




**Calhoun: The NPS Institutional Archive** 

**DSpace Repository** 

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

2006-06

#### Ship Anti Ballistic Missile Response (SABR)

Johnson, Allen P.; Breeden, Bryan; Duff, Willard Earl;

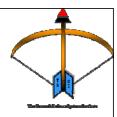
Fishcer, Paul F.; Hornback, Nathan; Leiker, David C.;

Carlisle, Parker; Diersing, Michael; Devlin, Ryan; Glenn, Christopher...

Monterey, California: Naval Postgraduate School

https://hdl.handle.net/10945/7268

Downloaded from NPS Archive: Calhoun




Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

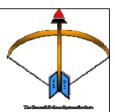
> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library





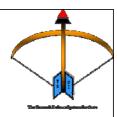
#### SEA-9/TDSI


Future Surface Combatant Ballistic Missile Defense (BMD) Integrated

SHIP ANTIFINAL Presentation Power

07 June 2006

1






"It is the policy of the United States to deploy as soon as is technologically possible an effective National Missile Defense system capable of defending the territory of the United States against limited ballistic missile attack (whether accidental, unauthorized, or deliberate) with funding subject to the annual authorization of appropriations and the annual appropriation of funds for National Missile Defense."

--National Missile Defense Act of 1999 (Public Law 106-38)

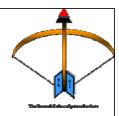




On December 16, 2002, the President announced he had directed the DoD to begin fielding initial missile defense capabilities in 2004-2005 to meet near-term ballistic missile threat to our homeland, deployed forces, friends, and allies. Responding to this direction, the Missile Defense Agency (MDA) is developing an integrated system called the Ballistic Missile Defense System (BMDS) to provide a "layered defense". That is, over time the BMDS will become capable of dealing with all three phases of a hostile ballistic missile's flight – boost, midcourse, and terminal, as well as defending against all ranges of ballistic missiles.

3






These newer threats on the world stage see Weapons of Mass Destruction (WMD) as weapons of choice, not of last resort to exert political pressure or to evoke unpopular responses. In this case, ballistic missile WMDs are a lethal means to compensate for the conventional strength of the U.S., allowing these entities to pursue their objectives through force, coercion, and intimidation.

To deter such threats, the U.S. and its allies must devalue ballistic missiles as tools of extortion and aggression through an active presence and a formidable ballistic missile defense. Doing so would undermine the confidence of adversaries that threatening a missile attack would succeed in affecting the secure status of the target citizenry and way of life. In this way, although missile defenses are not a replacement for an offensive response capability, they are an added and critical dimension of contemporary deterrence.

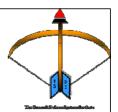
George W. Bush, 2002





#### • 2006 CNO Guidance

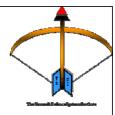
- "Secure at home and abroad"
- "Deter Aggression by would-be foes"
- "Interoperability and cooperation among services, government agencies, coalition partners, and NGO's"


#### Sea Power 21

- Sea Shield
- Sea Base

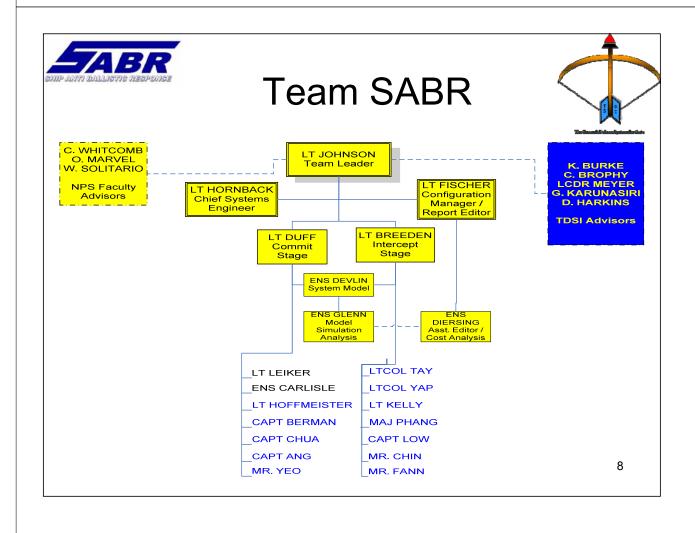
5

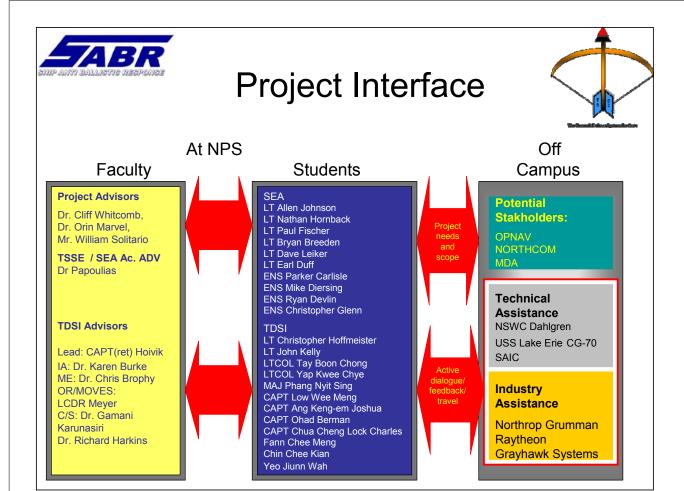



#### **Tasking**



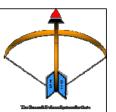
"Use a top-down, system of systems approach to examine future surface combatant operations in terms of their conduct and support of current and emerging sea-based Theater Ballistic Missile Defense (TBMD) missions,"



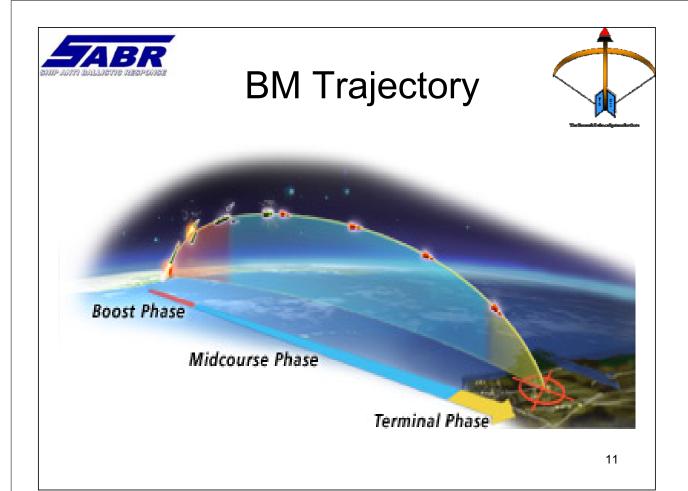


#### Agenda



- Introduction
- Systems Engineering Process
- Break
- DRM, Scenario
   Development, Functional Analysis, and Architecture Development
- Break
- Model Development, Analysis of Alternatives, 1<sup>st</sup> and 2<sup>nd</sup> Iteration Simulation Results, Simulative Analysis and Architecture Evaluation

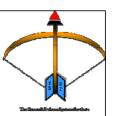

- Break
- Final Architecture Selection, Cost Analysis, Conceptual System Design, Operational Scenarios, Model Refinements, 3<sup>rd</sup> Iteration Simulation Results, Simulative Analysis, and Conceptual System Design Evaluation
- Conclusions and Future Work








# Characteristics of Ballistic Missile Flight

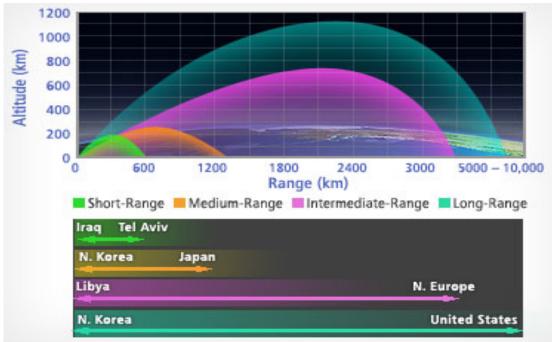



- <u>Boost phase</u>: The portion of flight immediately after launch, when the missile burns fuel (solid or liquid) to accelerate and lift its payload into the air. Duration is approximately 110 to 300 seconds.
- <u>Midcourse</u>: The portion of flight where the missile payload is separated from the booster rocket and is traveling without power on its trajectory toward a target.
- <u>Terminal</u>: The final portion of flight when the missile's warhead re-enters the earth's atmosphere (if exoatmospheric) and falls towards its target, propelled only by its momentum and the force of gravity.



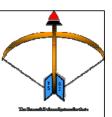


#### **TBMD Definition**




TBMD is the capability to defend forces, territories, and interests of the United States, its allies and friends against ballistic missile threats employed in a given geographical region. Specifically, it includes all classes of missiles that are employed against Short Range (SR), Medium Range (MR), and Intermediate Range (IR) targets (500-3500 km) within a given region.

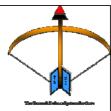



#### **BM Ranges**








#### **Problem Statement**



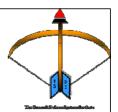
"Develop and evaluate a conceptualized shipbased BMD system architecture to meet emerging short to intermediate range ballistic missile threat capability in the 2025-2030 time frame. The system must be able to integrate with prospective coalition BMD architectures and contribute to the whole of layered BMD."



#### **Project Scope**



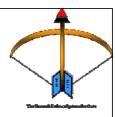
#### In Scope


- Part of the overall layered IBMDS and coalition BMD effort (the sea-based portion of BMD effort)
- 2025-2030 timeframe
- Sea-based
- Must counter the perceived SR to IR ballistic missile threats
- Intercept warhead in the boost through midcourse phases (earliest engagement possible)

#### Out of Scope

- BMs that survive beyond midcourse will not be engaged by the sea-based system
- Post-intercept debris collateral damage and intercept over-flight issues
- Vulnerability of the ship due employment of sensors, FC radar, and employment of interceptor(s) (EW sig)
- Ability for ship self-defense while conducting active BMD (will be covered by ship self-defense system)
- Non-physical interceptors (cyber <sub>15</sub> attack, etc)



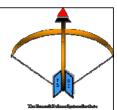

# System Bounding Assumptions



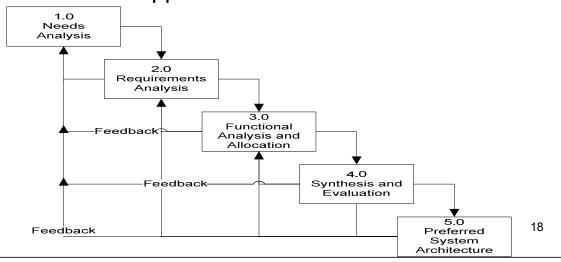
- Integrated external sensor network is deployed and operational for all Unified Commands
- Collaborative Information Exchange (CIX) exists between all participants in the IBMDS (Global)
- BMD System will be installed as part of a ship
- Physical interceptor(s) (i.e. missile, rail gun, DEW, etc.) will be employed if able
- Automated Battle Management System exists on ship



# Projected Threat Ballistic Missile

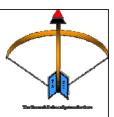



- Highly proliferated ballistic missile easily acquired with the right amount of \$\$
- SR to IR (<3500 km)</li>
- Exo-atmospheric capable
- Mobile launch capable
- Deployed decoys throughout trajectory
- Two-stage solid propellant (est. 140 s burn time)
- · Can hit targets with a CEP of 3.5 km
- Can target land and sea targets

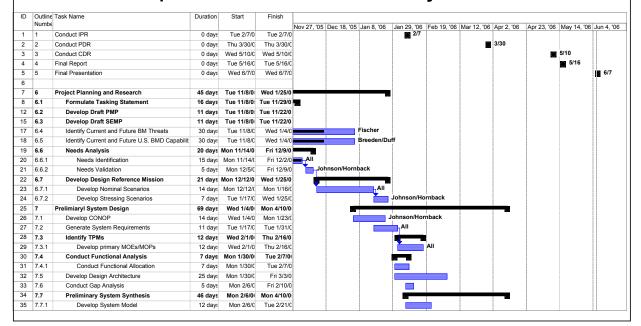

17



## Brief Project Overview




- · Conducted extensive research
- Defined Problem Statement
- Chose SE approach






## Brief Project Overview (con't)



Developed SE Plans and Project Schedule

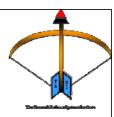




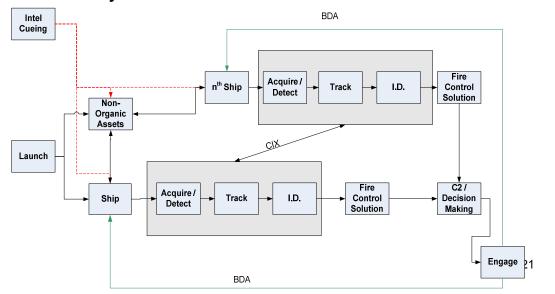
# Brief Project Overview (con't)



(con't)

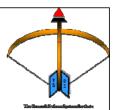

• Developed Design Reference Mission and Initial Scenarios

#### **DRMP**


| DIAMI                                      |                                                                   |                            |               |          |         |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------|----------------------------|---------------|----------|---------|--|--|--|
| Event                                      | Required<br>Equipment                                             | Environmental Factors      |               |          |         |  |  |  |
| LVSIIL                                     |                                                                   | Condition                  | Best          | Expected | Worst   |  |  |  |
| Commit Phase                               |                                                                   |                            |               |          |         |  |  |  |
| Missile Launch                             | Threat Launch                                                     | # of missiles              | 1             | 2        | 6       |  |  |  |
|                                            |                                                                   | # of locations             | 1             | 2        | 3       |  |  |  |
| Missile Detection                          | Satellite Detection<br>System                                     | Sat time to detect         | 0             |          |         |  |  |  |
|                                            |                                                                   | Ship time to Detect        | 0             |          |         |  |  |  |
| Missile Tracking                           | Organic & Non-<br>Organic<br>Radars                               | # of missiles              | nissiles 1000 |          | 1000    |  |  |  |
| Fire Control Solution                      | Organic & Non-<br>Organic<br>Radars, Fire<br>Control<br>Computers | Time to compute            |               |          |         |  |  |  |
| Analyze Fire Control<br>Solutions          | ABMS, Network                                                     | Operational                | Yes           | Yes      | No      |  |  |  |
| Choose Optimum Fire<br>Control Solution(s) | ABMS, Fire Control<br>Computer                                    | Time to compute            |               |          |         |  |  |  |
| Transmit Kill Order                        |                                                                   | Time to transmit           |               |          |         |  |  |  |
| Missile Engagement                         | Participating Units (shooters)                                    | Weapons available          | All           | Most     | 1       |  |  |  |
| Missile Kill                               | BDA Capable<br>System                                             | Operational                | Yes           | Yes      | No      |  |  |  |
| Missile Re-Engagement                      | End State                                                         | Re-Engage,<br>Handoff, End | End           | End      | Handoff |  |  |  |



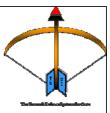
## Brief Project Overview (con't)




- Developed needs, requirements, MOEs and MOPs
- Defined system functions

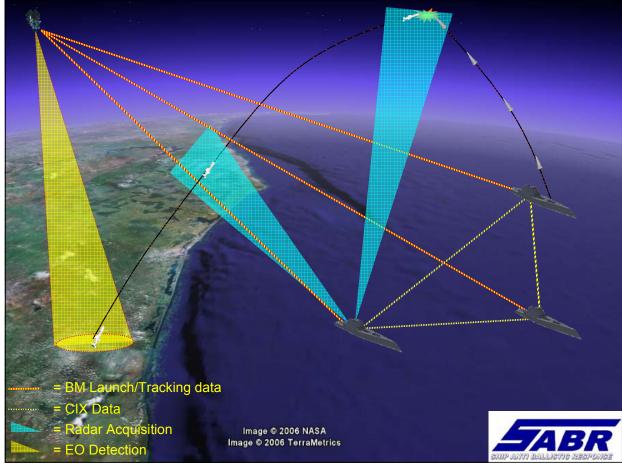





## Brief Project Overview (con't)

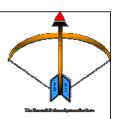


- Developed alternatives
- Developed initial threat and system models
- Conducted analysis of alternatives using
  - Statistical analysis
  - Sensitivity analysis
  - Cost Analysis
  - Trade off studies
- Defined the preferred architecture
- Refined models
- Developed new operational scenarios



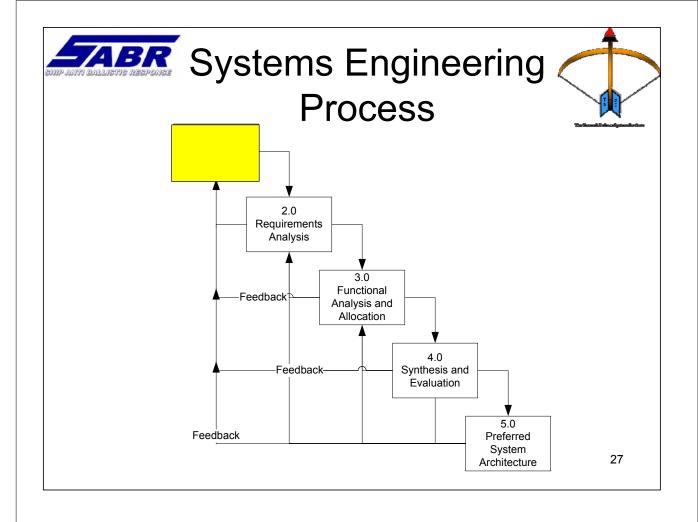

## **Brief Project** Overview (con't)

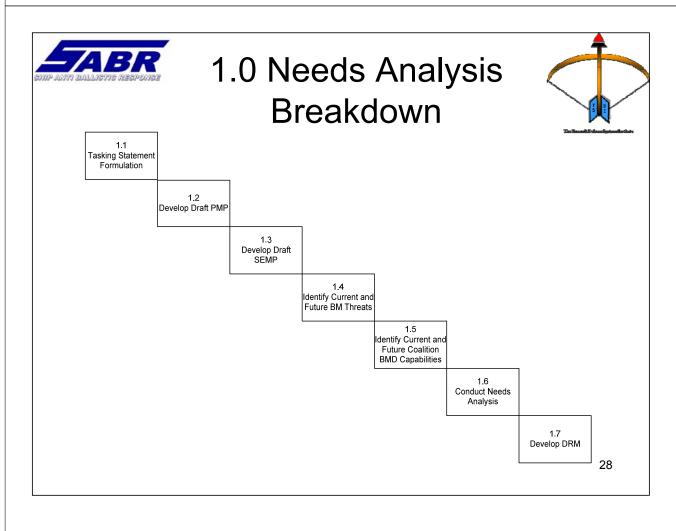



- Tested the preferred architecture using new scenarios
- Conducted system analysis
- **Evaluated findings**
- CONCEPTUAL SYSTEM DESIGN



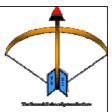




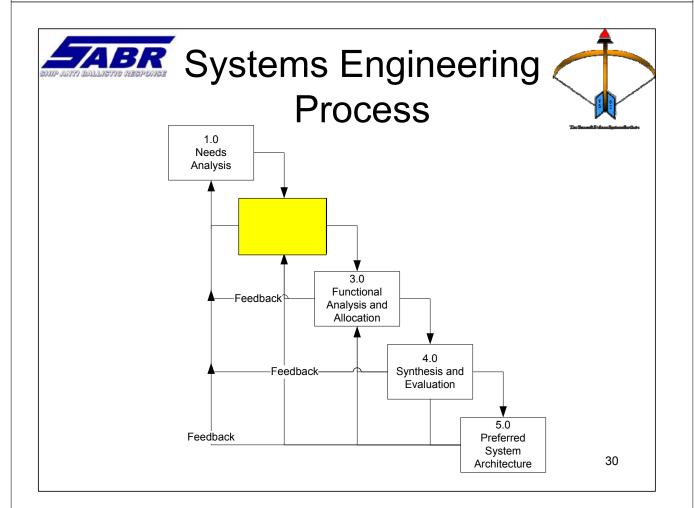






# Systems Engineering Process

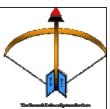

LT Hornback








#### **Needs**




- Protect Coalition Partners from Ballistic Missile Threat.
- Operate Independent of Nation State Territorial Boundaries.
- Employ over a wide range of environmental conditions.
- Assimilate into the Integrated Layered BMD system.
- Interoperate with coalition partners.
- Destroy TBMS with a high probability of kill.





#### 2.0 Requirements Analysis Breakdown



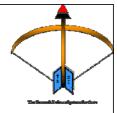
2.1 Generate System Requirements

> 2.2 Develop CONOPS

> > 2.3 Identify MOEs & MOPs

> > > 31

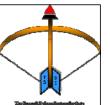



#### Requirements



- Rapidly deployable Sea Based Platform capable of prolonged operations.
- Stable platform capable of operations in heavy seas.
- Detect and track over the horizon ballistic missile launch and flight path.
- Share real-time sensor, weapon, fire control, and BDA data among coalition forces.
- Prioritize threats and optimally pair assets with highest probability of kill.
- Designate targets with a low probability of kill to other assets.



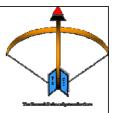

#### System MOE's



- Probability of Kill
- Probability of detection.
- Probability of false alarm.
- Probability of correct identification.
- Max number of targets effectively engaged per minute.
- Number of successful Battle Damage Assessments (BDA) (good or bad) gathered and processed per minute.
- Number of successful Command and Control decisions made per minute.

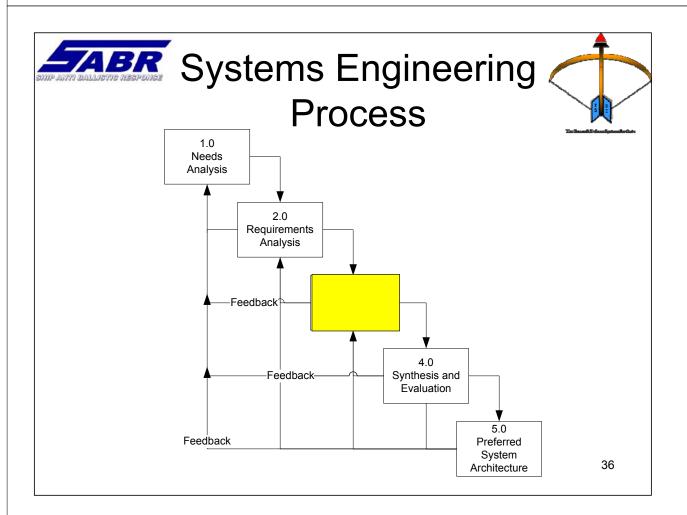


# System MOE's cont.



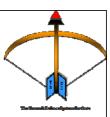

33

- Max number of targets simultaneously tracked and identified per minute.
- Probability of worldwide sensor coverage.
- Probability of cooperative information exchange (CIX) function operational.
- Max number of designated target files passed to other assets per minute.
- Max number of sufficient power supply situations for mission accomplishment per minute.
- Max number of mission completed regardless of environmental conditions (wind, seas, and cloud cover) per minute.
- Number of days of sustained operations.




#### System MOP's




- Number of BM simulated
- Number of BM detected
- Number of non-detections
- Number of false alarms
- Number of handoffs
- Number of engagements
- Number of simultaneous engagements
- Number of failed engagements
- Mean non-organic detection time
- Mean time to relay detection

- Mean time to process detection
- Mean organic detect time
- · Mean track formulation time
- Mean time to identify
- Mean threat prioritization time
- Mean weapons pairing time
- Mean engagement time
- Mean time to conduct BDA
- Mean time available for reengagement
- Mean time to end of midcourse



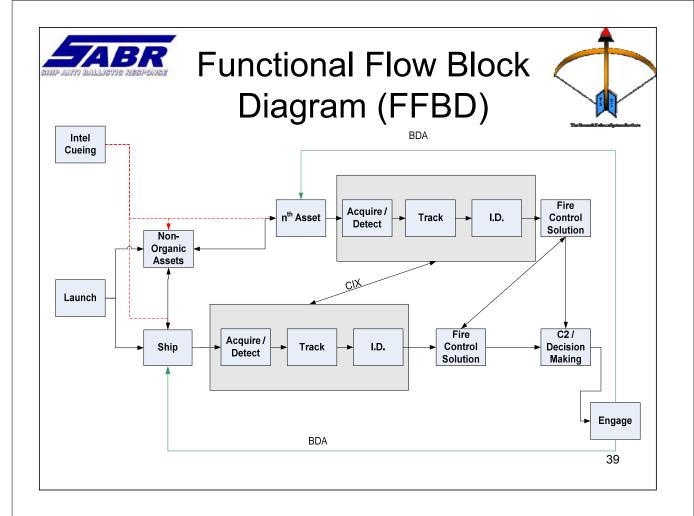


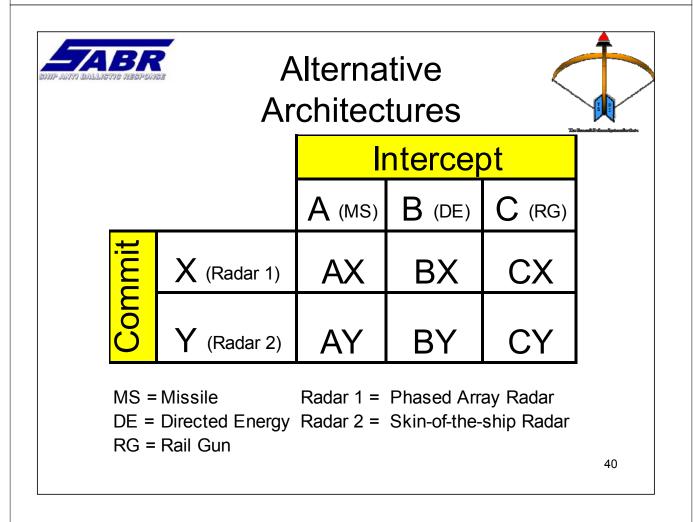
# 3.0 Functional Analysis and Allocation Breakdown



3.1 Conduct Functional Analysis

3.2
Functional
Architecture
Development


37

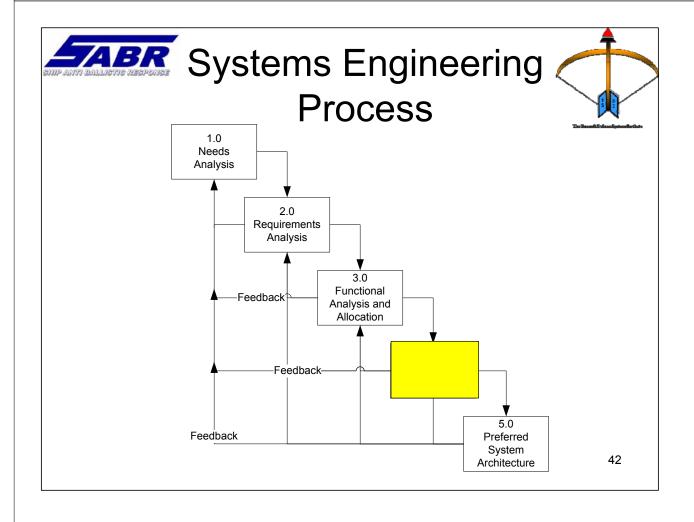


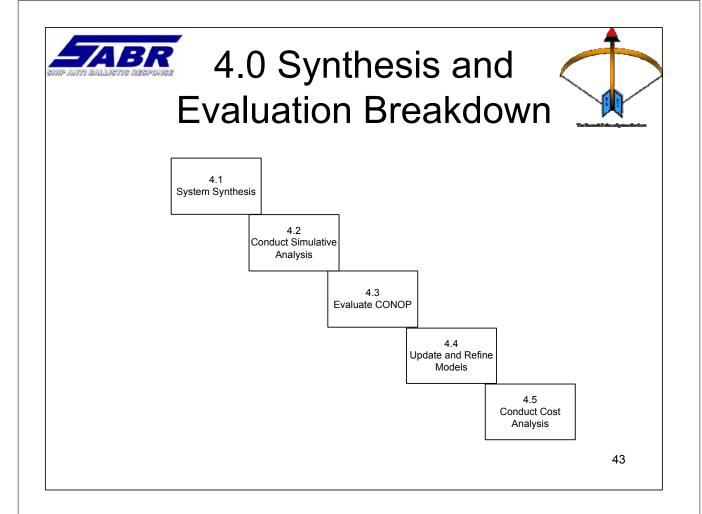

# **Functional Analysis**

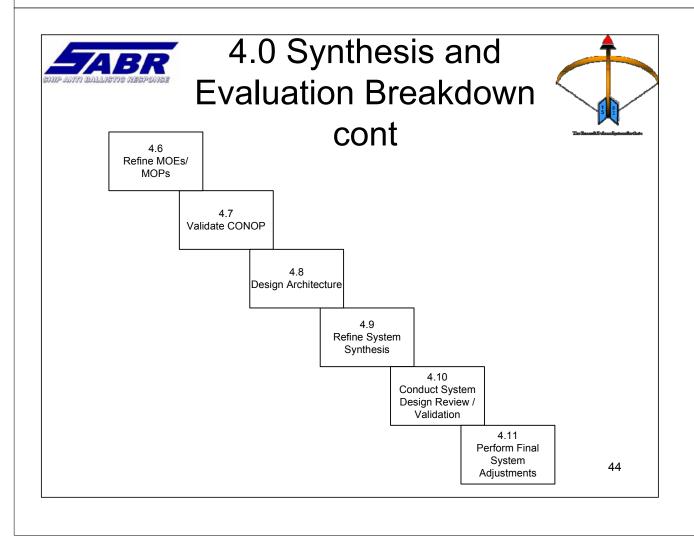


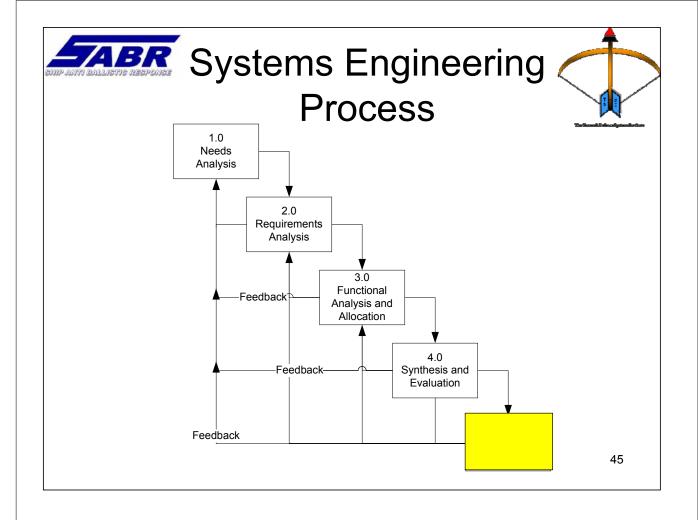
| The Statement Nothern Engineering and the Control of the Control o |        |       |                                                                         |                                                        |                                                                               |                                                                                    |                                                                                  |                                                                     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|------|
| Requirements/Capabilities (How's)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |       |                                                                         |                                                        |                                                                               |                                                                                    |                                                                                  |                                                                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       | Rapidly deployable sea based platform capable o<br>prolonged operations | Stable platform capable of operations in<br>heavy seas | Detect and track over the horizon ballistic missile<br>launch and flight path | Share real-time sensor, weapon, fire control, and BDA data among coalition forces. | Prioritize threats and optimally pair assets with<br>highest probability of kill | Designate targets with a low probability of kill to<br>other assets |      |
| Needs (What's)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Weigh  | ts    | 0                                                                       |                                                        |                                                                               | -                                                                                  |                                                                                  |                                                                     |      |
| Protect coalition partners from ballistic missile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |       | 3                                                                       | 1                                                      | _                                                                             | _                                                                                  | 9                                                                                | _                                                                   |      |
| Operate independent of Nation State territorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2727 | 0.273 | 3                                                                       | 1                                                      | 9                                                                             | 9                                                                                  | 9                                                                                | 9                                                                   |      |
| boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0909 | 0.091 | 9                                                                       | 1                                                      | 9                                                                             | 0                                                                                  | 0                                                                                | 0                                                                   |      |
| Employ over a wide range of environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |       |                                                                         |                                                        |                                                                               |                                                                                    | _                                                                                |                                                                     |      |
| conditions Assimilate into the Integrated Layered BMD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1364 | 0.136 | 9                                                                       | 9                                                      | 9                                                                             | 3                                                                                  | 3                                                                                | 3                                                                   |      |
| system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0909 | 0.091 | 0                                                                       | 0                                                      | 9                                                                             | 9                                                                                  | 9                                                                                | 9                                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4004 | 0.400 | _                                                                       |                                                        | _                                                                             | _                                                                                  |                                                                                  | _                                                                   |      |
| Interoperate with coalition partners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1364 | 0.136 | 1                                                                       | 9                                                      | 9                                                                             | 9                                                                                  | 9                                                                                | 9                                                                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1.00  | - 1                                                                     | 9                                                      | 9                                                                             | 9                                                                                  | 9                                                                                | 9                                                                   | J    |
| Goal Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |       |                                                                         | 1                                                      |                                                                               |                                                                                    |                                                                                  |                                                                     | 1    |
| Threshold Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                                         |                                                        |                                                                               |                                                                                    |                                                                                  |                                                                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                                         |                                                        |                                                                               |                                                                                    |                                                                                  |                                                                     |      |
| Weighted Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,      |       | 3.1                                                                     | 4.0                                                    | 7.8                                                                           | 7.4                                                                                | 7.4                                                                              | 7.4                                                                 | 37.0 |
| Percent Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •      |       | 0.085                                                                   | 0.109                                                  | 0.210                                                                         | 0.199                                                                              | 0.199                                                                            | 0.199                                                               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |                                                                         |                                                        |                                                                               |                                                                                    |                                                                                  |                                                                     |      |





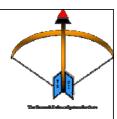





#### **Functional Allocation**




|                             |                             |                                               |                        |                                                                              |                                                                                            | Terlement Subscal                                                                                             |  |
|-----------------------------|-----------------------------|-----------------------------------------------|------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Components                  |                             |                                               |                        |                                                                              |                                                                                            |                                                                                                               |  |
| Interceptor<br>(RG, M, DEW) | CIX / DATA Voice            | ABMs                                          | Fire Control System    | Radar (AEGIS/SOTS)                                                           | Nonorganic Asstes                                                                          | Sea Frame                                                                                                     |  |
|                             |                             |                                               |                        |                                                                              |                                                                                            |                                                                                                               |  |
|                             | Х                           |                                               |                        |                                                                              |                                                                                            |                                                                                                               |  |
|                             | Х                           |                                               |                        |                                                                              | Х                                                                                          |                                                                                                               |  |
|                             |                             |                                               |                        | Х                                                                            |                                                                                            |                                                                                                               |  |
|                             |                             |                                               |                        | Х                                                                            |                                                                                            |                                                                                                               |  |
|                             |                             | X                                             |                        | Х                                                                            |                                                                                            |                                                                                                               |  |
|                             |                             | X                                             | X                      |                                                                              |                                                                                            |                                                                                                               |  |
|                             |                             | X                                             |                        |                                                                              |                                                                                            |                                                                                                               |  |
| Х                           |                             |                                               |                        |                                                                              |                                                                                            |                                                                                                               |  |
|                             | Х                           |                                               |                        |                                                                              |                                                                                            |                                                                                                               |  |
|                             | Х                           |                                               |                        |                                                                              |                                                                                            |                                                                                                               |  |
|                             |                             |                                               |                        |                                                                              |                                                                                            | X                                                                                                             |  |
|                             | Interceptor<br>(RG, M, DEW) | CIX / DATA Voice XX  Interceptor (RG, M, DEW) | ABMs  CIX / DATA Voice | Fire Control System  ABMs  ABMs  CIX / DATA Voice  Interceptor ( RG, M, DEW) | Radar (AEGIS/SOTS)  Fire Control System  ABMs  CIX / DATA Voice  Interceptor ( RG, M, DEW) | Nonorganic Asstes  Radar (AEGIS/SOTS)  Fire Control System  ABMs  CIX / DATA Voice  Interceptor ( RG, M, DEW) |  |





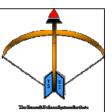








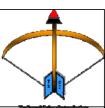




# Design Reference Mission (DRM) and Scenarios

LT Earl Duff

47

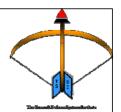



#### **DRM** Definition

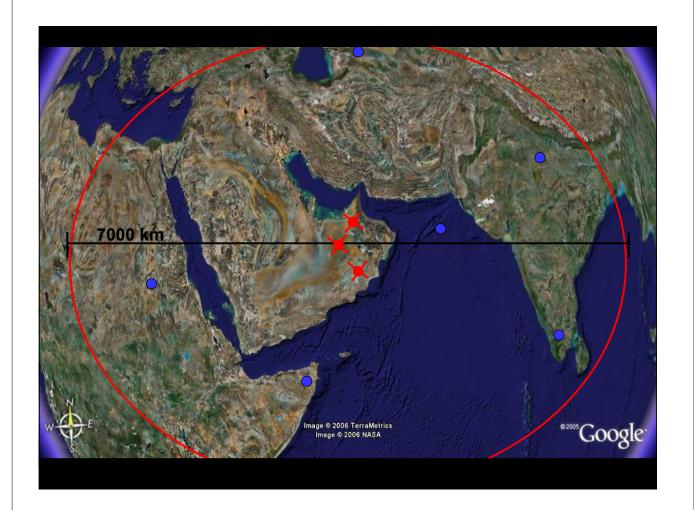


- Design Reference Mission: A systems engineering tool that states the problem not the solution
- Two parts: DRM Profile (DRMP) & Scenarios
  - Design reference mission profile is a matrix that places values and conditions to scenarios
  - Scenarios were ranked best, expected and worst



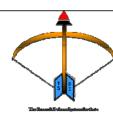

#### Design Reference Mission Profile



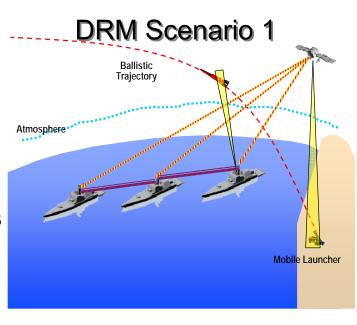

| Event                                      |                                                                   | Environmental Factors      |                    |          |               |  |  |
|--------------------------------------------|-------------------------------------------------------------------|----------------------------|--------------------|----------|---------------|--|--|
| Event                                      | Required Equipment                                                | Condition                  | Best               | Expected | Worst         |  |  |
| Commit Phase                               | ]                                                                 |                            |                    |          |               |  |  |
| Missile Launch                             | Threat Launch                                                     | # of missiles              | 1                  | 2        | 6             |  |  |
|                                            |                                                                   | # of locations             | # of locations 1   |          | 3             |  |  |
| Missile Detection                          | Satellite Detection                                               | Sat time to detect         | 0                  | 10       | None          |  |  |
|                                            | System                                                            | Ship time to Detect        | 0                  |          |               |  |  |
| Missile Tracking                           | Organic & Non-<br>Organic<br>Radars                               | # of missiles              | # of missiles 1000 |          | 1000          |  |  |
| Fire Control Solution                      | Organic & Non-<br>Organic<br>Radars, Fire<br>Control<br>Computers | Time to compute            | 0                  | 3        | 10            |  |  |
| Analyze Fire Control<br>Solutions          | ABMS, Network                                                     | Operational                | Yes                | Yes      | No            |  |  |
| Choose Optimum Fire<br>Control Solution(s) | ABMS, Fire Control<br>Computer                                    | Time to compute            | 0                  | 3        | 10            |  |  |
| Transmit Kill Order                        |                                                                   | Time to transmit           | 0                  | 3        | 10            |  |  |
| Missile Engagement                         | Participating Units (shooters)                                    | Weapons available          | All                | Most     | 1             |  |  |
| Missile Kill                               | BDA Capable<br>System                                             | Operational                | Yes                | Yes      | No 10         |  |  |
| Missile Re-Engagement                      | End State                                                         | Re-Engage, Handoff,<br>End | End                | End      | 49<br>Handoff |  |  |



# Fictitious Area of Interest



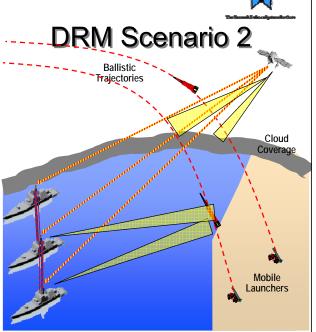

- Expected scenario:
  - Launch sites are closer to coast
  - Low number of "tail chase" engagements
- Worst case scenario:
  - Launch sites are further from coast
  - Increased number of "tail chase" engagements






#### **Scenarios-Best**



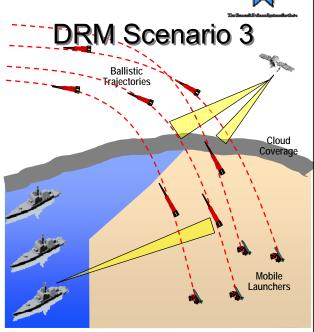

- Basis for system verification
- All system functions are online and at optimal performance
- Environmental factors do not limit system performance



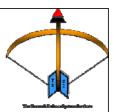


# Scenarios-Expected

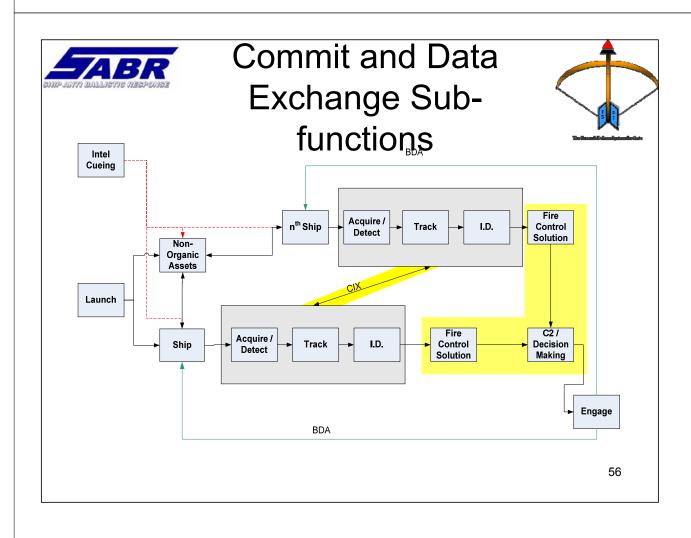
- Threats are further from the coast
- Weather degrades system performance
- More than one threat




53

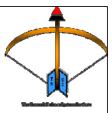



#### Scenarios-Worst Case


- Multiple threats from multiple launch sites
- Threats are much further from coast
- Weather degrades system performance
- · CIX is not functional





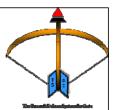



## **Commit Component**





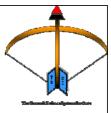
#### **Commit Stage**




- Defined: From threat missile launch to launch of interceptor.
- Requires integration of all system components
  - Sensors
  - CIX
  - ABMS
- Employ interceptor before end of missile boost phase

57




#### **Commit Stage**



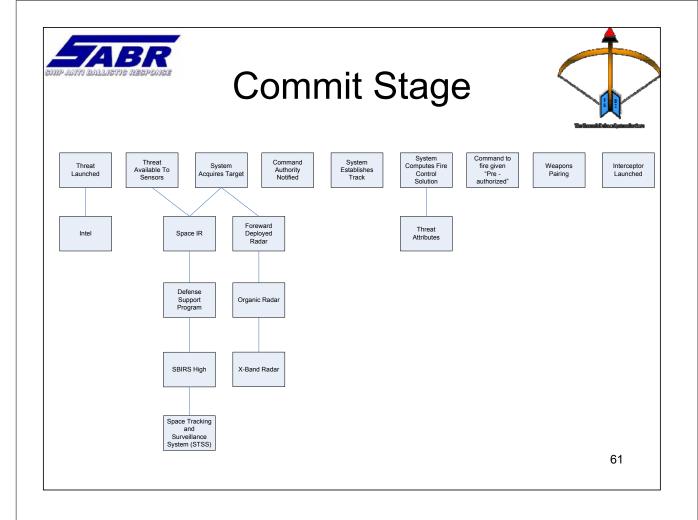
- Develop a system that fuses coalition sensors, fire control computers and interceptors.
- Trade off between interceptor and fire control solution time.

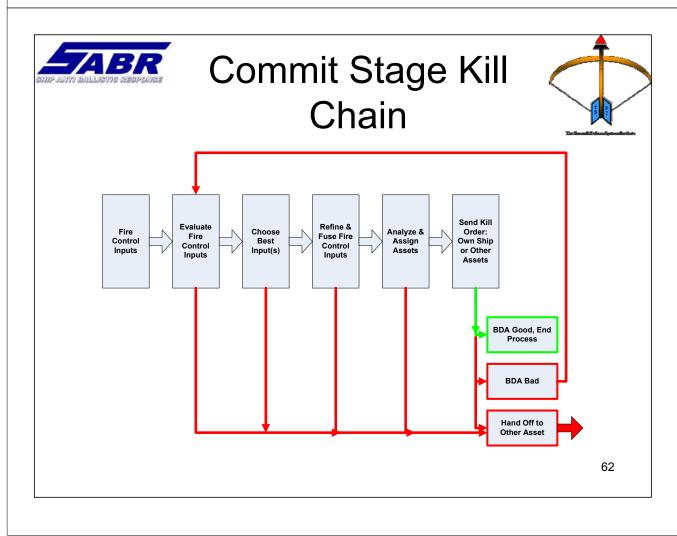


#### **Needs**

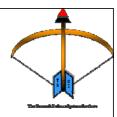


- Detect missile launch
- Track & identify threat
- Prioritize Threats
- Pair with Interceptor
- Engage Threat w/ Interceptor
- BDA
- Exchange Data w/ Coalition Assets


59




#### Requirements



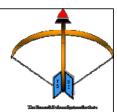

- Continuous worldwide satellite coverage
- P(d)≥0.99
- P(FA)≤0.01
- Produce fire control solution in order to intercept threat.
- Discriminate between threat & decoys
- Determine engagement order for all shooters










#### **ABMS and CIX**

LT Chris W. Hoffmeister

63



## **Talking Points**

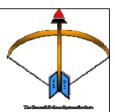


- ABMS
  - Mapping SE Generations to ABMS
  - Concepts and Architecture
  - Enablers
- CIX
  - Concepts and Architecture
  - Enablers



#### **ABMS Definition**

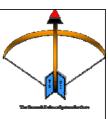



The system of facilities, equipment, communications, procedures, and personnel that perform functions in direct support of planning, directing, and controlling operations of forces pursuant to the missions assigned, specifically relating to the high degree of automation at the tactical and operational levels of action.

All encompassing Coalition Level command and control system.

65



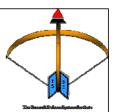

#### **ABMS Needs**



- Operate independent of nation state territorial boundaries
- Employable over a wide range of environmental conditions
- Interoperate with Coalition Partners
- Share and correlate sensor and asset data
- Generate optimal engagement actions



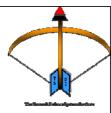
## **ABMS** Requirements




- Rapidly deployable and capable of prolonged operations
- Capable of operations in heavy seas
- Share and correlate sensor data
- Passing off of targets

67




#### **ABMS Functions**

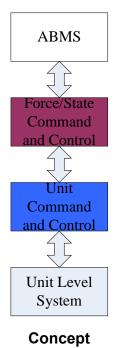


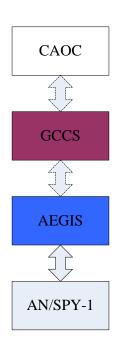
- Receive intelligence cueing
- Determine comprehensive BDA
- Share asset data



#### **ABMS Concepts**



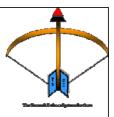

- Layered
- Information Assurance
  - Availability
  - Confidentiality
  - Integrity
  - Authentication
  - Nonrepudiation
- Information Systems Security
  - Personnel Security
  - Physical Security
  - Communications Security
  - Computer Security
  - Emissions Security


69



#### **ABMS Architecture**



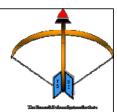





Example



#### **ABMS Enablers**

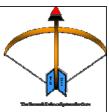



- Operations Research to determine optimal engagement actions
- Symmetric and Asymmetric Cryptography
- Strong (2 and 3 factor) Authentication
- RAID Storage, Flash Storage
- Common Criteria

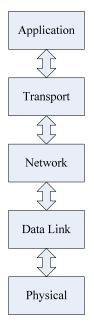
71



#### **CIX** Definition



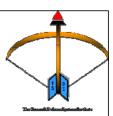

The system of facilities, equipment, procedures, and personnel that perform functions in direct support of communications between interconnected nodes.

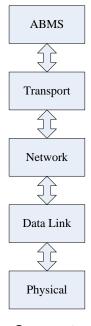

It's the private network.



# **CIX Concepts**




- Modeled after TCP/IP (Layered)
- Wired and Wireless
- Encryption at individual layers




73



### **CIX Architecture**

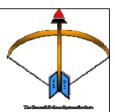




Concept

74



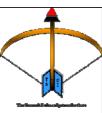

### **CIX Enablers**

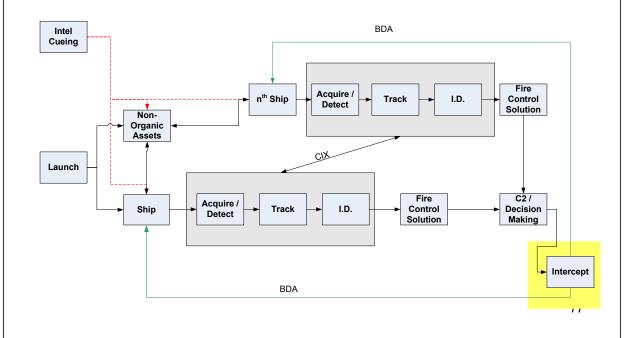


- Wired Communications
  - Fiber Optic
  - Shielded Metal
- Wireless Communications
  - Satellite
  - -802.11, 802.16
  - Spread Spectrum
- Symmetric and Asymmetric Cryptography

75

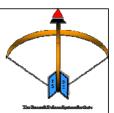




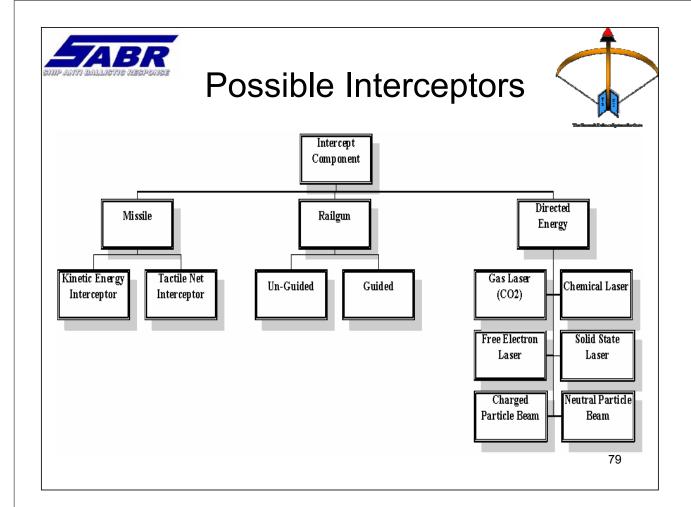


# Intercept Component

LT Bryan Breeden




## Intercept Component








# Intercept Component

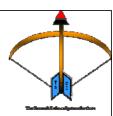


- · Defined: The 'In-Flight Phase' of Engagement
  - Launch to Intercept
- Develop an interceptor capable of defeating SRBM to IRBM from the sea.
- Expected Alternatives:
  - Interceptor Missiles
  - Railgun
  - Directed Energy





# Intercept Considerations



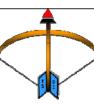

- Interceptor Missile:
  - Dimensions
  - Speed
  - Range
  - Maneuverability
  - Flight Profile
  - Data Rate for Guidance System
  - Terminal Guidance
  - 'Kill Mechanism'
  - Vulnerability





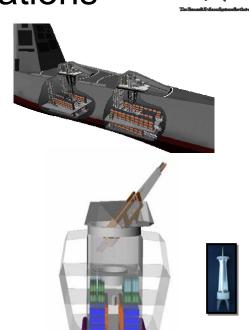
## Intercept Considerations




- Directed Energy:
  - 'Turret'
    - Dimensions
    - · Power Requirements
    - Energy Requirements
    - Firing/Re-Charge Rate
  - Lethal Range
  - 'Guidance'
    - · 'Laser Illuminator'
  - Vulnerability



81




# Intercept Considerations

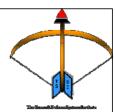


82


- Rail Gun:
  - 'Turret'
    - Dimensions
    - Power Requirements
    - Energy Requirements
    - · Firing/Re-Charge Rate
    - · Barrel/Rail Life
  - Lethal Range
  - Guided or Ballistic
  - Vulnerability






# Intercept Kill Chain





83





### **Overview of Architectures**

Jiunn Wah Yeo Chee Meng Fann



#### Sensor Architecture



 Multi-layered Ballistic Missile Defense Sensor Systems

 Wide-range of multi-spectrum sensors to detect and track threat missiles through all phases of their trajectory

 Space and Satellites Tracking Surveillance Systems

 Land-and sea-based early warning and forward deployable radar systems.



85



# Stand-alone Configuration



- Considerations for stand-alone configuration using onboard shipborne sensor systems:
  - Conformable aperstructure, skin of the ship (SOTS) radar, exploits the entire ship's structure as a radar aperture
  - Multifunction phased array radar (MFPAR), with dedicated Search, Track and Fire Control functions





86



# Conformable Aperstructure SOTS Radar

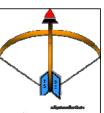


 Exploit the ship's structure as a radar aperture, individual antenna elements are conformal and integrated into the ship's structure

 Enhanced power-aperture product and angular resolution

Aperture size ≈ 200m

Beamwidth ≈ 1.3°


 Perform early warning and cueing of fire control radar



87



# SOTS Radar Technical Aspects



88

- Analysis:
  - Maximum range of 1000 km achieved using 400 elements.
  - If 800 elements available, 1600 km possible.
  - If 1200 elements available,>2000 km possible.

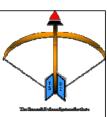


|                                  | 800 - |         |       | N = 4                    | 100  |                |              | ,            | /   |
|----------------------------------|-------|---------|-------|--------------------------|------|----------------|--------------|--------------|-----|
| E                                | 700   |         |       |                          |      |                |              | 1            |     |
| ver, Pav                         | 600   |         |       |                          |      | N              | = 800        |              |     |
| Average Transmit Power, Pav. [W] | 500   |         |       | /                        |      |                | 1            |              |     |
| ge Trans                         | 400 - |         |       | /                        |      |                | IN           | V = 12       | 200 |
| Avera                            | 300 - |         |       |                          |      | 1              |              | 1            |     |
|                                  | 200   |         |       | /                        |      | 1              | 1            | and the same |     |
|                                  | 100   |         |       | -                        | /    | and the second | and the same |              |     |
|                                  | 0     | 200 400 | 600 8 | 00 1000<br>Detection Ran | 1200 | 1400           | 1600         | 1800         | 200 |

| Parameter                                    | Specification |
|----------------------------------------------|---------------|
| Operating frequency                          | 300 MHz       |
| Number of elements                           | 1200          |
| Detection range for 10 m <sup>2</sup> target | 2000 km       |
| Average power per element                    | 500 W         |
| Beamwidth                                    | 1.3°          |
| Pulse width                                  | 16 ms         |
| Duty cycle                                   | 0.25          |

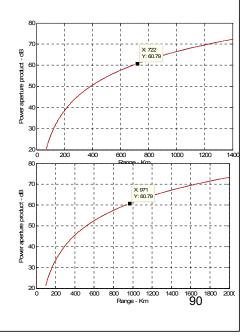


Multifunction Phased Array radar


- MFPAR providing dedicated search, track and fire control and missile guidance capabilities simultaneously
- Improved power-aperture product with high angular accuracy and resolution
  - PAP ≈ 60.8dB
  - Beamwidth ≈ 1.6°
- Extended detection range when operated in tandem with early warning radar



89




# MFPAR Technical Aspects

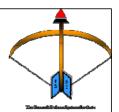


- · Analysis:
  - Maximum detection range of 772 km in surveillance mode.
  - Maximum detection range of 971 km in tracking mode, when cued by early warning radar.

| Radar Parameters                           | MFPA Radar |
|--------------------------------------------|------------|
| Operating Frequency (GHz)                  | 3.3        |
| Pulse repetition frequency (Hz)            | 17         |
| Total average power (kW)                   | 100        |
| Effective aperture (m <sup>2</sup> )       | 12.0       |
| Power-aperture product (dB)                | 60.8       |
| Receiving gain (with weighting) (dB)       | 42.6       |
| Weighted azimuth beamwidth (deg)           | 1.6        |
| Weighted elevation beamwidth (deg)         | 1.52       |
| Detection range in surveillance mode (deg) | 772        |
| Detection range in tracking mode (deg)     | 971        |



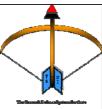



#### Interceptor Variants



| Type of Interceptor | Interceptor Variant                                                                        | Max. Effective Range |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|
| Missile             | SM-X blk 0 – 6 km/sec                                                                      | 1800 km              |  |  |  |  |  |  |
|                     | SM-X blk 1 – 8 km/sec                                                                      | 2400 km              |  |  |  |  |  |  |
| Rail Gun            | RG-BMD blk 0 – 8 km/sec                                                                    | 2200 km              |  |  |  |  |  |  |
|                     | RG-BMD blk 1 – 10 km/sec                                                                   | 4400 km              |  |  |  |  |  |  |
| Directed Energy     | Free-Electron Laser                                                                        | 500 km               |  |  |  |  |  |  |
|                     | Charged Particle Beam                                                                      | 500 km               |  |  |  |  |  |  |
|                     | ons optical cavity mirrors  beam dump wiggler for conversion of electron energy into light |                      |  |  |  |  |  |  |




### Missile Interceptor

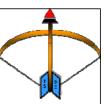


- What is missile interceptor?
  - A defensive missile designed to counter other missiles
- Current missile interceptors
  - MIM-104 Patriot (US Army)
    - Solid fuel rocket motor, > Mach 5
  - Standard Missile SM-3 Block 1 (US Navy)
    - 3-stage solid fuel, up to 1200 km, 4 km/sec



# Missile Interceptor Advantages & Disadvantages




- Mature technology
- · High speed
- Long range
- · Can be guided along trajectory
- Pin-point intercept
- Big & bulky
  - Propulsion
  - Sensor



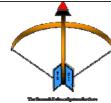




### **Directed Energy Weapon**



#### **Definition**


 Weapon that uses highly correlated, intensified and directional energy beam in the megawatts class as the kill mechanism.

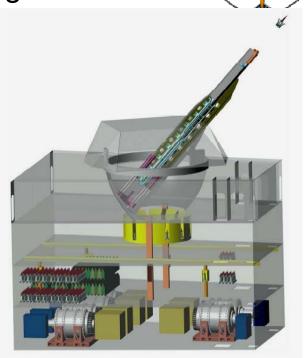
#### **Modern DE systems**

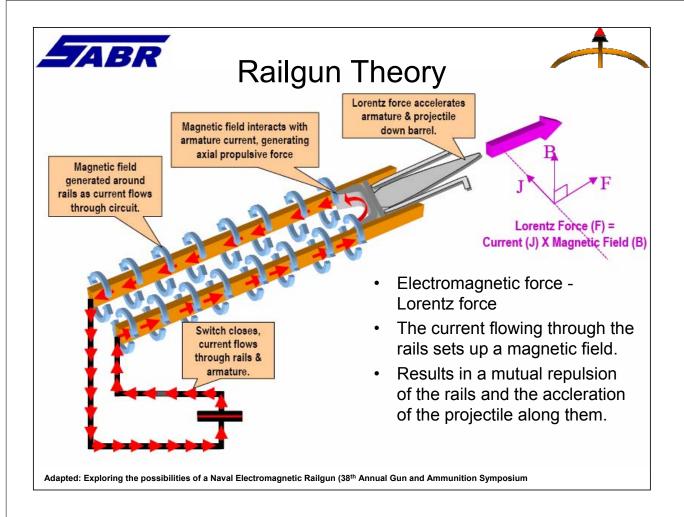
- Solid state laser
- Gas laser
- Chemical laser
- Free electron laser
- Particle beam

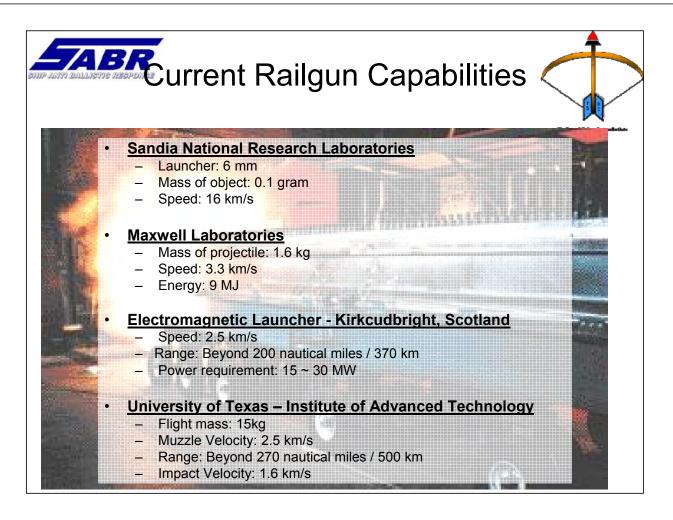


# Advantages and Disadvantages of DEW




- Speed of light delivery of high power destruction beam onto desired target
- Energy required to propel laser is basically electrical power
- Multiple target engagements and rapid retargeting with electronic steering
- Power supply source for high power energy beam generation. (megawatt output)
- LOS
- System cooling & Waste heat management
- Atmospheric attenuation (Absorption, Scattering, beam divergence, etc)
- On board ship beam delivery system (sea state affecting beam delivery)



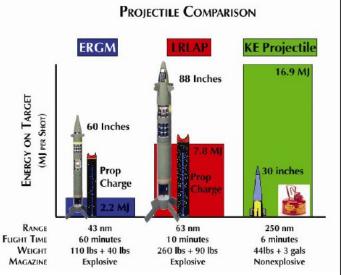




### Railgun

- Conventional launching method uses mechanical and chemical energy.
- Utilizes electromagnetic force for propelling projectile.
- High muzzle velocity.
- High kinetic energy.










#### **ABR** Railgun Advantages



- High Impact Energy
- Size / Weight / Space
- No explosives
- Extremely High Speed / Range
- Interaction of KE penetrator with the missile / High shock Transmission
- Adiabatic heating and ignition causing explosion and deflagration
- Scale up / down
- · Less Recoil



$$KE = \frac{1}{2}m\sqrt{2}$$

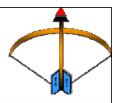
99

# Railgun Disadvantages

#### Rail Gun

- Rail erosion caused by high temperature
- Durability of rails
- Strong and conductive materials needed
- Electrical Drive

#### **KE** Penetrator


- Flight Performance in higher atmosphere, high moisture environment
- High Speed high shock: Using air spike, multiple projectiles







#### **Projected Capabilities**



Flight Mass: 2 kg

Launch Velocity: 10 km/sec
 Launch Mass – 20 kg

Guided

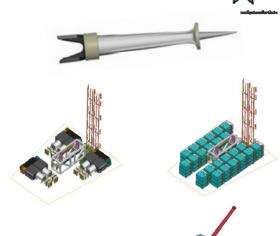
Range: beyond 4400 km

Firing Rate: 16 to 20 RPM

Cost: ~ \$60k per round

#### **Notional Navy EM Gun:**

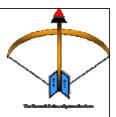
- Flight Mass 15 kg
- Launch Velocity 2.5 km/s
- Muzzle Energy 63 MJ
- Breech Energy ~150 MJ
- Barrel Length 10 m
- Peak Accel. 45 kg's
- Firing Rate 6 to 12 RPM
- Peak Power 20 to 40 MW
- Peak Current ~ 6 MA
- In-Bore Time ~ 8 10 msec


Adapted: Exploring the possibilities of a Naval Electromagnetic Railgun (38th Annual Gun and Ammunition Symposium



#### **Future Development**




- **Projectiles** 
  - Launch Dynamics
  - GPS/INS
  - Drag
  - Terminal Effects
- **Power** 
  - Capacitors
  - Pulsed Alternators
- Railgun
  - Material: Conductive, Temperature & wear resistance, strength
  - Cooling
  - Electromagnetic Interference Compatibility

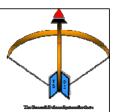




102



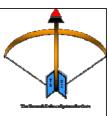



# **Architecture Development**

LT Bryan Breeden

103



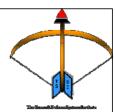

## **Modeled Sensors**



|                |                  | Maximum<br>Detection |
|----------------|------------------|----------------------|
| Type of Sensor | Sensor Variant   | Range                |
| Inorganic      | Sensor Network   | n/a                  |
| MFPAR          | MFPAR blk0       | 730 km               |
| SOTSR+MFPAR    | SOTSR/MFPAR blk0 | 1500 km              |
| SO I SKTNIFFAR | SOTSR/MFPAR blk1 | 2000 km              |

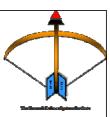


# Modeled Interceptors



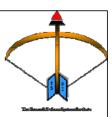

| Type of     |                       | Interceptor     | Maximum<br>Effective |
|-------------|-----------------------|-----------------|----------------------|
| Interceptor | Interceptor Variant   | Velocity        | Range                |
| Missile     | SM-X blk0             | 6 km/sec        | 1800 km              |
| Missie      | SM-X blk1             | 8 km/sec        | 2400km               |
| Dailgun     | RG-BMD blk0           | 8 km/sec        | 2200 km              |
| Railgun     | RG-BMD blk1           | 10 km/sec       | 4400 km              |
| Directed    | Free-Electron Laser   | $3x10^5$ km/sec | 500 km               |
| Energy      | Charged Particle Beam | $3x10^5$ km/sec | 500 km               |

105

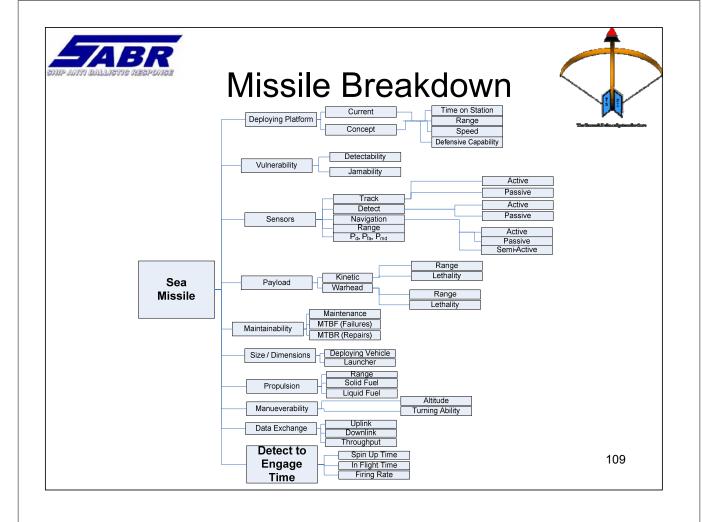


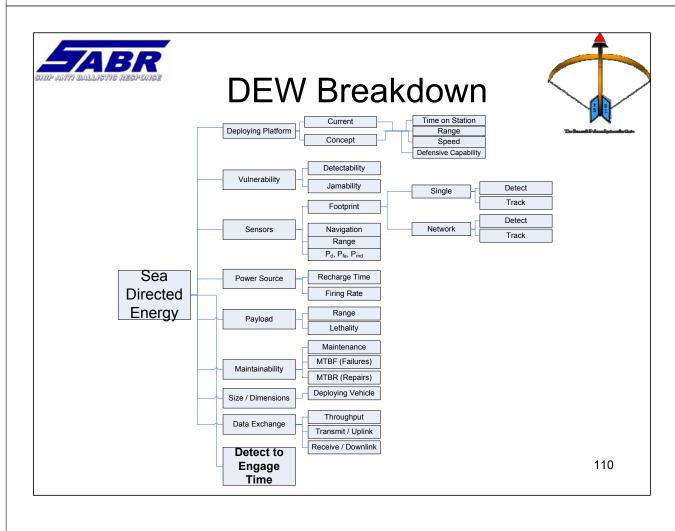

# Architecture Matrix

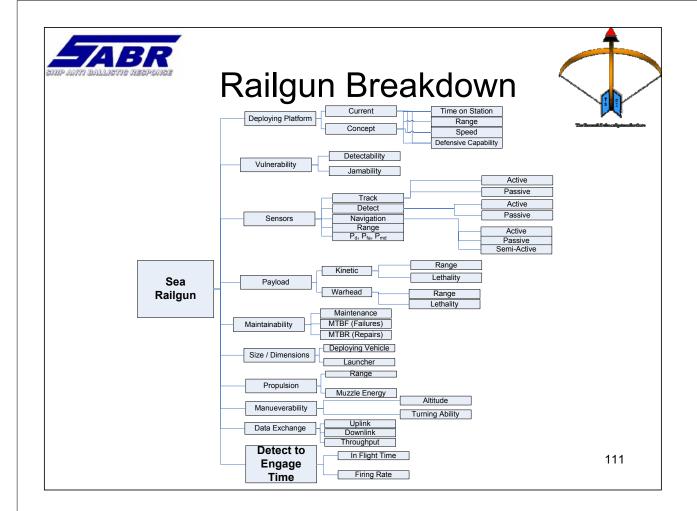



| Ballistic Missile Defense Alternative Architecture Matrix |                          |           |                     |             |                 |                     |                       |  |  |
|-----------------------------------------------------------|--------------------------|-----------|---------------------|-------------|-----------------|---------------------|-----------------------|--|--|
|                                                           |                          |           | Interceptor Variant |             |                 |                     |                       |  |  |
|                                                           |                          | Mis       | Missile Railgun     |             | Directed Energy |                     |                       |  |  |
|                                                           |                          | SM-X blk0 | SM-X blk1           | RG-BMD blk0 | RG-BMD blk1     | Free-Electron Laser | Charged Particle Beam |  |  |
|                                                           | Inorganic Sensor Network | ISN - M   | ISN - M+            | ISN - R     | ISN - R+        | ISN - FEL           | ISN - CPB             |  |  |
|                                                           |                          |           |                     |             |                 |                     |                       |  |  |
| Sensor                                                    | MFPAR blk0               | P - M     | P - M+              | P-R         | P - R+          | P - FEL             | P - CPB               |  |  |
| Variant                                                   | SOTSR/MFPAR blk0         | (S/P) - M | (S/P) - M+          | (S/P) - R   | (S/P) - R+      | (S/P) - FEL         | (S/P) - CPB           |  |  |
|                                                           |                          |           |                     |             |                 |                     |                       |  |  |
|                                                           | SOTSR/MFPAR blk1         |           |                     |             | (S/P)+ - R+     |                     |                       |  |  |

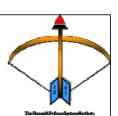




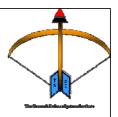




# Back ups












# **Physical Model**

LT Bryan Breeden





Lat/Long to XY Conversion

+

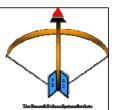
**Ballistic Missile Parameters** 

+

Interceptor Parameters

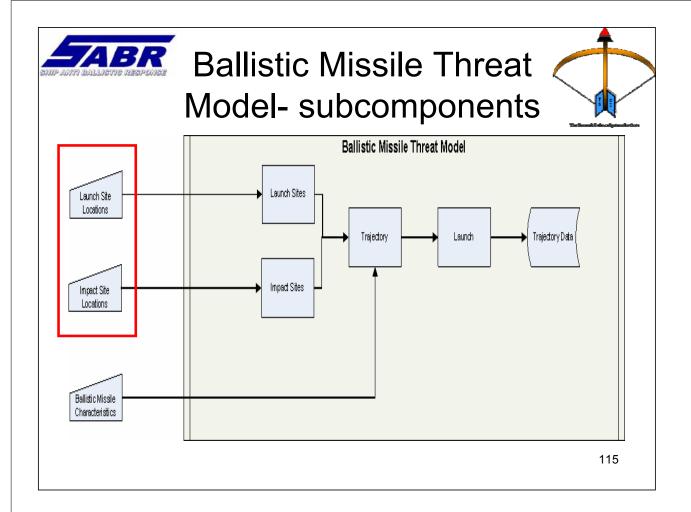
+

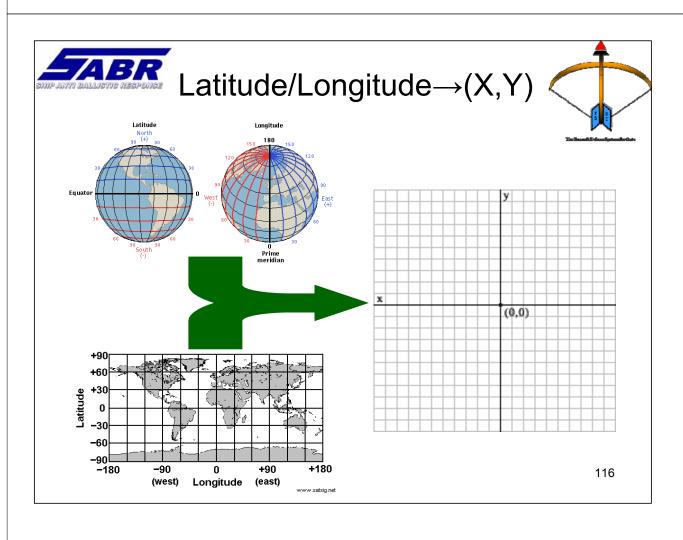
**Trajectory Models** 


\_

**Physical Model** 

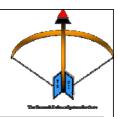
113





### **Modeling Process**



- Where to Start ???
  - Define Threat
  - Model 'Simple Boosted' Trajectory
  - Identify Launch Sites
  - Identify Target Sites
- Adding
  Complexity...
  - Account for:
    - Drag
    - Lift
    - Gravity
    - Curvature of the Farth
  - Eliminate manual entries to attain desired impact range and launch angle


- Grid Assignment:
  - Eliminate manual grid construction
  - Use latitude and longitude to input all positions





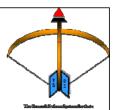


## Lat/Long →(X,Y) Conversion



 Degree/Minute/Second to Decimal Degree

$$DecimalDegree = Degree + \frac{Minute}{60} + \frac{Second}{3600}$$


Great Circle Range

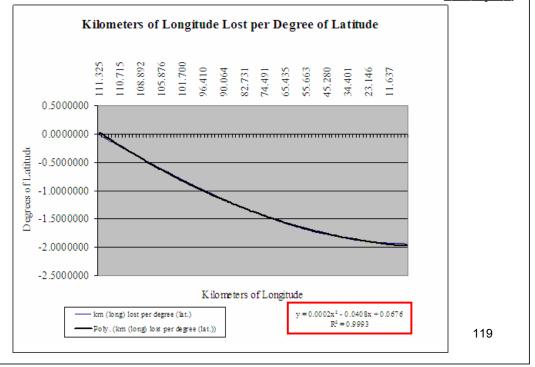
 $D = \cos^{-1} \left[ \left( \sin(lat_1) * \sin(lat_2) \right) + \left( \cos(lat_1) * \cos(lat_2) * \cos(long_1 - long_2) \right) \right] * 111.325$ 

117



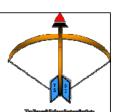
### Lat/Long →(X,Y) Conversion




 $Latitude_{km/\deg ree} = 111.325*(latitude_{\deg ree})$ 

 $Longitude_{km/\deg ree} = 111.325*[\cos(latitude_{\deg ree})]$ 



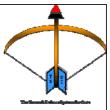

## Lat/Long →(X,Y) Conversion







### Lat/Long →(X,Y) Conversion



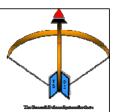

 $Latitude(km) = ^{\circ}\Delta Lat*111.325$ 

 $Longitude(km) = {}^{\circ}\Delta Long * [111.325 * \cos({}^{\circ}Lat_{decimal}) - 0.0002 * {}^{\circ}\Delta Lat^2 - 0.0408 * {}^{\circ}\Delta Lat + 0.0676]$ 



# **Geographic Inputs**




\*\*\*Note: (+) = North or East; (-) = South or West

| Reference Site: |         |         |        |             |           |         |          |              |  |
|-----------------|---------|---------|--------|-------------|-----------|---------|----------|--------------|--|
|                 |         | Lat     | titude |             | Longitude |         |          |              |  |
| Launch Site #   | degrees | minutes | sec    |             |           |         |          | decimal Long |  |
| 1               | 21      | 51      | 5      | 21.851      | 53        | 9       | 9        | 53.152       |  |
|                 |         |         |        | Launch      |           |         |          |              |  |
|                 |         |         | titude |             |           |         | ongitude |              |  |
| Site #          | degrees | minutes | sec    | decimal Lat |           |         |          |              |  |
| 1               | 21      | 51      | 5.02   | 21.851      | 53        | 9       | 8.97     | 53.152       |  |
| 2               | 23      | 50      | 37.83  | 23.844      | 55        | 20      | 13.06    | 55.337       |  |
| 3               | 20      | 5       | 8.98   | 20.086      | 55        | 54      | 32.12    | 55.909       |  |
| 4               |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 5               |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 6               |         |         |        | 0.000       |           |         |          | 0.000        |  |
|                 |         |         |        | Target      |           |         |          |              |  |
|                 |         |         | titude |             | Longitude |         |          |              |  |
| Site #          | degrees | minutes | sec    |             |           |         |          | decimal Long |  |
| 1               | 18      | 20      | 53.23  | 18.348      | 32        | 59      | 23.45    | 32.990       |  |
| 2               | 9       | 32      | 37.62  | 9.544       | 49        | 24      | 30.96    | 49.409       |  |
| 3               | 39      | 29      | 46.50  | 39.496      | 56        | 35      | 52.18    | 56.598       |  |
| 4               | 22      | 15      | 50.74  | 22.264      | 64        | 26      | 6.34     | 64.435       |  |
| 5               | 27      | 24      | 12.74  | 27.404      | 75        | 49      | 58.10    | 75.833       |  |
| 6               | 12      | 12      | 17.93  | 12.205      | 77        | 33      | 22.13    | 77.556       |  |
| 7               |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 8               |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 9               |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 10              |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 11              |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 12              |         |         |        | 0.000       |           |         |          | 0.000        |  |
|                 |         |         |        | rface Ship  |           |         |          |              |  |
|                 |         |         | titude |             |           |         | ongitude |              |  |
| Ship #          | degrees | minutes | sec    |             | degrees   | minutes | seconds  | decimal Long |  |
| 1               |         |         |        | 0.000       |           |         |          | 0.000        |  |
| 2               | ·       |         |        | 0.000       |           |         |          | 0.000        |  |
| 3               |         |         |        | 0.000       |           |         |          | 0.000        |  |

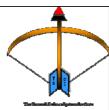
121

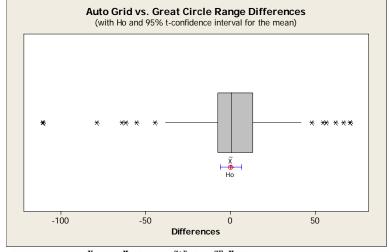


# XY-Cartesian Plane Output



| (      | Grid Assignment |           |  |  |  |  |  |  |  |  |
|--------|-----------------|-----------|--|--|--|--|--|--|--|--|
| Site # | Lat (km)        | Long (km) |  |  |  |  |  |  |  |  |
| LS1    | 0.000           | 0.000     |  |  |  |  |  |  |  |  |
| LS2    | 221.809         | 222.458   |  |  |  |  |  |  |  |  |
| LS3    | -196.552        | 287.810   |  |  |  |  |  |  |  |  |
| LS4    |                 |           |  |  |  |  |  |  |  |  |
| LS5    |                 |           |  |  |  |  |  |  |  |  |
| LS6    |                 |           |  |  |  |  |  |  |  |  |
| TS1    | -390.002        | -2126.199 |  |  |  |  |  |  |  |  |
| TS2    | -1370.145       | -408.774  |  |  |  |  |  |  |  |  |
| TS3    | 1964.314        | 298.007   |  |  |  |  |  |  |  |  |
| TS4    | 45.944          | 1161.822  |  |  |  |  |  |  |  |  |
| TS5    | 618.092         | 2245.026  |  |  |  |  |  |  |  |  |
| TS6    | -1073.887       | 2643.623  |  |  |  |  |  |  |  |  |
| TS7    |                 |           |  |  |  |  |  |  |  |  |
| TS8    |                 |           |  |  |  |  |  |  |  |  |
| TS9    |                 |           |  |  |  |  |  |  |  |  |
| TS10   |                 |           |  |  |  |  |  |  |  |  |
| TS11   |                 |           |  |  |  |  |  |  |  |  |
| TS12   |                 |           |  |  |  |  |  |  |  |  |
| Ship1  |                 |           |  |  |  |  |  |  |  |  |
| Ship2  |                 |           |  |  |  |  |  |  |  |  |
| Shin3  |                 |           |  |  |  |  |  |  |  |  |

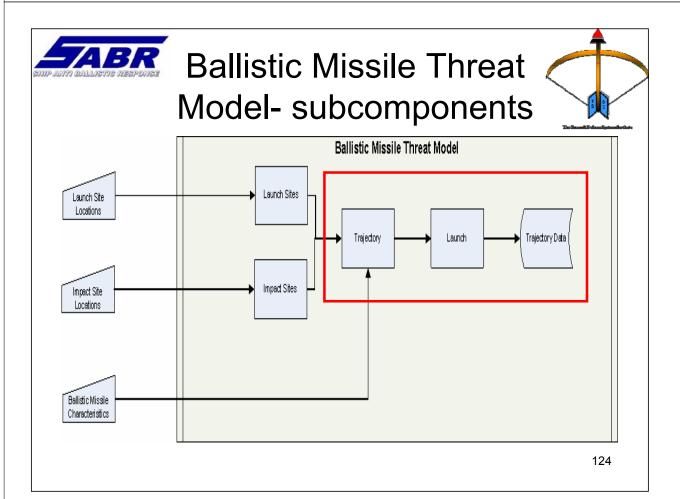

|      | LS1      | LS2      | LS3      | LS4 | LS5 | LS6 |
|------|----------|----------|----------|-----|-----|-----|
| TS1  | 2161.672 | 2427.037 | 2421.748 |     |     |     |
| TS2  | 1429.823 | 1712.534 | 1364.752 |     |     |     |
| TS3  | 1986.790 | 1744.141 | 2160.889 |     |     |     |
| TS4  | 1162.730 | 955.684  | 907.029  |     |     |     |
| TS5  | 2328.557 | 2061.024 | 2119.986 |     |     |     |
| TS6  | 2853.415 | 2746.064 | 2513.877 |     |     |     |
| TS7  |          |          |          |     |     |     |
| TS8  |          |          |          |     |     |     |
| TS9  |          |          |          |     |     |     |
| TS10 |          |          |          |     |     |     |
| TS11 |          |          |          |     |     |     |
| TS12 |          |          |          |     |     |     |


| Great Circle Ranges |          |          |          |     |     |     |
|---------------------|----------|----------|----------|-----|-----|-----|
|                     |          |          |          |     |     |     |
|                     | LS1      | LS2      | LS3      | LS4 | LS5 | LS6 |
| TS1                 | 2141.945 | 2397.220 | 2415.164 |     |     |     |
| TS2                 | 1427.418 | 1712.096 | 1365.666 |     |     |     |
| TS3                 |          | 1746.540 |          |     |     |     |
| TS4                 | 1164.738 | 948.215  | 917.530  |     |     |     |
| TS5                 | 2373.016 | 2092.536 | 2184.021 |     |     |     |
| TS6                 | 2805.627 | 2679.474 | 2472.357 |     |     |     |
| TS7                 |          |          |          |     |     |     |
| TS8                 |          |          |          |     |     |     |
| TS9                 |          |          |          |     |     |     |
| TS10                |          |          |          |     |     |     |
| TS11                |          |          |          |     |     |     |
| TS12                |          |          |          |     |     |     |
|                     |          |          |          |     |     |     |

Mean Range Difference (all scenarios) = 0.20km<sup>22</sup>

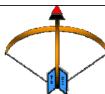


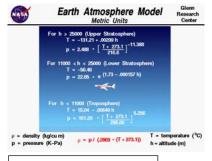
# XY Planar Grid vs. Great Circle






 Meant Grid
 Meant Grid
 St Meant Grid
 94 Great Grid
 1580.40 Great Grid
 762.89 Great Grid
 78.69 Great Grid
 78.45 Great Grid
 78.45 Grid
 78


95% CI for mean difference: (-6.149397, 6.551929)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.06 P-Value = 0.950


### No Significant Range Difference 121





# Physical Model: What went into it?





| Ballistic Missile T | hreat Parameters |
|---------------------|------------------|
| Total Mass:         | 67000 Kg         |
| Warhead Mass:       | 1500 Kg          |
| Propellant Mass:    | 55944 Kg         |
| Dry Booster Mass:   | 9556 Kg          |
| Burn Time:          | 140 seconds      |
| BM Frame Height:    | 15.50 m          |
| BM Frame Diameter:  | 2.50 m           |
| Warhead Height:     | 3.85 m           |
| Warhead Diameter:   | 2.50 m           |
| (theta):            | 90.00 degrees    |
| (phi):              | 259.61 degrees   |
| Divert Angle:       | 36.00 degrees    |
| Divert Time:        | 60.00 seconds    |
| Specific Impulse:   | 263 seconds      |
| m-dot:              | 99.9 kg/sec      |
| Number of Engines:  | 4                |

|            |       |   | F | orc | e o | r E | art | h's | Gı  | avi | ty | (g) |   |   |   |
|------------|-------|---|---|-----|-----|-----|-----|-----|-----|-----|----|-----|---|---|---|
| 12         | 0000  |   |   |     |     |     |     |     |     |     |    |     |   |   |   |
| 10         | .0000 | V |   |     |     |     |     |     |     |     |    |     |   |   |   |
| 8          | .0000 | ϒ |   |     |     |     |     |     |     |     |    |     |   |   | - |
| <b>D</b> 6 | .0000 | - | _ |     |     |     |     |     |     |     |    |     |   |   |   |
| 4          | .0000 |   | _ |     | _   |     |     |     |     |     |    |     |   |   |   |
|            | 0000  |   |   |     | `   |     |     |     | 400 |     |    |     |   |   |   |
|            |       |   |   |     |     |     |     |     |     | -   | -  | -   | _ | _ |   |
| - 10       | 0000  |   |   |     |     |     |     |     |     |     |    |     |   |   |   |



 Rail Gun Parameters

 otal Mass:
 2 Kg

 farhead Mass:
 2 Kg

 arhead Height:
 0.50 m

 arhead Diameter:
 0.13 m

 neta):
 149.575 degrees

 hib:
 99.598 degrees

 uzzle Velocity:
 10.00 km/ser

Specific Impulse



m-dot
Mass

Mass Velocity



Curve of the Earth

Linear Motion

Drag

Latitude

North

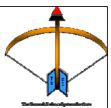
Sorth

Topic and the state of th

| mph | m/sec m/sec | m/sec |

#### JABR SID NOT BOURTE RESPONSE

# Physical Model Robustness




- Linear Motion Equations
- Gravity as a function of Altitude
- · Curvature of the Earth
- Conservation of Momentum
- Conservation of Mass
- Specific Impulse
- Mass Flow Rate

- Thrust
- Thrust Control
- Drag
- Lift
- Air Density
- Atmospheric Temperature
- · Atmospheric Pressure
- Hypersonic Theory
- Latitude/Longitude Inputs

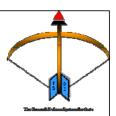


# **Physical Model**



- Primary Inputs
  - Geographic
  - Ballistic Missile
  - Railgun

| Assessment to the |         |         | Refe      | erence Site: |         |         |              | -            |  |
|-------------------|---------|---------|-----------|--------------|---------|---------|--------------|--------------|--|
|                   |         | Lati    | tude      |              |         | L       | ongitude     |              |  |
| Launch Site #     | degrees | minutes | sec       | decimal Lat  | degrees | minutes | seconds      | decimal Long |  |
| 1                 | 21      | 51      | 5         | 21.851       | 53      | 9       | 9            | 53.152       |  |
|                   |         |         |           | Launch       | -       |         |              |              |  |
|                   |         |         | Longitude |              |         |         |              |              |  |
| Site #            | degrees | minutes | sec       |              |         |         |              | decimal Long |  |
| -1                | 21      | 51      | 5.02      | 21.851       | 53      | 9       | 8.97         | 53.15.       |  |
| 2                 | 23      |         | 37.83     | 23.844       | - 55    | 20      | 13.06        | 55.33        |  |
| 3                 | 20      | 5       | 8.98      | 20.086       | - 55    | - 54    | 32.12        | 55.909       |  |
| 4                 | 177     |         | - 77.75   | 0.000        |         | 7       | -11000       | 0.000        |  |
| 5                 |         |         |           | 0.000        |         |         |              | 0.000        |  |
| 6                 |         |         |           | 0.000        |         |         |              | 0.000        |  |
|                   |         |         | -         | Target       |         | a 9     | - marine med | 6            |  |
|                   |         |         | tude      | 100000       |         |         | ngitude      |              |  |
| Site#             | degrees | minutes | sec       |              | degrees | minutes |              | decimal Long |  |
| 1                 | 18      | 20      | 53.23     | 18.348       | 32      | 59      | 23.45        | 32.990       |  |
| 2                 | 9       |         | 37.62     | 9,544        | 49      | 24      | 30.96        | 49.405       |  |
| 3                 | 39      | 29      | 46.50     | 39.496       | 56      | 35      | 52.18        | 56.59        |  |
| - 4               | 22      | 15      | 50.74     | 22.264       | 64      | 26      | 6.34         | 64.43        |  |
| 5                 | 27      | 24      | 12.74     | 27.404       | 75      | 49      | 58.10        | 75.83        |  |
| 6                 | 12      | 12      | 17.93     | 12 205       | 77      | . 33    | 22.13        | 77.55        |  |
| 7                 |         |         |           | 0.000        |         |         |              | 0.00         |  |
| 8                 |         |         |           | 0.000        |         |         |              | 0.00         |  |
| 9                 |         |         |           | 0.000        |         |         |              | 0.00         |  |
| 10                |         |         |           | 0.000        |         |         |              | 0.000        |  |
| 11                |         |         |           | 0.000        |         |         |              | 0.00         |  |
| 12                |         |         |           | 0.000        |         |         |              | 0.00         |  |
|                   |         | N - N   | Su        | rface Ship   |         | -       |              | 100,100      |  |
|                   |         | Lati    | tude      |              |         | L       | ongitude     |              |  |
| Ship #            | degrees | minutes | sec       |              | degrees | minutes | seconds      | decimal Long |  |
| - 1               |         | -       |           | 0.000        | 100     | 3       |              | 0.000        |  |
| 2                 |         |         |           | 0.000        |         | 9       |              | 0.000        |  |
|                   |         |         |           | 0.000        |         |         |              | 0.000        |  |


| Ballistic Missile Th | reat Parameters |
|----------------------|-----------------|
| Total Mass:          | 67000 Kg        |
| Warhead Mass:        | 1500 Kg         |
| Propellant Mass      | 55944 Kg        |
| Dry Booster Mass:    | 9556 Kg         |
| Burn Time:           | 140 seconds     |
| BM Frame Height:     | 15.50 m         |
| BM Frame Diameter.   | 2.50 m          |
| Warhead Height:      | 3.85 m          |
| Warhead Diameter:    | 2.50 m          |
| (theta):             | 90.00 degrees   |
| (phi):               | 259.61 degrees  |
| Divert Angle:        | 36.00 degrees   |
| Divert Time:         | 60.00 seconds   |
| Specific Impulse:    | 263 seconds     |
| m-dot:               | 99.9 kg/sec     |
| Number of Engines:   | 4               |

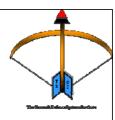
| Rail Gun Parameters |                 |  |  |  |  |
|---------------------|-----------------|--|--|--|--|
| Total Mass:         | 2 Kg            |  |  |  |  |
| Warhead Mass:       | 2 Kg            |  |  |  |  |
| Warhead Height:     | 0.50 m          |  |  |  |  |
| Warhead Diameter:   | 0.13 m          |  |  |  |  |
| (theta):            | 149.575 degrees |  |  |  |  |
| (phi):              | 89.558 degrees  |  |  |  |  |
| Muzzle Velocity     | 10.00 km/sec    |  |  |  |  |

127



# Physical Model-Geographic




- Inputs:
  - Latitude
  - Longitude
  - Reference Position
- Outputs:
  - XY Cartesian Grid
    - Reference Position at the origin

| Assessment to the | -       |         | Refe  | erence Site: | ti.       |           | 100 100  | -            |  |  |
|-------------------|---------|---------|-------|--------------|-----------|-----------|----------|--------------|--|--|
|                   |         | Lati    | tude  |              | Longitude |           |          |              |  |  |
| Launch Site #     | degrees | minutes | sec   | decimal Lat  | degrees   | minutes   | seconds  | decimal Long |  |  |
| 1                 | 21      | 51      | 5     | 21.851       | 53        | 9         | 9        | 53.15.       |  |  |
|                   |         |         |       | Launch       |           |           | - 1000   |              |  |  |
|                   |         | Latin   | tude  |              | Longitude |           |          |              |  |  |
| Site #            | degrees | minutes | sec   | decimal Lat  | degrees   | minutes   |          | decimal Long |  |  |
| 1                 | 21      | 51      | 5.02  |              | 53        | 9         |          | 53.15.       |  |  |
| 2                 | 23      | 50      | 37.83 |              | 55        | 20        | 13.06    | 55.33        |  |  |
| 3                 | 20      | 5       | 8.98  | 20.086       | 55        | 54        | 32.12    | 55.90        |  |  |
| 4                 | 772     |         |       | 0.000        |           | 7         | -11465   | 0.000        |  |  |
| 5                 |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
| 6                 |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
|                   |         |         | -     | Target       |           | 6 2       |          | 6            |  |  |
|                   |         | Latin   | tude  | 120000       |           | Longitude |          |              |  |  |
| Site #            | degrees | minutes | sec   |              | degrees   |           |          | decimal Long |  |  |
| 1                 | 18      | 20      | 53.23 |              | 32        | 59        |          | 32.990       |  |  |
| 2                 | 9       | 32      | 37.62 | 9.544        | 49        | 24        |          | 49.405       |  |  |
| 3                 | 39      | 29      | 46.50 | 39.496       | 56        | 35        | 52.18    | 56.59        |  |  |
| - 4               | 22      | 15      | 50.74 | 22.264       | 64        | 26        |          | 64.435       |  |  |
| 5                 | 27      | 24      | 12.74 | 27.404       | 75        | 49        |          | 75.83        |  |  |
| 6                 | 12      | 12      | 17.93 | 12.205       | 77        | 33        | 22.13    | 77.556       |  |  |
| 7                 |         |         |       | 0.000        |           |           |          | 0.00         |  |  |
| 8                 |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
| 9                 |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
| 10                |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
| 11                |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
| 12                |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
|                   |         | 100     |       | rface Ship   |           | 17        |          | 100000       |  |  |
|                   |         | Latit   | tude  |              |           |           | ongitude |              |  |  |
| Ship #            | degrees | minutes | sec   |              | degrees   | minutes   | seconds  | decimal Long |  |  |
| 1                 |         |         |       | 0.000        | 100       | 9         |          | 0.000        |  |  |
| 2                 |         |         |       | 0.000        |           |           |          | 0.000        |  |  |
|                   |         |         |       | 0.000        |           |           |          | 0.000        |  |  |

128

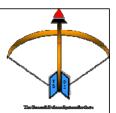


### Physical Model-Ballistic Missile



- · Inputs:
  - Total BM Mass
  - Warhead Mass
  - BM Frame Height/Diameter
  - Warhead Height/Diameter
  - Number of Engines
  - Burn Time
  - Specific Impulse
  - Mass Flow Rate

| Ballistic Missile T | hreat Parameters |
|---------------------|------------------|
| Total Mass:         | 67000 Kg         |
| Warhead Mass:       | 1500 Kg          |
| Propellant Mass:    | 55944 Kg         |
| Dry Booster Mass:   | 9556 Kg          |
| Burn Time:          | 140 seconds      |
| BM Frame Height:    | 15.50 m          |
| BM Frame Diameter:  | 2.50 m           |
| Warhead Height:     | 3.85 m           |
| Warhead Diameter:   | 2.50 m           |
| (theta):            | 90.00 degrees    |
| (phi):              | 259.61 degrees   |
| Divert Angle:       | 36.00 degrees    |
| Divert Time:        | 60.00 seconds    |
| Specific Impulse:   | 263 seconds      |
| m-dot:              | 99.9 kg/sec      |
| Number of Engines:  | 4                |


#### Outputs:

- Trajectory
  - Per Time Step:
    - Velocity
    - X-Coordinate
    - Y-Coordinate
    - Z-Coordinate
    - Range from Launch Site
  - Time and Position of:
    - Launch
    - End of Boost
    - Apex
    - End of Midcourse (Terminal)
    - Impact

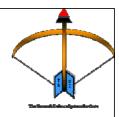
129



# Physical Model-Railgun

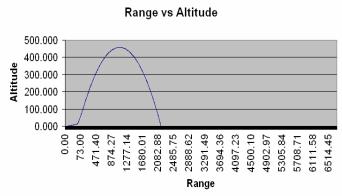


- Inputs:
  - Total RG-round Mass
  - RG-projectile Mass
  - Muzzle Velocity


#### • Outputs:

- Trajectory
  - Per Time Step:
    - Velocity
    - X-Coordinate
    - Y-Coordinate
    - Z-Coordinate
    - Range from Launch Site
  - Time and Position of:
    - Launch
    - Apex
    - Impact

| Rail Gun Parameters |                 |  |  |  |  |  |  |
|---------------------|-----------------|--|--|--|--|--|--|
| Total Mass:         | 2 Kg            |  |  |  |  |  |  |
| Warhead Mass:       | 2 Kg            |  |  |  |  |  |  |
| Warhead Height:     | 0.50 m          |  |  |  |  |  |  |
| Warhead Diameter:   | 0.13 m          |  |  |  |  |  |  |
| (theta):            | 149.575 degrees |  |  |  |  |  |  |
| (phi):              | 89.558 degrees  |  |  |  |  |  |  |
| Muzzle Velocity     | 10.00 km/sec    |  |  |  |  |  |  |



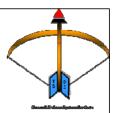

## Launch-to-Target Selection



| Ballistic Missile T | hreat Parameters                          |  |  |  |  |  |
|---------------------|-------------------------------------------|--|--|--|--|--|
| Total Mass:         | 67000 Kg                                  |  |  |  |  |  |
| Warhead Mass:       | 1500 Kg                                   |  |  |  |  |  |
| Propellant Mass:    | 55944 Kg                                  |  |  |  |  |  |
| Dry Booster Mass:   | 9556 Kg                                   |  |  |  |  |  |
| Burn Time:          | 140 seconds                               |  |  |  |  |  |
| BM Frame Height:    | 15.50 m                                   |  |  |  |  |  |
| BM Frame Diameter:  | 2.50 m                                    |  |  |  |  |  |
| Warhead Height:     | 3.85 m                                    |  |  |  |  |  |
| Warhead Diameter:   | 2.50 m                                    |  |  |  |  |  |
| (theta):            | 90 degrees                                |  |  |  |  |  |
| (phi):              | 259.6060 degrees                          |  |  |  |  |  |
| Divert Angle:       | 36 degrees                                |  |  |  |  |  |
| Divert Time:        | 60 seconds                                |  |  |  |  |  |
| Specific Impulse:   | 263 seconds                               |  |  |  |  |  |
| m-dot:              | 99.9 kg/sec                               |  |  |  |  |  |
| Number of Engines:  | 4                                         |  |  |  |  |  |
| Thrust:             | 1130038 N                                 |  |  |  |  |  |
| Thrust Control:     | 91.1411%                                  |  |  |  |  |  |
| Rollover Rate:      | 0.00E+00 radians                          |  |  |  |  |  |
| Acceleration:       | 16.9 m/sec^2                              |  |  |  |  |  |
| Acceleration (g's): | 1.7 g's                                   |  |  |  |  |  |
| g:                  | 9.8 m/sec^2                               |  |  |  |  |  |
| G:                  | 6.67E-11 Nm <sup>2</sup> /Kg <sup>2</sup> |  |  |  |  |  |
| Mass-Earth:         | 5.98E+24 Kg                               |  |  |  |  |  |
| Radius-Earth:       | 6.37E+06 m                                |  |  |  |  |  |
| Curve of Earth:     | 7.82E-08 per m                            |  |  |  |  |  |
| Time Step:          | 1.00 seconds                              |  |  |  |  |  |
| User Inputs         |                                           |  |  |  |  |  |

| Event               | Time (sec) | Velocity (m/s) | Latitude(km) | Longitude (km) | Altitude (km) | Range (km) |
|---------------------|------------|----------------|--------------|----------------|---------------|------------|
| Select Launch Site: |            | 1              | 0.000        | 0.000          | 0.000         |            |
| Launch:             | 0.00       | 7.03           | 0.000        | 0.000          | 0.000         |            |
| End of Boost:       | 140.00     | 2567.57        | -28.940      | -157.776       | 124.022       | 202.762    |
| Midcourse:          | 141.00     | 2557.73        | -29.578      | -161.252       | 126.580       | 207.122    |
| Apex:               | 401.00     | 1.09           | -195.350     | -1065.001      | 457.943       | 1175.628   |
| Terminal:           | 585.00     | -1808.19       | -312.665     | -1704.578      | 290.787       | 1757.243   |
| Impact:             | 706.00     | -2998.08       | -389.175     | -2121.693      | 0.000         | 2157.090   |
| Select Target Site: |            | 1              | -390.002     | -2126.199      | 1.000         | 2161.672   |
|                     |            |                |              |                |               |            |

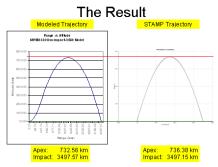


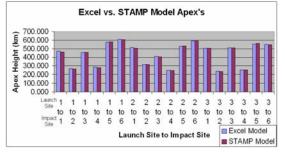

501.423 km Maximum Range: 3504.470 km

Minimum Throttle Reduction: 4 6620% Max Efficiency

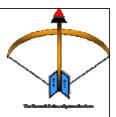
Maximum Throttle Reduction:

Calculation Result


## **Threat Ballistic Missile** Model- validation




Each Launch Site to Impact Site was run in STAMP and the trajectories compared


> - Apex: 0.13% – Range: 0.05% – Ratio: 0.15%

- Railgun Model is based on similar Trajectory Model
  - Boost Aspects removed and Muzzle Velocity added









Lat/Long to XY Conversion

+

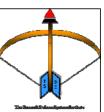
**Ballistic Missile Parameters** 

+

Interceptor Parameters

+

**Trajectory Models** 

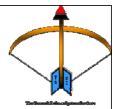

=

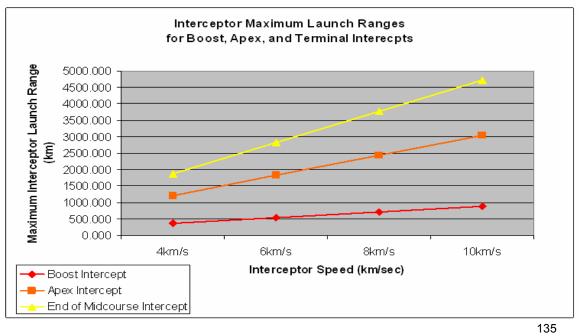
**Physical Model** 

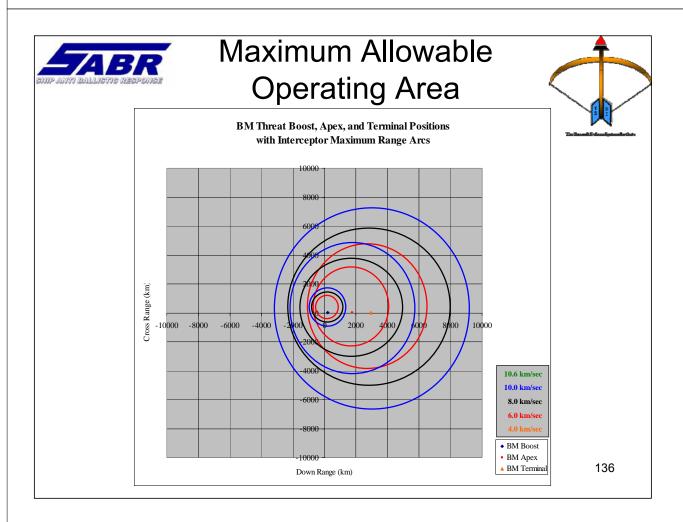
133



# What else does the Model as say about the Railgun?

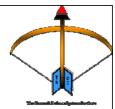


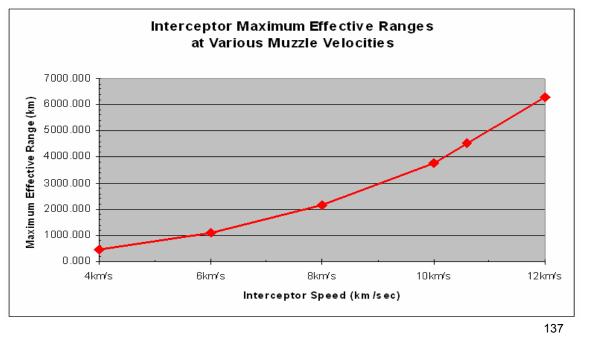


- Explicit:
  - Launch Data
  - Flight Trajectory
    - Position
    - Time
  - Impact Data

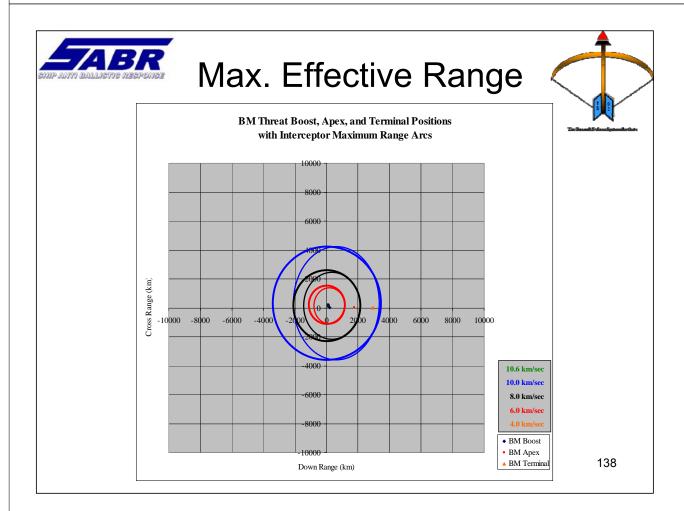

- Implicit:
  - Effective Range of Railgun Round
  - Coverage Area
    - Allowable Area of Operations
  - Interceptor
     Effectiveness and
     Salvo Size trade
     space

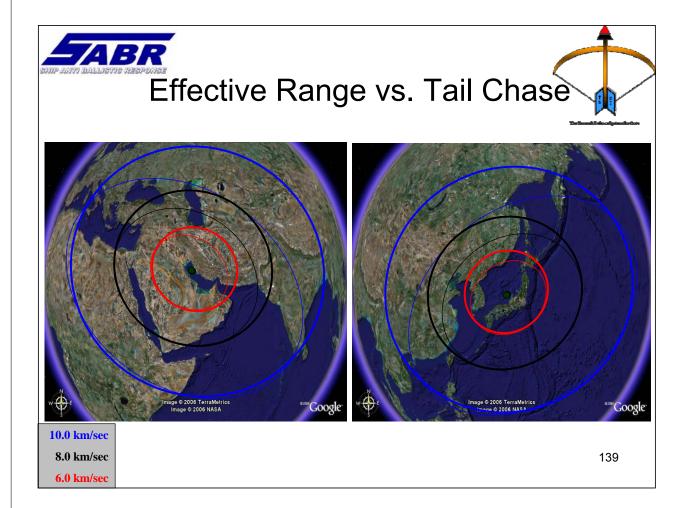


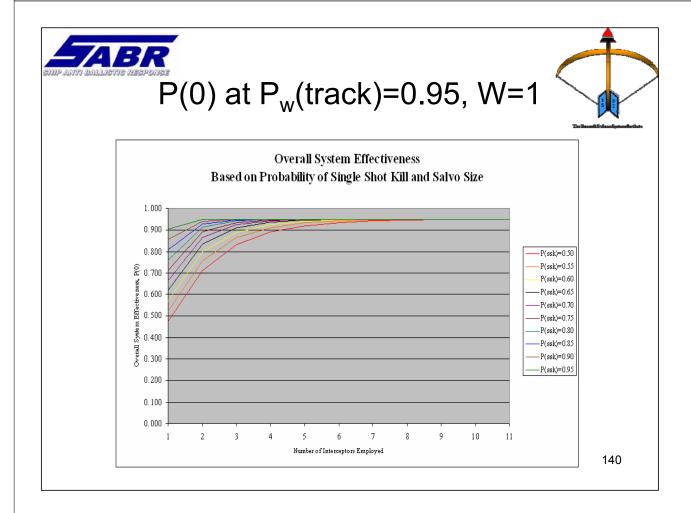
### Maximum Allowable Operating Area



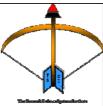



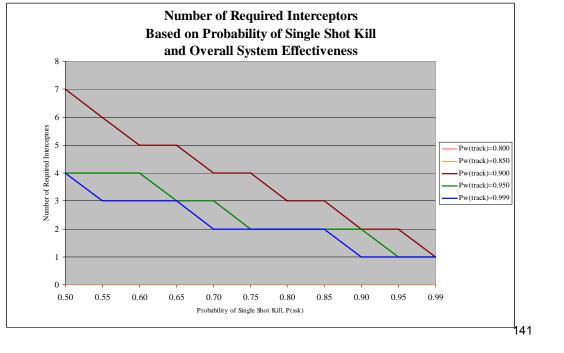





## Max. Effective Range





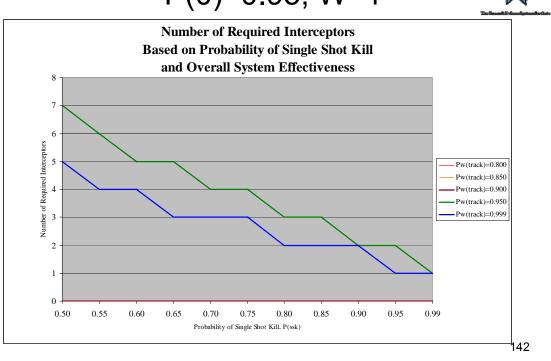




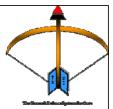



# Required Interceptors: P(0)=0.90, W=1



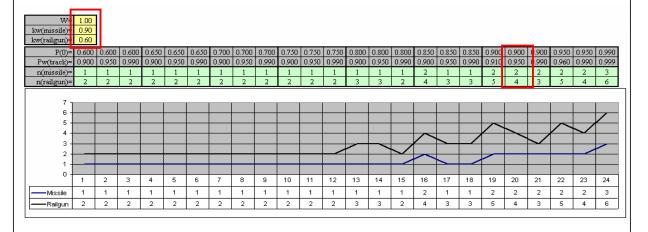






# Required Interceptors: P(0)=0.95, W=1





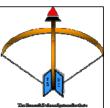



### Salvo Size Calculation



$$n = \frac{\ln\left(1 - \frac{P(0)^{1/W}}{P_w(track)}\right)}{\ln(1 - k_w)}$$

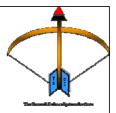
 $n = \frac{\ln\!\!\left(1 - \frac{P(0)^{1/W}}{P_w(track)}\right)}{\ln\!\left(1 - k_w\right)} \\ = \frac{\ln\!\!\left(1 - \frac{P(0)^{1/W}}{P_w(track)}\right)}{\ln\!\left(1 - k_w\right)} \\ = \frac{P(0) = \text{Overall System Capability Pw(track)} = \text{Probability of Tracking the W kw=Probability of Killing the Warhead W=number of Warheads}$ Pw(track)=Probability of Tracking the Warhead n=number of Interceptors Needed




143

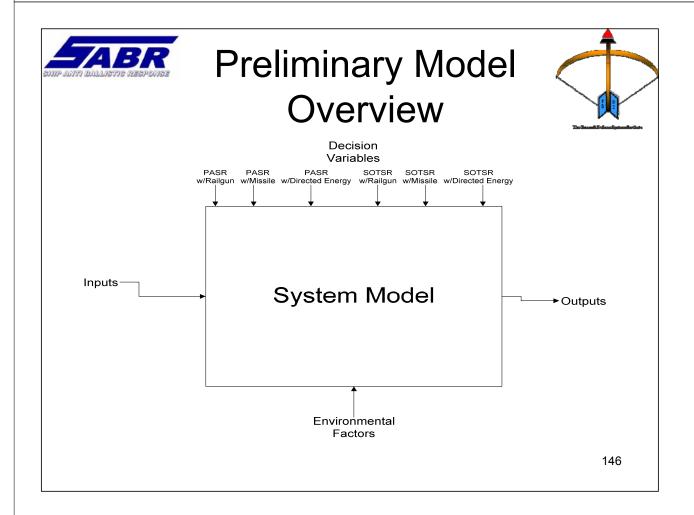
\*Wilkening, Dean A., A Simple Model for Calculating Ballistic Missile Defense Effectiveness, p 205.




### Salvo Size Calculation

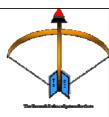


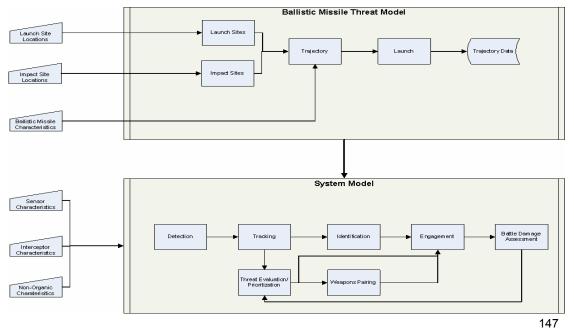
| Weapon Load:                       |                                         |  |  |  |  |
|------------------------------------|-----------------------------------------|--|--|--|--|
| 80                                 | Missiles                                |  |  |  |  |
| 1200                               | Railgun Rounds (600 per mount)          |  |  |  |  |
| Total Engagements @ 90% Effective) |                                         |  |  |  |  |
| 40                                 | Missile Engagements                     |  |  |  |  |
| 300                                | Railgun Engagements                     |  |  |  |  |
| 7.50 : 1                           | Railgun:Missile Engagements             |  |  |  |  |
| Total Number of Engagements/Ship   |                                         |  |  |  |  |
| 0.60                               | P(kill)                                 |  |  |  |  |
| 20                                 | rounds per minute                       |  |  |  |  |
| 4                                  | rounds per engagments @ 90% Effective   |  |  |  |  |
| 5                                  | engagements per mount per min           |  |  |  |  |
| 2                                  | number of mounts                        |  |  |  |  |
| 10                                 | engagements per min per ship            |  |  |  |  |
| 8.48                               | minutes average time to terminal        |  |  |  |  |
| 1699.00                            | km average range of BM flight           |  |  |  |  |
| 84                                 | Estimated BM's simultaneously in flight |  |  |  |  |
| 336                                | Railgun Rounds needed                   |  |  |  |  |
| 216                                | Number of Engagements Remaining Onbd    |  |  |  |  |


| Expected System Capability vs. Number of Simultaneous In-Flight Ballistic Missile |                               |        |        |        |          |        |        |  |
|-----------------------------------------------------------------------------------|-------------------------------|--------|--------|--------|----------|--------|--------|--|
|                                                                                   | st. dev.                      |        |        | Mean   | st. dev. |        |        |  |
|                                                                                   | -3                            | -2     | -1     |        | 1        | 2      | 3      |  |
| time (min)                                                                        | 3.41                          | 5.10   | 6.79   | 8.48   | 10.16    | 11.85  | 13.54  |  |
| # of Ships                                                                        | Ballistic Missile's In-Flight |        |        |        |          |        |        |  |
| 1                                                                                 | 34.15                         | 51.02  | 67.90  | 84.77  | 101.64   | 118.52 | 135.39 |  |
| 2                                                                                 | 68.30                         | 102.05 | 135.79 | 169.54 | 203.29   | 237.03 | 270.78 |  |
| 3                                                                                 | 102.45                        | 153.07 | 203.69 | 254.31 | 304.93   | 355.55 | 406.17 |  |





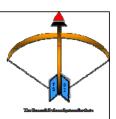

### **Functional Model**


## **ENS** Ryan Devlin





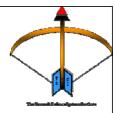
## System Model Subcomponents








Modeled in: Extend Version 6.0 and Microsoft Excel 2003

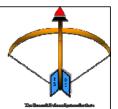

#### Goals



- Evaluate the various system architectures in order to determine which are significantly better or worse than the others
- Integrate various Radar System
   Parameters into an overall System Model



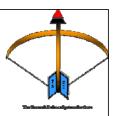
### **Assumptions**




- Sufficient Ship Power is available to perform all necessary tasks
- Radar Detection Ranges follow the Radar Range Equation
- Time is the dominating factor
- Ship's Position is fixed during BM Threat Time of Flight

149




## System Model Robustness

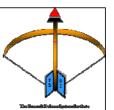


- Detection height determined based on radar range equation
- Phased Array detection ranges based on forecasting capabilities based the Aegis system
- Skin of the ship radar ranges based on Dr. David Jenn's conformal radar research
- Interceptor capabilities based on forecasting of current capabilities and research initiatives
- Ballistic trajectories validated by STAMP



## System Model Inputs (commit stage)

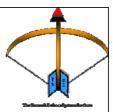



- Primary Inputs:
  - Probability of Non-Organic Detection
  - Satellite Sweep Rate
  - Non-Organic Time to Detect
  - Ship Detection Range/Height
  - Probability of Ship Detection
  - Time for Ship to Detect

- Time to Establish a Track
- Probability of Keeping Track
- Time to Identify
- Time to Evaluate Threats
- Time for Weapons Pairing
- Time to Conduct BDA
- Probability of Good BDA

151



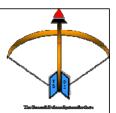

## System Model Inputs (Interceptor)



- Interceptor Velocity
- Time Correction Factor (accounts for laser time on target and ballistic trajectory of rail gun round)
- Max Engagement Range
- Max Engagement Height
- Probability of Kill
- Maximum Number of Targets Engaged Simultaneously



## System Model Inputs (threat model)

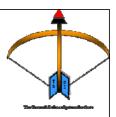



- Launch Site Position
- Missile Position (X, Y, Z)
- Time of Flight
- End of Midcourse

153



## System Model Outputs



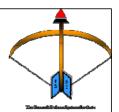

- · # of BM threats simulated
- # of detections
- # of non-detections
- # of false alarms
- # of hand-offs
- # of engagements
- # of failed engagements
- Mean non-organic time to detect
- Mean time delay in detection relay
- Mean time to process detection
- Mean organic detection time
- Mean track formulation time
- Mean time to ID
- Mean Threat Prioritization time
- Mean weapons pairing time
- Mean engagement time
- Mean weapons pairing time
- Mean time to conduct BDA
- Mean time to end of BM midcourse
- · Launch site and Target

#### **Measures of Effectiveness**

- Mean time available for reengagement
- Mean engagement time
- Probability of engagement
- Probability of kill given an engagement
- Probability of detection
- Probability of false alarm
- Probability of missed detection
- Probability of hand-off



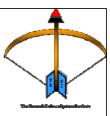



# Preliminary Data Analysis

#### **ENS Chris Glenn**

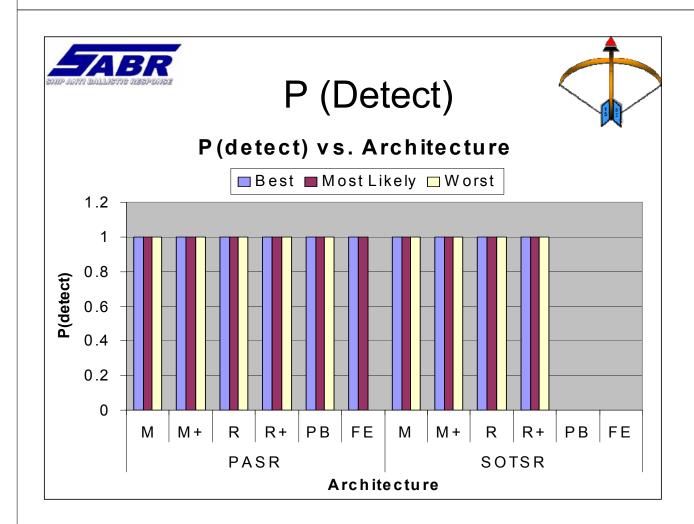
155

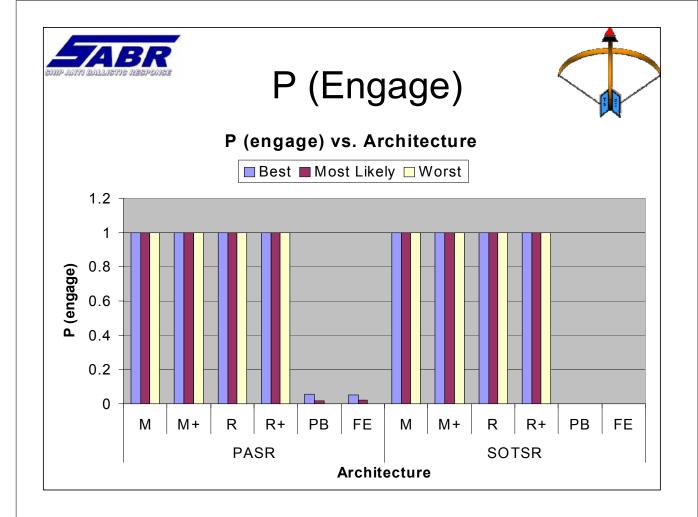



## Simulation Procedure

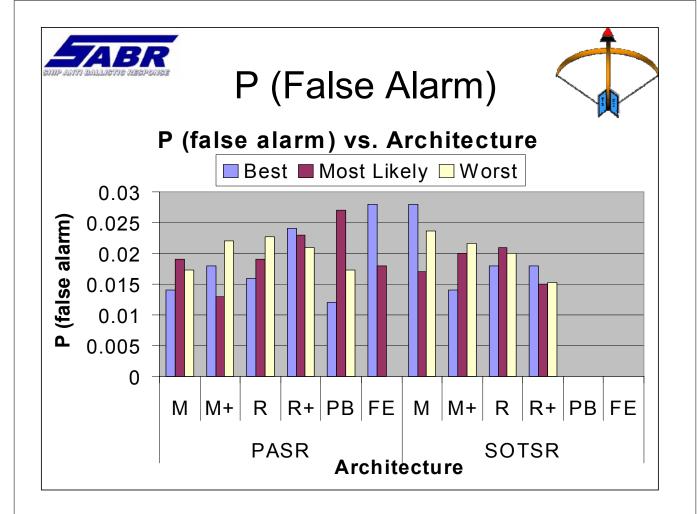


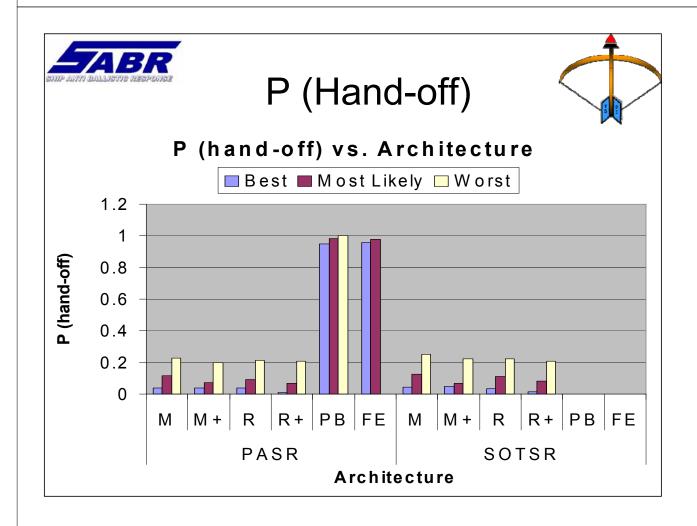
- Some inputs are held constant for all architectures and scenarios; others varied depending on scenario and architecture
- 36 total architecture/scenario combinations
- 500 runs per architecture/scenario combination
- Best and Most Likely Scenarios took from approximately 1 hour to 3 hours for the various architectures
- Worst case scenario took several hours to run for each architecture (9 hours for DEW)

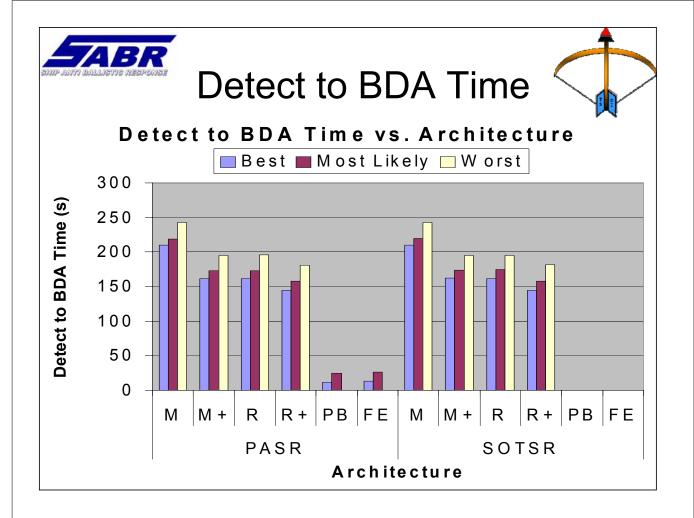


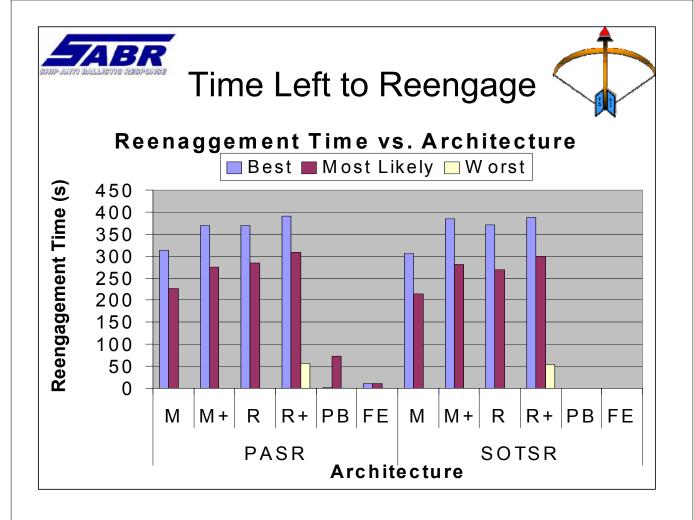


### Measures of Effectiveness





- P (engage)P (Hand-off)
- P (false alarm)P (detect)


- P (kill)
- Detect to BDA Time
- Time left to reengage







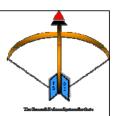









1<sup>st</sup> Iteration Simulation Summary

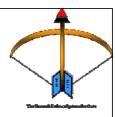

- Directed Energy Weapon eliminated due to its limited range
- Rail Gun and Missile had nearly equal performance
- 4 of initial 12 architectures eliminated
- Radars had no impact on the results because inorganic assets detected all missile launches
- Determined areas of improvement



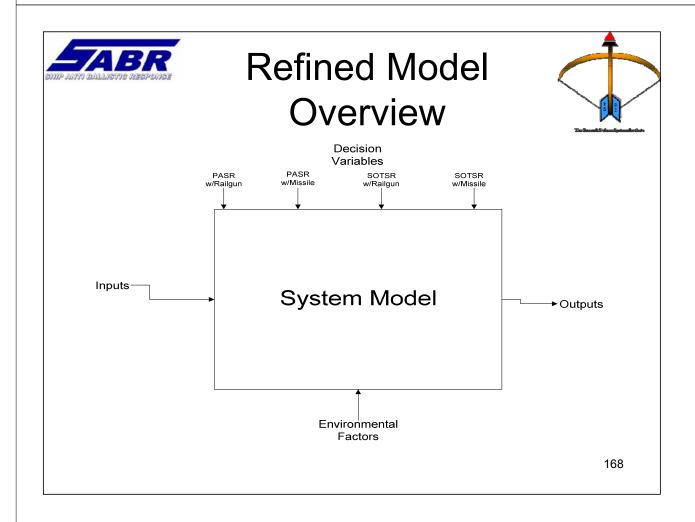


165



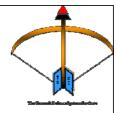



### **Refined Model**

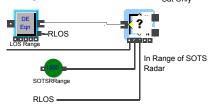

**ENS Ryan Devlin** 



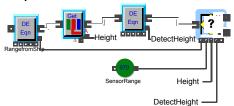
## Why Change the System Model?




- Detection height calculated solely based on max detection range
- SOTS Radar model not set up properly to model cueing of the PASR
- All missiles detected by satellite so no preferred radar has been identified







### System Model



- Satellites eliminated by making P(d) = 0
- 'DE Equation' block added to calculate LOS Detection range for SOTSR

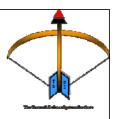


 Separate Detection delays and blocks for SOTSR Radar  Detection Height Calculated using the Radar Range Equation



- P(k) fixed for interceptors
  - Rail gun Pssk = .6
    - · Salvo size = 4
  - Missile Pssk = .8
    - Salvo size = 2

169



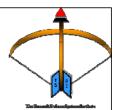

### **Improvements**



- Radar range calculation improved ship detection
- SOTSR line of sight calculation based on ARFPS
- SOTSR cueing PASR added to model
- Weapon terminal performance assessed
- No satellite detections

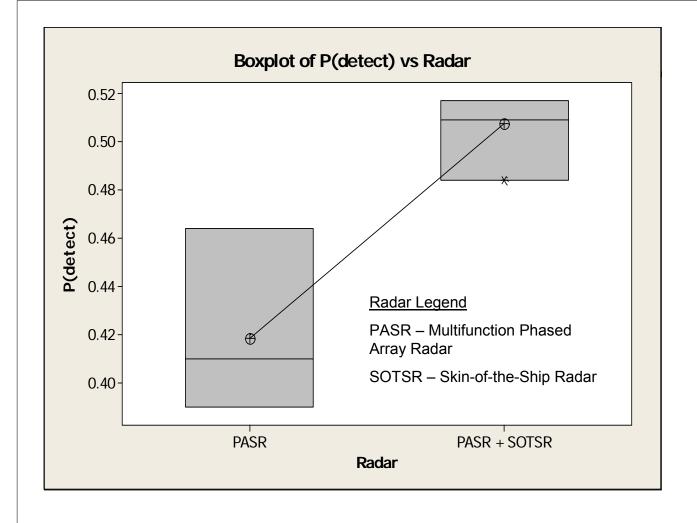


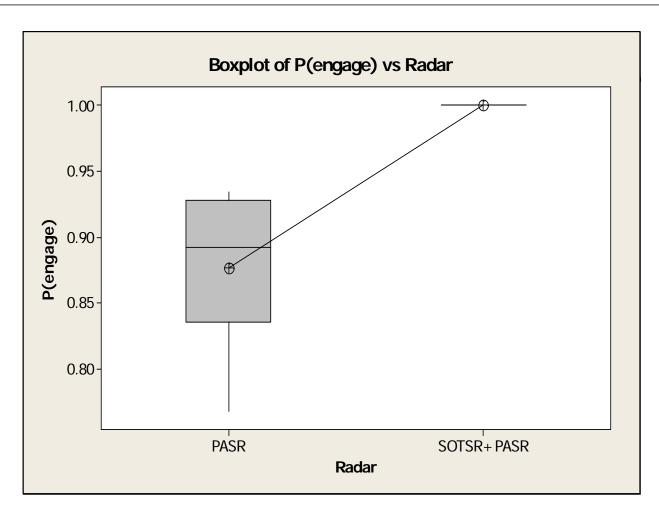


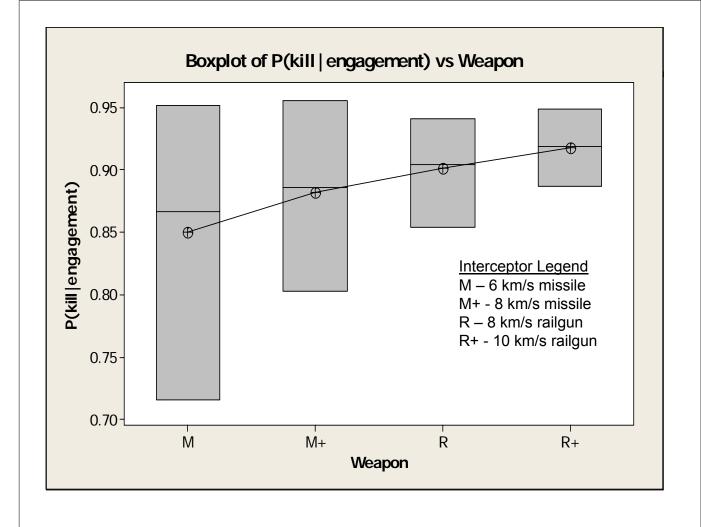

## **Refined Data Analysis**

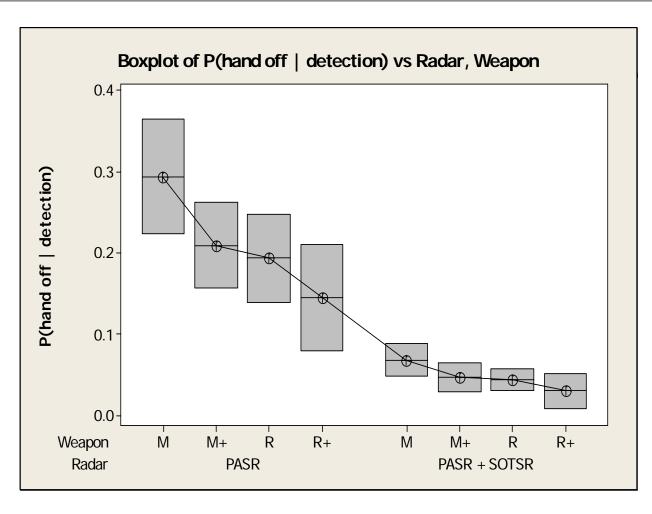
### **ENS Chris Glenn**

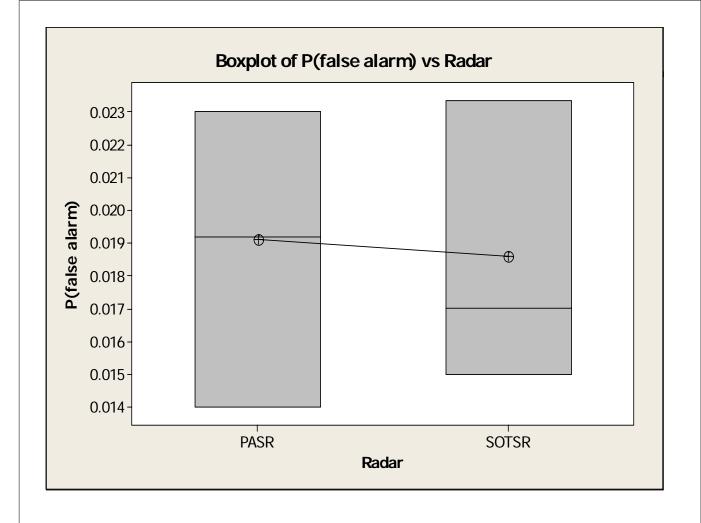
171

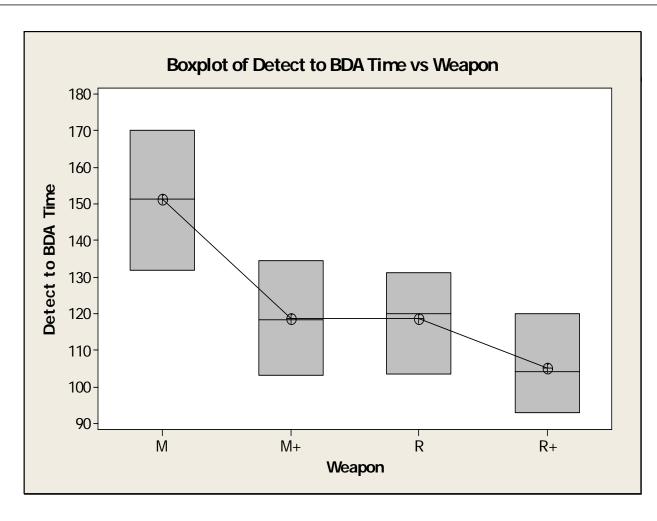


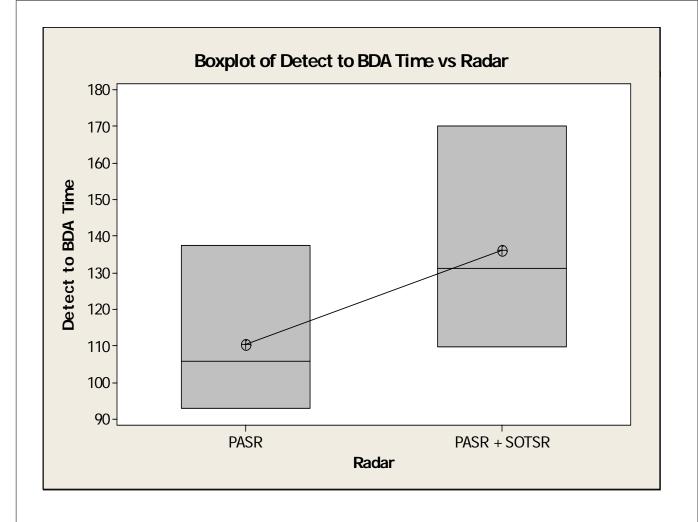


## 2<sup>nd</sup> Iteration of Simulations

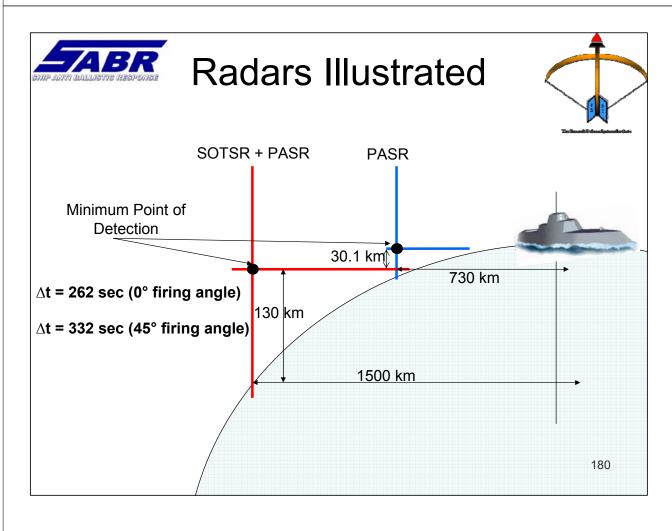




- Focus on determining a breakout between weapons and radars
- Minitab used to generate
   ANOVA, confidence intervals, interactions, and statistical significance.

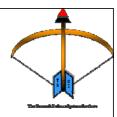




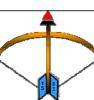







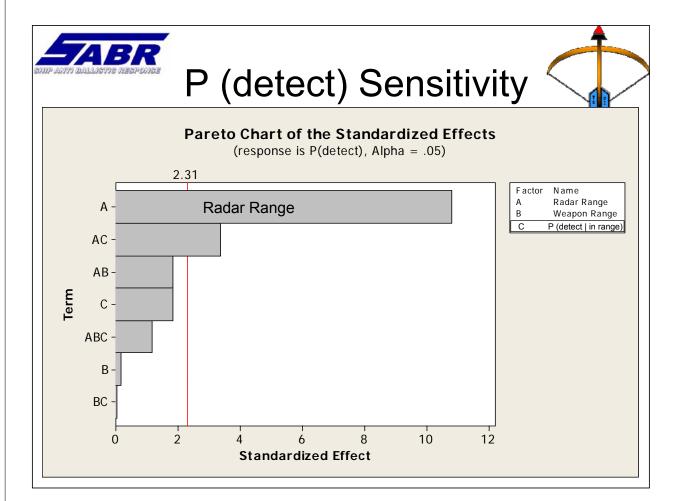


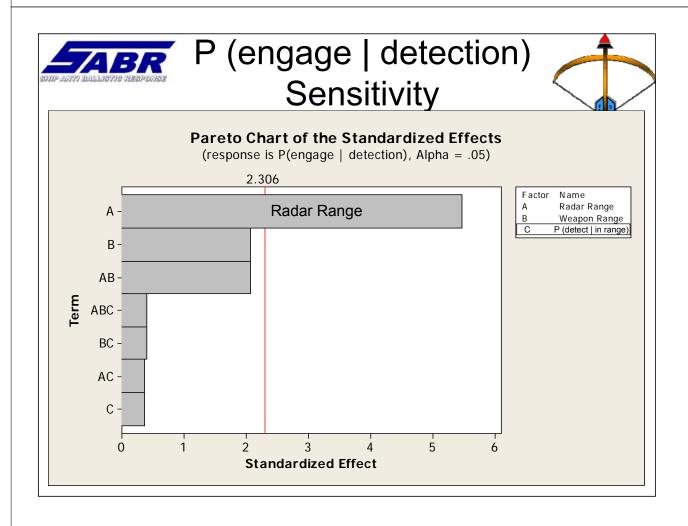


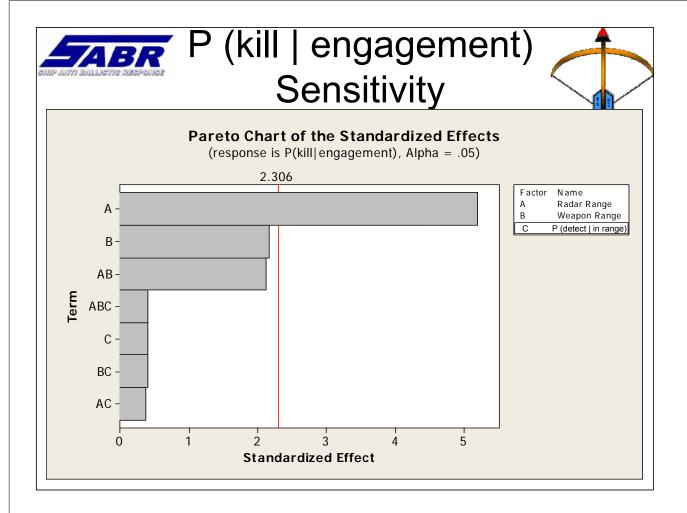



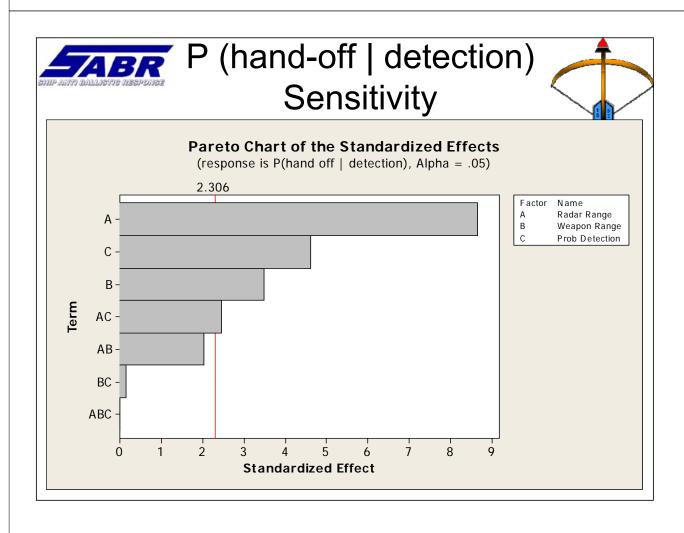

### **Factorial Analysis**

181



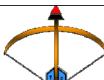


## Factorial Analysis Setup

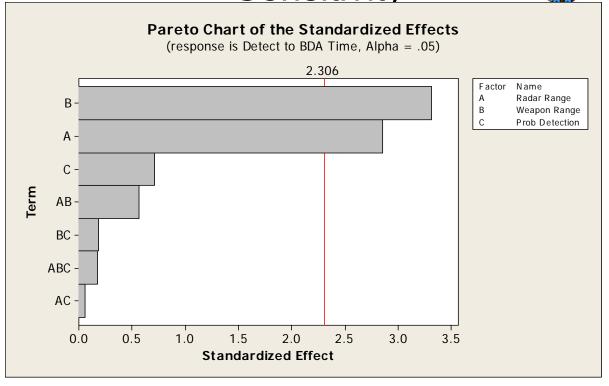




High

- 18 factors with 2-3 levels =  $2^{18}$  to  $3^{18}$  possible combinations
- Factor Reduction left 3 factors with 2 levels = 8 combinations
  - Weapon Range
  - Radar Range
  - Probability of detection
- Analyze factors' effects on 5 MOE's
- Sensitivity, Tradeoff, and Cost Analysis conducted

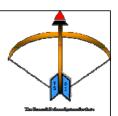




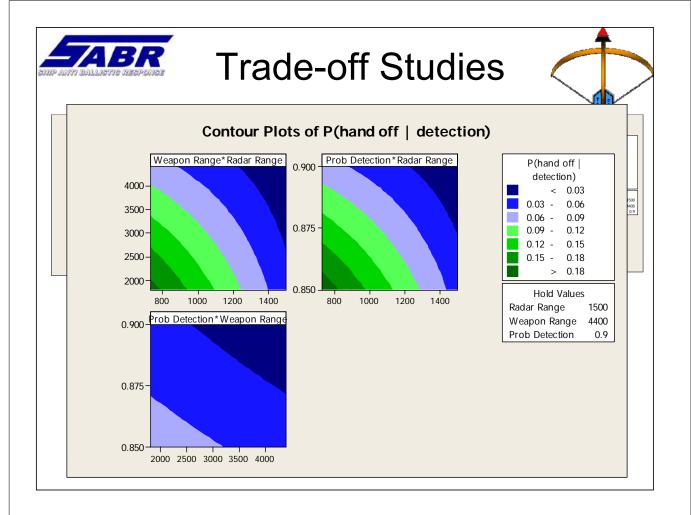



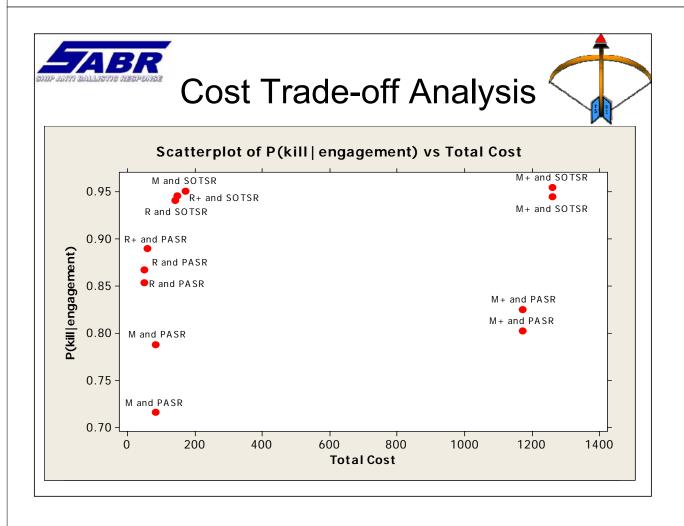






## Detect → BDA Time Sensitivity

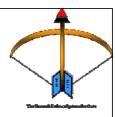





## Sensitivity Analysis Summary



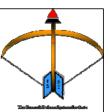

- For BMD mission, inorganic sensor networks yield greater effects than organic sensors.
- System is most sensitive to and limited by radar range not weapon capability.
- 10+ km/s still needed to engage threat missile before end of midcourse.







## Weapon and Radar Trade-offs




- If organic cueing data is required radar range is single most important factor
- If inorganic sensor is capable of sending track data, than weapons will be single most important factor to systems ability to engage and negate the threat missile

191



### **Additional Analysis**



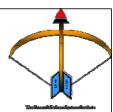

- Very few significant interactions among Scenario, Radar, and Weapon variables.
- There was a significant statistical difference between the independent Radar and Weapon Architectures.





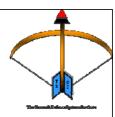
## 2<sup>nd</sup> Iteration Summary




- SOTSR performed better in conjunction with the MFPAR.
- 10 km/s Railgun projectile performed better against all metrics due to longer range and high velocity.



Final Architecture

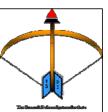

MFPAR assisted by SOTSR and Railgun



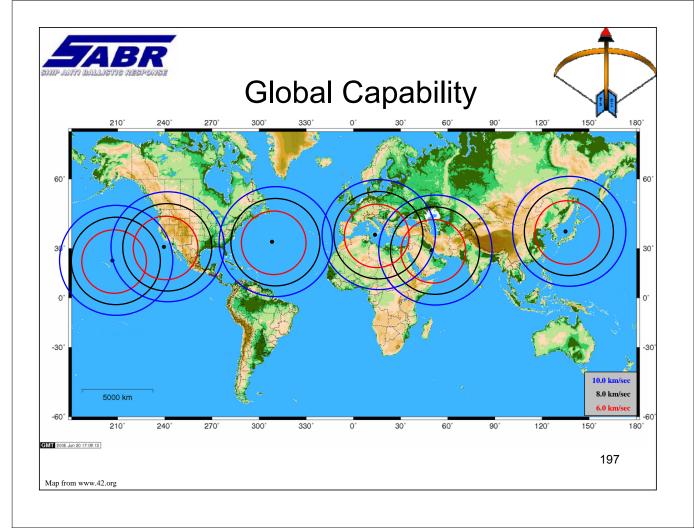


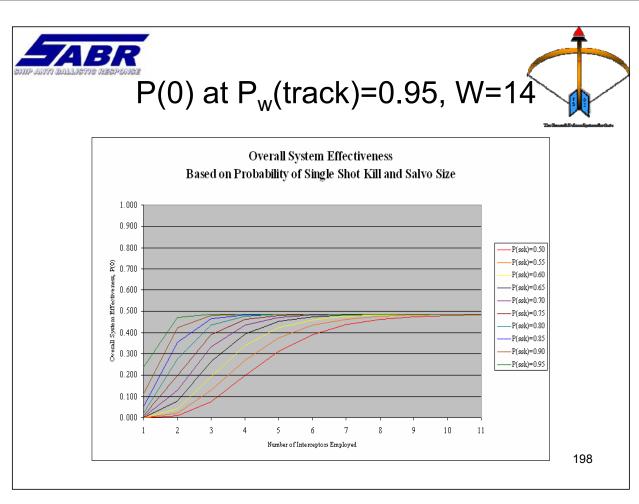


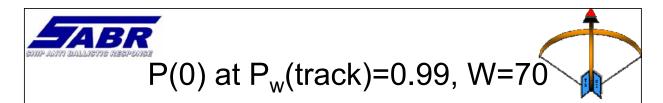


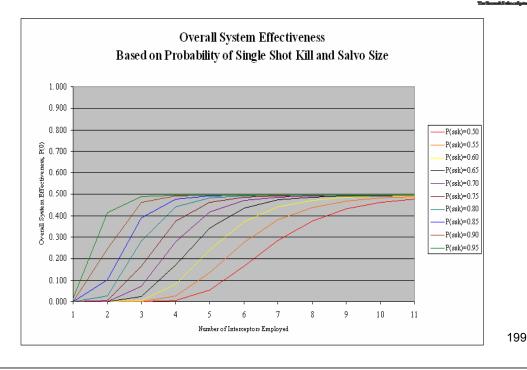



### Physical Modeling Backups


195

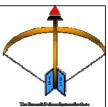


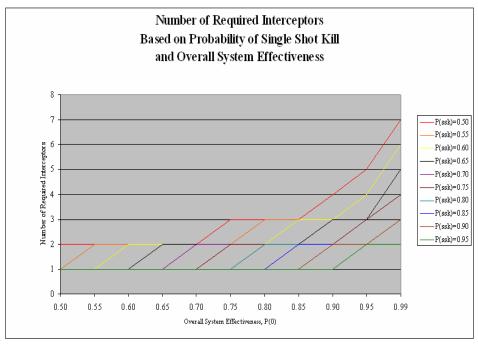


### **Future Model Work**



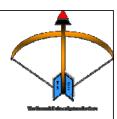

- · Areas for further model refinement
  - Improve Grid Assignments to further reduce range errors
  - Account for all Drag and Lift (not just Hypersonic Values)
  - Account for Coriolis Effect
  - Better incorporate control surfaces in missile flight (roll-over rate)
  - Develop BM Database for use in Threat Selection
  - Integrate Railgun Trajectory as Fire Control Solutions within System Model








## Required Interceptors: P<sub>w</sub>(track)=0.99, W=1







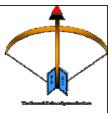


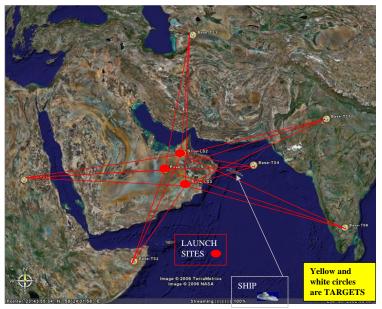
### **Operational Scenarios**

### LT Fischer

201




## Final Scenario Refinement

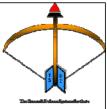


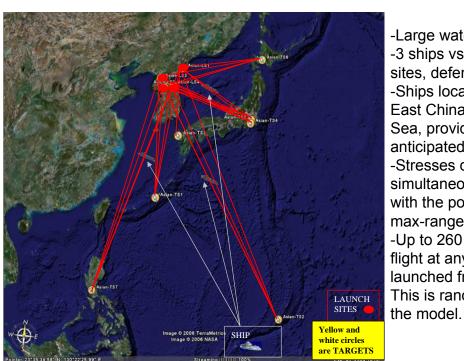

- Unclassified approximation to the Major Combat Operations (MCO's)
- Test capabilities to geographical and tactical scenarios:
  - Functional
  - East Asian
  - Middle East
  - Sea Base



#### **Functional Model**



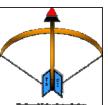


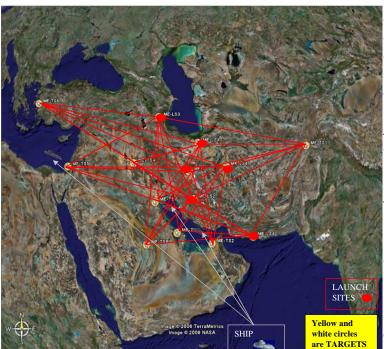


- -Purely a Test Scenario; not applicable to any particular geographic region.
- -1 ship vs 3 Launch sites - 5 dispersed land targets, and 1 sea target, provided data on all possible engagement geometries.

203



### East Asia Defense

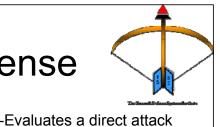


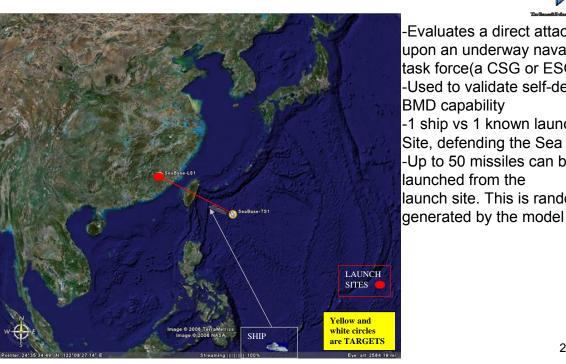




-Large waterspace area.
-3 ships vs. 4 known launch sites, defending 7 targets
-Ships located in Sea of Japan, East China Sea, and Philippine Sea, providing coverage to all anticipated missile flight routes.
-Stresses defense against large, simultaneous threat salvoes, with the potential for several max-range intercepts.
-Up to 260 enemy missiles in flight at any time, up to 65 launched from any launch site. This is randomly generated by



### Middle East Defense

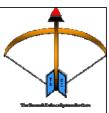


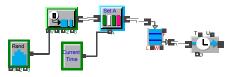

- -Most demanding scenario.
- -Small waterspace area
- -3 ships vs 6 known launch sites defending 8 land targets. -Ships located in eastern
- Med, Northern and Southern Arabian Gulf.
- -Stresses defense against large, simultaneous threat salvoes, with the potential for several Medium- and Minimum-Effective Range intercepts.
- -Up to 300 enemy missiles in flight at any time, up to 50 launched from any launch site. This is randomly generated by the model.



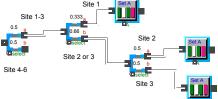
### Sea Base Defense





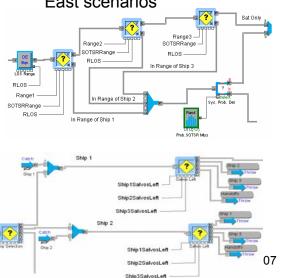


upon an underway naval task force(a CSG or ESG). -Used to validate self-defense BMD capability -1 ship vs 1 known launch Site, defending the Sea Base. -Up to 50 missiles can be launched from the launch site. This is randomly



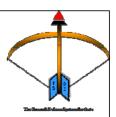

## Final System Model



 Number of missiles variable for each scenario




 Both launch site and target chosen randomly

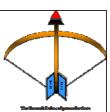



Satellites used

 Three ships used for Southeast Asia and Middle East scenarios








**Cost Analysis** 

**ENS Diersing** 



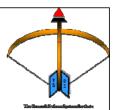
## Conceptual System Attributes



Extended Range Detections

Deep magazines

No competition for magazine space

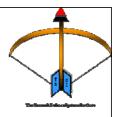

Lower cost per engagement

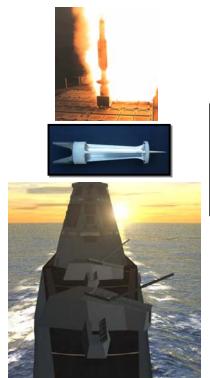
Highest projectile velocities

09



#### Sensor





- Stand Alone Multifunction Phased-Array Radar eliminated through simulation results
- Skin of the ship radar (SOTSR), with phased array assist preferred sensor
- Dr. David Jenn (NPS), design lead
- Cost per SOTSR unit: \$~131 million
- Cost per Spy-1B radar: \$30 million
- TOTAL COST: ~\$161 Million

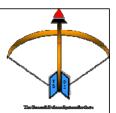










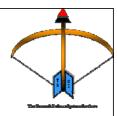



- SM-3 vs Railgun
- SM-3 cost: \$11.3 million per missile (Block 1)
- Railgun cost per round: \$30,000-45,000 (20 kg guided projectile)
- For 2 kg round, miniaturization factor of 2X cost

211



#### **Platform**



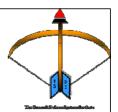

- Current CG-47 cost per ship: \$1 billion
- Additions of electric drive, stronger hull design, new technologies
- · 20 years from present
- CG(X) cost estimate per ship: \$3.2 billion
   (Congressional Budget Office, 2003)





## Platform Operating Cost



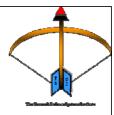



- CG(X) estimated annual operating cost: \$27 million (Congressional Budget Office, 2003)
- Interceptor (Railgun) cost per salvo: approx.
   \$240,000
- Total Annual Operating Cost (assuming 10 engagements): \$29.4 million

213



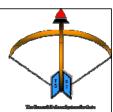
## Total System Cost Comparison




|                  | SM-3            | Railgun         |
|------------------|-----------------|-----------------|
|                  |                 |                 |
| Platform         | \$3,439,360,000 | \$3,439,360,000 |
| Railgun mounts   | \$0             | \$140,000,000   |
| 10 salvos        | \$226,000,000   | \$2,400,000     |
| 1 year ops       | \$29,019,600    | \$29,019,600    |
| SOTSR            | \$130,858,950   | \$130,858,950   |
| Total (FY\$2006) | \$3,825,238,550 | \$3,741,638,550 |
| Inflation Index  | 1.5076          | 1.5076          |
| Total (FY\$2025) | \$5,766,929,638 | \$5,640,894,278 |

**Total System Cost Comparison with One Year of Operations (Base Year 2006)** 



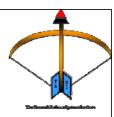

#### **Tradeoffs**



- Increased performance did not dictate higher costs
- Interceptor cost per salvo: SM-3: \$22.6 million (2 missiles), Railgun: \$240,000 (4 shots)
- Approx. 94 Railgun salvos for cost of one SM-3 salvo
- Railgun better performance in simulations
- Drawback-SM-3 is being tested; Railgun still in development

215



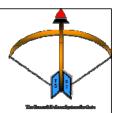



#### Conceptual System Analysis

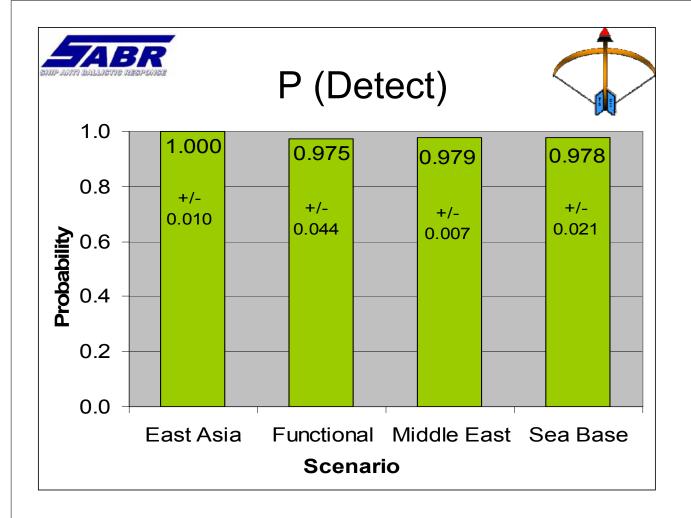
**ENS Glenn** 

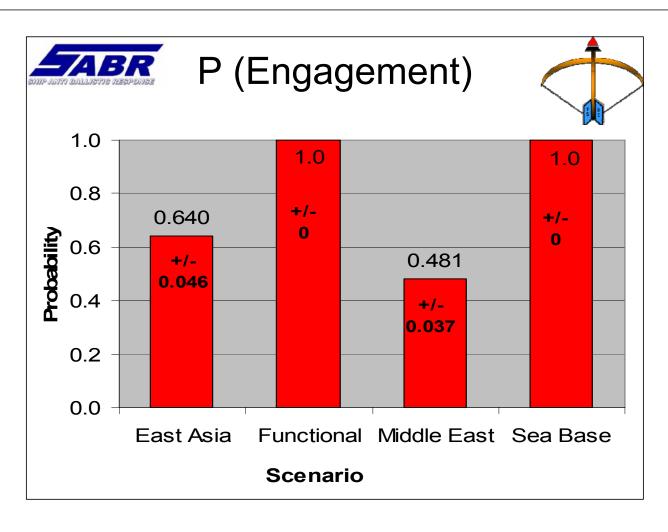


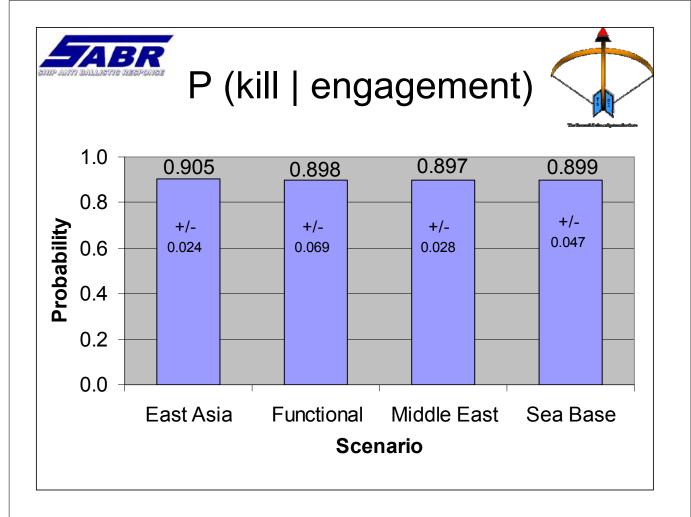
## Final Iteration of Simulations

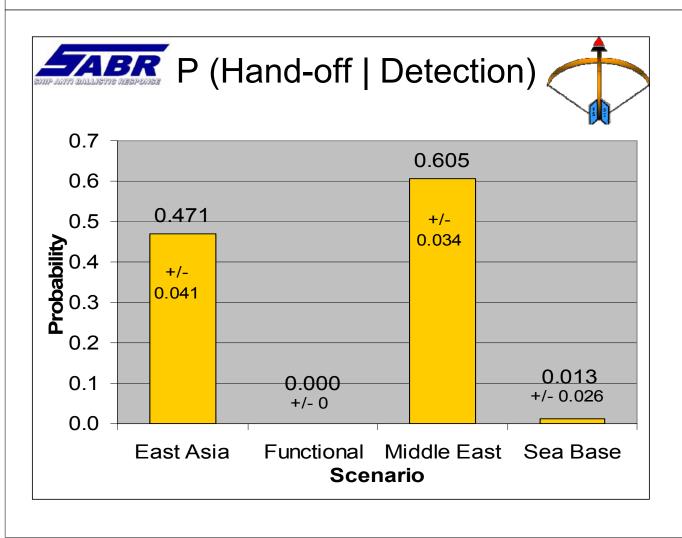


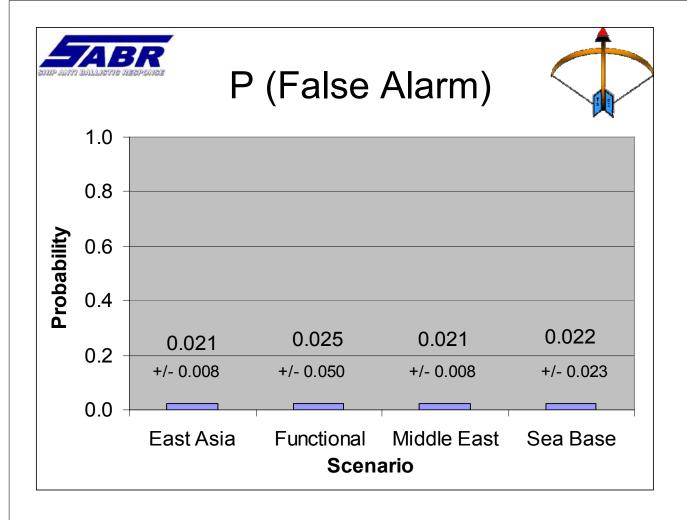

 Only 10 km/s Railgun Round paired with SOTSR in conjunction to the MFPAR was simulated.

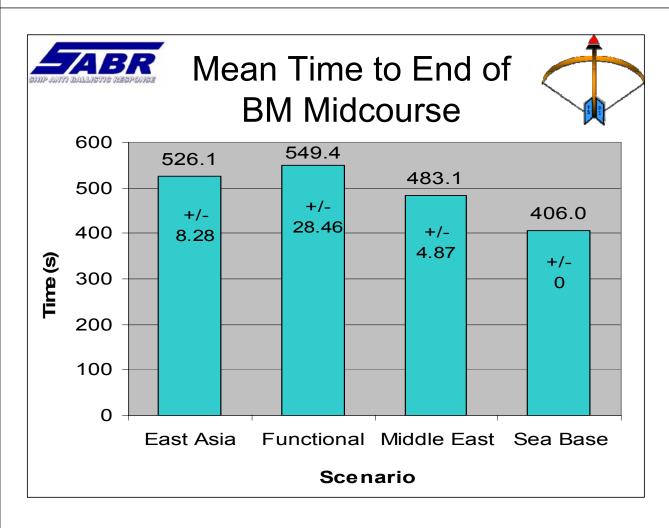


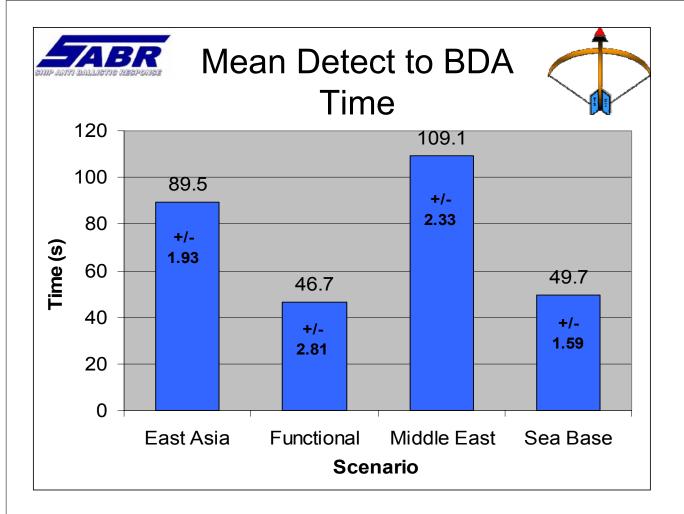





#### Measures of Effectiveness





- P (engage)
- P (kill)
- P (detect)
- P (false alarm)
- P (hand-off)
- Ave. time left to reengage
- Ave. Detect to BDA time

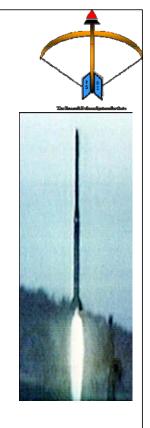


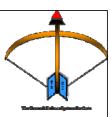






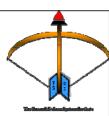



## Final Iteration conclusions

- System saturates at ~150 simultaneous airborne threat missiles.
- System will need assistance of coalition and non-organic assets in Middle East and Asian scenarios.



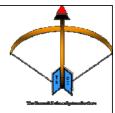







227



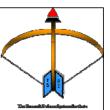



#### Conclusion

#### LT Johnson



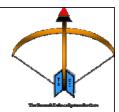
#### **Purpose**




- Parallel current efforts by DoD in BMD
- Seek a feasible solutions for future sea-based BMD challenges using systems engineering methodology, examining:
  - Entire detect-to-engage sequence from detection to post-engagement assessment
  - Feasible architecture alternatives
- Simulation and analysis of architecture alternatives
- Recommendation for a path for future BMD system development

229



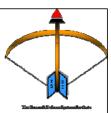

### Sensor Take-Aways



- Organic sensors (even state-of-the-art sensors such the conformable Skin-of-the-Ship (SOTS) early warning radar) can only detect 50-60% of launched ballistic missiles at best.
- Non-organic sensors are essential to the detection and tracking of threat ballistic missiles. Combined with the organic sensors of the seaframe, ballistic missiles are detected nearly 100% of the time, regardless if there are 1 or 300 simultaneously launched.



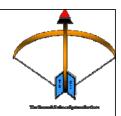
#### Detection Take-Aways




 In the absence of non-organic sensors, a combination of radars and sensor systems performs better than any individual sensor alone. The combination of the conformable SOTS early warning radar and the multifunctional phased-array radar (MFPAR) out performed the MFPAR on its own by detecting an average of 10-12% more of the total ballistic missiles in a threat salvo

231



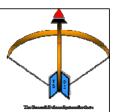

#### Time Take-Aways



■ The most critical aspect of ballistic missile defense (BMD) is time. The faster a threat ballistic missile is detected, the faster that information travels to all players in the coordinated ballistic missile defense, the faster engagement (C2) decisions can be made, then the faster an interceptor can be employed (and re-employed if required). Improvements in any or all of these aspects, and the time it takes to conduct battle damage assessment (BDA) can only improve the probability of kill.



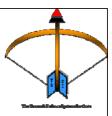
### Network Take-Aways




• A collaborative information exchange (CIX) is critical to share all detection, identification, tracking, fire control (FC), and C2 information between all players in the BMD network. Inability to provide this critical information denies each player in the BMD network a common operating picture and ability to perform an intercept if they are determined to be the optimal asset for the engagement.

233



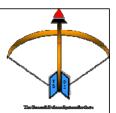

### C<sup>2</sup> Take-Aways



• An automated battle management system (ABMS) is key to ensuring the best player in the BMD network takes the "optimal shot" based on engageability, weapon system readiness and availability, and location of player. This type of decision-making aid reduces the amount of critical thinking required by BMD commanders (if "in the loop") and reduces the time table between detection and interceptor employment.



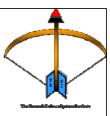
## **Speed Take-Aways**




Speed of the interceptor is critical aspect of BMD. Increased speed has direct correlation to probability of kill given an engagement and also to the probability of reengagement if required. Speed is also a critical enabler for engagement of ballistic missile threat that are not closing the general position of the BMD player. High speed projectiles expand the engageability window against crossing and tail-chase ballistic missile threats.

235



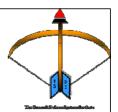

### **Cost Take-Aways**



 A multiple-rail gun system placement on the seaframe is the best configuration that combines the highest performance deepest magazines, with the lowest cost of operation (cost of four projectile salvo of an estimated \$240,000 vice the cost of a two interceptor-missile salvo of \$22.6 million).



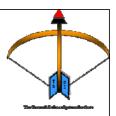
## **Mobility Take-Aways**




- A SABR-enabled ship can be quickly moved into theatre, operate in international waters, and provide a credible defense against short to intermediate range ballistic missiles.
- Mobility via the waterspace translates to the first line of BMD for 80% in the world.

237



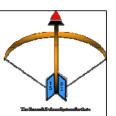

## Negation Take-Aways



 Sea based BMD would alleviate the burden on land and air based interceptors by providing a first-response ballistic missile negation percentage (% of ballistic missiles destroyed of the total threat salvo) of 43-58% for a salvo up to 300 short to intermediate range ballistic missiles simultaneously. Though this percentage appears small, the reality is that there are only a handful of nations that could coordinate a simultaneous ballistic missile salvo of this magnitude.



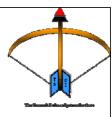
## Negation Take-Aways (con't)

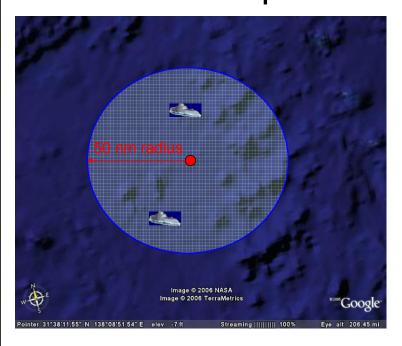



- It is far more likely that the missile launches would be staggered and use less numbers per salvo. Smaller threat salvos and/or ballistic missiles launched in succession only improve these percentages.
- Using the original three ship operational employment, a simultaneous threat salvo of approximately 150 ballistic missiles or less provides a negation percentage of approximately 90%.

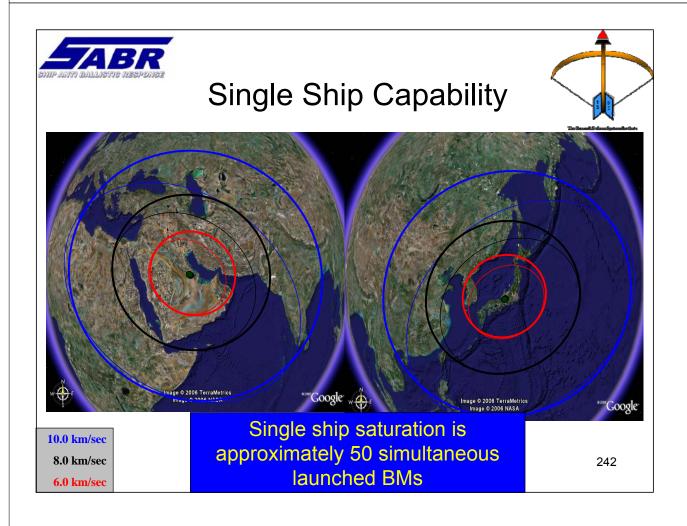
239




## Negation Take-Aways (con't)

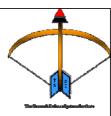



 In the remote chance that a simultaneous 300 ballistic missile salvo can be launched, the negation percentage can be increased to approximately 90% by adding an additional SABR system ship to the 50 nm radius operating area of each ship originally on station.




# Saturation Level Improvement



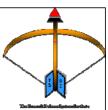



- 2 more rail gun mounts
- 1200 additional rounds



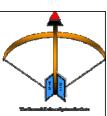


## Outside the Conceptual Design Selection




- Flexible system design model
  - Threat modifications
  - Sensor modifications
  - Network modifications
  - Interceptor modifications
- Foundation for follow-on studies

243




#### Follow-on Studies



- TSSE Ship Design
- Railgun Theses
- ABMS Architecture
- CIX
- Conformable SOTS Radar





