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ABSTRACT 

 In this dissertation, we present an information hiding approach incorporating 

anonymity that builds on existing classical steganographic models. Current security 

definitions are not sufficient to analyze the proposed information hiding approach as 

steganography offers data privacy by hiding the existence of data, a property that is 

distinct from confidentiality (data existence is known but access is restricted) and 

authenticity (data existence is known but manipulation is restricted). Combinations of the 

latter two properties are common in analyses, such as Authenticated Encryption with 

Associated Data (AEAD), yet there is a lack of research on combinations with 

steganography. This dissertation also introduces the security definition of Authenticated 

Stegotext with Associated Data (ASAD), which captures steganographic properties even 

when there is contextual information provided alongside the hidden data. We develop a 

hierarchical framework of ASAD variants, corresponding to different channel demands. 

We present a real-world steganographic embedding scheme, Authenticated SteGotex with 

Associated tRansaction Data (ASGARD), that leverages a blockchain-based application 

as a medium for sending hidden data. We analyze ASGARD in our framework  and 

show that it meets Level-4 ASAD security. Finally,  we implement ASGARD on the 

Ethereum platform as a proof-of-concept and analyze some of the ways an adversary 

might detect our embedding activity by analyzing historical Ethereum data. 
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CHAPTER 1:
Introduction

The ubiquity of the Internet and networked applications has created an environment of
innovation. There is hardly a field whether it be medicine, communications, finance, the
military, etc., that has not been fundamentally altered by the presence of the Internet.
Unfortunately, the Internet was not designed with security in mind. As one of the “Fathers
of the Internet” Vint Cerf noted, the architects of the Internet were focused on creating a
working product rather than the methods that actors could use to intentionally subvert it [1].
In other words, during the development of the Internet, its architects focused on the good
that interconnectedness could foster rather than focusing on insiders who would attempt to
destroy the network. 1 2 3

The threat posed by malicious actors is increasingly poignant today, particularly for social
media organizations like Facebook and Twitter, which were originally designed to be plat-
forms that connect individuals around the world and foster positive relationships. Those
same platforms have been used to spread misinformation, lies, and propaganda. There is

1Portions of this chapter were previously published by IEEE [2]. Reprinted, with permission, from V. Kanth,
C. Bollmann, M. Tummala, and J. McEachen, “A Novel Adaptable Framework for Covert Communications in
Anonymized Protocol”, 2021 IEEE Military Communications Conference (MILCOM), December, 2021. This
publication is a work of the U.S. government as defined in Title 17, United States Code, Section 101. Copyright
protection is not available for this work in the United States. IEEE will claim and protect its copyright in
international jurisdictions where permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

2Portions of this chapter will be published by IEEE. Reprinted, with permission, from V. Kanth and
B. Hale, “Blockchain-based Authenticated Stego-Channels: A Security Framework and Construction,” 2022
IEEE International Conference on Blockchain (Blockchain), August, 2022. This publication is a work of the
U.S. government as defined in Title 17, United States Code, Section 101. Copyright protection is not available
for this work in the United States. IEEE will claim and protect its copyright in international jurisdictions
where permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

3Portions of this chapter were previously published by Springer [3]. Reproduced with permission from
Springer Nature. Material from: Kanth, V., McEachen, J., Tummala, M. (2022). Parameter Identification for
Malicious Transaction Detection in Blockchain Protocols. In: Prieto, J., Partida, A., Leitão, P., Pinto, A. (eds)
Blockchain and Applications. BLOCKCHAIN 2021. Lecture Notes in Networks and Systems, vol 320.
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broad agreement that the status quo is not tenable and that some combination of regulations
and platform changes is required. Unfortunately, trust in institutions, the media, technology
platforms, and expert information more generally, has cratered in the past few years [4].
This has in turn led to the development and increasing utilization of privacy-based applica-
tions like Signal, Telegram, and Tor (internet browsing). A subset of these applications is
focused on providing anonymity where the entity performing an information transaction is
non-identifiable, unreachable, or untrackable [5]. Examples of this type of application are
cryptocurrencies (Bitcoin, Ethereum, etc.). Like the Internet and social media, these types of
applications, specifically blockchain-based technologies, such as Bitcoin or Ethereum, can
facilitate nefarious activity, particularly in the areas of information hiding and steganog-
raphy. The goal of our research is to understand and characterize the features of these
technologies that facilitate nefarious activity in order to either leverage or prevent such
effects.

1.1 The Internet and Trust
It is worth examining how the Internet has been a key cog in the erosion of public trust. This
problem goes far beyond social media. A 2017 Pew Research Center report [4] summarizes
the various elements that have contributed to this erosion. As noted earlier, the Internet
was not built with trust-building in mind. The creators of the Internet conceptualized an
information sharing system that participants would use responsibly. Unfortunately, criminals
have monetized cybercrime. From identity theft, to ransomware, to theft of intellectual
property, there is little doubt that cybercrime is profitable [6]. Additionally, data breaches that
reveal the personal information of Internet users further reduce trust in systems. Simply put,
if it is dangerous to conduct any activity online while convenience and access may force one
to the Internet, they may not trust that activity will be secure. Furthermore, both a growing
awareness that personal data has value and the monetization of that data by large corporations
have had a significant negative impact on trust. Corporations regularly use demographic
data like age, race, or sex to serve targeted ads to consumers. For example, Table 1 shows
the average amount that corporations paid for data from different age demographics.

2



Table 1.1. Cost of Data by Age. Source: [7].

Age
Cost for Data Per
Person in Dollars

Percentage of Population
Total Demographic
Cost in Dollars

18-24 0.36 11.92 14,253,466.27
25-34 0.11 21.80 7,791,894.90
35-44 0.12 20.30 8,368,383.54
45-55 0.27 13.76 12,346,312.34
55+ 0.05 32.22 5,272,710.83

While businesses are able to profit off of consumer data, those consumers are neither
compensated for their data, nor guaranteed that their data will remain secure. The argument
is simple, as people grapple with the hidden costs of massive data collection and data
breaches, the convenience afforded by online systems becomes much less palatable [4].
While there are proposals to potentially compensate consumers for their data, this does not
fundamentally solve the issue that people do not have control over their own data. In this
type of environment, it is not surprising that there is a lack of trust in the Internet.

Perhaps the most important issue regarding trust on the Internet is the fact that one can
never be quite sure of who they are communicating with. In other words, the identity of
an online entity is key to ensuring public trust. This has become clear in several instances,
most notably Russian interference in the 2016 U.S. election. For example, the Russian
Internet Research Agency (IRA) controlled a network of automated Twitter accounts whose
only purpose was to amplify existing content on Twitter [8]. Americans were fooled into
believing that they were communicating with other like-minded people who shared their
opinions. In fact, they were not communicating with people at all. Another example of this
identity hiding was the case where Russian trolls paid African-American personal trainers
in parts of the United States to provide self-defense classes for African-Americans [9]. The
explicit purpose of this type of effort was to sow fear and manipulate the American people
using the Internet. The personal trainers had no idea that they had been contacted by agents
of a foreign government instead of interested members of their community. There are many
other examples in which the inability to verify the identity of an online actor has resulted in

3



real harm to normal people. These include online scams that steal personal information or
money, fake profiles on dating sites that are used for nefarious purposes, and the increasingly
common ads that say a device has been infected by some virus and insist on downloading
a suspicious program in order to fix the issue. Unfortunately, as the Internet its services
become more and more central to peoples’ lives, the types of risks associated with identity
and communication will only increase.

1.2 Addressing the Trust Deficit with Privacy-based Ap-
plications

The Internet security issue and its logical extension, the trust issue, are fiendishly difficult
to solve. While there have been a number of policy and regulatory proposals that have
been circulated, it is clear that these interventions, while important, do not fully solve the
problem and most have not been passed into law. In contrast, there is a burgeoning market of
online secure products that claim to protect individual consumers from a variety of threats
including hackers, identity thieves, spying governments, and companies looking to monetize
personal data. These privacy-based applications are becoming increasingly common in day-
to-day life. Some examples are secure messaging applications like WhatsApp, Signal, and
Telegram, any number of VPN products that promise a safe browsing experience, and a
rapidly expanding number of cryptocurrencies like Bitcoin and Ethereum that provide a
financial system free from government oversight [10]. While these types of products can
help individuals stay anonymous and secure online, they often require an understanding of
the underlying service and there are so many choices that consumers are left confused. For
example, a VPN that keeps logs of a user’s traffic is not really private and that user likely
believes that they are free from prying eyes. More importantly, this push for privacy and
anonymity on the Internet can have serious consequences.

It is an unfortunate fact that security products that protect the privacy of consumers can
also be used by criminals or nefarious actors to hide evidence of their crimes. Terrorist
organizations routinely use privacy-based applications including Tor, Telegram, Tails, and
Bitcoin among others to plan and fund attacks [11], [12]. Figure 1.1 depicts a Bitcoin address
that was used in a fundraising campaign by the al-Qassam Brigades, Hamas’s military wing.

4



Figure 1.1. Bitcoin Address Used by the al-Qassam Brigades. Source: [12].

It is true that law enforcement organizations have been able to successfully detect, thwart, and
hold responsible malicious actors using these types of applications. For example, IRS, HSI,
and FBI agents were able to track and seize 150 cryptocurrency accounts that transacted with
the al-Qassam Brigades’ accounts [12]. In another case, the FBI was able to arrest the leader
of the Anonymous faction called “LulzSec” because he forgot to enable Tor when he visited
a chat room [13]. That was enough for authorities to identify him. Many of the ways that
nefarious actors use privacy-based applications are rather straightforward e.g., preventing a
law enforcement agency from identifying a particular criminal actor. Unfortunately, some of
these applications, particularly permissionless blockchain systems (Bitcoin and Ethereum
are examples), can provide numerous unique opportunities to hide information in ways that
are potentially difficult to detect. Broadly speaking, information hiding techniques utilize
legitimate services to transmit hidden data. These types of techniques have been used by a
variety of malicious cyber actors to support attacks and crimes [14]. It is also important to
note that these types of techniques have also been used for positive efforts such as censorship
avoidance [15]. Either way, it is clear that we must better understand and characterize these
techniques in order to either leverage or prevent their effects.
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1.3 Research Objectives
There are many research efforts that present individual approaches to hiding data in
anonymized protocols. Our primary purpose is to provide a bridge between those research
efforts and the underlying steganographic theory that underpins those efforts. As such,
we examine how the rapid emergence of privacy-based and anonymity-based services and
protocols have changed the information hiding space. This research provides a framework
by which these types of techniques can be analyzed and leveraged, both from a practical
perspective and in the context of provable security. We present a set of definitions and
experiments that capture these security elements and are suitable for use in anonymized
protocol analysis.

We then present an embedding model using blockchain as a transmission medium and
analyze that model using our provable security framework, which is similar to the types of
frameworks used for secure communication channels. Next, we implement our embedding
model using the Ethereum blockchain and present an analysis of its security properties.
Finally, we discuss methods that can be used to potentially detect that type of malicious
activity by modeling Ethereum blockchain data and performing an analysis of a variety of
metrics.

1.4 Related Work
Our research sought to explore the linkage between anonymity and steganographic schemes
as well as the relevant security properties of those schemes. As such, we explored the
fundamentals of information hiding, covert channels, and secure channels in the literature.
Furthermore, the inspiration for our work was the emergence of technologies like blockchain
and the unique covert communication opportunities that they presented. Thus, we also
analyzed blockchain-based covert channels. The following sections present a brief overview
of related work and concepts that were foundational to the development of our research.

1.4.1 Information Hiding: A Historical Overview
As the name implies, information hiding is the act of concealing a secret message within
public information [16]. We remark at the beginning of this work that the terms, information
hiding, information concealment, steganography, and covert channels are often used inter-
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changeably but have subtle differences. Furthermore, the purpose of information hiding is
to communicate messages between a set of entities. This message can take several different
forms but can thought of as data in modern times [14]. As such, we will refer to this process
of sending data between entities as a transaction.

Information hiding can be broadly split into three components. These are anonymity-
based techniques, classical steganographic techniques, and cryptographic techniques [17].
Anonymity-based techniques seek to hide the identities of communicating entities. Stegano-
graphic techniques seek to obfuscate the fact that a communication is occurring typically by
modifying the underlying data communication carrier such that the modification conveys
the hidden message without being noticeable [17]. Cryptographic techniques seek to prevent
a third party from understanding the content of a communication. These three techniques
in tandem can provide for some semblance of secure communications.

The desire to communicate securely with another entity is not new at all. The first set
of information hiding techniques were designed around fooling human detection using
steganographic techniques. One historical example of a steganographic technique was shav-
ing the head of a slave, tattooing the hidden message on their shaven head, waiting for their
hair to regrow, and finally sending the slave to the recipient [17]. In a similar vein, corpses
of animals were also used to hide messages and were carried by messengers disguised as
hunters who could avoid detection [17]. These examples illustrate an important point. The
selection of messenger or data carrier is a crucial element to a secure communications
scheme. The messenger must not attract attention or, as Mazurczyk et al. concisely state,
it must not be abnormal [17]. From a practical perspective, both the actual data carrying
event and data carrier must be common enough to escape undue attention. For example,
an exotic animal corpse would be a poor choice to hide a message in, as it would attract
the attention of the local populace. Furthermore, if a nobleman was carrying an animal
corpse with a message instead of a hunter, he might attract undue attention. Data carriers
in steganographic applications are often called cover objects. A progression of data carriers
throughout history is shown in Figure 1.2.
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Figure 1.2. Evolution of Hidden Data Carriers Throughout History. Source:
[17].

This work focuses on the interaction between anonymity-based techniques and classi-
cal steganographic techniques exploring the potential utility of new technologies, like
blockchain and their unique place in information hiding efforts.

1.4.2 Covert Channels
A closely related subject to the information hiding approaches discussed in the preceding
section is the covert channel. First described and defined by Lampson in his seminal 1973
work, a covert channel is a channel that is not actually intended for information transfer at
all [18]. Covert channels have expanded beyond Lampson’s original conception of system
resources being used to illicitly communicate information to describing a whole host of
approaches to hide information in a variety of communications protocols.

The most basic covert channel framework and hidden communications model is described
by the well-known Prisoners’ Problem depicted in Figure 1.3.
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Figure 1.3. Model for Hidden Communication. Adapted from: [17].

The idea for the Prisoners’ Problem was first formulated by Simmons in 1983 [19]. In this
model, Alice and Bob are two prisoners that must conspire in order to hatch an escape
plan. All of their methods of communication are monitored by a Warden (Note that this
framework and our research assumes that an observer has access to all communications
between communicating entities). If the Warden catches wind of a possible conspiracy, they
punish Alice and Bob (classically by putting them in solitary confinement rendering any
future escape attempt impossible). Thus, Alice must hide their hidden message (M𝐻𝐼𝐷), in a
message carrier (M𝐶𝐴𝑅), using a steganographic function (F𝑆𝑇𝐸𝐺) that can then be extracted
by Bob using a steganographic function (F−1

𝑆𝑇𝐸𝐺
). K𝑆𝑇𝐸𝐺 is the shared secret between Alice

and Bob that makes the hidden communication possible. We make two important remarks
regarding this model. First, the message carrier is an authorized communication and not a
hidden communication. The challenge of covert channels is hiding information in otherwise
innocuous communications. Secondly, in order for the Warden to defeat the escape plan, all
they must do is detect the presence of a hidden message, not actually be able to decipher
it. The rationale for this idea is important. Imagine a scenario in which a political dissident
attempts to smuggle information to a foreign reporter. If their government detects that
communication effort, regardless of whether they can actually read the information, they
may imprison or kill the political dissident.

It is important to note that these schemes do not take into account scenarios where the Warden
is not able to positively identify Alice and Bob. Our research considers the possibility
that Alice and Bob can assume multiple identities in the course of their steganographic
communications. Additionally, it takes into account that certain modern protocols, such
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as permissionless blockchain protocols, are designed to provide that feature natively as
opposed to a feature that Alice and Bob must build in. With that idea in mind, we present
two of our seminal works with regards to blockchain-based covert channels.

Blockchain-based Covert Channels
At the time that this dissertation was proposed, there was only one blockchain-based covert
channel that we discovered that presented an abstract embedding methodology and analy-
sis. In [20], Partala proposes an address embedding scheme with least significant bit (LSB)
embedding. He also analyzes this scheme using a rudimentary provable security approach.
In contrast to his work, we present an address embedding scheme with maximal throughput
(compared to one bit in Partala’s approach). Though [20] notes the importance of blockchain
in their steganographic scheme, its value in the greater steganographic context is not em-
phasized or explored further. Thus, we introduce a much more robust framework for the
broad analysis of anonymity-based covert channels.

One of the most influential works that we surveyed in this area was [21] where the authors
presented MoneyMorph, an instantiation of their proposed stego-bootstrapping scheme.
They present a number of provably secure embedding schemes in a variety of blockchain
protocols. Like our practical embedding approach, their approaches rely on blockchain pro-
tocols that use public key cryptography. In contrast, we present a steganographic framework
that can be used to not only analyze their blockchain-based constructions, but also a much
larger set of protocols. A key contribution of our work is that it serves as a bridge be-
tween existing steganographic theory and the types of practical instantiations such as those
proposed in [20] and [21].

1.4.3 Security in a Steganographic Scheme
The fundamental question in steganography is whether a third party can detect the pres-
ence of a hidden message in an authorized communication channel i.e., can the Warden
distinguish a hidden message from Alice to Bob from an authorized communication. In this
context, attributes of modern media and protocols have provided unique opportunities in the
steganographic space. Unfortunately, many of the modern use cases for steganography such
as evading network censorship by nation state actors [15] require more than a guarantee
that a message is hidden. For example, if a state-level adversary detects or even has reason
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to believe that a particular protocol is being used to smuggle information, it could simply
block that protocol (e.g., TLS 1.3 connection blocking [22], Signal blocking [23], What-
sApp blocking [24], and DuckDuckGo blocking [25]). Thus, the conception of steganog-
raphy must evolve beyond only hiding a specific message in an authorized communication
channel to also considering the presence of contextual information provided alongside the
hidden data. Furthermore, it is reasonable to expand the typical steganographic adversary
or ’stego-adversary’ from simply a guessing experiment (does an authorized message con-
tain stego/hidden data or not) to one that also has the ability to forge, replay, reorder, or
drop communications, in line with typical protocol analyses for the establishment of secure
channels. Investigating these two extension directions, we adapt standard notions of Authen-
ticated Encryption with Associated Data (AEAD) [26], [27] to the steganographic space.
An important component of this dissertation introduces the security definition of Authen-
ticated Stegotext with Associated Data (ASAD) which captures steganographic properties
even when there is contextual information provided alongside the hidden data.

1.5 A Generic Information Hiding Framework
The ideas in the preceding sections provide a brief overview of the terminology and issues
regarding information hiding. One of the goals of our research is to provide additional
framing concepts around information hiding and concealment that extend existing ideas in
the area of networked communications. Figure 1.4 depicts a basic framework capturing the
broadest aperture regarding information hiding.
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Figure 1.4. Generic Information Hiding System Framework

In the broadest sense, we start with a system with a set of attributes. These attributes
could include number of participants, anonymity, etc. As will be discussed later, these
attributes may provide particular avenues for information hiding. Given today’s networked
environment, we assert that the system is dynamic in nature. That is to say, at any given
time, the state of the system can change. Every system implements some set of 𝑛 protocols
𝑃 that relates to the function of the system. Every protocol 𝑃𝑖 has a set of steganographic
functions 𝐹 that can be utilized for communications.

Every system can be in one of 𝑚 states based on defined system parameters. An example
of this would be a system that had a high traffic, medium traffic, and low traffic states. An
estimation of the system state would then occur. Based on that estimation and the set of
functions 𝐹, an element of 𝐹, a steganographic function 𝑓 would be chosen for use. Finally,
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specific embedding locations would be determined. This framework provides a general
overview of the process required for information concealment and will be further refined
throughout this dissertation.

1.6 Outline
This dissertation is organized as follows. Chapter 2 covers background information regard-
ing steganography, provable security notions that are integral to analysis of our information
hiding model, and an overview of blockchain, a technology that will be featured heavily in
practical implementations of our model. Chapter 3 presents our framework for covert com-
munications in anonymized protocols and introduces the notion of ASAD, building off of
prior AEAD work and expanding steganographic analysis to include contextual data. Chap-
ter 4 demonstrates an embedding scheme based upon the covert communications framework
and ASAD model presented in Chapter 3. Chapter 5 presents a practical implementation of
the embedding scheme from Chapter 4 using the Ethereum blockchain platform. An anal-
ysis of potential methods of detecting our Ethereum-based embedding model is presented
in Chapter 6. In Chapter 7, we cover significant contributions from this research as well as
potential avenues for future work. Finally, we provide appendices that cover miscellaneous
elements of our work. Specifically, Appendix A includes the definitions and experiments
for Stateful AEAD, Appendix B contains the results of the NIST randomness tests applied
to our empirical data, and Appendix C is a description of code used in this work.
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CHAPTER 2:
Background

In this chapter, we present an overview of a number of topics that provide context on the
remainder of this dissertation. Specifically, we present an overview of steganography and
some of its information theoretic models. We then discuss the topic of secure channels and
the evolution of security goals from simple encryption to stateful AEAD. Following our
secure channel discussion, we present an overview of blockchain and a more specific look
at Ethereum internals. Finally, we talk about previous blockchain-based covert channels in
the literature. 4 5 6

2.1 Steganography
The desire to hide information in an undetectable manner is not new. As noted in Chapter
1, steganography has been practiced for thousands of years across history and across media
types. While there have been several different proposed steganographic models, Simmons’
seminal model in the Prisoners’ Problem [19] provides a core investigation (see Figure 1.3).
To briefly summarize, Simmons poses a conundrum in which two criminal accomplices are
arrested and have been thrown in jail. The Warden allows the prisoners (Alice and Bob) to
exchange authorized messages. In order to escape, Alice and Bob must send messages that
contain their hidden getaway plan. If they should fail, or the Warden catches wind of their
efforts, they are separated indefinitely with no further escape opportunities.

The Alice/Bob/Warden problem framing allows generality in modeling the steganographic
threat environment. There have been several attempts to formally define steganographic

4Portions of this chapter were previously published by IEEE [2]. Reprinted, with permission, from V. Kanth,
C. Bollmann, M. Tummala, and J. McEachen, "A Novel Adaptable Framework for Covert Communications
in Anonymized Protocols", 2021 IEEE Military Communications Conference (MILCOM), December, 2021.

5Portions of this chapter will be published by IEEE. Reprinted, with permission, from V. Kanth and
B. Hale, "Blockchain-based Authenticated Stego-Channels: A Security Framework and Construction", 2022
IEEE International Conference on Blockchain (Blockchain), August, 2022.

6Portions of this chapter were previously published by Springer [3]. Reproduced with permission from
Springer Nature. Material from: Kanth, V., McEachen, J., Tummala, M. (2022). Parameter Identification for
Malicious Transaction Detection in Blockchain Protocols. In: Prieto, J., Partida, A., Leitão, P., Pinto, A. (eds)
Blockchain and Applications. BLOCKCHAIN 2021. Lecture Notes in Networks and Systems, vol 320.
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modeling. In [28], Cachin proposes an information theoretic model for steganography.
Specifically, using information theoretic concepts, the author defines a perfectly secure
stegosystem as one in which the Warden cannot distinguish between the covertext distri-
bution and the stegotext distribution. Specifically, a stegosystem that is 𝜖-secure against
passive adversaries is defined as:

𝐷(𝑃𝐶 ∥𝑃𝑆) ≤ 𝜖 (2.1.1)

where 𝑃𝐶 and 𝑃𝑆 are the probability distributions of the covertext and stegotext respectively.
The function 𝐷(𝑃𝐶 ∥𝑃𝑆) is the Kullback-Liebler divergence or relative entropy defined as:

𝐷(𝑃𝐶 ∥𝑃𝑆) =
∑︁
𝑥∈𝑋

𝑃𝐶(𝑥) log
𝑃𝐶(𝑥)
𝑃𝑆(𝑥)

(2.1.2)

where 𝑋 is the space of possible measurements. Importantly, the relative entropy is zero if
and only if the distributions 𝑃𝐶 and 𝑃𝑆 are equal. This gives rise to Cachin’s definition of
a perfectly secure stegosystem, which describes an 𝜖-secure stegosystem where 𝜖 = 0. This
idea will be very significant for our embedding algorithm in Chapter 4, and for our practical
implementation in Chapter 5.

In [29] Hopper, Langford, and von Ahn present several formalizations for steganographic
functions and crucially, model the steganographic channel as a distribution on bit sequences
where each bit is also timestamped using increasing time values. This definition is covered
in Chapter 3. The steganographic security goal of Alice and Bob then becomes the pro-
duction of stegotexts that are indistinguishable from the underlying channel distribution.
Furthermore, they introduce the concept of Chosen Hiddentext Attack (CHA) in which the
Warden is allowed to provide hiddentexts to Alice. We leverage an extension of this model
in Chapter 3.

In [19], Simmons broaches the topic of authentication in steganographic channels. Specifi-
cally, the author argues that a steganographic channel is actually a subversion of an authen-
tication channel. The prisoners (transmitter/receiver or Alice/Bob) want to ensure that their
messages came from each other. This problem is exacerbated by the fact that the Warden
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insists on inspecting every message’s content and has the ability to manipulate messages.
Simmons leverages the following four key attributes of an authentication channel [30] as
the basis for building a steganographic one:

1. No participating party is able to forge messages that would be considered authentic.
2. All parties are able to independently verify the authenticity of messages.
3. No unilateral action by any party is able to impact the authenticity of the message.
4. No part of the message is concealed from the host (Warden).

While the above attributes point to a cognizance of the Warden’s ability to forge or substitute
communications, our discussion of regime censorship highlights the prisoners need to
consider the Warden’s ability to block their communications as well. In fact, the various
AEAD authentication properties likewise all apply to steganographic channels – especially
in the context of the Warden’s ability to forge, replay, reorder, or drop communications. Thus,
in order to be a useful steganographic channel, a communications channel not only must
support steganographic embedding protocols, it must also provide authentication against
various adversarial actions.

Although this issue seems self-apparent and forgeries were described early on as part of
the necessary steganographic channel goals, to the best of our knowledge a framework
for assessing the combined steganographic and authenticity security of a channel has not
been investigated to date. This dissertation thus extends on that of [27] and [29] formal-
izing steganographic modeling as indistinguishability from the channel distribution and
integrating not only associated data, but also a hierarchy of channel considerations.

2.2 Anonymity
Anonymity has been an overloaded term with several different definitions in the literature
and in technology circles. We present our definition of anonymity and some of the foun-
dational concepts regarding anonymity that are crucial in understanding our anonymized
steganographic model. To explain these concepts, we borrow a problem setting from [31]
where a set of senders sends messages to a set of recipients over a communications network
or channel. Figure 2.1 shows a simple figure illustrating this model.
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Figure 2.1. Anonymity Model. Adapted From: [31].

In this conception, the sets of possible identities that the sender and receiver can take
on are referred to as their respective anonymity sets. These sets can be the same size or
different sizes depending on the application. Now, we define anonymity as the property that
a sender or receiver is not identifiable within their anonymity set. This follows from standard
anonymity definitions that a user may perform an action without disclosing their identity
(see [32]). We emphasize that the authors in [31] also provide an information theoretic
definition of anonymity, which is that for a fixed anonymity set, anonymity is maximal if
each identity in the anonymity set is equally likely to be used (this mirrors the notion of
perfect secrecy from Shannon’s seminal work [33]). This fact will be critical in our model
in Chapter 3.

In this environment, the adversary represents an entity that has access to the communications
channel and can participate in the communications process. Their goal is to identify senders
and receivers involved in specific communications using information gleaned from observed
communications. We note that the adversarial construction in this setting is similar to that of
the Warden in steganographic settings. Specifically, one can model this problem in a manner
similar to identifying stegotext from covertext. In this case, the adversary looks at a profile
of sender/receiver activity and determines whether it matches an expected distribution of
sender/receiver activity [31]. Thus, it is a logical extension to combine these concepts.
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We also introduce the concepts of unlinkability and pseudonymity to round out our
anonymity discussion. Unlinkability refers to the adversaries ability or lack thereof to link
two or more items of interest (senders, receivers, messages, other actions) together [31].
In other words, unlinkability describes a scenario where a user can perform multiple ac-
tions without other observers being able to link those actions together [32]. Unlinkability is
important in the steganographic context because a Warden linking several prisoner actions
together can potentially detect an escape attempt. This idea informs some of our design
decisions in Chapter 4, specifically with regards to the size of our identity set.

Finally, as we deal with blockchain and blockchain-based protocols, we define pseudonymity.
Simply put, pseudonymity describes the use of a different identifier (a pseudonym) than
one’s own identity [31]. Common examples of this are stage names for entertainers or pen
names for authors. In the cyber setting, this is an area of intense and long-term research [34]
and is significant in the context of blockchain protocols like Bitcoin. In the context of Bit-
coin, the use of an address is a pseudonym but does not always provide anonymity (see the
example from Chapter 1 with the al-Qassam Brigades use of Bitcoin). The distinction be-
tween anonymity and pseudonymity is subtle but significant. In pseudonymity, a false name
is used to disguise the identity of a party, but it might still be possible to track down the real
identity of the party. Again referring to Chapter 1, government agencies were able to track
people who made donations to terrorist organizations despite their use of pseudonymous
cryptocurrencies. In anonymity, observers are unable to distinguish the real identity of a
party conducting activities. This is why many cryptocurrencies are referred to as pseudony-
mous vice anonymous though there are some cryptocurrencies such as Monero [35] that
were designed with anonymity in mind. In this work, we assume that our prisoners have
taken appropriate steps to prevent the Warden from associating their pseudonyms with their
identities. For example, if the prisoners use Bitcoin transactions to communicate, they do
not use their personal information to buy the Bitcoin required for their communications.

2.3 Secure Channels
Channel security has received extensive investigation, particularly with respect to confiden-
tiality and authentication. Furthermore, in settings where communicating parties must be
concerned with both aspects, authenticated encryption is a critical primitive, with an asso-
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ciated security model, that combines both aspects [36], [37]. The goal of an authenticated
encryption scheme is to provide confidentiality (an adversary cannot read the message),
integrity (the message has not been changed), and authentication (the message came from
the stated sender). Note that many of these works use the word authenticity, which de-
scribes both data integrity and authentication. In practice, this is commonly accomplished
via message authentication codes (MACs). In [36], Bellare and Namprempre provide a
comparison between three authenticated encryption composition methods. These methods
are Encrypt-and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC. A complete treat-
ment of cryptographic primitives (e.g., symmetric encryption, digital signatures, etc.) and
some of their relevant properties (e.g., IND-CPA, IND-CCA2 for symmetric encryption,
EUF-CMA,SUF-CMA for digital signatures) is outside the scope of this dissertation but
are defined as necessary for our model in Chapter 3. We also present a brief overview of
provable security and an example in Section 2.4.

With modern protocols, in addition to the message, there is other associated data (such
as packet headers), that needs to be sent alongside ciphertexts authenticated, but in the
clear. In other words, a protocol might have a mix of secret and non-secret data where
only parts of the data need to be encrypted, but all the data must be authenticated. In [26],
Rogaway defines the notion of Authenticated Encryption with Associated Data (AEAD),
which captures the associated data use-case. They present nonce stealing and ciphertext
translation as methods to modify an authenticated encryption scheme that does not support
associated data into one that does. There are several other works that present other AEAD
constructions, such as EAX from [38].

Unfortunately, basic confidentiality and authenticity properties alone are not sufficient to
realize many channel security properties expected in practice. Specifically, applications
frequently require reliable delivery of a sequence of messages, which necessitates crypto-
graphic modeling of an adversary whose goal might be to replay, reorder, or drop messages.
The variety of secure channel goals leads to the notions of stateful authenticated encryption
and stateful AEAD [39], [40]. Further research extends classic AEAD with a hierarchy
of experiments, formalizing the connections between different types of AEAD security
notions [27] (See Appendix A).

While research has been devoted to channel security variations for confidentiality and
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authenticity, an analysis of similar privacy guarantees is lacking. Basic steganography
channel models exist [29], [41], but stego-equivalent notions mirroring AEAD, or the
hierarchy of AEAD channel types, do not. Nonetheless, AEAD security notions have an
almost one-to-one correspondence with requirements for a secure steganographic channel.
For example, communicating parties in a stego-channel have a natural concern for both the
detectability and authenticity of their hidden communications, mirroring the confidentiality
and authenticity pairing in a normal secure channel. For example, a specific protocol may
require associated data (see for [42] examples of HTTP-based channels exhibiting this
need) but also serve as an excellent vehicle for steganographic communications. Our work
addresses this lack of exploration and analysis in steganographic channels.

2.4 Provable Security
One of our goals in this dissertation is to provide a framework by which the security
properties of an anonymized steganographic scheme can be assessed. In order to present
this framework, we present an overview of provable security and some of the related concepts
required to fully understand the later chapters of our work.

The goal of the provably security paradigm is to provide some mathematical guarantee
about the security of cryptosystems. To provide some historical context, the first work that
delved into this subject was Shannon’s seminal work [33] in which he presented a set of
requirements that defined a “perfect” encryption scheme. As noted in [43], Shannon’s work
was difficult to extend and it was not until the introduction of asymmetric cryptography by
Diffie and Hellman [44] that this area gained new life. In [45], Rabin presented the first
modern security proof of a cryptosystem. Specifically, he related the difficulty of breaking
a cryptosystem (in this case factoring-based public key systems like RSA) to the difficulty
of solving a difficult math problem, which in this case was the factoring of a product of two
large primes. Modern provable security often uses this idea of reduction in its proofs.

In this dissertation, we focus our attention on these types of reductionist proofs for game-
based security definitions. We borrow a definition of a security property of a cryptographic
scheme from [46] as a game between a challenger and an adversary. Security is modeled via
showing that breaking the security property, i.e., winning the game, is reducible to breaking
an underlying hard problem, like factoring the product of two large prime numbers.
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There is a common structure in provable security models for a specific scheme like asym-
metric encryption. Each model contains:

1. A scheme definition
2. A security definition, execution environment, and winning conditions
3. A class of attackers (i.e., what abilities does the attacker have in the execution envi-

ronment)
4. A proof that the winning condition is unachievable given an attacker from the class

of attackers previously defined [46].

Though we work with game-based security models, for completeness we present Figure 2.2
from [46], which outlines several different approaches to provable security.

Figure 2.2. Provable Security Overview. Adapted From: [46].

We pay special attention to reductionist proofs as our game-based proofs are a subclass
of them. Reductionist proofs can be either asymptotic where the adversary is probabilistic
polynomial time (PPT) and their success probability should be negligible (defined here
as smaller than the inverse of any polynomial, see [46]) or concrete where the adversary
is probabilistic time-t and their success probability is ≤ 𝜖 . Many reductionist proofs rely
on simplifying assumptions based on specific cryptographic primitives. Some examples
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include the random oracle model (ideal hash functions) [47] and the generic group model
(ideal groups) [48].

Borrowing from [43], [46], and [49] we now present a provable security model for public
key encryption as an example of the provable security paradigm.

Definition 2.4.1. A public key encryption scheme defined as Π = (Kgn, Enc, Dec) consists
of three algorithms whereM is the message space.

• Kgn() $→ (𝑠𝑘, 𝑝𝑘): A probabilistic key generation algorithm that takes no input and
outputs a key pair, 𝑠𝑘, 𝑝𝑘 corresponding to the secret key and public key respectively.

• Enc(𝑝𝑘, 𝑚) $→ 𝑐: A probabilistic encryption algorithm that takes as input a public
key 𝑝𝑘 and a plaintext 𝑚 ∈ M and outputs a ciphertext 𝑐.

• Dec(𝑘, 𝑐) $→ 𝑚 or⊥: A deterministic decryption algorithm that takes as input a secret
key 𝑠𝑘 and a ciphertext 𝑐 and outputs a plaintext 𝑚 if 𝑐 is successfully decrypted or
⊥ if there is an error in decryption.

As part of the scheme definition for public key encryption, we must also define a notion of
correctness. A public encryption scheme Π satisfies correctness if for all plaintext messages
𝑚 ∈ M, for all secret key/public key pairs (𝑠𝑘, 𝑝𝑘) $← Kgn(), and for all ciphertexts
𝑐

$← Enc(𝑝𝑘, 𝑚),

Pr
[
Dec(𝑠𝑘,Enc(𝑝𝑘, 𝑚)) = 𝑚

]
= 1.

As an important note, in some constructions, particularly steganographic constructions, the
probability of correctness may not be one, but rather under some threshold value [41].

Now, we define the set of adversary goals and capabilities in the execution environment.
As noted in [46], there are varied adversary goals. The adversary might be interested in
recovering the secret key 𝑠𝑘 , or specifically decrypting a ciphertext, or given a ciphertext 𝑐
encrypting one of two messages 𝑚0, 𝑚1, guessing which message resulted in 𝑐. This latter
notion is known as indistinguishability or semantic security where the adversary learns
nothing about the message from the ciphertext beyond the length of the text [50].

Considering the goal of indistinguishability, the adversary has a range of potential abilities
each tied to the execution environment that the scheme is built in. These are well-defined
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in [46] as:

1. Key-only attack: The adversary has access to the public key 𝑝𝑘 .
2. Chosen-plaintext attack (CPA): The adversary also has access to an encryption black

box that allows them to encrypt as many messages as they like.
3. Chosen-ciphertext attack (CCA1): The adversary also has access to a decryption black

box that allows them to decrypt as many ciphertext as they like until they receive the
challenge ciphertext.

4. Chosen-ciphertext attack (CCA2): The adversary now has access to a decryption black
box that allows them to decrypt as many ciphertext as they like even after receipt of
the challenge ciphertext (they cannot send the challenge ciphertext to the decryption
black box)

A security experiment for indistinguishability under CPA (IND-CPA) proceeds as follows
and is formalized in Figure 2.3.

1. The challenger computes a key pair (𝑠𝑘, 𝑝𝑘) $← Kgn(), and sends the public key 𝑝𝑘
to the adversary.

2. The adversary selects two messages 𝑚0, 𝑚1 ∈ M of the same length and sends them
to the challenger.

3. The challenger picks a value for 𝑏 ∈ {0, 1}, computes 𝑐 $← Enc(𝑝𝑘, 𝑚𝑏), and sends 𝑐
to the adversary.

4. The adversary picks a bit 𝑏′ ∈ {0, 1} and wins if 𝑏 = 𝑏′.

ExpIND-CPA
Π,A ():

1: (𝑠𝑘, 𝑝𝑘) $← Kgn()
2: (𝑚0, 𝑚1, 𝑠𝑡)

$← A(𝑝𝑘)

3: 𝑏
$← {0, 1}

4: 𝑐
$← Enc(𝑝𝑘, 𝑚𝑏)

5: 𝑏′
$← A(𝑠𝑡, 𝑐)

6: return (𝑏 = 𝑏′)
Figure 2.3. IND-CPA Experiment. Adapted From: [46]
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The variable 𝑠𝑡 refers to state information the adversary might use in the later guessing state
(for more information see the section on find-then-guess security [51]). We note that this
experiment is not the only way to show IND-CPA but provides a base primer to understand
our notation later in this dissertation. Of course, in this experiment, the adversary has a 1

2
probability of guessing 𝑏 correctly. Thus, our concern is how much better than a random
guess that the adversary can do. This quantity is known as the adversary’s advantage and is
defined as follows for our IND-CPA experiment:

Definition 2.4.2.

AdvIND-CPA
Π,A () =

����Pr
[
ExpIND-CPA

Π,A () = 1
]
− 1

2

����
Finally, we provide a definition for a public-key encryption scheme that is secure against
CPA.

Definition 2.4.3. A public key encryption scheme Π = (Kgn, Enc, Dec) is secure against
CPA if, for all PPT adversaries A, there is a negligible function negl such that

AdvIND-CPA
Π,A () ≤ negl() .

There are many other types of algorithms and security experiments that can be analyzed
in this manner. In Chapter 3, we present the cryptographic primitives required for our
blockchain-based steganographic construction.

2.5 Blockchain Overview
The emergence of Bitcoin [52] and other cryptocurrencies has catapulted blockchain to
new heights and electrified exploration into a myriad uses and variants [53]. Many of the
same properties that make blockchain-based protocols attractive, specifically the existence
of an immutable public ledger, also make them ideal candidates for steganography. While
a complete discussion of blockchain is outside the scope of this paper, we summarize an
overview of attributes that we will leverage for creation of a covert channel. We stress that
blockchain is chosen as a steganographic channel for practical demonstration due to these
unique attributes, but that it is not necessarily the only protocol to feature these attributes.

25



At its core, blockchain is a simple idea. A block is a chain of blocks, with each block
connected to the one before it and after it by means of a mathematical cryptographic re-
lationship. Each block and the events they encode are propagated throughout a distributed
network where each node connected to the network can view a record of all events. This
concept was introduced by Haber and Stornetta in 1991 in their work regarding computa-
tionally practical procedures for the digital time-stamping of documents [54]. Specifically,
they proposed the use of one-way functions (typically hashing see [55]) to ensure that a
document had not been tampered and that by using a chain of signatories, the provenance
of a document could be verified. This idea was extended by Nakamoto to include a series
of monetary transactions in each block that would then be codified by this chained hashing
system. Figure 2.4 shows a truncated example of this process in the context of Bitcoin.

Figure 2.4. Blockchain Example. Source: [56].

While there is confusion about the specific components of blockchains, a blockchain must
have three critical elements. These are blocks, events/a record of those events (called
transactions and the digital ledger respectively), and a way to agree about the state of
the network (consensus). We present the following generic definitions for these structural
elements of blockchain.

A block is a container for data. It includes (but is not limited to) the following elements,
its index, the hash of the previous block, a timestamp, and a set of transactions. Each block
can be identified by its self-identifying hash, which takes as input the elements above. In
this way, if an element of a block is changed, the hash of the block is also changed. As the
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blockchain gets longer, it becomes increasingly computationally difficult for an adversary
to modify a block in the past as each subsequent block must also be modified [52].

A transaction is a transfer of data from one party to another. The nature of the data can vary
based on the application. Blockchain applications have been proposed for a variety of fields
including cryptocurrency [52], [57], medicine [58], supply chain [59], and cyber defense
[60], [61]. In the context of cryptocurrency or financial applications, a transaction would
codify a transfer of a financial asset from one entity to another. In a medical application,
transaction data could contain patient medical records or medical equipment records. In
supply chains, the data could contain the production record of a particular product. In a
cyber defense setting, a transaction could codify alert data regarding a potential attack.
Every transaction is added to a digital ledger that acts as a record or all transactions that
have occurred. Each participating node in a blockchain network has to agree about the
state of the network (through a process called consensus) and has access to the ledger of
transactions at any given time. The flexible nature of this transaction framework makes
blockchain a serviceable tool for use in several different applications.

While there are many different types of blockchains [62], [63] (e.g., centralized, decentral-
ized, permissioned, permissionless, public, private, consortium), in this work, we restrict
our attention to permissionless blockchains. Permissionless blockchain-based protocols al-
low any node to join and participate within their networks. Unquestionably, the feature that
makes permissionless blockchain-based protocols so attractive for steganographic applica-
tions is the immutable public ledger that can be contributed to by any actor. Each data transfer
(referred to as transactions) between blockchain participants is recorded in the ledger, which
is publicly viewable. Furthermore, these transactions cannot be altered once they are sub-
mitted or removed. There is no centralized authority that guarantees the integrity of the
transactions; this is instead handled via distributed consensus of the participating nodes in
the blockchain network using the specific consensus algorithm.

While blockchain gained attention in the 2000s, the core concept of consensus in distributed
networks is not particularly new. Designing systems in which nodes can agree upon the state
of a network is a well-researched problem. Consider the following problem: a network of
𝑛 nodes must agree on the state of a network or particular operation in the presence of
𝑓 faulty nodes. As pointed out by the seminal work of Lamport, Shostak, and Pease, this
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situation can be abstractly described by the Byzantine General’s problem [64]. They present
a scenario in which some number of generals of the Byzantine army are camped around a
city. Using only unreliable communications (in this case a messenger), the generals must
decide upon a common battle plan. Unfortunately, some number of the generals can be
traitors who will attempt to lure the loyal generals into destruction. The challenge is to
design a system such that only the loyal generals will reach agreement. It was proven that
the problem is solvable only if more than two-thirds of the nodes are loyal [64], although
other variants of the problem may provide different bounds (Like Proof-of-Work, which is
vulnerable to the 51% attack [65]). To be a reliable communications network of distributed
nodes blockchain systems must provide Byzantine Agreement.

There are many examples of consensus algorithms that reach Byzantine Agreement, some
of the most well-known being Proof-of-Work (PoW) [52], Proof-of-Stake (PoS) [66], and
Practical Byzantine Fault Tolerance (PBFT) [67]. The subject of consensus is particularly
important in this work since if the Warden can alter blocks and transactions, they are able to
disrupt the underlying steganographic channel used by the prisoners. Thus, the reliability of
our steganographic scheme is directly related to the reliability of the blockchain protocol.
A detailed comparison of consensus algorithms can be found in [68]. As our work uses
Ethereum, we cover its consensus algorithm in Section 2.6.

2.6 Ethereum Internals
We now present an overview of Ethereum internals that will be relevant for our stegano-
graphic approach in Chapter 5. We describe blocks, transactions, address generation, and
the consensus process in Ethereum.

Ethereum Block Internals A block in Ethereum may include the following elements [69]:

• timestamp: The record of when the block was mined
• blockNumber: The number of the block, also signifies the length of the blockchain
• baseFeePerGas: The minimum fee required for a transaction to be included in the

specific block
• difficulty: The mining effort required for block production
• mixHash: The unique block identifier
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• parentHash: The unique identifier of the previous block
• transactions: The set of transactions in the block
• stateRoot: The state of the system including account balances, contract storage, con-

tract code, and amount nonces
• nonce: The value that when combined with the mixHash, proves the block matches

the consensus algorithm (Proof-of-Work).

According to the Ethereum documentation, the average block time, or the time it takes to
mine a new block, is around 12-14 seconds. This time can be managed by adjusting the
difficulty value for the following blocks. Finally, it is important to note that the maximum
size of the blocks is bounded by the amount of gas (i.e., computational work) required to
process all of the transactions in the block.

Ethereum Transaction Internals A transaction in Ethereum may include the following
fields [69]:

• recipient: The receiving address
• signature: The sender identifier generated when the sender signs the transaction with

their private key
• value: The amount of ETH to transfer from sender to recipient
• data: Optional data field
• gasLimit: The maximum amount of gas units that can be consumed by the transaction
• gasPrice: The transaction fee the sender pays per unit of gas

An example of a signed JSON-RPC response for a transaction is shown below.

{

"jsonrpc": "2.0",

"id": 2,

"result": {

"raw": "0xf88380018203339407a565b7ed7d7a678680a4c162885bedbb695

fe080a44401a6e4000000000000000000000000000000000000000000000000

000000000000001226a0223a7c9bcf5531c99be5ea7082183816eb20cfe0bbc

322e97cc5c7f71ab8b20ea02aadee6b34b45bb15bc42d9c09de4a6754e70009
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08da72d48cc7704971491663",

"tx": {

"nonce": "0x0",

"gasPrice": "0x1234",

"gas": "0x55555",

"to": "0x07a565b7ed7d7a678680a4c162885bedbb695fe0",

"value": "0x1234",

"input": "0xabcd",

"v": "0x26",

"r": "0x223a7c9bcf5531c99be5ea7082183816eb20cfe0bbc322e97cc5c

7f71ab8b20e",

"s": "0x2aadee6b34b45bb15bc42d9c09de4a6754e7000908da72d48cc77

04971491663",

"hash": "0xeba2df809e7a612a0a0d444ccfa5c839624bdc00dd29e3340d

46df3870f8a30e"

}

}

}

There are multiple protections built into this transaction structure. The hash of the transaction
is signed with the sender’s private key allowing any participant in the network to verify the
integrity of the transaction as well as the identity of the sender. Ethereum uses ECDSA as
its signature algorithm. Furthermore, replay protection is provided by use of a nonce (really
a sequence number in this case) in the transaction structure.

Ethereum Address Generation In Ethereum, addresses (for both the sender and the re-
ceiver) are 160 bits or 40 hexadecimal characters [70]. The process for generating addresses
is detailed in [70], [71] and is summarized below and taken from [2].

1. Generate a random private key of 64 hex characters (256 bits).
2. Using ECDSA and the secp256k1 standard, generate the public key (512 bits) with

the private key.
3. The account public address is given by the last 20 bytes (160 bits) of the Keccak-256

hash of the public key.
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Consensus in Ethereum Currently, Ethereum uses a PoW consensus protocol called
Ethash, though it plans to upgrade to a PoS consensus protocol [72]. Ethash was built
on Dagger-Hashimoto [73], which was introduced as a secure mining algorithm designed
around being efficient and easily verifiable by resource-limited nodes (light client), as well
as resistant to application-specific integrated circuit mining (a huge drawback of Bitcoin
PoW [74]). The Dagger algorithm makes use of directed acyclic graphs to build large data
structures that could achieve memory-hard computation but memory-easy validation. The
Hashimoto algorithm achieved ASIC resistance by making memory (RAM) the limiting
factor in mining. Thus, this algorithm is IO-bound. Though Dagger-Hashimoto has been
superseded by Ethash, many of its components emerge in the following description of the
Ethash process (full documentation in [75]):

1. Calculate a seed based on previous block headers.
2. Using the seed, compute a 16 MB pseudorandom cache.
3. Using the cache, generate a large dataset, the DAG that by specification was 1 GB,

but is now 4.77 GB [76]. Each item in this dataset should only depend on a small
number of items from the cache. This dataset is updated as time passes (every 30000
blocks) and is used for the mining process.

4. The mining process grabs random slices of the dataset and hashes them together.
Due to this process, verification can be done with very little memory using the much
smaller 16 MB cache to generate the parts of the dataset that were required.

A depiction of the process can be seen in Figure 2.5. This algorithm is GPU friendly and
uses the Keccak family of hashing algorithms (Keccak-256 and Keccack-512).
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Figure 2.5. Ethash Mining Algorithm. Source: [77].

2.7 Blockchain-based Covert Channels
Finally, we present a number of embedding approaches in blockchain-based protocols. Since
their introduction, there have been several efforts to embed information in blockchain-based
protocols like Bitcoin and Ethereum. We give special attention to [21] where the authors
present MoneyMorph, an instantiation of their proposed stego-bootstrapping scheme. They
present a number of provably secure embedding schemes in Bitcoin, Zcash, Monero, and
Ethereum. Their scheme is only valid in blockchain-based protocols where public key
cryptography is used. In contrast, though our practical construction proof-of-concept also
leverages public key cryptography, our ASAD framework can be used to evaluate other
protocols than those that are blockchain-based. We point to specific characteristics of our
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proof-of-concept scheme that enables it to reach the strictest form of ASAD. Thus, our
work serves as a bridge between existing steganographic theory and the types of practical
instantiations such as proposed in [21].

In [20], the author uses an address embedding scheme with least significant bit embedding
and analyzes it using the CHA construct [29]. The work is notable in that it applies provable
security as well as an ideal blockchain approach. Likewise, the scheme was meant as a
proof-of-concept rather than a practical scheme. While the advantages of using blockchain
are noted, their value in the greater steganographic context are not explored.

Bitcoin-based embedding schemes are presented in [78] and [79]. There has also been
significant work in covert embedding in the internals of digital signatures. In [80], a modi-
fication to ECDSA using a proposed kleptographic algorithm is presented to embed covert
data. In [81], a novel, asymmetric embedding scheme using ECDSA is presented. Addi-
tionally, in [82], the value field in an Ethereum transaction is leveraged to implement an
HMAC-based embedding scheme. An address-based embedding scheme in the Ethereum
platform is proposed in [2]; the authors use a pseudo-random number generator to select
transaction address embedding bit positions. There are many other methods that have been
used for blockchain-based embedding, but these examples provide some breadth to this
area.

Most of these works use a specific embedding approach or a specific protocol, and security
assessment are based on individualized stego-goals. In some cases, the security assumptions
are not even well-defined. A major contribution of this paper is presentation of a framework
by which steganographic approaches can be generically evaluated. We provide a thorough
framework (ASAD) to evaluate stego-embedding security both on and off the blockchain.
Furthermore, we propose a practical embedding scheme (ASGARD) using Ethereum trans-
action address fields as the embedding mechanism, with improved throughput over prior
address-based approaches. In fact, our scheme provides the maximum possible throughput
(the entire address) for an address-based embedding scheme. The security of ASGARD is
analyzed in the ASAD model, achieving the topic level of the security hierarchy.
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2.8 Finding a Best-fit Distribution
Much of our work in Chapter 5 and in Chapter 6 revolves around finding a best-fit distribution
for activity on our chosen covert communication channel. As such, we present an overview
of some of the metrics that will be used in this work as well as a brief summary of some of
the distributions that we encountered. Our main tool for determining the best-fit distribution
for our data was MATLAB, specifically, the fitmethis [83] function in MATLAB and the
distribution fitter application in MATLAB.

MATLAB uses maximum likelihood estimates (MLEs) to maximize the fit of a chosen
distribution to an observed dataset. MLE is used to determine the best estimates for the
parameters of a distribution. For example, for a normal distribution, MLE would be used to
get the best estimate of the mean ` and the standard deviation 𝜎. We now present a series
of definitions to describe the MLE process and related concepts.

First, we define the likelihood function. Given a random sample 𝑋1, 𝑋2, · · · , 𝑋𝑁 from a
random variable 𝑋 and a set of unknown parameters \1, \2, · · · , \𝑚 in a parameter space Ω,
the PDF for each 𝑋𝑖 (where 𝑖 ∈ 𝑁 and 𝑘 ∈ 𝑚) is 𝑓 (𝑥𝑖;Ω𝑘 ). The joint PDF of 𝑋1, 𝑋2, · · · , 𝑋𝑁
or likelihood 𝐿(𝑋,Ω) is [84]:

𝐿(𝑋,Ω) = 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, · · · , 𝑋𝑛 = 𝑥𝑛) = 𝑓 (𝑥1;Ω)· 𝑓 (𝑥2;Ω) · · · 𝑓 (𝑥𝑛;Ω) =
𝑛∏
𝑖=1

𝑓 (𝑥𝑖;Ω)

(2.8.1)

The MLE of 𝑋 is defined as the parameter values of Ω that maximize Equation 2.8.1 [85]:

Ω̂𝑀𝐿 = argmax
𝑛∏
𝑖=1

𝑓 (𝑥𝑖;Ω) (2.8.2)

Oftentimes, the natural log is taken of Equation 2.8.2 in order to make the product into a
sum as well as to avoid floating point issues. That form is:

Ω̂𝑀𝐿 = argmax
𝑛∑︁
𝑖=1

ln 𝑓 (𝑥𝑖;Ω) (2.8.3)
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The criteria used to determine the parameter best fit were log-likelihood (LL) and the Akaike
information criterion (AIC). Log-likelihood for MLE is defined similarly to Equation 2.8.1
and AIC defined as [86]:

𝜙𝐴𝐼𝐶 = −2 log(L(\; Σ̂)) + 2𝐾 (2.8.4)

where log(L(\; Σ̂) is the numerical value of the log-likelihood at its maximum point for
each parameter \ in Σ and 𝐾 is the number of estimable parameters in the approximating
model. A more detailed description of these criteria and model selection can be found
in [86]. As a general rule, if the AIC for one model is more than 2 less than another, that
model is superior [87]. We now present an overview of some of the common distributions
we encountered in our work.

Log-normal Distribution
The PDF of the log-normal distribution is [88]:

𝑓 (𝑥 | `, 𝜎) =
1

𝑥𝜎
√

2𝜋
exp

{
−(log 𝑥 − `)2

2𝜎2

}
, for 𝑥 > 0 (2.8.5)

where ` is the mean and𝜎 is the standard deviation. The CDF of the log-normal distribution
is defined as:

𝐹(𝑥 | `, 𝜎) =
1

𝜎
√

2𝜋

∫ 𝑥
0

1
𝑡

exp
{
−(log 𝑡 − `)2

2𝜎2

}
𝑑𝑡, for 𝑥 > 0 (2.8.6)

Figure 2.6 shows how the shape of the log-normal distribution changes as the parameters
vary.
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Figure 2.6. Log-normal Distribution with Varying Parameters

The log-normal distribution describes a random variable whose logarithm is normally dis-
tributed. It has a variety of applications as many natural phenomena exhibit this trait. Some
examples include, economics, finance, reliability analysis, and wireless communications.

Beta Distribution
The PDF of the beta distribution is defined as [89]:

𝑓 (𝑥 | 𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1 (2.8.7)

where 𝑎 is the first shape parameter, 𝑏 is the second shape parameter, and 𝐵(·) is the Beta
function defined as [90]:

𝐵(𝑎, 𝑏) =
∫1

0
𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡 (2.8.8)

The generalized beta distribution also takes two additional parameters, a lower bound and
an upper bound. In the standardized beta distribution, these are 0 and 1 respectively. The
CDF of the beta distribution is defined as:
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𝐹(𝑥 | 𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)

∫ 𝑥
0
𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡 (2.8.9)

Figure 2.7 shows how the shape of the beta distribution changes as the parameters vary.
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Figure 2.7. Beta Distribution with Varying Parameters

The beta distribution is used to model a variety of use cases including, in order statistics,
subjective logic, among others, but is exceptionally useful in the field of machine learning.
It serves as a conjugate prior in Bayesian inference for a number of other distributions
including, the Bernoulli, binomial, and geometric distributions [91].

Gamma Distribution
The PDF of the gamma distribution is defined as [92]:

𝑓 (𝑥 | 𝑎, 𝑏) =
1

𝑏𝑎Γ(𝑎)
𝑥𝑎−1𝑒

−𝑥
𝑏 (2.8.10)

where 𝑎 is the shape parameter, 𝑏 is the scale parameter, and Γ(·) is the Gamma function
defined as [93]:
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Γ(𝑎) =
∫∞

0
𝑡𝑎−1𝑒−𝑡 𝑑𝑡 (2.8.11)

The CDF of the gamma distribution is defined as:

𝐹(𝑥 | 𝑎, 𝑏) =
1

𝑏𝑎Γ(𝑎)

∫ 𝑥
0
𝑡𝑎−1𝑒

−𝑡
𝑏 𝑑𝑡 (2.8.12)

Figure 2.8 shows how the shape of the gamma distribution changes as the parameters vary.
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Figure 2.8. Gamma Distribution with Varying Parameters

The gamma distribution models a number of different scenarios including, time to failure
for equipment, load levels in telecommunication applications, rainfall, and insurance claims
[94]. The key for this distribution is that the data must be positive and skewed. It also serves
as the conjugate prior for the Poisson and exponential distributions.

2.9 Summary
In this chapter, we presented important foundational concepts related to steganography,
secure channels, blockchain, Ethereum, and blockchain-based covert channels, as well as
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an overview of distribution fitting, that informed our research. These foundational concepts
were critical to the development of the following models, frameworks, algorithms, and
embedding approaches.
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CHAPTER 3:
A Steganographic Model Incorporating Anonymity

The purpose of this chapter is to present two different, but related models/frameworks.
The first model, the anonymized steganographic model, considers the role of anonymity
within the steganographic context. We then present a provable security framework to as-
sess the security characteristics of embedding approaches that fit within our anonymized
steganographic model. 7 8

3.1 Conceptual Anonymization Framework
The Prisoners’ Problem described in Section 2 presupposes that the Warden has the ability to
positively identify their prisoners as well as their methods of communication. Privacy-based
and anonymity-based applications present an additional layer of complexity for the Warden
as they prevent that identification process. This layer of complexity can be used to extend
the Prisoners’ Problem into what we have called the Anonymized Prisoners’ Problem.

3.1.1 Anonymized Prisoners’ Problem
A jail contains 𝑛 prisoners with any 2 or more able to conspire to hatch an escape plan.
There are authorized opportunities for prisoners to communicate (i.e., yard time) with each
other. The Warden is privy to all communications at all times. Unfortunately, the Warden
may not be able to positively identify one or more of the communicating prisoners due to
the quality of their monitoring equipment (i.e., audio recording quality). We also add two
more additional considerations. The first is that the Warden’s record of communications
is eternal. There are no storage limitations or altering of communications once they are
recorded. Furthermore, every escape plan hatched between prisoners has a time limit. The
Warden cannot prevent an escape plan that they do not have foreknowledge of. While there

7Portions of this chapter were previously published by IEEE [2]. Reprinted, with permission, from V. Kanth,
C. Bollmann, M. Tummala, and J. McEachen, "A Novel Adaptable Framework for Covert Communications
in Anonymized Protocols", 2021 IEEE Military Communications Conference (MILCOM), December, 2021.

8Portions of this chapter will be published by IEEE. Reprinted, with permission, from V. Kanth and
B. Hale, "Blockchain-based Authenticated Stego-Channels: A Security Framework and Construction", 2022
IEEE International Conference on Blockchain (Blockchain), August, 2022.
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are several other constraints and conditions that can be added to this model, we believe it is
sufficiently broad to become a starting point for discussion.

3.1.2 Anonymized Steganographic Model
Clearly, Figure 1.3 is no longer sufficient to describe this steganographic model. Using the
conceptual problem outlined by the Anonymized Prisoners’ Problem, we incorporate the
principle of anonymity into a steganographic model as shown in Figure 3.1 using the idea
of anonymity sets from [31]. However, we call these sets identity sets as they describe the
sets of pseudonyms/identities that a sender can use rather than the identities themselves.
Table 3.1 presents the various elements of the model.

Figure 3.1. Anonymized Secure Communications Model

The Steganographic Key: 𝑘𝑠𝑡𝑒𝑔
While the specifics of key sharing algorithms are beyond the scope of this research, a shared
key is necessary for this steganographic model. More generally, a shared key is required for
almost all steganographic applications [95]. This key describes where the message M, will
be embedded. This is different than a key that would be used to encrypt the message. Also,
that encryption operation would be an add-on to our model and is not reflected in Figure 3.1.
Our constructions delineate keys for different operations as required. In this dissertation,
we assume that the relevant key exchanges have already taken place.
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Table 3.1. Elements of the Anonymized Steganographic Model

Element Description
𝑘𝑠𝑡𝑒𝑔 The embedding key shared between the sender and receiver
I1 and I2 The identity sets for the sender and receiver
F and F−1 The steganographic function and its inverse
S𝑐 The set of channel state observations
S𝑝 The channel protocol
Ŝ The estimation of the channel state

M, Mℎ𝑖𝑑 , M’ℎ𝑖𝑑
The desired message, hidden message, and
hidden message after channel traversal

ad The associated data sent alongside the stegotext (i.e., the embedded message)

Identity Sets
The sets I1 and I2, are the collections of identities that the sender and receiver can assume
for the purposes of communication. These sets are limited both by protocol and by the needs
of secure communication methodologies. In the abstract, any anonymized protocol will use
some string for entity identification purposes. While that string may or may not be able to
be tied to an actual identity, it is necessary for any data transfer to take place. Transactions
must have a sender and a receiver. The number of identities that an entity can take may
be limited by a particular protocol, but many services like Bitcoin and OpenSig (a digital
signature technology) actually recommend using several different identities [96] [97].

In some cases, the defining of identity sets can be quite straightforward. For example, in the
case of Ethereum the set of identities that the sender and receiver can assume is defined by
the Ethereum public address. This address is derived by taking the last 20 bytes of the hash
of the public key. Each bit of the 20 bytes has a 1

2 probability of being either 0 or 1. Thus
the total number of identities that could be used in Ethereum would be 2160. Interestingly,
Ethereum allows transactions to be sent to oneself so the max identity set is the same for
both the sender and receiver.

The Steganographic Functions: F and F−1

The functions F and F−1 correspond to the steganographic functions utilized in the secure
communications scheme. They take as input the shared key 𝑘𝑠𝑡𝑒𝑔, the specific identities of
the sender I1𝑖 and receiver I2 𝑗 , and the desired message M. The function is selected based
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on the sender’s estimation of the channel state (Ŝ) that uses channel state observations (S𝑐)
and the channel protocol (S𝑝) to drive the estimation process.

Channel State Estimation: Ŝ
The state of the communication channel can play an important role in the steganographic
process. For example, we may only want to send a message at a time where the message
traffic rate is high as to minimize detectability. In the case of cryptocurrency, we may want
to target times of low traffic as transaction costs will be lower. Depending on the application
protocol, use case, and desires of the communicating entities, an accurate understanding of
the channel state is crucial. Thus, this model includes a set of channel state observations (S𝑐)
that capture various aspects of channel activity at a particular time 𝑡. Those observations,
in conjunction with the channel state protocol (S𝑝), are the inputs to the channel state
estimation block.

The Messages: M, Mℎ𝑖𝑑 , M’ℎ𝑖𝑑
The message M, contains the information that Alice is attempting to send to Bob. It
is important to note that the message does not contain the associated data ad, rather, it
is grouped with the associated data and sent across the channel as part of Mℎ𝑖𝑑 . From a
vocabulary perspective, once the message has been embedded in the specified location/field,
that data element is called the stegotext.

The Associated Data: ad
Associated data is data that must be sent alongside our message in order to constitute
a legitimate protocol transaction. For example, in the case of IP-based communication,
the associated data might be packet headers. In the context of least-significant bit (LSB)
embedding in a 2D image, the associated data would be all of the other seven most significant
bits in each pixel. Figure 3.2 shows what elements would comprise the associated data in
this case. In the context of our steganographic framework, the associated data is all of the
other fields outside the field that contains our message M.
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Figure 3.2. Associated Data in an Image LSB Embedding Scheme. Adapted
from: [98].

The Messages: Mℎ𝑖𝑑 and M’ℎ𝑖𝑑
The messages Mℎ𝑖𝑑 and M’ℎ𝑖𝑑 are the outputs of their respective steganographic functions.
They contain the message M and its associated data ad. Based on the type of channel, either
noisy or noiseless, Mℎ𝑖𝑑 and M’ℎ𝑖𝑑 could be different and may require an additional layer of
error correction to read correctly. In our case, our blockchain-based embedding construction
and schemes are built on application layer protocols and can be treated as noiseless. Figure
3.3 shows an example of Mℎ𝑖𝑑 given an arbitrary protocol with 𝑛 fields, and the message
embedded in field 2. We highlight again that the embedded message is called the stegotext.
Note that M may or may not be encrypted depending on the steganographic function and
the underlying covertext field.

3.2 Cryptographic Primitives
This section contains the relevant cryptographic primitives and their security properties as
relevant to the creation of steganographic model and our embedding scheme.

3.2.1 Symmetric Encryption
Borrowing from [51] and [49] we present the following formulation for a symmetric en-
cryption scheme.
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Figure 3.3. Example of Mℎ𝑖𝑑

Definition 3.2.1. A symmetric encryption scheme defined asΠ= (Kgn, Enc, Dec) consists of
three algorithms whereK is the key space,M is the message space, and C is the ciphertext
space:

• Kgn(1_) $→ 𝑘: A probabilistic key generation algorithm that takes as input 1_ where
_ is the security parameter. The function outputs a key, 𝑘 ∈ K.

• Enc(𝑘, 𝑚) $→ 𝑐: An algorithm that takes as input a key 𝑘 ∈ K and a plaintext 𝑚 ∈ M
and outputs a ciphertext 𝑐 ∈ C.

• Dec(𝑘, 𝑐) $→ 𝑚: An algorithm that takes as input a key 𝑘 ∈ K and a ciphertext 𝑐 ∈ C
and outputs a plaintext 𝑚 ∈ M.

An encryption scheme Π satisfies correctness if for all 𝑘 ∈ K and for all 𝑚 ∈ M,

Pr
[
Dec(𝑘,Enc(𝑘, 𝑚)) = 𝑚

]
= 1.

Indistinguishability Under Chosen-Plaintext Attack (IND-CPA)
The security notion that our algorithm leveraging symmetric encryption requires is indistin-
guishability under chosen-plaintext attack. In this attack model, the probabilistic polynomial
time (PPT) adversary has access to an encryption oracle. The following IND-CPA experiment
is presented as in [99]:
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1. A key 𝑘 is generated by running Kgn(1_).
2. The adversary makes a sequence of calls to the encryption oracle for arbitrary plain-

text.
3. The adversary submits two messages𝑚0, 𝑚1 ∈ M where |𝑚0 | = |𝑚1 |. The encryption

oracle responds by sampling 𝑏 $← {0, 1} and computing 𝑐∗ $← Enc(𝑘, 𝑚𝑏); it returns
the ciphertext 𝑐∗.

4. The adversary can continue to make calls to the oracle.
5. The adversary outputs 𝑏′ ∈ {0, 1}.

The advantage of A, denoted AdvIND-CPA
Π,A (_), is equal to

����Pr[𝑏 = 𝑏′] − 1
2

���� in the above

experiment.

Definition 3.2.2. A symmetric encryption scheme Π = (Kgn, Enc, Dec) is secure against
Chosen Plaintext Attacks if, for all PPT adversaries A, there is a negligible function negl
such that

AdvIND-CPA
Π,A (_) ≤ negl(_) .

3.2.2 Hashing
A hash function takes a variable length input and returns a fixed length output. This can be
described in the following manner:

Definition 3.2.3. A hash function with output length 𝑛 is a polynomial-time algorithm H
satisfying the following

• H(𝑥) $→ 𝑡 ∈ {0, 1}𝑛: H takes as input a string 𝑥 ∈ {0, 1}∗, and outputs a string 𝑡 of
length 𝑛.

Security experiments for hash functions range across collision resistance, preimage resis-
tance, and second preimage resistance. In this work, we rely on the pseudorandomness of
𝐻.

3.2.3 Digital Signature
For the work in the following sections, we furthermore rely on digital signatures, and borrow
the definition of [100]:
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Definition 3.2.4. A digital signature scheme consists of three PPT algorithms (Kgen, Sign,
Vfy) such that:

• Kgn(1_) $→ (𝑝𝑘, 𝑠𝑘): A probabilistic key generation algorithm that takes as input
1_ where _ is the security parameter, and outputs a pair of public and private keys,
(𝑝𝑘, 𝑠𝑘).

• Sign(𝑠𝑘, 𝑚) $→ 𝜎: A potentially probabilistic algorithm Sign takes as input a private
key 𝑠𝑘 and a message 𝑚 ∈ {0, 1}∗, and outputs a signature 𝜎.

• Vfy(𝑝𝑘, 𝑚, 𝜎) $→ 𝑏 ∈ {0, 1}: A deterministic verification algorithm Vfy takes as
input a public key 𝑝𝑘 , a message 𝑚 ∈ {0, 1}∗, and a signature 𝜎, and outputs a bit
𝑏 ∈ {0, 1}. If 𝑏 = 0, the signature is considered invalid and if 𝑏 = 1, the signature is
considered valid.

A digital scheme satisfies correctness if, for all pairs (𝑝𝑘, 𝑠𝑘) output by Kgn and for all
messages 𝑚 ∈ {0, 1}∗,

Pr
[
Vfy(𝑝𝑘, 𝑚, Sign(𝑠𝑘, 𝑚)) = 1

]
= 1.

We abuse notation and consider equivalency in Vfy(𝑝𝑘, 𝑚, 𝜎) = Vfy𝑝𝑘 (𝑚, 𝜎) and
Sign(𝑠𝑘, 𝑚) = Sign𝑠𝑘 (𝑚).

Strong Unforgeability
We require Strong Unforgeability under an Adaptive Chosen-Message Attack. Let Π =
(Kgn, Sign,Vfy) be a signature scheme, A be an adversary, and _ be a security parameter.
The signature experiment ExpSUF-CMA

A,Π (_) is defined in the following manner:

1. Keys (𝑝𝑘, 𝑠𝑘) are generated by running Kgn(1_).
2. The adversaryA is given the public key 𝑝𝑘 and access to an oracle Sign𝑠𝑘 (·) allowing
A to output valid message-signature pairs (𝑚, 𝜎). Let Q denote the set of all (𝑚, 𝜎)
such pairs.

3. The adversaryA succeeds and the experiment outputs 1 if and only if Vfy𝑝𝑘 (𝑚, 𝜎) = 1
and (𝑚, 𝜎) /∈ Q.
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Definition 3.2.5. A signature scheme Π = (Kgn, Sign, Vfy) is Strongly Unforgeable under
an Adaptive Chosen-Message Attack if for all PPT adversaries A there is a negligible
function negl such that

Pr
[
AdvSUF-CMA

Π,A (_) = 1
]
≤ negl(_).

3.3 A Steganographic Model Incorporating Associated
Data

As introduced in Chapter 2, the steganographic game is played between a sender, receiver,
and a warden (monitor) [19]. The sender’s goal is to send information to the receiver via
an open communications channel without the knowledge of the warden. The security of
their communication is measured by the adversary’s ability to distinguish between a normal
message and a stego message. We adopt the steganographic channel definition proposed by
Hopper, Langford, and von Ahn [41] and its extension [29]. They define the communications
channel as a history-dependent series of channel data that forms the basis for distribution
of messages on the channel. The first model is the Current History Model in which the
sender (and the relevant embedding function) can draw samples from the channels in only
the current history. In the Look-Ahead model, the sender can sample based on a distribution
from any history including that of future messages (see [101] for more details).

We extend the stego-embedding definition for consideration of associated data. Such data
may be required for the communications channel and part of typical correspondence (e.g.,
contextual data for hiding messages) while not being specifically part of the stegotext. For
example, associated data might be header information that must be sent authentically with
the stegotext.

Look-Ahead Model [41]
A communication channel is modeled as a distribution on timestamped bit sequences. The
formalization is as follows:

({0, 1}, 𝑡1), ({0, 1}, 𝑡2), . . . where ∀𝑖 > 0 : 𝑡𝑖+1 ≥ 𝑡𝑖 .

There exists an oracle that is capable of drawing from the channel, i.e., to model an individual
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communicating on the channel as a drawn history of the timestamped bit sequences. Let
the drawn channel history of timestamped bits be denoted as ℎ, and let Cℎ be the channel
distribution conditioned on ℎ. In [41], the oracle could only sample from the current
history, or in other words, the history of bits transmitted on the wire. As more bits are
transmitted, the history ℎ updates accordingly, with sample space distribution Cℎ1◦...◦ℎ𝑛
based on ℎ = ℎ1, ℎ2, . . . , ℎ𝑛 as incremented. We follow the extension of [101], where the
oracle can draw not only from the existent channel history ℎ but also from a distribution
based on a selection of any future channel history ℎ = ℎ𝑛, ℎ𝑛+1, . . . , ℎ𝑙 .

Embedding Scheme
An embedding scheme consists of a tuple of algorithms defined in the following manner
building off the definition in [102]. As noted in Chapter 2, we extend this to cover the
presence of associated data in our embedding scheme.

Definition 3.3.1. An embedding scheme defined as Π = (Kgn,EmbedS ,DecodeS) consists
of three algorithms where K is the stego-key space,M is the message space, AD is the
associated data space, S is the stego-covertext channel distribution, and ℎ is a channel
history:

• Kgn(1_) $→ 𝑘𝑠𝑡𝑒𝑔: A possibly probabilistic key generation algorithm that takes as
input 1_ where _ is the security parameter, and outputs a key, 𝑘𝑠𝑡𝑒𝑔 ∈ K.

• EmbedS(𝑘𝑠𝑡𝑒𝑔, ad, 𝑚, ℎ) $→ 𝑠: A possibly probabilistic algorithm that takes as input
a key 𝑘𝑠𝑡𝑒𝑔 ∈ K, associated data ad ∈ AD, a message 𝑚 ∈ M, a channel history ℎ
and outputs a stegotext 𝑠 ∈ S.

• DecodeS(𝑘𝑠𝑡𝑒𝑔, ad, 𝑠)→(ad, 𝑚, 𝛼): An algorithm that takes as input a key 𝑘𝑠𝑡𝑒𝑔 ∈ K,
associated data ad ∈ AD, and a stegotext 𝑠 ∈ S, and outputs a tuple (ad, 𝑚, 𝛼 = 1)
corresponding to successful message receipt, or a tuple (⊥,⊥, 𝛼 = 0) corresponding
to failed message receipt .

Remark 1. While not featured in our definitions, there are communications channels in
which the decode algorithm would require access to the same channel history as the encode
algorithm. For example, in an ML-based model for embedding data, both the sender and
receiver would been to use the same channel history.

An embedding scheme Π satisfies correctness except with negligible probability if, for all
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𝑘𝑠𝑡𝑒𝑔 ∈ K, for all ad ∈ AD, for all 𝑚 ∈ M, and for all channel histories,

Pr
[
DecodeS(𝑘𝑠𝑡𝑒𝑔, ad, EmbedS(𝑘𝑠𝑡𝑒𝑔, ad, 𝑚, ℎ)) = 𝑚

]
=

1 − negl(_) .

Unlike with encryption that requires an absolute decryption for correctness, stego channels
account for channel noise and therefore correctness requires a bound of 1 − negl(_) (see
[41] [102] for more details).

3.3.1 Stego Indistinguishability Security
Given two transactions, one with embedded data and one without, as well as access to both
an embedding oracle Embed and a sampling oracle S over the channel distribution, the
adversary should not be able to determine which transaction contains embedded data with
better than 1

2 probability. We borrow a definition for this concept from [102] called security
against Chosen Hiddentext Attacks (IND-CHA), which is based on symmetric encryption
definitions like those from [51]. Let Π = (Kgn,EmbedS ,DecodeS), _ be the security
parameter, and S be the covertext channel distribution.

Definition 3.3.2. We say that a steganographic scheme Π provides Indistinguishability
against Chosen Hiddentext Attacks if for all PPT adversariesA, and keys 𝑘𝑠𝑡𝑒𝑔

$→ Kgn(1_)
if:

Pr
[
AEmbed(𝑘𝑠𝑡𝑒𝑔,·,·,·) = 1

]
− Pr

[
AS(𝑘𝑠𝑡𝑒𝑔,·,·) = 1

]
≤ negl(_) .

where S(𝑘𝑠𝑡𝑒𝑔, ·, ·) is a random sampling oracle that samples based on ad as the second
input and from S = Cℎ, for ℎ provided as the third input.

3.3.2 Authenticated Stegotext Associated Data (ASAD) Security
As noted in Chapter 2, there are a number of other features that a steganographic scheme
might provide. Many of those deal with the authenticity of the embedded message. In
a perfect world, the steganographic scheme would detect or prevent forgeries, replays,
reordering, and drops – i.e., authentication guarantees in addition to the privacy guarantees.
A useful analogy to consider is the aforementioned AEAD, where in addition to preventing
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adversary read capabilities of the data, any change is also detected. For stegotext, this
means that if an adversary (Warden) makes changes all transmitted messages to corrupt the
reliability of a possible covert channel despite not knowing for certain if covert information
is transmitted or not, the receiver can detect the modification. Furthermore, even if the
covert communications are uncovered, e.g., by an insider threat, the receiver is guaranteed
the authenticity of the data received.

Many authentication and AEAD security notions are relevant in steganography, where
context data could affect the privacy of the stegotext and authenticity matters. We call this
Authenticated Stegotext with Associated Data (ASAD). We present a hierarchy of ASAD
security notions for a stegotext embedding scheme, based on the AEAD hierarchy of [27].
The hierarchy is organized from lowest level of protection (privacy with protection against
forgeries) to the highest level (privacy with protection against forgeries, replays, reordering,
and drops). The original security definitions from [27] can be found in Appendix A.

Note that while we focus on authenticity combined with chosen hiddentext security, a similar
hierarchy can be created as an extension for combining the triad of privacy, authenticity,
and confidentiality. For example, the ASAD integrated with e.g., IND-CPA security could
strengthen the requirements on channel security.

Definition 3.3.3. Let Π be an embedding scheme, let A be a PPT adversary algorithm,
let 𝑖 ∈ {1, . . . , 4} and let 𝑏 ∈ {0, 1}. The embedding experiment for Π with authentication
condition cond𝑖 and bit b is given by Expasad𝑖−𝑏

Π,A in Figure A.1. We define

Advasad𝑖
Π

(A) =
����Pr

[
Expasad𝑖-1

Π,A (_) = 1
]
−

Pr
[
Expasad𝑖-0

Π,A (_) = 1
] ���� .

Adversary Win Conditions
We present the following winning conditions for the adversary adapted from [27].

• cond1: To capture basic authentication of stegotexts, we say the adversary has won if
the received stegotext 𝑠 was not one of the stegotexts output by the Embed oracle or
the authenticated associated data ad was not the associated data output by the Embed
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oracle.
• cond2: To capture basic authentication of stegotexts with no replays, we say the

adversary has won if the received stegotext 𝑠 was not one of the stegotexts output by
the Embed oracle, or if it was output by the Embed oracle and previously accepted
by the Decode oracle, or the authenticated associated data ad was not the associated
data output by the Embed oracle.

• cond3: To capture basic authentication of stegotexts with no replays and strictly
increasing receipt, we say the adversary has won if the received stegotext 𝑠 was not
one of the stegotexts output by the Embed oracle, or if there were two messages
received out of order: if 𝑟𝑐𝑣𝑑𝑤 was received before 𝑟𝑐𝑣𝑑𝑣, but 𝑟𝑐𝑣𝑑𝑤 was sent after
𝑟𝑐𝑣𝑑𝑣, or the associated data ad was not the authenticated associated data output by
the Embed oracle.

• cond4: To capture basic authentication of stegotexts with no replays, strictly increasing
receipt, and no drops, we say that the adversary has won if the 𝑣-th stegotext received
(𝑠) is not the 𝑣-th stegotext sent, or if fewer than 𝑣 stegotexts have been sent, or the
associated data ad was not the 𝑣-th associated data element sent. This captures the
idea that the adversary can win if it can succeed in having further messages correctly
received.

Relationship between Authenticated Steganographic Notions
Each of the authenticated stegotext with associated data notions implies the level of security
below it, for example security at Level 2 implies security at Level 1, etc. This relationship
is formalized in the following theorem and is analogous to the analysis presented in [27].

Theorem 2. Level-(𝑖 + 1) ASAD implies Level-𝑖 ASAD. Let Π = (Kgn,EmbedS ,DecodeS)
be an authentication scheme and let 𝑖 ∈ {1, 2, 3}. For any adversary A,

Advasad𝑖
Π,A (_) ≤ Advasad𝑖+1

Π,A (_).

The proof follows similarly as in [27].

Proof. A starts Π

• For i = 1.
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As a level-1 adversary, A wins with a stegotext 𝑠𝑤𝑖𝑛, where (�𝑤 : 𝑠𝑤𝑖𝑛 = 𝑠𝑤) or an
associated data element ad𝑤𝑖𝑛, where (�𝑤 : ad𝑤𝑖𝑛 = ad𝑤). It follows that A will also
win against Π as a level-2 adversary.

• For i = 2.
Case 1: A wins by forging 𝑠𝑤𝑖𝑛 or ad𝑤𝑖𝑛. This is the same as 𝑖 = 1.
Case 2: As a level-2 adversary, A wins with 𝑠𝑤𝑖𝑛 = 𝑟𝑐𝑣𝑑𝑣, where ∃𝑤 < 𝑣 such that
𝑠𝑤𝑖𝑛 = 𝑟𝑐𝑣𝑑𝑤 for some 𝑠𝑢 ∈ 𝑠.
This is an example of a replay with 𝑠𝑤𝑖𝑛 = 𝑟𝑐𝑣𝑑𝑣 = 𝑠𝑦 for some 𝑦, as 𝑠𝑤𝑖𝑛 is not
a forgery. Let 𝑟𝑐𝑣𝑑𝑤 = 𝑠𝑥 , for some 𝑥. If this is the case, 𝑠𝑒𝑛𝑡𝑦 = 𝑟𝑐𝑣𝑑𝑣 = 𝑠𝑤𝑖𝑛 =
𝑟𝑐𝑣𝑑𝑤 = 𝑠𝑥 . Furthermore, as A won with a replay, 𝑥 = 𝑦. Thus, ∃𝑥, 𝑦, 𝑧 such that
(𝑤 < 𝑣) ∧ (𝑠𝑥 = 𝑟𝑐𝑣𝑑𝑤) ∧ (𝑠𝑦 = 𝑟𝑐𝑣𝑑𝑣) ∧ (𝑥 ≥ 𝑦) ensuring that A wins as a level-3
adversary.

• For i = 3.
Case 1: A wins by forging 𝑠𝑤𝑖𝑛 or ad𝑤𝑖𝑛. This is the same as 𝑖 = 1.
Case 2: As a level-3 adversary, A wins with 𝑠𝑤𝑖𝑛 = 𝑟𝑐𝑣𝑑𝑣 where ∃𝑥, 𝑦, 𝑧 such that
(𝑤 < 𝑣) ∧ (𝑠𝑥 = 𝑟𝑐𝑣𝑑𝑤) ∧ (𝑠𝑦 = 𝑟𝑐𝑣𝑑𝑣) ∧ (𝑥 ≥ 𝑦). This implies that 𝑠𝑤𝑖𝑛 ̸= 𝑠𝑣. Thus,
A also wins as a level-4 adversary.

3.4 Summary
In this chapter, we presented two important models/frameworks. The first, the anonymized
steganographic model, extended the’ Prisoners’ Problem to take into account scenarios in
which the Warden cannot positively identify two communicating parties. We then presented
a framework to assess the security properties of a generic steganographic scheme. These
properties went beyond whether or not the Warden could simply detect a hidden commu-
nique, but also considered their ability to potentially force drops, replays, reorderings, or
forgeries of valid messages. The combination of the anonymized steganographic model and
our provable security framework provide the basis for our analysis of embedding strate-
gies using specific protocols like blockchain-based protocols that purport to provide some
semblance of anonymity.
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Expasad𝑖−𝑏
Π,A ():

1: 𝑘𝑠𝑡𝑒𝑔
$← Kgn()

2: 𝑢 ← 0, 𝑣← 0
3: out-of-sync← 0
4: 𝑏′

$← AEmbed(·, ·, ·),Decode(·, ·)()
5: return (𝑏 = 𝑏′)

Oracle Embed(ad, 𝑚, ℎ)
1: 𝑢 ← 𝑢 + 1
2: S ← Cℎ
3: 𝑠𝑒𝑛𝑡.𝑠(0) $← S(𝑘, ad, ℎ)
4: 𝑠𝑒𝑛𝑡.𝑠(1) ←

EmbedS(𝑘𝑠𝑡𝑒𝑔, ad, 𝑚, ℎ)
5: if |𝑠𝑒𝑛𝑡.𝑠(0) |≠ |𝑠𝑒𝑛𝑡.𝑠(1) | then
6: return ⊥
7: end if
8: if 𝑠𝑒𝑛𝑡.𝑠(1) =⊥ then
9: return ⊥

10: end if
11: (𝑠𝑒𝑛𝑡.𝑎𝑑𝑢, 𝑠𝑒𝑛𝑡.𝑠𝑢) := (ad, 𝑠𝑒𝑛𝑡.𝑠(𝑏))
12: return 𝑠𝑒𝑛𝑡.𝑠𝑢 to A

Oracle Decode(ad, 𝑠)
1: if 𝑏 = 0 then
2: return ⊥
3: end if
4: 𝑣← 𝑣 + 1
5: 𝑟𝑐𝑣𝑑.𝑠𝑣 ← 𝑠

6: (ad, 𝑚, 𝛼)← DecodeS(𝑘𝑠𝑡𝑒𝑔, ad, 𝑠)
7: if (𝑖 = 4) ∧ cond4 then
8: out-of-sync← 1
9: else if (𝛼 = 1) ∧ cond𝑖 then

10: out-of-sync← 1
11: end if
12: if out-of-sync = 1 then
13: return 𝑚

14: end if
15: return ⊥ to A

Authentication Conditions
1. Basic authenticated stego:

cond1 = (�𝑤 : (𝑠 = 𝑠𝑒𝑛𝑡.𝑠𝑤) ∧ (ad = 𝑠𝑒𝑛𝑡.𝑎𝑑𝑤))
2. Basic authenticated stego, no replays:

cond2 = (�𝑤 : (𝑠 = 𝑠𝑒𝑛𝑡.𝑠𝑤) ∧ (ad = 𝑠𝑒𝑛𝑡.𝑎𝑑𝑤)) ∨ (∃𝑤 < 𝑣 : 𝑠 = 𝑟𝑐𝑣𝑑.𝑠𝑤)
3. Basic authenticated stego, no replays, strictly increasing:

cond3 = (�𝑤 : (𝑠 = 𝑠𝑒𝑛𝑡.𝑠𝑤) ∧ (ad = 𝑠𝑒𝑛𝑡.𝑎𝑑𝑤)) ∨ (∃𝑤, 𝑥, 𝑦 : (𝑤 < 𝑣) ∧ (𝑠𝑒𝑛𝑡.𝑠𝑥 =
𝑟𝑐𝑣𝑑.𝑠𝑤) ∧ (𝑠𝑒𝑛𝑡.𝑠𝑦 = 𝑟𝑐𝑣𝑑.𝑠𝑣) ∧ (𝑥 ≥ 𝑦))

4. Basic authenticated stego, no replays, strictly increasing, no drops:
cond4 = (𝑢 < 𝑣) ∨ (𝑠 ̸= 𝑠𝑒𝑛𝑡.𝑠𝑣) ∨ (ad ̸= 𝑠𝑒𝑛𝑡.𝑎𝑑𝑣)

Figure 3.4. Authenticated Stegotext with Associated Data (ASAD) Exper-
iment, asad𝑖, with Authentication Condition cond𝑖 for Embedding Scheme
Π = (Kgn,EmbedS ,DecodeS) and Adversary A
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CHAPTER 4:
A Blockchain-based Embedding Construction

This chapter introduces a blockchain-based embedding construction, called Authenticated
SteGotext with Associated tRansaction Data (ASGARD), that fits within our anonymized
steganographic model. We then analyze that model using our ASAD framework and provide
an argument for correctness. This chapter serves as a bridge between our theoretical model
in Chapter 3 and our Ethereum-based embedding scheme in Chapter 5. 9

4.1 Blockchain in the Anonymized Steganographic Model
with AD

It is worth noting that the inspiration for our anonymized model and our steganographic ex-
tension to AEAD was the emergence of blockchain protocols. The wave of new permission-
less blockchain technologies and protocols changes the covert communications paradigm.
Chapter 2 discusses some of the fundamental attributes of blockchain and permissionless
blockchain. A combination of these attributes makes blockchain systems particularly useful
for covert communications (though with some drawbacks). The existence of a distributed
ledger and consensus theory provides for both data redundancy and easy data access. The
validity of the transaction is also assured due to the use of a consensus mechanism and a va-
riety of signature schemes. A permissionless blockchain system allows every participating
node to view the transaction ledger in order to achieve consensus. This access to the transac-
tion ledger not only allows nodes to hide messages in valid communications, but also allows
all of the parties to make determinations regarding channel state and meets the constraints
set by the Anonymized Prisoners’ Problem. Furthermore, this ledger transparency actually
adds a wrinkle to the formulation. All parties including the prisoners and the Warden have
access to all communications data unlike the original presentation of the problem in which
only the Warden had that capability. We believe this attribute provides advantages to the
scheming prisoners and can be evaluated using our ASAD framework. Figure 4.1 depicts

9Portions of this chapter will be published by IEEE. Reprinted, with permission, from V. Kanth and
B. Hale, "Blockchain-based Authenticated Stego-Channels: A Security Framework and Construction", 2022
IEEE International Conference on Blockchain (Blockchain), August, 2022.
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how blockchain would be used in the context of the Prisoners’ Problem with blockchain
transactions acting as the vehicle for covert embedding and the blockchain itself acting as
the channel.

Figure 4.1. Model for Hidden Communication using a Blockchain-based
Transaction Carrier. Adapted from: [17].

Anonymity being built into permissionless blockchain protocols is perhaps the biggest
advantage of using blockchain covert channels. In the Warden scenario, the Warden has
knowledge of both the sender and receiver as they are the prisoners. Figure 3.1 presents
the scenario where Alice and Bob can take on one of several identities. Permissionless
blockchain protocols like Bitcoin and Ethereum provide precisely this functionality. One
can simply change addresses for the sender or receiver to throw off the monitor. What
makes this even more difficult for the Warden is that this type of identity switching is
not only possible, but generally recommended. Therefore, unlike with many other covert
channels, covert communications in blockchain do not rely on manipulating the structure
of the protocol. In some sense, permissionless blockchain provides the tools for covert
communications in the course of normal operations. Furthermore, the digital ledger allows
Bob to access transactions without the Warden’s knowledge. We now present a blockchain-
based construction that takes advantage of these tools for an ideal blockchain environment.
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4.2 ASGARD Construction
In this section, we layout the necessary elements for our specific embedding scheme con-
struction, Authenticated SteGotext with Associated tRansaction Data (ASGARD). To set
context, we first present a description of the ideal blockchain environment that serves as the
platform for data transfer. We then describe variables, the embedding algorithm, and the
decoding algorithm.

4.2.1 Ideal Blockchain
We build off of an ideal blockchain-based environment (similar to [20]) that leverages the
Ethereum platform and uses elements of its transaction structure as a vehicle for sending
covert data. Many of the components of Ethereum are common across the blockchain/cryp-
tocurrency landscape, opening up further possibilities for application of this construction
elsewhere. More discussion on the Ethereum transaction structure and address generation
can be found in Chapter 2. Here, the key components of the structure that are essential to
our construction are as follows.

• Entity identities
• Entity addresses (public addresses)
• Transactions
• Channel Ledger

Entity Identities and Addresses The embedding construction takes advantage of the hash
functions that are routinely used in blockchain public address generation [70]. One abstracted
procedure for address generation in permissionless blockchain systems is:

1. generate a private key,
2. calculate the corresponding public key,
3. calculate the hash of that public key, and
4. extract some number of bits from the hash as the public address of the entity.

The proposed embedding function will mirror the method applied in Ethereum, where a
160-bit truncated hash of the public key is used as the public address of the receiver [70]
(see Chapter 2 for more details).
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Transactions Abstractly, a transaction is simply data sent from one party to another. In
concrete cryptocurrency applications, a transaction may include payment information.

Figure 4.2 illustrates the basic composition of our proposed stegotext construction using an
Ethereum-based blockchain transaction. Succinctly, the transaction fields include sender and
receiver addresses, context data (such as payment information), the transaction sequence
number, and a signature of the sender over the transaction. We re-purpose the receiver
address as a field for embedding the stegotext, employing a similar technique as has been
used in protocol dialecting [103].

Conceptually, identification of the correct channel is based on the sender address. Thus,
Bob’s public key is not expected to align to the receiver address, which allows for re-
purposing of that field. Rather, communicating entities Alice and Bob share a pre-approved
set of sender addresses that both sides uniquely associate to covert communications.

Figure 4.2. Proposed Blockchain-based Transaction Structure with Stegotext

In addition to the field used for stegotext transmission, there are notably several fields of
associated data (ad). Associated data is any other set of values required for the transaction.
For example, in the context of a cryptocurrency, the admight include the amount of money
being sent from the sender to the receiver. In Figure 4.2, it can be seen that the sender
address, context data, and sequence number comprise the ad, all of which is authenticated
in addition to the stegotext field re-purposed from the receiver address. If another field was
used for transmitting the stegotext, then the receiver address would become associated data.
Finally, we incorporate the transaction signature present in Ethereum.

60



Note that while the Ethereum specification refers to 𝑠𝑒𝑞 as a “nonce”, the described gener-
ation and use is in fact for a sequence number [70]. In particular, 𝑠𝑒𝑞 is set to 0 for the first
transaction at an identity address 𝑎𝑑𝑑𝑟𝐼 , and incremented thereafter for each subsequent
transaction at that sender address. This is true in normal networks as opposed to test net-
works where the starting nonce may be different. In addition, contract accounts start at one.
Furthermore, the sequence number length is 64-bits [104]. The Ethereum Yellow Paper [71],
as well as an Ethereum Improvement Proposal (EIP) [105] detail these distinctions in more
detail.

Communications Ledger-Channel Another important element of the construction that
will also appear in our analysis assumptions is what we term the communications’ ledger-
channel. From a construction perspective, the ledger-channel is an immutable public ledger,
similar to those realized by existing blockchain-based networks e.g., Bitcoin and Ethereum.
From a security modeling perspective, this means that Alice, Bob, and Warden can all see
and verify every transaction that has been sent on the channel, and such transaction cannot
be later deleted. We notate this ledger-channel record as ledger. Note that this implies a
message is sent after it appears on the ledger-channel, not at time of transaction generation.
This modeling choice simplifies and modularizes the analysis, such that any public ledger
providing the immutable property suffices, and commitment steps for uploading a transaction
to a ledger are abstracted away. Note that since Alice can see the contents of ledger similarly
to Bob and Warden, it is possible to re-send messages that are dropped during a typical
ledger commitment step.

As noted in Chapter 2, the state of the network documented in ledger is maintained via
the Byzantine agreement consensus mechanism associated with the specific blockchain
protocol.

4.2.2 Definitions
Proceeding, we now present the variables associated with the stegotext embedding scheme
and the construction functions.

Variables

• 𝑀 ∈ {0, 1}∗: A message to be sent
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• 𝑘 ∈ {0, 1}∗: A pre-shared secret key for message encryption
• 𝑠𝑒𝑞: A sequence number initialized to 0
• 𝐼 ∈ 𝐼𝐷: A specific sender identity from a set of pre-shared sender identities
• (𝑝𝑘 𝐼 , 𝑠𝑘 𝐼): The public and private keys associated with identity 𝐼
• 𝑎𝑑𝑑𝑟𝐼 := H(𝑝𝑘 𝐼): The address of identity I, which is defined as the hash of 𝐼’s public

key
• 𝐼𝐷 𝑝𝑢𝑏: The public key associated with an identity 𝐼 ∈ 𝐼𝐷, namely 𝐼 = 𝑝𝑘 𝐼 . We

note that 𝐼𝐷 𝑝𝑢𝑏 ⊂ Identities where Identities is any valid identity tuple in the
environment

• 𝐼𝐷 𝑝𝑟𝑖𝑣: The private tuple associated with an identity 𝐼 ∈ 𝐼𝐷, namely 𝐼 =
((𝑝𝑘 𝐼 , 𝑠𝑘 𝐼), 𝑎𝑑𝑑𝑟𝐼)

• ad := (𝑎𝑑𝑑𝑟𝐼 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞): Associated data defined as the sender address, optional
transaction context data, and the sequence number 𝑠𝑒𝑞

For the embedding scheme, Alice and Bob must share or negotiate some pieces of informa-
tion prior to the setup of the covert communication channel. These pieces of information are
the secret key 𝑘 and the identity set 𝐼𝐷. The identity set 𝐼𝐷 is the set of identities that Bob
knows corresponds to Alice. We emphasize that the identity set should be made sufficiently
large such that each identity is only used once. Note that there are various strategies for
building such a set ad-hoc, which reduces the restrictions inherent in having a fully pre-fixed
set of approved identities. For example, forward key derivation off of 𝑠𝑘 can be used to
build out a series of public-private key pairs and consequently identities. If Alice and Bob
treat 𝑠𝑘 as a shared secret, implying that the digital signature provides authentication albeit
not non-repudiation, then 𝐼𝐷 can be extrapolated from the shared secret. An identity 𝐼

corresponds to the public key and address for a unique account.

Remark 3. We note here that sender addresses should only be used once as address
reuse can impact the privacy of communications [106]. This is particularly important in a
steganographic context with regards to unlinkability since if Alice repeatedly uses the same
sender address, the Warden will potentially be able to positively identify all transactions
that Alice is a part of, which could leak information. Using a sender address more than
once is not a guarantee of vulnerability, but we avoid it as a matter of good practice. An
analysis of potential risks of address reuse is presented in Chapter 6.
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Another important aspect is the role of 𝑘𝑠𝑡𝑒𝑔, the stegotext embedding key described in
Chapter 3. For this construction, the embedding key denotes the transaction structure and
placement of embedded information. This embedding function uses the receiver address
field as for embedded information. Receiver addresses are of the form {0, 1}𝑙 , where 𝑙 is
the length of the address in the specific blockchain protocol. In Ethereum, the address field
is 160-bits. The distribution of the 160-bit Keccak hash output used for receiver addresses
forms the basis of the Cℎ distribution.

Two additional primitives are used in our construction: a symmetric encryption algorithm
Enc and a digital signature algorithm Sign. As an intuition, we encrypt the message 𝑀 using
Enc and embed the appropriate 𝑙-bits of stegotext in the receiver address field. Together with
the associated data, the transaction is then signed using Sign (a function already associated
with the Ethereum protocol). We make an important observation that while leveraged from
Ethereum, the digital signature algorithm is not native to blockchain for consensus. Rather it
is added to various blockchain-based protocols, such as Ethereum, for a variety of purposes
including transaction verification and authentication. Thus, the construction reliance on
inclusion of Sign does not interfere with the modular composition with a blockchain public
ledger utilizing Byzantine agreement.

4.2.3 Embed Function
What follows is an informal description of our generic address embedding algorithm.
Algorithm 1 provides a formal definition of steps 2-4. For our padding process in step 1, a
regular block cipher padding algorithm will suffice.

The embed function takes as input 𝑘𝑠𝑡𝑒𝑔 (containing the private identity set 𝐼𝐷 𝑝𝑟𝑖𝑣, the
secret key 𝑘 , and the channel record ledger), a message 𝑀 , and some associated data ad
(inclusive of 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 data and a sequence number 𝑠𝑒𝑞). The associated data constitutes all
auxiliary data.

1. Depending on the length of 𝑀 and defining 𝑙 = |address field|
(a) if |M| = 𝑙 move to Step 2.
(b) if |M| < 𝑙, pad 𝑀 until |𝑀 | = |𝑙 | and move to Step 2.
(c) if |M| > 𝑙, split 𝑀 into 𝑛 sub-messages 𝑀 = 𝑚1, 𝑚2, . . . , 𝑚𝑛 where |𝑚 | = 𝑙.

For each 𝑚 substring of 𝑀 , if |𝑚 | = 𝑙, proceed to Step 2. Otherwise, if |𝑚 | < 𝑙
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perform padding and move to Step 2.
2. Encrypt message 𝑀 using the symmetric encryption algorithm Enc and pre-shared

key 𝑘 . This results in an encrypted message 𝑀𝑒 of length 𝑙.
3. Embed 𝑀𝑒 in the receiver address field.
4. Sign the transaction with the private key 𝑠𝑘 𝐼 and initiate aledger transaction using the

sender address 𝑎𝑑𝑑𝑟𝐼 , where 𝐼 ∈ 𝐼𝐷, with associated data ad = (𝑎𝑑𝑑𝑟𝐼 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞).

Algorithm 1 provides a more technical description of address embedding given a message
𝑀 where |M| = 𝑙. In the case where |M| > 𝑙, we simply run the embedding algorithm
for each substring 𝑚 of 𝑀 , where |𝑚 |= 𝑙 and pad the last substring as needed (this would
happen in step 1.a). We also assume that Alice enforces sufficient time between messages
sent on ledger so as to ensure chronological sending on the ledger-channel.

Algorithm 1: ASGARD.EmbedS Algorithm

Embed
input : (𝐼𝐷 𝑝𝑟𝑖𝑣, 𝑘, ledger), 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑀
output
:

(𝑡𝑟𝑎𝑛𝑠, 𝜎)

𝑀𝑒 ← Enc𝑘 (𝑀);

((𝑠𝑘 𝐼 , 𝑝𝑘 𝐼), 𝑎𝑑𝑑𝑟𝐼)
$← 𝐼𝐷 𝑝𝑟𝑖𝑣;

𝐼𝐷𝑝𝑟𝑖𝑣← 𝐼𝐷𝑝𝑟𝑖𝑣 \ {𝐼};
𝑡𝑟𝑎𝑛𝑠.𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑑𝑑𝑟 ← 𝑎𝑑𝑑𝑟𝐼 ;
𝑡𝑟𝑎𝑛𝑠.𝑟𝑒𝑐𝑣_𝑎𝑑𝑑𝑟 ← 𝑀𝑒;
𝑡𝑟𝑎𝑛𝑠← (𝑡𝑟𝑎𝑛𝑠.𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑑𝑑𝑟, 𝑡𝑟𝑎𝑛𝑠.𝑟𝑒𝑐𝑣_𝑎𝑑𝑑𝑟, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡,
𝑠𝑒𝑞);
𝜎 ← Sign𝑠𝑘 𝐼 (𝑡𝑟𝑎𝑛𝑠);
ad← (𝑡𝑟𝑎𝑛𝑠.𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑑𝑑𝑟, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞);
𝑠𝑒𝑞 + +;
ledger← ledger ∪ {(𝑡𝑟𝑎𝑛𝑠, 𝜎)};
return ledger;

Decode Function
Decoding is split into two parts, an extract function, which is captured by step 1, and a decode
function, which is captured by steps 2-5. Our extraction and decode function algorithms are
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described informally as follows and formally in Algorithms 2 and 3:

1. Monitor the channel record, ledger for new transactions
2. If a transaction matches a sender address in 𝐼𝐷, move to Step 3. Otherwise return to

Step 1.
3. Verify transaction signature.
4. Extract message bits from the receiver address field of the matched transaction.
5. Decrypt the extracted text using the pre-shared key 𝑘 .
6. Return to Step 1.

Algorithm 2: ASGARD.Extract Algorithm
Decode

inputs : 𝐼𝐷 𝑝𝑢𝑏, ledger
output
:

(ad, 𝑠, 𝜎)

foreach transaction (𝑡𝑟𝑎𝑛𝑠, 𝜎) in ledger do
(𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑑𝑑𝑟, 𝑟𝑒𝑐𝑣_𝑎𝑑𝑑𝑟, 𝑠, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞)← 𝑡𝑟𝑎𝑛𝑠;
foreach 𝑝𝑘 𝐼 ∈ 𝐼𝐷 𝑝𝑢𝑏 do

𝑎𝑑𝑑𝑟𝐼 ← H(𝑝𝑘 𝐼);
if 𝑡𝑟𝑎𝑛𝑠.𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑑𝑑𝑟 = 𝑎𝑑𝑑𝑟𝐼 then

𝑠← 𝑡𝑟𝑎𝑛𝑠.𝑟𝑒𝑐𝑣_𝑎𝑑𝑑𝑟;
ad← (𝑎𝑑𝑑𝑟𝐼 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞);
return (ad, 𝑠, 𝜎);

Algorithm 2 describes the extraction approach and Algorithm 3 describes the decode
algorithm. Both of these are for a single sub-message 𝑀 , but can be easily extended to
account for multiple sub-messages and consequently message sequences. Note that there
is overlap between Algorithm 2 and Algorithm 3. This is intentional, since DecodeS by
definition takes in the associated data in addition to the stegotext. Therefore, it functions on
a particular channel message (whether stegotext or regular covertext), and thus, individual
messages must be first extracted from the ledger-channel, which contains all messages in
the environment. Nonetheless, for completeness, we enforce DecodeS to correctly handle
messages once received, including checking valid sourcing.
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Algorithm 3: ASGARD.DecodeS Algorithm
Decode

inputs : (𝐼𝐷 𝑝𝑢𝑏, 𝑘), ad, (𝑠, 𝜎)
output
:

(ad, 𝑀, 𝛼)

(𝑎𝑑𝑑𝑟𝐼 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞)← ad;
foreach 𝑝𝑘 𝐼 ∈ 𝐼𝐷 𝑝𝑢𝑏 do

𝑎𝑑𝑑𝑟𝐼 ← H(𝑝𝑘 𝐼);
if 𝑎𝑑𝑑𝑟𝐼 /∈ 𝐼𝐷 𝑝𝑢𝑏 then

return ⊥;
if 𝑠𝑒𝑞 ̸= 𝑠𝑒𝑞𝐼 + 1 then

return ⊥;
𝑠𝑒𝑞𝐼 + +;
if Vfy𝑝𝑘 𝐼 ((𝑎𝑑𝑑𝑟𝐼 , 𝑠, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞𝐼), 𝜎) = 1 then

continue;
𝑀 ← Dec𝑘 (𝑠);
if 𝑀 ̸=⊥ then

𝛼← 1;
return (ad, 𝑀, 𝛼);

4.2.4 Correctness
Correctness follows directly from the properties of the channel record, ledger, and from
the properties of the embedding scheme. A message will be extracted from the channel,
partitioned by appropriate fields, verified, and the stegotext decrypted using the pre-shared
key. In the case where multiple transactions are required to transmit the entire message, the
sender can enforce ordering by waiting until the previous transaction has been posted in the
channel record ledger.

4.3 Security Analysis
In this section, we present a security analysis of the embedding scheme under the look-ahead
model presented in Chapter 3. It is worth re-describing the set of conditions that describe
an adversarial win. Informal conditions are as follows:

1. The adversary is able to identify a transaction with embedded data from a transaction
without embedded data.
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2. The adversary is able to modify a transaction initiated by a specific sender address
undetected.

3. The adversary is able to replay a transaction initiated by a specific sender address.
4. The adversary is able to reorder transactions initiated by a specific sender address.
5. The adversary is able to drop transactions initiated by a specific sender address.

These conditions are examples of the security notions presented in Section 3.3. We note that
the adversary need not be able to decrypt the embedded data to win or, for items (2)–(5),
even know of the stegotext’s existence. For (1), it is sufficient for the adversary to identify
that a transaction contains an embedded message. For (2)–(5), it suffices for the adversary
to change modify transactions (stegotexts or associated data) such that the modification is
not detected or to replay, reorder, or drop messages even if unaware of the hidden message’s
existence.

From Theorem 2, we have that proving Level-4 ASAD implies Levels 1–3, and therefore
directly target Level-4 ASAD.

Theorem 4. Let A be a PPT adversary against the asad4 security of ASGARD.EmbedS ,
with available 𝑞𝐸 embedding queries. Then,

Advasad4
𝑞𝐸 ,ΠASGARD.EmbedS ,A

(_) ≤ 𝑝

|𝐼𝐷 | ·
(
AdvSUF-CMA

𝑞Sign,𝑞Vfy,ΠSig,B1
(_)

+ AdvIND-CPA
𝑞𝐸𝑛𝑐 ,ΠEnc,ad,B2

(_) + Advprf
Π𝐻 ,B3

(_) + Advprf
ΠEnc,B4

(_)
)

where 𝑞𝐸 = 𝑞𝐸𝑛𝑐 = 𝑞Sign, 𝑝 is the number of parties on the channel, 𝐼𝐷 is the set of pre-
shared sender identities associated to stegotexts, ΠASGARD.EmbedS is the stego-embedding
algorithm tuple, ΠEnc is the encryption algorithm tuple, ΠSig is the signature algorithm
tuple, and ad is adversarially selected associated data for ΠASGARD.EmbedS .

Proof. This proof proceeds with an adversary A against the ASAD experiment, Expasad4
Π,A

in the following manner:

1. A challenge bit is generated: 𝑏 $← {0, 1}.
2. The challenger chooses 𝐼 for computing 𝑎𝑑𝑑𝑟𝐼 , and with probability |𝐼𝐷 |·𝑝−1 the

guess correctly matches the identity chosen by A. If 𝐼 /∈ 𝐼𝐷, the experiment aborts.
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3. The challenger generates a symmetric key 𝑘𝐽 for each identity in the space except
𝐼 and replaces 𝐻 with Enc in the computation of sender identity addresses, such
that 𝑡𝑟𝑎𝑛𝑠.𝑟𝑒𝑐𝑣_𝑎𝑑𝑑𝑟 = 𝐻(𝑝𝑘𝐽) is replaced by 𝑡𝑟𝑎𝑛𝑠.𝑟𝑒𝑐𝑣_𝑎𝑑𝑑𝑟 = Enc(𝑘𝐽 , 𝑝𝑘𝐽).
Thus, the challenger is able to correctly simulate Embed queries for every identity
on the channel (i.e., randomly selected transactions based on the channel history).
The ability of the adversary to distinguish between this simulation and the real
distribution is bounded by the pseudorandomness of𝐻 and Enc, namely, Advprf

Π𝐻 ,B3
(_)

and Advprf
ΠEnc,B4

(_). (More discussion on the bases for this assumption can be found in
Chapter 5.)

4. The challenger answers A’s Embed queries to 𝐼 using its encryption oracle Enc
and signature oracle Sign. When A asks a query Embed(ad, 𝑀, ℎ), the chal-
lenger sets 𝑀1 ← 𝑀 and sets 𝑀0 ← 𝐼. It then calls Enc(𝑀0, 𝑀1), followed
by Sign(ad, 𝑐𝑏) on the subsequent output 𝑐𝑏, and returns (ad, 𝑐𝑏, 𝜎) to A, where
ad = (𝑡𝑟𝑎𝑛𝑠.𝑠𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑑𝑑𝑟, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑠𝑒𝑞). If 𝑏 = 1, this corresponds to a real ste-
gomessage being sent, whereas if 𝑏 = 0 it corresponds to the encryption of the
sender’s identity, in line with the simulation.

5. We next bound the probability ofA winning according to the condition (𝑢 < 𝑣)∨ (𝑠 ̸=
𝑠𝑒𝑛𝑡.𝑠𝑣) ∨ (ad ̸= 𝑠𝑒𝑛𝑡.𝑎𝑑𝑣), i.e., if A is able to forge a transaction entirely, replay,
change ordering, or drop a transaction. The challenger forces incremental matching
of the sequence number, 𝑛, according to the ideal blockchain model (i.e., the security
of the ideal blockchain prohibits out-of-order messages).
Since there is incremental matching of the sequence number, there is no reordering,
replays, or drops, provided that no forgery has occurred. From the success of A we
can thus build an adversary against the unforgeability of the signature scheme. Thus
we bound this win condition by AdvSUF-CMA

𝑞Sign,𝑞Vfy,Π𝑆𝑖𝑔,B1
(_). This bounds the ability ofA to

win according cond4. Therefore the remaining success ofA in the asad4 experiment
corresponds to the success of A without access to Decode.

6. Suppose thatA correctly guesses the bit 𝑏. By the success ofA in the asad4 experi-
ment, the adversary must correctly distinguish between a valid stegotext, generated as
described above, and one randomly sampled. However, by Step (4) above, this implies
correctly distinguishing between 𝑀0 and 𝑀1 with access to the Enc oracle, thus we
bound the probability of this success by the AdvIND-CPA

𝑞𝐸𝑛𝑐 ,ΠEnc,ad,B2
(_).
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Corollary 5. For 𝑖 ∈ {1, 2, 3, 4}, ASGARD.EmbedS is Level-𝑖 ASAD-secure.

The proof follows directly from Theorem 2 and Theorem 4.

Remark 6. Note that in the ideal blockchain environment, every stegotext-embedded trans-
action is “sent” once it is contained in a timestamped block. The ideal blockchain model
as a ledger-channel ensures that A cannot force a dropped block unless they are able to
violate the consensus process. Thus, while our construction is able to protect against mes-
sage dropping due to transaction sequence numbers in Ethereum, it may also be possible
to achieve Level-4 ASAD through use of nonces on other platforms.

4.4 Summary
In this chapter, we presented blockchain as a potential embedding vehicle that could meet the
constraints set out by our anonymous steganographic model and our ASAD framework. We
first discussed broad reasons why permissionless blockchain protocols are particularly useful
in the context of steganographic communications. Furthermore, we introduced a specific
embedding scheme construction called ASGARD that used an ideal blockchain environment
as our communications channel. This scheme repurposed the receiver address for message
embedding. We laid out scheme definitions, an encoding algorithm, an extraction algorithm,
and a decoding algorithm. Finally, we presented arguments regarding the correctness of our
ASGARD embedding scheme as well as a variety of arguments about its IND-CHA security
and its Level-𝑖 ASAD security.
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CHAPTER 5:
A Real-world Implementation of our Blockchain-based

Embedding Construction

In this chapter, we take our embedding algorithm out of the ideal blockchain environment
and consider its security with respect to the real-world context and implementation, as well
as the security requirements presented in the proof of Theorem 4. 10

5.0.1 Implementation
The embedding algorithm was implemented on the Ethereum platform in a test network.
The operating system used was Ubuntu 20.0.4. We used the geth client (Go Ethereum)
for our test network. Finally, we used the web3 Python library [107] to interact with our
geth client [108] and pycryptodome Python library for our cryptographic operations [109]
(Cypto.Cipher and Crypto.Util.Padding). A complete list of the algorithms used for our
practical implementation can be found below.

• AES-256 in CTR mode as the encryption algorithm
(implementation selection, Crypto.Cipher)

• Keccak-256 algorithm as the hash algorithm
(Ethereum specification, web3)

• ECDSA as the digital signature algorithm
(Ethereum specification, web3)

• Standard Padding Algorithm, PKCS7 (implementation selection, Crypto.Util.Padding)

For our experiment, we extracted the first 4800 bits from Alice in Wonderland, encrypted it
using AES-256 in CTR mode. In our pycryptodome and web3 implementation, this resulted
in a ciphertext of length 4800 bits. We then split the ciphertext into 160 bit blocks, and
initiated 30 Ethereum transactions with the 160 bit blocks as the receiving address field. As
we used 4800 bits, which is divisible by 160, we did not need to pad our input to meet the

10Portions of this chapter will be published by IEEE. Reprinted, with permission, from V. Kanth and
B. Hale, "Blockchain-based Authenticated Stego-Channels: A Security Framework and Construction", 2022
IEEE International Conference on Blockchain (Blockchain), August, 2022.
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field space requirements. (Otherwise, we could have used the standard padding algorithm
from Crypto.Util.Padding to pad our message prior to encryption.)

5.1 Practical Security Considerations
Based on the transaction internals from Chapter 2, we now take a closer look at the analyses in
Chapter 4. Specifically, we examine the Warden’s ability to distinguish between the stegotext
and the underlying covertext, as well as how our Ethereum-based scheme performs with
regards to the ASAD framework.

Comments on Step (3) of the Proof of Theorem 4
As noted in the proof in Chapter 4, we rely an assumption of the mutual pseudorandomness
of ciphertexts and hash outputs. More specifically for the construction, it is important that
the output of the symmetric encryption algorithm AES-256 and the output of Ethereum’s
address generation hashing algorithm Keccak-256 are indistinguishable. For the practicality
of this, note that ciphertexts generated by a symmetric encryption algorithm are designed
to be indistinguishable from random (i.e., if analyzed for IND-CPA security). Similarly, the
pseudorandom properties of the Keccak family have been well-explored [110] [111]. 11

Now, we take a look at the argument for the proof step that selected variants of the Keccak
algorithm (Keccak-256) and AES-256 in CTR mode are indistinguishable from random, and
thus indistinguishable from each other. To empirically validate the basis of the argument, we
also conducted testing as a basis for the pseudorandom output properties of the Keccak-256
algorithm. We generated 400 million bits for analysis via the NIST randomness suite [112]
by taking the Keccak-256 hash of the 24-bit representations of the numbers 0 to 1562499
and appending them together. Our bitstream passed all of the NIST tests as can be seen in
Appendix B. This empirical testing, in conjunction with the known pseudorandom properties
of the Keccak family, provide evidence that the output distribution of the Keccak-256
algorithm is indistinguishable from random.

With regards to our AES-256 in CTR mode implementation for encryption of our plaintext

11For Keccak-256 there is one important historical issue to note. The algorithm used in Ethereum is Keccak-
256. This version of the Keccak algorithm was not the version that won the SHA3 competition. There is a
small difference in padding but the underlying construction was not changed.
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messages, AES is a pseudorandom permutation [113], [114]. For CTR mode with AES-256,
as used in our implementation, the IV, counter, and random key are fed as inputs to the
AES block cipher and the resulting output is XORed with the plaintext message bits. Thus,
since AES is pseudorandom, CTR mode encryption within the address field should also be
indistinguishable from random.12 In conclusion, since both the output of AES-256 in CTR
mode and Keccak-256 appear random, they are indistinguishable from each other and thus,
A cannot distinguish between them with better than probability 1

2 .

Comments on Step 5 of Theorem 4
The proof of Theorem 4 notably relies on SUF-CMA security of the signature scheme,
due to handling of the stegotext. As noted previously, Ethereum uses ECDSA. The security
of the specific curve used in Ethereum, secp256k1 is detailed in [115]. ECDSA is not
SUF-CMA secure but is known to be EUF-CMA secure [116]. The issue at question is in the
malleability of the signature through conversion function handling, namely for an ECDSA
signature (𝑠, 𝑡), on a message 𝑀 , the signature (−𝑠, 𝑡) is also a valid signature. Ethereum
addresses this malleability in its Homestead hard fork [117] by ensuring that transaction
signatures whose signature 𝑠-value is greater than secp256k1n/2 13 (i.e., the maximum value
of the secp256k1n curve divided by 2) are now considered invalid. With suitable checks in
place, our construction can thus meet the proof requirements.

Comments on Step 6 of Theorem 4
AES is used in CTR mode for the tested implementation of ASGARD.Embed for its
security properties, specifically IND-CPA security (IND-CPA security based on AES as a
pseudorandom permutation and the CTR operation mentioned above). The use of an IV in
CTR mode ensures that even if the same message is hidden in the stegotext at a future point,
𝑠 will appear different. However, it is worth noting the effects of using a different mode
with deterministic encryption such as AES in CBC mode) where 𝑠 is identical for identical
embedded messages. In such a case, it will appear to an eavesdropper that Alice is sending
a second transaction to Bob (i.e., Bob’s address is identical to that in a prior transaction).

12We make this argument apart from IND-CPA security of the mode, as the motivation is the indistin-
guishability of the ciphertext from the hash output, vs. distinguishability among ciphertexts.

13secp256k1n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
[118]
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It is dependent on the environment whether such a second transaction is problematic for
security or not, since it is feasible for a party to send a transaction to a particular receiver
more than once.

Ethereum vs. the Embedding Algorithm
It is important to consider how the properties of authentication and confidentiality are
achieved in the broader Ethereum context. Specifically, Ethereum uses a public-key signature
algorithm, ECDSA, which we leverage for authentication in the proof, while AES-256 in
CTR mode is a specific addendum for the stego-scheme. Thus, ASAD4 security is achieved
not simply through a newly introduced embedding scheme, but also by leveraging the
blockchain infrastructure.

With regards to transaction replays, reordering, or drops as noted in Chapter 5.0.1,
Ethereum’s transaction structure also includes a sequence number. This sequence num-
ber features in the proof of Theorem 4, where the nonce preventsA from replaying existing
transactions. The Ethereum standard currently specifies the nonce to be 64-bits [104]. In
normal operation, each new account in Ethereum starts with a sequence value of zero,
which is then incremented at each submitted transaction. In practice, since we require that
the sender’s identity 𝐼 is used only once, sequence number wrapping is impossible. Even
if used repeatedly, it can be enforced that the use of a particular identity 𝐼 expires once the
sequence number space has been exhausted.

5.1.1 Considerations for Adapting the Embedding Scheme to Other
Blockchain Protocols

In our indistinguishability experiment, the Warden knows where in the transaction we may
have embedded a hidden message (the Warden chooses ad). In practice, stego-embedding
may take place in other Ethereum transaction fields, dependent on prior arrangement be-
tween the sender and receiver, with the stipulation that it is possible to match the underlying
distribution of that field. Thus, in a practical sense, the situation is much bleaker for the
Warden.

While our embedding construction is Ethereum-based, it is interesting to explore what would
happen if our construction was adapted to other blockchain protocols. For example, Bitcoin
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does not use nonces in its transactions. Instead, it uses a model based on Unspent Transaction
Outputs (UTXO) [119]. Therefore, the same embedding scheme would require modification
if used on the Bitcoin blockchain, for example, by placing a nonce as a part of the embedded
data, which reduces the available bit-length of the text hiding field. In other consensus-based
blockchain algorithms that are not instantiated with a sequence number like Ethereum,
protection in the form of Level-3 and Level-4 ASAD can be achieved through ensuring that
only one embedded transaction appears in a block and waiting until that block has been
added to the blockchain before submitting the next transaction. This follows from the ideal
blockchain model (as discussed in Chapter 3) where ledger as the ledger-channel models
the appearance of a transaction on the blockchain before another transaction is computed. In
such an implementation, altering the transaction order or dropping a transaction after being
added to ledger would entailA being able to violate the consensus protocol. Specifically,
A would need to consistently create blocks, which would imply the ability to violate
Byzantine agreement. As noted in Chapter 2, PoW has been shown to reach Byzantine
agreement. Thus, practically speaking in a PoW blockchain, consistently creating blocks
would require A to control 51% of the processing power in the blockchain network [65].
While this is not theoretically impossible, it would require a tremendous investment on the
part of the adversary.

5.2 Selecting Values for the Associated Data Fields
As an important practical note, Alice must take into account typical values in the associated
data fields so as to not attract further scrutiny from the Warden. This mirrors AEAD,
where the associated data content should not leak information about the encrypted message.
For ASGARD, the distribution of the 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 in ad should not be significantly different
from that of normal (non-stego) activity. For example, in Ethereum, monetary transactions
must be chosen to reduce potential salience. In practice, this would require looking at the
distribution of other fields in ad and choosing an appropriate value. We now examine some
of the associated data fields in our Ethereum-based construction.

5.2.1 Value Field
We provide an example of this type of analysis for the Value field in an Ethereum transaction.
As our embedded transactions are non-contract transactions, we pulled all of the non-
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contract transactions that occurred between January of 2021 and February of 2022 and
examined their Value fields. We used the Google BigQuery ethereum_blockchain database
to acquire this data. Google runs a full Ethereum node and records the details of all
transaction activity in their database. We performed this analysis with statistical outliers,
without statistical outliers, and without statistical outliers with zero elements removed. Table
5.1 shows the relevant summary statistics and Figure 5.1 and Figure 5.2 show the 10-bin
histograms of the Value fields without outliers for the respective months.

We removed zeros to facilitate the distribution fitting and ensure comparisons between the
distributions as some of the distributions are not defined at zero. Furthermore, the proportion
of transactions with zero in the Value filed is very low. For example, in this February data,
1.3% of the transactions contain zero. More generally, in the context of our steganographic
scheme, using a zero-value transaction would be noticeable. Intuitively, if Alice sent Bob
an embedded transaction with no money attached to it, it would seem odd to the Warden.
This is especially true in Ethereum as transactions require a transaction fee.

With regards to outliers, they skewed both our basic statistics and our ability to fit a distri-
bution to the data. In a practical sense, outliers are of little interest for our steganographic
applications as our goal is to hide where there is other activity or noise. In the case of our
data distributions, there is far more value in analyzing our data without the outliers.

Table 5.1. Summary Statistics for January 2021- February 2022 Ethereum
Non-Contract Transactions Value Field

Outliers
(Jan)

No Outliers
(Jan)

No Outliers
and Zeros (Jan)

Outliers
(Feb)

No Outliers
(Feb)

No Outliers
and Zeros (Feb)

Min 0 0 1.00E-18 0 0 1.00E-18
Max 1500000.000 0.461 0.461 251122.472 0.456 0.456
Mean 7.899 0.083 0.087 3.313 0.089 0.091
Std 562.047 0.100 0.101 228.255 0.101 0.101

Median 0.089 0.045 0.049 0.092 0.049 0.050
IQR 0.442 0.105 0.107 0.252 0.107 0.106
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Outliers
(Mar)

No Outliers
(Mar)

No Outliers
and Zeros (Mar)

Outliers
(Apr)

No Outliers
(Apr)

No Outliers
and Zeros (Apr)

Min 0 0 1.00E-18 0 0 1.00E-18
Max 252800.000 0.431 0.431 450000.000 0.347 0.347
Mean 4.486 0.083 0.086 4.461 0.070 0.073
Std 236.552 0.090 0.090 298.868 0.074 0.074

Median 0.091 0.050 0.052 0.073 0.045 0.048
IQR 0.334 0.089 0.089 0.245 0.085 0.084

Outliers
(May)

No Outliers
(May)

No Outliers
and Zeros (May)

Outliers
(Jun)

No Outliers
(Jun)

No Outliers
and Zeros (Jun)

Min 0 0 1.00E-18 0 0 1.00E-18
Max 590938.850 0.294 0.294 306714.851 0.241 0.241
Mean 5.770 0.061 0.064 4.248 0.048 0.051
Std 446.568 0.066 0.066 263.014 0.057 0.057

Median 0.059 0.036 0.041 0.046 0.020 0.023
IQR 0.192 0.090 0.088 0.143 0.090 0.095

Outliers
(Jul)

No Outliers
(Jul)

No Outliers
and Zeros (Jul)

Outliers
(Aug)

No Outliers
(Aug)

No Outliers
and Zeros (Aug)

Min 0 0 1.00E-18 0 0 1.00E-18
Max 600000.000 0.266 0.266 599999.000 0.341 0.341
Mean 3.743 0.054 0.056 3.753 0.068 0.071
Std 331.882 0.062 0.062 266.853 0.077 0.077

Median 0.050 0.025 0.030 0.068 0.036 0.040
IQR 0.152 0.097 0.096 0.194 0.094 0.094

Outliers
(Sep)

No Outliers
(Sep)

No Outliers
and Zeros (Sep)

Outliers
(Oct)

No Outliers
(Oct)

No Outliers
and Zeros (Oct)

Min 0 0 1.00E-18 0 0 1.00E-18
Max 657334.000 0.410 0.410 420000.000 0.355 0.355
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Mean 4.177 0.081 0.083 3.215 0.075 0.077
Std 361.165 0.089 0.089 228.663 0.079 0.079

Median 0.084 0.048 0.050 0.075 0.047 0.049
IQR 0.235 0.097 0.097 0.206 0.092 0.092

Outliers
(Nov)

No Outliers
(Nov)

No Outliers a
nd Zeros (Nov)

Outliers
(Dec)

No Outliers
(Dec)

No Outliers
and Zeros (Dec)

Min 0 0 1.00E-18 0 0 1.00E-18
Max 345000.000 0.362 0.362 231212.445 0.301 0.301
Mean 3.287 0.078 0.080 3.523 0.068 0.069
Std 302.484 0.078 0.078 249.876 0.073 0.073

Median 0.079 0.051 0.053 0.062 0.040 0.041
IQR 0.202 0.090 0.089 0.192 0.089 0.089

Outliers
(Jan)

No Outliers
(Jan)

No Outliers
and Zeros (Jan)

Outliers
(Feb)

No Outliers
(Feb)

No Outliers
and Zeros (Feb)

Min 0 0 1.00E-18 0 0 1.00E-18
Max 225698.000 0.476 0.476 600888.000 0.491 0.491
Mean 3.653 0.101 0.103 5.764 0.094 0.098
Std 227.504 0.106 0.106 314.858 0.102 0.103

Median 0.099 0.063 0.066 0.100 0.054 0.057
IQR 0.272 0.114 0.116 0.422 0.101 0.102

For our analysis, we preferred the data without outliers as we are concerned with blending
into normal-seeming activity. The outliers greatly affected our summary statistics and our
ability to analyze the distribution of the Value field. Note that the unit for Ethereum is
Ether, which is trading around 3000$ for 1 Ether at the time of writing. Based on this
analysis (without outliers), for February of 2022, the sender would want to select a value
between 0.0134 ETH (∼$40) and 0.120 (∼$360), which delineate the 25% quantile and
75% quantile respectively. In contrast, for January of 2022, the sender would want to select
a value between 0.021 ETH (∼$63) and 0.135 (∼$406), which delineate the 25% quantile
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and 75% quantile respectively. Clearly, the target value can change from month to month.
The sender must ensure that they are using the appropriate data in the value field to prevent
the Warden from becoming suspicious regarding a potential transaction.

Figure 5.1. Histogram of Value Field Counts for January 2022 Ethereum
Non-Contract Transactions

In addition to simply observing our basic statistics, we can also fit a distribution to this data.
As will also be done in Chapter 6, we used the fitmethis [83] function in MATLAB and
the distribution fitter application in MATLAB to determine the best fit distributions for our
data. Chapter 2, provides an overview of MLE, LL, and AIC. The results for all non-contract
transactions, with outliers and zeros removed, for February of 2022, can be seen in Table
5.2.

The beta distribution was the best fit for our 2022 data. Figure 5.3 was generated using the
Distribution Fitter [120] application and depicts the PDF of the standard beta distribution
superimposed on a histogram of our February data. We can use the beta distribution to
determine what our threshold values for transactions should be. Reintroduced from Chapter
2, the PDF of the beta distribution is defined as [89]:
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Figure 5.2. Histogram of Value Field Counts for February 2022 Ethereum
Non-Contract Transactions

𝑓 (𝑥 | 𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1 (5.2.1)

where 𝑎 is the first shape parameter, 𝑏 is the second shape parameter, and 𝐵(·) is the
Beta function. The generalized beta distribution also takes two additional parameters: a
lower bound and an upper bound. In the standardized beta distribution, these are 0 and
1 respectively. Now, we can use the CDF of the beta function to determine our threshold
values. The CDF of the beta distribution is defined as:

𝐹(𝑥 | 𝑎, 𝑏) =
1

𝐵(𝑎, 𝑏)

∫ 𝑥
0
𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑥 (5.2.2)

where 𝑡 is the t-distribution. Using the inverse of the beta CDF we can calculate our threshold
values (in this case we would like to select values between 𝑝 = 0.25 and 𝑝 = 0.75). Our
results from the beta distribution with 𝑎 = 0.618 and 𝑏 = 6.22 are 0.016 and 0.1300
respectively, which line up well with our empirical results. Figure 5.4 shows both the CDF
of the beta distribution with the relevant parameters and the CDF of our February data.
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Table 5.2. Best Fit Distributions and Corresponding Parameters for Value
Field, February 2022

Name Param 1 Param 2 Param 3 LL AIC
beta 6.18E-01 6.22E+00 1.42E+07 -2.84E+07
nakagami 2.65E-01 1.85E-02 1.42E+07 -2.83E+07
gamma 6.58E-01 1.38E-01 1.41E+07 -2.83E+07
weibull 7.92E-02 7.72E-01 1.40E+07 -2.80E+07
gp 2.24E-01 7.18E-02 1.36E+07 -2.72E+07
exponential 9.08E-02 1.35E+07 -2.69E+07
loglogistic -3.12E+00 9.61E-01 1.30E+07 -2.61E+07
gev 9.17E-01 3.48E-02 2.65E-02 1.25E+07 -2.50E+07
lognormal -3.33E+00 2.21E+00 1.07E+07 -2.14E+07
tlocationscale 5.56E-02 5.70E-02 2.21E+00 9.21E+06 -1.84E+07
logistic 7.39E-02 5.25E-02 8.86E+06 -1.77E+07
normal 9.08E-02 1.01E-01 8.40E+06 -1.68E+07
uniform 1.00E-18 4.56E-01 7.56E+06 -1.51E+07
ev 1.48E-01 1.29E-01 5.86E+06 -1.17E+07
rayleigh 9.61E-02 3.47E+06 -6.94E+06
rician 6.39E-05 9.61E-02 3.47E+06 -6.94E+06
birnbaumsaunders 1.00E-06 4.10E+03 -1.27E+07 2.54E+07
inversegaussian 9.08E-02 5.99E-14 -1.07E+08 2.15E+08

We analyzed the parameters for the beta distribution over the period between January 2021
and February 2022. Table 5.3 shows those values.

Clearly, the parameters shift over time (in fact, the best fit distribution for some of the
months like August of 2021 is actually the Nakagami distribution). Thus, the prisoners must
recalculate their distributions/parameters somewhat frequently. For the best granularity, the
prisoners could use the data from the previous day to select the most similar values. From
a practical perspective however, dollar amounts in the low hundreds per transaction appear
to work well.

Econometrics Observations
Before running the fitmethis module in MATLAB, we had expected the Pareto distribution
to be our best fit distribution. This was because the Pareto distribution has long been
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Figure 5.3. Best-fit Distribution for Value Field Counts for February, 2022
Ethereum Non-Contract Transactions

used to model income distribution [121] [122] (it was first presented in 1895). However,
based on our results there were a number of distributions that performed better than the
Pareto distribution for our use case. Looking at the literature, those distributions have also
been used for the income distribution use case while performing better than the Pareto
distribution. With regards to the Weibull distribution, it was proposed for use with regards
to U.S. income data in [123]. In that work, the Weibull distribution was also compared to
the Gamma and lognormal distributions. The Gamma distribution was also used to fit U.S.
income data in [124]. The beta distribution has also been used for a similar purpose and
analyzed in [125]. While we were not able to find literature with regards to the Nakagami
distribution, as it is a special case of the Gamma distribution and is commonly used to
model right-skewed, positive data sets, its excellent performance in our application makes
sense [126]. We also found [127], in which the authors describe using the generalized
beta distribution to model income data and compare it to a number of our well-performing
distributions. Unfortunately, as MATLAB does not support the generalized beta distribution
at this time, and we were able to get practical results for our blockchain embedding scheme
using other distributions, we did not test it.
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Figure 5.4. Best-fit Distribution for Value Field Counts for February, 2022
Ethereum Non-Contract Transactions

5.2.2 Input Data Field
We now present an example of poorly selecting a value for a data field in Ethereum. As
noted in Chapter 2 embedding data in the Input Data field in Ethereum or similar fields in
other cryptocurrencies has been explored in the past. Of course, embedding in this field is
transparent to Warden and therefore is not particularly covert. That begs the question, how
bad is it to embed data in this field? In other words, how much easier does it make the
Warden’s job in identifying potentially suspicious transactions (i.e., communications from
Alice to Bob)?

In Ethereum, the Input Data field is primarily used to list smart contract data. It can be
used to pass messages between parties. In fact, there are organizations that repurpose that
field for their business use case. For example, the company Zoho Sign uses the Input Data
field to store the hash of a signed document [128]. However, as the Input Data field is
primarily used for smart contract data, it is rare for transactions to use that field for non-
smart contract purposes. To determine how rare these occurrences were, we again used the
Google BigQuery database. For every day from December of 2021 to February of 2022,
we aggregated three counts. The first was the total number of transactions on that day. The
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Table 5.3. Beta Distribution Parameters over January 2021 - February 2022

Month 𝑎 𝑏

Jan 0.0545 0.9418
Feb 0.0618 0.94
Mar 0.0647 1.0726
Apr 0.0603 1.1707
May 0.0469 1.0926
Jun 0.0487 1.3443
Jul 0.0515 1.2917
Aug 0.0532 1.0975
Sep 0.0739 1.2021
Oct 0.0913 1.4954
Nov 0.1029 1.5951
Dec 0.1118 1.9089
Jan 0.1041 1.2814
Feb 0.1151 1.5213

second was the number of transactions that fulfilled the condition 𝑖𝑛𝑝𝑢𝑡 ̸= 0x (Input Data
field “not null”). Finally, the third was the number of transactions that fulfilled the “not null”
Input Data field condition and also a further condition that the recipient address was not
a smart contract address (this was accomplished by cross-referencing with the bigquery-
public-data-.crypto_ethereum.contracts database). A depiction of this data can be seen in
Figure 5.5.

Looking at a single day, in this case January 5th, 2022, there were 1249628 total transactions,
763945 transactions with 𝑖𝑛𝑝𝑢𝑡! = 0x, and only 3185 transactions that had 𝑖𝑛𝑝𝑢𝑡! = 0x and
were not sent to a smart contract. Therefore, if Alice was to use the Input Data field
as their communication mechanism, the Warden would only have to analyze 3185

1249628 or
approximately .25% of the total transactions during that day. This trend continues across
the 90 days that we pulled data. Thus, using the Input Data to communicate covertly would
be foolish. This also has implications for our embedding scheme. We would want to ensure
that our Input Data was equal to 0x or potentially setup a dummy contract to act as our
recipient (though this would alter our scheme from Chapter 5).
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5.3 Summary
In this chapter, we presented an Ethereum-based construction of our generic embedding
algorithm from Chapter 4. We then analyzed the scheme using our ASAD framework and
the specific properties of Ethereum transactions and the Ethereum blockchain structure. We
showed that our construction was both IND-CHA secure and Level-4 ASAD secure. Next, we
considered our associated data ad and some of the various fields that it contained. Finally,
we investigated the properties of the Value field and the Input Data field and presented
appropriate values for use in our Ethereum construction.
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CHAPTER 6:
Methods for Detecting Embedded Transactions

As shown in Chapter 4, our Ethereum-based covert communications scheme ASGARD, met
our security objectives. One of the key takeaways from the analysis of our scheme was that
there are other potential methods for the Warden to detect potentially malicious activity in
the Ethereum environment. For example, in Ethereum, transactions that interact with smart
contracts can be isolated for further inspection. For most cryptocurrencies, the processing
fee associated with transactions can be mapped to detect anomalies. As noted in Chapter 5,
the total amount transferred between accounts or the total number of coins (not specific to
one cryptocurrency) are other parameters that can be considered. In our specific scheme,
if the embedded transaction uses a non-standard amount of gas or transfers no money, this
might indicate to an observer that something fishy was going on. We again emphasize that in
addition to our embedding field, we also must match the distributions for the other fields in
the Ethereum transaction. Even if this is the case, there are other aggregate parameters that
the Warden might use to detect suspicious transactions. Intuitively, if a large amount of data
must be sent covertly, a large number of transactions must also take place. This observation
provides opportunities to the Warden to detect suspicious activity if the embedding parties
are not careful. We present the following parameters as examples of this idea. We again
used the Google BigQuery ethereum_blockchain database to acquire our data. 14 15

6.1 Volumetric Transaction Rate
Regardless of what blockchain-based platform is used, the number of transactions that takes
place in a specific time interval is a parameter that can be leveraged. As the hallmark
of blockchain is the distributed ledger, both the embedding parties and the Warden have
the ability to examine the total number of transactions and the specifics of any individual

14Portions of this chapter will be published by IEEE. Reprinted, with permission, from V. Kanth and
B. Hale, "Blockchain-based Authenticated Stego-Channels: A Security Framework and Construction," 2022
IEEE International Conference on Blockchain (Blockchain), August, 2022.

15Portions of this chapter were previously published by Springer [3]. Reproduced with permission from
Springer Nature. Material from: Kanth, V., McEachen, J., Tummala, M. (2022). Parameter Identification for
Malicious Transaction Detection in Blockchain Protocols. In: Prieto, J., Partida, A., Leitão, P., Pinto, A. (eds)
Blockchain and Applications. BLOCKCHAIN 2021. Lecture Notes in Networks and Systems, vol 320.
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transaction. The goal from the Warden’s perspective is to reduce the total number of
transactions that must be investigated to a manageable number. One way to do this is to
investigate periods of time in which a statistically large number of transactions takes place.

In the context of our embedding scheme, this might correspond to Alice sending Bob a
long message during a short duration of time. In our ASGARD construction, we embed
160 bits per transaction. In order to send a message that is 10 kB, we would need to send
512 embedded transactions. If we were to do so in a short period of time, we could impact
the distribution of the transaction traffic. Thus, the Warden must thoroughly understand and
analyze the underlying distribution of the transaction traffic for our platform of choice to
detect our embedding activity. As we studied Ethereum transaction traffic, we noticed that
its distribution appeared to shift over time. An example of this can be seen in Figure 6.1,
which shows transaction counts in 10-minute intervals for two different months. Not only
did the shape vary, the location and scale of the peak also varied. Thus, we first explored
the stationarity of Ethereum traffic.

Figure 6.1. Transaction Counts Comparison between Jan 2020 (a) and Jan
2022 (b)

Not surprisingly, due to the relative youth of the Ethereum platform the transaction traffic
distribution appears non-stationary or, in other words, it changes over time. In order to
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provide evidence of this assertion, we used a variety of statistical tests to examine Ethereum
daily transaction data. We pulled this data from etherscan.io [129] and performed our
analysis in MATLAB. A figure graphing the transaction data can be seen in Figure 6.2.

Figure 6.2. Ethereum Daily Transactions Chart, data from [129]

To test the non-stationary nature of the Ethereum daily transaction data, we used the
Augmented Dickey-Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test. The ADF test tests for the presence of a unit root. A unit root is a process whose first
difference is stationary. It has the form [130]:

𝑦𝑡 = 𝑦𝑡−1 + 𝑥

where 𝑥 is a stationary process. The null hypothesis for the ADF test is that there is a unit
root. The alternative hypothesis is that there is no unit root, or that the series is stationary.
From [131], the ADF test uses the model:

𝑦𝑡 = 𝑐 + 𝛿𝑡 + 𝜙𝑦𝑡−1 + . . . + 𝐵Δ𝑦𝑡−𝑝 + 𝜖𝑡
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where Δ is the differencing operator (Δ𝑦 = 𝑦𝑡 − 𝑦𝑡−1), 𝑝 is the number of lagged difference
terms, and 𝜖𝑡 is a mean zero innovation process. In this case, the null hypothesis and
alternative hypothesis are

𝐻0 : 𝜙 = 1

𝐻𝐴 : 𝜙 < 1

For the number of lags, we used the recommendation by Schwert in [132] to set the max
number of lags as ⌊12(𝑇/100)1/4⌋. For this particular dataset, as we adjusted the number
of lags, the end result did not change. We ran the ADF test in MATLAB and we failed
to reject the null hypothesis and concluded the distribution was non-stationary. To confirm
this result, we also ran our data through the KPSS test, which tests whether a time series is
trend stationary versus that it is a non-stationary unit process. It uses the model [133]:

𝑦𝑡 = 𝑐𝑡 + 𝛿𝑡 + 𝑢1𝑡

𝑐𝑡 = 𝑐𝑡−1 + 𝑢2𝑡

where 𝛿 is the trend coefficient, 𝑢1𝑡 is a stationary process, and 𝑢2𝑡 is an independent
and identically distributed process with mean 0 and variance 𝜎2. The null hypothesis and
alternative hypothesis are:

𝐻0 : 𝜎2 = 0

𝐻𝐴 : 𝜎2 > 0

The null hypothesis implies that 𝑐𝑡 , the random walk term is constant, whereas the alternative
hypothesis indicates the existence of the unit root in the random walk. The test statistic is:

∑𝑇
𝑡=1 𝑆

2
𝑡

𝑠2𝑇2

where 𝑇 is the sample size, 𝑠2 is the Newey-West estimate of the long-run variance, and
𝑆𝑡 = 𝑒1 + 𝑒2 + . . . 𝐸𝑡 . The test also requires a suitable number of lags. Based on [134], a
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number of lags on the order of
√
𝑇 , where𝑇 is the sample size, is appropriate. We performed

the KPSS test in MATLAB and got a p-value of .01 allowing us to reject our null-hypothesis.
This result, in conjunction with our result from the ADF test, provides good evidence that
this data is indeed non-stationary. This fact proved to be very significant in our analysis of
specific time intervals.

Based on the time period of interest, for example a single day, that day can be further
subdivided into smaller time intervals (e.g., 10-minute intervals) for more granular analysis.
Once time intervals of interest are determined, the specific transactions within that interval
can be examined using a variety of techniques or filtered even further using other parameters.
Ideally, we would want an idea of what typical activity looked like for a specific period of
time in order to identify anomalous time periods. Based on our knowledge that Ethereum
is a maturing platform, and that its traffic distribution in non-stationary, our goal in this
parameter analysis is two-pronged. First, we want to determine what distribution type best
captures transaction activity in more granular time intervals as to best inform analysis of
the present time. Secondly, we want to show that the distribution of these granular time
intervals has also changed over time. In order to accomplish this, we counted the number
of transactions that occurred in 10-minute intervals over several months. We then took
those transaction counts and graphed them in a histogram. On the subject of time interval
selection, we decided to select time periods that had occurred recently. This was because
these time intervals were better predictors of modern activity than earlier data. As Figure
6.2 shows, very few transactions occurred during the first year post-Ethereum release and
we are interested in modern illicit activity. To that end, we began our analysis with data from
2020. Figure 6.3 shows a comparison between January 2020-March 2020 (a) and January
2021-March 2021 (b).

Obviously, the number of transactions that occurred was much greater in 2021 than in 2020.
The shape of the distributions also looks different. In order to assess the differences between
these distributions, we used the fitmethis [83] function in MATLAB. We tested different
types of transformations on the number of transactions in a 10-minute interval axis before
fitting a model to our distribution. These transformations (see [135]) were a normalization
(divide each 𝑥-axis value by the max 𝑥 value), the log transform (each 𝑥 value is replaced
by log(𝑥)), and the reciprocal transform (each 𝑥 value is replaced by 1

𝑥
).
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Figure 6.3. Transaction Counts Comparison between Jan-Mar 2020 (a) and
Jan-Mar 2021 (b)

Figure 6.4 demonstrates an example of this distribution fitting process and has been trun-
cated to better illustrate the differences between the respective distributions. Table 6.1 is
a tabulation of the relevant parameters, LL, and AIC for each of the distributions. The
time period chosen was Jan 2022 and the transform used was the reciprocal transform. As
noted in Chapter 5, if the AIC for one model is more than 2 less than another, that model
is superior [87]. For example, from Table 6.1, the AIC for the loglogistic distribution is
−84671, which is 99 less than the AIC for the tlocationscale distribution −84572. Thus, the
loglogistic distribution is a better fit for our Ethereum transaction data for Jan 2022.

A summary of the best fit distributions over one-month periods from September of 2020 to
June of 2022 can be found in Table 6.2. We also used a sliding window over three-month
intervals to better understand the effects of individual months on the aggregate distribution.
Those results can be seen in Table 6.3. The time period of study was from September of
2020 to June of 2022.

These tables reveal a couple of important trends. The distribution that best fit the transaction
data has changed over our studied time period. Another important observation was that the
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Figure 6.4. Comparison of Different Distributions for Jan 2022

three-month sliding window results were better from a LL and AIC perspective than the
one-month results. Furthermore, the reciprocal transform provided the best fit across all of
our data. From an analysis perspective, having the most accurate distribution at the desired
time of analysis is significant. For example, finding a period of time where Alice and Bob
embedded hidden messages would require the Warden to understand the distribution of
transactions at a granular level. One of the advantages the Warden has in a blockchain-
based environment is that the ledger is eternal. They can go back in the transaction history
to potentially find hidden data. Of course, as noted in Chapter 3 the content of the hidden
communications between Alice and Bob might be expired, i.e., they may have already
escaped the prison. Furthermore, the fact that the traffic distribution appears to be non-
stationary means that until the Ethereum platform reaches a steady-state condition, the
Warden must continuously update and study these models. To illustrate this point, Figure
6.5 shows the best fit distribution comparison between reciprocal-transformed transaction
data for (a) January 2020-March 2020 and (b) January 2021-March 2021.

To demonstrate how the Warden might use knowledge of the traffic distribution to reduce the
overall number of transactions to inspect, we picked a target time period of Jan-Mar 2021.
For this time period, the best fit distribution was log-normal as can be seen in Figure 6.6. It
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Table 6.1. Distribution Parameters and Fit for Jan 2022 Data:

Name Par1 Par2 Par3 LL AIC
loglogistic -9.01E+00 8.41E-02 4.23E+04 -8.47E+04
tlocationscale 1.23E-04 1.56E-05 5.79E+00 4.23E+04 -8.46E+04
logistic 1.23E-04 1.05E-05 4.23E+04 -8.45E+04
lognormal -9.01E+00 1.54E-01 4.22E+04 -8.45E+04
inversegaussian 1.24E-04 5.17E-03 4.22E+04 -8.44E+04
birnbaumsaunders 1.23E-04 1.55E-01 4.22E+04 -8.44E+04
gev -3.73E-02 1.72E-05 1.15E-04 4.22E+04 -8.44E+04
gamma 4.15E+01 2.99E-06 4.22E+04 -8.43E+04
beta 4.15E+01 3.35E+05 4.22E+04 -8.43E+04
nakagami 1.01E+01 1.58E-08 4.21E+04 -8.41E+04
rician 1.22E-04 2.04E-05 4.19E+04 -8.38E+04
normal 1.24E-04 2.02E-05 4.19E+04 -8.38E+04
weibull 1.32E-04 4.58E+00 4.10E+04 -8.19E+04
ev 1.36E-04 4.82E-05 3.88E+04 -7.77E+04
rayleigh 8.89E-05 3.86E+04 -7.72E+04
gp -3.50E-01 1.48E-04 3.65E+04 -7.29E+04
exponential 1.24E-04 3.57E+04 -7.14E+04
uniform 5.91E-05 4.23E-04 3.54E+04 -7.07E+04
Kernel 3.43E-06 4.24E+04 1.04E+09

is important to note that though the loglogistic distribution was the best fit for the majority of
our time intervals, as we were concerned with our specific time period of Jan-Mar 2021 we
used the log-normal distribution. More broadly, if the Warden was looking to characterize
activity today, they would be better served using the loglogistic distribution as it was the
best fit distribution for the last several sliding windows.

Returning to our time period of Jan-Mar 2021, we can use the parameters of the distribution
to highlight suspicious time intervals. For example, as referenced from Chapter 2, the PDF
of the log-normal distribution is [88]:

𝑓 (𝑥 | `, 𝜎) =
1

𝑥𝜎
√

2𝜋
exp

{
−(log 𝑥 − `)2

2𝜎2

}
, for 𝑥 > 0 (6.1.1)
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Figure 6.5. Distribution Comparison between Jan-Mar 2020 (a) and Jan-Mar
2021 (b)

The parameters of interest for this distribution are the mean `, and the standard deviation
𝜎. The best fit distribution during the time period Jan-Apr 2021 has ` = −9.0560 and
𝜎 = 0.1507.

Figure 6.6 shows the log-normal distribution fitted to the transaction data from Jan-Apr
2021 with 𝜎 and 2 · 𝜎 marked. These regions can be used to select time periods where the
number of transactions falls well outside what would be expected based on the distribution
and reduces the total number of suspicious transactions that must be analyzed further. In
this dataset, 2 ·𝜎 corresponds to 10-minute intervals in which more than 11590 transactions
occurred. Any time interval with more transactions could be flagged as suspicious, greatly
reducing the overall number of transactions that need to be deeply inspected. In our data,
only 290 intervals out of 12816 total intervals, or 2.26% of intervals, had more than 11590
transactions occur.

The challenge facing the Warden is complicated by real-world complexities, however. In
ASGARD, a 10-minute interval is likely too fast to capture the range of embedding activity.
As noted before, sending 1 kB of data would require 512 transactions. Even if all of those
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Figure 6.6. Log-normal Distribution of Jan-Mar 2021

transactions were executed at the same time, depending on the gas price and network
congestion, it could take longer than 10 minutes to process of all of them. Thus, this means
that the Warden must look at a wider time interval or use another parameter in conjunction
with volumetric transaction rate.

6.2 Unique Addresses Activity
Another useful method the Warden could use to detect potential embedding activity is to
look at the distribution of entity activity. In the case of most blockchain protocols, an entity
is represented by either a single address or a set of addresses. Knowing that transactions are
the vehicle for data embedding, looking at high traffic addresses or sets of addresses can
potentially ferret out Alice and Bob. Pham and Lee [136] performed such an analysis on the
Bitcoin dataset (from genesis up to April 7, 2013) and used k-means clustering as a method
to detect outliers. While they focus on long term data, we specifically target more granular
periods of time for our analysis. This facilitates capturing entities that only operate for short
periods of time and are summarily discarded, as occurs in our ASGARD construction.

In order to demonstrate how the Warden might use this approach, addresses that initiated
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transactions were extracted from Ethereum transaction data between March 5, 2021 to
March 15, 2021 using the Google BigQuery ethereum_blockchain database. Python3 was
used for the visualizations and distribution fitting in this section. A histogram showing the
number of transactions associated with the log10 of the number of sending addresses for a
10-day period between March 5-15, 2021 is shown in Figure 6.7.

Figure 6.7. Histogram of Number of Transactions versus Number of Ad-
dresses from March 5-15, 2021

As might be expected, the vast majority of addresses only initiate a few transactions. This
means we can use this data to set a threshold of addresses whose transaction history might be
suspicious. Furthermore, we can map a distribution to this data to further inform threshold
selection. With this type of network data, logarithmic binning is often used to reduce the
number of bins required for a histogram. Once that binning is complete, we used the center
of the bin as a discrete data point for curve fitting [137]. Blockchain address data can often
be fit to the power law function [136] [138] [139], which is defined as:

𝑓 (𝑥 | 𝐴, 𝑘) = 𝐴𝑥𝑘 (6.2.1)

For this function, 𝐴 is amplitude and 𝑘 is the exponent. Figure 6.8 shows a power law model
being fitted to our 10 day period. The value of 𝐴 was 7.320 ± 0.195 and the value of 𝑘 was
−0.131 ± 0.006. The 𝑅2 value was 98.8%, indicating that the model was an excellent fit
for the data. With these parameters, a threshold can be set whereby accounts that initiate
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over a certain number of transactions during a particular time interval can be flagged. Then,
the transactions initiated by that account can be analyzed further for malicious or illegal
activity.

Figure 6.8. Power law Fit of Histogram of Number of Transactions versus
Number of Sender Addresses from March 5-15, 2021

Not unexpectedly, looking at another same 10-day period with respect to receiving address
instead of sending addresses shows a similar distribution with different parameters. Figure
6.9 shows the power law model being fitted to the receiver address distribution for the time
period between March 5-15, 2021.

The value of 𝐴 was 7.198±0.369 and the value of 𝑘 was −0.139±0.011. The 𝑅2 value was
96.8% indicating that the model was an excellent fit for this data as well. These distributions
can help to reduce the total number of transactions that might be considered suspicious
for analysis. Once these transactions have been identified, they can be used as input to a
variety of follow-on detection algorithms. For example, perhaps the Warden only looks at
addresses that performed more than 20 transactions in a 10-day interval as suspicious. We
stress that this trend exists for any individual day and thus can be used in conjunction with
our volumetric analysis to further reduce the number of transactions of interest. From the
perspective of our ASGARD construction, this type of analysis is the reason why the size of
the identity sets is significant. If addresses can be correlated, the sum of transactions from
suspicious addresses can be used in a similar manner to potentially detect our embedding
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Figure 6.9. Power law Fit of Histogram of Number of Transactions versus
Number of Receiver Addresses from March 5-15, 2021

strategy. This was the basis for our recommendation that Alice and Bob only use an address
a single time before swapping. Of course, this creates practical hurdles and leads to an
interesting avenue of future work, characterizing the number of times a unique address can
be used before it becomes suspicious.

6.3 Summary
In this chapter, we presented some parameters that the Warden might be able to use to detect
our embedding construction. We presented evidence of the non-stationary nature of the
Ethereum distribution, explored volumetric transaction rate and unique address activity as
parameters of interest, and showed how those parameters might be used to detect suspicious
transactions or account addresses.
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Table 6.2. Best-fit Distribution for Transaction Counts over One-Month In-
tervals From September of 2020 to June of 2022

Sep 20 Norm Log Reciprocal Oct 20 Norm Log Reciprocal
Distribution lognormal nakagami lognormal Distribution gev normal inversegaussian
LL 4.13E+03 4.76E+03 3.97E+04 LL 3.98E+03 5.05E+03 4.11E+04
AIC -8.26E+03 -9.52E+03 -7.94E+04 AIC -7.96E+03 -1.01E+04 -8.21E+04

Nov 20 Norm Log Reciprocal Dec 20 Norm Log Reciprocal
Distribution gamma normal gev Distribution lognormal tlocationscale lognormal
LL 4.27E+03 5.18E+03 4.03E+04 LL 5.09E+03 5.40E+03 4.18E+04
AIC -8.54E+03 -1.04E+04 -8.05E+04 AIC -1.02E+04 -1.08E+04 -8.35E+04

Jan 21 Norm Log Reciprocal Feb 21 Norm Log Reciprocal
Distribution lognormal tlocationscale lognormal Distribution gamma tlocationscale lognormal
LL 4.27E+03 5.80E+03 4.24E+04 LL 4.06E+03 5.12E+03 3.72E+04
AIC -8.53E+03 -1.16E+04 -8.47E+04 AIC -8.11E+03 -1.02E+04 -7.43E+04

Mar 21 Norm Log Reciprocal Apr 21 Norm Log Reciprocal
Distribution lognormal tlocationscale lognormal Distribution lognormal tlocationscale lognormal
LL 4.98E+03 6.02E+03 4.28E+04 LL 5.40E+03 5.35E+03 4.13E+04
AIC -9.95E+03 -1.20E+04 -8.56E+04 AIC -1.08E+04 -1.07E+04 -8.27E+04

May 21 Norm Log Reciprocal Jun 21 Norm Log Reciprocal
Distribution gamma tlocationscale gev Distribution loglogistic tlocationscale loglogistic
LL 4.56E+03 5.02E+03 4.24E+04 LL 4.41E+03 4.94E+03 4.03E+04
AIC -9.11E+03 -1.00E+04 -8.48E+04 AIC -8.82E+03 -9.87E+03 -8.06E+04

Jul 21 Norm Log Reciprocal Aug 21 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution tlocationscale tlocationscale loglogistic
LL 4.54E+03 4.96E+03 4.15E+04 LL 4.76E+03 5.38E+03 4.19E+04
AIC -9.08E+03 -9.92E+03 -8.30E+04 AIC -9.52E+03 -1.08E+04 -8.37E+04

Sep 21 Norm Log Reciprocal Oct 21 Norm Log Reciprocal
Distribution tlocationscale tlocationscale loglogistic Distribution loglogistic tlocationscale loglogistic
LL 7.45E+03 5.17E+03 4.04E+04 LL 5.08E+03 5.49E+03 4.22E+04
AIC -1.49E+04 -1.03E+04 -8.08E+04 AIC -1.02E+04 -1.10E+04 -8.44E+04

Nov 21 Norm Log Reciprocal Dec 21 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution loglogistic tlocationscale loglogistic
LL 6.79E+03 5.85E+03 4.15E+04 LL 6.45E+03 5.73E+03 4.24E+04
AIC -1.36E+04 -1.17E+04 -8.31E+04 AIC -1.29E+04 -1.15E+04 -8.48E+04

Jan 22 Norm Log Reciprocal Feb 22 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution loglogistic tlocationscale tlocationscale
LL 5.38E+03 5.86E+03 4.23E+04 LL 5.46E+03 5.51E+03 3.84E+04
AIC -1.08E+04 -1.17E+04 -8.47E+04 AIC -1.09E+04 -1.10E+04 -7.68E+04
Mar 22 Norm Log Reciprocal Apr 22 Norm Log Reciprocal
Distribution loglogistic tlocationscale tlocationscale Distribution loglogistic tlocationscale tlocationscale
LL 6.81E+03 6.15E+03 4.25E+04 LL 6.51E+03 6.04E+03 4.11E+04
AIC -1.36E+04 -1.23E+04 -8.51E+04 AIC -1.30E+04 -1.21E+04 -8.22E+04
May 22 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic
LL 5.73E+03 5.83E+03 4.21E+04
AIC -1.15E+04 -1.17E+04 -8.42E+04

100



Table 6.3. Best-fit Distribution for Transaction Counts over Three-Month
Sliding Windows From August of 2020 to June of 2022

Aug-Oct 20 Norm Log Reciprocal Sep-Nov 20 Norm Log Reciprocal
Distribution gamma normal gev Distribution birnbaumsaunders normal inversegaussian
LL 1.25E+04 1.47E+04 1.22E+05 LL 1.29E+04 1.49E+04 1.21E+05
AIC -2.50E+04 -2.94E+04 -2.44E+05 AIC -2.58E+04 -2.98E+04 -2.46E+05

Oct-Dec 20 Norm Log Reciprocal Nov 20-Jan 21 Norm Log Reciprocal
Distribution lognormal tlocationscale lognormal Distribution lognormal tlocationscale lognormal
LL 1.50E+04 1.54E+04 1.23E+05 LL 1.52E+04 1.61E+04 1.24E+05
AIC -3.00E+04 -3.08E+04 -2.46E+05 AIC -3.03E+04 -3.22E+04 -2.48E+05

Dec 20-Feb 21 Norm Log Reciprocal Jan-Mar 21 Norm Log Reciprocal
Distribution lognormal tlocationscale lognormal Distribution lognormal tlocationscale lognormal
LL 1.45E+04 1.59E+04 1.21E+05 LL 1.40E+04 1.68E+04 1.22E+05
AIC -2.89E+04 -3.18E+04 -2.42E+05 AIC -2.79E+04 -3.35E+04 -2.44E+05

Feb-Apr 21 Norm Log Reciprocal Mar-May 21 Norm Log Reciprocal
Distribution lognormal tlocationscale lognormal Distribution lognormal lognormal gamma
LL 1.69E+04 1.60E+04 1.21E+05 LL 1.59E+04 1.56E+04 1.26E+05
AIC -3.37E+04 -3.20E+04 -2.42E+05 AIC -3.19E+04 -3.11E+04 -2.51E+05

Apr-Jun 21 Norm Log Reciprocal May-Jul 21 Norm Log Reciprocal
Distribution gamma tlocationscale lognormal Distribution loglogistic tlocationscale loglogistic
LL 1.46E+04 1.40E+04 1.23E+05 LL 1.37E+04 1.35E+04 1.23E+05
AIC -2.91E+04 -2.80E+04 -2.45E+05 AIC -2.73E+04 -2.69E+04 -2.45E+05

Jun-Aug 21 Norm Log Reciprocal Jul-Sep 21 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution tlocationscale tlocationscale loglogistic
LL 1.40E+04 1.53E+04 1.24E+05 LL 2.23E+04 1.55E+04 1.24E+05
AIC -2.80E+04 -3.05E+04 -2.47E+05 AIC -4.46E+04 -3.09E+04 -2.47E+05

Aug-Oct 21 Norm Log Reciprocal Sep-Nov 21 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution tlocationscale tlocationscale loglogistic
LL 4.15E+04 1.59E+04 1.24E+05 LL 2.23E+04 1.61E+04 1.24E+05
AIC -8.31E+04 -3.17E+04 -2.49E+05 AIC -4.46E+04 -3.21E+04 -2.47E+05

Oct-Dec 21 Norm Log Reciprocal Nov 21-Jan 22 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution loglogistic tlocationscale loglogistic
LL 2.02E+04 1.69E+04 1.26E+05 LL 2.05E+04 1.70E+04 1.26E+05
AIC -4.04E+04 -3.38E+04 -2.52E+05 AIC -4.11E+04 -3.40E+04 -2.52E+05

Dec 21-Feb 22 Norm Log Reciprocal Jan-Mar 22 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution loglogistic tlocationscale loglogistic
LL 1.94E+04 1.69E+04 1.23E+05 LL 1.92E+04 1.75E+04 1.23E+05
AIC -3.88E+04 -3.39E+04 -2.46E+05 AIC -3.85E+04 -3.49E+04 -2.46E+05
Feb-Apr 22 Norm Log Reciprocal Mar-May 22 Norm Log Reciprocal
Distribution loglogistic tlocationscale loglogistic Distribution loglogistic tlocationscale loglogistic
LL 1.96E+04 1.76E+04 1.22E+05 LL 2.02E+04 1.79E+04 1.26E+05
AIC -3.92E+04 -3.52E+04 -2.44E+05 AIC -4.03E+04 -3.58E+04 -2.51E+05
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CHAPTER 7:
Conclusion

The goal of our work was the exploration of how privacy-based applications and anonymity-
based applications like blockchain-based protocols have changed the information hiding
space. Broadly speaking, our work fell into three categories. The first category covered the
role of anonymity in steganographic schemes, developed a model for anonymized secure
communications, and proposed with a framework to assess and evaluate those schemes. In
the furtherance of these efforts, we presented a set of definitions and experiments designed
to capture the level of security that a scheme exhibited.

The second category revolved around the development of a specific embedding approach
(in this case using the receiving address field in a blockchain-based protocol) and a practical
implementation of that approach in a current blockchain protocol (Ethereum). Our Ethereum
test network served as a mechanism to showcase our practical implementation in a real world
scenario. We then performed an analysis of those approaches and implementations using
our steganographic security analysis framework, ASAD.

Finally, our third category was an analysis of blockchain protocol data, particularly for the
Ethereum platform. We analyzed several different components of Ethereum transactions and
developed metrics for malicious transaction detection that properly used, could potentially
detect some of our embedding activity. These three lines of effort worked in concert to
create a cohesive narrative regarding steganography in an age of anonymity with blockchain
as a major example of emerging anonymity-based technologies.

7.1 Significant Contributions
The research encapsulated within this dissertation has advanced the body of research
in steganography. Our contribution in this area is twofold as we both consider the role
anonymity plays within a steganographic scheme and establish an anonymized secure com-
munications model, as well as provide a framework by which steganographic schemes
can be evaluated. Our second significant contribution was the development of blockchain-
based embedding algorithms and a practical implementation of those algorithms in an
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Ethereum testbed. Furthermore, we provided a security analysis of our embedding algo-
rithms and practical implementation. Our final major contribution was our data modeling of
the Ethereum blockchain and the development of metrics for malicious transaction detection
and an analysis of their potential impacts on our embedding approaches.

7.1.1 Extending the Body of Steganographic Literature
We identified that Simmons’ seminal conception of steganographic channels, the Prisoners’
Problem [19], was not sufficient to describe situations where the Warden could not positively
determine the identities of their prisoners. To address this shortcoming, we developed the
anonymized Prisoners’ Problem and used that conception of steganographic channels to
create an anonymized secure communications model that incorporated identity sets and
channel state estimation.

We also realized that we needed a mechanism to assess the security properties of stegano-
graphic schemes. While seminal works like [28] and [29] provide some of the information
theoretic and provable security bases for steganographic schemes, there was a lack of consid-
eration for a Warden with more sophisticated abilities than simply monitoring an authorized
communication channel. Thus, we introduced our ASAD framework to account for the
Warden’s ability to potentially forge, replay, reorder, or drop communications, borrowing
from well-known AEAD concepts. To our knowledge this is the first work to extend classical
AEAD concepts into the steganographic space.

7.1.2 Blockchain-based Embedding Algorithms
Unlike many specific embedding approaches in blockchain protocols (see Chapter 2), we
presented an generic address embedding algorithm, ASGARD that had a much larger
throughput than other provably secure address embedding schemes (see [20]). We used our
ASAD framework to analyze our ASGARD construction and provided proofs regarding
several of its properties including the Warden’s ability to detect an embedded message
(IND-CHA), as well as the Warden’s ability to forge, replay, reorder, or drop transactions.

Finally, we presented a proof-of-concept practical implementation in Ethereum and per-
formed a more thorough security analysis of the implementation using our ASAD frame-
work and specific Ethereum implementation details. Importantly, we provided significant
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evidence that the output of the Keccak-256 hashing algorithm and the output of the AES-256
both appeared to be random and thus were indistinguishable from each other.

7.1.3 Analysis of Ethereum Blockchain Data
In the course of our work attempting to embed information in the Ethereum blockchain,
we had to gain a detailed understanding of several of the underlying fields in an Ethereum
transaction. In Chapter 5 and Chapter 6, we examined a number of those fields in Ethereum.
In Chapter 5, we provided an analysis of the value field and its best-fit distribution over the
last 12 months. We also used that information to determine about how much money would
need to be sent per transaction as part of our practical scheme. We also used the input data
field as an illustration of how making mistakes with associated data fields can easily tip
the Warden off as to the presence of a suspicious transaction. In Chapter 6, we presented
aggregate data metrics for malicious transaction detection, volumetric transaction rate and
unique address activity. A combination of these metrics could enable the Warden to identify
our embedded transactions, especially if we limited the size of the identity set. Thus, we
were able to provide a set of recommendations, such as ensuring that an address only be
used once in our scheme, to better prevent the Warden from identifying our communication
efforts.

7.2 Future Work
Similar to our approach in Section 7.1, we also breakout future work opportunities by
contribution. With regards to our steganographic extensions, we did not present a formal
experiment to look at unlinkability. One avenue of future work would be presenting an
experiment similar to the ones in our ASAD framework that encapsulated unlinkability.
Furthermore, we also did not present a formalization for the digital ledger. Our work can be
extended by incorporating security experiments related to the role of the ledger.

From the perspective of our blockchain-based embedding algorithm, our construction was
only one out of several possible constructions. There is ample future work possible in pre-
senting a different construction and analyzing it using our ASAD framework. In terms of
practical implementation, exploiting the unique opportunities that specific blockchain pro-
tocols present (for example using Bitcoin instead of Ethereum, etc.), might provide another
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interesting avenue for extension. Furthermore, though we considered the consequences of
address reuse in our ASGARD construction, there is ground to be covered in answering the
question of how many times an address can be reused before requiring a switch to another
address.

With regards to data modeling of the Ethereum blockchain, one area we did not explore was
the presence of layer 2 or off-chain transactions where a number of actions can take place,
but only the final result is stored on the blockchain ledger (see the Lightning network [140]
as an example of off-chain transactions). As they become more common, these types of
transactions could potentially alter the distribution of transaction traffic and the other metrics
that we developed.

Another area in our exploration of data modeling of the Ethereum blockchain that we did
not fully examine was using our metrics to detect malicious activity, whether via embedding
or other nefarious activity. One interesting aspect is that both for volumetric transaction rate
and for address analysis, the distributions are long-tailed. We believe that clustering around
both the head and the long tail can provide important information as to normal network
operation and potential outlier activity. This in turn could be used to identify malicious
activity.

In conclusion, the proliferation of blockchain protocols and other privacy-based/anonymity-
based protocols offers several unique and useful features for transmission of covert mes-
sages. Understanding those features, characterizing them, and leveraging them is critical to
evolving the field of steganography.
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APPENDIX A:
Stateful AEAD Definition and Experiments

We present the Stateful Authenticated Encryption with Associated Data (AEAD) definition
and security experiments from [27] as guides to our ASAD experiment and definition.

Definition A.0.1. Let Π be a stateful AEAD scheme and let A be a PPT adversarial
algorithm, let 𝑖 ∈ {1, . . . , 4} and let 𝑏 ∈ {0, 1}. The stateful AEAD experiment for Π with
condition cond𝑖 and bit b is given by Expaead𝑖−𝑏

Π
(A) in Figure A.1. We define

Advaead𝑖
Π

(A) =
����Pr

[
Expaead𝑖-1

Π
(A) = 1

]
−

Pr
[
Expaead𝑖-0

Π
(A) = 1

] ���� .
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Expauthi
Π,A():

1: 𝑘 $← Kgn()
2: 𝑠𝑡𝐸 ←⊥, 𝑠𝑡𝐷 ←⊥
3: 𝑢 ← 0, 𝑣← 0
4: out-of-sync← 0
5: 𝑏′ $← AEncrypt(·)Decrypt(·)()
6: return 𝑏′

Oracle Decrypt(ad, 𝑐)
1: if 𝑏 = 0 then
2: return ⊥
3: end if
4: 𝑣← 𝑣 + 1
5: 𝑟𝑐𝑣𝑑.𝑐𝑣 ← 𝑐

6: (ad, 𝑚, 𝛼, 𝑠𝑡𝐷)← D(𝑘, ad, 𝑐, 𝑠𝑡𝐷)
7: if (𝑖 = 4) ∧ cond4 then
8: out-of-sync← 1
9: else if (𝛼 = 1) ∧ cond𝑖 then

10: out-of-sync← 1
11: end if
12: if out-of-sync = 1 then
13: return 𝑚

14: end if
15: return ⊥

Oracle Encrypt(ℓ, ad, 𝑚0, 𝑚1)
1: 𝑢 ← 𝑢 + 1
2: (𝑠𝑒𝑛𝑡.𝑐(0), 𝑠𝑡(0)

𝐸
)← E(𝑘, ℓ, ad, 𝑚0, 𝑠𝑡𝐸)

3: (𝑠𝑒𝑛𝑡.𝑐(1), 𝑠𝑡(1)
𝐸

)← E(𝑘, ℓ, ad, 𝑚1, 𝑠𝑡𝐸)
4: if 𝑠𝑒𝑛𝑡.𝑐(0) =⊥ or 𝑠𝑒𝑛𝑡.𝑐(1) =⊥ then
5: return ⊥
6: end if
7: (𝑠𝑒𝑛𝑡.𝑎𝑑𝑢, 𝑠𝑒𝑛𝑡.𝑐𝑢, 𝑠𝑡𝐸) := (ad, 𝑠𝑒𝑛𝑡.𝑐(𝑏), 𝑠𝑡(𝑏)

𝐸
)

8: return 𝑠𝑒𝑛𝑡.𝑐𝑢

Authentication Conditions
1. Basic authenticated stego:

cond1 = (�𝑤 : (𝑐 = 𝑠𝑒𝑛𝑡.𝑐𝑤) ∧ (ad = 𝑠𝑒𝑛𝑡.𝑎𝑑𝑤))
2. Basic authenticated stego, no replays:

cond2 = (�𝑤 : (𝑐 = 𝑠𝑒𝑛𝑡.𝑐𝑤) ∧ (ad = 𝑠𝑒𝑛𝑡.𝑎𝑑𝑤)) ∨ (∃𝑤 < 𝑣 : 𝑐 = 𝑟𝑐𝑣𝑑.𝑐𝑤)
3. Basic authenticated stego, no replays, strictly increasing:

cond3 = (�𝑤 : (𝑐 = 𝑠𝑒𝑛𝑡.𝑐𝑤)∧(ad = 𝑠𝑒𝑛𝑡.𝑎𝑑𝑤))∨(∃𝑤, 𝑥, 𝑦 : (𝑤 < 𝑣)∧(𝑠𝑒𝑛𝑡.𝑐𝑥 = 𝑟𝑐𝑣𝑑.𝑐𝑤)∧(𝑠𝑒𝑛𝑡.𝑐𝑦 =
𝑟𝑐𝑣𝑑.𝑐𝑣) ∧ (𝑥 ≥ 𝑦))

4. Basic authenticated stego, no replays, strictly increasing, no drops:
cond4 = (𝑢 < 𝑣) ∨ (𝑐 ̸= 𝑠𝑒𝑛𝑡.𝑐𝑣) ∨ (ad ̸= 𝑠𝑒𝑛𝑡.𝑎𝑑𝑣)

Figure A.1. Stateful AEAD Experiment authi with Authentication Condition
cond𝑖 for Stateful AEAD Scheme Π = (Kgn, E, D) and Adversary A
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APPENDIX B:
NIST Randomness Test Output for Keccak-256

Hashes

This appendix presents the results of our comparison between the output of the Keccak-256
algorithm and random. As noted in Chapter 5, we used the NIST randomness tests [112]
and the published code to perform this analysis.

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

generator is <data/hedat_400mil>

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

19 16 13 21 29 25 20 17 17 23 0.350485 198/200 Frequency

19 14 21 29 14 22 18 23 25 15 0.268917 198/200 BlockFrequency

21 16 14 20 20 19 24 22 20 24 0.875539 197/200 CumulativeSums

19 13 19 29 22 14 18 22 27 17 0.219006 199/200 CumulativeSums

23 15 22 13 25 21 24 22 19 16 0.585209 196/200 Runs

19 14 25 15 22 27 22 18 20 18 0.574903 197/200 LongestRun

19 26 18 23 25 12 17 18 15 27 0.255705 198/200 Rank

33 22 18 15 19 21 14 17 14 27 0.053627 195/200 FFT

14 23 20 24 19 18 21 18 24 19 0.883171 199/200 NonOverlappingTemplate

23 21 22 15 19 14 33 21 15 17 0.122325 199/200 NonOverlappingTemplate

20 24 15 16 28 21 15 25 20 16 0.401199 199/200 NonOverlappingTemplate

24 21 22 16 15 15 22 24 22 19 0.779188 198/200 NonOverlappingTemplate

26 20 17 17 15 24 20 25 22 14 0.534146 199/200 NonOverlappingTemplate

29 18 18 16 23 15 19 20 20 22 0.616305 198/200 NonOverlappingTemplate

22 21 28 18 17 18 24 15 19 18 0.678686 199/200 NonOverlappingTemplate

18 23 24 26 19 15 15 13 27 20 0.296834 196/200 NonOverlappingTemplate

17 18 27 17 17 27 27 18 17 15 0.289667 196/200 NonOverlappingTemplate

26 12 25 27 14 18 21 22 9 26 0.026948 198/200 NonOverlappingTemplate
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21 16 22 21 19 18 17 22 23 21 0.980883 199/200 NonOverlappingTemplate

20 28 32 13 19 21 18 14 16 19 0.071177 200/200 NonOverlappingTemplate

15 16 22 16 23 15 21 23 25 24 0.605916 197/200 NonOverlappingTemplate

17 24 12 18 20 31 14 25 21 18 0.122325 198/200 NonOverlappingTemplate

18 15 23 19 27 21 18 17 16 26 0.564639 198/200 NonOverlappingTemplate

13 17 17 17 30 19 14 27 25 21 0.108791 199/200 NonOverlappingTemplate

17 19 16 14 19 17 32 28 22 16 0.090936 198/200 NonOverlappingTemplate

19 27 22 19 22 17 18 19 16 21 0.875539 198/200 NonOverlappingTemplate

27 19 19 13 16 14 18 23 23 28 0.219006 195/200 NonOverlappingTemplate

19 18 25 22 14 11 23 26 25 17 0.242986 199/200 NonOverlappingTemplate

19 24 26 14 17 20 20 22 18 20 0.807412 196/200 NonOverlappingTemplate

26 19 21 16 21 16 21 24 19 17 0.842937 198/200 NonOverlappingTemplate

16 28 18 16 18 20 15 24 25 20 0.484646 199/200 NonOverlappingTemplate

24 14 21 15 17 18 19 25 23 24 0.626709 195/200 NonOverlappingTemplate

19 16 14 20 22 22 21 17 26 23 0.759756 200/200 NonOverlappingTemplate

21 21 24 17 23 17 15 20 19 23 0.911413 197/200 NonOverlappingTemplate

21 26 20 24 13 20 18 18 19 21 0.779188 199/200 NonOverlappingTemplate

23 21 22 21 16 19 14 22 17 25 0.807412 199/200 NonOverlappingTemplate

19 17 24 21 18 23 14 11 34 19 0.038818 197/200 NonOverlappingTemplate

21 20 13 18 17 26 23 21 21 20 0.788728 194/200 NonOverlappingTemplate

23 13 27 12 14 16 23 20 26 26 0.085587 200/200 NonOverlappingTemplate

20 24 19 19 16 18 12 24 30 18 0.268917 196/200 NonOverlappingTemplate

23 14 26 17 27 17 17 18 16 25 0.342451 199/200 NonOverlappingTemplate

18 24 22 20 20 15 15 21 27 18 0.699313 200/200 NonOverlappingTemplate

21 16 15 22 15 26 25 17 21 22 0.605916 196/200 NonOverlappingTemplate

20 18 21 14 16 21 19 22 30 19 0.514124 198/200 NonOverlappingTemplate

16 29 26 20 20 11 24 18 23 13 0.102526 197/200 NonOverlappingTemplate

23 13 28 19 19 30 14 12 22 20 0.058984 199/200 NonOverlappingTemplate

15 26 26 25 11 17 20 18 23 19 0.255705 198/200 NonOverlappingTemplate

25 27 12 17 23 20 19 15 17 25 0.289667 199/200 NonOverlappingTemplate

26 34 18 18 20 15 24 16 15 14 0.036352 199/200 NonOverlappingTemplate

28 21 20 18 23 12 24 22 19 13 0.304126 198/200 NonOverlappingTemplate

26 21 18 16 27 17 18 16 15 26 0.366918 200/200 NonOverlappingTemplate

18 19 25 23 16 22 21 14 19 23 0.807412 198/200 NonOverlappingTemplate

13 8 27 22 21 26 21 16 21 25 0.060875 198/200 NonOverlappingTemplate
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17 20 15 23 18 23 21 24 18 21 0.917870 198/200 NonOverlappingTemplate

17 16 26 19 25 18 12 16 24 27 0.224821 199/200 NonOverlappingTemplate

21 16 17 32 18 25 16 16 24 15 0.137282 199/200 NonOverlappingTemplate

17 23 24 24 21 15 24 15 16 21 0.668321 199/200 NonOverlappingTemplate

14 23 22 17 18 21 18 25 22 20 0.851383 200/200 NonOverlappingTemplate

20 20 24 20 17 22 15 17 18 27 0.759756 199/200 NonOverlappingTemplate

24 23 20 23 12 17 15 22 24 20 0.574903 198/200 NonOverlappingTemplate

22 16 26 14 17 25 23 15 24 18 0.437274 196/200 NonOverlappingTemplate

18 22 16 16 10 24 21 23 26 24 0.282626 196/200 NonOverlappingTemplate

14 10 23 27 23 18 20 18 27 20 0.162606 200/200 NonOverlappingTemplate

19 20 19 24 24 14 25 17 18 20 0.798139 197/200 NonOverlappingTemplate

19 18 24 17 22 12 22 30 18 18 0.311542 200/200 NonOverlappingTemplate

25 18 19 19 19 20 14 20 21 25 0.859637 199/200 NonOverlappingTemplate

24 21 24 24 21 13 13 19 23 18 0.524101 199/200 NonOverlappingTemplate

20 18 18 19 22 14 19 20 24 26 0.825505 200/200 NonOverlappingTemplate

24 17 15 20 13 26 24 23 19 19 0.524101 198/200 NonOverlappingTemplate

25 17 18 19 19 16 18 14 23 31 0.255705 200/200 NonOverlappingTemplate

18 14 20 21 23 21 26 22 13 22 0.616305 197/200 NonOverlappingTemplate

28 19 25 16 25 12 23 22 18 12 0.129620 197/200 NonOverlappingTemplate

20 18 17 24 17 23 19 24 16 22 0.897763 197/200 NonOverlappingTemplate

25 14 17 19 16 22 20 25 21 21 0.749884 196/200 NonOverlappingTemplate

20 26 23 14 22 15 21 21 22 16 0.678686 198/200 NonOverlappingTemplate

26 19 13 18 26 28 18 13 17 22 0.171867 195/200 NonOverlappingTemplate

18 21 14 31 25 19 20 13 20 19 0.219006 199/200 NonOverlappingTemplate

24 23 26 18 13 25 18 22 20 11 0.249284 199/200 NonOverlappingTemplate

24 20 18 16 13 27 13 27 15 27 0.083018 196/200 NonOverlappingTemplate

19 25 12 26 19 19 22 15 27 16 0.268917 196/200 NonOverlappingTemplate

19 16 22 21 24 21 18 19 17 23 0.960198 197/200 NonOverlappingTemplate

21 24 19 17 22 19 16 25 25 12 0.524101 197/200 NonOverlappingTemplate

14 23 20 24 19 18 21 18 24 19 0.883171 199/200 NonOverlappingTemplate

23 19 18 19 22 27 16 16 21 19 0.825505 197/200 NonOverlappingTemplate

12 26 22 23 16 22 18 22 15 24 0.428095 198/200 NonOverlappingTemplate

17 22 17 15 20 28 19 21 23 18 0.709558 200/200 NonOverlappingTemplate

14 25 18 19 21 17 22 27 14 23 0.465415 198/200 NonOverlappingTemplate

14 24 22 19 25 23 22 15 17 19 0.689019 197/200 NonOverlappingTemplate
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26 16 34 12 15 16 22 15 24 20 0.018540 199/200 NonOverlappingTemplate

20 23 23 25 14 20 18 19 21 17 0.859637 195/200 NonOverlappingTemplate

21 16 19 22 21 28 18 18 20 17 0.816537 198/200 NonOverlappingTemplate

19 14 26 20 30 15 15 22 20 19 0.249284 200/200 NonOverlappingTemplate

16 22 11 17 28 17 23 19 23 24 0.282626 200/200 NonOverlappingTemplate

19 21 15 26 14 26 23 14 22 20 0.419021 198/200 NonOverlappingTemplate

22 18 23 20 19 18 18 18 23 21 0.991468 198/200 NonOverlappingTemplate

19 16 17 21 25 24 29 19 12 18 0.282626 200/200 NonOverlappingTemplate

16 20 23 16 19 24 16 24 19 23 0.834308 200/200 NonOverlappingTemplate

21 20 24 24 23 18 22 15 19 14 0.779188 197/200 NonOverlappingTemplate

23 21 18 22 19 24 8 27 14 24 0.122325 196/200 NonOverlappingTemplate

19 31 25 17 14 14 25 17 22 16 0.118812 200/200 NonOverlappingTemplate

22 22 14 17 23 17 15 14 31 25 0.125927 199/200 NonOverlappingTemplate

22 17 19 21 19 15 15 28 20 24 0.605916 195/200 NonOverlappingTemplate

18 15 16 25 26 15 18 26 20 21 0.474986 200/200 NonOverlappingTemplate

26 15 18 23 15 13 17 26 22 25 0.268917 198/200 NonOverlappingTemplate

15 25 22 17 15 21 24 24 22 15 0.585209 198/200 NonOverlappingTemplate

12 22 23 25 22 24 9 27 22 14 0.055361 199/200 NonOverlappingTemplate

28 21 16 18 20 16 21 14 26 20 0.465415 194/200 NonOverlappingTemplate

18 22 20 24 18 26 22 12 18 20 0.657933 199/200 NonOverlappingTemplate

22 18 20 17 30 21 19 8 20 25 0.108791 195/200 NonOverlappingTemplate

19 11 24 18 16 22 25 23 19 23 0.504219 199/200 NonOverlappingTemplate

18 27 21 23 24 13 21 21 23 9 0.162606 199/200 NonOverlappingTemplate

14 25 18 16 24 23 30 15 18 17 0.202268 200/200 NonOverlappingTemplate

22 21 15 19 20 11 21 23 25 23 0.554420 196/200 NonOverlappingTemplate

14 19 17 20 28 25 19 24 13 21 0.342451 199/200 NonOverlappingTemplate

20 17 19 22 16 17 21 16 22 30 0.534146 199/200 NonOverlappingTemplate

20 17 23 25 23 14 20 18 22 18 0.834308 197/200 NonOverlappingTemplate

19 15 23 22 16 19 20 22 17 27 0.749884 200/200 NonOverlappingTemplate

19 27 13 23 22 18 19 7 22 30 0.021262 200/200 NonOverlappingTemplate

20 23 24 17 17 25 13 29 14 18 0.219006 198/200 NonOverlappingTemplate

13 20 20 24 21 22 22 23 21 14 0.739918 198/200 NonOverlappingTemplate

17 21 22 19 26 27 15 17 20 16 0.585209 199/200 NonOverlappingTemplate

13 22 28 18 25 19 24 18 19 14 0.334538 196/200 NonOverlappingTemplate

11 29 23 18 25 26 20 16 12 20 0.071177 197/200 NonOverlappingTemplate
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14 15 20 20 19 18 23 32 27 12 0.055361 197/200 NonOverlappingTemplate

16 23 25 22 19 14 31 21 16 13 0.125927 199/200 NonOverlappingTemplate

19 15 21 23 21 18 21 19 23 20 0.978072 199/200 NonOverlappingTemplate

23 23 18 22 18 14 22 22 22 16 0.859637 200/200 NonOverlappingTemplate

26 23 18 18 20 18 17 18 20 22 0.930026 198/200 NonOverlappingTemplate

21 22 22 21 21 12 19 30 11 21 0.167184 200/200 NonOverlappingTemplate

16 17 31 24 23 14 22 15 19 19 0.219006 199/200 NonOverlappingTemplate

19 17 24 16 20 19 14 29 18 24 0.437274 198/200 NonOverlappingTemplate

19 19 20 21 23 19 27 22 12 18 0.668321 196/200 NonOverlappingTemplate

19 15 21 21 24 23 19 24 17 17 0.883171 199/200 NonOverlappingTemplate

25 18 17 15 19 19 20 18 23 26 0.769527 199/200 NonOverlappingTemplate

23 17 17 16 31 20 18 14 26 18 0.202268 198/200 NonOverlappingTemplate

21 23 24 23 15 18 14 21 18 23 0.769527 199/200 NonOverlappingTemplate

18 14 26 20 15 31 19 11 22 24 0.062821 199/200 NonOverlappingTemplate

16 15 18 17 21 19 29 25 18 22 0.484646 197/200 NonOverlappingTemplate

19 16 18 20 24 15 17 22 26 23 0.739918 197/200 NonOverlappingTemplate

22 26 15 18 14 20 10 24 21 30 0.064822 198/200 NonOverlappingTemplate

23 20 22 25 20 24 19 14 24 9 0.249284 200/200 NonOverlappingTemplate

20 23 18 25 22 16 23 22 18 13 0.719747 197/200 NonOverlappingTemplate

20 21 17 19 19 21 19 20 24 20 0.997147 198/200 NonOverlappingTemplate

19 15 20 14 22 24 26 23 21 16 0.616305 199/200 NonOverlappingTemplate

17 21 19 22 24 19 29 22 19 8 0.158133 198/200 NonOverlappingTemplate

19 22 27 25 19 19 14 19 20 16 0.668321 198/200 NonOverlappingTemplate

17 18 13 22 22 20 14 26 21 27 0.383827 198/200 NonOverlappingTemplate

13 19 23 16 27 26 20 30 13 13 0.036352 197/200 NonOverlappingTemplate

19 20 20 23 17 20 20 22 24 15 0.955835 199/200 NonOverlappingTemplate

18 19 23 20 15 21 16 22 24 22 0.911413 198/200 NonOverlappingTemplate

24 15 17 22 22 16 18 21 18 27 0.678686 198/200 NonOverlappingTemplate

19 22 21 15 21 18 22 18 17 27 0.825505 198/200 NonOverlappingTemplate

18 17 24 17 26 18 19 21 16 24 0.779188 198/200 NonOverlappingTemplate

19 20 24 15 23 21 15 20 22 21 0.904708 198/200 NonOverlappingTemplate

19 19 22 19 19 25 17 20 23 17 0.964295 197/200 NonOverlappingTemplate

21 24 19 16 23 19 15 26 25 12 0.375313 197/200 NonOverlappingTemplate

27 20 24 18 21 11 26 18 19 16 0.319084 198/200 OverlappingTemplate

18 14 24 24 18 16 26 17 21 22 0.626709 198/200 Universal
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26 18 25 21 13 19 19 17 24 18 0.605916 198/200 ApproximateEntropy

17 12 19 11 9 15 15 12 23 10 0.186566 142/143 RandomExcursions

15 12 14 14 16 13 16 13 14 16 0.998074 141/143 RandomExcursions

16 11 11 19 14 14 15 15 13 15 0.933310 140/143 RandomExcursions

15 14 21 11 15 11 16 12 15 13 0.775062 142/143 RandomExcursions

10 21 20 12 12 14 13 12 13 16 0.484646 142/143 RandomExcursions

11 13 15 11 21 13 9 20 15 15 0.392456 143/143 RandomExcursions

15 10 13 14 19 13 23 14 9 13 0.290684 142/143 RandomExcursions

12 15 12 12 22 12 16 13 13 16 0.689019 141/143 RandomExcursions

14 14 12 13 12 16 17 17 16 12 0.972188 141/143 RandomExcursionsVariant

14 12 17 13 12 18 13 16 13 15 0.967060 141/143 RandomExcursionsVariant

14 12 21 11 15 16 17 13 8 16 0.498594 141/143 RandomExcursionsVariant

15 16 17 14 7 17 10 16 14 17 0.614820 141/143 RandomExcursionsVariant

17 17 9 14 15 14 16 11 20 10 0.555877 141/143 RandomExcursionsVariant

14 14 16 19 17 13 4 16 17 13 0.280637 141/143 RandomExcursionsVariant

17 8 21 15 19 11 17 15 8 12 0.172545 141/143 RandomExcursionsVariant

12 16 14 16 10 16 17 16 11 15 0.916051 141/143 RandomExcursionsVariant

9 13 19 17 16 7 17 18 12 15 0.333418 143/143 RandomExcursionsVariant

12 17 11 9 14 14 11 12 15 28 0.031249 143/143 RandomExcursionsVariant

18 10 11 9 7 20 7 19 17 25 0.002600 143/143 RandomExcursionsVariant

16 9 14 9 22 9 12 16 20 16 0.135609 143/143 RandomExcursionsVariant

12 20 6 16 16 9 13 24 15 12 0.043408 142/143 RandomExcursionsVariant

14 11 17 12 11 17 20 12 15 14 0.761159 142/143 RandomExcursionsVariant

14 13 12 4 23 21 14 17 13 12 0.037743 143/143 RandomExcursionsVariant

13 11 12 14 17 18 17 12 16 13 0.906649 143/143 RandomExcursionsVariant

10 13 14 14 16 15 16 13 16 16 0.980883 143/143 RandomExcursionsVariant

11 9 16 18 18 10 9 20 19 13 0.193916 143/143 RandomExcursionsVariant

17 28 19 29 19 27 19 16 11 15 0.058984 199/200 Serial

29 19 21 23 20 16 23 18 20 11 0.342451 196/200 Serial

12 24 26 17 20 22 24 16 21 18 0.504219 198/200 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The minimum pass rate for each statistical test with the exception of the

random excursion (variant) test is approximately = 193 for a
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sample size = 200 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 138 for a sample size = 143 binary sequences.

For further guidelines construct a probability table using the MAPLE program

provided in the addendum section of the documentation.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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APPENDIX C:
Code

This appendix presents a number of useful resources for researchers attempting to replicate
or extend our work. Figure C.1 shows a breakdown of how this appendix will be structured.

Figure C.1. Code Repository Appendix Structure

C.1 Ethereum Setup
Please see our work in [141] for a detailed guide for setting up an Ethereum node. Note that
some commands will have changed as the APIs change frequently.

C.2 Ethereum Embedding Scheme
The idea behind the Ethereum embedding scheme is relatively straightforward. We encrypt
a target message with an encryption algorithm of our choice and use the resultant ciphertext
as the receiver address for an Ethereum transaction. On the decoding and decryption side, we
check each block added to our local Ethereum blockchain, ensure that each transaction comes
from an authorized sender account, and extract/decrypt the message. We used Python3 as
our language of choice and the following libraries for this function.
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Listing C.1: Libraries used for Python

from web3 impo r t Web3
impo r t random
impo r t h a s h l i b
from base64 impo r t b64decode
from base64 impo r t b64encode
impo r t j s o n
from Cryp to . C iphe r impo r t AES
from Cryp to . Random impo r t ge t _ r andom_by t e s
from Cryp to . U t i l . Padd ing impo r t pad , unpad

C.3 Sample Google BigQuery SQL Queries
In this section, an example of a SQL query that selects data from the Google BigQuery
database for Ethereum, specifically bigquery-public-data.crypto_ethereum.transactions and
bigquery-public-data.crypto_ethereum.contracts.

Number of Transactions in a Day

s e l e c t coun t ( ∗ ) from ‘ b igque ry − pub l i c − d a t a . c r yp t o_ e t h e r e um . t r a n s a c t i o n s ‘
where ‘ b lock_ t imes t amp ‘ > ’2021 −02 −15 00 : 00 : 00 UTC’ and ‘ b lock_ t imes t amp ‘
< ’2021 −02 −15 23 : 59 : 59 UTC’

C.4 Python Code for Interacting with BigQuery
In this section, we discuss considerations for Python scripts that construct SQL queries
and then create data files with our desired formats. We emphasize that one must first
register an account with Google BigQuery and get an API key in order to use these
resources. Detailed guides on this process can be found at [142] and [143]. Also, one
must make sure to export the credential location to $PATH (something like export
GOOGLE_APPLICATION_CREDENTIALS="/home/path_to/creds.json) before import-
ing bigquery. The following code listing is an example of using BigQuery in a Python
Script.
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Listing C.2: Python Setup Example for Google BigQuery

from goog le . c l oud impo r t b i gque r y
from d a t e t i m e impo r t d a t e t ime , da t e , t ime , t imezone , t i m e d e l t a
impo r t m a t p l o t l i b . p y p l o t a s p l t
impo r t pandas as pd

c l i e n t = b i gque r y . C l i e n t ( )

s q l = " " "
s e l e c t coun t ( ∗ ) from ‘ b igque ry − pub l i c − d a t a . c r yp t o_ e t h e r e um . t r a n s a c t i o n s ‘
where ‘ b lock_ t imes t amp ‘ > ’2021 −02 −15 00 : 00 : 00 UTC’ and ‘ b lock_ t imes t amp ‘ <
’2021 −02 −15 23 : 59 : 59 UTC’
" " "

C.5 Data Analysis using Python and MATLAB
The data analysis that was performed in Chapter 5 and Chapter 6 used a combination of
Python3 and MATLAB. We used the following libraries in Python3.

Listing C.3: Python Script for Curve Fitting

impo r t m a t p l o t l i b . p y p l o t a s p l t
impo r t pandas as pd
from s c i p y . o p t i m i z e impo r t c u r v e _ f i t
impo r t s c i p y . s t a t s
impo r t numpy as np
from l m f i t . models impo r t PowerLawModel , LinearModel ,
Exponen t i a lGaus s i anMode l , GaussianModel , LognormalModel

For MATLAB, we used primarily built-in statistics functions. We also made significant use
of the fitmethis package [83] for our curve fitting process.
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