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ABSTRACT 

 Militaries conduct wargames for training, planning, and research purposes. 

Artificial intelligence (AI) can improve military wargaming by reducing costs, speeding 

up the decision-making process, and offering new insights. Previous researchers explored 

using reinforcement learning (RL) for wargaming based on the successful use of RL for 

other human competitive games. While previous research has demonstrated that an RL 

agent can generate combat behavior, those experiments have been limited to small-scale 

wargames. This thesis investigates the feasibility and acceptability of scaling hierarchical 

reinforcement learning (HRL) to support integrating AI into large military wargames. 

Additionally, this thesis also investigates potential complications that arise when 

replacing the opposing force with an intelligent agent by exploring the ways in which an 

intelligent agent can cause a wargame to fail. The resources required to train a feudal 

multi-agent hierarchy (FMH) and a standard RL agent and their effectiveness are 

compared in increasingly complicated wargames. While FMH fails to demonstrate the 

performance required for large wargames, it offers insight for future HRL research. 

Finally, the Department of Defense verification, validation, and accreditation process is 

proposed as a method to ensure that any future AI application applied to wargames are 

suitable. 
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I. INTRODUCTION 

Wargames are invaluable training, planning, and research tools for successful 

militaries. Naturally, the United States (U.S.) Department of Defense (DOD) plans to 

integrate artificial intelligence (AI) into wargaming. One way to integrate AI into 

wargaming is to replace the human players with intelligent agents; algorithms capable of 

demonstrating combat behavior. This thesis examines the feasibility, acceptability, and 

suitability of replacing human wargame operators with intelligent agents. To do so, this 

chapter explains why wargames are critical to successful militaries. 

A. WHY MILITARIES CONDUCT WARGAMES 

Militaries conduct wargames to answer critical questions about warfare that must 

be understood before actual conflicts arise. Wargames are simulations of actual combat 

using opposing forces and are shaped by human decisions [1]. While there is a broad 

spectrum of different types of wargames, they all share a common objective: to “gain valid 

and useful knowledge” [2]. This delineation is important because the different purposes of 

the wargames will cause the players and game controllers to behave differently. Figure 1 

shows the broad spectrum of wargaming from training to analysis to experimentation. 

 
Figure 1. Spectrum of Wargames 



2 

1. Wargaming for Training 

The most straight forward type of wargames are those for training. Large staffs use 

constructive simulations (digital wargames) to exercise their staff processes and validate 

their military readiness. Small crews use virtual simulators to train their battle drills and 

crew drills. Militaries conduct these wargames to understand warfare and exercise 

decision-making skills [3]. All players’ actions and decisions are generally expected to 

conform to known doctrine and tactics, techniques, and procedures (TTPs). For large staff 

exercises, the adversary may push the boundaries of TTPs to challenge the staff (e.g., act 

more aggressive but still rely on the same TTPs). 

2. Wargaming for Analysis 

Wargaming may be used for analysis, that is “the determination of what would have 

happened in a confrontation of forces” [3]. These are the type of wargames most military 

staffs are familiar with: the wargame conducted as part of course of action (COA) analysis. 

These types of wargames allow for the assessment of war plans, force structures, or 

doctrine. In these wargames, both sides are expected to employ known doctrine and TTPs 

but “within which the creative spirit is free to roam” [4]. 

3. Wargames for Experimentation 

At the other end of the spectrum is experimental wargames. In these wargames, 

both sides may employ new forces, weapons, and/or tactics to explore potential future wars 

[5]. Ultimately, organizations conduct experimental wargames to produce “knowledge 

about the nature of a warfare problem” [2]. The U.S. military integrates these types of 

wargames in exercises like the U.S. Army’s Future Command’s Project Convergence and 

Joint Warfighter Assessment. 

4. Benefits of Wargaming 

While wargames are neither predictive nor complete replications of reality, they do 

offer something that cannot be obtained without actual combat: insight into decision-

making in war. When wargaming for training, organizations are learning what good 

decision-making looks like (both the process and final results). When wargaming for 
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analysis, planners are evaluating the decisions they made during planning and what 

potential decisions need to be made during execution.1 Finally, wargaming for 

experimentation gives insight into potential future decisions, specifically those involving 

future force designs, tactics, and acquisitions. 

These benefits were enough that, in 2015, Deputy Secretary of Defense Robert 

Work issued a memo calling for renewed efforts in wargaming across the DOD [6]. Deputy 

Secretary Work saw wargaming as beneficial to innovation, risk management, and 

professional military educations. Eventually, Work believed, wargaming would drive the 

DOD’s planning, programming, budgeting and execution process, the method that informs 

the DOD’s resource allocation. The U.S., and its western allies are not the only militaries 

to believe in the benefits of wargaming. The Chinese are investing significant resources 

into wargaming, to include integrating AI into wargaming [7]. 

B. ARTIFICIAL INTELLIGENCE WITHIN WARGAMING 

AI offers a chance to improve military wargaming by reducing costs, speeding up 

the decision-making process, and offering new insights. Employing human operators for 

the many roles within wargaming is costly. Organizations must either task their own 

personnel (taking them away from their normal functions) or pay for external support. This 

cost can be eliminated by integrating AI into wargames. Wargame analysis can only go as 

fast as the human operators. Replacing operators with intelligent agents can speed up the 

wargame and allow for multiple wargames to occur simultaneously, enabling broader 

analysis. Finally, intelligent agents have been noted for their creativity in game play [8]. 

Creative agents can enable better analysis of war plans, force formations, or tactics by 

exploring possibilities that human wargamers might not have considered. 

National security organizations within the U.S. recognize the potential for 

integrating AI into wargaming. The National Security Commission on Artificial 

Intelligence in their final report advocates for the immediate integration of AI capabilities 

 
1 A famous example of the importance of wargaming is the failure of the Japanese navy to properly 

wargame the attack on Midway. They failed to develop a contingency plan for an ambush by the U.S. 
Pacific fleet even though the possibility was discussed during the wargame [2]. 
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into wargames to ensure the U.S. and its allies remain competitive with its peers [9]. The 

U.S. Army’s future simulation training system, the Synthetic Training Environment (STE) 

envisions integrating AI to monitor and adjust the difficulty of the training scenarios [10]. 

The U.S. Army Research Lab has numerous projects investigating the integration of AI 

into military command and control systems. Specifically, they are exploring the use of a 

subfield of AI called reinforcement learning (RL) to conduct continuous planning in order 

to develop “novel plans for Blue Forces” [11]. Continuous planning will require an agent 

that can evaluate its plans, possibly through wargaming. 

Multiple researchers are examining RL agents for wargaming based the success 

other RL agents have had in human competitive games like StarCraft II [12], the Defense 

of the Ancients (DotA) [13], and Go [14]. Real time strategy (RTS) games like StarCraft 

II and DotA best represent wargames. Similar to wargames, RTS games require long term 

goal planning with short term tactical decisions within a limited information environment. 

Previous research has demonstrated that RL agents can replicate desired combat behavior 

within wargames [5], [11]. According to Kania and McCaslin, the Chinese People’s 

Liberation Army (PLA) saw the success of Google’s AlphaGo in defeating the world’s best 

Go Master as proof that AI could be applied to wargaming [7]. Since then, the PLA and 

other Chinese defense organizations have been investing in their AI wargaming 

capabilities. 

C. PROBLEM STATEMENT 

While previous research has demonstrated that an RL agent can generate combat 

behavior, the experiments have been limited to small engagements. The researchers only 

required the RL agent to control three to five subordinate units. Reinforcement learning 

agents will need to successfully scale to meet the size requirements for large wargames 

involving several hundred units. 

The problem is that as the number and types of units increases in a wargame, the 

amount of information and the number of possible moves becomes intractable. Newton et 

al. proposes scalability as a set of objectives: speed, convergence, and performance while 

remaining within a set of constraints: cost, compute capacity, and time as the size of the 
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project increases [15]. Hierarchical organization is one approach to scaling. This thesis will 

investigate the scalability of hierarchical reinforcement learning (HRL). In other words, 

any feasible and acceptable AI integration into wargaming must still display desirable 

combat behavior as the number of units in the wargame increases. 

Looking beyond the feasibility and acceptability of integrating AI into military 

wargames, the integration needs to be suitable. It is possible to develop and execute a failed 

wargame because the knowledge derived from it is invalid or not useful. Weuve et al. [16] 

explains the different routes that can cause a wargame to fail, which they call wargame 

pathologies. The design, and implementation, of an intelligent agent, with the purpose of 

replacing human operators, needs to prevent wargame pathologies, thereby ensuring valid 

results. 

This leads to the following research questions. Does HRL allow intelligent agents 

to increase the number, and effectiveness, of cooperative units without loss in 

performance? What framework can ensure that intelligent agents are designed and applied 

properly to meet the purpose of wargaming? 

D. SCOPE OF RESEARCH 

This thesis continues past investigation by [17] and [18] of RL within the Atlatl 

combat environment. Atlatl is a discrete, hexagon based wargame, simulating land combat 

operations. Initial studies successfully produced combat behavior within RL agents using 

a simple multi-layer perceptron [17]. Subsequent studies then examined RL agents within 

complex terrains and dynamic opponents using convolutional neural network (CNN) 

architecture [18]. 

While there is a broad range of HRL methods, the focus of this research is on feudal 

multi-agent hierarchies (FMH). Within FMH, a single RL agent, the Manager, assigns tasks 

to a collection of subordinate RL agents called Workers [19]. This thesis compared the 

resources required and effectiveness of employing a rules-based agent, a single RL agent, 

and a FMH in increasingly larger scenarios within Atlatl. 
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Wargaming is composed of players and referees [1]. The players for the friendly 

units are referred to as the Blue Forces, their adversaries are called the Red Forces and any 

civilians or military units outside of either players are called the Green Forces. While it is 

possible to fully automate wargaming by using intelligent agents for all the players and the 

referee, this thesis only evaluated the replacement of a single player. 

This thesis also investigates the potential complications that arise when replacing 

the opposing force (OPFOR), the Red units, with an intelligent agent. The specific 

wargame pathologies are discussed with the means to mitigate them. The DOD validation, 

verification, and accreditation (VV&A) framework is applied to the modeling of the 

OPFOR through RL. 

E. FINDINGS 

This thesis finds that a FMH agent fails to perform better than a single RL agent 

when the FMH agent is trained in a distributed manner. The FMH agent’s learning 

improves when both the Manager and Worker train in the same environment. However, the 

Worker’s inconsistent actions prevents the Manager from developing an optimal policy. 

Additionally, the training requirement for FMH exceeds those for a single RL agent which 

inhibits FMH’s ability to scale to large military wargames. Finally, this thesis finds that 

methods for integrating AI into military wargames are suitable when processes, like the 

DOD’s VV&A framework are applied. Otherwise, model-based wargame pathologies can 

invalidate the wargame’s objectives with negative consequences for the U.S. military.  

F. THESIS CONTRIBUTION TO RESEARCH 

This thesis has direct benefit to the U.S. government by furthering research into 

employing fully autonomous agents within constructive simulations. Fully autonomous 

wargaming agents that are able to operate at multiple echelons are required to support the 

full spectrum of wargaming. This easily extends to a decision support tool during military 

planning by assisting planners in evaluating different COAs rapidly. Additionally, 

exploring the suitability of using intelligent agents in wargames will facilitate the adoption 

AI within the wargaming community. 
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II. BACKGROUND AND RELATED WORKS 

This chapter discusses previous research involving the integration of AI into 

wargaming, specifically RL, while also introducing important terms critical to 

understanding the problem and potential solutions for integrating AI. First, the chapter 

breaks down the wargame environment within the context of AI design. After establishing 

what the wargame environment is, this chapter then looks at advancements AI has made in 

solving similar challenges including RL. The chapter discusses critical aspects of RL in the 

wargame environment. This chapter concludes by identifying the gap in RL research 

regarding scaling methods to meet the needs of military wargaming. 

A. WARGAMING ENVIRONMENT 

To understand the difficulty of scaling RL to support wargaming, the wargame 

environment needs to be discussed first. Stuart Russell and Peter Norvig argue that 

designing the appropriate intelligent agent requires a thorough understanding of the 

environment [20]. Russel and Norvig [20] claim that partially observable, multi-agent, 

stochastic, dynamic, and continuous environments are the hardest for an algorithm to 

achieve human level performance. If [20]’s claim is correct, then wargames are among the 

hardest environments. 

1. Partially Observable Environments 

The standard way of thinking about partially observable environments [20] is that 

in war games, information that is critical for decision-making is limited. In combat, this 

limitation is commonly referred to as the “fog of war.” In wargames, players lack complete 

information about the current state of the environment, specifically about their opponent. 

Beyond incomplete information about opponents, friendly units/players may lack 

information about each other. This lack of information requires players to make 

assumptions about the environment. 
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2. Multi-Agent Environments 

Large military wargames are multi-player games, consisting of hundreds of 

cooperative and competitive players with complex interactions which is itself a unique 

problem. A player must develop a winning strategy while their opponent does the same, 

which requires coordinating the actions of several players and assessing which of those 

moves were beneficial or not. Multi-agent RL methods, which seeks to address these 

unique problems, are discussed in a subsequent section. 

3. Stochastic Environments 

Effective wargame strategies must account for chance because wargames are often 

stochastic environments. A stochastic environment is one in which actions do not produce 

fixed results [20]. Many wargames utilize stochastic environments [1] to reflect the role 

chance or luck plays in combat [4]. In a classic board game, stochasticity is replicated using 

the roll of a dice. In modern computer simulations, there are complex probabilistic models 

to determine if an opposing unit is detected, hit, or the amount of damage it receives [1]. 

Players need to factor probability into their decision-making or otherwise it can delay 

learning. 

4. Dynamic Environments 

It is hard for a player to make an optimal decision because within modern wargames 

the state of the game is constantly changing. Decisions by other players and outside forces 

effect the game, disrupting the decision-making process. The state of the game is changing, 

regardless of any actions taken by the player because, similar to RTS games, its opponent 

is free to continue taking actions. So the decision a player makes for a given situation may 

no longer be the current state of play. A player with a faster decision cycle (sometimes 

referred to as an OODA loop2) will be more successful than other players [22]. 

 
2 OODA stands for observe, orient, decide, act. Developed by U.S. Air Force Colonel John Boyd, the 

OODA loop explained the decision-making cycle of air-to-air combat and has since been extended to 
decision-making in combat in general [21], [22]. 
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5. Sequential Environments 

Player decisions early in the game can have crucial impacts for how the game ends, 

which AI scholars commonly refer to as sequential decisions [20]. Wargames create 

sequential environments by limiting available resources, specifically combat strength, fuel, 

and ammunition. Sequential decision-making differentiates RL from other machine 

learning (ML) techniques, like a classification task in supervise learning, because each 

decision an RL agents makes impacts future decisions. RL researchers commonly use the 

Markov assumption to bypass the problem of sequential environments by assuming the 

previous state contains all the information needed to predict the next state [23]. How RL 

researchers apply the Markov assumption is discussed in the section on RL basics. 

6. Continuous Environments 

Military wargames require players to process a large amount of information while 

selecting from a large number of possible decisions. Generally, when wargames are played 

in a constructive simulation the resulting environments are high-dimensional continuous 

observation and action spaces [5]. A discrete space is one with a limited number of options 

(e.g., chess), while continuous is the opposite (i.e., an infinite number) [20]. In a continuous 

environment, it is impossible for a player to conduct an exhaustive search for the best 

decision, that is, the player cannot try every possible move or experience every possible 

state no matter how much time and computational power the player has available [20]. 

B. ADVANCEMENTS IN AI COMPETITIVE GAMING 

Today’s RL methods for military wargames are built on the approaches developed 

for simpler competitive games. Figure 2 shows the achievement of AI programs over select 

games over time. This section briefly covers the history of AI within competitive gaming 

to explain why researchers are currently relying on RL. 
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Figure 2. Select Wins of AI Algorithms Over Human Experts. 

Adapted from [24], [25]. 

1. Early Efforts Competitive AI Approaches 

Early attempts to create human-level competitive AI for simple games involved 

searching while expert systems were built for increasingly complex ones. Many current AI 

methods [26] still use heuristic search methods, which involves an effective and efficient 

search of all the possible moves to determine which is the best one to make. Richard Sutton 

argues in his essay “A Bitter Lesson” [27], that heuristic search methods are preferred 

options over complex algorithms, like expert systems, due to the continual increases in 

computational speed and capacity which makes searching quicker than complex algorithms 

in the long term. 

While expert systems offered a way to simplify or bypass search methods for 

complex problems, they ultimately failed to meet the challenge. Expert systems utilize 

rules based on knowledge of the domain to elicit the desired behavior. Nils Nilsson [25] 

argues that these systems failed because they were “brittle,” that is, these programs 

struggled or failed when they lacked the requisite knowledge needed for a change to the 

environment. After the failures of expert systems, interest in the AI community eventually 

moved toward RL. 
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2. RL in Gaming 

Researchers have used RL methods to make effective game playing agents by 

leveraging neural networks and the same computational capabilities that make “Big Data” 

possible. The success of neural networks, combined with the availability of large amounts 

of data, has led to the current “AI Summer”—the emphasis on AI in the academic, 

government, and commercial sectors [20]. Russel and Norvig [20] explain RL as simply 

learning through a series of rewards and punishments. Within the last decade, AI agents 

became competitive in RTS games like StarCraft II [12] and DotA [13], while others 

mastered the difficult game of Go [14], [26]. 

3. RL in Wargaming 

Recently, researchers applied RL methods for military wargames. Jonathan Boron 

[17] extended the achievements of RL agents from competitive RTS games to the Atlatl 

wargame environment. Using a simple neural network, Boron was able get RL agents to 

exhibit ideal combat behavior, specifically mass and economy of force [17].3 Christopher 

Cannon and Stefan Goericke [18] expanded on Boron’s work by using convolutional neural 

networks (CNNs) to develop combat capable RL agents with spatial invariance. Spatial 

invariance meant these agents could effectively manage a variety of unit and terrain types 

by passing the agents’ observations through a CNN to extract the most relevant information 

about the environment [18]. Details about the Atlatl wargame environment and CNNs are 

discussed further in Chapter III. Finally, the U.S. Army Research Lab ported a military 

training scenario into the StarCraft II simulation environment and trained several RL agents 

successfully [11]. This research shows that RL can operate in the wargame environment, 

at a small scale. 

C. REINFORCEMENT LEARNING 

This section discusses RL fundamentals, the types of RL algorithms used for this 

thesis, the basics of RL for multiple agents, and a brief introduction into HRL. 

 
3 Mass is the military principle of concentrating combat power to achieve decisive results, while 

economy of force (EoF) is the principle of using the minimum essential amount of combat power to 
secondary objectives to ensure mass can be applied to the primary objective [JP 3-0]. 
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1. RL Basics 

The basic components of RL is the state of the environment (observation space), 

possible actions (action space), and a reward function [23]. Figure 3 shows the relationship 

between the agent’s actions and its environment and rewards. RL can be described by a 

Markov decision process (MDP), a 5-tuple that Richard Bellman developed in 1957 to 

describe the relationship between the state and action space, and reward function [20]. The 

MDP equation is 

 𝑀𝑀𝑀𝑀𝑀𝑀 =< 𝑆𝑆,𝐴𝐴,𝑀𝑀,𝑅𝑅, γ >  (1) 

where S and A is the state and action space, respectively; 𝑀𝑀: 𝑆𝑆 × 𝐴𝐴 → [0,1] is the state 

transition function, describing the probability of arriving in state, Si+1 from taking action, 

Ai, in state, Si; 𝑅𝑅: 𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆 → ℝ is the reward function based on the actions taken at a 

given state; and 𝛾𝛾 ∈ [0,1) is the discount factor [28]. The complete mapping of state to 

action is called a policy [23], as seen in Figure 4. The goal of RL is to find the optimal 

policy, that is, the policy that achieves the greatest total reward [29]. The key to the MDP 

is the Markov assumption; the only information needed to make a decision is encoded in 

the current state. The Markov assumption overcomes the sequential decision-making 

problem because the results of past decisions becomes part of the state. 

 
Figure 3. Interaction of an RL Agent and Its Environment. 

Adapted from [30]. 
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Figure 4. A Policy Mapping All States to Actions. 

Adapted from [31]. 

The design of the reward function, R, significantly effects the performance [32] and 

behavior [33] of an RL agent. By changing the reward function, Tampuu et al. [33] caused 

RL agents playing Pong to go from cooperative to competitive behavior. We can generalize 

the reward value, Rt, for a given action as the immediate reward, rt+1, and all subsequent 

rewards as the following: 

 𝑅𝑅𝑡𝑡 = ∑ 𝛾𝛾𝑖𝑖𝑟𝑟𝑡𝑡+𝑖𝑖+1𝑇𝑇−𝑡𝑡−1
𝑖𝑖=0   (2) 

where T is the total timesteps remaining and γ is the discount factor [34]. Changes in the 

discount factor, γ, also changes the performance of an RL agent. In their seminal textbook 

on RL, Richard Sutton and Andrew Barto [23] explains that γ=0 causes the agent to only 

consider the immediate reward and behaves in a myopic manner. As γ approaches 1, then 

the agent behavior becomes more far-sighted [23]. 

2. Types of RL 

Some RL methods perform better than others in wargame environments due to the 

games’ properties. RL methods for wargaming rely on model-free methods, since models 

of the game are unavailable [5]. Sutton and Barto summarize the differences sufficiently, 

“model-based methods rely on planning, while model-free methods primary rely on 

learning” [23]. The two model-free RL algorithms used throughout this research were 

proximal policy optimization (PPO) [35] and Deep Q-Network (DQN) [36]. With model-

free approaches, RL agents learn the state transition function, P, from Equation (1) by 

interacting with their environment. Both approaches rely on neural networks to 



14 

approximate the state transition function. While PPO is a policy optimization approach, 

DQN is a Q-Learning approach. 

a. DQN: Q-Learning 

Q-Learning, particularly DQN, has demonstrated human-level performance in a variety of 

tasks but is restricted in its application. Q-Learning is based on the concept that, through 

trial and error, the agent learns the approximation of the action-value function (q*), of the 

different states in the environment, that is, which actions lead to the greatest reward from 

a given state [23]. Equation 3 defines the action-value function, qπ,, for a given policy π, 

as: 

 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋[∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1|𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎∞
𝑘𝑘=0 ]  (3) 

which is the expected discounted reward for following policyπ after taking action a at state 

s. If an agent follows the optimal policy, π*, the policy with the greatest reward, then q*, 

is it action-value function. 

The most popular Q-learning approach is DQN, which Mnih et al. [36] used to 

reach human level performance on several Atari video games. In DQN, as an agent explores 

its environment it populates its experience into its replay buffer [36]. It samples from its 

replay buffer and uses deep neural networks to calculate Q-values for a given state [36]. 

With updated Q-values it is able to formulate an optimal policy through iteration [23]. 

While DQN develops a policy by iteratively improving its estimate of the action-value 

function, PPO develops its policy directly through policy optimization. 

b. PPO: Policy Optimization 

Policy optimization provides more flexibility since, unlike DQN, it can handle large 

continuous action-spaces. Policy optimization, or policy gradient method, works by 

increasing the probability of the actions that return high rewards based on the logic that 

these actions lead to optimal policy [23]. Instead of calculating an action-value, a better 

estimate of the quality of the action can be obtained by checking if returns are better than 

expected, called an advantage function [35]. Sutton and Barto [23] assert that working 
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directly with policies is crucial when operating in a continuous environment (or a high-

dimensional action space in a discrete environment) because the model can learn a 

probability distribution of actions. Probability distribution is preferred for large action 

spaces, particularly continuous spaces, like those found in many constructive simulations, 

since it precludes the need to learn probabilities for each action [23].  

Several policy optimization algorithms have been successfully used in military 

constructive simulations [17], [18], [11]. The main agent of this research used a policy 

optimization method due to the agent’s large action space. For this thesis, PPO was used 

due to its stability through gradient clipping. Gradient clipping ensures that the model does 

not make drastic changes to its policy during each update [35]. 

3. Multi-Agent Reinforcement Learning 

Since large military wargames are essentially multi-agent environments, any RL 

method used should address the problems inherent to a multi-agent environment. In a 

survey of MARL research, [28] identified five challenges to learning in a multi-agent 

environment: 1) non-stationarity, 2) credit assignment, 3) communication, 4) coordination, 

and 5) scalability. Each challenge is examined with a deeper discussion of scalability in 

the next section. 

a. Non-stationarity 

With multi-agent environments, a current effective strategy may become 

ineffective in the future. A constantly changing environment is commonly referred to as a 

nonstationary problem (or non-stationarity) [20]. Non-stationarity occurs when the same 

action fails to generate the same result because the changing nature of the problem [23]. 

Non-stationarity is different from stochasticity because a probabilistic model that maps 

actions to results can be developed for stochastic environments [20]. Non-stationarity 

occurs in multi-agent competitive environments, like wargames. As one agent learns an 

effective strategy to defeat its opponent, the opposing agent is improving its own strategy 

[20]. Non-stationarity also develops in cooperative environments. As each agent’s strategy 

evolves, partners cannot anticipate each other’s actions anymore [28]. In a survey of non-
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stationarity within multi-agent environments, [37] reported that Q-learning, like DQN, 

cannot converge to an optimal solution because the Markov assumption is no longer true. 

b. Credit Assignment 

Developing an optimal strategy is hard in multi-agent environments because it is 

difficult for evaluating strategies. It is difficult to assess which agents made good moves 

and which did not. In a complex problem, involving a multitude of decisions, it is difficult 

to assign positive or negative credit to each decision, which [38] refers to as the credit 

assignment problem. For multi-agent environments, the credit assignment problem extends 

to knowing which of the individual agents’ actions were positive or negative [28]. In their 

survey of MARL research, [28] noted that “an additional challenge arises when agents have 

only access to local observations of the environment.” Its reasonable, therefore, to limit an 

agent’s rewards to only its actions and its observations of the environment. 

c. Communication and Coordination 

With multiple agents, communication and coordination is an integral component to 

developing an effective strategy. Military history has shown that units who coordinate their 

actions4 are the most successful in combat [4], [39]. How agents train together and how 

they choose (or are assigned) their actions impacts their level of coordination [28]. 

Oftentimes, learning how to properly communicate critical information and coordinate 

actions is an important objective of a wargame [40], [2]. How MARL agents train and 

execute drives their level of coordination. 

d. MARL Training and Execution Spectrum 

 The training and execution scheme for an RL agent within a wargame is a critical 

factor since there are multiple friendly units within the game competing against an 

opposing agent. How the agents train determines how well they manage the problems of 

non-stationarity and credit assignment and how they learn to coordinate and communicate. 

The various training and execution schemes can be organized into three categories: 

 
4 Coordination is viewed as the synchronizing of efforts (or capabilities) to achieve the greatest effect 

[39]. 
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centralized training, centralized execution (CTCE), distributed training, decentralized 

execution (DTDE), and centralized training, decentralized execution (CTDE) [28], which 

can be seen in Figure 5. On the spectrum of MARL training and execution schemes there 

is, on one end, a single policy which controls the action of all agents in the environment 

(CTCE) and on the other end, multiple agents learning and executing their own policies 

(DTDE) [30]. 

 
Figure 5. Types of the MARL Training and Execution Schemes. 

Adapted from [28]. 

(1) CTCE: Centralized Training, Centralized Execution 

CTCE is when a single policy is updated during training and executed by a central 

unit that determines the action for all subordinate agents [28]. CTCE was used for previous 

RL wargaming research [17], [18], [11], as well as DeepMind’s AlphaStar [12]. In these 

cases, despite the number of units within the simulation, it is a single decisionmaker that is 

trained and deployed. A significant problem with CTCE is that the action space grows 

exponentially with the number of agents [28]. Additionally, CTCE relies on global rewards, 

“which represents the entire group’s performance” vice a local reward unique to each agent 

[37]. Global rewards can lead to a credit assignment problem without additional means to 

determine which agent’s actions contributed to the global reward [37]. Therefore, other 

training and execution strategies should be explored.  

(2) DTDE: Decentralized Training, Decentralized Execution 

DTDE is the opposite end of the spectrum: each agent develops an individual policy 

and determines its actions from its own policy [28]. A non-stationary environment is a 
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significant problem for DTDE. As each agent explores its environment, the other agents 

appear as part of the environment. As the agent develops a policy for the environment, the 

other agents are also adapting their policies, therefore changing the environment. In 

addition to the non-stationary problem, [41] has shown that decentralized execution can 

have difficultly scaling to larger number of agents. 

(3) CTDE: Centralized Training, Decentralized Execution 

CTDE overcomes non-stationarity because the agents learn together and the 

consequences of an action can be attributed to the appropriate agent [28]. CTDE works 

best when the agents are homogeneous, that is, when they share a common neural 

architecture. Homogeneous agents in CTDE can share the updates to their policy 

parameters and accelerate their learning. Homogeneous agents can also employ centralized 

value functions for RL methods that utilize them, (e.g., DQN). Lin et al. [42] showed that 

CTDE can provide flexibility and efficiency to large-scale MARL problems by employing 

a modified version of combined Q-Learning/Policy Optimization algorithm with a single 

centralized critic. 

4. Hierarchical Reinforcement Learning 

HRL can be seen as a unique subset of MARL and has been explored as a means to 

improve coordination among agents. Peter Dayan and Geoffery Hinton originally develop 

HRL in 1993 for single agent application. HRL has since been applied to MARL [28]. HRL 

is when “multiple layers of policies are trained to perform decision-making and control at 

successively higher levels of temporal and behavioral abstraction” [43]. In a recent survey 

of HRL approaches, Pateria et al. [44] developed a taxonomy of six HRL categories along 

3-dimensions. One category of HRL uses a single agent to solve a single task without 

subtask discovery. Pateria et al. [44] call this category “Learning Hierarchical Policy” and 

can be broken into two divisions: Feudal Hierarchy and Policy Tree approaches. This thesis 

explores the Feudal Hierarchy approached that had been extended to MARL. 
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5. Feudal Multi-Agent Hierarchies 

In feudal hierarchy approaches, there is a hierarchy of policies. The highest policy 

consists of subgoals which the lower policies try to achieve, which may be further subgoals. 

The lowest policy is composed of primitive actions. In developing the concept of feudal 

networks for HRL, Vezhnevets et al. [19] of Google DeepMind, considered these different 

policy levels as sub-agents. A higher policy sub-agent is considered the “Manager” while 

the lower policy sub-agent is the “Worker” [19]. The Worker operates at a faster time scale 

and “produces primitive actions, conditioned on the goals it receives from the Manager” 

[19]. In a wargame, the primitive actions are shooting and moving. The higher policies are 

the decisions of where to move and who to attack. 

Sanjeevan Ahilan and Dayan, inspired by [45] and [19], extended HRL to the multi-

agent environment with feudal multi-agent hierarchies (FMH) [46]. FMH used a CTDE 

approach for developing and deploying agents to account for non-stationarity [46]. The 

Manager is responsible for coordinating the actions of the Workers [46]. In their 

experiments [46], concluded that FMH sufficiently scaled as the number of Workers 

increased. Ahilan and Dayan [46] concluded that FMH successfully addressed multi-agent 

problems of non-stationarity, coordination, and scalability; critical aspects of designing an 

agent for large military wargames. Figure 6 shows the relationship between the Manager, 

Worker, and the environment. The Manager issues goals, g, to the Workers who take 

action, a. Both Manager and Workers receive observations, o, from the environment. The 

Manager also receives a reward, r, from the environment, while the Workers receive locally 

calculated rewards.  
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Figure 6. The FMH Architecture. Source [46]. 

D. SCALABILITY 

There is a gap in research in how to scale AI implementations to support large 

wargames [15], [28]. Failing to account for scale may make some of the prior RL 

approaches in wargames impractical. There are three metrics to measure scalability: 

performance, latency, and accuracy. For performance the metric is whether the system can 

simulate the number of units, or entities, (and their interactions) as advertised. It should be 

“measured as the number of independent entities that can be simulated concurrently while 

meeting acceptable latency and accuracy metrics” [15]. Latency is important because some 

wargames rely on modeling and simulation (M&S) systems with specific latency 

guarantees in order to federate into a larger system [15]. Accuracy is the degree of realism; 

a comparison of the real world to the simulation. Does the simulation offer the required 

accuracy as it scales. For example, properly adjusting from individual tactics to large unit 

maneuvers as the scale of the simulation increases. 

As the number of units increase, the demands on the RL algorithm and MARL 

training and execution scheme should reasonably scale. MARL research has shown that as 

the number of agents increases, the size of the joint action-space increases exponentially. 

An exponentially increasing action space can be partially mitigated by utilizing the 

exponential decay property (also known as correlation decay or spatial decay) [29]. The 

exponential decay property refers to the fact that the influence of an agent decays 

exponential from its graph distance to another agent. In other words, the behavior of a 
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subordinate unit impacts the other agents within the same hierarchy more than it does with 

agents in a different hierarchy. 

E. SUMMARY 

RL agents have achieved human level performance in the types of environments 

found in wargames: partially observable, stochastic, dynamic, sequential, and continuous 

environments. Wargames are inherently multi-agent and suffer from the following 

problems: nonstationary, communication and coordination, credit assignment, and 

scalability. HRL, through the use of abstractions, offers a potential solution to the problem 

of scale. A specific type of HRL, FMH, uses Managers and Workers to divide high-level 

tasks like combat behavior from low-level primitive actions like shoot and move. The next 

chapter will discuss the experimental design for testing the feasibility of FMH. 
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III. METHODOLOGY

This thesis conducted a qualitative analysis of the feasibility and acceptability of 

FMH to scale to large wargames. This chapter explains the investigation, starting with the 

training and evaluation environment. The chapter then describes how the wargame 

environmental properties drove the FMH agent design and how the particulars of the 

training and evaluation environment, Atlatl, drove the experimental design and procedures 

employed. 

A. TRAINING AND EVALUATION ENVIRONMENT DETAILS

Training and evaluation of agents were conducted in the Atlatl wargaming system 

designed by the MOVES Institute at the Naval Postgraduate School for AI research. Atlatl 

is a two-sided, turn-based, wargame played on a hexagon-based map that utilizes a simple 

combat model and software infrastructure to support experimentation [47]. Significant 

components of the wargame are the units, terrain, combat modeling, and scoring. 

1. Units within Atlatl

The two opposing sides are represented as either “Red” or “Blue” forces. For this 

thesis, every tested agent was observed while controlling the Blue forces. There are four 

unit types in Atlatl: infantry, mechanized infantry (referred to as “mechinf”), armor, and 

artillery units. The units are displayed using MIL-STD-2525D as seen in Figure 7. The 

different unit types have different movement speeds depending on the terrain. 

Figure 7. Blue and Red Unit Types in Atlatl 
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2. Terrain and Terrain Effects within Atlatl

There are six terrain options: clear, rough, marsh, urban, unused, and water as 

shown in Figure 8. Each terrain type effects the various unit types differently [47] as shown 

in Table 1. Generally, a unit can only move one hex per phase, except for clear terrain 

where mechinf, armor, and artillery units can move two hexes per phase. Artillery is unable 

to move into a marsh hex and no unit can enter an unused or water hex. 

Figure 8. Terrain Types in Atlatl 

Table 1. Atlatl Terrain Types and Effects by Unit Type. Adapted from [47]. 

Movement Cost to Enter Hex 
Clear Urban Rough Marsh 

U
ni

t 
T

yp
es

 infantry 1 1 1 1 
mechinf 1/2 1 1 1 
armor 1/2 1 1 1 

artillery 1/2 1 1 N/A 

3. Combat within Atlatl

Combat within Atlatl is deterministic; the only contributing factors in combat are 

unit strength, unit type, and terrain. The amount of combat power (or strength) a defender 

loses is based on its unit type, the terrain it occupies, the attacker’s type and the attacker’s 

combat power in accordance with following equation: 

𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠 =  1
2
𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑃𝑃𝑟𝑟𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑘𝑘𝐴𝐴𝐴𝐴 𝑥𝑥 𝐹𝐹𝐹𝐹(𝐴𝐴𝐶𝐶𝐶𝐶𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟,𝑀𝑀𝐴𝐴𝐷𝐷) 𝑥𝑥 𝑀𝑀𝐹𝐹(𝑀𝑀𝐴𝐴𝐷𝐷,𝐹𝐹𝐴𝐴𝑟𝑟𝑟𝑟𝑎𝑎𝑇𝑇𝑇𝑇) (4)
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where Loss is the amount of combat power the defender losses, 𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑃𝑃𝑟𝑟𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑘𝑘𝐴𝐴𝐴𝐴 is the 

attacker’s current strength, FT is the modifier found in the Attacker-Target Firepower 

Table found in Table 2, and DT is the modifier found in the Defender-Terrain Table found 

in Table 3. 

Table 2. Attacker-Target Firepower Table (FT). Adapted from [47]. 

 Target Unit Type 
infantry mechinf armor artillery 

A
tt

ac
ke

r 
U

ni
t 

T
yp

e 

infantry 1 1 0.5 1.5 
mechinf 1 1 1 1.5 
armor 0.5 0.75 1.0 1.0 

artillery 1 0.75 0.5 1.5 

Table 3. Defender-Terrain Table (DT). Adapted from [47]. 

 Target’s Terrain Hex 
clear rough marsh urban 

D
ef

en
de

r 
U

ni
t T

yp
e infantry 1 0.5 1 0.5 

mechinf 1 1 2 1 
armor 1 1 2 1 

artillery 1 1 2 1 
 

Anytime an entity’s strength is less than 50%, the entity is considered combat 

ineffective (or “killed”) and removed from the wargame [47]. All units start with a strength 

of 100 points in standard scenarios. So, based on Equation (4), one Red infantry unit 

attacking a Blue infantry unit that is occupying a clear hex, inflicts 50 points of damage. 

The Blue unit could be eliminated in two moves. Similarly, a Red armor unit of 100 points, 

attacking a Blue infantry unit in rough terrain would deal 25 points of damage. The Blue 

unit could be eliminated in three moves. 

Atlatl closely replicates U.S. military doctrine [48] that the defender has the 

advantage in land combat. When two equal units (same unit types, terrain, and strength) 

attack each other, the first unit to shoot will kill its opponent first. Except for artillery, units 

in Atlatl can only attack units in adjacent hexes. Since a unit can only move or shoot in a 

given turn, an attacking unit must move to a hex adjacent to its target first, then wait till its 
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next turn to attack. This required move gives the defender the opportunity to shoot first. 

Figure 9 illustrates the advantage the defense holds. Artillery units can shoot at targets two 

hexes away. Combat plays a significant role in Atlatl because it is often used for scoring. 

 
Blue unit moves to attack the Red unit (left), Red shoots first and reduces Blue strength by 
50 points (middle), Blue can return fire once but is eliminated by Red on the next turn 
(right). 

Figure 9. Defenders Have an Advantage in Atlatl 

4. Scoring within Atlatl 

There are two ways to score points in Atlatl: combat and the control of key terrain 

(urban hexes). The amount of combat damage dealt to the defender is awarded to the 

attacking unit [47]. If the unit is eliminated, all of its remaining combat is awarded to the 

attacking unit, regardless of how much damage was dealt [47]. If a player occupies an 

urban hex, that player now controls that city and receives the number of points associated 

with that city at the end of every phase [47]. Even if the unit moves out of the urban hex, 

it is still in control of that city until an opposing side occupies it. Users can load multiple 

cities per scenario. 

Users can pre-build scenarios to meet their needs. Options for a scenario are size, 

units, scoring, and length of game. Users can set the size of the map (rows x columns) and 

terrain type of each hex (to include the number of cities). Users can choose the number of 

Blue and Red units, their type, starting strength, and starting positions. Additionally, users 

can modify the combat scoring system. Users can modify how many points Blue loses for 
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every loss in Blue combat power (Blue can only gain5 an equal number of points for every 

loss in Red combat power). Users can also change the city scoring system, that is the points 

awarded for control of a city. Finally, users specify the number of phases (or turns) in a 

game, which starts on Phase 0. 

B. IMPLEMENTATION 

While Atlatl is the training and evaluation environment, two more “wrappers” are 

needed to integrate RL into the wargame: OpenAI Gym and Stable-Baselines3. These 

wrappers are Python library packages used to help users implement basic RL tasks and 

complex algorithms. Understanding the benefits and limitations of these wrappers is 

necessary for understanding the design of the FMH approach used in this thesis. 

1. OpenAI Gym Environment 

The OpenAI Gym environment allows RL researchers to employ the basics of RL 

without having to develop the codes themselves. OpenAI developed and released the 

OpenAI Gym package in 2016 because they believed the greater RL community needed 

“good benchmarks on which to compare algorithms” [49]. The OpenAI gym package is 

focused on providing a common environment and provides researchers a common set of 

observation spaces, action spaces, reward method, and timestep method [49]. OpenAI 

allows researchers to focus on developing and integrating agents into these environments, 

instead of building environments for their agents. Having an open source RL environment 

ensures that performance of the agent is based on the agent’s algorithm and not its 

environment, enabling experimental results to be repeatable. 

2. Stable-Baselines3 

Similar to OpenAI, Stable-Baselines3 (SB3) provides researchers a means to 

implement popular RL algorithms without having to develop the codes themselves. The 

creators of SB3 wanted to provide “an open-source framework implementing seven 

 
5 There is only a single score for each game, so points in favor of the Blue side are positive, while 

points in favor of the Red side are negative. For example, if control of a city is worth 5 points, then every 
phase that Blue controls the city is +5 point to the total score, while every phase that Red controls the city 
is -5 points to the total score. 
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commonly used model-free deep RL algorithms” to ensure RL researchers could compare 

algorithm performance to a common baseline [50]. Comparable to OpenAI’s intentions, 

SB3 ensures agent performance is repeatable. 

3. Constraints of Training and Evaluation Environment 

The combination of the Atlatl wargame, with OpenAI Gym environment and the 

SB3 RL package places constraints on the design of the FMH and the experiments 

themselves. Figure 10 shows the relationship formed by using this combination. 

Replicating past thesis research on RL within wargaming is the overriding factor for using 

this arrangement. Using this combination also made it easier to build the FMH and test it. 

That being said, the limitations of the OpenAI Gym action and observation spaces and 

available RL algorithms within SB3 resulted in a FMH different than the one designed by 

Ahilan and Dayan [46]. 

 
Figure 10. Relationship Between Atlatl, OpenAI Gym, and SB3 

C. DESIGN OF FMH FOR ATLATL 

FMH consists of a Manager sub-agent and multiple Worker sub-agents. This 

section explains the design choices for both the Manager and the Worker sub-agents for a 

FMH agent within the Atlatl wargame. 

1. Design of the Manager 

The Manager sub-agent was designed to exhibit combat behavior similar to past 

thesis research [17], [18] into RL agents within wargames. The Manager produces combat 
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behavior through goals the Manager establishes for its subordinate Workers. The Manager 

has a shallow but wide observation space, a multi-discrete action space to handle the large 

number of goals it can generate, and the same reward function used in past Atlatl RL agents. 

This thesis designed the observation space for the Manager sub-agent to process 

select elements of the entire state of the wargame to give the Manager broad information 

to support decision-making across space and time. The Manager’s observation space is a 

tensor of size <4, C, R> where C and R is the number of columns and rows in the loaded 

scenario, respectively. All values are represented as real numbers. The first layer consists 

of the location of urban hexes, the next layer contains the location and percent strength of 

all the friendly forces, the third layer consists of all the hostile forces’ locations and percent 

strength, and the last layer is the percentage of the game remaining. 

The Manager’s actions space are just hexes on the board, which the Workers translate 

as goals. The Manager’s action space is an array of discrete numbers, limited by the size of 

the map. The size of the array is twice the number of subordinate Workers. The Manager’s 

actions space is 𝐴𝐴 ∈ [𝐶𝐶1,𝑅𝑅1, . . . ,𝐶𝐶𝑛𝑛,𝑅𝑅𝑛𝑛], where 𝐶𝐶 ∈ [0,𝑇𝑇𝑛𝑛𝑛𝑛𝐶𝐶𝐴𝐴𝑟𝑟 𝐿𝐿𝐷𝐷 𝐶𝐶𝐿𝐿𝐶𝐶𝑛𝑛𝑛𝑛𝑇𝑇𝑠𝑠 −  1],𝑅𝑅 ∈

[0,𝑇𝑇𝑛𝑛𝑛𝑛𝐶𝐶𝐴𝐴𝑟𝑟 𝐿𝐿𝐷𝐷 𝑟𝑟𝐿𝐿𝑃𝑃 −  1] and n is the number of Workers.  

The Manager’s action space is based on a balance of benefits and costs of using multi-

discrete values. This action space simplified the mapping from action space to map location. 

Figure 11 shows the relationship between the Manager’s action space and the Workers’ 

targets. Since Q-learning cannot predict multiple values, this thesis used the PPO algorithm 

provided by SB3. Using a Q-learning approach, like DQN, which predicts a single integer 

value, would require an additional function to map a single discrete value to hexes and 

workers, potentially introducing errors. Additionally, the Manager’s action space is size 

𝑅𝑅 𝑥𝑥 𝐶𝐶 𝑥𝑥 𝑁𝑁, so the action space grows linearly with the size map and number of workers which 

is good for scaling. Unfortunately, this action space does not allow the Manager to change the 

movement order of the Workers as described later in the sub-section on sequencing units.  
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Figure 11. Translation of Manager’s Goal to Atlatl Hexes 

The same reward function was used for all top-level agents in the experiment, 

which is based on a reward function made specifically for Atlatl. The reward function is 

the same as the BoronRewArt reward function from [18]‘s research in Atlatl and is based 

on the work by [17]. As seen in Equation (5), the BoronRewArt function can only be 

positive. If the difference in the Atlatl game score is greater than the previous timestep, 

then the difference is multiplied by the fraction of the friendly units’ current total strength 

divided by the friendly units’ starting total strength. The reward function is designed to 

encourage combat while conserving strength and has proven to generate combat behavior 

[18]. 

 𝑟𝑟𝐴𝐴𝑃𝑃𝑎𝑎𝑟𝑟𝑟𝑟 =  𝑛𝑛𝑎𝑎𝑥𝑥[0, (𝑟𝑟𝑇𝑇𝐷𝐷𝐷𝐷𝐴𝐴𝑟𝑟𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇 𝑠𝑠𝐴𝐴𝐿𝐿𝑟𝑟𝐴𝐴 𝑥𝑥 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝑡𝑡 𝑠𝑠𝑡𝑡𝐴𝐴𝐴𝐴𝑛𝑛𝑠𝑠𝑡𝑡ℎ
𝑠𝑠𝑡𝑡𝐴𝐴𝐴𝐴𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴𝑡𝑡 𝑠𝑠𝑡𝑡𝐴𝐴𝐴𝐴𝑛𝑛𝑠𝑠𝑡𝑡ℎ

]  (5) 

2. Design of the Worker 

The Worker’s observation space is designed to be more narrow but deeper than the 

Manager’s observation space, while also map size independent. The observation space is a 

tensor of size [16, 5, 5]. The first 14 layers are one-hot encoding of the terrain types and 

friendly/hostile unit types. Each layer is dedicated to a terrain or unit type (by affiliation). 

For the terrain layer, if the hex matches the specified terrain, then the hex is represented as 

a 1, otherwise 0. For the unit layer, if the hex contains the specified unit type and color, 
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then the hex is represented as a percent of the unit’s strength, otherwise 0. The next layer 

represents all the hexes that the unit can move to or attack. The final layer represents where 

the Worker’s target hex is located, that is the goal established by the Manager. Figure 12 

shows the mapping from Atlatl to the Worker’s observation space. 

 
The Worker is a Blue infantry unit and is occupying an urban hex which is also its target. 
Since the observations are centered on the Worker, the Self, Urban hex, Blue infantry, and 
Target hex layers have a highlighted (white) center. Any observations beyond the map’s 
boundaries are padded “0” and shown as black.  

Figure 12. Mapping of Worker’s Observation Space 

The Worker’s action space is designed to be translated into the primitive actions of 

Atlatl: shoot, move, or pass. The infantry Worker’s action space is a discrete value from 0 

to 6, inclusive. The mechinf, armor, and artillery Workers’ actions spaces are discrete 

values from 0 to 18, inclusive. The values represent the hex number that a Worker can 

move to. If an opposing unit occupies the hex, the unit attacks, otherwise it moves. 0 is 

take no action. Figure 13 illustrates the mapping of action space to Atlatl actions. Since the 
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Worker’s action space is discrete values, which works well with Q-learning, this thesis 

used SB3’s DQN algorithm. 

 
Figure 13. Mapping of Worker’s Action to Nearby Hexes 

The Worker’s reward function is similar to the BoronRewArt function while also 

encouraging movement to the target. Figure 14 shows the pseudocode for the Worker’s 

reward function. For each time step, the Worker receives a reward for reaching the target. 

The Worker is rewarded if it successfully engages in combat, based on how close it is to 

its target. Otherwise the Worker receives increasingly larger rewards for getting closer to 

its target.  

 
Figure 14. Pseudocode for Worker’s Reward Function 
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The Worker’s training environment is almost as important as the Worker’s reward 

function. During training, an RL agent is learning the optimal policy, i.e., the mapping of 

state to actions that returns the greatest reward [23]. If the RL agent encounters a state 

during evaluation that is completely dissimilar from any state transitions the agent 

encountered during training, then the agent’s behavior will be unpredictable. Therefore, 

the training environment should be robust enough to present state transitions similar to the 

evaluation environment. The Worker’s training environment is shown in Figure 15. The 

environment contains a mixture of terrain types and friendly and hostile units. A Worker 

neural network was trained for each type of unit, so that the Worker’s actions, for that unit 

type, were optimized for the strength and weaknesses of each unit type.6 The Worker 

received a randomized target during each episode and trained for 1.5 million steps. 

 
While the current Worker depicted is an infantry unit, the same environment is used for all 
unit types. 

Figure 15. Worker’s Training Environment 

 
6 For example, while the artillery unit has greater movement and combat range than the infantry unit, 

artillery units cannot enter marsh hexes. 
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D. DESIGN OF EXPERIMENT 

This thesis explores the ability of FMH to continue to exhibit combat behavior 

while the size and complexity of the scenario grew. The thesis also investigates scalability. 

Specifically, the thesis evaluates training and execution requirements as the size of the 

scenarios increases. Other agents and a variety of scenarios were required to investigate 

the issues of feasibility and scalability. FHM is compared against two different agents. The 

performance of the three agents are tested in increasingly complex environments. 

1. Comparison Agents 

FMH performance in a series of complex scenarios is compare against a rules-based 

agent and a single RL agent. This section explains the details of the two comparison agents.  

a. Rules Base: pass-agg 

The first comparison agent is a conventional rules-based agent referred to as pass-

agg. The pass-agg agent follows a decision tree to determine which action to take. At the 

start of each turn, the agent assumes an “attack” or “defense” posture based on a 

comparison of friendly to hostile unit strengths. If the total current friendly unit strength is 

greater than or equal to the total current hostile strength, then the pass-agg agent assumes 

an “attack” posture. The agent will direct a subordinate unit to attack a hostile unit, if 

possible, regardless of posture, when a hostile unit is within range. If there are no hostile 

units to attack, then the agent will move units based on rules given its current posture. 

b. Single RL Agent: AI16 

The second comparison agent is an RL agent similar to the one used by [18]. AI16 

is a single agent that observes the entire wargame and determines an action for each 

subordinate unit. This agent is an example of CTCE since only a single neural network is 

trained and deployed, regardless of the number of subordinate units. As with any RL agent, 

AI16’s observation space, action space, and reward function are critical aspects of the 

agent’s design. 



35 

AI16’s observation space is similar to the FMH Worker’s observation space. Both 

observation spaces consist of 16 layers with the first 14 layers using one-hot encoding of 

the terrain and unit types (by affiliation). The difference is in the last two layers and overall 

size of the observation space. AI16 has a layer for all the legal moves its subordinate unit 

can make. AI16’s final layer is like the FMH Manager’s final layer and represents the 

percentage of the time remaining in the game. 

AI16’s action space is similar to the FMH Worker’s action space with one critical 

difference. Like, the FMH Worker, AI16’s actions are the primitive actions of Atlatl: shoot, 

move, or pass. A user can set the action space as a set of either discrete values from 0 to 6, 

inclusive, or discrete values from 0 to 18, inclusive. If the training and evaluation 

environment is purely infantry units, then the user can select the smaller action space. Like 

the FMH Worker, the values translate to hexes to move to, or if occupied, to attack. The 

critical difference is that AI16 has to take an action for each of its subordinate units, 

therefore its action space grows asymptotically 18𝑛𝑛, where n is the number of units in the 

scenario. 

AI16 uses the same reward function as FMH Manager—the BoronRewArt. Using 

the same reward function ensures that any difference in performance between agents is 

from their designs. Specifically, differences in how these agents manage their observation 

and action space as a wargame gets increasingly larger. 

2. Scenarios 

This thesis utilizes five scenarios for its investigation. FMH’s performance is 

compared against pass-agg and AI16 in a series of four increasingly complex scenarios. A 

fifth scenario, a maze, serves as a proof of concept for the FMH Manager.  

a. 2v1 Scenario—Principle of Mass 

The first scenario tests the ability of RL agents to develop the military principle of 

mass. This scenario is based on the work of [18], where they demonstrated that a basic RL 

agent can learn to attack with two subordinate units simultaneously; referred to as massing 

fires [39]. Figure 16 shows the starting position and optimal policy for this scenario. The 
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scenario consists of two Blue infantry units versus a single Red infantry unit that is 

occupying an urban hex. The Red unit is controlled by a shootback AI. A shootback AI 

will not move from its starting position but will attack any unit with range (chosen 

randomly if multiple units are within range). 

 
Several optimal policies are possible in the 2v1 scenario, one is shown. Optimal policy 
occurs when both Blue units can attack Red at the same time. 

Figure 16. Starting Position (left) and an Optimal Policy (right) for the 2v1 
Scenario 

An optimal policy for this simple scenario can be derived from the deterministic 

rules of the wargame. The rules of Atlatl combat results in Blue units only being able to 

deal damage equal to a quarter of the Blue attacker’s combat strength since all units are 

infantry units with the Red unit defending from an urban hex. Similarly, the Red unit can 

deal damage equal to half of its current strength since the Blue unit can only occupy clear 

hexes. Therefore, the Red unit can eliminate a Blue unit unless both Blue units attack at 

the same time. Blue 1/1/3 starts two hexes away from the Red unit, while Blue 2/1/3 is 

three hexes away. Accordingly, an optimal policy can only occur if Blue 1/1/3 takes no 

action for one turn so both units can then attack the single Red unit in their fourth turn. 
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b. 3v2 Scenario—Principle of Economy of Force 

The second scenario tests the ability of RL agents to develop the military principle 

of economy of force. This scenario is also based on the work of [18], where they 

demonstrated that a basic RL agent can use only the minimum amount of combat power to 

accomplish a secondary task. Thus, the maximum combat power is applied to the main 

objective by the RL agent. Figure 17 shows the starting position and an optimal policy for 

this scenario. The scenario consists of three Blue infantry units versus two Red infantry 

units. One of the Red units starts at 25 points of combat strength, vice the normal 100 

points. Again, the shootback AI controls both Red units, so the Red units will not move but 

will attack Blue units within range. 

 
Several optimal policies are possible in the 3v2 scenario, one is shown. Optimal policy 
occurs when two Blue units mass on the stronger (left) Red unit while only one Blue unit 
attacks the weaker (right) Red unit. 

Figure 17. Starting Position (left) and an Optimal Policy (right) for the 3v2 
Scenario 

Using the rules of Atlatl, an optimal policy can be predicted for this 3v2 scenario. 

A suboptimal policy occurs if all three Blue units attack the stronger Red unit, ignoring the 

smaller Red unit. Likewise, a suboptimal policy occurs if two or more units attack the 

smaller Red unit. Therefore, the optimal policy is a simultaneous attack by two Blue units 

on the stronger Red unit with the third Blue unit attacking the weaker Red unit. 
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c. 6v4 Scenario—Intermediate Complexity 

The third scenario is designed to test the ability of agents to handle a larger, more 

complex scenario. This scenario is the first to use all six terrain types and various friendly 

and hostile units. Figure 18 shows the starting position for the scenario. The scenario 

consists of six Blue units (two mechinf, two armor, and two artillery units) against four 

Red units (one of each type) in control of an urban hex. For this scenario, pass-agg 

controlled all the Red units. 

 
Figure 18. Starting Position for the 6v4 Scenario 

This scenario is too complicated to calculate the optimal policy but a near optimal 

policy can be detected after playing the scenario as the Blue side several times. Red will 

stay near the urban hex based on the rules coded for pass-agg. The fastest way to get the 

Blue units to attack the Red unit (and gain control of the urban hex) is to move in columns 

along the clear hexes (since all Blue units can move two hexes per turn along clear hexes). 

Additionally, Blue should use the two artillery units to attack Red units before the other 

Blue units attack. 
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d. 12v6 Scenario—High Complexity 

The fourth scenario, the largest scenario of the experiment in both the size of the 

map and number of units involved, is also designed to measure the ability of the agents to 

scale without loss in combat behavior. Figure 19 shows the starting position for the 12v6 

scenario. Blue starts with three divisions. Each division consists of two mechinf, one armor, 

and one artillery unit. Similar to the previous scenario, Red is controlled by pass-agg and 

defends an urban hex with six units. Red starts from good defensive terrain, i.e., terrain 

reduces Blue’s attack strength. Also, the artillery unit behind the urban hex makes Blue’s 

task of taking the city more difficult, due to Red artillery’s attack range. 

 
Figure 19. Starting Position for 12v6 Scenario 

e. Three City Maze—Sequencing of Units 

A final scenario tested the ability of FMH to sequence which units to move. The 

Atlatl interface allows players to select which unit the player wants to move first. 

Unfortunately, previous agents, from rules-based agents to standard RL agents, all moved 



40 

units in numerical order. Failing to take advantage of Atlatl’s unit sequencing capabilities 

results in situations where the agent choses to not move a unit because that unit is blocked 

by other friendlies. The FMH Manager can be modified so that in addition to ordering goals 

to subordinates, the Manager choses the order that subordinates pursue their goals. Figure 

20 shows the starting position for the final scenario consisting of three Blue units trying to 

reach three urban hexes. The starting position and terrain setup requires the agent to 

determine which path to send each of the Blue units and in what sequence. This scenario 

also serves as an initial proof of concept for the FMH Manager with rules-based Workers 

as its subordinates. The Workers are programmed to move to the hex closest to its assigned 

target. 

 
The optimal strategy requires the infantry unit to move toward the top urban hex, armor 
unit to the center urban hex, and the artillery unit to the bottom urban hex. 

Figure 20. Three-City Maze Scenario Starting Position (left) and Optimal 
Policy (right) 
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f. Summary of Scenarios 

The scenarios are designed to measure the ability of FMH’s ability to develop and 

maintain combat behavior in increasingly larger and more complex scenarios. RL agents 

have demonstrated combat behavior in past research [18] for the first two scenarios (2v1 

and 3v2). These scenarios are used to see if FMH can replicate the same behavior and with 

the same resources (as measured by the number of training steps required) as previous RL 

agents. The third and fourth scenarios measure FMH performance in comparison to the 

past agents in increasingly complex scenarios with the same resources. The final scenario 

tested if FMH could develop a new capability for RL agents by sequencing its order of 

agents for optimal performance. 

E. PROCEDURES FOR EXPERIMENT 

1. Common Feature Extractors among Agents 

Every RL agent that received observations from the Atlatl wargame environment 

used the same feature extractor. RL researchers [12] use feature extraction as a method of 

dimensionality reduction, that is, to “simplify the data without losing too much information 

[51]. SB3 provides a feature extraction function, which is employed in this thesis. The 

feature extractor, along with the HexagDLy Python package [52], allows for the use of 

Convolutions Neural Networks (CNNs) with Atlatl’s hexagon-based map to obtain the 

most relevant information from the agent’s observations. Figure 21 illustrates the 

relationship between the Atlatl observation that OpenAI Gym provides and SB3’s Features 

Extractor and RL architecture. 
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Figure 21. SB3’s Features Extractor in Relations to OpenAI Gym. 
Adapted from [50]. 

The CNNs used with SB3’s feature extractor function enables the agent’s 

observation space, which is a multi-dimensional tensor to be transformed into a vector 

which can then be processed by the agent’s learning algorithm (i.e., DQN or PPO). CNNs 

provide two additional capabilities beyond dimensionality reduction: spatial invariance and 

equivariance. Spatial invariance means that small spatial changes to the input (e.g., vertical 

shift or small rotation of an image) will generate the same output [51]. Equivariance means 

that changes in the input will generate an equal change in the output [53]. These capabilities 

are achieved through kernels, or a function applied over the input which generates an 

output, commonly called a feature map [53]. Figure 22 depicts a kernel applied to a 

3x32x32 tensor generating a single output feature. 

Figure 22. Convolutional Kernel Over an Input with a Single Output. 
Adapted from [54]. 

The HexagDLy Python package [52] enables the use of convolutional kernels over 

the hexagon-based observations the agent receives. Since Atlatl is a hexagon-based game, 
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preprocessing must “translate the information from the hexagonal grid to a square grid 

tensor” before the feature extractor is applied [18]. Figure 23 shows how a hexagonal input 

is transformed into a square matrix for a convolutional kernel before being transformed 

back into a hexagonal output, referred to as hexConv2d. 

 
An “input tensor is convolved with hexagonal size 1 kernel (all weights set to 1, i.e., the 
convolution adds up all data points covered by the kernel)” [52]. 

Figure 23. Example of a Size 1, Stride 1 Convolutional Kernel (hexConv2d). 
Source: [52]. 

The feature extractor used by all the RL agents is four layers deep and transforms 

the agent’s observation into a vector of size 64, representing the 64 most important features 

of the observation. Figure 24 illustrates the CNN used for the feature extractor. The first 

layer, called the conv layer utilizes a hexConv2d kernel of size 1 and stride 1 with a depth 

of 32. The second layer, resid1, is hexConv2d kernel of size 1, stride 1, depth 32 but also 

employs a residual layer. The residual layer adds the output of conv to the output of resid1’s 

hexConv2d layer before applying the activation function. The third layer is a Flatten Layer 

which transforms the tensor into a single dimensional vector. The final layer is a Linear 

layer with an output layer of size 64. Layers 1, 2, and 4 all used Rectified Linear Units 
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(ReLU) for their activation functions. The output of the CNN is used by the agent’s learning 

algorithm during training and execution. 

 
Figure 24. CNN Used for the Feature Extractor of All Agents 

2. Training 

For each scenario, the AI16 and FMH agents train for the same number of timesteps. 

The number of timesteps used for each scenario varies and are based on how long it took 

for AI16 to either reach an optimal policy or failed to improve its learning for that scenario. 

Training environments are used for each scenario prior to evaluation. Training 

environments generally have more phases than the evaluation scenarios to support 

exploration by the agents. AI16 and FMH Manager are both trained using PPO with the 

same hyperparameters. FMH Workers are trained using DQN. 

3. Evaluating 

The Atlatl game score is used as the performance measure for each scenario. The 

optimal policy is the one that achieves the highest possible score for the game. The highest 

possible scores could be manually calculated for the 2v1, 3v2, and Three City Maze 
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scenarios. The near optimum score for the other two scenarios, 6v4 and 12v6, can be 

approximated through human play. 

F. SUMMARY 

The constraints of Atlatl and support RL packages influenced the design of the 

FMH agent and the experiments. The experiments are designed to access FMH’s ability to 

exhibit combat behavior in increasingly complex environments. FMH’s performance is 

compared to a rules-based agent and a standard RL agent to assess FMH’s feasibility. The 

resources needed to train each RL agents are used to assess acceptability. The experiment 

is built to ensure that only the design of FMH is assessed and not extraneous factors like 

its reward function or feature extractor. The next chapter presents the results of the 

experiments. 
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IV. RESULTS 

This chapter presents and discusses the results of the four Atlatl scenarios used to 

assess the feasibility and acceptability of using a FMH agent for large scale wargaming. 

First the chapter begins with a discussion on the results of training the FMH Worker sub-

agent. Then the chapter explains the possible scores in each scenario and assesses each 

agent’s score. Finally, the chapter presents an analysis of the FMH’s performance.  

A. WORKER TRAINING RESULTS 

The first step in developing a complete FMH agent is a functional Worker sub-

agent. Several iterations and a significant redesign of the agent’s observation space and 

training scenario, as well as hyperparameter tuning, specifically the discount factor were 

needed to create a Worker that provides consistent behavior.  

1. Desired Worker Behavior 

The Worker’s observation space, action space, and training were designed to 

provide consistent behavior based on the goals issued by the Manager. Desirable Worker 

behavior can be understood as moving advantageously to the target hex assigned by the 

Manager. If the hex is occupied by an opposing force, then the Worker should attack the 

opposing unit until its eliminated, then move to the target hex. The Worker should stay on 

the target hex until it receives a new target from the Manager and defend the target hex 

from any opposing force. The Worker’s observation space was modified to achieve this 

behavior.  

2. Worker’s Observation Space 

Initially, the Worker’s observation space was 16 layers of size 5x5, centered on the 

hex that the Worker occupied. This observation space design allows the Worker to be 

usable for any map size and reduce training time for each scenario. Unfortunately, this 

approach fails to converge to an optimal policy. Figure 25 shows that a Worker with only 

local observations stagnates at approximately 20 reward points during training, while the 

Worker with global observations plateaus at approximately 140 reward points. Both types 
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of Workers have 16 layers but Worker-Local’s observations are limited to the 5x5 hexes 

centered on the Worker (as described in the previous chapter), while Worker-Global 

receives input from every hex (similar to AI16). Table 4 shows the performance of each 

variety of Worker after 1.5 million training steps. An additional benefit of using a global 

observation space is that it ensures the Worker’s target is always within its observation 

space thereby improving the Worker’s ability to locate and move to its target. 

 
Figure 25. Mean Reward During Worker Training, n=50 

Table 4. Mean Reward of Worker after 1.5 Million Steps, n=100 

 Mean Standard Deviation 
Worker-Local 165.47 162.46 
Worker-Global 27.51 55.35 

 
Unfortunately, using global observations means that each Worker type (infantry, 

mechinf, artillery, and armor) needs to be trained for each scenario that uses a different 

map size. One of the reasons for designing the Worker to be scenario map size independent 

is to support scaling by reducing the amount of time required to train a complete FMH 

agent for a scenario. Table 5 shows new training requirements based on the modification 

of the FMH Worker to receive observations from the entire wargame. The Workers needed 

for the 6v4 and 12v6 scenarios are trained using the 6v4 and 12v6 scenarios instead of 
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creating independent training environments like the 2v1 and 3v2 Workers used. In other 

words, for the 6v4 and 12v6 scenarios, the Workers and the Manager train using the same 

environment.  

Table 5. Worker Training Requirements for Each Scenario 

Scenario Size (Columns x Rows) Training Requirement 
2v1 7x7 Initial training 
3v2 7x7 Reuse 2v1 Scenario Workers 
6v4 10x10 Re-training required 
12v6 15x10 Re-training required 

 

3. Worker’s Training Scenario 

Workers need to train with other friendly units to deconflict their movements. 

Initially, Worker training consisted of only a single friendly unit in a scenario of mix terrain 

types and opposing units. Even though the Worker’s observation space had layers to detect 

other friendly units, the Worker failed to react to other friendly units during Manager 

training since the Worker never encountered friendly units during Worker training.  

4. Worker’s Discount Factor 

Hyperparameter tuning for the Worker showed that a discount factor of 0.6 during 

training results in the best performance. Figure 26 shows results of hyperparameter tuning 

for an infantry Worker. While a discount factor of 0.6 provides the best results, values 

between 0.6 and 0.85 provide near comparable results. The upper and lower extremes for 

a discount factor, i.e., 0 or 0.99, show the worse performance. Therefore, all the Workers 

are trained using a discount factor of 0.6.  



Figure 26. Effect of Discount Factor on Mean Reward During Worker 
Training 

5. Variance between Differing Worker Types

Each Worker type trains independently but in similar environments, which results 

in different mean rewards during training. It is expected that mechinf, armor, and artillery 

would score more reward points than infantry since the other unit types can move twice as 

far as an infantry unit in clear terrain (and reach their target quicker). Also, it is expected 

that mechinf and armor would score more reward points than artillery, since artillery cannot 

reach any targets that are marsh hexes. Surprisingly, there is greater variation in reward 

points between armor and the other units as seen in Figure 27.  

50 



51 

 
Figure 27. Differences in Mean Reward During Worker Training by Type 

B. FMH RESULTS 

The FMH Manager’s performance is compared to a rules-based agent and a single 

RL agent in four different scenarios: 2v1, 3v2, 6v4, and 12v6. In all of these scenarios, 

FMH fails to demonstrate better performance than a single RL agent or a rules-based agent. 

The FMH agent repeatedly scores the same as doing nothing.  

1. 2v1 Scenario – Mass 

During training for the 2v1 scenario, FMH fails to demonstrate any learning, as 

measured by mean reward during training as compared to the single RL agent, AI16. Figure 

28 shows that AI16 continues to learn until about 160,000 training steps while FMH never 

improves its learning, even when FMH trains against a passive agent, an agent that does 

not move or shoot back. FMH receives zero rewards when training against the shootback 

AI but did occasionally attack when training against a passive AI.  
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Figure 28. Mean Reward per Evaluation During 2v1 Training, n=50 

In the 2v1 scenario, the FMH and rules-based agent fail to demonstrate the combat 

behavior of massing while the single RL agent did mass. The optimal policy can be 

calculated since the scenario is small enough. Optimal policy occurs when the two 

subordinate units simultaneously attack the single opposing unit, resulting in an Atlatl score 

of 17.5 points. An agent that does nothing7 will score -160 points, while an agent that 

chooses random actions will score -84.5 points. Figure 29 and Table 6 illustrates that AI16 

repeatedly demonstrates optimal behavior, while FMH fails to take any effective actions. 

While pass-agg was more effective than FMH, it only achieves sub-optimum performance. 

Table 6. Performance of Various Agents in the 2v1 Scenario, n=100,000 

Agent Mean Score Standard Deviation 
AI16 6.01 38.29 
FMH -160 0 

FMH vs passive -160 0 
pass-agg -18.6 26.4 
random -84.51 39.16 

7 For this thesis, an agent that does nothing includes moving around the map without ever getting close 
enough to engage, or be engaged, by an opposing unit.  
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87% of AI16’s games resulted in an optimal score of 17.5 points, which is why the upper 
and lower interquartile are centered on 17.5. FMH had zero variation, therefore it lacks an 
upper and lower interquartile plot.  

Figure 29. Box Plot of 2v1 Scenario Agent Scores, n=100,000 

2. 3v2 Scenario – Economy of Force 

FMH continues to show a lack of training during the 3v2 scenario. Figure 30 shows 

that AI16 continues to learn for 450,000 training steps while FMH never improves its 

learning, even when FMH trained against a passive agent. This scenario utilizes the same 

Worker that was used for the 2v1 scenario since both scenarios use the same map size.  
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Figure 30. Mean Reward During 3v2 Training, n=50 

In the 3v2 scenario, the FMH and rules-based agent fail to demonstrate the combat 

behavior of economy of force (EoF) while the single RL agent did. The scenario is small 

enough to calculate the optimal policy. Optimal policy, i.e., EoF, occurs when two 

subordinate units simultaneously attack the opposing unit with the most combat power, 

while a single subordinate unit attacks the “weaker” unit. Agents that demonstrate EoF 

behavior results in an Atlatl score of 18.75 points. An agent that does nothing will score 0 

points, while an agent that choses random actions will score -54.2 points. Figure 31 and 

Table 7 illustrates that AI16 repeatedly demonstrates optimal behavior, while FMH fails to 

take any effective actions. Remarkably, pass-agg is less effective than taking random 

actions. 

Table 7. Performance of Various Agents in 3v2 Scenario, n=100,000 

Agent Mean Standard Deviation 
AI16 -36.71 60.24 
FMH 0 0 

pass-agg -156.25 0 
random -54.2 77.21 



55 

AI16 achieved the optimal score of 18.75 points in 32% of the games evaluated. More 
training could have increased the percentage of optimal scores but was not within the scope 
of the thesis.  

Figure 31. Box Plot of 3v2 Scenario Agent Scores, n=100,000 

3. 6v4 Scenario – Increasing Complexity

Both FMH and the single RL agent show a lack of training during the 6v4 scenario. 

Figure 32 shows that neither FMH or AI16 demonstrate consistent learning during its 2 

million training steps. These results are as expected due to the size and complexity of the 

scenario and initial sparseness of rewards. This scenario requires new Workers to be trained 

since this scenario uses a larger map. 
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Figure 32. Mean Reward During 6v4 Training, n=50 

In the 6v4 scenario, all agents fail to demonstrate acceptable performance with the 

rules-based agent scoring the best. The scenario is too large to calculate what an optimal 

policy would score. After playing several iterations, an “acceptable” score can be deduced. 

Blue can score approximately +125 points when employing a near optimal policy.8 An 

agent that does nothing will score -435 points, while an agent that choses random actions 

will score an average of -459 points.  

The size of the scenario and the distance between opposing sides is large enough 

that random actions likely result in opposing units not engaging each other. Both AI16 and 

a randomly acting agent score -435 points in 90% of the evaluations (i.e., failed to engage 

in any combat 90% of the time). Figure 33 and Table 8 illustrates that while pass-agg could 

score the highest (max score was -60 points), it is far from near optimal and fails to achieve 

a positive score. FMH continues to take actions that fail to engage opposing units, even 

when trained against passive agents.  

8 Near optimal policy requires Blue units to move along clear hexes to quickly reach the opposing 
units and use the Blue artillery units to attack opposing units, starting with the Red artillery unit. Place the 
other friendly units within range of Red artillery, when Blue artillery attacks to decrease the odds that Red 
artillery attacks Blue artillery. Prevent Red from reoccupying the urban hex and eliminate remaining units. 



57 

Figure 33. Box Plot of 6v4 Scenario Agent Scores, n=100,000 

Table 8. Performance of Various Agents in 6v4 Scenario, n=100,000 

Agent Mean Standard Deviation 
AI16 -442.57 24.97 
FMH -435 0 

pass-agg -474.5 292.84 
random -458.65 44.14 

4. 12v6 Scenario – Largest Complexity

FMH finally started showing potential for learning but none of the agents showed 

near optimal performance in the 12v6 scenario. Figure 34 shows that FMH, when training 

against a passive agent, achieves a higher reward than AI16 over the course of 3.5 million 

training steps. It is difficult to assess if either agent would improve with more training time 

based on the large variation in mean rewards throughout the training period. This scenario 

also uses Workers specifically trained for the 12v6 scenario.  
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Figure 34. Mean Reward During 12v6 Training, n=50 

During the 12v6 scenario, all agents barely performed better than random actions, 

with the rules-based agent occasionally achieving the highest score amongst all agents, as 

seen in Figure 35 and Table 9. Similar to the 6v4 Scenario, after playing several iterations, 

an “acceptable” score of +180 can be deduced.9 Both AI16 and FMH fail to mass units for 

attacking the defending Red units, attacking with only single units at a time. Additionally, 

FMH only employs its mechinf units.  

Table 9. Performance of Various Agents in 12v6 Scenario, n=100,000 

Agent Mean Standard Deviation 
AI16 -885.3 170 
FMH -680 0 

pass-agg -1065.6 252 
random -864.2 208 

 
9 Near optimal score requires the massing of artillery units to reduce or eliminate opposing units 

occupying or in front of the urban hex. Then use the remaining friendly units to attack the sole Red artillery 
unit. And finally, prevent Red units from reoccupying the urban center once the defending unit is 
eliminated by artillery.  
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Figure 35. Box Plot of 12v6 Scenario Agent Scores, n=100,000 

5. 3-City Maze

The 3-city maze is the initial proof of concept for the FMH Manager and also a test 

of the Manager’s ability to sequence Worker movements using rules-based agents. The 

FMH Manager successfully learns to move its rules-based Workers towards the city. The 

Manager does not learn the proper sequencing and fails to all occupy all three urban hexes 

in the fastest time possible. The Manager’s ability to move the Workers towards the urban 

hex serves as proof that the Manager is prepared to direct fully trained RL Workers. Figure 

36 shows the FMH Manger directing the Workers towards the urban hex. The Manager 

learns to move the armor unit quickly towards the urban hex and for the artillery unit to 

avoid the marsh hex (which is impassable for artillery).  
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Each image is a single phase consisting of three Worker movements. Each image is in order 
of movements from left to right, top to bottom.  

Figure 36. FMH Manager with Rules-Based Workers in 3-City Maze 
Scenario 

C. ANALYSIS

The FMH Worker’s failure to provide consistent actions based on the Manager’s

targets prevents the FMH agent from developing an optimal policy. An analysis of the 

Manager’s targets and the Worker’s actions shows irregular behavior from the FMH 

Worker. For the 2v1 Scenario, a “Good Target” is the hex that the opposing unit occupies 

or the adjacent hexes as highlighted in green in Figure 37. The Worker is designed to move 

towards its target and engage any opposing units on or next to the target. Theoretically, 

“Good Target” hexes should result in combat. Ultimately, the FMH Manager will develop 

an optimal policy by providing targets to its subordinate Workers so that they attack the 

opposing unit simultaneously. The FMH Manager designated a “Good Target” hex to either 

subordinate Worker only 4% of its training time. More importantly, is what the Worker did 

when it receives a “Good Target.”  
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Figure 37. Hexes That Are Good FMH Targets 

The FMH Worker consistently fails to act in a positive manner when the FMH 

Manager issues a “Good Target.” Table 10 summarizes all the Workers’ actions when it 

receives a “Good Target.” The Manager assigns 93% of its “Good Targets” to the Worker 

labeled Blue 1. Both Workers pass most times when they receive a “Good Target.” 

Preferably, a Worker would only pass if it was already occupying its target hex and had 

zero opposing units to attack, which never occurred during training. The Workers chose to 

pass for an unknown reason. An assessment of the Worker’s training shows that 

occasionally, the Worker would pass even though its target is reachable.  

Unexpectedly, a “Good Target” from the Manager never results in a Worker 

attacking the opposing unit, yet from the training data the Workers did attack the opposing 

unit (refer to Figure 28, positive rewards only occur from combat). The positive rewards 

indicate that occasionally, when the Worker is within range of the opposing unit and the 

Manager issues a goal that should order the Worker to move away from the opposing unit, 

the Worker choses to attack instead.  

The Manager’s failure to learn to issue only “Good Targets” is unsurprising since 

the Worker choses to pass most of the times it receives them. When the Worker is trained 

in the 2v1 Scenario prior to the Manger’s training, the Worker passes less and the Manager 

improves its learning. Table 11 shows the Worker’s improved behavior and its effect on 

the Manager’s training, see Figure 38.  
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Table 10. FMH Worker’s Actions When Issued a “Good Target” Target 

Action Taken Percentage of All Actions 
Pass 82.4% 

Attack 0% 
Failed to Attack 0% 

Move to Any “Good Target” Hex 0.07% 
Move to Assigned Target Hex 0.035% 

The Worker was trained in an environment dissimilar to the one in which the Manager 
will employ it (i.e., the 2v1 scenario). 

Table 11. FMH Worker’s Actions When Trained in the 2v1 Scenario 

Action Taken Percentage of All Actions 
Pass 1.6% 

Attack 0.14% 
Failed to Attack 0.04% 

Move to Any “Good Target” Hex 25.9% 
Move to Assigned Target Hex 25.6% 

The Worker was trained in 2v1 scenario (against a passive agent) before the Manager 
trained in the 2v1 scenario (also against a passive agent).  

 

There is a measurable difference in actions taken by the Worker when the Worker 

trains in the 2v1 scenario. The Worker is less likely to pass, more likely to attack (though 

barely). Additionally, the Worker remains within the good hexes longer. These actions 

should support the FMH Manager learning a better policy, i.e., the Manager should 

continue to issue “Good Targets.” 

While the Manager is able to achieve more reward points during training, it fails to 

translate into better performance. The Manager continues to develop a policy of ineffective 

movements resulting in the same score as doing nothing. Again, this sub-optimal is 

unsurprising. The Manager demonstrates large variation during its training period as seen 

by the green line in Figure 38. Conversely, AI16 expresses consistent improvement during 

its training as seen by the orange line in Figure 38. The differences in training behavior 

result in AI16 learning to mass while FMH takes ineffective actions.  
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Figure 38. Mean Reward for 2v1 Scenario with Improved Worker 

While the Worker’s action improves (as measured by the percentage of times the 

Worker passes), the Worker is still inconsistent. The Worker choses to move to a non-

”Good Target” hex 75% of the time the Manager assigns it a “Good Target.” The Worker 

continues to demonstrate the behavior of attacking the opposing unit even though it 

receives an order to move away. Looking at Table 4, there is a large variation in the 

Worker’s mean reward at the conclusion of its training. This variation in behavior is 

translating into inconsistent actions and disrupting Manager learning.  

D. SUMMARY

FMH fails to develop optimal or near optimal policies in any of the scenarios and

only shows potential for learning with significant pre-training. The FMH demonstrates the 

most potential for learning an optimal policy when it uses Workers trained in the same 

environment as the Manager.  
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V. DESIGNING A SUITABLE WARGAMING AI

This thesis examines not only the feasibility and acceptability scaling HRL for large 

military wargames, but also assesses the suitability of doing so. This chapter explores the 

suitability of replacing human operators with intelligent agents by examining trustworthy 

and responsible AI within wargames. If integrating an intelligent agent into wargaming 

counters the purpose of wargaming, then the endeavor is not suitable. Therefore, the 

chapter begins by discussing the purpose of wargaming and how wargames can fail to 

achieve their purpose. This chapter focuses on one aspect of integrating AI into wargames: 

replicating the opposing force (OPFOR). While this chapter will focus on OPFOR, its 

implications can also apply to using AI to replicate any simulation entity: friendly forces, 

allies, and civilians. The chapter then explains that DOD policy requires researchers and 

military leaders to assess the suitability of integrating AI. Finally, the chapter provides a 

recommendation for ensuring that any AI method implemented into wargaming remains 

suitable. 

A. WARGAMING’S PURPOSE

Militaries conduct wargames to learn about themselves. That is, obtain insights into

their decision-making process by fighting against tough, realistic opponents. Wargaming 

achieves its purpose by imparting meaningful experiences in its participants, particularly 

the decision makers, through their active involvement in the consequences of their 

decisions [40]. Rubel claims the wargame experience is meaningful because the 

participants “gain valid and useful knowledge” [2]. Perla and McGrady argue that 

wargaming provides “participatory narrative experiences” which is fundamental to 

understanding new or unfamiliar concepts [40]. The opposing force plays a critical role in 

the wargaming experience because learning comes from the “dynamic interaction of the 

competing ideas and wills of its players” [1].  

How the OPFOR is employed in a wargame is critical to determining how the 

dynamic interaction emerges. The U.S. Army’s concept of an OPFOR is established in 

Army Regulation 350-2, which defines an OPFOR as “a plausible, flexible military and/or 
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paramilitary force representing a composite of varying capabilities of actual worldwide 

forces, used in lieu of a specific threat force for training and developing U.S. forces” [55]. 

The U.S. Army developed the Training Circular 7–100 series to ensure that its OPFOR 

could provide “a challenging, uncooperative sparring partner capable of stressing any or 

all warfighting functions and mission-essential tasks of the U.S. force” [56]. Since the U.S. 

military may find itself in a large variety of situations, the U.S. military requires its OPFOR 

to be able to replicate a wide spectrum of threats from nation-states to non-state actors and 

from a basic intelligence to a sophisticated threat [56]. Overall, TC-100.2 requires the 

baseline OPFOR to be “a flexible, thinking, adaptive [threat] that applies its doctrine with 

considerable flexibility, adaptability, and initiative” [56].  

OPFOR can be adjusted to meet the needs of the wargame which operates across 

the spectrum of training, analysis, and experimentation. OPFOR in a training environment 

should be challenging but must ultimately comport to expected doctrine. Otherwise, 

negative training can set in [1]. Negative training occurs when soldiers learn incorrect 

techniques due to improper training (e.g., hiding behind a bush to avoid simulated gunfire 

from a laser training system, which is impractical in actual combat). OPFOR used for 

analysis must also adhere to expected adversarial doctrine, otherwise the analysis would 

be invalid. Yet, the OPFOR should also be creative within the bounds of its doctrine, 

otherwise the analysis would be incomplete.10 OPFOR used for experimentation can vary 

from set doctrine to completely free play (i.e., free to try untested techniques). When 

wargame designers fail to properly apply the OPFOR, the wargame is no longer useful and 

is potentially counterproductive [2]. 

B. HOW OPFOR AI (AND WARGAMES) CAN FAIL 

Wargames fail to achieve their purpose when the OPFOR generates experiences 

detached from reality. Weuve et al. explained the different pathologies that can cause a 

wargame to fail, that is, invalidating the knowledge we gain from wargaming [16]. While 

they established 21 ways a wargame can fail, this chapter will only look at one: model 

 
10 During COA analysis, within military planning, the staff should wargame against two OPFOR 

actions: the enemy’s most likely and most dangerous COA [57]. 
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failure. Models can be viewed as “proportional representations of the real world” [22], 

therefore, an OPFOR intelligent agent is a model, a representation of real-world 

adversaries. Consequently, that OPFOR intelligent agent needs to be the right model. 

Weuve et al. [16] states there are many ways that a model can fail: gives the wrong results; 

is too opaque for proper use; used in the wrong context; or inflexible. This section examines 

model failure within the application of an OPFOR AI with the additional failure mode: 

improper implementation.  

1. Wrong Results

The simplest model failure is a model that gives incorrect results. An OPFOR agent 

that does not replicate real world OPFOR behavior will invalidate a wargame [1], [22]. 

This model failure would be evident in an OPFOR that does not use expected, or 

anticipated, tactics. Conversely, Perla also argues that an OPFOR AI too committed to 

doctrine is also improperly modeled because the agent is likely to make clearly incorrect 

and illogical moves [1]. An OPFOR that makes incorrect moves can be gamed by the other 

player. The player could trick the OPFOR agent into making moves that do not reflect real 

world actions. As shown in Figure 1, there is a spectrum of desired OPFOR behavior based 

on the objective of the wargame. Ultimately, the wargame fails to inform its participants 

how to think and act against a potential future adversary when the OPFOR actions are 

counter to the wargame’s objective.  

2. Too Opaque

A model can also fail if the model is too difficult to understand. Weuve et al. [16] 

defines an incomprehensible model as being too opaque. An OPFOR agent can be opaque 

if the wargame designers, players, and sponsors do not understand the agent’s decision-

making process. Opaqueness invalidates a wargame in two ways: players disbelieve the 

results or game controllers fail to understand the limitations of the results. If the participants 

do not understand the model, then they will not trust the model’s results [16]. For example, 

a staff fails to improve its flawed plan because the staff believes the OPFOR fought 

unfairly. On the other hand, if the controllers and sponsors of the game do not understand 
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the models, they may place too much trust in the results; they fail to understand the 

limitations of the model and incorrectly extrapolate the results.11  

3. Wrong Context 

Additionally, a well-designed OPFOR agent can be applied to the wrong wargame. 

A “correct” model can still fail if it is applied in the wrong context [16]. It may not be 

feasible or acceptable to train an OPFOR AI model that can execute all forms of combat. 

U.S. joint doctrine [39] specifies three levels of war (strategic, operational, and tactical) 

conducted in a wide range of military operations. These levels of war and military 

operations can be executed within and across five domains (air, land, sea, space, cyber), 

[39]. If the training audience operates at a level of war, within a military operation, or a 

domain that the AI is not trained to handle, then the training audience would gain an unfair 

advantage and results would be invalid.  

4. Overly Complex 

Finally, a suitable OPFOR can easily adjust to meet the needs of the wargame 

designers and its participants. Models that are “difficult, inflexible, or overly complex” fail 

to achieve wargame objectives [16]. An OPFOR agent should be able to reset its state or 

change some of its parameters mid-exercise. If the training audience is struggling or the 

exercise is failing to achieve its objectives, then the game controllers may require changes 

from the OPFOR [22]. The game controllers may be required to reset the game to an earlier 

period or change game parameters (e.g., adjust OPFOR weapon ranges to ensure an 

exercise remains the proper classification). A suitable OPFOR should adjust accordingly 

 
11 After a 2015 wargame, RAND researchers [58] claimed that Russia could occupy two Baltic 

capitals in 60 hours. LTC Alex Vershinin correctly argued in a 2021 essay, “Feeding the Bear,” that it 
would be improper to apply the Russian sustainment model from the 2015 RAND study to other countries 
[59]. Nevertheless, unnamed Western intelligence agencies predicted that Russia would topple Ukraine in a 
matter of weeks at the start of the 2022 Russo-Ukrainian War [60]. After six months of fighting, Russia has 
failed to defeat Ukraine.  
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5. Improper Implementation

While not identified as a pathology, a similar OPFOR failure is a wargame that 

employs a “cheating AI.” A “cheating AI” is an agent that has access to information about 

a game that a normal human would not have access to (e.g., the real time location of all its 

opponents) [11]. Sometimes agents cheat due to a constraint imposed by the game 

interface. Sometimes wargame controllers want to provide the OPFOR with extra 

information about the training audience to drive an exercise objective. A properly 

implemented OPFOR agent only has information that the agent can acquire through its own 

assets or knowingly supplied by the game designers.  

C. IMPLICATIONS OF IRRESPONSIBLE DESIGN AND INTEGRATION

The U.S. military risks dire consequences if it fails to consider wargame

pathologies in the design and integration of an OPFOR AI. Experimental and analytical 

wargames drive force modernization, doctrine development, and unit training. Today, 

organizations like the Army’s Futures Command host exercises like Project Convergence 

and the Joint Warfighter Assessment to evaluate future weapon systems, force designs, and 

their implications on future doctrine. The decisions made from these wargames assume the 

information gained from the game is valid.  

For training, the U.S. Army envisions a future where multiple echelons integrate 

their live, virtual, and constructive wargames seamlessly in what U.S. Army calls the 

Synthetic Training Environment (STE) [61]. The U.S. Army states that integrating AI into 

STE is a future critical capability by replacing costly human operators and giving training 

units the capacity to vary the intensity of the training through the AI OPFOR [61]. This 

capability requires reliable and trustworthy AI. Training units need to trust that the 

intelligent agent is properly representing real threats and any modification to OPFOR 

behavior can be controlled. Training units need to understand the OPFOR agent’s decision-

making in order to improve performance. Specifically, what OPFOR actions were in 

response to the training unit’s actions.  

Finally, there is increasing discussion about using simulations to generate data for 

future ML projects. Researchers envision using AI in a simulation to drive the development 
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of ML projects that could be deployed to the battlefield, which in turn generates data to 

improve the simulation AI in a continuous cycle [62]. Invalid simulations using flawed 

OPFOR models will lead to flawed deployed AI applications with deadly consequences.  

Researchers should acknowledge that they are designing a model of real-world 

threats when designing an OPFOR agent. DOD policy requires that these design decisions 

be explicitly expressed. These are not the only policy requirements. 

D. DOD POLICY REQUIREMENTS FOR AI 

Two policy documents, the Deputy Secretary of Defense memo on Implementing 

Responsible Artificial Intelligence in the DOD [63] and the Defense Innovation Unit’s 

Responsible AI (RAI) Guidelines [64] inform OPFOR AI integration. These documents 

call for researchers and military leaders to investigate and think through how to integrate 

intelligent agents into wargames. The National Security Commission on Artificial 

Intelligence Final Report makes clear why these policies are important. Schmidt et al. 

asserts that:  

[AI] systems must be developed and fielded with justified confidence. If AI 
systems do not work as designed, or are unpredictable in ways that can have 
significant negative consequences, then leaders will not adopt them, 
operators will not use them, Congress will not fund them, and the American 
people will not support them. [9] 

Schmidt et al. [9]‘s assertion applies to integrating AI into wargaming. If the OPFOR 

model is wrong, opaque, or inflexible, then the wargaming profession is at risk. Failed 

wargames lead to sharp criticism from the military profession, Congress, and the public.12  

DOD RAI policies seek to prevent this. The DOD AI Ethical Principles can be applied to 

the integration of an OPFOR agent into wargames: 

1. Responsible Judgement. An appropriate authority needs to be identified to 

ensure the appropriate OPFOR model is being used for the wargame’s 

 
12 The Millennium Challenge 2002, costing $250 million, is an excellent example of how OPFOR and 

game controller actions can cause a wargame to fail resulting in public scrutiny [65].  
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objective. This will prevent “wrong context” and “improper 

implementation” model failure pathologies.  

2. Traceability. Design decisions made in the development of the OPFOR

model, including data sources used, need to be documented. This will

prevent “wrong results” and “inflexibility” model failures.

3. Reliability. The OPFOR AI needs to be tested intensely and by

disinterested third parties. The model’s behavior needs to be protected

from malicious attacks. This will prevent “wrong results” and “too

opaque” pathologies.

4. Governance. A process should be established to stop using the OPFOR

model if it starts to demonstrate unintended, or irrelevant, behavior. And

ultimately, governance ensures the other principles are executed.

E. RECOMMENDATION FOR RESPONSIBLE AI WARGAMING

DOD Instruction 5000.61 [66] directs the military to use the verification, validation,

& accreditation (VV&A) process to ensure the responsible development and integration of 

models into DOD applications. Therefore, VV&A should apply to an OPFOR intelligent 

agent, which is a representation of human OPFOR operators. VV&A consists of three 

distinct but interrelated processes to “to determine whether a simulation’s capabilities, 

accuracy, correctness, and usability are sufficient to support its intended uses” [67]. Figure 

39 illustrates the DOD’s conceptual framework for VV&A.  
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Figure 39. DOD’s VV&A Framework for M&S. Source [67]. 

1. Verification, Validation, & Accreditation 

The M&S verification process provides reliability to model development. Within 

the M&S community, verification asks, “Did I build the model right?” This process ensures 

that the model (and associated data) “accurately represents the developer’s conceptual 

description and specifications” [67]. Verification is proving that the model is 

computationally correct [67]. Verification is critical step for ML techniques like RL, 

because ML models have limits and failure modes [68]. For RL, verification is ensuring 

that the agent is demonstrating appropriate behavior. Verification prevents [16]‘s “wrong 

results” model failure pathology. RL verification requires comparing the agent’s actions to 

the conceptual model of the agent, preferably in a mix of qualitative and quantitative 

assessments.  

The M&S validation process ensures researchers applied the appropriate judgement 

to their model development. For M&S systems, validation asks a similar but critically 

different question, “Did I build the right model?” This process ensures the model 

accurately represents the intentions of its user [67]. Validation proves that the model 

captures the physical phenomena that is of interest to the user. For RL, validation is 
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comparing the agent’s training and evaluation environments against the environment that 

the agent will be deployed in. Validation prevents [16]‘s “wrong context” model failure 

pathology or improper implementation. Any differences between environments should be 

addressed in accreditation.  

Finally, the M&S accreditation processes offers governance traceability to model 

design considerations. The M&S process of accreditation asks, “Is the model believable 

enough to be used?” This process is the official certification of the model and proving that 

its acceptable to use [67]. Accreditation for an RL agent should not be any different from 

the accreditation of any other model or simulation. Accreditation prevents [16]‘s “too 

complex” and “wrong context” model failure pathologies. 

Ultimately, VV&A establishes credibility for a model or simulation that [9] calls 

for in their final report and is required by [63] and [64]. That credibility is based on 

identifying the model’s capabilities, accuracy, correctness, and usability [67]. VV&A 

addresses the improper model pathologies that we identified for an OPFOR model.  

2. VV&A for an OPFOR Agent

The VV&A framework operationalizes some of the questions posed by the DOD 

AI Ethical Principles. The operationalization starts by examining the problem entity from 

the viewpoint of the DOD AI Ethical Principles. Investigating the conceptual model of the 

OPFOR is an initial assessment of the proper and necessary representation of our 

adversaries. The operationalization continues throughout the VV&A process.  

The DOD AI Ethical principle of reliability is met through verification. Starting at 

model input, the process of data validation scrutinizes where the OPFOR agent is deriving 

its knowledge about our adversaries from. The agent’s behavior is compared to expected 

behavior of human operators.  

An OPFOR AI accreditation process would require identification of who is 

responsible for integration of an OPFOR agent (i.e., the Responsible Judgement principle). 

The DOD Instruction 5000.61 assigns the Director, Defense Intelligence Agency as the 
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validation authority for the representation of non-U.S. forces and capabilities [66]. This 

responsibility should extend to an agent representing an OPFOR.  

The VV&A process is traceability. Multiple reports are generated in the process 

from the VV&A Acceptability Criteria Report to the Verification and Validation Plan to 

the Accreditation Report. These documents help us understand design decisions, data 

origin and validity, expected applications, system performance evaluation, etc. VV&A’s 

traceability ensures “that relevant personnel possess an appropriate understanding of [the 

OPFOR agent’s] capabilities” [63].  

While the purpose of VV&A is to improve reliability, the current framework needs 

to look beyond weapon/platforms and focus on agent behavior. Fortunately, this can be 

addressed within the DOD’s Model and Simulations Enterprise’s governance system, 

specifically. the DOD M&S Steering Committee. The Steering Committee is responsible 

for establishing VV&A standards [66]. There are several documents governing M&S, but 

the steering committee needs to update them to reflect integrating AI. 

F. SUMMARY 

While this chapter focused on integrating an intelligent agent to represent OPFOR, 

this is applicable to any attempt to replace human participants with AI inside a wargame. 

Vendors are already trying to meet the U.S. military’s desire for AI integration into 

wargaming [69], [70], [71]. The DOD, and specifically, the DOD Model and Simulations 

community needs to clearly articulate those needs. Otherwise, an improper OPFOR models 

will invalidate future wargames. VV&A framework offers the best method for ensuring 

responsible AI implementation for wargaming because replacing human operators with an 

OPFOR intelligent agent is the equivalent of adding an additional model to the simulation. 

Like any other model added to a wargaming simulation it must be credible, and that 

credibility is achieved through VV&A. 
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VI. CONCLUSIONS AND FUTURE WORK 

This thesis examined the feasibility and acceptability of using HRL to support large 

scale wargames as well as the suitability of using AI agents within wargaming. This thesis 

assessed feasibility and acceptability by comparing the performance and training 

requirements of FMH to a standard RL agent. Additionally, this thesis explored the 

suitability of employing AI agents through the lens of replacing human OPFOR with an 

intelligent agent. While the FMH agent required more training than a standard RL agent 

and failed to outperform an RL agent, this thesis did show the foundations needed for using 

HRL for large wargames. Furthermore, this thesis recommends the DOD’s VV&A process 

as a method to ensure any intelligent agent employed within wargames are suitable. This 

chapter discusses these conclusions and offers recommendations for future work 

A. CONCLUSIONS 

This thesis makes several conclusions about using FMH for large wargames after 

conducting a series of experiments using increasingly complex scenarios. Additionally, this 

thesis concludes that using AI for wargaming is suitable when the correct processes are 

applied.  

1. Feasibility and Acceptability 

The FMH implemented for this thesis failed to demonstrate combat behavior at any 

scale and is not a current feasible option for large wargames. FMH failed to demonstrate 

combat behavior or outperform standard RL and rules-based agents. Inconsistent FMH 

Worker actions prevented the FMH Manager from developing a policy, resulting in 

ineffective actions commensurate with taking no actions.  

The FMH Worker demonstrated inconsistent actions during Worker and Manager 

training. The unreliable behavior can be observed in the large variance in mean reward 

during Worker training and the actions the Worker takes in response to the Manager’s 

targets, specifically the quality targets. The FMH Worker has the potential to improve its 

performance and demonstrate more consistent actions. A FMH Worker trained using the 
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same environment that the Manager will use performed better than a Worker trained in an 

independent environment. 

Additionally, improving the Worker’s reward function will likely improve the 

Worker’s policy for more consistent actions. In [46]‘s paper on FMH, the Worker 

computed its reward locally and did not receive a reward from the environment. The 

Worker created for this thesis used a combination of local rewards (based on proximity to 

the Manager’s target) and rewards from the environment (through attacking opposing 

units). Future Worker implementations should remove rewards derived from the 

environment. Figure 40 shows a possible Worker reward function based on locally derived 

scores independent of the Atlatl score. The Worker receives the highest reward for reaching 

the Manager’s target. Otherwise, the Worker is rewarded for attacking its way to the target 

unless the Worker can find a quicker path by bypass opposing units.  

 
Figure 40. Improved Worker Reward Function Based on Local Information 

FMH demonstrated potential application for large wargames. FMH learned to 

maneuver some of its subordinate units to attack the enemy in the experiment’s largest 

scenario, 12 friendly units versus 6 opposing units. FMH developed a policy that was 

similar to a standard RL agent’s policy. Unfortunately, both the FMH and the standard RL 
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agents’ policies were far from optimal. If a better FMH Worker is developed, then it is 

worth investigating which of the two agents could develop a near optimal policy the fastest.  

The FMH training method used for this thesis is not acceptable for large scale 

wargames. The complete FMH agent required more training time than a standard RL agent 

and failed to provide better performance. A complete FMH agent required every unit type 

to train on the scenario before the Manager could train. While multiple Workers could be 

trained simultaneously to reduce training time, training Workers is a constraint in the 

development of a complete FMH agent. The Manager must wait until all Workers are 

trained before beginning its training. Additionally, the more complex a scenario is, in terms 

of different unit types, the more training resources would be required for Workers.  

2. Suitability 

Implementing AI applications into wargames is suitable when the DOD’s VV&A 

process is applied. An AI implementation in a wargame should be seen as an additional 

model, especially if the AI application is replacing human actors. Therefore, the DOD’s 

process for model verification, validation, and accreditation should be applied to all AI 

programs for wargames. This thesis demonstrates that an improper OPFOR AI can cause 

model induced wargame pathologies and invalidate the objectives of the wargame. This 

finding has implications for future training, force design, force modernization, and war 

plan analysis. The DOD’s Model and Simulations Enterprise should develop a governance 

policy for proper integration of an AI application and a process to remove obsolete 

intelligence agents.  

B. FUTURE WORK 

HRL still offers a valid path for scaling large wargames even though this thesis’ 

implementation of FMH did not produce acceptable results. This thesis recommends the 

following for future research into HRL for wargames: making the agent map size invariant, 

improving Manager-Worker interaction, simultaneous Manager-Worker training, and 

exploring HRL levels of abstraction.  
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1. Map Size Invariance 

Further research is needed to investigate the performance of RL agents that are map 

size invariant. Wargame designers incur a significant cost if they must train new RL agents 

for difference size wargames. There are two areas worth further exploration: pre-

processing map data and utilizing only local observations.  

Pre-processing map data is a potential means to make an RL agent map size 

invariant by ensuring that an RL agent operates with the same observation space regardless 

of scenario. The RL agents for this thesis utilized CNNs to conduct feature extraction of 

the most important information in the map data. Standard image analysis utilizes pre-

processing procedures to standardize all inputs for ML [51]. The RL agents already conduct 

pre-processing by converting hex information into one-hot encodings. That information is 

stored in absolutes, that is, each layer of information for each hex is stored as its own cell. 

The size of a map can be standardized by storing hex information relatively to map size as 

shown in Figure 41.  

 
Figure 41. Pre-processing a Layer of Map Information to a Standard Size 

This thesis explored the use of local observations as a means to make the Workers 

map size invariant. Further research is needed to understand the mechanisms that caused 

the Worker to fail to develop a policy when using only local observations. One possible 

solution is to introduce uncertainty for Workers. The Worker’s observation space is still 

the same size as the Manager’s observation space but the areas of the map outside the 

Worker’s own local area (i.e., sensor range) are uncertain. Local observations would 
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improve replication of real-world entities and can be extended to how the Manager learns 

in a partially observable environment.  

2. Exploring Manager-Worker Relationship 

The next area of further research needs to be understanding the relationship 

between the Manager’s target, the Worker’s actions, and how the Manager learns. The 

Manager failed to learn due to the Worker’s inconsistent actions. Therefore, the first logical 

exploration is improving the Worker’s policy for more consistent actions by using locally 

computed rewards that are independent of rewards derived from the Atlatl wargame.  

The Manager’s performance should improve with better Worker policies because 

Atlatl is a deterministic environment. Unfortunately, most military wargames are not 

deterministic, therefore a RL agent for military wargames needs to learn in a stochastic 

environment. Consequently, more research is needed to understand how an HRL agent can 

learn when a subordinate agent’s actions and the environment’s subsequent state and 

rewards are stochastic.  

3. Simultaneous Manager-Worker Training 

Another potential research topic is exploring if FMH performance improves and 

training requirements decrease by simultaneously training the Manager and its Workers 

through centralized training, then employ the agents decentralized. The original FMH 

paper [46]simultaneously trained the Manager and Worker using a modified version of 

single-agent deep deterministic policy gradient (DDPG). In their study [46], the Workers 

pre-trained for 10 epochs, then continued training as the Manager trained. Identical agents 

(e.g., the same unit types), shared parameters and contributed to the same experience replay 

buffer. For a large wargame (e.g., the 12v6 scenario with six mechinf units), [46]‘s 

framework would allow for greater exploration by the different Workers and increased 

performance. Additionally, training simultaneously reduces the cost of increasing the 

number of different Workers within a scenario as seen in the training method implemented 

in this thesis.  
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Simultaneous Manager-Worker training could improve cooperation amongst the 

Workers. The training method used for this thesis fails to address the non-stationarity 

problem found in MARL. The Workers are trained in an environment where its friendly 

units remain stationary, yet operate in an environment where those same friendly units are 

employing their own policies. Simultaneous Manager-Worker training overcomes that 

problem as each Worker is learning its policy in an environment where other Workers are 

employing theirs [46]. Additionally, Simultaneous Manager-Worker training could be built 

so that the Manager learns to coordinate Workers so that non-stationarity is mitigated. The 

Manager could learn to issue zones for the Workers to operate within or issue targets that 

prevent Worker conflicts.  

Simultaneous Manager-Worker training may also support continual learning by 

allowing an agent to quickly learn new scenarios or sub-agent configurations. The FMH 

framework employed for this thesis requires the FMH Manager to retrain if new Workers 

are introduced, specifically new unit types. The FMH Manager may reduce the amount of 

training required for integrating new Workers by combining continual learning methods 

with simultaneous Manager-Worker training. Both the Manager and older Workers could 

use continual learning to integrate the policies of the new Worker without forgetting 

lessons learned from previous training.  

4. HRL Levels of Abstraction 

Further research is needed to understand how levels of abstraction can improve AI 

applications for wargames and other military decision-making processes. This thesis 

proposes further research into the proper number of levels of abstraction, the temporal 

abstraction between levels, the role discount factor plays between levels of abstraction, and 

mixture of model types.  

More research is needed to understand how many levels of abstraction for a given 

wargame application are needed. This thesis only used two levels of abstraction but FMH 

can operate with an indeterminate number of layers with sub-Managers deployed in the 

intermediate layers. The 12v6 scenario consisted of 3 groups of Workers consisting of two 

mechinf, one armor, and one artillery unit. Future research could explore the deployment 
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of sub-Managers for each group or sub-Managers specifically trained for the management 

of a specific Worker type.  

Further research is needed to understand temporal abstraction between hierarchies, 

specifically in wargames or similar real time strategy games. This thesis initially explored 

the difference between updating the Manager’s observation after every Worker’s timestep 

or every three. Unfortunately, the Worker’s inconsistent actions precluded any insights.  

Similarly, more research should explore the role of discount factor between layers 

of hierarchy, specifically with different temporal abstractions. Several different discount 

factors were used for the Workers but the only effect observed was during Worker training. 

Intuitively, the Worker should be more myopic than the manager, with the highest level 

manager utilizing the largest discount factor. It is unknown if operating at different 

temporal scales negates the need for different discount factors.  

Finally, it is unknown if using different algorithms for different layers affected the 

results. Only a single RL algorithm was used for the Manager, PPO, and a different one 

was used for the Workers, DQN, while the original FMH framework used a modified 

version of DDPG. More research is needed to understand if the algorithms used in FMH 

influence performance and if a consistent or mixed approach matters. This also supports 

research into using a modular AI approach to wargaming with different RL methods 

employed for different parts of the wargame problem.  

C. SUMMARY 

This thesis explored the use of HRL in a wargame environment. The HRL agent 

was tested in the Atlatl wargame using a fully observable, multi-agent, deterministic, and 

discrete environment. This thesis used a FMH agent within the distributed training, 

decentralized execution MARL spectrum in a series of increasingly complex scenarios. 

The FMH agent failed to demonstrate the required combat behavior and failed to 

outperform a standard RL agent in every scenario. While the FMH Manager did 

demonstrate the potential to learn how to employ FMH Workers in complex environments, 

inconsistent actions from the Worker prevented the Manager from developing an optimal 
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or near-optimal policy. Therefore, this implementation of FMH should not be used for large 

wargames.  

This thesis also explored the suitability of integrating AI into wargames by 

assessing potential wargame pathologies from employing OPFOR AI. An intelligent agent 

designed to replace human operators is a model of those human operators. Therefore, 

employing an intelligent agent within a wargame is only suitable when proper processes 

are applied to prevent model-induced pathologies. The DOD’s VV&A process can be 

updated to ensure intelligent agents are properly integrated into wargames.  

These findings show that the DOD should continue to research integrating AI into 

wargames. More research is needed to understand how to scale current AI methods into 

larger wargames. HRL, and specifically FMH, shows promise for supporting large 

wargames. This thesis recommends several research topics that can help scale current HRL 

methods. Also, the DOD MSE needs to update its governance policies to anticipate the 

increase use of AI within wargames.  
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