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Discussion Topics

• TOE overview
– Separation Kernel (SK)
– Separation Kernel Protection Profile (SKPP)

• Assurance issues for High Robustness
– Platform Assurance
– Trusted Initialization
– Trusted Recovery 

• SKPP extended requirements
• Conclusion and plans
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Separation Kernel

• Introduced by Rushby (1981)
• Simpler than traditional security kernels
• Primary functional properties

– Separate system resources into security policy equivalence 
classes, i.e., partitions

– Control information flows between and within partitions
• Configuration data establishes

– Binding of resources to partitions
– Policy rules for information flow control

• No support for MAC labels but can be configured to 
control information flows in a manner consistent with 
a MLS policy



8/29/2007 4Department of Computer Science

Least Privilege Separation Kernel

• Refinement of separation kernel 
• Apply Principle of Least Privilege to further 

restrict access to resources 
– Basic SK:  homogeneous resource-access 

requirements 
• Same access authorizations for all subjects in a partition

– Least Privilege SK:  heterogeneous resource-
access requirements

• Separate access authorizations for different subjects in a 
partition



8/29/2007 5Department of Computer Science

High Robustness

• Robustness – US scheme only
– Metric for TOE’s protection ability 
– Degrees of robustness:  Basic, Medium, High

• Assurance level
• Strength of security functions

• Robustness requirement for a TOE
– Based on value of data and threats in operational 

environment
• High robustness

– Provides most stringent protection
– Can counter sophisticated, well-funded attacks
– Suitable to protect high value data
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Separation Kernel Protection Profile 

• U.S. Government Protection Profile for Separation 
Kernels in Environments Requiring High Robustness
– Validated in July 2007 (Version 1.03, 29 June 2007)

• Based on Common Criteria Version 2.3
• Assurance requirements

– Combination of CC-defined components for EAL6 and EAL7
– Two types of explicitly stated components

• Modifications of existing CC requirements
• New requirements

→ No EAL claim due to these extensions



8/29/2007 7Department of Computer Science

Security Concepts in SKPP

• Enforcement of Partition Information Flow Policy
– Partition Abstraction, Least Privilege Abstraction  

• TOE configuration change
– Four models:  offline, static, constrained, unconstrained

• Establishment of initial secure state
– Achieved through different degrees of assurance levied on 

non-TSF components
• Delivery mechanisms
• Configuration data generation capability
• TOE loader
• Initialization mechanisms

• Trusted recovery
• Platform assurance
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Assurance Issues for High Robustness
Platform Assurance
Trusted Initialization
Trusted Recovery
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Platform Assurance Issues

• High robustness requires hardware-supported 
domain separation and self-protection mechanisms

• No CC-defined requirements for hardware 
assurance 

• Difficult to produce assurance evidence for 
hardware at same level of detail as software

• Need an assurance framework 
– To assess security properties of hardware mechanisms 

based on their interfaces to software
– To establish trust in security-relevant hardware mechanisms 
– To address hardware obsolescence during and after TOE 

evaluation

→ New Class APT -- Platform Assurance
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Platform Concepts
• Platform = hardware + associated firmware
• Platform component 

– Independently procurable, mass-produced, non-specialized 
• TOE platform = one or more platform components

– Defined by ST author
• Platform definition can vary based on intended usage of the 

TOE
– Very restrictive: require a specific component type with exact 

properties
– Less restrictive:  allow variations in properties of a specific 

component type
– More open:  allow use of different component types with defined 

assembly rules 
• Platform interface

– Internal:  accessible only to TOE components 
– External:  accessible to both TOE components and entities outside 

the TOE
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Hardware/Software Relationships

External Platform Interfaces

TOE Software

Pl
at

fo
rm

C 1 C 2 C n - 1 C n

C 3 C 4
.  .  . C 5 C 6

Internal Platform Interfaces

Virtualized Platform Abstractions

Unused Interfaces

Used Interfaces

C1 … Cn Platform components

Application Software

TOE Software

C 1 C 2 C n - 1 C n

C 3 C 4
.  .  . C 5 C 6

Internal Platform Interfaces



8/29/2007 12Department of Computer Science

Trusted Initialization Issues
• CC Version 2.x defines no requirements for TOE 

initialization
– Rely on administrative actions to ensure proper TOE 

initialization
• Intended usage of SK requires autonomous TOE 

initialization
• TSF cannot initialize itself

– Formal model assumes TSF starts in an initial secure state
• Need a robust mechanism to 

– Establish execution environment for the TSF
– Bring the TSF to an initial secure state defined by 

configuration data
• Generation and loading of configuration data need 

commensurable assurance



8/29/2007 13Department of Computer Science

SKPP Approach to TOE Initialization
• Correct TOE initialization is achieved through a trust 

chain of non-TSF functions 
– Delivery
– Configuration data generation
– TOE loading 
– Initialization

• Require use of standardized cryptographic 
algorithms for trusted delivery
– American National Standards Institute (ANSI)
– National Institute Standards and Technology (NIST)

• Apply different developmental assurance measures 
to other initialization-related functions
→ New assurance ADV families
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TOE Components 

Configuration 
vector

Configuration data

TSF

Z

X

Y

Configuration 
vector set

X

Boot media

Z

X

Y

Z

X

Y

Load
Function

Load
Function

Load
Function

Load
Tool

TSF

Z

X

Y

Z

X

Y

Z

X

Y

Boot 
Function

Boot 
Function

Z

X

Y

Boot 
Function
Boot 

Function

Z

X

Y

Z

X

Y
X

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Load
Function

Load
Function

Load
Function

Function 
to 

establish 
TSF  

initial 
secure 
state

TOE 
Initialization

Config. 
Tool

Trusted 
Delivery 
Function



8/29/2007 15Department of Computer Science

Trusted Recovery Issues

• CC requirements emphasize ways to handle failures 
and discontinuities
– Manual versus automated

• CC is vague about presence of recovery functions 
while in maintenance mode
– “In the maintenance mode, normal operation might be 

impossible or severely restricted, as otherwise insecure 
situations might occur.”

• Verification of robustness of recovery mechanisms is 
difficult
– Failures/discontinuities have no formal properties
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SKPP Approach to Trusted Recovery
• Focus on protecting the TSF against further 

compromise during a recovery 
• Extend FPT_RCV to require the TSF to attempt 

recovery to a secure state upon detection of an 
insecure state

• Expand definition of maintenance mode
– “A contiguous period during an execution session when 

operational mode functions are restricted, or recovery 
functions are available that are not available during 
operational mode, or both.”

• Clarify intended use of maintenance mode 
– Enable the TOE to return to a secure state
– Prevent the TOE from entering an insecure state 
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Maintenance Mode & Secure State
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SKPP Extended Requirements
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Platform Assurance (APT)
• New assurance class with five families

– Platform Definition (APT_PDF)
– Platform Specification (APT_PSP)
– Platform Conformance Testing (APT_PCT)
– Platform Security Testing (APT_PST)
– Platform Vulnerability Assessment (APT_PVA)

• Focus on specifications instead of identifications of components
• Replace a subset of ADV, ATE and AVA requirements for COTS 

components
– Specialized components by TOE developer must meet all ADV, ATE and 

AVA requirements defined for software
• ACM, ADO_DEL and ALC requirements only apply to specialized 

components 
– Information about CM, delivery, development security are not generally 

available for COTS components
• Does not address physical protection and anti-tampering issues
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Platform Definition (APT_PDF)

• Require Platform Definition Document (PDD) to 
support component-specific security analysis 
against SFRs 

• PDD can include vendor documentation if they meet 
content requirements

• PDD include
– Component types and assembly rules
– Identification of component interface specifications for all 

interfaces
– Security analysis on how each component type interacts 

with the TOE
– Precise references to component interfaces so that 

specifications can be obtained by third-party
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Platform Specification (APT_PSP)

• Require complete specifications of platform 
component interfaces 
– External interface
– Internal interface
– Unused interface

• Specifications include
– Invocation methods, parameters, expected results, error 

conditions
– Arguments that all interfaces are included in specifications

• Support functional analysis and vulnerability 
assessment of the TOE
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Platform Conformance Testing (APT_PCT)

• Require functional testing to ensure platform 
components identified in PDD operate as 
expected
– Vendor-provided tests may be used to satisfy this 

requirement 
• Require exercising all security features that 

are relied upon by the TSF
– Testing is performed through TSF interfaces
– Tests are to be developed by TOE developer
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Platform Security Testing (APT_PST)

• Require comprehensive security testing
– Verify correct operations of all external and 

internal platform interfaces
• Tests to be performed at the component 

interface level 
– Different than tests in APT_PCT which are at TSF 

interface level
• Test documentation include

– Procedures and expected results
– Argument that test coverage is complete
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Platform Vulnerability Assessment (APT_PVA)

• Performed as part of TOE vulnerability analysis 
• Assessment is at platform interface level

– All external platform interfaces
– All internal platform interfaces used by the TOE

• Complement AVA_VLA requirements
– Systematic search for vulnerabilities
– Disposition of identified vulnerabilities
– Justification that analysis is complete
– Independent vulnerability analysis by NSA
– Independent penetration testing by NSA
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Trusted Initialization (ADV_INI)
• New family in Class ADV
• Levy both functional and assurance requirements on 

initialization function
– Initialization has both testable behaviors and development 

process
– SFR paradigm is not applicable to non-TSF components

• Functional responsibilities of initialization function
– Establish the TSF in an initial secure state
– Verify integrity of TSF code and data during initialization 
– Handle failures during initialization
– Provide self-protection during initialization 
– No arbitrary interaction with the TSF after initialization

• Require cooperation from TSF to prevent rogue initialization 
function
– Extended SFR requires secure state confirmation by TSF prior to TSP 

enforcement (FPT_ESS_EXP)
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Development Assurance for Initialization
• Architecture assurance

– Self-protection against tampering from other TOE components
– No interaction with TSF operations after initialization

• Functional specification 
– Similar to ADV_FSP requirements for TSF
– Describe each initialization interface

• Purpose, method of use, parameters, operations, exceptions, error 
messages and effects

• Design documentation
– One level of specification, i.e., not as rigorous as ADV_HLD and

ADV_LLD for TSF
– Require modular composition of components
– Module characterization is based on relevancy to secure state 

establishment (SSE)
• SSE-related, SSE-unrelated

• Test documentation
– Test plan, test procedures, expected results, actual results
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Configuration Tool Design (ADV_CTD)
• Configuration vector(s) define the initial secure state 

– Corrupted vector could result in unintended TSF operations
• Need robust Configuration Tool to generate and validate 

configuration vector(s)
• ADV_CTD levies both functional and assurance requirements 

on Configuration Tool
• Configuration Tool capabilities

– Generate human-readable form of configuration vectors with 
clear semantics to allow validation of intended TOE configuration

– Preserve semantics of data during conversion between human-
readable and machine-readable forms of configuration vectors

– Apply cryptographic seal(s) on generated configuration vector(s)
• Design documentation

– Explain how to verify correctness and accuracy of generated 
configuration vector(s)  

– Same level of abstraction and detail required by ADV_HLD
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Load Tool Design (ADV_LTD)
• Similar to ADV_CTD

– Include both functional and assurance requirements
• TOE loading function needs to be robust

– Part of the chain of trust to establish initial secure state
– Must maintain integrity of TOE software and configuration 

vector(s)
• Load Tool capabilities

– Convert TOE software and configuration vector(s) into a 
TOE-usable form

– Preserve integrity of code and data during conversion
• Design documentation

– Explain the conversion process
– Same level of abstraction and detail required by ADV_HLD
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Trusted Recovery (FPT_RCV)
• Extend base FPT_RCV.2 component
• TSF must attempt recovery to a secure state upon detection of 

being in an insecure state
– After completion of TOE initialization
– During execution session

• TSF must attempt to halt if unable to complete recovery action
– Transition to maintenance mode may be an acceptable action for 

certain TOEs
• ST enumerates pair-wise recovery conditions and associated 

actions
– Recovery is implementation-specific

• Require assurance evidence that secure state results from the 
identified action
– TSF design specifications
– Administrative guidance documentation
– Test analysis documentation
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Conclusion and plans

• Assurance considerations for high robustness not 
sufficient as addressed in CC Version 2.3
– Platform assurance, trusted initialization, trusted recovery

• SKPP explicitly defined SFRs and SARs to address 
these issues for a separation kernel TOE type

• Most of these extended requirements are applicable 
to other high assurance TOE types

• Next step for this PP development team
– Development of another high robustness PP for a more 

complex TOE
• Leverage SKPP experience to shorten PP engineering time

– Challenge is to articulate high robustness requirements in 
CC Version 3.1 context
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