameters we tested Decomposition Levels 1-5 and reduced the
range of thresholding coefficients to {0.00005, 0.0001, 0.0002, 0.001, 0.002, 0.01, 0.011,
0.015, 0.1, 0.2, 0.23, 0.3, 0.32}. Table 3.7 below shows the how the top scoring tests
improved at higher levels of decomposition across the five wavelet grouping categories.

Table 3.7. T1 Speaker Mini-Tests Across Levels. For all wavelet category
groupings, the accuracy for the top performing wavelet/parameter combina-
tion increased significantly at higher levels of decomposition.

Group 1 Group 2 Group 3
Wavelet Accuracy Wavelet Accuracy Wavelet Accuracy

Level 1 Biorthogonal 3.9 0.8478 Coiflet-14 0.8195 No Wavelet Made Cutoff NA
Level 2 Biorthogonal 2.2 0.8878 Coiflet-15 0.8976 Daubechies-2 0.9366
Level 3 Biorthogonal 4.4 0.9561 Coiflet-11 0.961 Daubechies-31 0.9659
Level 4 Biorthogonal 5.5 0.9805 Coiflet-1 0.9805 Daubechies-2 0.9854
Level 5 Biorthogonal 3.5 0.9805 Coiflet-2 0.9902 Daubechies-2 0.9951

Group 4 Group 5
Wavelet Accuracy Wavelet Accuracy

Level 1 No Wavelet Made Cutoff NA No Wavelet Made Cutoff NA
Level 2 Reverse-Biort 3.5 0.9122 Symlet-2 0.9366
Level 3 Reverse-Biort 2.2 0.9512 Symlet-14 0.9561
Level 4 Reverse-Biort 2.4 0.9854 Symlet-2 0.9854
Level 5 Reverse-Biort 2.8 0.9902 Symlet-2 0.9951
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Although previous tests and subsequent validation tests suggested that differences in the
test may not extend to the validation tests in the Develop folder, the rates of improvement at
higher levels of decompression were striking. Therefore, we took the top performing wavelet
combination (daubechies-2 with thresholding of 0.3 at decomposition level 5), tested the
validation set from the Develop Folder, and displayed the results in Figure 3.8.
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Figure 3.8. Speaker T1 Trained Classifier Results using Level 5 Top Per-
former. In addition to correctly classifying all the T1 Speaker audio files, it
correctly classified all the VC generated spoofing files without increasing the
false positive rate for authentic human speaking files.

Because of the high performance (over 90% accuracy) of the wavelet combinations at Level
3 decomposition, any improvements we observe from the Level 5 classifier will be from 1-2
more files being correctly classified. For these sets of experiments, our goal was for a speaker-
trained classifier to balance authenticating the speaker files with generalizing to other speaker
clips that were excluded from the training set. After using the daubechies-2 DWT at Level
5 decomposition, we noticed the classifier scored perfectly in detecting spoofed audio for
the VC spoofing algorithms, S1,S2 and S5. Additionally, these improvements decreased the
number of false-positive errors with human audio files from 14 to 13. Lastly, the T1 speaker
files in the validation set were all classified correctly. Another interesting thing to note is
that while the difference is minimal, the classifier performed the most poorly on the S3 and
S4 spoofing algorithms, the two non-VC methods.

54



The strong performances of the wavelet combinations at Level 5 decomposition were suffi-
ciently encouraging for us to apply these wavelet/parameters to the partition of audio files
used for validation in the actual 2015 ASVSpoof Competition. The results of our experi-
ments in the corresponding Evaluate folder for the 2015 ASVSpoof dataset are discussed in
the next subsection.

3.3.3 The 2015 ASVSpoof Challenge
For this series of experiments, we limited ourselves to the ASVSpoof 2015 Train Folder
and the ASVSpoof 2015 Evaluate Folder to be consistent with the methods of previous
researchers who also submitted their classifiers to the same challenge. Correspondingly, we
also did not supplement the ASVSpoof 2015 Train real speaker files with the additional real
speaker files to correct the the 12675:3750 fake-to-real imbalance. The primary differences
between the train folder and evaluate folder are summarized in Table 3.8.

Table 3.8. ASVSpoof 2015 Train Set and Validation Set. Not only does the
validation set of audio files in the Evaluate Folder have a greater imbalance
between real and fake files, it also contains five spoofing algorithms that
were not used to train the classifier.

Fake Files Authentic Files Spoofing Algorithms Speakers
Train Folder 12625 3750 5 25
Evaluate Folder 184000 9404 10 46

To assess the results of our classifier on the audio files in the Evaluate folder we used
two metrics. First, we calculated the Equal Error Rate (EER) to classify the audio files
in the overall dataset, the partition of audio files created by spoofing algorithms from the
Train Folder (S1-S5), and the audio files generated using the unknown spoofing algorithms
S6-S10. To calculate the EER we used the PYLLR package in Python (Brümmer and
De Villiers 2013). The EER is similar to the ROC score because it incorporates the weighting
of likelihood for either false positive or false negatives into its overall metric. In general
terms, the EER calculates the empirical false alarm, 𝑃 𝑓 𝑎 (\), and the miss rate, 𝑃𝑚𝑖𝑠𝑠 (\) at
threshold \. These values are computed using the following formula.
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𝑃 𝑓 𝑎 (\) =
#{spoof trials with score > \}

#{total spoof trials}

𝑃𝑚𝑖𝑠𝑠 (\) =
#{genuine trials with score ≤ \}

#{total genuine trials}

The EER is the the threshold \𝐸𝐸𝑅 where EER= 𝑃 𝑓 𝑎 (\𝐸𝐸𝑅) = 𝑃𝑚𝑖𝑠𝑠 (\𝐸𝐸𝑅) In their paper
on the ASVSpoof 2015 competition, Wu et al. (2017a) provide more background on EER
and their justification for using it to evaluate the competitors’ submissions.

Our second assessment metric is the same as in Section 3.3.2 where we calculate the
proportion of files that were classified correctly in their respective subsets. The three larger
subsets are partitioned into authentic human speech files, audio files generated by known
spoofing algorithms learned by the classifier (S1-S5) and audio files created by the spoofing
algorithms excluded from the training set (S6-S10). The ten smaller subsets correspond to
the audio files created from spoofing algorithms S1 through S10.

Figure 3.9. Summary of Primary Submission Results in ASVSpoof 2015 Chal-
lenge. The blue line indicates where our Equal Error Rate (EER) score would
have placed among the top 16 submissions for that year. Source: Wu et al.
(2017b).
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For our first set of results, we used the wavelet/parameter combination that had the high-
est accuracy (0.9951) in the series of mini-tests in Section 3.3.2. Although there were two
wavelet/parameter combinations with that accuracy, the symlet-2 wavelet at Level 5 Decom-
position with a thresholding value of 0.32 had the strongest performance when assessing
the files in the Evaluate Folder. For the overall results, the EER score was 10.391. For
the known algorithms and algorithms excluded from the training set, the EER scores were
3.728 and 17.260 respectively. As we show in Figure 3.9, if our classifier had been entered
into the 2015 ASVSpoof Competition, our scores would have scored 13th out of the top 16
submissions for that year.

Table 3.9 shows the results of our experiments with the scoring methods that we used in
Section 3.3.2.

Table 3.9. Symlet-2 Level 5 Classifier Results on Evaluate Folder. The 71%
accuracy for the unknown algorithms can be traced to the low accuracy
scores for both the S8 and S10 spoofing algorithms.

Overall 0.854
Known Algorithms 0.99

Algorithms Excluded from Train Set 0.709

S1 0.998 S6 0.996
S2 0.99 S7 0.996
S3 0.978 S8 0.49
S4 0.985 S9 0.999
S5 0.997 S10 0.063

In Table 3.9, we highlight the two accuracy scores in the spoofing algorithms excluded
from the train set that significantly degrade the overall averages. Coincidentally, these two
spoofing algorithms, S8 and S10, are uniquely distinct from the other unknown algorithms
because S10 is the only synthetic speech method and S8 was was trained on a Japanese
speaking dataset. If we look at the performance of the known algorithms, we notice that the
the two lowest performers were also the synthetic speech algorithms corresponding to S3
and S4.

This interesting distinction in results between the synthetic speech spoofing algorithms
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(S3,S4,S10) and the remaining VC algorithms suggests that the classifier trained on all the
algorithms may be experiencing a trade off between the spoofing categories. To test this, we
reduced the level of smoothing on the symlet-2 wavelet by lowering the Decomposition Level
to 2. As a result, the symlet-2’s DWT reconstruction more closely matched the pattern for the
original audio file’s signal. Figure 3.10 illustrates the impact of this parameter adjustment
on the smoothed symlet-2 wavelet to refine the range of residuals extracted from each audio
file.

Level: 5 | Threshold: 0.3
Original Sound
Wavelet Transform

0.919 0.920 0.921 0.922 0.923 0.924 0.925
time(s)

Level: 2 | Threshold: 0.32

Symlet-2 Wavelet

Figure 3.10. Symlet-2 Level 5 vs Level 2 Decomposition Level.

Table 3.10 shows our results on the 2015 ASVSpoof’s validation set in its Evaluate folder
after we applied the closer approximation of the symlet-2 wavelet at Level 2 decompression.

After testing the new classifier, we notice that the accuracy scores for S8 and S10, both
spoofing algorithms were excluded from the train set, improved dramatically. While S10
still scored poorly, the accuracy of S8 increased from 49% to 99%. While the newly
calculated overall EER increased to 11.14, the overall accuracy also increased to 0.894.
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Table 3.10. Symlet-2 Level 2 Classifier Results on Evaluate Folder. The red
cells indicate how the VC methods decreased in accuracy among the known
spoofing algorithms in conjunction with improving reults for TTS methods.
These improvements extended to both known spoofing algorithms and spoof-
ing algorithms excluded from the train set.

Overall 0.894
Known Algorithms 0.965

Algorithms Excluded from Train Set 0.878

S1 0.949 S6 0.938
S2 0.941 S7 0.967
S3 0.998 S8 0.993
S4 0.998 S9 0.984
S5 0.937 S10 0.245

More interestingly, we notice the consequences of the classifier with Level 3 (as opposed to
Level 5) decomposition on the known methods. The synthetic speech methods (S3 and S4)
increased from 9% to 99% at the expense of the VC methods (S1,S2, and S5).

These rounds of experiments provide more evidence that our selection of wavelets to build
the classifier involves compromising between identifying VC spoofing algorithms and TTS
algorithms. Therefore, when building a wavelet-based classifier, it may be better to train
the classifier separately on different spoofing algorithms to better isolate and identify an
individual spoofing method. We apply this idea in Chapter 3’s final section, where we
attempt to build a classifier that can confirm or deny the presence of a spoofing attack on
the Ukrainian president, Volodmyr Zelensky, in the first months of the 2022 Russia-Ukraine
military conflict.

3.4 Debunking a Deepfake
This section covers our use of discrete wavelet transforms (DWT) to build a classifier
that analyzes the audio from a Zelensky deepfake video published to social media on
March 16, 2022. In this video, during the ongoing Russia-Ukraine conflict, the president
of Ukraine calls on Ukrainian defenders to surrender to Russian forces. First, we provide
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a brief background on the Russia-Ukraine conflict to provide the context of the video.
Then, we describe our initial analysis of the video’s audio portion and how it led to our
development of a classifier that directly compares audio clips reportedly belonging to a
certain speaker. In the last part of this section, we summarize our classifier’s results after
using it to compare the Zelensky deepfake to an authentic Ukrainian president Zelensky
speech uploaded to Youtube on April 22, 2022. The findings provide strong evidence for
the case that audio portion of the Zelensky deepfake was generated using a voice actor and
a voice conversion (VC) spoofing algorithm.

3.4.1 Background
After several weeks of Russian military buildup on the Ukraine border, Russia launched a
full-scale attack into the territory of Ukraine on February 24, 2022. Despite initial media
assessments projecting Kyiv to fall within 96 hours of the invasion (Newsweek 2022), the
Ukrainian president, Volodmyr Zelensky, refused offers to evacuate, declaring famously,
“The fight is here; I need ammunition, not a ride” (Network 2022). Zelensky elected to
remain in Kiev and issued daily broadcasts to Ukraine’s citizens to bolster their fighting
spirit (Hollywood Reporter, The 2022). During these broadcasts, Zelensky lauded Ukrainian
officials for thwarting multiple attacks on his life (New York Post 2022b) and also had to
repeatedly debunk Russian media’s efforts to fuel speculation on whether he actually fled
the city despite claims to the contrary (Observers 2022).

Finally, on March 16, 2022, the national television station, Ukraine 24, was briefly hacked
to display a fake Zelensky message on its scrolling-text news crawl and to upload the
Zelensky deepfake video on to the Ukraine 24 website (National Public Radio 2022).
Loosely translated, the video called on Ukrainian defenders to “lay down your arms and
return to your families. You shouldn’t die in this war. I advise you to live, and I’m going
to do the same” (New York Post 2022a). The video also briefly circulated on popular social
media platforms like Facebook, YouTube and Twitter before it was quickly removed. Despite
being rapidly de-platformed, the video had been amplified on VKontakte, a social media
network similar to Facebook, popular in Russia, and claimed to be controlled by allies of
the Kremlin (Atlantic Council 2022).

While multiple articles quickly pointed out abnormalities in various head poses, facial
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expressions, and odd-sounding accents, the analysis is generally subjective and centers on
visual examinations of frozen frames throughout the video (Sky News 2022). By contrast,
our method focuses only on the audio portion of the deepfake. In the next section, we show
how our method of detecting synthetic audio supports an observer’s ability to make visually
compare the differences between a deepfake and an authentic recording.

3.4.2 Scatterplot Comparison
When initially examining the Zelensky deepfake, we wanted to create points of comparison
between the Zelensky deepfake video and authentic videos of Zelensky’s public addresses to
Ukraine in similar settings. Therefore, we downloaded the YouTube videos of the Zelensky
deepfake and three full-length Zelensky broadcasts. Two broadcasts (March 2 and March 9)
were recorded prior to the deepfake and one was recorded after the deep fake (March 21). We
extracted the audio portion of these videos and converted them to .wav files sampled at 44.1
kHz and broken up into equal 4-second segments. As a result, we had 291 audio samples
from authentic Zelensky broadcasts and 17 audio samples from the Zelensky deepfake.
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Figure 3.11. A Visual Comparison of the Zelensky deepfake to Authentic
Broadcasts. Visualizing the separation in residual features between the Ze-
lensky deepfake and authentic broadcast suggests that the voices in the
recordings belong to different speakers.

To analyze these files, we applied the DWT using the daubechies-6 wavelet at Level 2
Decomposition with a soft threshold value of 0.3 to every audio file and extracted its
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residuals. We used this combination because the daubechies family of wavelets appeared to
have the most general success during the mini-tests in the 2015 ASVSpoof dataset. From
the resultant distribution of residuals, we collected the root mean square error (RMSE) and
the residual range as each audio file’s individual features. For visual analysis, we label the
Zelensky deepfake features in orange, the authentic file features in blue, and compared their
graphical representations in both a scatter plot and a histogram. The results are displayed
in Figure 3.11.

For both charts in Figure 3.11, we clearly see that the RMSE values for the deepfake samples
are clustered separately from the RMSE values representing the authentic broadcasts. This
pattern, however, is not consistent for all wavelet/parameter combinations. For example,
Figure 3.12 reveals no discernible differences between the audio files after applying the
symlet-2 DWT at Level 5 decomposition.
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Figure 3.12. Symlet-2 DWT for Comparing Zelensky deepfake to Authentic
Files. Not all wavelet/parameter combinations are effective at distinguishing
between the Zelensky deepfake and Authentic Zelensky broadcasts.

These examples show that while some wavelet/parameter combinations support the
differentiation of some deepfake samples from some authentic audio samples, other
wavelet/parameter combinations cannot. However, this inability to generalize visual dis-
criminations across all wavelet/parameter combinations does not challenge this paper’s
conjecture that we can use residuals to distinguish between fake and real audio. Rather, it
supports our theory that different curve approximations capture different acoustic elements
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within the audio file. Consequently, the more closely a curve approximation captures the
method for creating the synthetic audio, the more the residuals help us distinguish between
real and fake audio. However, there are different generative algorithms for spoofing audio,
and we have yet to identify a wavelet/parameter combination that can universally apply to
all spoofing algorithms.

The lack of a “one-size-fits-all” solution, however, should not be a limiting factor when
building a classifier that seeks to verify the vocal authenticity of specific speakers. In the
next two subsections, we show how a range of wavelets and parameters can be jointly
utilized to successfully and agnostically provide significant evidence that the Zelensky
deepfake was not only a synthetically manipulated audio clip, but also a product of a VC
spoofing algorithm.

3.4.3 Building the Classifier
To train the classifier, we used the audio files from the 2015 ASVSpoof Dataset—only
files related to spoofing attacks generated from 2015 ASVSpoof spoofing algorithms S1-S5
in the Train and Develop folders. Correspondingly, the authentic human speaker files in
this 2015 ASVSpoof subset belong only to those speakers whose vocal identities are being
attacked by spoofing algorithms S1-S5. Additionally, rather than simultaneously training the
classifier on all the spoofing algorithms, we train each of the the five classifiers individually
on one of the spoofing algorithms. Lastly, we take a random sample of 257 files from the
274 four-second clips of the authentic Zelensky broadcasts. Because we are only training
on one spoofing algorithm, the classifier trains on an even distribution between real and
spoofed files prior to incorporating the additional 257 files from the authentic Zelensky
broadcasts. Table 3.11 displays the breakdown of real and fake files on which a spoofing
algorithm specific classifier is trained.
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Table 3.11. Breakdown of Train Files Used in Algorithm-Based Zelensky
Classifier. Although there are 36,235 spoofed files in both the Train/Develop
folders, only 7,247 spoofed files correspond to one spoofing algorithm.

Authentic Spoofed
ASVSpoof 7247 7247
Zelensky 257

7504 7247 Total

As we see in Table 3.11, there is a minor imbalance between spoofed and authentic files
on which we train the classifier. However, it is important to add these authentic Zelensky
files to the train set to provide the classifier data points of comparison for assessing if
a test Zelensky file is authentic or spoofed. Since the 257 additional authentic Zelensky
audio samples constitute less than 5% of the authentic files, we anticipate that the fake/real
imbalance will not bias the classifier towards classifying all files to be authentic.

In summary, each of the five classifiers uses 14,751 files and is trained on one of the
spoofing algorithms S1-S5. However, not only do we have one trained classifier for every
spoofing algorithm, we have 1060 wavelet/parameter combinations per every classifier: This
represents 105 different wavelets, using either Level 3 or Level 5 decomposition, with five
thresholding values {0.001, 0.01, 0.2, 0.3, 05} per level. In this way, we can analyze a broad
range of DWT approximations for each audio file and for each spoofing algorithm.

The next step is to filter though the 1060 wavelet/parameter combinations and incorporate
only those combinations with relevant classifer results. After training on 14,768 audio
samples, each classifer looks at a validation set consisting of 34 audio files. Seventeen of
the audio files are the four-second clips extracted from the audio recording that claims to
represent Volodmyr Zelensky. We refer to these clips as deepfake clips. The other seventeen
audio files are the remaining audio samples from the 291 four-second clips extracted from
authentic Zelensky broadcasts. We refer to these clips as authentic clips. For every clip in
the validation set, the classifier assigns a scalar value representing the probability of that
clip being fake. If the scalar value is greater than 0.5 for an authentic Zelensky clip, then
that clip is a false positive because a known authentic speech file was misclassified as a
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synthetic file. If the scalar value is greater than 0.5 for a deepfake file, then the clip is a true
positive.

After the classifier has assigned a scalar value to each of the 34 audio clips in the validation
set, we add up the number of false positives and true positives. If the difference between
the false positives and true positives is at least 3, then we say that the classifier has made
a comparative determination of the authenticity of both files (i.e., from which the clips
derive). For example, if the classifier has 10 true positives and 7 false positives, then the
classifier has determined the test files to more likely have a greater synthetic origin than
the authentic set. Conversely, if there are 5 or more false positives and 2 true positives,
the classifier has determined the authentic files to have more synthetic origin than the test
set. However, if there were 14 false positives and 16 true positives, the classifier would not
make a determination on either set even though both sets have a clear majority of files being
individually classified as fake.

Using this criterion of comparative determination, we only count the classifier instances
where the classifier clearly indicates that one set of audio files has been classified as distinctly
different from the other set. This distinction allows us to filter through the wavelet/parameter
combinations and incorporate only those combinations with relevant classifier results (i.e.,
results indicating one set of files is considered more synthetic than the other) into an
overall score for the classifiers trained on one algorithm. For the purposes of this paper, we
refer to this final scoring across the relevant wavelet/parameter combinations distinguishing
between the authentic and test clips as the overall classifier. Table 3.12 provides an example
of how an overall classifier incorporates 10 hypothetical mini-classifier tests representing
10 unique wavelet/parameter combinations.

Using this method for testing all 1060 wavelet/parameter combinations per spoofing algo-
rithm, we aggregate relevant results across a range of audio file approximations. In this case,
we measure relevancy by how strongly a classifier has determined a set of files to be more
synthetic than the other set (i.e., the difference between true positives and false positives is at
least 3). After completing all 1060 classifier tests, we aggregate the values of true positives
and false positives from the relevant test results and create an overall true positive to false
positive (TP/FP) ratio. This overall TP/FP ratio provides us insight into what extent all the
classifiers, each trained on a specific spoofing algorithm using a unique wavelet/parameter
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Table 3.12. Combining Results into the Overall Classifier. The green rows
represent the wavelet/parameter combination providing enough of a true
positive to false positive differential to be aggregated into the total ratio for
the Overall Classifier.

Wavelet Level Threshold True Positive False Positives Difference Relevant Score (TP,FP)
Symlet-2 3 0.3 15 14 1 No NA
Symlet-2 3 0.01 0 1 1 No NA
Symlet-2 5 0.3 3 1 2 No NA
Haar 5 0.5 7 0 7 Yes (7,0)
Coiflet-2 5 0.3 4 1 3 Yes (4,1)
Coiflet-3 3 0.001 4 2 2 No NA
Coiflet-3 3 0.3 0 3 3 Yes (0,3)
Daubechies-3 5 0.2 10 2 8 Yes (10,2)
Daubechies-3 5 0.001 5 1 4 Yes (5,1)
Biorthogonal 3 0.01 2 4 2 No NA

Total Ratio 26 to 6

combination, had determined a set of suspected deepfake files to either be more fake or less
fake. These suspected deepfake files are contrasted with a set of audio files that have been
pre-identified as authentic samples of speech belonging to a specific speaker. The greater a
TP/FP value than 1 that overall classifier has, the more confidence the classifier has that the
deepfake set is composed of spoofed audio files. In contrast, the closer the TP/FP value is
to zero, the more the classifier believes the deepfake set to be less fake than the set of files
that have previously been identified as authentic.

In this chapter’s final subsection, we apply this overall classifier approach to compare the
Zelensky deepfake audio to audio from an authentic Zelensky broadcast that was recorded
on April 21, 2022.
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3.4.4 Testing the Classifier on the Zelensky Deepfake
As the previous section describes, we built five overall classifiers that were individually
trained on five distinct spoofing algorithms. Each classifier is labelled S1 through S5 with
each label corresponding to the classifier’s use of one of the 2015 ASVSpoof spoofing
algorithms. For our test sets, we used the 17 clips that were created from the Zelensky
deepfake and 17 sequential four-second segments from an authentic Zelensky broadcast
that was uploaded to YouTube on April 21, 2022. For the test set representing the authentic
Zelensky recording, we ensured that the 17 sequential clips corresponded to a section of
the broadcast that did not contain significant pauses in speech. In this way, the test set
with authentic Zelensky speech samples had similar structure to the test set comprising the
Zelensky deepfake samples.

For each classifier, and for each test set, we calculated the logarithm of the overall TP/FP
ratio. Our reasoning for taking the logarithm of the TP/FP ratio was to visually approximate
the extent to which the classifier believes the test set of files to be less fake than known
authentic files. If we visually compared a 78:1 ratio to a 0.02 ratio on a barchart, it would
have diminished the relevant information of the 1:50 (i.e., 0.02 ratio) imbalance indicating
the strength for which a test set of files was determined to be more authentic than known real
files. Because of the monotonic property in logarithmic functions, if we apply a logarithmic
transform to a sequence of numbers (in this case the different TP/FP ratios for the overall
classifiers), we preserve the given order of numbers in that sequence. Additionally, the
logarithmic transform enables us to visualize more uniformly the differences between ratios
with values greater than one and ratios with values between zero and one. Quickly identifying
lopsided ratios is especially important when comparing TP/FP scores for overall classifiers.
These comparisons between overall classifiers can be easily seen in Figure 3.13’s results of
the five algorithm specific classifiers on the test sets representing the authentic April 21,
2022, Zelensky clips and the March 16, 2022, Zelensky deepfake clips.
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Figure 3.13. Classifier Comparisons of Zelensky deepfake to Authentic Broad-
cast. Across the five algorithm-trained classifiers, the negative values for the
blue columns affirm the classifiers’ ability to correctly confirm the authentic
clips’ authenticity. In contrast, the positive orange deepfake columns clearly
suggests that VC-based classifiers provide strong indicators for the clips in
the deepfake test set to be classified as fake.

Figure 3.13 shows significant differences in how the spoofing-based classifiers assess audio
clips originating from the Zelensky deepfake and the April 21, 2022, authentic broadcasts.
For the text-to-speech (TTS) spoofing algorithms (S3 and S4), there appears to be little
difference in the degree to which the classifiers assess both sets of files to be authentic.
However, the VC-based classifiers (S1,S2 and S5) show a clear separation in results between
the test sets. All three VC-based classifiers strongly support that the the test set of authentic
files is less fake than the set of files known to real. In contrast, the S1-based classifier
clearly assesses the test set of deepfake files to be much more fake than the authentic clips
in classifier.

Table 3.13’s articulation of the actual TP/FP ratios for each algorithm-based classifier
reinforces the strength with which the S1-based classifier argues that the deepfake test set
ought to be classified as synthetic.
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Table 3.13. Numerical Breakdown of Zelensky Classifier Results by Spoofing
Algorithm. The green cells highlight the spoofing algorithm where the clas-
sifer noticed the strongest imbalance between authentic and test clips in the
validation set. The red cells indicate the algorithm-based classifiers where at
least 90% of the mini-tests did not find a relevant difference between the
clips in the validation set.

Deepfake (March 16, 2022) Authentic (April 21, 2022)
Algorithm TP/FP Ratio % No Diff TP/FP Ratio % No Diff

Voice Conversion
S1 78.76 59.1 0.07 91.4
S2 4.7 83.4 0.21 94.9
S5 1.01 90 0.02 85.1

Text- to-Speech
S3 0.17 72.2 0.44 82
S4 0.57 82.9 0.39 79.4

Table 3.13 reveals two important details not readily apparent in Figure 3.13. First, it shows
that the test set with the Zelensky deepfake using the S1-based overall classifier had over
a 78:1 TP/FP ratio which numerically dwarfs the other TP/FP observations. For example,
Figure 3.13 visually suggests that the S2-based overall classifer for the deepfake test set is
comparable to the S1-based overall classifier, albeit only at a quarter strength. However,
the two scores are heavily imbalanced with the S2 TP/FP score of 4.7 being over 15 times
smaller than the S1 TP/FP score of 78.8.

The second important detail in Table 3.13 is the “% No Diff” column, which indicates the
percentage of tests in the spoofing algorithm-based classifier whose TP/FP scores were not
included in the overall TP/FP ratio. Only classifiers where the difference between true pos-
itives and false positives greater than two were included in this overall ratio. Understanding
the proportion of wavelet/parameter combinations contributing to the overall TP/FP score
adds important context to the overall tests. For example, a strongly lopsided TP/FP ratio
using a small proportion of classifier results suggests that certain wavelet/parameter combi-
nations were really effective in training a classifier to distinguish between sets of test files.
Conversely, a high proportion of wavelet/parameter contributions to the overall TP/FP ratio
indicates that the spoofing algorithm-based classifier is successfully generalizing across
multiple wavelets.

This value provides additional context to the overall TP/FP ratios, both for the S1-based
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classifier’s scoring of 78:1 for the deepfake and the S5-based classifier’s scoring of 1:50
for the authentic 21APR22 Broadcast. Table 3.13’s “% No Diff” value of the 59.1 for the
S1-based classifier’s assessment of the deepfake tells us that over 400 wavelet/parameter
combinations identified a significant difference between the test deepfake clips and the
authentic clips. However, approximately only 160 wavelet/parameter tests for the S5-based
classifier contributed to the assessment that the authentic broadcast from April 21, 2022
was less synthetic than the authentic clips in the validation set.

With these details in mind, we return to the results of the classifiers that were built to assess
the Zelensky deepfake. Of all the algorithm-based classifiers, the S1-based classifier’s as-
sessment of the deepfake had the most lopsided TP/FP ratio. Additionally, the S1-based clas-
sifier’s overall TP/FP ratio incorporated the most results from the 1060 wavelet/parameter
combination-based mini-tests. Both factors suggest that the audio portion of the Zelensky
deepfake used a spoofing algorithm with the most similarities to the S1-spoofing algorithm.

As explained in Section 3.3.1, the 2015 ASVSpoof S1 spoofing algorithm uses the simplest
form of Voice Conversion compared to spoofing algorithms S2 and S5. Additionally, the
S1 spoofing algorithm produces sound files that are audibly discordant to the human ear.
Nevertheless, while the Zelensky deepfake has audible characteristics that are clearly more
natural sounding than S1 generated files, the S1-trained classifiers provide the strongest
evidence that the Zelensky deepfake is not authentic human speech. This suggests that the
S1-based classifier is identifying inconsistencies in the residual structure that are not audibly
distinguishable. In fact, the coarseness of the S1 algorithm’s approach toward spoofing audio
may be working to the advantage of the S1-based classifier. This is because we believe the
S1-based classifier is weighting more heavily the generalized indicators of VC methods
when differentiating between synthetic and authentic audio samples. Additionally, since
the overall classifier runs the gamut of filtering through the residual analyses of over 1000
different wavelet smoothing combinations, different wavelets may be triggering different
acoustic inconsistencies within the test files for the classifier. Therefore, while we cannot
point to which VC spoofing algorithm generated the Zelensky deepfake audio, we can
confidently say the audio in the deepfake most likely originated from a recording of voice
actor whose acoustic features were synthetically manipulated to sound like the Ukrainian
president, Volodmyr Zelensky.
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CHAPTER 4:
Conclusions

In this thesis, we introduced the theory that the natural variation in synthetically generated
human speech is less than that of digital audio originating from the recording of a human
speaker. More specifically, we hypothesized that analyzing the variation in a digital audio
file enables us to effectively discriminate between synthetic (fake) audio files of a human
speaker and audio files representing authentic (real) human speech. To analyze this variation
in audio, we used discrete wavelet transforms (DWT) to reconstruct close approximations
of that audio and extract its residuals to form a distribution. Summary statistics from these
distributions were then analyzed by the gradient-boosted tree model (GBM) classifier to
make the determination of whether the analyzed audio is fake or real. In this chapter, we
describe our conclusions after applying this method to two distinct datasets and discuss
additional opportunities related to this thesis for further research.

Findings
The first dataset, Fake-or-Real (FoR), trained the classifier using fake speech samples
individually generated from multiple deep learning text-to-speech (TTS) algorithms. The
fake audio files in the Fake-or-Real (FoR) validation set, however, were all created using
the TTS algorithm, Google’s Cloud TTS with Wavenet, that was not used to create audio
files in the train set. While we were unable to acquire a AUC score greater than 0.86 using
different wavelet/parameter combinations, the classifier’s top scores converged on the use
of the coiflet-14 wavelet at level 3 decomposition and using threshold values greater than
0.25. Therefore, we conclude that of the 105 wavelets used for the DWT, using the coiflet-
14 wavelet to construct the smoothing from which residuals are derived provides the best
classifier for identifying audio files generated in 2018 using the Google’s Cloud TTS with
Wavenet.

The second dataset from the 2015 Automatic Speaker Verification and Spoofing Coun-
termeasures Challenge (ASVSpoof) Competition focused on spoofing attacks targeted at
specific speakers and used a wider variety of spoofing algorithms to create fake audio files.
Experimentation on this dataset revealed that classifiers using a single wavelet/parameter
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combination for analyzing audio files face a  t rade-off in  ac curacy be tween two ty pes of 
spoofing algorithms, voice conversion (VC) and text-to-speech (TTS). In other words, cer-
tain wavelet/parameter combinations in the classifier will score more accurately on audio 
files generated by VC algorithms than on audio files generated by  TTS algorithms. Con-
versely, if we adjust the level of decomposition to favor more accurate scoring of the 
TTS algorithms, the classifier’s ability t o effectively id entify fake files generated by VC 
algorithms decreases.

Both datasets suggest that analyzing the natural variation in digital audio using residu-
als supports the successful discrimination between synthetic and real audio. Residuals’ 
effectiveness in supporting that discrimination, however, depends on the algorithms used 
to approximate the original signal. In this paper, we tested multiple reconstructions using 
DWT derived from various combinations of wavelet and thresholding parameters. Our ex-
periments showed that different wavelet/parameter combinations led to different levels of 
success in identifying synthetic files depending on t he spoofing algorithm. We  were un-
able to find a perfect wavelet/parameter combination with universal success in identifying 
synthetic files created by spoofing algorithms that had not been used to train the classifier.

These findings, however, did not discourage us f rom building a  c lassifier that can assess 
suspected spoofed audio files originating from unknown spoofing algorithms. Rather than 
relying on one classifier using a specific wavelet/parameter combination, we built an overall 
classifier that consolidates the results of multiple “mini” classifiers. These mini-classifiers 
were distinguished by their use of a specific variation of the wavelet/parameter combinations 
and by their being trained on only one spoofing algorithm. In this case, we trained five overall 
classifiers using the 2015 ASVSpoof spoofing algorithms—S1-S5. When we tested these 
classifiers to compare the March 16, 2022 Zelensky deepfake to the April 21, 2022 authentic 
Zelensky broadcast, we produced strong evidence that the audio portion of the Zelensky 
deepfake was the product of a voice conversion (VC) method.

In summary, our thesis demonstrated the promising potential of incorporating the analysis 
of digital audio residuals into determining the natural authenticity of human speech files. 
We acknowledge that the classifier is limited in that it can only use one wavelet/parameter 
combination to create the residuals that are analyzed to support the successful identification 
of signal audio. However, we also constructed a technique for filtering t hrough multiple
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wavelet/parameter combinations and consolidating the scores for relevant classifiers. The 
relevancy of the classifier depended on the extent to which it made a clear distinction between 
audio clips extracted from two sets of recordings—a recording authentically attributed to 
a certain speaker, and a recording suspected of being a spoofing a ttack on t hat speaker. 
Overall scoring from the consolidated classifiers in this technique was effectively used to 
compare the extent to which a suspected spoofing attack has more synthetic qualities than 
an audio recording of an authentic human speaker.

Further Topics for Research
The work in this thesis can be expanded upon in a variety of ways and at multiple levels of 
specificity. From a macroscopic perspective, researchers may identify additional methods for 
approximating a digital audio’s signal and extracting residuals that provide more information 
about its synthetic qualities. Additionally, there may be merit in isolating which wavelet 
types generalize best to which generative synthetic speech algorithms as we briefly showed 
when analyzing the FoR dataset. If researchers want to continue exploring the use of 
wavelets and their reconstructions of the DWT, our uniform application of soft thresholding 
a decomposition level’s detail coefficient can be conditionally refined as appropriate.

When analyzing the residuals, there may be alternatives to using gradient-boosted tree 
model (GBM) classifiers. Although the gradient-boosted t ree model (GBM), by i tself, is 
an ensemble method for classification, i t does not l imit i ts use in conjunction with other 
classification m odels. A lso, we o nly u se t he s ummary s tatistics f rom t he d istribution of 
residuals for training the classifier. The GBM framework can seamlessly incorporate addi-
tional features associated with each audio sample—either additional feature observations 
from the residual or entirely different features extracted from another audio deconstruction 
method.

While presently using only summary statistics and GBM, our constructed classifier for 
assessing the Zelensky deepfake offers multiple opportunities for useful refinements and 
additional insights. For example, the individual classifiers from which the overall 
classifier derives its scores uses a training set where over 98% of the files have no 
connection with the speaker we are trying to classify. Of the 14,751 audio clips in the 
train set, 257 audio clips are non-English speakers and the classifier is assessing a 
Ukrainian speaker. In other
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words, the overall classifier exhibited promising results when generalizing from an English-
speaking dataset to the Ukrainian language. It is possible our use of the 257 authentic clips 
of Zelensky may not be necessary to effectively compare the Zelensky deepfake to the 
authentic broadcast. If we don’t need those 257 clips for the classifier to discriminate the 
Zelensky deepfake as fake, then our classifier could potentially be applied to other spoofing 
vignettes in other non-English languages without the pre-requisite training.

Finally, the Zelensky classifier is only t rained on five relatively rudimentary spoofing al-
gorithms. Researchers may find value in t raining the overall classifier on  newer methods 
for synthetically generating audio. Not only might different s poofing me thods general-
ize to different c ategories, b ut i t a lso p rovides a nother a pproach f or n arrowing which 
wavelet/parameter combinations are worth further exploration when distinguishing between 
speakers and methods. This filter for additional wavelet analysis can be applied by isolating 
which wavelet/parameters had the most lopsided true positive to false positive (TP/FP) 
ratios.
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