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ABSTRACT 

Small-scale beach morphology (scales < 5 m) height variations were measured 

by wmbining the CRAB survey with bed elevalion acquired from a 1 MHZ sonic 

altimeter mounted on the CRAB during the October Phase of the DUCK94 

experiment. Bedfonn types were observed using a 500 kHz side-scan sonar also 

mounted on the CRAB. Corollary waves and currents were measured. Three cases 

were examined in detail: mild \vaves and weak longshore currents resulting in wave 

ripples everywhere; storm waves with strong longshore curreIllS resulting in lunate 

and straight crested megaripples in the trough of the barred beach; and narrow 

banded, nonnaJly incident waves wi th a strong rip current resulting in a relatively 

planar bed everywherc except in the throat of the rip where megaripples wcre 

measured. The predictive wave ripple height and length equations of Nielsen (1981) 

worked reasonably well for mild wave conditions, but did not predict ripples during 

moderate wave conditions. The wavenumber spectra were generally broad, indicating 

that newly fonned ripples coexisted with residual ripples from the past to fonn 

complex, multi-scaled ripple paUems. 
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I. INTRODUCTlO~ 

Tht: nt:arshort: hed on a barred beach is composed of complt:x bedforms due to 

varying wave and current regimes _ Although there is abundant literature on small-scale 

morphology in rivt:rs and estuaries induced by steady to quasi-steady How regimes, few 

quantitative observatiolls of bedforms are available for the nearshort:. Corollary wave and 

current measurements are almost non-existent. The lack of dala is due to difficulties in 

making measurements in the nearshore. Observations historicall y have ocen made by divers 

who are limited by visibility and the harsh nearshore environment. which can become 

unfavorable for observations even in tht: mildest of stonns. 

Small-scale morphology and bedforms were measured on a barred beach during the 

October phase of the DUCK94 experiment using a sonic altimeter and side-scan sonar 

mountt:d on the CRAB. Small-scale morphology is defint:d here as scales less than 5 m. 

Corollary measurements of waves and currents weft: made at the same timt:. The DUCK94 

experiment was a pilot study and repn:sented a lirst attempt to make quantitative, mul ti-scale 

mea<;uremenL" ofnearshorc morphology. During the three week phase of the experiment, the 

small-scale morphology varied significan tly, both spatially and temporally, as wave and 

current climate varied during the passage of a major storm. Three separate sequences 

shO\ving distinct differences in ripple characteristics and bedforms caused by varying wave 

and current processes are cxamim:d: mi ld waves and wcak longshore CUrTt:nt conditions 

resulting in wave ripples throughout the nearshore; storm waves with strong longshore 

currents resulting in lunate and straight-crested megaripples in the trough of the barred 



beach; and narrow-banded, nomlally incident waves with a strong rip current resulting in a 

relatively planar bed everywhere except in the throat of the rip where megaripples were 

fonned. 

Several scales of ripples have been previously observed in the field ; however, most 

measurements were limited to the smallest-scale, wave-induced ripples or vortcx ripples and 

referred to here as wave ripples. Dingler and Inman (1976) used a moveable acoustic 

altimeter placed on a track on the bottom to profile the small-scale ripples outside the surf 

zone, but were limited to a single track of approximately 2 m in length. Other methods 

included using waxed combs shoved into the bed by divers to record ripple profiles. Miller 

and Komar ( 1980) found ripple wavelength to be related to the orbital diameter of the waves. 

Wave ripples havc been measured by numerous investigators in the laboratory. 

Nielsen (198 1) summarized available lahoratory data and found wave ripple length and 

height depended mainly on the mobility number, which is the ratio of the wave velocity 

magnitude to the sediment settling velocity. Southard et a!. (1989) was able to obtain higher 

veloci ties and longer period waves in a water llUmel, and found the bed under pure 

oscillatory flow fornls 2-D wave ripples under low velocity, short period (<: 9 sec) waves, 

transiliuning to 3-D ripples at hjgher velocity and longer periods, which suggested differing 

bedfomls for higher velocities and longer periods. In the laboratory, longer period waves can 

only be acllieved in water tunnels or prototype-scale wave tanks limiting superposed currenL<; 

to collinear flow. In a laboratory basin, Van Rijn and Havinga (1995) observed ripple 

configurations under varying wave and current conditions. Two-dimensional ripples were 



observed with only waves prescnt, prugressing to threl;.':-r.iiml;.':nsiunal ripple patterns with 

strong currents acting. No significant change in ripple dimensions occurred due to a changl;.': 

in the angle between wave and current direction. 

fhe least docwnented nearshore bedforms are intermediate scale megaripples owing 

to difficulties in obtaining quantitative ml;.':asurements. "fhl;.': most visible evidence of mega­

ripples is recorded in sedimentary deposits. Clifton et al. ( 1971) studied the internal structure 

of sediments ohtained on a nl;.':ar-planar, high energy beach by trenching at spring low tide 

on the fores hore and coring offshore. Davis and Fox (1972), Davidson-Arnott and 

Greenwood (1976), and HWlter ct al. (1979) similarly cxamined barred beaches. Thl;.':se 

observations are restricted to prograding beaches in which the sedimentary records are 

preserved. Hunter et a1. (1979) found the duminant bedform in the outer, seaward region of 

the bar to be medium scale llUlate megaripples facing in the direction of wave propagation. 

Restrictive diving conditions and planing off ufthe bar at high tides made observations on 

the bar difficul t. When obServed, bedforms on the bar crest were similar to those on the 

seaward slope ofllle bar. In the main part oflhc trough, longshure currents tended to remove 

finer sediments and generate traverse bedforms f3(;ing in the longshore dircction. The most 

typical bedforms obscrved were slightly Jinguoid megaripples, linguoid 10 irregular ripples, 

and occasionally sand waves. In rip chrumels, which contain relatively tiner sedimcnts than 

does the iongsllOrc tTOugh, the most conunon bedforms observed were seaward-facing lunate 

megaripples. (Hunter et al., 1979). Shennan et al. (\993) examined megaripple migration 



and mixing depth in a rip-feeder channel. l1\e results indicated the megaripple trough 

propagated approximately 1 mIhr. 

A conceptual view of the small-scale morphology on a barred beach was sllllllnarized 

by CJifton (1976) based on diver observations (Fig. I), \vhieh shows the transition of the 

small-scale morphology from wave Tipples to megaripples on the seaward slope of the bar, 

to a planar bm- crest due to the im;rcase in wave intensity, and to wave ripples again in the 

trough where wave intensity decreased after waves crossed the bar. The observations arc in 

agreement with the laboratory results of Southard ct al. (1989), who observed the transition 

from 2-D to 3-D ripples with increasing velocities and longer wave periods. 

The objective of this paper is to correlate small-scale morphology measured over a 

barred beach with waves and currents. In the following sections, a description of the 

DUCK94 experiment, the methodology of the data analysis, and the description of the small­

scale morphology observed on Oct. 8,12, and 20 arc presented 



JT. DlJCK94 EXPERIMENT 

lhe data presented here were obtained in the comprehensive nearshore DUCK94 

experiment wnducted in October 1994 at the 11. S. Anny Corps of Engineers Field Research 

Facility (FRF), Duck, North Carolina. The FRF is located on the Outer Banks, a barrier 

island formation. The FRF beach usually has a two-bar system which is composed of a 

dynamic inner bar (30-120 ill offshore) and a secondary bar of lower amplitude (300-400 ill 

offshore). The mean foreshore slope of the beach is approximately 0.08 (l: 12) and the mean 

slope offshore of the bars is approximately 0.006 (1 :170) (Lippman et al., 1993). The mean 

tidal range in the beach area is approximately 1 m. 

Meteorological data of wind speed and direction. air and sea surface temperature, and 

atmospheric pressure were acquired simultaneously at two locations at the FRF. The weather 

during the October experiment was characterized by fuur distinct phases (Fig. 2 ): a 

"northeaster" with a front moving from north to south from 2-4 Oct.: moderate waves and 

weak currents and winds from the north 4-9 Oct.; relat ively strong currenl~ (0.5-1.0 m/s) and 

predominant \"rinds and waves from the north associated with a second "northeaster" 10- 17 

Oct.· find variable currents and winds from the north and south 17-2 J Oct 

The Coastal Research Amphibious Buggy (CRAB), an I I ill high, hydraulically 

driven, three-wheeled vehicle, is a uniquely stable platform from which to make 

measurements (Fig . .1). The primary purpose uf the CRAB is to efficiently survey the 

bathymetry (order 3 em rms vertical and horizontal fleeuracy) from the waters edge out to 

depths of 8 m in waves up to 2 m (Birkemeier and Mason. 1978). The surveys were 



performed daily during the experiment by driving the CRAB in a series of cross-shore survey 

linl:s with its position tracked by a laser ranging/auto-tra(;king sysll:m approximatdy every 

meter. The a longshorl: separdtion of the survey lines was between 25 to 30 m. Using the 

CRAB, time encoded horizontal location and vertical relief of the bed for ea(;h survey line 

was obtained. Three-dimensional bathymetry mapped by the CRA.B describing the large­

scale morphology during the experiment are shown in Fig. 4. 

The elevation of small-scale morphology was measured using a 1 MHZ sonic 

altimeter mounted on the CMB 70 em from the bed. The alt imeter has a nominal sampling 

rate of 25 Hz and was time-coded with the bathymetry measurements. The sonic altimeter 

was usl:d to measure the location of the bottom, with mill vertical resolution and accuracy 

of less than 2 em, by measuring the tmvel time of an acoustic pulse from the altimeter to the 

bonum and back to the altimeter. Thl: deerl:asc in accuracy wmparcd \\ith resolution is due 

to the changing reflective surface resulting in a variahility in the measured bottom elevation 

owing to thl: bed dialating or sediment transported along thl: bed as waves pass overhead. 

A theoretical sound speed is used to convert time into dis\rulCC. An Automatic Gain Control 

(AGe) aeeommodatl:s largl: fluctuations in acoustic properties oEthe water column , which 

improves the bottom-locating property of the altimeter. Thl: transducer has an approximate 

3.4 degree beam width which translates inlO a 4.2 cm footprint at 70 em height from the 

bottom. TIle footprint may have a minor effect of heigh I estimation and noise in the data for 

sloping bottoms due to sound arrivillg first from the uphill sidc ofthc foolprin! . Bubbles, 



~uspt:nded sediments, and compactness of the bed arc factors which may also contribute to 

scattered data points. (Gallagher et al.. 1995) 

The side-scan sonar depicts a high resolution plan view of the small-scak 

morphology. However, it does not directly measure amplitudes of the bedfonns. The side­

scan sonar operates at 500 KHz. This frequency is used to increase resolution due to the 

operating environment, whi(;h is in shallow depths. The sonar is suspended in the center of 

the CRAB approximately 1.25 m from the bed. The nomimll horizontal range of the sonar 

was approximately 10 to 15 ill to each side of the sonar, with exceptional ranges out to 25 

m. Sonar ranges of 15 m allowed overlap of sonar data from adja(;elli survey lines, which 

gives a relatively complete view of the geometry and spatial representation of the ripple 

features. Bedfonn amplitude and geometry, hubbies, and suspended sediments all 

contributed to or limited increa<>ed sonar range and resolution. In this pilot experiment, the 

side-scan sonar output was rewrded only on paper which docs not allow rectifying the 

representation for range and speed of travel. The side-scan only records sonic reflections so 

that bedforms oriented normal to the sonic heam give the strongest reflection s. The CRAB 

traversed the surf zone in lines perpendicular to the heaeh with the side-scan looking 

alongshore. Therefore, wave ripples parallel to the shore would not be expe(;ted to give 

~trong sonic reflections and may not have been seen hy the side-scan. This can make some 

of the side-Sl:fm interpretations difficult 

Corroborating w~ve and current data were acquired using an instrumented sled. A 

vertical stack. of eight Marsh-McBimey two-component electromagnetic current meter:; with 



2.5 em dimnctcr spherical probes wen: mounted on a 2.5 m mast to measure vertical profiles 

of the longshore current. The sled was oriented with the vertical stack of current meters 

placed on the up-current side to prevent the sled structure from contaminating f10w 

measurements. \\laves and mean water level were measured using an array of six pressure 

sensors configured on a 3 ill squ<U"e with one in the middle and another in the middle of a 

cross-shore leg. for data !.:ollection, the sled was first towed by the CRAU to its funhest 

position offshore, dependent upon wave conditions, for the first data nm. A forklift on the 

beach pulled the sled shon:ward approximately 10 to 30 m for each subsequent run. Data 

were collectt:d at each location for approximately one hour at four to eight locations 

Additionally, directional wave sp:(;tra were acquired using a linear array of 10 

pressure sensors in R m depth offshore of the survey area. A fixed !.:urrent meter in the 

trough at line 820 m was used to acquire continuous longshore currents 



m. MKflJODOLOGY 

The CRAB surveys and altimeter measurements were combined to obtain highly 

resolved bottom profiles. Bathymetry data mea~ured by the CRAl3 were x, y, z (cross-shore, 

alongshore, and depth) locations and time. The sampling ratc was approximately 1 Hz, 

although the data were not evcnly spaced in time and often gapped by several seconds. The 

spatial separation of data is detennined by how often the survey points are taken alld is 

dependent on the speed of the CRAB . The nominal CRA B speed is O( J mls) resulting in a 

(;ross-shofe resolution of 0(1 m). The prism is located directly over the back wheels so that 

the response of the CRAB to changes in the bottom is directly measured. It is assumed the 

elevation error due to the ti lt and roll of the CRAB ov.i.ng to the bumpy bottom is small and 

can be neglected. Given the 1\.3 m wheel base and 13.1 m height of the prism above the bcd, 

30 em nus height bumps result in less than a I em nns error. 

High resolution bathymetry was measured using a 1 MHZ sonic altimeter mounted 

on the CRAB 70 em above the bottom. The data acquired were time eDC()ded distance from 

the altimeter to the bed. Since the altimeter was rigidly mounted on the CRAB, altimcter 

heights less than 70 cm indicate bumps or crests of ripples, whereas altimeter heights greater 

than 70 cm indicate holes or troughs of ripples. The altimeter had a nominal sampling rate 

of25 lIz v.i.th variations up to +1-3 Hz. The altimeter has a much higher vertical resolution 

O(mm) than docs the CRAB sun'cy system. Depending on the CRAB speed, usually 0.5 to 

1 mis, the cross-shore resolution is on the order of2 to 4 em. 



Spalial representation 01" the small-scale bathymetry was obtained by merging the 

CRAB survey and altimeter data by aligning the time series by linearly interpolating the 

CRAB survey data to the corresponding time of the altimeter data. From the alignment, 

profiles of cross-shore distance vcrsus CRAB survey depth and height from the bed to the 

altimeter are obtained 

The altimeter data were generally noisy due to minor problems in the altimeter's 

logic of the AGC to track the bottom. The logic is designed to reject scatters and multiple 

bottom reflections. Noise was also introduced by strong scattering of the the acoustic pulses 

from bubbles entrained by wave breaking. Therciore, considerable clTort was required to 

deglitch the data (Fig. 5). First, points above and below a certain band of acceptable 

altimcter heights were excluded. This resulted in a loss ofoll1y a very small IltUllber of data 

points jor Oct. 8 and Oct. 20 when conditions were relatively mild. However, during stanny 

conditions such as on Oct. 12, wave breaking on the offshore bar filled the outer surfzonc 

with persistent micro-hubbies, acting as strong sound scattercrs, which resulted in the loss 

of al timeter data for 30 to 50 meters over the bar. For the times when the altimeter data w;c; 

too noisy too be used, the altimeter data w;c; set equal to 70 cm which inserted the CRAB 

survey depth 

A running median filter was next applied, which is particularly good at eliminating 

outliers in noisy data and can be applied to unevenly spaced dahl. The length of the filter 

varied ben.vecn three and nine points, depending on the application. For exampJe in the nine 

point fil ter, sequential points are sorted by incre;c;ing heights, and the mean of the thrce 

iO 



middle values is assigned to the corresponding cross-shore distance. This filtering process 

removes stray data points while retaining a smoothed altimeter height profile (Fig. 5). An 

expanded view uflhe filtered altimeter data is presented in Fig. 6. 

The effects of applying the median tilten; to the altimeter data are examined by 

calculating empirical response functions for various filter lengths as the ratio of spectra for 

ftlten::d and unflltered data. Data acquired on OcL 8, when the shortest wavelength wave 

ripples were present during the experiment, arc used as a worst casco A 110 ill cross-shore 

distance is ust:d where the altimeter data was relatively homogenous. T u calculate the 

wavenumber spectra and rms roughness of the bed, unevenly spaced data are linearly 

interpolated to evenly spaced 2 cm increments of the (;Toss-shore distance. Inc spectrum of 

a 20 m section is detel1llined and then incremented by 10 1TI in the cross-shore direction 

giving 50 pcrcent overlap. In calculating thl: spectra, a 10 percent cosine-tapt:r window is 

applied to the data. The individual spectra are then averaged. This method was perfonned 

on data filtered by a nine, fivc, and thrl:e point run.ning median fliter and on raw data not 

filtered. The three point nulling mean filter sorts three points by increasing height and plots 

the middle value with the corresponding distance. This filter effectively rcmoved outliers 

but still retained the characteristics of the unfiltered data. All four spectra show peaks at the 

same wavenwnbcr, however, the amplitudes of the spectral peaks for the nine and five point 

filtered data are reduced with increasing wavenumber. Empirical transfer functions are 

cakulated from the ratios offilter spectra with the raw spectrum. The median filter has a 

nonlinear spectral response function because the averaging length can vary, i.e., from 
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adjacent points somewhere within the nine points, to three points including the extremals 

at the first and last points. Since the filter averages three points, it would be expected to 

have similar characteristics to a running mean fi lter whose spectral transfer function is given 

by 

sin(11:knfu) 
H (k) -'--­

lLknfu 
(1) 

where tox is the sampling distance and nt.x is the distance averaged over (in this exampk 

ntox varies between 3tox and 9tox). The magnitudes of the empirical transfer functions are 

compared with numing mean transfer functions using several values of nL\x ranging from 6 

tu 36 em in (eqn. I). The comparison suggests the averaging k ngths of 6 cm and 30 em best 

tit the three and nine point filtered transfer function plots (Fig. 7). 

The response of the CRAB to the small seale variations is dependent on the bearing 

capacity of the bed and the wheel diameter (2 m). To detennine the scale of the ripples 

which arc filtered by the CRAll, a similar method was used as in the testing of the running 

mean filters . Sections ofthree cross-shore profiles were sekcted from Oct. 10, 12,20 in 

which the sections showed large bedform elevation variability with eaeh section 

approximately 60-1 OOm in length. The large, low frequency, macro-profile variations were 

removed by subtrat-"1ing a third-order polynomial best fit curve to 20 m cross-shore lengths 

of the combined CRAB survey and altimeter profile and the CRAB survey profile by itself. 

\Vavenwnber spectra were calculated for the 20 m lengths and were incremented by 5 m for 

the length of section. TIle spectra were averaged and an empirical response function is 
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calculated from the ratio of tile aver<lgcd CRAB profile spectra with the combined CRAB 

and altimeter profile spectra (rig. 8). Assuming the effect of a tire rolling over the bottom 

rcsp()nds ~imilar to a running mean average filter, eq. 1 was applied using various rillx 

values. The empirical CRAB response umction values are less than predicted by the running 

mean filter at low frequencies because of subtracting out the low frequencies using the 

polynomial fit to the data. 111C results suggest the CRAB responds to Ule larger fearures, hut 

filters features less than 1-2 ill 

A source of noise found throughout the altimeter data was due to wave crests hitting 

the CRAB causing fluctuations in the altimeter data of up to 2 em, ul:pcnding on the wave 

height. The speed of the CRAB and period of the waves determined the spatial scale of the 

wave interaction. A clear example is provided on the 20th during a time of narrow banded 

14 sec swell when the CRAB was driving over a very smooth bottom (Fig. 9). The mean 

CRAB speed of 0.8 m/s interacting with the narrow banded 14 sec waves resulted in an 

apparent 1-2 (;m bump approximately every 10 tn. It is notknov>'Tl if the bump is (;aused by 

the wave lifting the CRAB or the bed being dialated under the crest of the wave. This 

information is later used when interpreting wavenumber spectra to determine false ripple 

wavelengths. 
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IV. OCrOBER 8 MORPHOLOGY 

rhe large-scale morphology on Oct. 8 at first glance appears to be relatively 

homogeneous. The offshore bar is nearly parallel to the shore and is located approximately 

230-250 m offshore (Fig. 4). Therefore, it would be expected thl;.': smalJ-scale morphology 

would also he homogenous alongshore throughout the survey area given the same wave and 

current conditions. The small-scale morphology observed in the side-S(;an is generally 

characterized by crossing wave ripples from two directions. Ripples an: observed from the 

foreshore to offshore of the bar for the entire survey area. However, dose examination 

shows that the small-scale morphology is not homogeneous and that ripple patterns vary both 

in the cross-shore and alongshore directions. 

A nonheastcr passed through the urca on Oct. 3 resulting in maximum \-... inds from 

the northeast at 16 mls with significant wave heights reaching 2.3 m and peak periods of 

about 6-7 sec (Fig. 2). Strong longshore currcnts ill thc south were also ohserved. A period 

ufmild wave and weather conditions followed between Oct. 4-9. The waves on Oct. IS wcre 

short period (4 sl:c.) and approximately 5 10 10 degrees from the north. Significant wave 

heights were on the order of 0.5 m. Longshore currents were weak and from the north. The 

large-st;ale morphology ofthc survey arl:a did not t;hange throughout the period Oct. 2-9. 

\Vavc and current conditions of the 8th are not expected to fonn crossing wave ripples from 

two dircctions. 
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Two representative lines (940 and 710) of cross-shore combincd CRAB and altimetcr 

profiles arc sdectcd to depict the differences present in the small-scale morphology for the 

slrrvey area (Figs_ 10 and 11, lower panels). South of line 10:60, the small-scale morphology 

was due to wave ripples and is characterized by line 710. To the north, the small-scale 

morphology in the trough and on the seaward slope of the bar was primarily due to 

megaripples and is characterized by line 940. The primary differences in the ripple 

dimensions between the two representative lines are observed in the trough lmd the seaward 

slope uf the bar. The trough extends from the fureshore to the crest of the bar (150 to 240 

m). The seaward slope ofthe bar area extends from the crest of the bar and seaward 60 m 

(240 to 300 m). 

To obtain a general idea of the wavelengths of the small-scale morphology, average 

spectra WCrt: calculated for the trough region Wld the seaward slope of the bar region. A third 

order polynomial fit is subtracted from the wmbined CRAB and altimeter data, and then 

filtered using a three ]Xlint numing median tilter. The spectra are calculated for 20 m cross­

shore segments incrementing by 5 ill to give a 75 percent overlap. The avemge of the 

individual spectra for each region is then obtained for each line. An example of averaged 

spcctra for thc trough region and sem.vard slope ofthe bar region is shown in Fig. 12. Thc 

spectra tcnded to be broad, which indicates that more than one wavelcngth is present in thc 

spectra. Some (unknuwn) amount of broadening can also be due to ripples from diffcrent 

directions 
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The sma!l-scale morphology in general showed large variation in the cross-shore; 

as a consequence, the condition of spatial homogeneity (stationarity) required for calculating 

averaged spectra is not met. Therefore, continuous wavenumber spectra are calculated for 

20 ill cross-shore segments at increments of 1 m across the surf zune. The spectra are 

summed over three wavelength bands (OA-0.83 TIl, 0.83-1.67 Ill, and 1.67-5 m) plus the total 

band (O.4-Sm), resulting in 16. 34, 52, and 102 degrees of freedom for each hand 

respectively. The nns height of each band is calculated as the square root of tile variance 

within each band (Figs. 10 and 11). The wavelength blmds were selected based upun 

examination of many averaged spectra (e.g. Fig. 12). It is pointed out that variances sum, 

not nns heights, su(;h that the rms height of the sum of the three bands is calculated from the 

square root of the sum of their variances. 

As the small-scale morphology is defined as having scales less than 5 m. variance 

contrihutions for wavelengths greater than 5 m are not included in the rms (;alculations. The 

spectra often showed a dominant contribution at wavelengths gremer than 5 m (e.g. Fig. 12 , 

uppcr panel). Contributions at scales greater than 5 marc due to contributions by the ma(;ro­

s(;alc morphology not lx:ing completely subtracted ont using thl: bcst fit polynomial over the 

20 m section, and possible noise contribution due to the waves hitting the CRAO. 

The small-scale morphology in the trough of line 940 is predominantly long 

wavelength megaripples (1.67-5 m), which arc superimposed by shorter wavelength wavc 

ripples. The trough region of line 710 has a more homogeneous ripple pattem in whi(;h nu 

wavelength band is predominates. The seaward slope oflhe bar of line 940 shows the ripple 
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wavelength bands of 0.83-1.67 m and 1.67-5 m are dominant and the nns height is on the 

order of 3 em. Line 710 for the same area again shows a relatively homogeneous ripple 

wavdengths with rms heights of approximately 2 cm. 

The nns devation, 0", can be rdated to the crest to trough heights of the ripples 

assuming the ripple elevations are Gaussian distrihuted and the wavenumber spectra are 

reasonably nanow banded such that the ripples heights are Rayleigh distributed. For 

Rayleigh distributed heights, the significant ripplt: height, r, = 40" and the maximum ripple 

height, rm = 80". These approximations agree qualitatively with the observations 

The CRAB and sonic altimeter data can only observe the small-scale morphology 

directly below The side-scan sonar can observe the small-scale morphology to 

approximately 10-15 ill on either side of the side-scan and therefore aids in a better 

interpretation of the bedfonns present. The side-scan sonar plots of lines 940 and 710 can 

be used to correct the calculated wavelengths acquired from the single altimeter data (Fig 

13). 'I'he side-scan plot of line 940 sho\\>"5 relatively straight crested ripples with wavelengths 

of approximately 50 em crossing at a 30-40 degree angle relative to the shoreline, from the 

southeast, out to the bar. The oorrccted wavelength is calculated L = Acos(90 - a), where I. 

is the measured wavelength in a line perpcndiClllar to shore, and a is the angle to shoreline 

Seaward of the bar, the side-scan sonar observed crossing wave ripples from two directions. 

Ihe measured ripple wavelengths of greater than 0.&3 m were not obvious in the sidc-scan 

For line 710, Ihe side-scan observed the crossing wave ripple pattern for fhe Jenglll of the 

survey line, with the dominant pattern again from the southeast. The ripple wavelength 
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observed on the side-scan plots was generally on the urder ofO.5-\.0 m. Surprisingly, the 

dominant crossing wave ripples observed by the side-scan is only a small contribution to the 

smaH-scale morphology variance. This may indicate the larger, lower wavenumber 

contributions to the variance were long crested ripples pt:rpendicular to shore resulting in low 

sonic reflection in the side-scan sonar. 
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V. OCTOBER 12 MORPHOLOGY 

[be large-scak morphology ofOe!. 12 is similar to that ofOcl. 8. The offshore bar 

is nearly parallel to the beach. but migrated 30 m otfshore to approximately 260·280 III 

offshore (Fig. 4). Although the large-sca!t: morphology is relatively the same for the two 

days, the small-scale morphology is significanlly different due to differences in the wave and 

current processes. Large amplitude megaripples are now present in the trough and no regular 

hedfonn patterns an: observed seaward of Ihe bar for the entire survey area. 

The dramatic differences in the wave and current parame\I:TS for the two days is the 

result ofa second storm which arrived in the area on Oct. 10. On Oct. 9, wave din::ction was 

approximately 30 degrees ITom the south v.ith the period ofthe waves being approximately 

6-7 sec. Waveheights were on the order of 0.5 m and the longshore eurrent~ were weak and 

variable. As the stann arrived, wave direction shifted to 10 degrees from the north with a 

period of6 sec. Waveheights increased to 2 ill and the longshore currents increased to 0.5-

1.0 mls to the south. The strong longshore current which appeared on the 10th is believed 

to be the dominant process which fanned the smaJl-scale morphology present in the trough 

on the 12th 

The small-scale morphology across the surf zone is relatively homogeneous 

alongshore and therefore, the survey area is represented by the cumbined CRAB and 

altimeter profile of line 940 (Fig. 14, lower panel). Detailed current data on line 940 \>o'ere 

acquired several days prior 10 and including the 12th, which is useful in describing the 

temporal evolutioll of the small-scale murphology. The small-scale morphology in the 
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trough compared with the n::gion seaward of the bar crest are distinctly difft::rent. Altimeter 

data for profllc is not available from 210-260 m due to wavt:s breaking on the bar. The 

CRAB sUIVey data is inserted into the profile and therefore the bottom is not as highly 

resolved in this area as it is elsewhere. 

Wavenumber spectra are calculated for line 940 for incremented 20 m sections 

sununed over the three srune wavcnwnbcr bands (Fig. 14, upper panel) in the same manner 

a~ for Oct. 8. The small-scale morphology nus roughness was approximately 3-5 em in tht: 

trough region on the 10th at tht: onset oftht: longshore cum::nt. The rms roughness of the 

12th shov.'S a distinct increase of the rms roughness in the trough as the megaripples 

continued to evolve. The rms roughness is primarily associated with the larger ripple 

wavelengths of 1.67-5 m across the survey line, Ripple wavelengths ofOA-0.83 ill and 0.83-

1.67 m are significant out to approximately 200 m, but due \0 the lack of altimeter data from 

210-260 m, the smaller wavelengths are not resolved Seaward of the crest of the bar, the 

bed is void of any small-scale variations. 

The side-scan sonar observed a sinuous ripple pattern at and nearly parallel to the 

beach (Fig. 15). The ripple patlcrns were only observable in the illiler trough for the survey 

area because of bubbles due to breaking waves on the bar degrading side-scan performance. 

Ripple \vavelengths observed from the side-scan were in the 1 m range. Ripple .."ith 

wavelengths larger or smaller than 1 m were not observed. Ripple patterns were also 

measured using a rotat ing side-scan sonar mounted on the sled, which showed the 

megaripples in the surf zone to be lunate, facing in the direction of the longshore current. 
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VL OCTOBER 20 MORPHOLOGY 

The macro-morphology in the survey area on the 20th shows a dramatic hole in the 

inner bar as a result ofa rip current (Fig. 4). The small -scale morphology is characterized 

by two distinctly different areas of large megaripples in the throat of the rip current with the 

area outside the rip devoid of ripples 

The rip current obscrvoo in the survey area on Oct. 20 slmtl:d to develop on Oct. 14. 

fhe large scale morphology on Oct. 14 is similar to Oct.12 (Fig. 4), and is characterized as 

having straight and parallel contours with an offshore bar approximately 240 m offshore. 

The stonn which started to propagate through the area on the 10th progressed offshore and 

stalled. With lengthening dtmltion of winds, wave heights increased trom 1.6 m on the 14th 

to a maximum of 4 m on the 15th and then tapen:d off to 1.5 m on the 20th. Waves 

throughout this period werc nCll! nonna!ly incident (within 6 dl:grccs from the north or south) 

aJld narrow banded, with the Pl:ak pcriod incn:asing from approximately 8 scc. on the 14th 

to 13.5 sec. on thc 20th (Fig. 2). Normally incident waves are good conditions for rip 

currents to occur, as any alongshore perturbation can cause variable wavc hl:ights alongshorc, 

resulting in variable set-up alongshore. Thc variable alongshore sct-up generates 

hydrodynamic pressure gradients, which art: relieved by rip eurrcnts flowing offshore. 

Longshore currl:nts, as measured from the fixed current meter at linl: 820, wcrc relatively 

wCilk and variable on the 14th and less than 0.5 m/s to the north on the 20th, which appcar 

to be fccder currents to the rip. 
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Observation ofthe temporal evolution of the large- scale morphology is limited dm: 

to the CRAB not being able to operate during the height of thl>: stornl on the 15th and being 

limited to the area inside the bar on the 14th, 16th, and 17th due to large waves. The most 

striking observation is the hole in the bar with the har bowed sea,""md due to the rip current 

The har is parallel to the beach and is located approximately 21 0-225 m offshore north of the 

rip an:u, shifting to greater than 300 m offshore in the rip area. The narrow trough, north of 

the rip area, acts as a rip-feeder channel and has the same small-scale morphological features 

as the rip area 

The dominant small-scale morphology observed in the rip area are seaward facing 

lunate and straight-crested megaripples. The area imml>:diatdy north and south or the rip 

current is void of any disecmab1e small-scale morphology with the exception of the rip­

feeder channel. Representative small-scale morphology in the throat orthe rip current (line 

1030) and thc area away from the rip current (line 785) are shown (Figs. 16 and 17) fortbe 

combined CRAB and altimeter survey profilcs. The features evident in the survey lines can 

be further examined by calculating rms roughness and wavcnumber spectra. 

Wavenumber spcctra are calculated for incremented 20 m cross-shore sections of 

lines 1030 and 785 and summed over three wavelength bands (Figs. 16 and 17). Thl>: m l S 

height of caeh wavelcngth band is again calculated as described for Oct. 8. Typical rms 

roughness values in the rip arca range from 5 to 15 em, which are an order ofmagnitudl>: 

larger than rms roughness valul>:S away fTOm the rip. A contour plot of nns rouglmcss values 

for the survey area is ShO,",,11 in Fig. 18, which displays the extreme variability of roughness 
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in the rip current area compared with that oflhe area away from the rip current. The rip 

current, as qualitativdy ohserved with dye, is superimposed on the accompanying contour 

plot or the macro-scale hmhymctry. lbe region ofmaximwn mlS roughness in the rip area 

is in the trough, extending from the foreshore (200 m) to the offshore bar (300 m) fhe 

average nns roughness for the representative line in the throat orlhe rip was 5 to 8 em. rhe 

bed is essent ially smooth away from the rip curn:n! with mlS roughness values being less 

than 2 em, which appears to be the result of planing action oflhe long period swell. 

In the throat arlhe rip, the nns height aswciated with wavelength bands or0.4-0.83 

m, 0.83-\.67 m, and 1.67-5 TIl all appear to be significant. This implies that several scales 

of ripples are present. The side-scan plot encompa~ses lines 1030 and 980, which arc in the 

throat of the rip and approximatdy 20 m to either side (Fig. 19). the extent o[the plot in 

the cross-shore direction is from approximately 195-285 m, with the area indicatcd by the 

box in Fig. 18. From the side-scan plots, lunate and straight crested megaripples are 

observed rhe wavelength of the ripples as measured from the side-scan plots is 

approximately 1·2 m. Observations of the ripples suggest the rip flowed in a southeast 

direction which is shown by the ripple patterns sOUlh of line 1030. 
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VII. DISCUSSION 

Nielsen (1981) summarized the results ofwavl;.': rippk measurcments in the field. 

relating wave ripple height to the mobility number, \jI 

.; '" 21l/J L IS W> 10 

and ripple wavelength to mohility number 

!:. = exp( 693 - 0.371n '*) 

1000 .. 0 .75In i* 

(2) 

(3) 

where mobility numocr is defined as the ratio of the drag forcc by the wave velocity to the 

force of gravity on the sediml;.':ots 

=~ 
(s - l )gd 

(4) 

and s is the specific gravity of quartz sand, d is the sand grain diameter and (j) is the radial 

wave frcqut:ncy. The excursion ampli tudl;.': ofthl;.': waves at the bottom, a, is calculated from 

linear wav!;.': theory 

~ 
/i~jnh Kh 

(5) 

where H, is significant wave height, K is wavcnumber. and h is depth Wavenumber is 
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related to radial wave fre quency using the dispersion relatiunship from linear wave theory, 

0)" 0= gKtanh Kh. 

Hourly values ofB, at various locations across the surfzunc were calculated for 2-20 

Octobt:r using the model ofThomton and Guza (1983) with input of hourly averaged wave 

height, peak frequency lUld mean direction measured at the 8m array (given in Fig. 2), along 

with hourly tide elevation, and bathymetry measured each day. The mudel has two free 

parameters, 13 and y, corresponding to thc intcnsity of wavc brcaking and the percent of 

breaking waves. The model parameters were calibrated using H, values measured at various 

locations within the surf zone using a pressure sensor mountcd on the sled for Oct. 8, 10. II, 

12, and 20. Onc hour pressure record sprectm ,"\fcre calculated and converted to wave surface 

elevation spectm using the linear wave theory transfer function. H, was calculated as 

H,0=4A, wherc A is the sli.Uldard deviation of the wave band of frequencies (0.05-.5 Hz). TIle 

optimized pammetcrs were 13 '" 1.0 and )' = 0.4. The errors between the predicted and 

measured H, values were less than l5 pereent. which is sufficiently accurate for the 

application here. Hourly values of lJ and A based on calculated \!J val ues were calculated 

using the predicted H, values (Fig. 20), which are used to compare with the measured ripple 

nTIS roughness and rippl e wavelengths. Values are calculated for in the trough, on lOp ofthe 

bar, and offshore the bar. lbe twice daily oscillations in the predicted values are due to 

depth variation of the t ide. For values of 'I' greater than 200, eq. 2 predicts the ripples are 

essentially planed off by the waves. It is <lssumed in comparing the mea~ured nTIS rougJmess, 

0", with the predicted pt:ak to peak ripple heights, ll, r, '" 40" ~ lJ. 



On Oct. 8, the ripple dimensions in the 0.4 to 0.S3 ill wavelength hand were 

reasonably predicted in the trough. Equation 2 overprcdi(;tcd the ripple heights offshore and 

on lOp oflhe bar. The ripples and megaripples of longer \"'avclengths were not predicted. 

This suggests that the megaripples Oil line 910 were residual from some earl ier lime of 

formation and processes, such as on Oct. 3 when a strong long shure current was present. The 

crossing ripple patterns observed may have been the result oflhe bimodal pattern of the wave 

dirt.-ction from Oct. 5-7, in which the waves were propagat ing from both the north and south 

directions or from the earlier storm 

On the 12th, during a lime of moderate storm waves, the small-scale morphology of 

the trough region is characterized by megaripples which are superimposed by smal ler 

wavelength ripples, O( 1 m). TIle predicted ripple heights are planed off across this profile 

based on the large w values. The measured ripples offshorc of the har were planar as 

predicted. However, the measured ripple heights within the trough were significant. On top 

ufthe bar, the altimeter did nul work because ufhubbles. so a comparison can not be made. 

TIle longshore ClUTent was relatively strong as shovm by the longshore current profiles (Fig 

14). The waves and currents in the trough region are nearly perpendicular. Amos et al. 

(1988) found that when waves superimposed with perpendicular or near-perpendicular 

cWTents, two ripple systems may coexist with one or the other being better developed 

i'!l,;cording 10 the relative strength of the I:UTTent. 

lbe small-scale morphology measured in the trough arc similar to the observations 

of Hunter et al. (1979) in the trough region of a barred beach during a time when moderate 
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longshore currents were measured. Hunter et a1. observed seaward-facing lunate ripples at 

the toe of the beach and long-crested ripples seaward of the lunate ripples. They also 

observed, at times, the longshore facing ripples developed in responst: to longshore (1ow 

either parallel or perpendicular to the main longshore current. 

On the 20th, the caleulakd mobility numbt:r is large across tht: surf zone predicting 

a planar bed everywhere. The prediction is in agrt:t:ment ..... ith the measurements outside the 

rip area. However, since in the rip area the megaripples had amplitudes of 10 to 40 em with 

wavelengths varying from I to 2 m, it is inferred that Ihe megaripples were fonned as a result 

oflhe rip current, which dominaled over wave processes in the rip area. The megaripples 

were generally asymmetric with tht: stt:ep slope facing seaward indicating the ripples Wt:TC 

fonned primarily as a result of the rip current. However, some ripples were symmetric while 

others were asymmetric facing toward the beach which may infer a more complex fonnation 

due to a combination curn::nt and wave interactions 
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Vlll. CONCLUSIONS 

Quantitative measurements of small-scale morphology on a baITed beach were 

acquired during the OUCK94 experiment. The measurements were made u~ing a sonic 

altimeter and a sidt:-scan sonar mounted on the CRAB. Corollary wave and current 

measurements were made using an instnllnented sled and ti.'{cd pressure sl:nsors and a 

current meter. Three separate sequences arc examined in which distinctly diffcrcm ripple 

dimensions and bedform types were observed owing to varying wavl: and current regimes 

A qUi.llitative conceptual model for small-scale morphology on a burrcd beach from 

Clifton ([976) is used as a framework for comparison. Clifton's model assumes that the 

beach is homogeneous in thl: alongshore diredion, and thus does not apply to the rip channel 

observed on Oct 20 

The ml:asurements of small-scale morphology on Oct. 8, when mild waves and 

weak longshore currcnts prcvailed, are generally in agreement with the obsl:rvarions of 

Clifton (1976). Clifton identified wave ripples transitioning to megaripples on the seaward 

slope of the bar, a planar bed on the bar crest, and wave ripples in the trough. This model 

hoth compares and contrasts with the observations of lines 940 and 710. Observations of line 

940 indicate Illl:garipples are present in the trough and on the seaward slope of the bar. 

Ripples :lre also prescnt on the bar crest, although the nns height is relatively smaller. 

Observations of line 710 show a relatively homogenous wave ripple pattern across the surf 

zonc with no megaripples pre5elll 
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Oct. 12 is (;haracterized by the occurrence ofa strong longshore nlITenL The small­

scale morphology of the inner trough region is eharacteri7.cd by relatively straight-crested 

megaripples (1.67-5 m) generated by the longshore current, superimposed hy smaller 

wavelength ripples 0(1 m), which is different from Clifton's model. Seaward of the bar, the 

bed was essentially void of rippl es 

Oct. 20 is characterized by a rip current with two distinct areas of small-scale 

morphology . In the throat of the rip current, straight-crested and lunate megaripples were 

observed and had amplitudesoflO-40 em with wavelengths of \-2 m. The area away from 

the rip current was void of any ripple patterns as a result of the planing action of the long 

period swell. 

Wave ripple height and wavelength were cakulated using predictive equations by 

Nielsen (1 9&1 ) at locations within the trough. on the bar, and offshore. The ripple 

dimensions in the trough region on Oct. 8 were reasonably predicted, as wave processes were 

dominant. The equations, however, did nol predictlhe megaripples present in the trough or 

seaward slope ofthe bar in the northern part of the survey an:a. Megaripples were observed 

in the current-<lominated regions of the nearshore for Oct. 12 and 20 and, therefore, Nielsen's 

equations arc not expected to predict these features. The equations were able to predict the 

lack of ripplcs observed away from the current-dominated regions on the 20th 

The wavenumber spectral results infer a spatial and temporal variabili ty of ripple 

dimensions in both thc cross-shore and alongshore directions. The wavenumber spec Ira were 

generally broad, indicating that several ripple wavelengths coexisted as a result of newly 
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formed ripples combim:r.\ possibly with residual ripples from the past to form a complex 

series of ripplt patterns. 

TIle DUCK94 experiment was a pilot study which represented a first attempt to make 

quantitative, multi-scale measurements of nearshore morphology. Results of the data 

acquired during the experiment indicate that reliable, quantitative measurements of small­

scale morphology are obtainable using acoustic methods, even during stanns and in rip 

currents 

In the upcoming Sandy Duck experiment, to be conducted in 1997 at the same beach, 

as m linear arrdY of seven altimeters will be mounted across the back of the CRAB. 1\ 

digi tal recording, 500 kHz side-scan sonar will also be mounted on the CRAB. The array 

of altimeters v.ill allow calculating 2-D directional spectra o f the small-scale morphology to 

obwin robust height and direction statis tics. The digital side-scan will aliowenbaJlel;.":lllelll, 

rectification, and mosaicing of the images 
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Figure 1. Conceptual model of small-scale morphology observed on a barred beach (trom 
Clifton, 1976) 
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Figure 2. Climatology during the October phase of the DUCK94 experiment. Currents were 
measured trom the middle orthe trough. His signitkant wave height and T is the period of 
the peak frequency mca~urcd in 8 III depth 
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Figure 3. CRAB and instrumented sled on the beach during the OUCK94 experiment 
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Figure 4. Three-dimensional hathymetry profiles of the survey area as mapped by the CRAB 
for the three days considered (Oct. 8. 12.20). 
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Figure 6. Expanded section of filtered altimeter data for OCI. 20, line 1030 
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Figure 7 . (a) Empirical transfer func tion of a three point rulUling median filter calculated 
using altimeter data compJred with the spectral transfer fUllctions of a rulming mean filter 
with varying averaging lenglhs 
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Figure 10 Band limited rms heights calculated across line 940 for Oct. g (upper panel). 
Combined CRAB and alt imeter profile of lin~ 940 for Oct. 8 (lower panel ) 

45 



" W 
t-,. 
:J 

" Z 
<t 
<D 

I 
:J: 

~ 
" 

J -.-. L=OA- O.83 m 

+++ L=O.83-1.67 m 

~ L=1.67- 5.0 m 

••• , L=0.4-S.0 m 

160 180 200 220 240 260 280 300 320 

-1 

-2 

-3 

- 4 -~ ~-~-~ - _ _ - _-

160 180 200 220 240 260 280 300 320 

CROSS- SHORE DISTANCE (m) 

46 



I 

~l 
~ 150-240 m 

'" a: ... 
u 
~ 
U) 

" w 

" '" a: w 
> 
'" 0.5 1.5 2.5 

'" "lJL a: ... 
~ 
U) 

III 
" '" 

~~OO" 
a: 
w 
> 

'" 
0 0.5 1 1.5 2 2.5 

WAVENUMBER, k (11m) 

Figure 12. Averaged wavenumber spectra in the trough rtgion and seaward slope of the bar 
region for line 940 for Oct. ~. 
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Figure 13. Side-scan sonar plot for lines 940 and 710 for Oct. 8 
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Figure 15 Side-scan sonar plol for line 940 for Oct. 12 . 
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Figure 17. Band limited nns heights calculated across line 785 for Dc\. 20 (upper panel). 
Combined CRAB and altimeter profile of line 785 for Oct. 20 (lower panel) 
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