
Calhoun: The NPS Institutional Archive
DSpace Repository

Center for Cybersecurity and Cyber Operations (C3O) Faculty and Researchers' Publications

2007-09-01

Assurance Considerations for a Highly Robust TOE

Nguyen, Thuy D.; Irvine, Cynthia E.; Levin, Timothy E.;
McEvilley, Michael
International Common Criteria Conference (ICCC), Rome, Italy, September 2007

https://hdl.handle.net/10945/7149

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Assurance Considerations
for a Highly Robust TOE

Thuy D. Nguyen, Cynthia E. Irvine, Timothy E. Levin
Department of Computer ScienceDepartment of Computer Science

Naval Postgraduate SchoolNaval Postgraduate School

88thth International Common Criteria ConferenceInternational Common Criteria Conference
Rome, ItalyRome, Italy

September 25September 25--27, 200727, 2007

Michael McEvilley
The MITRE Corporation

8/29/2007 2Department of Computer Science

Discussion Topics

• TOE overview
– Separation Kernel (SK)
– Separation Kernel Protection Profile (SKPP)

• Assurance issues for High Robustness
– Platform Assurance
– Trusted Initialization
– Trusted Recovery

• SKPP extended requirements
• Conclusion and plans

8/29/2007 3Department of Computer Science

Separation Kernel

• Introduced by Rushby (1981)
• Simpler than traditional security kernels
• Primary functional properties

– Separate system resources into security policy equivalence
classes, i.e., partitions

– Control information flows between and within partitions
• Configuration data establishes

– Binding of resources to partitions
– Policy rules for information flow control

• No support for MAC labels but can be configured to
control information flows in a manner consistent with
a MLS policy

8/29/2007 4Department of Computer Science

Least Privilege Separation Kernel

• Refinement of separation kernel
• Apply Principle of Least Privilege to further

restrict access to resources
– Basic SK: homogeneous resource-access

requirements
• Same access authorizations for all subjects in a partition

– Least Privilege SK: heterogeneous resource-
access requirements

• Separate access authorizations for different subjects in a
partition

8/29/2007 5Department of Computer Science

High Robustness

• Robustness – US scheme only
– Metric for TOE’s protection ability
– Degrees of robustness: Basic, Medium, High

• Assurance level
• Strength of security functions

• Robustness requirement for a TOE
– Based on value of data and threats in operational

environment
• High robustness

– Provides most stringent protection
– Can counter sophisticated, well-funded attacks
– Suitable to protect high value data

8/29/2007 6Department of Computer Science

Separation Kernel Protection Profile

• U.S. Government Protection Profile for Separation
Kernels in Environments Requiring High Robustness
– Validated in July 2007 (Version 1.03, 29 June 2007)

• Based on Common Criteria Version 2.3
• Assurance requirements

– Combination of CC-defined components for EAL6 and EAL7
– Two types of explicitly stated components

• Modifications of existing CC requirements
• New requirements

→ No EAL claim due to these extensions

8/29/2007 7Department of Computer Science

Security Concepts in SKPP

• Enforcement of Partition Information Flow Policy
– Partition Abstraction, Least Privilege Abstraction

• TOE configuration change
– Four models: offline, static, constrained, unconstrained

• Establishment of initial secure state
– Achieved through different degrees of assurance levied on

non-TSF components
• Delivery mechanisms
• Configuration data generation capability
• TOE loader
• Initialization mechanisms

• Trusted recovery
• Platform assurance

8/29/2007 8Department of Computer Science

Assurance Issues for High Robustness
Platform Assurance
Trusted Initialization
Trusted Recovery

8/29/2007 9Department of Computer Science

Platform Assurance Issues

• High robustness requires hardware-supported
domain separation and self-protection mechanisms

• No CC-defined requirements for hardware
assurance

• Difficult to produce assurance evidence for
hardware at same level of detail as software

• Need an assurance framework
– To assess security properties of hardware mechanisms

based on their interfaces to software
– To establish trust in security-relevant hardware mechanisms
– To address hardware obsolescence during and after TOE

evaluation

→ New Class APT -- Platform Assurance

8/29/2007 10Department of Computer Science

Platform Concepts
• Platform = hardware + associated firmware
• Platform component

– Independently procurable, mass-produced, non-specialized
• TOE platform = one or more platform components

– Defined by ST author
• Platform definition can vary based on intended usage of the

TOE
– Very restrictive: require a specific component type with exact

properties
– Less restrictive: allow variations in properties of a specific

component type
– More open: allow use of different component types with defined

assembly rules
• Platform interface

– Internal: accessible only to TOE components
– External: accessible to both TOE components and entities outside

the TOE

8/29/2007 11Department of Computer Science

Hardware/Software Relationships

External Platform Interfaces

TOE Software

Pl
at

fo
rm

C 1 C 2 C n - 1 C n

C 3 C 4
. . . C 5 C 6

Internal Platform Interfaces

Virtualized Platform Abstractions

Unused Interfaces

Used Interfaces

C1 … Cn Platform components

Application Software

TOE Software

C 1 C 2 C n - 1 C n

C 3 C 4
. . . C 5 C 6

Internal Platform Interfaces

8/29/2007 12Department of Computer Science

Trusted Initialization Issues
• CC Version 2.x defines no requirements for TOE

initialization
– Rely on administrative actions to ensure proper TOE

initialization
• Intended usage of SK requires autonomous TOE

initialization
• TSF cannot initialize itself

– Formal model assumes TSF starts in an initial secure state
• Need a robust mechanism to

– Establish execution environment for the TSF
– Bring the TSF to an initial secure state defined by

configuration data
• Generation and loading of configuration data need

commensurable assurance

8/29/2007 13Department of Computer Science

SKPP Approach to TOE Initialization
• Correct TOE initialization is achieved through a trust

chain of non-TSF functions
– Delivery
– Configuration data generation
– TOE loading
– Initialization

• Require use of standardized cryptographic
algorithms for trusted delivery
– American National Standards Institute (ANSI)
– National Institute Standards and Technology (NIST)

• Apply different developmental assurance measures
to other initialization-related functions
→ New assurance ADV families

8/29/2007 14Department of Computer Science

TOE Components

Configuration
vector

Configuration data

TSF

Z

X

Y

Configuration
vector set

X

Boot media

Z

X

Y

Z

X

Y

Load
Function

Load
Function

Load
Function

Load
Tool

TSF

Z

X

Y

Z

X

Y

Z

X

Y

Boot
Function

Boot
Function

Z

X

Y

Boot
Function
Boot

Function

Z

X

Y

Z

X

Y
X

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Load
Function

Load
Function

Load
Function

Function
to

establish
TSF

initial
secure
state

TOE
Initialization

Config.
Tool

Trusted
Delivery
Function

8/29/2007 15Department of Computer Science

Trusted Recovery Issues

• CC requirements emphasize ways to handle failures
and discontinuities
– Manual versus automated

• CC is vague about presence of recovery functions
while in maintenance mode
– “In the maintenance mode, normal operation might be

impossible or severely restricted, as otherwise insecure
situations might occur.”

• Verification of robustness of recovery mechanisms is
difficult
– Failures/discontinuities have no formal properties

8/29/2007 16Department of Computer Science

SKPP Approach to Trusted Recovery
• Focus on protecting the TSF against further

compromise during a recovery
• Extend FPT_RCV to require the TSF to attempt

recovery to a secure state upon detection of an
insecure state

• Expand definition of maintenance mode
– “A contiguous period during an execution session when

operational mode functions are restricted, or recovery
functions are available that are not available during
operational mode, or both.”

• Clarify intended use of maintenance mode
– Enable the TOE to return to a secure state
– Prevent the TOE from entering an insecure state

8/29/2007 17Department of Computer Science

Maintenance Mode & Secure State

Halted Operational
Mode

Maintenance
Mode

Halted (H)

M\IM\SMaintenance (M)

O\IO\SOperational (O)Execution
Session

Insecure (I)Secure (S)
STATE

MODE

H\S n/a

8/29/2007 18Department of Computer Science

SKPP Extended Requirements

8/29/2007 19Department of Computer Science

Platform Assurance (APT)
• New assurance class with five families

– Platform Definition (APT_PDF)
– Platform Specification (APT_PSP)
– Platform Conformance Testing (APT_PCT)
– Platform Security Testing (APT_PST)
– Platform Vulnerability Assessment (APT_PVA)

• Focus on specifications instead of identifications of components
• Replace a subset of ADV, ATE and AVA requirements for COTS

components
– Specialized components by TOE developer must meet all ADV, ATE and

AVA requirements defined for software
• ACM, ADO_DEL and ALC requirements only apply to specialized

components
– Information about CM, delivery, development security are not generally

available for COTS components
• Does not address physical protection and anti-tampering issues

8/29/2007 20Department of Computer Science

Platform Definition (APT_PDF)

• Require Platform Definition Document (PDD) to
support component-specific security analysis
against SFRs

• PDD can include vendor documentation if they meet
content requirements

• PDD include
– Component types and assembly rules
– Identification of component interface specifications for all

interfaces
– Security analysis on how each component type interacts

with the TOE
– Precise references to component interfaces so that

specifications can be obtained by third-party

8/29/2007 21Department of Computer Science

Platform Specification (APT_PSP)

• Require complete specifications of platform
component interfaces
– External interface
– Internal interface
– Unused interface

• Specifications include
– Invocation methods, parameters, expected results, error

conditions
– Arguments that all interfaces are included in specifications

• Support functional analysis and vulnerability
assessment of the TOE

8/29/2007 22Department of Computer Science

Platform Conformance Testing (APT_PCT)

• Require functional testing to ensure platform
components identified in PDD operate as
expected
– Vendor-provided tests may be used to satisfy this

requirement
• Require exercising all security features that

are relied upon by the TSF
– Testing is performed through TSF interfaces
– Tests are to be developed by TOE developer

8/29/2007 23Department of Computer Science

Platform Security Testing (APT_PST)

• Require comprehensive security testing
– Verify correct operations of all external and

internal platform interfaces
• Tests to be performed at the component

interface level
– Different than tests in APT_PCT which are at TSF

interface level
• Test documentation include

– Procedures and expected results
– Argument that test coverage is complete

8/29/2007 24Department of Computer Science

Platform Vulnerability Assessment (APT_PVA)

• Performed as part of TOE vulnerability analysis
• Assessment is at platform interface level

– All external platform interfaces
– All internal platform interfaces used by the TOE

• Complement AVA_VLA requirements
– Systematic search for vulnerabilities
– Disposition of identified vulnerabilities
– Justification that analysis is complete
– Independent vulnerability analysis by NSA
– Independent penetration testing by NSA

8/29/2007 25Department of Computer Science

Trusted Initialization (ADV_INI)
• New family in Class ADV
• Levy both functional and assurance requirements on

initialization function
– Initialization has both testable behaviors and development

process
– SFR paradigm is not applicable to non-TSF components

• Functional responsibilities of initialization function
– Establish the TSF in an initial secure state
– Verify integrity of TSF code and data during initialization
– Handle failures during initialization
– Provide self-protection during initialization
– No arbitrary interaction with the TSF after initialization

• Require cooperation from TSF to prevent rogue initialization
function
– Extended SFR requires secure state confirmation by TSF prior to TSP

enforcement (FPT_ESS_EXP)

8/29/2007 26Department of Computer Science

Development Assurance for Initialization
• Architecture assurance

– Self-protection against tampering from other TOE components
– No interaction with TSF operations after initialization

• Functional specification
– Similar to ADV_FSP requirements for TSF
– Describe each initialization interface

• Purpose, method of use, parameters, operations, exceptions, error
messages and effects

• Design documentation
– One level of specification, i.e., not as rigorous as ADV_HLD and

ADV_LLD for TSF
– Require modular composition of components
– Module characterization is based on relevancy to secure state

establishment (SSE)
• SSE-related, SSE-unrelated

• Test documentation
– Test plan, test procedures, expected results, actual results

8/29/2007 27Department of Computer Science

Configuration Tool Design (ADV_CTD)
• Configuration vector(s) define the initial secure state

– Corrupted vector could result in unintended TSF operations
• Need robust Configuration Tool to generate and validate

configuration vector(s)
• ADV_CTD levies both functional and assurance requirements

on Configuration Tool
• Configuration Tool capabilities

– Generate human-readable form of configuration vectors with
clear semantics to allow validation of intended TOE configuration

– Preserve semantics of data during conversion between human-
readable and machine-readable forms of configuration vectors

– Apply cryptographic seal(s) on generated configuration vector(s)
• Design documentation

– Explain how to verify correctness and accuracy of generated
configuration vector(s)

– Same level of abstraction and detail required by ADV_HLD

8/29/2007 28Department of Computer Science

Load Tool Design (ADV_LTD)
• Similar to ADV_CTD

– Include both functional and assurance requirements
• TOE loading function needs to be robust

– Part of the chain of trust to establish initial secure state
– Must maintain integrity of TOE software and configuration

vector(s)
• Load Tool capabilities

– Convert TOE software and configuration vector(s) into a
TOE-usable form

– Preserve integrity of code and data during conversion
• Design documentation

– Explain the conversion process
– Same level of abstraction and detail required by ADV_HLD

8/29/2007 29Department of Computer Science

Trusted Recovery (FPT_RCV)
• Extend base FPT_RCV.2 component
• TSF must attempt recovery to a secure state upon detection of

being in an insecure state
– After completion of TOE initialization
– During execution session

• TSF must attempt to halt if unable to complete recovery action
– Transition to maintenance mode may be an acceptable action for

certain TOEs
• ST enumerates pair-wise recovery conditions and associated

actions
– Recovery is implementation-specific

• Require assurance evidence that secure state results from the
identified action
– TSF design specifications
– Administrative guidance documentation
– Test analysis documentation

8/29/2007 30Department of Computer Science

Conclusion and plans

• Assurance considerations for high robustness not
sufficient as addressed in CC Version 2.3
– Platform assurance, trusted initialization, trusted recovery

• SKPP explicitly defined SFRs and SARs to address
these issues for a separation kernel TOE type

• Most of these extended requirements are applicable
to other high assurance TOE types

• Next step for this PP development team
– Development of another high robustness PP for a more

complex TOE
• Leverage SKPP experience to shorten PP engineering time

– Challenge is to articulate high robustness requirements in
CC Version 3.1 context

8/29/2007 31Department of Computer Science

Acknowledgements

The authors would like to express
their appreciation to the NSA SKPP

management team and Olin Sibert,
without whom this work could not

have been completed.

8/29/2007 32Department of Computer Science

Questions and Contacts

Thuy D. Nguyen

Department of Computer Science
Naval Postgraduate School
Monterey, California, USA

tdnguyen@nps.edu

