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ABSTRACT 

 The ability to predict conflicts prior to their occurrence can help deter the 

outbreak of collective violence and avoid human suffering. Existing approaches use 

statistical and machine learning models, and even social network analysis techniques; 

however, they are generally confined to long-range predictions in specific regions and are 

based on only a few languages. Understanding collective violence from signals in 

multiple or mixed languages in social media remains understudied. In this work, we 

construct a multilingual language model (MLLM) that can accept input from any 

language in social media, a model that is language-agnostic in nature. The purpose of this 

study is twofold. First, it aims to collect a multilingual violence corpus from archived 

Twitter data using a proposed set of heuristics that account for spatial-temporal features 

around past and future violent events. And second, it attempts to compare the 

performance of traditional machine learning classifiers against deep learning MLLMs for 

predicting message classes linked to past and future occurrences of violent events. Our 

findings suggest that MLLMs substantially outperform traditional ML models in 

predictive accuracy. One major contribution of our work is that military commands now 

have a tool to evaluate and learn the language of violence across all human languages. 

Finally, we made the data, code, and models publicly available. 
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Executive Summary

The spread of hostile information is increasingly common on the internet today, and espe-
cially in social media, a problem that is becoming a global risk. It has been demonstrated
that the “reach of social media penetration” has a positive effect on the outbreak of collec-
tive violence (Warren 2015, p. 297), which implies that social media may provide a useful
source for signals of impending violence. In this thesis, we construct a model that can ac-
cept input from social media messages written in any language and learn to associate forms
of discourse with the timing and location of events of collective violence. By examining
multilingual language models (MLLM) that operate in a language-agnostic manner, we gen-
erate vector embeddings that capture semantic elements more likely to occur in the periods
immediately preceding and immediately following violent events. Our aim is to provide
a useful representation of violent discourse, which might prove beneficial for predicting
violence through social media. The main motivation for using MLLMs is their ability to
perform zero-shot cross-lingual transfer learning, in which “a model that is fine-tuned on
one language can be applied to others without any further training” (Tunstall et al. 2022, p.
87). This ability proves particularly beneficial in social media analysis, which must cover a
wide diversity of languages in order to be scaled to global analysis.

The purpose of our work is to compare the performance of threeMLLMs—LaBSE, smaller-
LaBSE, and XLM-T— that are trained to predict message classes linked to past and future
occurrences of violent events. LaBSE is a multilingual embedding model developed by
Googlewhich is pretrained in 109 different languages on a corpora extracted fromWikipedia
and Common Crawl corpus (CC) (Feng et al. 2020). Smaller-LaBSE is just a smaller version
of LaBSE, with fewer parameters, that targets 15 languages (Ukjae 2021). In contrast,
XLM-T is an MLLM trained exclusively on Twitter data in 100 languages (Barbieri et al.
2020). All these models are available at the Hugging Face Hub, an open-source repository
for the sharing of models developed by the natural language processing (NLP) research
community.

The results of our experiments produced four noteworthy findings. The first finding confirms
our hypothesis that the pre-violence signal in a tweet is stronger near the location of a future
violent event. A labelwise receiver operating characteristic (ROC) plot of a Random Forest
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(RF) classifier shows that receiver operating characteristic curve (ROC)-area under the
ROC curve (AUC) scores decrease as the spatial distance increases, suggesting that the
presence of the collective violence signal is stronger near the location of violent events. The
second finding is that ensemble multilabel classifiers are the best performing traditional
machine learning (ML) models across the seven different metrics used in our benchmark.
Furthermore, ensemble models trained using a problem transformation approach not only
perform better than their problem adaptation counterparts, but they are also computationally
faster. Likewise, features extracted from XLM-T yield better performances than LaBSE
and smaller-LaBSE. As a result, the best performing traditional ML algorithm is random
forest (RF) trained on XLM-T features with a ROC-AUC score of 0.6028.

The third finding indicates that when feed-forward classifiers are trained on top of smaller-
LaBSE, LaBSE, andXLM-T, they yield similar performances in terms of ROC-AUC scores,
each scoring approximately 0.73. In terms of memory footprint, smaller-LaBSE is the best
performing model due to a smaller vocabulary size and fewer trainable parameters. Finally,
the fourth finding, which follows from the previous two, is that deep learning MLLMs
outperform traditional ML models by a substantial margin, demonstrating 13% higher out-
of-sample predictive accuracy as captured by ROC-AUC scores. This last evidence shows
that deep learning MLLMs perform better than traditional ML models for predicting which
forms of discourse are most closely associated with collective violence.

Our results suggest that a predictive relationship between social media content and past
events of collective violence exists, regardless of the language used in the conversation.
We believe that our study could serve as an useful decision-aid tool in the military for
predicting violence on a global scale at the operational and strategic levels of war. One
major contribution of our work is that military commands now have a tool to evaluate
and learn the language of violence across all human languages, thus reducing the negative
effects of hostile information campaigns in social media. Finally, we made the code, data,
and models publicly available at https://huggingface.co/m2im/, with the hope that this will
help the research community advance its efforts in conflict prediction in addition to enabling
our warfighters to use the model as a tool to enhance their understanding of the information
environment.
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CHAPTER 1:
Introduction

The spread of hostile information via the internet and social media especially is increasingly
common and poses a global risk. It has been demonstrated that the “reach of social media
penetration” has a positive effect on the production of collective violence (Warren 2015, p.
297). Military commanders face opponents in contested information environments, where
making sense of the growing flow of information to generate actionable insights is the key
to success. The ability to predict the onset of conflicts is useful to anticipate collective
violence and prevent human suffering.

State and non-state actors intentionally exploit the information environment to serve their
interests, sometimes crafting information strategies that may lead to the emergence and
spreading of violent conflicts. Two pieces of information may convey the same claim
but be expressed in different languages and through coordinated forms, such as images,
text, tweets, memes, and more. Moreover, actors continuously take advantage of the ever-
expanding global network of connectivity to design novel ways to generate and disseminate
hostile information. Existing approaches to violence prediction fail to cope with this rapidly
evolving landscape.

Models used for policy making need to be explainable, but unfortunately, this explain-
ability sometimes comes at the cost of limiting the models’ predictive power. Normally,
these models are trained on variables carefully chosen by subject matter experts, a process
known as feature engineering, which requires specialized talent and intensive human labor.
Furthermore, they are better suited for long-term predictions, and their external validity is
limited to the dataset on which they were trained and tested. More specialized models use
a social network analysis (SNA) approach. The advantage of network models is that they
are amenable to training on social media data, which is the source of information we seek
to exploit in our work. However, the nature of interdependency in these networks violates
the assumptions of independence of standard statistical models, which makes inference or
generalization more difficult (Everton 2012, pp. 229–230).

In recent years, the advent of transformer-based pretrained language model (TPTLM) has
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revolutionized the field of natural language processing (NLP) for a variety of tasks. These
large pretrained models “combine the power of transformers and self-supervised learning”
for encoding complex language information such as syntax and semantic relationships,
which is then carried over to downstream tasks (Kalyan et al. 2021, p. 1). Given the
initial success in English NLP with monolingual models such as bidirectional encoder
representations from transformers (BERT) (Devlin et al. 2018), this work was replicated
across other domains and different languages. Nonetheless, these pretrained models tend to
exist only for high-resource languages (e.g., English, French, Spanish), which makes this
approach less suited for predicting conflict at global scale in a variety of popular languages,
tribal languages, and dialects. It would simply make this solution infeasible.

Inspired by the tremendous success of monolingual models, the NLP research community
developed a class of multilingual language model (MLLM)s, which are pretrained simi-
larly as their monolingual counterparts, except that the corpora contain documents across
many languages. Multilingual NLP systems are designed to handle user input in more than
one human language, which is beneficial in situations where the system will be used by
speakers of different languages. Predicting worldwide collective violence seems to follow
this intuition. The surprising performance of MLLMs is achieved by enabling zero-shot
cross-lingual transfer learning, in which “a model that is fine-tuned on one language can
be applied to others without any further training” (Tunstall et al. 2022, p. 87). The authors
further claimed that in some cases “this ability to perform cross-lingual transfer produce
results that are competitive with those of monolingual models, which circumvents the need
to train one model per language” (Tunstall et al. 2022, p. 92).

Despite these remarkable cross-lingual features, mostMLLMs are pretrained on formal text,
which make them ill-prepared to capture the informal discourse of social media (i.e., slang,
emojis, misspellings, vulgarisms). Social media, such as Twitter, provide an enormous
source of information worldwide that could be used in violence prediction models. In fact,
we hypothesize that there exists a sufficient collective violence signal in the online discourse
prior to the occurrence of violent conflicts. We further argue that the closer the conversation
is to these conflicts, in terms of time and distance, the stronger the presence of this signal will
be. This hypothesis drives ourmodeling process and the corresponding prediction outcomes.
We test this hypothesis by first constructing our own multilingual corpus based on historical
Twitter data and a spatial/temporal heuristic around past violent conflicts, and then building
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a multilingual classifier using three MLLMs. The first model, called Language-agnostic
BERT Sentence Embedding (LaBSE), is pretrained on regular text in 109 languages, while
the second model, called cross-lingual model—Twitter (XLM-T), is fine-tuned specifically
on Twitter data in 100 languages. The last model, dubbed the smaller-LaBSE, is a smaller
version of LaBSE that targets 15 languages. If a predictive relationship is found between
social media content and past events of collective violence, our study could serve as a useful
decision-aid tool for predicting violence on a global scale.

Withmore than 7,000 languages spoken in theworld today, our solution calls for amodel that
is language-agnostic in nature (David et al. 2022). This approach will considerably reduce
the complexity associated in dealing with language-specific models. Our work builds on an
existing project in the Coalition for Open-Source Defense Analysis (CODA) Lab at Naval
Postgraduate School (NPS) for the automated detection of hostile information campaigns
using artificial neural networks (Warren and Barreto 2020). The current approach considers
a U-Net deep neural network that predicts violence on a global scale, using seven different
inputs, one of which is a raw count of georeferenced Twitter messages. By dividing the
surface of the Earth into approximately 20 million grid cells (approx. 5 km x 5 km), the
model is trained to predict the occurrence of collective violence in each cell on a week-to-
week basis (Warren and Barreto 2020). Our goal is to develop metrics which can contribute
to this effort by improving the predictive power of the Twitter data inputs that are fed into
the network by leveraging MLLMs.

Thus, our study focuses on answering the following research question, “To what extent
can the information contained in social media (Twitter) generate sufficient signals for use
in multilingual transformer models to predict collective violence events efficiently?” We
postulated this question because there is a gap in understanding signals of collective violence
in multiple or mixed languages in social media. A desired solution for predicting collective
violence would be an approach that is used for short-term prediction, language-agnostic,
and trained using social media data without requiring labor-intensive manual annotations.
This approach is what this project intends to address. The purpose of this study is twofold.
First, it aims to collect a multilingual violence corpus from archived Twitter data using a
proposed set of heuristics that account for spatial-temporal features around past and future
violent events. And second, it attempts to compare the performance of traditional machine
learning (ML) classifiers against deep learning MLLMs for predicting message classes
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linked to past and future occurrences of violent events. Our findings suggest that MLLMs
outperform traditional ML models by approximately 13% in terms of ROC_AUC scores.
One major implication of our work is that military commands now have a tool to evaluate
and learn the language of violence across all human languages, thus reducing the negative
effects of hostile information campaigns in social media.

This thesis contains five chapters: the first chapter has introduced the problem and highlights
the need for predicting collective violence events. The second crafts a comprehensive
literature review concerning different conflict prediction techniques and current state-of-
the-art multilingual models in the NLP community. The third devises the methodology
for building our multilingual corpus, as well as the process of pretraining and fine-tuning
the MLLMs used in our experiments. Finally, we analyze different multilingual settings in
diverse conflict environments to determine the model best suited for the task of predicting
collective violent events. The conclusions explore the implications of these findings and
suggest further avenues of approach to tackle this problem more effectively. The code, data,
and models are made publicly available at https://huggingface.co/m2im/, with the hope that
this will help the research community advance its efforts in conflict prediction in addition
to enabling our warfighters to use the model as a tool to enhance their understanding of the
information environment.
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CHAPTER 2:
Literature Review

Violence prediction from coordinated hostile information campaigns in social media is
a topic that is getting a lot of traction in the the research community. Methods abound
in the literature that take on a data-driven approach, including statistical and machine
learning models, deep learning, and social network analysis. We claim that the use of
MLLMs represents a turning point for the task of conflict prediction. For what follows
in the remainder of this chapter, we organized the literature review into three different
sub-sections based on relevant topics: coordinated hostile information campaigns, violence
prediction, and multilingual language models.

2.1 Coordinated Hostile Information Campaigns
Some may erroneously assume that a hostile information campaign conveys messages
solely based on false statements. However, in reality, a hostile information campaign may
also consist of truthful statements, or statements that the sender believes to be true, though
the ultimate goal is to incite collective violence. For example, when a rebel group ques-
tions the legitimacy of the state, or points to ways in which certain minorities have been
oppressed, or says that another ethnic group poses a threat, these are all statements designed
to promote collective violence, but they are not necessarily false statements, even though
state representatives may label them as such. Similarly, when the Russian Internet Research
Agency (IRA)1 promoted messages created by activists in the Black Lives Matter move-
ment, these were messages that the original senders believed to be true, even though they
were also messages that Russian operatives thought could be leveraged to increase division
and hostility. Hence, the first step in this research effort is to define the subject of inquiry,
hostile information campaigns.

The term hostile information campaign overlaps with many other related concepts, such as
misinformation, disinformation, rumors, fake news, propaganda, and others. The public in

1IRA is a Russian organization engaged in online propaganda and influence operations on behalf of Russian
political leaders.
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general, and researchers in the field in particular, tend to use these terms interchangeably
because the boundaries are somewhat blurry. Let us start with the first related definition,
misinformation. According to Islam et al., misinformation is defined as “a false statement
to lead people astray by hiding the correct facts” (Islam et al. 2020, p. 81). Wu et al. go one
step further by defining four types of misinformation:

• Rumor refers to unverified information that can be either true or false.
• Fake news refers to false information in the form of news (which is not nec-
essarily disinformation since it may be unintentionally shared by innocent
users).

• Spam refers to irrelevant information that is sent to a large number of
users.

• Disinformation also refers to inaccurate information which is usually
distinguished from misinformation by the intention of deception. (Wu
et al. 2019, p. 1)

According to the previous definitions, a hostile information campaign is a mixture of
disinformation, rumors, and false informationwhose purpose is to incite violence. A broader
term that stresses the role of information as the essential motivator for the target audience
to undertake aggressive and hostile actions is the one proposed by Mazarr et al. (2019)
called hostile social manipulation. The authors defined hostile social manipulation as “the
purposeful, systematic generation and dissemination of information to produce harmful
social, political, and economic outcomes in a target area by affecting beliefs, attitudes, and
behavior” (Mazarr et al. 2019, p. 15). One distinguishing factor in this definition is that
hostile social manipulation targets the cognitive domain as opposed to military objectives,
which is the intended outcome we are trying to explore in this project.

The last definition is very close in spirit to the concept of operations in the information
environment (OIE) in the United StatesMilitary Joint doctrine: “the application, integration,
and synchronization of information related capabilities (IRC)s to influence, disrupt, corrupt,
or usurp the decision making of TAs [target audiences] to create a desired effect to support
achievement of an objective” (Joint Chiefs of Staff 2006); Information Warfare in Russian
doctrine: “a holistic concept that includes computer network operations, electronic warfare,
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psychological operations and information operations” (Popescu and Secrieru 2018, p. 67);
and the Chinese Unrestricted Warfare doctrine: “warfare that transcends all boundaries and
limits. . . going from weapons systems symbolized by gunpowder to those symbolized by
information” (Qiao et al. 2002, p. 12). Some of these concepts are referenced in the literature
under different names, such as hybrid warfare, gray zone activities, and active measures.
All of these definitions can be summarized as hostile non-kinetic actions in the cognitive
domain aimed at the perceptions of the adversaries, two key ideas that must be incorporated
in any formal definition of hostile information campaigns.

Campaigns of social manipulation and hostile information share similar goals, objectives,
and techniques. Mazarr et al. proposed nine different goals and objectives for social manip-
ulation campaigns, from which only one relates to our current project: “Generate conflict
and tension among components of target society” (Mazarr et al. 2019, p. 19). Moreover,
social manipulation campaigns in general, and hostile information campaigns in particular,
frequently “tap into well-established belief systems and social grievances for its effects,”
making use of a wide variety of tools for influencing the intended target (Mazarr et al. 2019,
p. 8). Some of those tools pertaining to social media are computational propaganda (bots),
social media commenting, trolling, astroturfing, and social influencer campaigns (Mazarr
et al. 2019, pp. 22–23). One of the key findings in a recent study about radio and cellular
communications infrastructures in 24 African states also showed a direct connection be-
tween social media and collective violence: “the reach of social media penetration generates
substantial increases in collective violence, especially in areas lacking access to mass media
infrastructure” (Warren 2015, p. 297). It follows from the previous statements that social
media information is a key feature for the success of any predictive model of violence.

For the purpose of this project, we propose the following definition of hostile information
campaigns, which is adapted from the previous definition of hostile social manipulation
by Mazzar et al. as follows: Hostile information campaigns are the “purposeful, systematic
generation and [coordinated] dissemination of information to produce . . . [social unrest]
in a target [population] by affecting beliefs, attitudes and behavior [that lead to collective
violence]”(2019, p. 15). Themain difference in this definition is the use of information rather
thanmisinformation to encompass both true and false statements that could be equally likely
to incite collective violence.
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2.2 Violence Prediction
There have beenmany approaches in the literature that have exploited the power of statistical
and machine learning models to predict the outcome of violence. For example, in a study
for theWorld Bank, Celiku and Kraay evaluated the predictive power of two unconventional
binary linear classification algorithms “in a set of conflict and non-conflict episodes con-
structed from a large country-year panel of 144 developing countries since 1977” (2017,
p. 2). Their approach was to minimize the losses from both classifiers, which is “the same
prediction loss function that is also used to evaluate the quality of the predictions” (Celiku
and Kraay 2017, p. 3). Both models were trained on many features in three broad categories:
latent tensions (e.g., satellite night light density, GDP), shocks (e.g., changes in terms of
trade, number of neighboring countries in conflict), and institutions (e.g., political terror
scale, Freedom House composite indicator of civil liberties and political rights) (Celiku
and Kraay 2017, pp. 20–21). The best classifier—dubbed the threshold classifier—achieved
a modest performance, and the authors claimed that one of the main limitations of their
approach was the lack of generalization in datasets different from the ones used for training
and testing.

Similarly, Hegre et al. proposed a dynamic multinomial logistic regression model that
“predicts changes in global and regional incidences of armed conflict for the 2010 — 2050
period” (2013, p. 250). The model was trained “on a 1970 -– 2009 cross-sectional dataset of
changes between no armed conflict, minor conflict, and major conflict” (Hegre et al. 2013,
p. 250). Exogenous variables (i.e., population size, infant mortality rates, demographic
decomposition, education levels), as well as endogenous variables (i.e., conflict, recent
conflict history, and neighboring conflicts) fed the model during training. The authors
estimated a 0.937 area under the ROC curve (AUC) score on an out-of-sample test set
for positive prediction, and claimed “a continued decline in the proportion of the world’s
countries that have internal armed conflict from about 15% in 2009 to 7% in 2050” (Hegre
et al. 2013, p. 250). Despite these models achieving acceptable performances, they are better
suited for long-term predictions.

A number of studies have gone beyond these early long-term prediction efforts to consider
conflict prediction at smaller spatial resolutions and shorter timescales. Two theses at NPS
use sentiment in Twitter messages to predict collective violence using regression models.
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Similar to our work, both studies are limited to the period from August 1, 2013, through
July 31, 2014, to match the timespan of a historical archive of Twitter messages licensed
for research at NPS. Frost et al. examined five independent variables (road distance, night
light emissions, population density, previous violent events, and deaths) and three dependent
variables (negative Twitter messages, extremely negative Twitter messages, and total Twitter
messages) in four different negative binomial regression models whose predictions were
constrained to “2km grid cell-months” (2017, p. 27). The study was restricted to Iraq and
showed that “extremely negative terminology seems to be more useful than moderately
negative terminology in generating accurate predictions of violent events” (2017, p. 39).
Likewise, Kuah et al. proposed six non-linear Poisson regression models for sentiment
analysis related to the Euromaidan movement in Ukraine, whose unit of analysis was set
to “a grid-cell width of approximately 20 kilometers” (2018, p. 24). Similar to Frost et al.,
this study also showed a significant correlation between Twitter metrics and the outcomes
of violent events (2018, p. 40).

Similarly, Hegre et al. present a model dubbed the violence early warning system (ViEWS)
for predicting political violence (Hegre et al. 2019). ViEWS is restricted to Africa and
generates predictions 36 months into the future at two levels of analysis: “country-months
(cm) and subnational geographical location months (pgm) . . . that cover all areas of the
world at a resolution of 0.5 x 0.5 decimal degrees” (Hegre et al. 2019, p. 157). The model
is an ensemble model of other available models in the literature. For example, there are 24
models in the cm ensembles and 30 in pgm. In a follow-on work, Hegre et al. introduced
two important updates to ViEWS: “(1) a new infrastructure for training, evaluating, and
weighting models . . . , and (2) a number of new forecasting models that contribute to
improve overall performance, in particular with respect to effectively classifying high- and
low-risk cases.” (2021, p. 599). These enhancements provided a benchmark for adding or
retaining models in the final ensemble. In both cases, the authors made the data and source
code publicly available.

Python et al. proposed a theoretically informed model that produces short-term predictions
of non-state terrorism worldwide (2021). The authors divided the world into 13 regions
and built individual models for each region—generalized additive model (GAM), extreme
gradient boosting (XGB) and random forest (RF)— under the claim that “training machine
learning models for separate regions allows the algorithms to select different hyperparame-
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ters for different regions (e.g., regions with lower prevalence require greater regularization)”
(2021, p. 1). To a lesser geographic scope, Brandt et al. focused on monthly-grid predic-
tions for Africa using a model that combines graph convolutional neural network (GNN)
for capturing spatial features and long short-term memory (LSTM) for capturing tempo-
ral dependencies (2022). Similarly, Radford et al. followed the same approach but used
a convolutional long short-term memory (ConvLSTM) model to predict the outcomes of
violence in Africa using the ViEWS benchmark.

While few studies have focused on uncovering coordinated hostile information campaigns
that signal an increase in collective violence, the literature abounds for topics related to the
various types of misinformation, which can be easily extrapolated to our subject of inquiry.
Xu et al. argue that detecting misinformation is a challenging task because the model needs
to capture the relationship between the reported information and the real information (Xu
et al. 2019). Existing approaches use SNA to uncover coordinated networks in social media.
For example, Pacheco et al. introduced a general, unsupervised network-based methodology
using bipartite networks “to uncover groups of accounts that are likely coordinated” (2021,
p. 1). The authors used Twitter accounts to examine “identities, images, hashtag sequences,
retweets and temporal patterns” (Pacheco et al. 2021, p. 1). They presented few influence
campaign studies of different backgrounds (i.e., U.S. elections, Hong Kong protests, Syrian
Civil War, and cryptocurrency manipulation). Note that this approach relies on the use of
metadata, and not the actual Twitter text content, except for images.

Similarly, Weber and Neuman also proposed a method that relies on metadata alone. The
authors built “an undirected weighted network of accounts, which is then mined for commu-
nity extraction” (2021, p. 1). In contrast, Vargas et al. took on a different twist by proposing a
model that uses “a time series of daily coordination networks for distinguishing the activities
of a disinformation campaign from legitimate Twitter activity” (2020, p. 1). The authors
used these neworks as feature extractors and then trained a binary classifier on top. Once
again, this model is trained on Twitter metadata only.

Most SNA approaches based on centrality metrics focus on identifying accounts that spread
misinformation; however, there are statistical frameworks such as exponential family ran-
dom graph model (ERGM) that seek to exploit the network structural features by predicting
tie formation. For example, Williams et al. (2020) applied ERGMs to understand the dis-
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semination of political propaganda using Twitter bots during the riots in Ecuador in October
2019. The authors gathered tweets using the hashtag #YoTambienSoyZangano during Octo-
ber 5, 2019, then tested for homophily and transitivity between bots and humans, suggesting
that bots are less likely to form links with humans than with other bots. The main limitation
of these approaches is that they do not rely on the actual Twitter content, and more so
ERGMwhose statistical assumptions make generalization more difficult (Everton 2012, pp.
229–230).

However, a number of recent studies have used content-based metrics from social media
for violence prediction. Some authors used Twitter data from the 2015 Baltimore protests
to discuss how social networks can inflame violent protests (Mooijman et al. 2018). The
authors manually annotated 4,800 tweets as having moral content “to operationalize online
moral rethoric” to train some classification models further down the pipeline (2018, p. 390).
The study shows that the variance in moral endorsement towards a protest changes over
time, and hence these endorsements can be measured to predict the outcome of violence.

Alizadeh et al. took on a different approach by training an RF classifier for distinguishing
influence campaign content from normal activity in social media (Alizadeh et al. 2020). The
model took as inputs some human-interpretable features (i.e., word count, topic of a post,
sentiment) obtained from message content. Under the claim that “Industrialized production
of influence campaign content leaves a distinctive signal in user-generated content that
allows tracking of campaigns from month to month and across different accounts” (2020, p.
1), the authors ran five different tasks with the same model over multiple short time intervals
to assess how the influence campaigns behave over time.

Likewise, Muller et al. studied the association “between antirefugee sentiment on Facebook
and hate crimes against refugees in Germany” using posts from the Facebook page of the
Alternative für Deutschland anti-refugee and anti-inmigration political party (Müller and
Schwarz 2021, p. 2132). And finally, Mitts et al. (2022) analyzed the effect of Islamic
State (ISIS) propaganda on social media using a ML approach. The authors examined the
Twitter discourse between 2015 and 2016 before most of the accounts related to ISIS were
banned from social media. Since most of the propaganda included audiovisual content, the
proposed recruitment detection model relied first on audio transcriptions before applying
text classification techniques. The study shows that “propaganda conveying the material,
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spiritual, and social benefits of joining ISIS increased online support for the group, while
content displaying brutal violence decreased endorsement of ISIS” (Mitts et al. 2022, p. 1).

2.3 Multilingual Language Models
The availability of vast amounts of unannotated data, the evolution of better graphics
processing unit (GPU), and the development of the transformer architecture gave rise to the
increased use of deep learning models for NLP systems, more specifically TPTLM. At a
high level, transformer models allow us to work with sequence data. They are composed
of an embedding layer, encoder-decoder layers, and the attention mechanisms proposed by
Vaswani et al. (2017). To reveal the complexities associated with TPTLMs in general, and
MLLMs in particular, for what follows in this section, we propose analyzing these models
under the following taxonomy: architecture, transfer learning, pretraining tasks, pretraining
methods, fine-tuning, model capacity, vocabulary, and pretraining corpus.

2.3.1 Architecture
Although there are numerous transformer models in the literature, most of them belong to
three different architectures. Encoder-onlymodels such as BERT (Devlin et al. 2018) and its
variants, like RoBERTa (Liu et al. 2019) and ALBERT (Lan et al. 2019), and other BERT-
based models like LaBSE (Feng et al. 2020) belong to this category. These models are well
suited for natural language understanding (NLU) tasks such as text classification, known
as named entity recognition and sentiment analysis. Decoder-only models are generative in
nature and best suited for natural language generation (NLG) tasks; given a prompt of text
they will try to predict the next token. The family of generative pretrained transformer (GPT)
models like GPT-1 (Radford et al. 2018), GPT-3 (Brown et al. 2020) belong to this category.
Encoder-decoder models are used for mapping one sequence of text to another; they are
well suited for machine translation and summarization tasks. BART (Lewis et al. 2019), T5
(Raffel et al. 2020) and their multilingual counterparts mBART (Liu et al. 2020a) and mT5
(Xue et al. 2020) belong to this class. For what follows, our analysis is limited to encoder
models only, since those architectures are the best suited for our task of predicting violence
(e.g., text classification). Any mention of a model with a different architecture will be solely
for the purposes of comparing, contrasting, or illustrating a concept.
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2.3.2 Transfer Learning
Transformer models, including monolingual language models and MLLMs, rely on transfer
learning to reuse the knowledge learned in a source task as the starting point for a model on a
second task. Transfer learning is enabled via self-supervised learning (SSL), a new learning
paradigm where models identify hidden patterns and learn universal signals from massive
unlabeled data to generate labels automatically based on pretraining tasks. Extending this
concept from monolingual models, MLLMs learn embeddings with high overlap across
languages through common shared multilingual representations (Doddapaneni et al. 2021,
p.15).

As a result, a myriad ofMLLMs have been proposed by the NLP community stemming from
their monolingual state-of-the-art counterparts. For example, multilingual BERT (mBERT)
from BERT (Devlin et al. 2018), XLM-R (Conneau et al. 2019) from RoBERTa (Liu et al.
2019), mBART (Liu et al. 2020a) from BART (Lewis et al. 2019), just to name a few. This
surprising ability to generalize well across different languages is what makes MLLMs good
candidates for tackling our worldwide conflict prediction problem. This nice generalization
feature cannot be confused with the misconception in the NLP community that MLLMs
learn universal language patterns. Doddapaneni et al. (2021, p. 2) conducted a series of
experiments to test this hypothesis, concluding that there is no consensus yet to support this
claim.

2.3.3 Pretraining Tasks
TPTLMs yield better performances when the pretraining task, or training objective function,
resembles the objective of the corresponding downstream task, thus closing the learning
gap between pretraining and fine-tuning (Kalyan et al. 2021). A wide variety of objective
functions abound in the literature for training MLLMs. For example, masked language
modeling (MLM) is the most standard type of SSL that seeks to predict masked tokens
based on unmasked tokens encoded with bidirectional context (Kalyan et al. 2021, p. 4).
Models such as BERT and mBERT (Devlin et al. 2018), RoBERTa (Liu et al. 2019),
and LaBSE (Feng et al. 2020) are pretrained with MLM. An extension of MLM for a
multilingual setting that uses monolingual as well as parallel data is translation language
modeling (TLM), introduced by (Lample and Conneau 2019). Similar to MLM, here in
TLM the masked tokens incorporate context from the parallel corpora. LaBSE (Feng et al.
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2020) is pretrained using TLM.

The next sentence prediction (NSP) pretraining task is a binary sentence-pair classifica-
tion task used by BERT, which allows the model to understand longer-term dependencies
across sentences by identifying whether a given pair is consecutive or not (Devlin et al.
2018). MLM, TLM, and NSP are suited for text-classification related tasks, such as topic
classification, language identification, and sentiment analysis; however, Barbieri et al. argue
that NSP is not appropriate for Twitter data where most tweets are composed of a single
sentence (2020, p. 3). Furthermore,Wang et al. (2019) studied the effect of the NSP learning
objective for the cross-lingual ability of mBERT, concluding that this pretraining task hurts
the model performance. It follows from this evidence that we should avoid using NSP during
any pretraining process when building our violence prediction classifier.

2.3.4 Pretraining Methods
Pretraining transformer models is computationally prohibitive and requires a huge amount
of unlabeled data. Kalyan et al. (2021, pp. 7–9) suggested five types of pretraining methods
for TPTLM, but for the sake of this project, I will refer only to the two most widely used
approaches: pretraining from scratch (PTS) and continual pretraining (CPT). PTS involves
training the models by randomly initializing the model parameters and then learning these
weights by minimizing the losses of the corresponding pretraining tasks (e.g., MLM, TLM,
NSP). BERT (Devlin et al. 2018), RoBERTa (Liu et al. 2019), and SciBERT (Beltagy et al.
2019) belong to this training paradigm; the latter model follows the same architecture as
BERT, except that it is trained on scientific data instead. PTS requires a large number of
GPUs or tensor processing unit (TPU) and long compute times. For example, Barbieri
et al. (2020) proposed a MLLM dubbed XLM-T, a RoBERTa model pretrained on 60M
tweets which converged after eight to nine days on eight NVIDIA V100 GPUs. The authors
claimed that the estimated cost for training this language model (LM) was USD 4,000 on
Google Cloud.

CPT, in contrast to PTS, starts the training from existing language model parameters
that are updated after further pretraining to the target domain. Generally speaking, CPT
is commonly used to develop domain-specific models like BioBERT (Lee et al. 2020),
which is initialized from general BERT and further pretrained on a biomedical corpus. The
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multilingual landscape has also benefited from CPT. For instance, PortugueseBERT (Souza
et al. 2020) is initialized from the internal states of mBERT and further pretrained with its
own monolingual corpus.

CPT requires fewer computing resources and training time than PTS. For example, SciBERT
was trained from scratch on the SCIVOCAB for one week on a single TPU v3 with eight
cores (Beltagy et al. 2019), and BioBERT was trained with CPT for over 20 days with
eight V100 GPUs (Lee et al. 2020). For the sake of a fair comparison, since both models
were trained in different infrastructures, we can estimate their relative performance using
the following approximation: training BERT large on 64 GPUs (e.g., V100s/RTX 2080
Tis)—the equivalent of 16 TPUs—takes approximately five days.2 All things being equal,
the choice of using one pretraining method over the other, meaning PTS or CPT, is mainly
limited to the amount of computing resources available. This last statement assumes that we
have access to a large volume of unlabeled data: “a few hundred MiB of text data is usually
a minimal size for learning a BERT model” (Conneau et al. 2019, p. 3).

2.3.5 Fine-Tuning
In many practical data-constrained applications we do not have access to enough compute
resources, large amounts of text data, or the amount of labeled training data is limited.
How do we cope with these constraints? The answer is fine-tuning. There seems to be some
confusion about the terms pretraining and fine-tuning in the NLP community; they are
frequently used interchangeably, but despite the similarities, in practice they are different.
Technically speaking, both methods are similar because they perform some sort of transfer
learning; this results in weight updates where the model parameters are changed. However,
they are different because pretraining refers to an SSL paradigm that uses massive unlabeled
data to gain common background knowledge, as opposed to fine-tuning that relies on
relatively small labeled datasets used for downstream tasks that require target-specific
knowledge.

One must be aware that fine-tuning using a small dataset on a large pretrained model (a
model with lots of parameters) is either prone to overfitting, or the model will perform

2Formore details about these calculations, please refer to this excellent blog available at https://timdettmers.
com/2018/10/17/tpus-vs-gpus-for-transformers-bert/.
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poorly if the weights are not adapted well to the task at hand (Kalyan et al. 2021, p. 25).
Liu et al. (2020b) suggest using a continual learning approach when fine-tuning a model in
order to preserve the cross-lingual ability learnt during pretraining. Simply put, fine-tuning
benefits from CPT. Given that we possess a large unlabeled corpus that can be converted
into a labeled dataset, then any potential violence classifier should devise a fine-tuning
strategy enhanced by CPT to the greatest extent possible.

2.3.6 Model Capacity
Somewhat surprisingly, the performance of TPTLM appears to obey a set of scaling laws
proposed by Kaplan et al. (2020), who state that a more productive path towards better
models is to focus on increasing model capacity (number of parameters), pretraining com-
pute time, and pretraining training data, all three in tandem to achieve optimal performance.
This observation triggered the development of bigger models and bigger datasets. Evidence
in the field shows that in the almost five years since the release of the original transformer
architecture in 2017, the size of transformer models has increased by over four orders
of magnitude. Just to have an idea of this scaling explosion, let us revisit the following
examples:

1. BERT was trained on English text data (16GB) using 2,500M words from Wikipedia
and 800Mwords from Book corpus, the base and large versions have 110M and 335M
parameters, respectively.

2. The cross-lingual model—RoBERTa (XLM-R) (Conneau et al. 2019) is the result of
the following work of XLM (Lample and Conneau 2019) and RoBERTa (Liu et al.
2019), taking pretraining one step further by massively scaling to 2.5 TB of training
data gathered from the Common Crawl corpus (CC), yielding a model with 270M
and 550M parameters for the base and large versions, respectively.

3. GPT-3, a descendant of the GPT family, is a scaled-up version of the original models
without many architectural modifications; it was trained on hundreds of billions of
words coming from different data sources (e.g., Wikipedia, CC, Books, Webtext),
resulting in a model with 175 billion parameters whose checkpoints require 800GB
of storage capacity.

4. Two giant experimental models developed by Google called Gshard (Lepikhin et al.
2020) and Switch Transformers (Fedus et al. 2022) claim an impressive amount of
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600B and 1.6T parameters each.

2.3.7 Pretraining Corpus
More than 7,000 languages are spoken in the world today, but machine translation (MT)
systems have been built for approximately 100 languages (David et al. 2022). MLLMs are
trained either on monolingual or parallel data: for each sentence in a language, we have the
same sentence in a different language. Some MLLMs support a large number of languages.
For example, the first multilingual model mBERT was released by the authors of BERT
a month after they published and shared the original English BERT model. The authors
simply added a readme section in the Github repository where they explained what they
did for pretraining mBERT on Wikipedia in 104 different languages. XLM-R is trained on
CC-100—a collection of 2.5 TB of text data for 100 languages—using more text data for
low-resource languages. Two largermodels based onXLM-Rwere developed later—dubbed
XLM-RXL and XLM-RXXL—also trained on CC-100 with improved performance gains
(Goyal et al. 2021). MLLMs also support a smaller set of languages: Unicoder (Huang
et al. 2019) was trained on monolingual (Wikipedia) and parallel data for 15 languages,
MuRIL (Khanuja et al. 2021) was trained on CC +Wikipedia targeting 17 Indian languages,
and IndoBART (Cahyawijaya et al. 2021) designed for three widely spoken languages of
Indonesia: Indonesian, Javanese, and Sundanese.

Despite the fact that MLLMs are known to suffer from the curse of multilinguality, “more
languages leads to better cross-lingual performance on low-resource languages up until a
point, after which the overall performance on monolingual and cross-lingual benchmarks
degrades” (Conneau et al. 2019, p. 1), Facebook and Google have taken the multilingual
landscape to its limits. Facebook open sourced the code, datasets, and training procedure
for a model called No Language Left Behind (NLLB), very similar to GPT-3 but with
some interesting architectural modifications to accommodate 200 languages. The model
was trained on a 200 paired-language dataset. Google, on the other hand, published a
paper claiming the development of a model that supports 1,629 languages, yet the model
has not been released (Siddhant et al. 2022). The main contribution of this paper was the
construction of dataset itself, along with the engineering challenges to get a model this big
to work.
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Amodel developed by researchers at Google AI called LaBSE deserves further exploration.
LaBSE is a multilingual embedding model that produces dense vector representations from
109 different languages into a shared embedding space, and it is pretrained using MLM
and TLM objectives (Feng et al. 2020). Training on 17 billion monolingual sentences and
six billion bilingual sentence pairs results in a model that performs particularly well on
low-resource languages not seen during training (Feng et al. 2020). There are interesting
applications of LaBSE with promising results. Lin et al. (2021) proposed a multilingual text
classification of Dravidian languages (26 South Indian languages), trained on two different
datasets for tasks related to polarity classification and offensive language identification. Pei
et al. (2022) used LaBSE to encode the input data for the tasks of sentiment analysis and
emotion analysis from the low-resource Uyghur language. Finally, a a case more relevant to
our research project is the work done by Gencoglu (2020), in which the author performed
a large-scale, language-agnostic discourse classification of tweets during COVID-19 . The
model was trained for discourse classification on 26 million COVID-19 tweets in different
languages, collected during the early stages of the global spread from January 4, 2020, to
April 5, 2020. LaBSE was used to encode the training data, ending up with vectors of length
768 for each observation, which were then passed to a machine learning classifier to classify
text into semantic categories.

Nevertheless, the promises of LaBSE as a good method to get sentence embeddings across
109 different languages come at a high cost. The model is hard to fine tune due to its 471
million parameters. Fortunately, Ukjae (2021) proposed a model called smaller-LaBSE—a
smaller version of LaBSE— whose parameter size and vocabulary are approximately 45%
and 35% of the original model, respectively. In contrast to any of the transformer models
discussed thus far, smaller-LaBSE is neither pretrained nor fine-tuned on any dataset.
Instead, the authors obtained the model by following closely a procedure proposed in a
seminal paper titled Load What You Need: Smaller Versions of Multilingual BERT, which
is based on the fact that for MLLMs, “most of the parameters are located in the embedded
layer. Therefore, reducing the vocabulary size should have an important impact on the total
number of parameters” (Abdaoui et al. 2020, p. 1). In the case of LaBSE, theword embedding
table is approximately 385 million parameters, approximately 81% of the total number of
parameters in the model (Ukjae 2021). The author claimed that after evaluating smaller-
LaBSE for 14 languages on the Tatoeba dataset, the performance drop when compared to the
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original model was not significant (Ukjae 2021). Moreover, smaller-LaBSE targets 15 high-
resource languages that are widely spoken in the world: English, French, Spanish, German,
Chinese, Arabic, Italian, Japanese, Korean, Dutch, Polish, Portuguese, Thai, Turkish, and
Russian (Ukjae 2021).

2.3.8 Vocabulary
Typically, MLLMs which support more languages have a larger vocabulary. A vocabulary
is built by the tokenizer specific to the model; it is the union of all tokens identified across
all languages. The following are examples of some sub-word tokenization methods used in
NLP: Byte Pair Encoding (BPE) (Sennrich et al. 2015), Byte Level BPE (bBPE) (Radford
et al. 2019), SentencePiece (Kudo and Richardson 2018), and WordPiece (Wu et al. 2016).
Among these tokenizers, only SentencePiece tokenizes the raw text directly, and it does so
by not using space as a separator, which is more suited in multilingual settings where not all
languages are space segmented. BERT, mBERT, and LaBSE use Wordpiece as tokenizers,
whereas XLM-R uses SentencePiece. In the world of transformers, sub-word or character
tokenization is preferred over word tokenization, because the former can more efficiently
handle unknown words and yield smaller vocabulary sizes.

Despite the myriad of successful multilingual applications today, the social media
landscape—Twitter specifically—seems to have been neglected by this trend. In terms
of the pretraining corpus, existing models trained on formal text do not always perform well
on social media applications (Kalyan et al. 2021). Nonetheless, there have been few attempts
to develop Twitter-based TPTLM. One of the most prominent works is the one presented
by Barbieri et al. (2020), where the authors proposed a unified benchmark called tweeteval,
consisting of seven Twitter-specific classification tasks in English and then evaluated it
under three different strategies: 1) a pretrained RoBERTa model as is, 2) training RoBERTa
from scratch—dubbed RoBERTa-Twitter—using 60 million of English Twitter data, and 3)
fine-tuning RoBERTa—dubbed RoBERTa-RT—using the same Twitter data. Curiously, the
RoBERTa-Twitter model did not perform as well as the fine-tuned RoBERTa-RT model,
perhaps due to the small sample of 60 million tweets used during pretraining: “using a pre-
trained LM may be sufficient, but can improve if topped with extra-training on in-domain
data” (Barbieri et al. 2020, p. 5).
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Bertweet (Nguyen et al. 2020) was trained from scratch on 850 million English tweets
using the same BERT-base architecture but leveraging the RoBERTa training procedure.
The authors then fine-tuned this model on 23 million COVID tweets, yielding two vari-
ants: Bertweet-COVID-cased and Bertweet-COVID-uncased. All models achieved state-
of-the-art performances in various tasks, including text classification. COVID-Twitter-
BERT (CT-BERT) is another model based on English BERT-large, which was then fine-
tuned on a corpus of 160 million tweets about coronavirus (Müller et al. 2020). The
model was evaluated on five different classification tasks, yielding better performances
than BERT-large, especially in health-related content, as would be expected. Barbieri et al.
(2022) proposed XLM-T, a multilingual model based on XLM-R that was pretrained using
198 million tweets in 30 different languages. The authors also proposed a set of unified
Twitter datasets in eight different languages called unified multilingual sentiment analy-
sis Benchmark (UMSAB), where XLM-T was further fine-tuned on this benchmark for
sentiment analysis tasks, resulting in a model dubbed XLM-T-Sent.

In a follow-on work, Antypas et al. (2022) used XLM-T-Sent in a large-scale multilingual
political sentiment analysis project. The authors fine-tuned the model even further on their
own manually annotated dataset with tweets from politicians in Greece, Spain (Catalonia,
Basque country), and theUnitedKingdom (Northern Ireland, Scotland,Wales). Their results
suggested that negatively charged tweets spread more widely and are more correlated with
popularity. Their work is similar to this research effort in the sense that it uses a multilingual
approach; however, it is limited to sentiment analysis tasks in a few languages, as opposed
to a multilabel classification setting supporting all languages observed on Twitter. Apart
from Bertweet, all other models were pretrained using CPT, and the only Twitter-MLLM is
XLM-T, whose pretrained version supports over 30 languages.

Table 2.1 summarizes the most important features for the monolingual and multilingual
language models analyzed in this section. For a more thorough survey of TPTLM models
in general see (Kalyan et al. 2021), and for MLLMs in particular see (Doddapaneni et al.
2021). A careful examination of Table 2.1 reveals that models trained on Twitter data are
mostly monolingual. To the best of our knowledge, XLM-T is the only MLLM trained on
Twitter data for text classification; however, its training corpus is far from violence-related
discourse. The use of XLM-T—or in fact any other MLLM like LaBSE—for predicting
violence will therefore require extra pretraining or fine-tuning efforts on a customized
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dataset. It follows from our previous literature review that the understanding of collective
violence in multiple or mixed languages in social media remains underexplored.

Table 2.1. Summary of MLLMs and Twitter-based monolingual models.
Adapted from Kalyan et al. (2021, tables 3 and 4) and Doddapaneni et al.
(2021, table 1).

Model Pretrained
from

Pretrained
tasks

Corpus Lang. Params Vocabulary

mBERT BERT MLM,
NSP

Wikipedia 104 172M WordPiece
(110K)

RoBERTa-Twitter RoBERTa MLM Tweets (60M) English 125M SentencePiece
(50K)

XLM-R RoBERTa MLM CC-100 100 270M (base),
560M (large)

SentencePiece
(250K)

XLM-T XML-R MLM Tweets (198M) 30+ 278M SentencePiece
(250K)

Bertweet-base Scratch MLM Tweets (845M en
+ 5M COVID)

English 135M WordPiece
(64K)

Bertweet-large Scratch MLM Tweets (873M) English 355M WordPiece
(50K)

BertweetCovid19 Bertweet MLM COVID tweets
(23M)

English 135M WordPiece
(64K)

CT-BERT BERT MLM,
NSP

COVID tweets
(23M)

English 335M WordPiece
(30.5K)

LaBSE BERT MLM,
TLM

CC and
Wikipedia (17B)
+ 6B translation

pairs

109 471M WordPiece
(500K)

smaller-LaBSE BERT MLM,
TLM

CC and
Wikipedia (17B)
+ 6B translation

pairs

15 219M WordPiece
(173K)
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CHAPTER 3:
Methodology

Our work builds on previous research conducted through the CODA Lab at NPS for the
automated detection of hostile information campaigns using artificial neural networks. The
researchers used a convolutional neural network widely used in computer vision for image
segmentation problems called U-NET (Ronneberger et al. 2015). By dividing the earth’s
surface into approximately 20 million grid cells (5 km x 5 km), the model predicts the
occurrence of violence in each individual cell on a weekly basis. The network is trained
on seven different types of input data, including population density, roads, nighttime light
emissions, conflict history, and a raw count of Twitter messages per grid cell, etc., each of
which constitutes an input channel to the U-NET (Warren and Barreto 2020). Figure 3.1
shows a high-level overview of the model developed by the CODA Lab for predicting the
occurrence of violent events at a global scale.

Figure 3.1. High-level overview of the violence prediction classifier on a global
scale developed at the CODA Lab. Source: Warren and Barreto (2020).

The authors also found that the model observed a substantial decrease in predictive accuracy
in the absence of social media inputs, which led them to support the claim that “social
communication patterns are key to how the model successfully predicts future events of
collective violence” (Warren and Barreto 2020, p. 8). With this acknowledged, our main
contribution seeks to improve the predictive power of the raw Twitter counts fed into
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the U-NET model by using state-of-the-art transformer MLLMs. We propose the four-
step spatial-temporal framework illustrated in Figure 3.2 to achieve the desired objective.
Furthermore, we hypothesize that there exists a sufficient collective violence signal in the
Twitter discourse prior to the occurrence of violent events. The closer the conversation is
to the violent events, in terms of time and distance, the stronger the presence of this signal.
This hypothesis will drive the process of constructing our training corpus, which in turn
will be validated on the basis of violent event prediction. If a predictive relationship is found
between Twitter content and past events of collective violence in the world, this study could
serve as a useful decision-aid tool for predicting violence on a global scale at the operational
and strategic levels of war. The remainder of this chapter explains in detail each of the four
constituents of our proposed framework.

Figure 3.2. Four-step framework for building an end-to-end collective violence
classifier. For step 2, we use the following values for our heuristics: num_kms
= [10, 20, 30, 50, 70] and num_days = [1, 2, 3, 7].

The following discussion relies on the key notations summarized in Table 3.1.
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Table 3.1. Key notations used in this thesis.

Notation Description
𝜒 Feature space, which is M-dimensional
Y Label space
n Number of training instances
m Number of features
𝑦𝑖 The ground-truth label
�̂�𝑖 The 𝑖𝑡ℎ prediction

(𝑥𝑖, 𝑦𝑖) The 𝑖𝑡ℎ labeled instance

3.1 Technical Problem Description
The data we aim to predict pose particular problems, because the violence signal contained
in the training data is extremely sparse when compared to the signal of non-violent events.
To address this shortcoming, we frame the problem as a multilabel classification problem.
In this setting, each observation can belong to different spatial-temporal labels, allowing
the model to pick up and amplify violence signals across different spatial-temporal scales.
Formally, a multilabel classification problems is defined as:

Given a training set, S = (x𝑖, y𝑖), 1 ≤ 𝑖 ≤ n, consisting of n training instances,
(x𝑖 ∈ 𝜒, 𝑦𝑖 ∈ Y) i.i.d drawn from an unknown distribution D, the goal of multi-
label learning is to produce a multi-label classifier h : 𝜒 → Y (in other words, h
: 𝜒 → 2𝐿) that optimizes some specific evaluation function (i.e., loss function)
(Sorower 2010, p. 3).

Typically, classification is a task that assigns a single label to each instance in our dataset. In
a binary setting, there are only two possible target labels. Alternatively, the classifier might
involve predicting more than two labels (multiclass setting). In both settings, the target
labels are mutually exclusive, meaning that the instance belongs to one class only. However,
there is another type of problem, multilabel classification, that involves predicting more than
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one class label for each observation; here the class membership is not mutually exclusive.
Multilabel classification problems can essentially be broken down into sets of binary mini
problems without much loss of information. Figure 3.3 illustrates the differences between
binary, multiclass, and multilabel classification. In the binary and multiclass setting, the
prediction probabilities must add up to one, whereas in a multilabel classifier this constraint
does not hold true.

Figure 3.3. Binary vs. multiclass vs. multilabel classification. For binary 
and multiclass classification the labels belong to one class only, whereas 
for multilabel classification the class membership is not mutually exclusive. 
Source: Arghyadeep (2021).

Multilabel classification is a topic that is barely touched upon in many ML libraries.
In some cases, we need to write most of the code for certain tasks, and the evaluation
metrics require either third-party specialized libraries or some workarounds for deriving
meaningful results. In contrast, transformer models natively provide support for multilabel
classification problems just by indicating the number of class labels as nodes in the output
layer. For example, if our task requires six target labels, then the transformer model will
expect six nodes in the output layer. In each node, a sigmoid activation function will predict
the probability of class membership for that particular label. During training, the model is
fit with a Binary Cross-Entropy loss function.

Some transformer models can perform multilabel classification out of the box by specifying
an argument during model instantiation. This ensures that the loss function used in the
forward pass is suitable for multilabel tasks. However, not all transformer models provide
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this support, in which case we are required to override the forward method of the base-
model’s main class ourselves. This extra step allows us to compute the loss with a sigmoid
instead of softmax function applied to the logits. Fortunately, the transformer models we
are using in this research belong to the former type.

3.2 Identifying Collective Violence Events
The starting point of this research is the Uppsala Conflict Data Program (UCDP) dataset,
which provides a collection of georeferenced organized violence events in the post-1989
world (Sundberg and Melander 2013). The version used in our project is the GEDE-
vent_v22_1 dataset, containing approximately 300,000 records with more than 40 features
(e.g., date, latitude, longitude, country, city, province). The basic unit of analysis in the
dataset is the event, defined as “An incident where armed force was used by an organised
actor against another organized actor, or against civilians, resulting in at least 1 direct death
at a specific location and a specific date” (Högbladh 2022, p. 4). For this research, we limit
our analysis to the one-year period from August 1, 2013, to July 31, 2014, to match the
timespan of our secondary data source (more to follow in the next section). Moreover, we
restrict the conflict duration to one day or less under the hypothesis that during this short
period of time the change in discourse between pre-violence and post-violence conversa-
tions is more evident. The raw observations hitherto correspond to 24,132 events over the
one-year timeframe. Finally, we further filtered the dataset according to the below criteria,
yielding a total of 10,071 unique records. For comparison purposes, Table 3.2 details the
distribution of violence events per region in the world before and after filtering the raw
dataset.

• Types of violence: State-base conflict, non-state conflict, and one-sided violence. The
three events are mutually exclusive.

• A geo-precision of 1, whose value indicates that an “event can be related to an
exact location, meaning a place name with a specific pair of latitude and longitude
coordinates” (Högbladh 2022, p. 21).

• A temporal precision value of 1 meaning that “the exact day of the event is known”
(Högbladh 2022, p. 23).

• Remove spatio-temporal duplicates.
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Table 3.2. Distribution of violent events per region from August 1, 2013, to
July 31, 2014.

Data Set Dist. Africa Americas Asia Europe Middle East Total
Unfiltered data set 2,096 245 2,933 342 18,516 24,132
Filtered data set 917 100 877 94 8,083 10,071

Figure 3.4 illustrates the density of the 10,071 unique violence events within our analysis
timeframe.Notwithstanding the highest patterns of violence appearmore concentrated in the
Middle East, Asia, and Africa, this visual illustration depicts a wide diversity of locations,
implying broad coverage of the many languages spoken in the world. This language diversity
is what motivates the use of MLLMs in our research. Each violent event in the final dataset
is a unique combination of date and georeferenced location, which serves as a lookup table
for building the Twitter corpus in the next section.

Figure 3.4. Map of violent events from August 1, 2013, to July 31, 2014.
The red dots correspond to 10,071 geolocated unique violent events. Source:
Sundberg and Melander (2013).
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3.3 Building the Twitter Multilingual Corpus
We built the Twitter multilingual corpus by comparing the previously described list of
collective violence events from UCDP and a historical archive of Twitter messages licensed
for research at NPS. This archive comprises a randomized sample of 10% of Twitter traffic
from August 1, 2013, through July 31, 2014, whose size is approximately 40 terabytes,
recording approximately 12 billion separate Twitter messages. To allow for proper geospatial
analysis, we used a spatial-temporal heuristic and grid approach to efficiently calculate the
geodesic distances between the available tweets in the archived dataset and the list of
violence events. This approach is close in spirit to the procedure used in a related master’s
thesis at NPS for understanding violence through social media in Iraq (Frost et al. 2017).
In that work, the authors also used both datasets, UCDP and the Twitter archived data from
NPS, but to extract Twitter metadata from Arabic tweets as opposed to Twitter content in all
languages. For what follows, we will explain in detail the logic used in the code for building
the multilingual corpus as illustrated in Figure 3.5.

Figure 3.5. Illustration of the spatial-temporal heuristic used for building
the Twitter corpus. The different combinations of spatial-temporal heuristics
yield a total of 40 different labels.

The first step is to create a global grid of Twitter messages where each 1 degree by 1 degree
latitude/longitude grid cell can be rapidly queried for a specific date (see the left graphic of
Figure 3.5). Some basic parameters are set, including the start and end dates for the queries,
overall latitude/longitude bounds for each grid, and any metadata fields of interest that will
be retained from each Twitter record. Most importantly, TIME_RADIUS sets the number
of days that will be used as thresholds for the pre/post periods around each conflict event,
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and GEO_RADIUS sets the number of kilometers that will be used as thresholds for linking
tweets to conflict events. Note that multiple values are included for each tweet, because the
procedure implemented here allows us to assign multiple tags to each message (multilabel
classification), with each tag representing a different combination of space/time thresholds.

Once the grid is defined, we then load into a shared memory database all the georeferenced
Twitter records from the year-long archive, as well as the unique location-date observations
from the conflict event dataset (matching the gridded structure of the Twitter database).
The core idea of this logic is to efficiently calculate the geodesic distances between the
coordinates of each tweet and the coordinates of each georeferenced violence event per each
grid cell (see the right graphic of Figure 3.5). A naive approach would be to calculate all
these pairwise distances between the billions of tweets contained in the archived dataset
and the 10,000 records of the list of violent events. This would simply be a computationally
prohibitive operation, which calls for a more sophisticated approach such as the gridded
structure used in our work.

The core logic in our approach takes a longitude-latitude-date query key (defining the
focal cell) and pulls all available Twitter records for that location and date. It then loops
over the conflict events associated with that cell and its neighbors, and calculates the
geospatial distance between each tweet and each conflict event in this neighborhood. This
calculation is expanded to the eight neighbors of the focal grid cell (1 lat/lon degree in each
direction) to account for the events near the grid boundaries. It then loops over the values
in GEO_RADIUS, and loops over the values in TIME_RADIUS, and loops over the pre and
post periods, and creates a separate label for each combination. If any event is found within
both a given spatial radius and a given temporal radius, this label is coded as 1; otherwise,
it is coded as zero.

All tweets with a code of 1 for at least one label are retained and saved in a CSV file
along with the labels and other associated metadata. Each label refers to a particular spatial-
temporal window. For instance, the label pre7geo30 will equal 1 if a conflict event was
found within the seven days following the tweet and within 30 kilometers of the location
of the tweet, and the label post2geo50 will equal 1 if an event was found within the two
days prior to the tweet and within 50 kilometers of the location of the tweet. We included
temporal radius values of 1, 2, 3, and 7 days, and spatial radius values of 10, 20, 30, 50, and
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70 kilometers, yielding a total of 40 different labels for each tweet. The resulting dataset is
stored in a relatively large CSV file, 2 GB zipped, and 9 GB when unpacked, with labels for
23,291,575 tweets in total. This raw dataset is then further pre-processed to remove trailing
spaces, urls, mentions, and retweets. Finally, we split the data into 90%-10% train-test
splits, and the training split is further split into 80%-20% train-validation splits. Table 3.3
summarizes the number of observations in each of the three splits.

Table 3.3. Number of observations in each dataset split.

Train Validation Test Total
Num. observations 16,769,932 4,192,483 2,329,158 23,291,573

On Twitter and some other social media platforms, users must explicitly enable the GPS
coordinates associatedwith their messages. For example, GPS coordinates are only available
for 1% of the active Twitter accounts; hence, we expect to find the same proportion in the
archived data. To overcome this limitation, we used the profile-based coordinates provided
in the licensed archive, which correspond to the geo-location of the hometown reported
in each public user profile. Although these coordinates are not as accurate as the GPS
coordinates, using this approach we increased the volume of data available for building
the corpus “the profile-based geo-coordinates are available for approximately 30 % of the
records in the NPS archive” (Frost et al. 2017, p. 18). All the pairwise distance calculations
were computed in a 3 TB RAM server, using a distributed, in-memory database developed
in the CODA lab calledKVswarm. The time it takes to construct the corpus is approximately
six hours, as shown in Table 3.4

Table 3.4. Computation performance during corpus construction.

Task Time (hrs)
Load the archived Twitter data into shared memory database 5.25
Parallel execution of the corpus construction routine 0.5
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As it was previously stated in Chapter 1, one of our main contributions in this research is to
make the dataset publicly available. Unfortunately, sharing the dataset "as is" would result
in a clear violation of the license agreement for the proper use of the archived data. This
agreement forbids the sharing of the actual Twitter content (text), but not the numeric tweet
identifiers. Users wishing to use our dataset will need to rely on the Twitter application
programming interface (API) to query the Twitter database using the tweet ID attribute
in order to retrieve the original Twitter text for each message. A sample of the proposed
dataset is detailed in Table 3.5, where each row corresponds to a unique tweet ID with the
six different labels used in our work.

Table 3.5. Schema of the dataset that will be made publicly available. Each
row corresponds to a unique tweet ID with the associated six different labels
used in our current work

.

Tweet ID pre7geo10 pre7geo30 pre7geo50 post7geo10 post7geo30 post7geo50
tweet_ID1 0 1 1 0 0 1
tweet_ID2 1 1 1 0 0 0
tweet_ID3 0 0 1 0 1 1

3.4 Training a Multilingual Language Model
Multilingual NLP systems are designed to handle user input in more than one human
language. There are a couple of ways to achieve this objective. One way is to create separate
subsystems for each language of interest. In theory, this approach is significantly easier
because it allows for the use of pre-built systems and components readily available in the
NLP community. However, there is another other option that requires designing a single
system, an MLLM that can handle inputs in multiple or mixed languages. This is the
approach used in our work. In general, MLLMs are used in situations where the system
will be used by different language populations. Predicting worldwide collective violence
seems to follow this intuition. A high-level overview of how transformer models are trained
is illustrated in Figure 3.6. These steps are covered in greater detail in the remainder of this
section.
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Figure 3.6. A typical pipeline for training transformer models. The raw text
is first tokenized into numbers that the model understands. Given the input
tokens, the model outputs logits, which are post-processed into probabilities.
Source: Abid et al. (2022, Ch. 2-2).

3.4.1 The Transformer Architecture
The model block in Figure 3.6 refers to the transformer architecture, or language model,
used in the pipeline. Our work uses three different transformer models: XLM-T, LaBSE,
and smaller-LaBSE (refer to Table 2.1 for a thorough description of the main features of
these models). To understand how these models work, we need to trace their origins to the
original transformer architecture and a language model called BERT.

The transformer architecture is a deep neural network model proposed in 2017 by a team
of Google researchers in a seminal paper called Attention is all you need (Vaswani et al.
2017). The model is an encoder-decoder architecture originally designed for translation, as
illustrated in Figure 3.7. The output of the encoder is fed as an input to the decoder, which
produces the desired sequence in the target language. The main components of the vanilla
transformer architecture are defined as follows:

• Encoder. This maps an input sequence of tokens to a sequence of continuous repre-
sentations, or embedding vectors, also known as hidden states or context. In short,
it creates an embedding for each word based on the relevance, or context, to other
words in the sequence.

• Decoder. This receives the output of the encoder (hidden state) together with the
decoder output at the previous step to iteratively generate an output sequence, one
step at a time.

• Attention layers. These allow the model to pay specific attention to the most important
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words in the sequence. In doing so, the model discovers more relevant semantic and
syntactic information. This attention mechanism allows the transformer architecture
to process text in both directions, hence the name bidirectional.

• Attention mask. This prevents the model from paying attention to particular words in
the sequence.

• Positional Embeddings. These contain positional information for each token to ac-
count for its relative position in the sequence.

Figure 3.7. The transformer architecture as described in the Attention is all
you need paper. The original implementation uses an encoder (left) and a
decoder (right) component in tandem. Each colored block corresponds to a
different layer in the architecture. Source: Vaswani et al. (2017, p. 3).

BERT, on the other hand, is a language model that is a derivation from the original
transformer architecture. We can extract some key insights about how BERT works just
by looking at its full name Bidirectional Encoder Representations for Transformer Models.
First, BERT is based on the transformer architecture. Second, BERT uses only the encoder
part of that architecture; therefore, its output is an embedding and not a textual word, which
makes it unsuited for tasks like text generation or translation. Lastly, BERT is bi-directional,
which means that it learns information from both the left and right side of the sequence
during training. According to the original paper, BERT was trained using Wikipedia text,
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WordPiece tokenization, and two pretraining objectives MLM and NSP (Devlin et al. 2018).

Another model, XLM-T, which is multilingual, is pretrained from a base model dubbed
XLM-R using CPT (Barbieri et al. 2022). XLM-R in turn is based on the RoBERTamodel—
a member of the BERT family of transformers— pretrained on monolingual data using a
TLM objective (Lample and Conneau 2019). As such, XLM-T inherits all the benefits
from a TLM pretraining objective; however, its training corpus is composed of 198 million
tweets in 30 different languages (Barbieri et al. 2022). Although its roots can be traced to
BERT, XLM-T uses a different tokenization scheme (SentencePiece) with a vocabulary of
250,000 subword tokens (Barbieri et al. 2022). XLM-T is the onlyMLLMwhose framework
specifically addresses Twitter content, being the only available model in the Hugging Face
Hub trained on multilingual Twitter data. This unique feature makes XLM-T a good starting
point for our research project.

An MLLM developed by researchers at Google AI, LaBSE is an extension of mBERT, a
multilingual version of BERT, that produces “language-agnostic sentence embeddings for
109 languages” (Feng et al. 2020, p. 1). A careful examination of its full name, Language-
Agnostic BERT Sentence Embedding, tells us that its architecture resembles closely the
original BERT architecture discussed previously. Similar to mBERT, LaBSE is pretrained
using MLM and TLM on a corpus of 17 billion monolingual sentences and six billion
bilingual sentence pairs, yielding a vocabulary with 500,000 subword tokens generated
usingWordPiece tokenization (Feng et al. 2020). The resulting model performs particularly
well even on low-resource languages not seen during training.

At a high level, LaBSE uses a dual-encoder architecture, where each encoder is initialized
with a set of weights from an already pretrained mBERT model (see Figure 3.8). Since
LaBSE uses bilingual sentence pairs for training, a sentence in a source language passes
through the first encoder while the sentence in the target language goes to the second
encoder. The model takes both vectors, encoded separately, for calculating a similarity loss
to measure the performance of the translations. The loss is fed back to the transformer model
to update its weights.

Although the model uses two different encoders, the fact that both blocks share the same
weights means that we are effectively updating a single model. This technique allows
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the model to learn something general across different languages. First, during the initial
pretraining phase, themodel learns general patterns from all sorts of texts and not necessarily
from which language the text is coming from. Then, during the second phase with the two
encoders, the model is actively learning labels related to translations. In short, given that
there is enough data and enough training time available, the model should be able to come
up with language-agnostic representations. To have an idea of the amount of training time
required to achieve this level of performance, the authors from Google used 1.8 million
epochs during training (Feng et al. 2020). Fortunately for us, we can use this pretrained
model and fine-tune it to our specific task using the techniques described next.

Figure 3.8. Dual-encoder architecture of LaBSE. The model learns language-
agnostic embeddings by feeding parallel data to the dual encoders. Input text
in one language is fed to one encoder, while text in the target language is
fed to the second encoder. Source: Feng et al. (2020, p. 1).

3.4.2 Traditional ML Multilabel Classifiers
Model building in a multilabel scenario is different from the traditional approach in binary
or multiclass classification. Multilabel classification is a problem that requires advanced
methods and specialized machine learning algorithms to make predictions. There is no
constraint on how many target classes we assign in a multilabel setting; however, the larger
the number of labels, the more complex the problem becomes. The three most widely used
techniques to cope with multilabel problems are problem adaptation, problem transfor-
mation, and ensemble methods. These techniques are implemented in code using popular
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libraries such as scikit-learn (Pedregosa et al. 2011) and scikit-multilearn (Szymański and
Kajdanowicz 2017).

Problem transformation refers to the process of converting a multilabel dataset into a single-
labeled dataset where the existing binary classifiers can be applied (Sorower 2010, p. 3).
This strategy in turn is further subdivided into three methods: binary relevance, classifier
chains, and label powerset. Let us illustrate how these methods work using the following
setting. Given an input vector 𝜒 of size (n x m) and four different labels (𝑦𝑖𝜖Y; for i = 1, 2,
3, 4), we find a multilabel classifier ℎ : 𝜒 → Y using the problem transformation strategy
as follows:

• In binary relevance, a single-label binary classifier is trained independently on the
original dataset to predict each classmembership (Sorower 2010, p. 4). In our example,
the problem is split into four classifiers (𝜒, 𝑦1), (𝜒, 𝑦2), (𝜒, 𝑦3), and (𝜒, 𝑦4); therefore,
four outputs are generated. One potential drawback of binary relevance is that we may
lose label correlation, which is addressed in the next two methods.

• Label powerset takes into account possible correlations between class labels. It trans-
forms the problem into a multi-class classification problem by mapping each combi-
nation of labels into a single label and then training a single-label classifier (Sorower
2010, p. 4). In the previous example, there are 24 distinct label combinations; there-
fore, the problem takes the form ℎ : 𝜒 → Y; for Y = 0000, 0001, . . . , 1111. One
potential drawback of this method is that as the number of classes increases, the
distinct combinations grow exponentially. This is even more evident if the dataset is
large like the one used in our work.

• In classifier chains, multiple classifiers are connected to a chain in a sequential
process, where the output of one classifier is the input of the next one (Read et al.
2011). The first classifier is constructed with the input data and the first label (𝜒, 𝑦1).
The second classifier takes the first classifier as input and the second label as output
((𝜒, 𝑦1), 𝑦2). The process continues until we get the four possible combinations.

Problem adaptation uses algorithms that inherently handle multilabel classification rather
than transforming the problem into mini classifiers. Scikit-learn (Pedregosa et al. 2011, see
the multiclass and multioutput algorithms section) and scikit-multilearn (Szymański and
Kajdanowicz 2017, see section 5) provide a small handful of these algorithms (i.e., decision

37

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



trees (DT) (Breiman et al. 1984), K-nearest neighbors (KNN) (Hastie et al. 2009, p. 463),
Multilayer Perceptron (Hastie et al. 2009, p. 130), RF (Breiman 2001), Extra Tree (Geurts
et al. 2006), DT (Breiman et al. 1984), and Ridge (Hastie et al. 2009, p. 61)). In contrast to
problem transformation, these algorithms do not use a wrapper when implemented in code.

Ensemble methods are a hybrid technique that combines the functionalities of problem
adaptation and problem transformation. Intuitively, ensemble methods combine multiple
algorithms into a single model, which typically performs better than the two other ap-
proaches. The confidence estimates and the aggregation scheme are key factors of these
ensembles. Models such as XGBoost (Chen and Guestrin 2016), Bagging (Breiman 1996),
Boosting (Friedman 2001), and RF (Breiman 2001) fall under this category.

3.5 Evaluating a Multilingual Language Model
The metrics we choose to evaluate machine learning models influence how the performance
of these algorithms ismeasured and compared. Evaluation refers to the process ofmeasuring
how far the model predictions are from the actual ground truth labels. For traditional
classification such as multiclass problems, there exists a set of standard metrics that can
be used to evaluate the output predictions. However, none of these metrics can be applied
in their original form in a multilabel setting, because the latter implies a notion of being
partially correct (Sorower 2010, p. 13). Unlike normal classification tasks where the target
labels are mutually exclusive, multilabel classification requires the application of metrics to
each target separately.

For what follows, we will restrict our analysis to the following evaluation metrics: accuracy,
precision, recall, F1, and ROC-AUC. To illustrate how these metrics work, we will refer to
an example inspired by Karakaya (2020), as depicted in Figure 3.9. The example assumes
that we have three instances with four different labels: A, B, C, and D. The model outputs
some losses at the end of the training process, which are then passed through a sigmoid
function in order to generate probabilities. We generate predictions by comparing those
probabilities to a specified threshold (0.5 in this case).
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Figure 3.9. Output predictions in a multilabel classifier. Source: Karakaya
(2020).

3.5.1 Accuracy
Accuracy is the fraction of correctly predicted labels in the dataset (see Eq. (3.1)). For this
metric, the set of labels predicted for a sample must strictly match the corresponding set of
ground-truth labels. This definition requires that the four labels of each sample in Figure 3.9
exactly match the 4-class predictions to be correct (output = 1). Since there are no matches,
the overall accuracy is zero. This metric is not suited for multilabel classification, because
it is not label-based.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 ∩ �̂�𝑖 |
|𝑦𝑖 ∪ �̂�𝑖 |

, (3.1)

3.5.2 Precision, Recall, F1 Score
In multilabel classification, these three metrics are applied to each label independently. An
intuitive way to understand these three metrics is by using a confusion matrix from a typical
classification report, as illustrated in Figure 3.10. Scikit-learn provides few ways to combine
results across labels by using the average argument (required for multiclass/multilabel
targets) in the corresponding score functions. This argument can take five different values,
but we will restrict the definitions to the two values used in our research:

• Micro: Calculate metrics globally by counting the total true positives,
false negatives and false positives.

• Weighted: Calculatemetrics for each label, and find their averageweighted
by support (the number of true instances for each label). (Pedregosa et al.
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2011, see the metrics module).

Figure 3.10. Confusion matrix from a classification report.

Precision is the proportion of true positives to the total number of positive predictions (see
Eq. (3.2)). In the example in Figure 3.9, a micro-precision score is calculated by counting
the number of true positives (TP)’s and false positives (FP)’s for each label. In this case,
TP = 4 (i.e., second column of actual labels and predictions for sample 1) and FP = 4 (i.e.,
third column of predictions and actual labels for sample 3), which yields a micro-precision
score of 0.5.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
. (3.2)

Recall is the proportion of true positives to the total number of positive instances (see Eq.
(3.3)). It is also known as sensitivity or the true positive rate (TPR). Following the logic
in our previous calculations, the number of false negatives (FN) = 2 (i.e., third column of
actual labels and predictions in sample 1); therefore, the micro-recall score is 0.67.

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/TPR) = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. (3.3)

F1 score is defined as the harmonic mean of precision and recall (see Eq. (3.4)). Calculating
the micro-f1 score for our example is simply a matter of replacing the previously computed
values of micro-precision and micro-recall in Eq. (3.4) for a score of 0.57.
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𝐹1 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

. (3.4)

3.5.3 Receiver Operating Characteristic Curve (ROC) and AUC Score
A receiver operating characteristic curve (ROC) summarizes the trade-off between the TPR
and the false positive rate (FPR) for a predictivemodel using different probability thresholds.
In other words, it plots the false alarm rate versus the hit rate. This is a useful tool when
predicting the probability of a binary outcome. TPR is known as sensitivity or recall, and
FPR as one minus specificity (see Eq. (3.5)). The AUC score, given by the area under the
ROC curve, summarizes the model skill in just one number between 0 and 1. In a multilabel
setting, the ROC-AUC score is calculated by averaging over all labels, and the ROC curve
is plotted for each label. Figure 3.11 illustrates an ROC curve for a toy multi-label example.

FPR =
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. (3.5)

Figure 3.11. ROC curve for multilabel classification. In this setting, a ROC
is plotted for each label. Source: Karakaya (2020).

When working with large transformer models, the same metrics described thus far can be
calculated using the Evaluate API available at the Hugging Face Hub. There are numerous
advantages for using this API instead of scikit-learn when evaluating our models:
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• The metrics can be calculated with the entire dataset, in batches, or in a distributed
fashion.

• They are optimized to work seamlessly with the rest of the libraries available in the
Hugging Face Hub (i.e., transformers, datasets, accelerate).

• We can bundle together different metrics (i.e., F1, precision, recall, ROC-AUC) using
the combine() function to capture different aspects of the model in just one call. It is
more efficient than calling the metrics sequentially.

• The results can be pushed to the hub for saving and sharing.
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CHAPTER 4:
Experimentation and Results

We started our work by asking the research question: “To what extent can the information
contained in social media (Twitter) generate sufficient signals to efficiently predict collective
violence events using multilingual transformer models?”We attempt to answer this question
by comparing the performance of traditional ML classifiers against MLLMs. In both cases,
we use three MLLMs (i.e., smaller-LaBSE, LaBSE, and XLM-T) to either extract features
fromour data or to serve as end-to-end classifiers. In the former case, we trained five different
ML classifiers. We carefully chose the five models to represent the three most widely used
techniques for multilabel classification: problem adaptation, problem transformation, and
ensemble models. Likewise, for the deep learning approach, we fine-tuned smaller-LaBSE,
LaBSE, and XLM-T using pre-trained checkpoints available in the Hugging Face Hub. The
results produced four noteworthy findings described in the remainder of this section. But
before we dive into our main findings, let us start by performing an exploratory data analysis.

4.1 Exploratory Data Analysis
Every data science project starts with an exploratory data analysis (EDA) for summarizing
the main characteristics of the dataset. The size of our dataset is roughly 23 million tweets
split into three datasets: training, validation, and testing sets (see Table 3.3). The raw text
is further pre-processed by stripping extra white spaces and removing url’s, retweets (RT),
and mentions (@username). This data cleaning is required before entering the next step in
the classification pipeline.

Figure 4.1 shows the class distribution for the 40 different label combinations from the
spatial-temporal heuristics described in Section 3.3. A careful examination of Figure 4.1
demonstrates two distinct observations. First, the amount of data available in our corpus
is inversely proportional to the distance from where the tweet originates to the location
of the violent event. For example, if we compare pre1geo10—the closest spatial-temporal
heuristic with one day and 10 kms—to pre7geo70—the furthest heuristic with seven days
and 70 kms—we note that the former is about six times rarer. This behavior is somewhat
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intuitive because we would expect to have less Twitter traffic in smaller geographical areas
and time windows. This evidence suggests that if we want to build a classifier with distant
spatial-temporal heuristics, then we would expect to have a heavily imbalanced dataset,
which in turn would require a different treatment when dealing with evaluation metrics and
training losses (Tunstall et al. 2022, p. 27). In the case of our project, the distribution of
observations across the six chosen target labels is sufficiently balanced.

Second, Twitter traffic for similar heuristics—before and after the occurrence of a violent
event—remains largely unchanged. For example, if we compare the labels pre3geo20—
which corresponds to three days and 20 kms for pre-violence—and respectively post3geo20
for post-violence, we note that the length of the horizontal bars in the graph are similar.
This observation is best exemplified in the left picture of Figure 4.2 for two target labels
used in this project. This behavior could be considered counterintuitive, because we might
expect an increase in social media traffic where people are expressing their discomfort and
disapproval after these atrocities. If traffic is not increasing in the aggregate, this may imply
that the discourse in Twitter shifts drastically to violent conversations once a violent event
takes place, or it may indicate that most of the conversations are unrelated to the nearby
violent events. This is a question that deserves further exploration.

Finally, there is a significant byproduct of non-violence observations after applying the
spatial-temporal heuristics in the dataset, even though non-violence was not treated as a
separate target class. Recall that the twomajor class categories in the dataset are pre-violence
and post-violence, each with a different subset of labels. A non-violence instance refers to
an observation whose labels are all equal to zero. The right picture of Figure 4.2 shows
the distribution of non-violence (all labels equal to zero) and violence observations (at
least one label is equal to one) for the classes pre7geo30 and post7geo30. Note that there
is a significant amount of non-violence observations within these two labels, it is roughly
equivalent to one third of the dataset. This is important because all the classifiers will
learn non-violence patterns during training. Then, at inference time, any predictions whose
labels are all equal to zero should be interpreted as non-violence events, which are indeed
associated with a corresponding pattern of non-violence learned by the model.

Transformer models are well suited for sequence data and for learning long-term depen-
dencies; however, these nice features are limited to the maximum input sequence length
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Figure 4.1. Class distribution in the Twitter corpus.

Figure 4.2. Visualization of a sample of the balanced dataset. (Left) Both
labels pre7geo30 and post7geo30 are balanced. (Right) Comparison of vi-
olence and non-violence data. For illustration purposes, non-violence data
refers to having all labels equal to zero.

the models can handle, also known as maximum context size (Tunstall et al. 2022, p. 28).
LaBSE, smaller-LaBSE, and XLM-T, all descendants of the original BERT architecture,
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can handle input sequences of 512 tokens. In the world of transformers, longer sequences are
truncated and shorter sequences are padded with zeros to achieve the fixed-length batches
the models expect during training. Moreover, models with longer input sequence lengths
are more expensive to train because we are feeding more data to the network. Since each
tweet is limited to 280 characters, it makes sense to use shorter context sizes when training
transformer models. For what pertains here, Figure 4.3 shows a rough estimate of the tweet
lengths (number of words per tweet) in the dataset. Note that in both box plots, the minimum
length is 1, whereas the maximum length is 32. Based on this evidence, we set the sequence
length for all the MLLMs equal to 32, thus avoiding unnecessary computational costs.

Figure 4.3. Distribution of words per tweets.

Lastly, any multilingual application would first and foremost require knowing the number
of languages it intends to address. Figure 4.4 shows the distribution of the 68 languages
existing in our corpus, including the und or undefined language category (see the top picture
of Figure 4.4), as categorized by Twitter. Every time Twitter fails to identify the language of a
tweet, it assigns a label und; this could happen because themessage is too short, or it does not
contain any text, only but images or emojis. The bottom-left picture of Figure 4.4 shows the
language distribution of our corpus. The plot shows a heavy-tailed distribution, where most
observations are contained within the first few high-resource languages, and the remaining
low-resource languages lie in the long tail. A better visualization of this distribution in log
scale is illustrated in the bottom-right plot of Figure 4.4, where we observe that the last
two languages have extremely scarce data instances. This evidence suggests that perhaps
an MLLM which targets 20 or so languages might be enough to approach our problem at
hand, an observation that deserves more rigorous analysis.

The language distribution shown in Figure 4.4 is a good approximation of the predominant
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languages in the Twitter discourse around the world. Surprisingly, Spanish is the most
frequent language in the corpus, followed by English, Arabic, Portuguese, and the category
undefined. Somewhat unexpected is the high proportion of undefined languages in the
Twitter corpus, which has some major implications for our work. If the language detection
algorithm used by Twitter fails to detect languages due to lack of sufficient text in the tweets,
then it may be difficult for our MLLMs to detect violence from those signals. In contrast, if
this behavior is due to the presence of unknown languages, then this is a good case scenario
to showcase the benefits of using MLLMs.

Figure 4.4. Language distribution in the corpus. (Top) List of ISO codes for
the 68 languages in the Twitter corpus, including und for undefined. The
labels are illustrated in the same order as they appear in the x-axis of the
two bar plots. (Bottom-left) Language distribution in ordinal scale. (Bottom-
right) Language distribution in logarithmnic scale.

4.2 Finding One: The Pre-violence Signal in a Tweet Is
Stronger near the Location of a Future Violent Event

We began our work hypothesizing that a sufficient collective violence signal exists in the
Twitter discourse prior to the occurrence of violent events. The closer the conversation
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is to the violent events, in terms of time and distance, the stronger the presence of this
signal. This hypothesis drove the process of constructing our training corpus for training the
various models used in our project. We test our hypothesis using two test beds: projecting
and visualizing the high-dimensional hidden states down to 2D, and plotting a labelwise
ROC for an RF classifier.

The first method projects and then visualizes a sample of one million hidden state vectors
from smaller-LaBSE into a lower-dimensional space. The choice of using smaller-LaBSE
instead of XLM-T or LaBSE was completely arbitrary. When we pass the sample data
through the network, a 768-dimensional hidden state vector is returned for each of the one
million observations. Since visualizing any data in 768 dimensions is not intuitive, one way
to escape this curse of dimensionality is to use a dimensionality reduction algorithm, such
as the popular algorithm called Uniform Manifold Approximation and Projection (UMAP)
(McInnes et al. 2018).With the help ofUMAP,we project and visualize the 768-dimensional
hidden state vector down to 2D. UMAP, like another popular algorithm called t-SNE,
builds a neighbor graph in the original space of the data and tries to find a similar graph
(projection) in lower dimensions. However, what sets UMAP apart from its competitors is
the construction of the high-dimensional graph.

The graph density is estimated using KNN to each of the data points in the graph. Points
with fewer neighbors in KNN are less densely connected than points with more neighbors
(McInnes et al. 2018). Moreover, larger values of K better preserve global structure, while
lower values better preserve local structures. There needs to be a balance, or trade-off, when
choosing the optimal K, since this hyperparameter helps the algorithm estimate the graph
density. In general, there is no formula to find the optimal value of K, some trial and error
is required since K is dataset-dependent. Connections between each point and its neighbors
are weighted with probabilities. Points further away from each other are weighted less
than points which lie in close proximity. During the projection phase, the algorithm uses
every point in high-dimensional space with its corresponding weighted edges, where high-
weighted edges are more likely to stay together in the lower dimensional space (McInnes
et al. 2018). For our project, we chose a value of K=2. UMAP is a computationally intensive
algorithm which grows exponentially as the number of data points increases. Just to give
an idea of this computational complexity, it took UMAP approximately four days and 10
hours to calculate the 2D projections for a 1M sample of the dataset.
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Once the data is projected to a 2D space, we then plot the density of the two feature
vectors—X and Y—across each binary category for the six labels individually, hoping for
some separation in this lower-dimensional space, as illustrated in Figure 4.5. From this plot,
we can barely see any clear patterns in our data. There is no clear separation both between
the 0 and 1 categories within each label, and between the 0 or 1 categories across every other
label. For example, there is no clear separation between categories 0 and 1within pre7geo10,
and similarly between the category 1 in pre7geo30 and category 1 in post7geo30. Although
we anticipated some patterns of separation, it is very hard to capture the entire underlying
structure of a vector in 768 dimensions when reduced down to just two dimensions: “Just
because some categories overlap does not mean that they are not separable in the original
space. Conversely, if they are separable in the projected space they will be separable in the
original space” (Tunstall et al. 2022, p. 43). Moreover, the model was not trained to contrast
each label, “it only learned them implicitly by guessing the masked words in texts”(Tunstall
et al. 2022, p. 43). This evidence suggests that we are facing a hard classification problem.
We can only hope that any collective violence signal present in our data is separable in the
high-dimensional space and that it will be strong enough to be captured by the multilabel
classifiers. We will test this assertion next.

The second method to test our hypothesis is based on a labelwise ROC plot of an RF
classifier trained on a 1.5M sample from the training set, as illustrated in Figure 4.6. Details
of the classifier and its training procedure are addressed in the next subsection, but for now
let us just focus on the plot. Note that the ROC-AUC scores are higher where the distance
from the geolocated tweet is closer to the location of a violent event. For instance, geo50
yields a smaller score (0.56) than the other two radii—geo10 (0.61) and geo30 (0.62)—
for both pre and post violence labels. Surprisingly, this behavior is the opposite when we
compare the two labels with the smallest radii, geo10 and geo30. For example, one would
expect geo10 to perform better than geo30 for being located much closer to ground zero,
but in reality, geo10 yields a slightly smaller score than geo30, 0.61 and 0.62, respectively.
This observation also holds true for both pre and post violence labels.

A possible explanation for this last behavior might be attributed to the signal (collective
violence) to noise ratio found in the geographical areas around each spatial distance from
a tweet. The area surrounding geo10 is approximately nine times smaller than the one
for geo30. Therefore, it can be argued that the signal to noise ratio increases as the area
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Figure 4.5. Visualization of the 768-d hidden state vectors from smaller-
LaBSE in 2D, across each binary category for all six labels individually.

increases up to a point where the area is so large that this behavior reverses (i.e., geo50).3
A careful consideration of which spatial heuristic is the most appropriate for detecting
violence deserves a rigorous analysis, since we may end up training a classifier that either
amplifies noise or the signal of interest.

The previous evidence provides support for our hypotheses in two ways. First, the obser-
vation that the classifier yields ROC-AUC scores well above 50%—or random guessing—
means that the model is indeed picking up a collective violence signal in the Twitter
discourse prior to the occurrence of violent events. There will be more to follow about
other classifiers with better performances in the remainder of this section. Second, the fact
that the ROC-AUC scores in Figure 4.6 generally decrease as the spatial distance increases
suggests that the presence of the collective violence signal is stronger near the location of
violent events. However, being too close to ground zero might slightly hurt the classifier
performance due to noise hiding the signal in a relatively smaller amount of available data.

3Recall that the area of the circle is equal to 𝜋𝑟2.
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Figure 4.6. Labelwise ROC plot for an RF multilabel classifier. The geo50
label, which corresponds to a tweet originating up to 50 kms away from
the location of a violent event, obtains the lowest ROC-AUC score when
compared to tweets originating in closer proximity.

4.3 Finding Two: Ensemble Multilabel Classifiers Are the
Best Performing Traditional ML models

In this feature-based approach, we use the embeddings from three pretrained MLLMs (e.g.,
LaBSE, smaller-LaBSE, and XLM-T) to train five different traditional machine learning
classifiers using scikit-learn (Pedregosa et al. 2011) and scikit-multilearn (Szymański and
Kajdanowicz 2017) libraries. In short, we use the networks—or pretrained transformer
models—as feature extractors, and pass these features to a regular classifier down the
pipeline. Generally speaking, whenever we use a transformer model from the Hugging Face
Hub for text classification as is, we use the network as end-to-end classifiers. Nonetheless,
there is no rule that requires the sequence of text “to forward propagate through the entire
network” (Rosebrock 2017a, p. 31). Instead, we can freeze the weights of any of the initial
layers and stop propagation up to that point.

For our specific multilabel classification problem, we use the last hidden state of the pre-
trained base models following recommended best practices in the NLP research community:
“For classification tasks, it is common practice to just use the hidden state associated with
the [CLS] token as the input feature” (Tunstall et al. 2022, p. 40). Moreover, we carefully
chose five classifiers to account for the three most widely used techniques for multilabel
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classification problems: problem adaptation, problem transformation, and ensemble meth-
ods. The idea is to evaluate which multilabel technique is best suited for the problem at hand
(refer to Section 3.4.2 for a more thorough description of multilabel classifiers in machine
learning). The classifiers evaluated in this section are as follows:

• Problem Adaptation: Bagging, Boosting, and support vector machine (SVM), using
a Binary Relevance strategy in all of them.

• Problem Transformation: DT and RF.
• Ensemble Models: Three of the five classifiers also belong to this category (e.g.,
Bagging, Boosting, and RF); however, their training strategies differ from one another
and normally fall under one of the two techniques described above.

Table 4.1 summarizes the results after training the previous five multilabel classifiers on
the dataset. The inputs to the classifiers are the last hidden states from the transformer
models, which were obtained after tokenizing a random sample of 1.5 million instances
from the training split. All classifiers were trained using the default parameters in their
corresponding implementations in scikit-learn and scikit-multilearn. The main insights
from Table 4.1 show that, in general, the best performing classifiers across all seven different
metrics are ensemble models (for a more detailed explanation of how multilabel metrics
are implemented and their correct interpretation, refer to Section 3.5). Moreover, ensemble
models trained using a problem transformation approach not only perform better than their
problem adaptation counterparts, but they are also computationally faster. For example,
RF is the best performing model in terms of ROC-AUC, whose performance (0.6028) is
slightly better than the second best model bagging (0.5938); however, the latter algorithm
takes approximately 5 times longer to train.

Just to give an idea of the computational complexity, all five models, except DT, were
parallelized during training using all CPU cores. Surprisingly, even though the scikit-learn
implementation of DT is not parallelizable, it is the fastest algorithm of all. Moreover,
features extracted from XLM-T yield better performances than LaBSE and smaller-LaBSE
across all five classifiers and all seven metrics, except for two cases: the weighted-precision
metric for the boosting classifier, and precision-micro for SVM. For what follows in the
remainder of this chapter, wewill only use ROC-AUC scores to compare different classifiers.
For this particular test bed, RF trained on XLM-T features is the best performing model,
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whose ROC-AUC score (0.6028) is slightly better than LaBSE (0.5903) and smaller-LaBSE
(0.5887). This traditional machine learning model will serve as a baseline for comparing
the performance of state-of-the art deep learning models next.

Table 4.1. Summary of results of five classical ML multilabel classifiers. RF
performs better than any other model across all seven metrics. In terms of
computational time, RF is the second fastest model next to Decision Trees.

Metric Tokenizer Bagging Boosting SVM-BR D.T. R.F.

ROC-AUC
s-LaBSE 0.5564 0.5845 0.5168 0.5393 0.5902
LaBSE 0.5555 0.5845 0.5096 0.5391 0.5903
XLM-T 0.5682 0.5938 0.5841 0.5474 0.6028

Precision
(weighted)

s-LaBSE 0.5186 0.6118 0.2906 0.4992 0.5006
LaBSE 0.5181 0.6112 0.2695 0.4988 0.5712
XLM-T 0.5382 0.5858 0.6012 0.5079 0.5824

Recall
(weighted)

s-LaBSE 0.4094 0.4712 0.0769 0.4991 0.4923
LaBSE 0.4066 0.4736 0.0404 0.5004 0.4922
XLM-T 0.4324 0.52 0.4763 0.5104 0.5322

F1
(weighted)

s-LaBSE 0.4475 0.3903 0.0953 0.4990 0.4515
LaBSE 0.4454 0.3917 0.0616 0.4994 0.4511
XLM-T 0.4704 0.4532 0.411 0.509 0.4983

Precision
(micro)

s-LaBSE 0.5389 0.57 0.6029 0.4997 0.5726
LaBSE 0.5388 0.5691 0.6184 0.5017 0.573
XLM-T 0.5538 0.5728 0.5677 0.5106 0.5806

Recall
(micro)

s-LaBSE 0.1065 0.4708 0.0774 0.4978 0.4912
LaBSE 0.4066 0.4736 0.0404 0.5004 0.4922
XLM-T 0.4324 0.52 0.4763 0.2104 0.5322

F1
(micro)

s-LaBSE 0.4634 0.5157 0.1372 0.4988 0.5288
LaBSE 0.4635 0.517 0.0758 0.501 0.5295
XLM-T 0.4856 0.5451 0.518 0.5105 0.5553

Training
time

s-LaBSE 5h 6m 55s 20h 8m 16s 5h 53m 40s 1h 33m 4s 4h 17m 22s
LaBSE 5h 1m 13s 22h 12m 50s 5h 41m 46s 1h 29m 33s 4h 13m 47s
XLM-T 6h 12m 7s 21h 32m 4s 8h 17m 34s 1h 53m 21s 4h 30m 5s

4.4 Finding Three: XLM-T, LaBSE, and Smaller-LaBSE
Perform Similarly

In this section, we will explore the performances of deep learningmodels using a fine-tuning
approach, where we train three end-to-end MLLMs on our full training corpus: LaBSE,
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smaller-LaBSE, and XLM-T. Fine tuning, in contrast to feature extraction, propagates the
errors back to the network, calculates gradients, and updates the weight parameters of the
feed-forward classifier (Tunstall et al. 2022, p. 38). The training process starts by building
a multilabel classification head on top of the base model architecture. We refer the reader
to Section 3.4 for a thorough explanation of transformer architectures as well as fine-tuning
transformer models. In the world of data science, the Hugging Face Hub is the starting point
in the NLP domain, offering its library of popular transformer models created by companies
like Apple, Microsoft, and Google, with seamless implementations. Fortunately, all three
models used in our work are available at the Hub, which means that we do not need to
code the networks ourselves. Moreover, the classification head class supports multilabel
classification natively. All models were trained using the parameters detailed as follows:

• Model checkpoints from the Hugging Face Hub: setu4993/LaBSE, setu4993/smaller-
LaBSE, and cardiffnlp/twitter-xlm-roberta-base

• Head class: AutoModelForSequenceClassification
• Training batch size = 1024
• Validation batch size = 1024
• Number of epochs = 20
• Learning rate scheduler type = cosine
• Weight decay = 0.1
• Initial learning rate = 5e-5
• Random seed = 42
• Max. sequence length = 32
• Saving strategy = save the best model only when there is improvement on the ROC-
AUC score on the validation split

Table 4.2 summarizes the results after training the three selected MLLMs on the entire
dataset. All models were evaluated on the full validation split using the ROC-AUC score.
These results show that XLM-T takes approximately 45 minutes and 90 minutes longer to
train when compared to smaller-LaBSE and LaBSE, respectively. This difference in training
time is somewhat expected, since XLM-T has approximately 100 million more parameters
than LaBSE (see Table 2.1 for more details about the different features of each MLLM).
Moreover, the three models yield similar performances in terms of ROC-AUC score, each
scoring approximately 0.73.
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Table 4.2. Performance results after fine tuning three multilingual models:
LaBSE, smaller-LaBSE, and XLM-T.

Model lr roc_auc training time
smaller-LaBSE 0.00004969 0.7246 7h 31m 54s
LaBSE 0.00004983 0.7238 8h 3m 48s
XLM-T 0.00004973 0.7268 8h 48m 14s

Our initial suspicion was that XLM-T would outperform the other two models, because its
vocabulary corresponds to the informal language found in a Twitter conversation. Recall
that XLM-T was pre-trained exclusively on Twitter data, in stark contrast to LaBSE which
was trained on Wikipedia and CC. One would expect to find a vocabulary full of emojis in
XLM-T and a lack thereof in LaBSE. A visualization of a sample of single-character tokens
in both vocabularies may shed some light on this, as illustrated in Figure 4.7. It follows from
this figure that both LaBSE and XLM-T share a similar number of single-character tokens,
approximately 14,000, and a good portion of them correspond to emojis. This evidence
suggests that the presence of emojis and the like in the vocabulary of LaBSE is what allows
this model to perform well even on data very different from what it was trained on.

Figure 4.7. Comparison of single-character tokens in the vocabularies of
LaBSE and XLM-T. Both MLLMs share a similar number of single-character
tokens and a good portion of them correspond to emojis.
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By carefully inspecting Figures 4.8, 4.9, and 4.10—smaller-LaBSE, LaBSE, and XLM-T
respectively—we note that the final models do not show any signs of overfitting across the
20 epochs. The training and validation losses are constantly decreasing over time. Likewise,
there is no pronounced departure of the validation loss from the training loss. Moreover, the
ROC-AUC score starts to stagnate at approximately epoch 15. It could be argued that all
these positive benefits are in part due to the use of a learning rate scheduler with a weight
decay during training: “By adjusting our learning rate on an epoch-to-epoch basis, we can
reduce loss, increase accuracy, and even in certain situations reduce the total amount of
time it takes to train a network” (Rosebrock 2017b, p. 241). This evidence suggests that the
model would not learn past 20 epochs without the risk of overfitting the training data.

Figure 4.8. Performance results of smaller-LaBSE. All metrics are evalu-
ated across 20 epochs. (Top-left) Train loss. (Top-right) Evaluation loss.
(Bottom-left) ROC-AUC score. (Bottom-right) Learning rate decay.

If we were to pick the best performing MLLM for violence prediction, it is obvious that
the ROC-AUC score would not provide sufficient information as a criterion for selecting
a good candidate, as it is nearly equal across the candidates. It then follows that we need
another selection criterion, perhaps one related to the memory footprint of each model in
GPU. Let us keep in mind that all models were trained in a server with 16 Tesla V-100
GPUs with 32 GB of memory each. Figure 4.11 shows a comparison of the GPU memory
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Figure 4.9. Performance results of LaBSE. All metrics are evaluated across
20 epochs. (Top-left) Train loss. (Top-right) Evaluation loss. (Bottom-left)
ROC-AUC score. (Bottom-right) Learning rate decay.

Figure 4.10. Performance results of XLM-T. All metrics are evaluated across
20 epochs. (Top-left) Train loss. (Top-right) Evaluation loss. (Bottom-left)
ROC-AUC score. (Bottom-right) Learning rate decay.
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allocation for each MLLM, amounting to 60%, 70%, and 80% for smaller-LaBSE, XLM-T,
and LaBSE, respectively. Likewise, the spikes of GPU percent utilization rarely cross the
85% and 95% thresholds for smaller-LaBSE and XLM-T, respectively; whereas there is an
instance of LaBSE that approaches almost 100%.

Figure 4.11. GPU performance metrics when training three multilingual mod-
els. (Left) smaller-LaBSE. (Center) LaBSE. (Right) XLM-T.

These results are expected because LaBSE, despite being a smaller model than XLM-T in
terms of parameters, has a vocabulary twice as large; therefore, it requires morememory and
computing resources. To illustrate the importance of model sizes in any NLP application,
training LaBSE and smaller-LaBSE in a Tesla V-100 GPU with maximum sequence length
of 32 and batch sizes greater than 1024 yields an out of memory error. This could be a
potential problem during inference time when making final predictions. It follows from this
evidence that the best MLLM for violence prediction, in terms of memory footprint and
performance, is smaller-LaBSE. On a final note before proceeding to the next section, it
is worth mentioning that all three model checkpoints, as well as the dataset, are publicly
available in the Hugging Face Hub at https://huggingface.co/m2im.
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4.5 Finding Four: Deep Learning MLLMs Outperform
Traditional ML Models

This finding follows from the two previous findings. It does not take a great deal of analysis
to compare results from Tables 4.1 and 4.2 before realizing that deep learning MLLMs
outperform traditional ML models by approximately 13% in terms of ROC-AUC score.
Nonetheless, jumping abruptly to this conclusion before crafting more rigorous experi-
mentation would do traditional ML models no justice. Let us recall that all traditional
ML classifiers were trained with their default parameter configurations. A more fair com-
parison would require some sort of hyperparameter optimization of the best performing
traditional ML algorithm; this is RF trained on XLM-T features. Following are the multiple
configuration parameters used to perform random search hyperparameter tuning on RF:

• Metric: ROC-AUC score
• Goal: maximize
• Method: random search
• Number of combinations: 20
• Criterion: gini, entropy
• Num_estimators: [50, 500, 1000]
• Min_samples_split: [10, 100, 1000]
• Min_samples_leaf: [10, 50, 100]

The left picture in Figure 4.12 shows a plot of the different ROC-AUC scores obtained
during the random search. These results show that of all 20 different combinations, only
four models yield the highest performance (0.6022), whose configurations are detailed in
Table 4.3. Note that every other model in Table 4.3 has the same configuration except for
the criterion parameter. For example, model 1 uses entropy as opposed to model 3 that
uses gini, with the remaining parameters being the same. This is also the case for model 2
and model 4. This behavior is explained with the feature importance and correlation plot
illustrated in the right picture of Figure 4.12. It appears that the most important parameter
for this RF model is min_samples_split, whereas criterion plays almost no role. Figure 4.13
provides a full visualization of how each model in the random search performs.

Our work started by asking the research question: “To what extent can the information
contained in social media (Twitter) generate sufficient signals for use in multilingual trans-
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Figure 4.12. Results of a random search for hyperparameter tuning for the
RF model trained on XLM-T features. (Left) Plot of the ROC-AUC score for
the 20 different combinations. (Right) Feature importance and Correlation
for the hyperparameters tuned in the model.

Table 4.3. Configuration parameters of the best performing RF models after
random search. All four models yield an ROC-AUC score of 0.6022.

Parameters Model 1 Model 2 Model 3 Model 4
Criterion entropy entropy gini gini
min_samples_leaf 10 10 10 10
min_samples_split 100 10 100 10
num_estimators 1000 50 1000 50

former models to predict collective violence events efficiently?” The results presented here
show that regardless of the hyperparameter configurations of RF, none of the best per-
forming traditional machine learning models obtained thus far seem to improve over the
baseline performance achieved by anRF trainedwith default configurations (0.6028); in fact,
their performances are similar (see Table 4.1). Simply put, it appears that RF has reached
its performance limit no matter how much we tweak its hyperparameters. This evidence
demonstrates that traditional ML models do not perform as well as deep learning MLLMs
for predicting the outcome of collective violence. Moreover, this finding also illustrates that
MLLMs are well suited to capture the sparse collective violence signals contained in social
media discourse, thus answering the research question that drove our research endeavor.
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Figure 4.13. Parallel coordinate plot with the hyperparameter optimization
values for the RF model. Each line corresponds to a different combination
of hyperparameters. Model performance is measured in terms of ROC-AUC
score.
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CHAPTER 5:
Conclusions and Further Avenues of Research

5.1 Conclusions
In this thesis, we investigated the utility of conducting social media analysis through the
development of language-agnostic deep neural networks. The reason for such a model is
twofold. First, social media users come widely diverse linguistic communities. Second, in
social media discourse people often alternate between different languages within text even
within the same conversation. By constructing a model that can accept input from social
media messages written in any language and learn to associate forms of discourse with
the timing and location of events of collective violence, we generated vector embeddings
that capture semantic elements more likely to occur in the periods immediately preceding
and immediately following violent events. Our aim wass that this will provide a useful
representation of violent discourse, which might prove beneficial for predicting violence
through social media.

One of the major challenges in our research was the lack of a suitable social media dataset
for the classification task. We built our corpus under the hypothesis that sufficient collective
violence signals exist in the Twitter discourse prior to the occurrence of violent events. The
closer the conversation is to violent events in terms of time and distance, the stronger the
presence of this signal. We limited our analysis to the one-year period from August 1, 2013,
to July 31, 2014, to match the timespan of a historical archive of Twitter messages licensed
for research at NPS. We gathered a dataset of approximately 23 million tweets around a
curated list of 10,071 unique violent events worldwide from the Uppsala Conflict Data
Program (UCDP) dataset (Sundberg and Melander 2013). This wide variety of locations
implied a broad linguistic diversity, which motivated the use of MLLMs in our research. To
account for the sparsity of the violence signal contained in the training data when compared
to the signal of non-violent events, we framed the problem as a multilabel classification
problem, with the hope that the model would pick up and amplify violence signals across
different spatial-temporal scales.
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Our work started by asking the research question, “To what extent can the information
contained in social media (Twitter) generate sufficient signals to efficiently predict collec-
tive violence events using multilingual transformer models?” We postulated this question
because there is a gap in understanding collective violence in multiple or mixed languages
in social media. We answered this question by comparing the performance of traditional
ML classifiers against deep learning MLLMs. In both cases, we used three MLLMs (i.e.,
smaller-LaBSE, LaBSE, and XLM-T) to either extract features from our data or to serve
as end-to-end classifiers. In the former case, we chose five ML classifiers that represent
the three most widely used techniques for multilabel classification: problem adaptation,
problem transformation, and ensemble models. Likewise, for the deep learning approach,
we fined tuned smaller-LaBSE, LaBSE, and XLM-T using pretrained checkpoints available
in the Hugging Face Hub.

The results of the models produced four noteworthy findings. Finding one confirmed our
hypothesis that the pre-violence signal in a tweet is stronger near the location of a future
violent event. A labelwise ROC plot of an RF classifier trained on a 1.5M sample shows that
ROC-AUC scores decrease as the spatial distance increases, suggesting that the presence
of the collective violence signal is stronger near the location of violent events. However,
the same plot also indicated that being too close to ground zero might hurt the classifier
performance slightly due to noise hiding the signal in a relatively smaller geographical
area. Finding two revealed that ensemble multilabel classifiers are the best performing
traditional ML models across the seven different metrics used in our benchmark. These
models were trained using the last hidden state of the pretrained MLLMs as input features
to the classifiers. Interestingly, ensemble models trained using a problem transformation
approach not only performed better than their problem adaptation counterparts, but they
were also computationally faster. Furthermore, features extracted from XLM-T yielded
better performances than LaBSE and small-LaBSE across all five classifiers and all seven
metrics. In the end, RF trained on XLM-T features was the best performing traditional ML
model with a ROC-AUC score of 0.6028.

The third finding indicated that smaller-LaBSE, LaBSE, and XLM-T yielded similar perfor-
mances in terms of ROC-AUC scores, each scoring approximately 0.73. In terms of memory
footprint, smaller-LaBSE was the best performing model due to a smaller vocabulary size
and less number of parameters than the other two MLLMs. The last finding followed from
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the previous two findings: deep learning MLLMs outperformed traditional ML models by
approximately 13% in terms of ROC-AUC scores. This drastic skill difference was main-
tained even after performing a random search hyperparameter optimization on the best
traditional ML classifier. It appears as if RF reached its maximum performance limit no
matter how much we tuned its hyperparameters. This evidence indicates that traditional ML
models do not perform as well as deep learning MLLMs for violence prediction. Moreover,
it follows from the last finding that MLLMs are well suited to capture the sparse collective
violence signals present in a Twitter discourse, thus answering the research question that
drove our research effort.

Ultimately, our findings also suggest that a predictive relationship between social media
content and past events of collective violence exists. Moreover, the relationship between
social media content and collective violence can be observed regardless of the language
used in the discourse. We believe that our study could serve as a useful decision-aid tool in
the military for predicting violence on a global scale at the operational and strategic levels of
war. SamuelHuntington, in his famous book titledThe Soldier and the State: The Theory and
Politics of Civil-Military Relations, drawing on a quotation fromHarold Laswell, argued that
the military expertise of the officer corps revolves around the “management of violence”
(1981, p. 21). With more than 7,000 languages spoken in the world today, and an ever-
increasing responsibility on the officer corps to cope with violence everywhere, one major
contribution of our work is that military commands now have a tool to evaluate and learn the
language of violence across all human languages, thus reducing the negative effects of hostile
information campaigns in social media (David et al. 2022). In future work, we recommend
re-training the previously developed U-Net conflict prediction model, taking as new inputs
the output of the fine-tuned XLM-Tmodel, and comparing performance differences. Finally,
we made the code, data, and models publicly available at https://huggingface.co/m2im/ ,
with the hope that this will help the research community advance its efforts in conflict
prediction in addition to enabling our warfighters to use the model as a tool to enhance their
understanding of the information environment.
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5.2 Further Avenues of Research
Ourwork identified six avenues of potential future research. First, we recommend replicating
the same experiments using a different set of spatial-temporal heuristics to determine
which set of labels better captures a collective violence signal prior to the occurrence of a
violent event. Let us recall that we collected 40 different combinations of spatial-temporal
dependencies and used only six of those combinations as the target labels in our classification
task.Our research only addressed one temporal heuristic—seven days—combinedwith three
different spatial distances—10, 30, and 50 kms—for both pre- and post-violence events.
Understanding which spatial-temporal heuristics provide a better predictive relationship
could illuminate how violence-related events unfold on the ground. Second, incorporating
sentiment from tweets might help filtering unwanted noise signals. This recommendation
is based on the findings of two previous NPS theses, in which the authors independently
demonstrated the existence of a relationship between negative sentiments and the future
outcomes of violence in two different scenarios, Iraq and Ukraine, respectively (Frost et al.
2017; Kuah and Chew 2018). We recommend further experiments using two classifiers
in cascade, one for sentiment and the other for multilabel predictions. Under this setting,
only tweets with negative sentiments would feed into the second classifier for behavioral
predictions of collective violence.

Third, incorporating extreme gradient boosting (XGBoost) into the set of traditional ML
classifiers and then comparing results with those of the MLLMs might make a fairer
comparison. Unlike the other traditional classifiers used in our benchmark, XGBoost is
GPU-enabled. This nice feature together with the fact that its memory footprint is orders
of magnitude smaller than any existing MLLM might prove beneficial during inference
time. We recommend crafting additional experimentation to measure the computational
performance differences between XGBoost and the other deep learning models. Fourth,
performing hyperparameter optimization for the three fine-tuned MLLMs might help in
determining which model is better equipped to predict violence from Twitter conversations.
Perhaps by changing some hyperparameters (e.g., learning rate, weight decay, number
of epochs) we might appreciate some further deviations in performance from one model
to another. We hypothesize that XLM-T should yield the best performance since it was
pretrained on Twitter data, but this claim requires additional experimentation.
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Fifth, we recommend training from scratch either LaBSE, smaller-LaBSE, or any other
MLLM on our Twitter corpus and then comparing results with those obtained by XLM-T
to make a fairer comparison. This is a very expensive operation since it requires training
a tokenizer, pre-training a masked language model, and finally fine-tuning the models as
multilabel classifiers. The fact that the only MLLM trained on Twitter data is XLM-Tmakes
this recommendation very appealing. And lastly, future work should validate the results
obtained by the best performing MLLM using the U-Net architecture developed by the
CODA lab. Let us recall that an important goal of this thesis is to find a model that would
improve the predictive power of the Twitter counts fed into U-Net by using MLLMs. Any
performance boost obtained through this approach could prove beneficial for the core task
of predicting collective violence on a global scale.
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