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ABSTRACT 

The Fleet Numerical Meteorology and Oceanography Center (FNMOC) has 

the charter to provide Special Sensor Mierowave!lrnager (SSM£) data 10 the DOD 

and the NOAA. This has led FNMOC to examine new methods for processing 

SSM/I data to generate SSM!l products. Of particular interest is the ability to usc 

!.he SSM![ to remotely sense ocean surface winds. 

For this study four candidate wind retrieval algorithms initially proposed at 

the SSM!] Algorithm Symposium held in June, 1993 are examined for potential 

implementation at FNMOC. Previous calibration/validation srudies of the efJicacy 

of wind speed algorithms focused on regional (mid-l atirude or tropical) data sets 

prompnng the requirement 10 develop a more encompassing, global data set on 

which 10 evaluate the proposed algorithms. 

Comparisons of SSYt/I wind retrieval methods reveal Ihat the current FNYtOC 

operational algorithm overestimates wind speeds when atmospheric water vapor 

content exceeds 50 kg/m!. �A�d�j�u�s�n�n�e�n�l�~� made to this algorithm effectively mitigate 

the high wind speed bias, but at the cost of eliminating a sigllificant amount of data. 

Neural network algorithms display high wind speed bias for winds above 11 rnJs 

and low wind speed bias for winds below 4 m/s. TIle performance of neural 

network algorithms is largely independent of atmospheric moisture content. Anew, 

global training data set is necessary to enable neural network algorithms to perform 



properly over the full range of global wind speeds. The use of brightness 

temperature-based rain flags are recommended for use in all wind speed retrieval 

methods. 
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J. �I�J�\�'�T�R�O�n�U�C�T�l�O�~� 

lvf icrowave5, a generic term that includes centimeu::r, millimeter, and subrnillimeter 

wavelength regions of the electromagnetic �~�p�e�c�t�n�l�l�n�,� play an important role in the remote 

sensing of the Eanh's atmosphere. �M�i�c �r�o�w�a�v�e�~� penetrate clouds, for example, and are 

therefore able to provide an all-weather measurement capability. Additionally, �m�i�c�r�o�w�a�v�e�~� 

provide a direct means for the determination of cloud water content. Early aircraft and 

satell ite flights showed that passive microwavl;; radiometers could be used to detect 

microwave energy emitted by the Earth's oceans, and that �t�h�e�~�e� emissions could, in turn, be 

med to develup algorithms 10 retrieve ocean surface wind speeds 

Microwavl;; radiometry of Earth from satellites began with the 1968 launch of 

Cosmos-243 and the 1970 launch of Cosmos-384. These Soviet satellites contained a nadir

viewing instrument having four channels with frequencies between 3 5 and 37 GHz, and 

provided detenninations of water vapor and cloud liquid water over the oceans in addition 

to surface parameters. The first U,S, microwave imagers to evaluate the dynamics of the 

ocean surface from space were the electrically scanning microwave radiometer �( �E�S�~�'�1�R�)� 

systems aboard �~�'�D�v �m�U�S�-�5� (1972) and NThmUS-6 (1975) satellites (Janssen, 1993) 

In 1978, the first scanning multichannel microwave radiometers (SMMR) were 

carried aboard the SEASAT -A and NThfB US-7 satelli tes The S;\-tMR contained fi ve 

channels with dual polarization at frequencies from 6.6 to 37 GHz, and provided the first 

multi wavelength observations in the atmospheric "window" regions of the microwave 

spectrum, Sea-surface temperatures and wind speed were obtained from the 6.6 and 10.7 

GHz measurements Despite some limitations. the SI\.1}vlR clearly demonstrated the 

capability to remotely sense ncar-surface ocean wind speeds (Janssen. \993) 

Following the S\1MR, a Special Sensor Microwave/Imager (SSMfI) was built by 

Hughes Aircraft Company (HAC) under the direction of the Naval Space Systems Act ivity 

(NSSA) and the A ir Force Space Division as part of the Defense Meteorological Satelli te 

Program (DMSP) The SSM/I represents a jo int Navy/Air Force operational program to 



obtain synoptic maps of critical atmospheric, oceanographic, and selected land parameter;; 

on a global scale, including the measurement of local and large scale variability of ocean 

surface wind speeds for ridge, front, and storm weather systems (Hollinger e\ aL, J 987) 

The SSM/] has a higher frequency range for microwave energy detection than the S\11\.fR 

and Niice the swath width. The first SSMII was launched in June of 1987 aboard DMSP 

spacecraft F8. Identical ssrvllI instruments have subsequently been launched aboard DMSP 

spacecrafts r 10 (1990), F I I (1992), F 12 (1994) and Fl3 (1995) 

Ihe earliest SSMl wind speeJ retrieval algorithm was developed by Environmental 

�R�e�~�e�a�r�c�h� and Technology, Inc (ERT) for Hughes and is termed the f)-matrix algorithm 

This multi-channel linear regression algorithm employs nine distinct climate codes 

segmented according to season and latitude band. Because microwave radiation at SSM!J 

frequencies is susceptible to attenuation by rain, which masks the wind speed signarure 

generated by waves and foam on the ocean surface, ERT suggested the use of a "rain flag" 

for the purpose of identifying conditions under which less accurate wind speed retrievals afe 

produced (Lo, 1983 and Hollinger et aI., 1987) 

;'\Jot long after the launch of the first spacecraft with an SSMil instrument aboard, 

DMSP undertook to calibrate and validate the SSM/I. wind speed retrieval algorithm 

developed by ERT. Validation of the D-matrix algorithm was done using the anemometer 

�m�e�a�.�~�u�r�e�d� winds of open ocean buoys maintained by the National Oceanic and Atmospheric 

Administration (NOAA) _ The results of the D-matrix algorithm validation indicated that it 

possessed a high wind speed bias and exhibited significant discontinuity across dim ate code 

boundaries (Hollinger et aL, 1991). To correct these problems, new coefficients for the D

matrix algorithm were developed, in 1989, by Goodberl et et aI., to bring the wind speed 

retrieval accuracy to within the DOD specified requirement of:l:2 mls under rain free 

conditions The Goodberlet algorithm is the algorithm currently employed at the Fleet 

NLl1nerical Meteorological and Oceanography Center (fNMOC) . Subsequent modifications 

to the Goodberlet algorithm were completed by Goodberlet, Swift and Wilkerson in 1 ')02 

In addition to traditional regression-based algorithms, attempts have been made to 



�r�e�t�r�i�e�v�~� wi nd speeds from SSMJ1 data using artifi<:ial intelligence - specifically, neural 

networks The usc of neural networks to perform wind speed retrieval was first 

demonstrated by Dawson and Fung (1993) The first neural nehvork �d�e�v�e�l�o�p�~�d� specifically 

fo r use with SS,\Vl data was <:onstructed by Stogryn et al (1994) and showed a 30% 

increase in wind speed retrieval accuracy in non-precipitating conditions. f,,'lore recently, 

a single "all-weather" neural network was developed by Krasnopolsky et a1. (1<)94), that 

achieved similar accuracies 

The regression algorithms and neural networks used to retrieve ocean wind speeds 

from SSMfI data have all been developed and tested using the �~�a�m�e� SSM!l - NOAA buoy 

pair data base used to validate the original D-matrix algorithm, These data consist of 

brightness temperarures from spacecraft F8 during the period 10 July 1<)87 through 31 

March 1988, and in-situ measurements from NOAA buoys that lie predominately in the mid

latirude ocean region. The lack of algori thm val idation against buoys in equatorial regions, 

where lower wind �s�p�~�e�d�s� and higher atmospheric moisture dominate, was recognized at the 

SS!v!/1 Algorithm Symposium held in June 1993, as was the need for an expanded data set 

that would encompass regions varied enough for the SSM!! - NOAA buoy pair data set to 

�b�~� considered truly global 

ro address the need for validation of wind speed retrieval algorithms in the lower 

wind speed, high moisture regions, Sayv.'ard (1994) examined data from equatorial TOGA 

buoys for the three month period Sep-Dcc 1991. This initial work revealed problems at low 

wi nd speeds, indicating a need for further study The goals of this �~�t�u�d�y �,� �t�h�~�n �,� are to 

a) compile an expanded data set of SSi\'1I1 - NOAA buoy pairs in mid-l atitude 
�r�e�g�i�o �n �~� 

b) compile an expanded data .,et of �S�S�~�1�/ �1� - NOAA buoy pairs in equatorial 
reglOns 

c) combine the individual mid- lati tudinal and �~�q�u�a �t �o�r�i�a�l� SSM/l- NOAA buoy pair 
data sets into a single global data set 

d) �e�v�a�h�l�a�t�~� the performance of the followin g wind retrieval methods over a global 
data set 

Calibration Validation algorithm (CV) 



- Goodberlet, Swift, �W�i�l �k �~�r �s�o�n� �i�m�p�r�o�v�~�d� algorithm (GSW) 
Stogryn, Hutler, Bartolac !\'eural Network (SBB) 

- Krasnopolsky, Breaker, Gemmill Neural Network (:,\7-.1C) 

rhe fo ll owing �c�h�a�p�t�~�r� �g�i�v�e�~� an overview of the physics of microwave radiometry, 

provides background information on the NOAA buoys used in this study, introduces the 

reader to neural networks, describes in detail the four competing wind retrieval �m�~�t�h�o�d�s� 

algorithms, and provi des a detailed description of the SSM!! instrument. Chapter III 

describes the method used to obtain SSW] - NOAA buoy pairs for study, and the methods 

used to compare the dif ferent wind retrieval methods_ Chapter IV discusses the result s of 

the wind �~�p�e�e�d� retrieval comparisons. Chapter V analyzes the results, Finally, Chapter VI 

presents conclusions and recommendations. rigures and tables ill ustrating the comparison 

results are contained in Appendix A and B respectively 



n. BACKGROUND 

A. THEORY 

I. Sources of Thermal Radiation 

All objects in the physical universe which are not at absolute zero temperature radiate 

energy in the form of electromagnetic waves. Some of that energy is transported as energy 

in the microwave region (4-100 GHz) To �u�n�d�e�r�~�t�a�n�d� how and why passive microwave 

radiometers are used to remotely sense the ocean surface, it is necessary to first understand 

radiative transfer theory Radiative transfer theory describes the intensity of radiation 

propagating in a general class of media, of which the ocean is a constituent, that absorb, 

emit and scatter radiation, In the theory, the intensity or "bri ghtness" , \,vhich is a flow of 

energy across a unit area, per unit frequency for a blackbody medium, follows from Planck's 

law, which describe; the wavelength and temperature dependence of radiation emitted from 

a blackbody (Janssen, 1993) 

(1) 

B = radiance 
k = Boltzmann's Constant 
v= frequency 
h = Planck's constant 
c = speed of light 
T == temperature 

In the case of microwaves, however, hv K k1' This is known as the Rayleigh-.leans 

limit and allows equation (1) to be approximated as 

(2) 

The �~�i�g�n�i�f�i�c�a�n�t� feature of the Rayleigh-Jeans limit is the linear relationship of the Planck 



function with physical temperatme. In the case of the Ol:ean, which is an only moderately 

reflective surface, its thermal emission is reduced by its tmissiyity 10" which is a function 

of incidence angle, sea surfaee temperature, and salinity. For an isothermal surface yiewed 

at an angle 0, tlle emitted radiation, T" depends only on the product of the temperature T, 

and the emissivity 10, of the surface 

(3) T, = E, T, 

Insel1ing equation (1) into equation (2) gives the ocean radiance, I, 

(4) L,CD 

L = ocean radiance 
k = Uoltzman's Constant 

c -

T, = surface temperaUlre 

Thl;': thl;':lmal radiation spt'ctrum reeeivl;':d by a passive microwave radiometer is 

comprised of three primary components I) surface emitted and rctlected radiation, ::) 

upwelling atmospheric radiation, 3) reflected downwelling atmospheric radiation (Figure 1) 

If e is the local zenith angle on Earth yiewed by the satellite inslruml;':nl and the Z· 

direction is normal to the Earth's surface, then the equivalent blackbody [I;':mpt'raturl;': of this 

radiation may be expressed (Grady, 1993) 

wherl;': 

TB = total 
T" -
T = reOected radiation 
T, - reflected downwelling radiation 

e ' - transmittance function 



The quantity (c) is the atmospheric opacity or the relative caracity of atmospheric 

constituents (oxygt!n, water vapor, clouds, or rain) 10 obstluctthe �t�r�a�n�~�m�i�s�s�i�o�n� of radiant 

energy. At mi(;rowave �f�r�e�q�u�e�n�c�i�e�~� away f rom absorption maxima, and under most 

atmospheri(; wnditions ex(;ept modt!nlte to ht!avy rainfall , the opacity is smal l . The reflected 

and emitted radiation from the surface are ditTicult to treat analytically �b�e�c�a�u�~�e� of multiple 

scattering due to surface roughncss and inhomogeneities withi n the material. 

2, Ocean Surface Microwave Emissiun 

For infen-ing wind speed at the ocean surface, the surfact! emissivity, €, is the single 

most impol1ant parameter, Winds act on toe ocean surface to generatt! surface waves which 

increase in amplimde wilh increasing wind speed, As the waves grow, roughness elements 

associated with tht!se waves also increase. Eventually, the waves begin to break forming 

whitecaps and foam which tend 10 scatter the emitted surfa(;e radiation. Foam, which is a 

combination oC air and water, has a lower reflectivity than pure water and, thercfore, a 

higher emissivity (K lasnopolsky et al,1994) 

1'0 determine the amount of microwave emission from the ocean surt'ace, 

relationships may be developed based upon the knowlt!dge that microwaves seldom exceed 

penetration skin depths of greater than I ern For this reason, the ocean may be assumed to 

be semi-infillite. homogt!neous, and �i �~�o�t �h�e�r�m�a �!�.� Since all transmitt t!d cnergy is eventually 

absorbed in a semi-infinite, homogeneous conducting medium, absorption can be defined 

(6) - I - R 

Ifone further �a�"�'�~�u�m�e�s� the ocean surface is at thermal equilihrium, then the rale of emission 

from the surface is t!qual to Iht! rate of �a�b�~�o�r�p�t�i�o�n� at the surfact! and equation (6) may be 

(7) R '" 1 ,'" , 



where E is the emissivity from the ocean surface 

For a calm sea surfa!.:e, microwave emissions as a function of �i�n�e�i�d�e�n�(�;�l�.�~� angle are 

highly polarized. At the SSMII viewing angle of 53 degrees, for example, the emissivity for 

vertical polarization is nearly twice that of horizontal polarization (Fib'Ure 2). This large 

polarization difference is exploited to distinguish ocean surfaces from other surfaces or 

atmospheric particles where scattering of the microwaves reduce polarization differences 

Over smooth water surfaces the reflectivity is calculated from the Fresnel coefficients for 

a plane dielectric interface 

(8a) ',0 [I c.'" 0 - �~ �r� 
�E�w�C�(�)�~� e + JE .. - unl e 

C8b) 

where 

r. = vertical polarization 
rio = horizontal polarization 
Ew = complex relative dielectric constant 

A commonly used linear approximation to ocean surface reflectivity is 

(9) �r �~� = 0.638 - 0.00272\l 

where v is frequency in GHz. Owing to the difft!.:ulties of characterizing the shape of wind 

roughened surfaces and the complexity of electromagnetic interactions with any reasonably 

realistic representation of the wave shape, models that rely on empirical corrections based 

on experimentally derived relationships between brightness temperature and wind speed 

have been developed 

Three mechanisms affect emissivity from a rough ocean surface rhe first of these 



results from surface waves having long wavelengths compared to microwaves These 

surface waves change ,he local incident angle and mix the horizontal and vertical 

polarization states (Wentz, 1992) A second roughness mechanism is the diffraction of 

microwaves by surface waves that are small compared to radiation wavelength, called Bragg 

difl'raction The third mechanism is due to foam from breaking waves 

rhe individual contributions of these three mechanisms to total brightness 

temperature varie,'; with incidence angle of the radiome:er and the ocean's physical conditio n 

at the surface At low incidence angles «20 deg), specular reflections from long ocean 

waves of comparable slope dominate. From 20-60 dcg Bragg roughness effects dominate 

ocean surface emissions_ As foam forms on the ocean higher brightness temperatures are 

generated. Because foam consists of a mixture of air and water, the average dielectric 

constant of foam is much less than the value of water. Since the dielectric is lower the 

refl ectiv ity is also lower, therefore, the brightness temperature is higher (Swift, 1990). If 

there is no foam on the surface only the brightness temperature of the water is measured

nOllnall y around 110 K; but ifthc ocean surface is 100% foam covered, then the true water 

temperature is measured - at �t�e�m�p�e �r�a�t�u�r�e �~� around 290 K Thus, there is a substantial swing 

in brightness temperatures, Since the percent foam coverage increases with surface wind 

speed, this difference in brightness temperature may be used to determine ocean wind speed 

Ocean foam, which is nommlly present for wi nd speeds w (measured at 20 m above 

the ocean sUlface) greater than �~� 7 mis, is modeled as a perfect blackbody (1.0= I) , and wit h 

a frequency-dependent effective fractional surface coverage, /, (Gasiewski, 1993) 

(10) 1
0.006 (1 - e - <IV,) (w - 7); w?:.7m/s 

f, 0 

" w-< " _·' · 

where \-'0 = 7.5 GHz Due to the impact ofwifld-ifld uced foam and surface roughness, the 

emissivity of the ocean increases from 0.50 to 0.55 for winds ranging from calm to 20 m/s. 

A simil ar increase in emissivity results from a decrease in sea-surfactl temperature, so that 



the total �e�m�i�~�~�i�v�i�t�y� variation is ± O,OS about an average value of 0.55 (Grody, 1993) 

Horizontally polarized �b�r�i�g�h�t�n�e�~�s� lI:mperatures for rough and foam covered ocean 

surface display an increase over smooth surface values, �r�e�g�a�r�d�l�e�~�s� of radiometer viewing 

angle (Holli nger, 1971) Vertically polarized brightness temperatures do not vary 

monotonically with angle. For rough ocean surfaces viewed at angles �l�e�s�~� than 50 deg, 

venical polarization temperature increases with roughness, At viewing angles greater than 

50 deg vertical polarization temperature values decrease for rough ocean surfaces. It is 

because of this phenomenon that space radiometers view the ocean surface at approximately 

50 deg, This viewing angle serves to minim ize surface roughness effects and increase 

sensitivity in brightness temperature to foam generation No fewer than four oceanographic 

studies confinn that the percentage of foam increases with increased wind speed, and hence 

there is a relationship between wind speed over the ocean and the brightness temperature 

received by a passive radiometer (Figure J) 

3. Atmospheric Transmission 

Energy that is radiated and reflected by the ocean through the atmosphere, is 

subjected to attenuation and absorption by atmospheric constituents. Indeed, absorption of 

microwaves by atmospheric constituents provides the physical connection into the 

atlllosphere that is exploited for remotely sensing its properties. In attempting to measure 

�b�r�i �g�h �t�n�e�.�~�s� temperatures for usc in wind-speed retrieval algorithms, water vapor and liquid 

water, both in the form of cloud water and rain, play important roles. High levels of 

atmospheric moisture tend to affect the accuracy of �h �r�i�g�h�t�n�e�~�s� temperature levels received 

at the radiometer resultin g in inaccurate wind speeds. The magnitude of these processes 

depends upon wavelength, drop size distribution and precipitation layer thickness 

a. Precipitation Effects 

Rain, when present is the primary source of atmospheric attenuation when 

vi ewing the ocean surface f rom space at frequencies less than 50 GHz (Grod)", 1993). The 

attenuation results from both absorption and scattering hy hydrometeors (i-Io ll ing!:r, 1(87) 

Hydrom!:teors can be classified into a few distinct categories (Gasiewski, 1993) 
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I. Small liquid droplets of radius less than - 50 �~� m, typical of nonprt:!.:ipitating 

cumulus and stratus clouds, fog, and haze 

Oblately �~�h�a�p �e�d�,� liquid precipitation, of radius between SO �~� m and - 5 mm 

3 Frozen pa11icies ofradiu.> less than �~� I mm 

4 Frozen �p�a�l�1 �i �c�l�e�~� of radius between I mm and - 10 mm 

Liquid hydrometcors of radius less than - 50 �~� m absorb microwave radiation 

appreciably but scatter very litt le. Under th is condition, the attenuation is independent of 

droplet size as long as the total mass of water droplets in a given volume rt:mains the same 

The radiative transfer of min ow ave energy through small cloud droplets can, therefore, be 

analyzed in the 5ame manner as through a hydrometeor-free atmosphere where only 

absorption and emission occur 

For larger liquid hydrometeors (e.g. rain) or most frozen hydrometeors (e.g 

�~�n�o�w �,� hail , and cirrus ice), the droplets are large enough so that microwave �~�c�a�t�l�e�r�i�n�g� can 

be signifi cant, pal1icularly at high frequencies (Gasiewski, 1993). Over oceans, the 

variations in emissivity due to wind-generated roughness and foam are small compared to 

tht: changes in transmittance due to water vapor and liquid water. Therefore, the liq uid 

water content of �c �l �o�u�d�~� and rain can be obtained from dual fn:quency measlJrements, where 

a second channel �m�u�~�t� be used to account fo r the water vapor contri bution 

Contrasts between rain and its surroundings allow for discrimination hetween 

rain and nonraining clouds �~�i�m�p�l�y� from in!.:reases in brightness temperature. Warmer, more 

�e�m�i�s�~ �i�v�e� precipitating regions over sea surfaces possess brightness temperatures that arc so 
K greater than dear areas. Absorption due to oxygen is relatively small �~�o� that absorption 

depends primarily on vertically intt:grated l iquid water Q due to rain and cloud �d�r�o�p �l �e�t�~�,� and 

intt:grated water vapor V The opacity through the atmosphere can be approximated as 

(1 1) - (VIV. + QIQ) 

where the coefficients V"and Q, depend on the frequt:ncy and can be determined using 

atmospheric models The li quid water parameter also depends on cloud tempcrature and 
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drop size 

b. Water Vapor 

The complex vibrational-rotational absorption spectrum of water vapor, 

together with relatively large concentrations of water vapor in the lower atmosphere, account 

for the dominance of this gas in the spectrum extending from the near infrared spectral 

region beyond the far infrared into the microwave region. The water vapor molecule has an 

electric dipole moment which causes resonance absorption peaks in the microwave region 

at 22,235 GHl and 183 GHz. The amount of absorption depends on the number of 

molecules present (the humidity), An increase in water vapor can result in an inaease of 

up to 100 0 K in brightness temperature at 22 GHz on humid days (Swift, 1990) 

B. OCEAN BUOYS 

1. National Data Buoy Center (NDUC) 

During the 1960's. about SO individual buoy programs were conducted by a variety 

of ocean-oriented agencies. In March I %6, the Ocean Engineering Panel of the Interagency 

Committee on Oceanography recommended that the United States Coast Guard (USCG) 

investigate the feasibility of a consolidated national data buoy system. As a result of that 

investigation, the National Council for Marine Research Resources and Engineering 

Development endorsed the formation of the National Data Buoy Development Program 

(NDBDP) in 1967. The !\'DBDP was created and was placed under the control of the 

USCG 

In 1970, the National Oceanic and Atmospheric Administration (NOAA) was formed 

and the NOAA Data Buoy Office (NOBO) was created. In 1982, the NOBO was renamed 

the National Data Ruoy Center (NOBC) and was placed under the NOAA's National 

Weather Service (N\\,S) 

The first buoys deployed by i'\'DBC were large 12-meter discus hulls constructed of 

sleel These were generally deployed in deep water otl" of the US Eaq Coast and in the 

Gulf of Mexico. The measurements taken by sensors aboard these buoys include barometric 

pressure, temperature, and wind speed and direction By! 979, sixteen stations were 
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deployed in the Pacific , seven in the Atlantic, and three in the Gulf of /I.'lexico. Eight more 

stations were deployed in the Great Lakes after 1979_ In addition to 12-meter �b�u�o�y�~�,� 3 and 

10 meter buoys have also been designed (Figure 4) As of February, 1995, 70 NOnc 

moored buoys were in operation 

Moored buoys are deployed in the coastal waters from the western Atlantic to the 

Pacific Ocean around Hawaii, and from the tiering Sea to the SOUlh Pacific NUBC's 

moored buoys measure and transmit barometric pressure: wind direction, speed, and gust; 

air and sea temperarure; and wave energy spectra from which significant wave height 

dominant wave period, and average wave period arc derived 

Meteorological sensors aboard moored buoys are normally located at the ten meter 

level for Ihe 10 meter and 12 meter buoys. However, barometers are located inside the hull 

at the water level. Sea surface temperature sensors are located at a depth of one meter 

To conserve power, sensors installed on moored buoys generally do not continuously 

measure and rerurd data. Rather, for most :\'DBC buoys, an eight minute period is used for 

data collection by on-hoard sensors_ Prior to 1993, the observation time was simply the 

nearest hour. Beginning in August, 1993, the official observation time was moved to 

coincide with end-of:data-acquisition time Sensors are calibrated prior to deployment and 

are replaced with recently calibrated instruments after two years of operation 

The payload carried aboard NDBC varies The term "payload" refefs to the 

electronic system used to acquire the data, format it into a message, and then transmit the 

message to the satellite_ The payloads are as follows: GSBP -- General Service Buoy 

Payload; DACT -- Data Acquisition Control and Telemttry; VEEP -- Value Engineered 

Environmental Payload, MARS -- Multi-functional Acquisition and Reponing System 

Two averaging methods are used to cakulate wind speed. The first technique applies 

to those measurements reported by all DACT and VEEP payloads. In this method, the 

average wind speed is the simple scalar average of the wind speed observations The second 

method, llsed by the majority of NDBC �b�u�o�y�~� employed in this study (those outfitted with 

the GSBP payload), is a true vector average In this procedure, the magnitude of the vector 
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is represented by the wind speed observation and the direction observations are used for 

orientation. The ve(;!ors are then broken down into their u and v components, All u and v 

components are then averaged separately, The resultin g average speed and direction are 

calculated from the Pj1hagorean theorem and "arctan(v/u)", respectiv ely (Gilhousen, D,B, 

1987) 

The electronic payloads instalk>d on moored buoys generally transmit data to one of 

the NOAA 's Geostationary Operational Environmental Satellites (GOES) each hour. The 

(',rOES relays the data message to the NESDIS Data Acquisition Processing System (OAl'S) 

at Wallops Island, VA Next, OAFS sends the data to the National Weather Service 

Telecommuni l:ations Gateway (NWSTG) where gross data quality l:ontrol is performed 

before the data are distrihuted in meteorological codes in real time (less than 30 minutes) 

NWSTG also sends the raw satellite and the NWSTG quality contro ll ed data to 

NOBC where the data are recomputed from the satellite mtssage, and are put through a 

series of automated and manual chel:ks, The result is that data processed and an:hived at 

NDBC are of a higher quality than the real time data disseminated by 'l'WSTG (Figure 5) 

Archived NDBC data is available on CD-ROM 

ND BC moored buoys are each assigned a World Meteorological Organization 

(WMO) station identifier composed of five numeric characters. For moored buoys these 

identifications are location specific. WMO identifiers are in the form of "&&###" where 

"&& " represents a WMO oceanic or conti nental region and ### denotes a specific location 

(e,g" 46042, 4100) With respect to regions, 32 denotes stations in the Pacifi c off the coast 

of South America, 4\ -- the Atlantic offofthe southeast U,S, coast, 44 -- the Atlantic Ocean 

nonh of Notth Carolina, 42 -- the Gulf of Mexiro, 45 -- the Great Lakes, 46 the US coastal 

Pacific Ocean, 51-- the Hawaiian Islands, 52 -- Guam. 

Z. Tropical Ocean-Glohal Atmosphere (TOGA) 

The widespread and systematic innLlence of the EI-Nino-Sollthern Oscillation 

meteorologic phenomenon, which is characterized by a weakening of tht trade wi nds and 

warming of the surface layers in the equatorial Pacific Ocean every 4-7 years, led to the 
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initiation of the Tropical Ocean-Global �A�t�m�o�~�p�h�e�r�e� (TOGA) Program The TOGA program 

was de5igned a;; a ten-year study (1985-1994) of climate variability on �s�e�a�~�u�n�a�l� to 

interannual time scales, wh05e �~�u�c�c�e�s�s� relied upon the a<.:<.:urate measurement of ocean 

surfa<.:e winds, sea �~�u�r�f�a�c�e� temperarure, upper ocean heat content, near-surface currents, and 

5ca level in the tropical Pacific ocean 

Plans for TOGA in the early 1980's called for an o<.:ean observing system that would 

rely on an increa;;ed utilization of satellite products, in particular for .';urface winds, SST and 

sea level, and on the development ofa "thin monitoring" array of in �~�i�t�u� measurements based 

on an enhancement of existing capabilities The in situ array would specifically include a 

volunteer observing ship (VAS) , expendable bathythermograph (XllT) program, a tide 

gauge network, a driftin g buoy program, and, most importantly, about 15 moorings located 

principally in the eastern Pa<.:ific (Figure 6) (U S TOGA Project Office, 1988) 

rhe need for improved in ,iru observational capabilities in TOGA motivated Dr 

Stanley P Hayl:S of the NOA.A..'s Pacific Marine Environmental Laboratory �(�N�O�A�A�!�P�~�f�E�L�)� 

to develop a wind and thennistor-chain mooring capable oftelemetering �i�t�~� data to �~�h�o�r�e� in 

real-time. He also conecived and directed the implementation of a basin-scale nehvork of 

these moorings, which he called the TOGA Tropical Atmosphere Ocean (TAO) array 

(Hayes et aI., 1991). TOGA-TAO far exceeded in scope what had been originally 

anticipated as a moored array component to the TOGA observing system. By December, 

1994 TAO consisted of70 moorings supported by a multi-national base. Beginning in 1989, 

relative humidity sensors were added for srudies of atmospheric boundary layer dynamics 

and air-sea exchange processes Expansion of the array was achieved during the second half 

ofTOGA (\990-1994) 

TOGA was intended to examine long-term oceanographic phenomena. T herefore, 

the standard output was a daily averaged wind speed. However, some buoys were equipped 

with onboard storage that allowed retrospective instantaneolls (6 minute) measurements of 

wind speed suitable for this �~�t�u�d�y� 

TAO data arc made available to the research community directly from PtvlEL via 
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Internet file transfer protocol (ftp)procedures,andviaadial-up phone line data base. In 

addition, PMEL retransmits a subset of the real time TAO data stream on the Global 

Telecommunications System (GTS) by Service Argos, so that the meteorological 

measurements are available for assimilation into atmospheric numerical weather prediction 

at places like the FLENlJ11r-.1ETOCCEN (Figure 7) 

C. SPECIAL SENSOR �~�n�C�R�O�W�A�V�E�/�I�M�A�G�E�R� 

Instrument Description 

The first SSM!I instmment was flown aboard DMSP spacecraft 1'8 in 1987 (Figure 

8) Today, identical SSMII instmments are in orbit aboard spacecrafts FlO, I'll, Fl2 

(failed) and F 13. This study used SSM/l data obtained from spacecrafts 1'8, FlO and Fl i 

DMSP satellites are in sun-synchronous, near-polar orbits at an altitude of 

approximately 833 km (Figure 9) The spacecraft has an orbital angle of inclination relative 

to the equatorial plane of98.8" and an orhit period of 102 minutes, producing 14. I full orbit 

revolutions per day The radiometer scans conically at an angle of 45 degrees from the 

spacecraft resulting in an observation angle of incidence of approximately 53.1 ' The 

SSM/I rotates continuously at 31 .6 rpm about an axis parallel to the local vertical and 

measures surface brightness temperature over an angular sector of 10240 about the sub 

satellite track. The scan direction is from left to right when looking in the aft direction of 

the spacecraft with an active scene measurement lying ±51.2 0 about the aft direction. This 

results in a swath width of 1400 km. The SSM/! moves along the sub-satellite track in the 

negative 'V' direction at 6.58 kmlsec which results in a separation between sllccessive scans 

of 12.5 km along the satellite track direction and is nearly equal to the resolution of the 85 

GHz heams. During each scan 128 unifonnly spaced samples of the 85.5 GHz channels are 

taken over the scan region. Radiometer data at the remaining frequencies are sampled every 

other scan with 64 uniformly spaced samples being taken. Scan A denotes scans in which 

all channels are sampled while Scan B denotes scans in which only the 85.5 GHz data are 

taken 

f igure 10 shows the satellite subtrack coverage over successive days There are 
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small unmeasured �~ �i�f�(�.�:�u�l�a�r� sectors of 2.4 0 at the north and south poles (Hol li nger 1991) 

One �~�p�a�t�e�c�r�a�f�t� wi ll not cover the entire surface every day, but horizontal coverage is dense 

enough for deriving wi nd speeds over most of the oceani c areas up to two times per day, 

(Schluessel et ai, 1991) 

The SSMIl is a seven-channel, four frequency, linearly polarized �p�a�s�~�i�v�e� microwave 

radiometer The instrument reteives vertically polarized radiation at 22.2 GHz and both 

verticall y and horizontally polanzed radiation at 193, 37 0 and 85.5 GHz The 19.3 GHz 

channel exploits the atmospheric window that exists at that frequency 10 sense ocean surface 

brightness temperatures. The 22.2 GHz channel corresponds to the water vapor line at that 

fre(]uem:y and is used to obtain column water abundance and humidity profiles. The 37.0 

Gl-lz channels exploit the atmospheric window that exists at that f requency prior to the onset 

orthe oxygen absorption band. The 85.0 GHz channel is designed to permit higher spatial 

resolution, but is not used in this study 

The antenna system consists of an offset paraholi(; reflector fo(;using the Earth's 

radiation into a broadband, seven port feedhorn This assembly, including parabo[i(; 

reflector, feedhorn and receiver, spins abom an axis parall el to the spacecraft verti(;al at a 

period of I 9 s, Attached to the spin axis but not rotating are a cold sky retlector and warm 

reference load. With this arrangement the feedhorn assembly will sense the fixed (;old 

retlector and warm load on(;e each scan This allows in fl ight (;alibration observations to be 

taken every scan and represents a significant improvement over previous passive microwave 

radiometers 

Z. Radiometer Calibration 

1'0 ensure optimum performance of the SS'MII. the antenna temperature is carefully 

calibrated. The antenna temperature is not the physi(;al tcmperature of the antenna. Rather, 

it is the power received per frequency bandwidth. div ided by IJoltzman's consta.nt 

(12) 
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T, is the weighted average of the scene temperature viewed by the antenna, where the 

weighting is determined by the gain of the antenna, The more closely the gain approaches 

a delta function the better the measurement of the true brightness tcmperarure, If the gain 

does not approximate a delta function, then other sources of radiation, particularly those 

radiating into the sidelobes, contribute to the signal. Brightness temperature �(�T�~�)�,� antenna 

temperature (T A) and gain (G) are related by 

(13) Tiv) " �.�.�.�.�!�.�.�.�.�J�·�T�~�(�V�)� G(v) dO 
4rr , 

The accuracy of the measured antenna temperature depends on the accuracy of the 

calibration sources. The typical flight radiometer, like the SSWI, uses a tv.'o-point 

temperature calihration where an on board warm target and the cold space background are 

used to obtain the calibration. In this case, the antenna field of view is enclosed with a 

temperature controlled microwave absorber (or /()(Jd) at each of two temperatures, T.",and 

T coJ.J. Tfthe radiometer is linear, then the antenna temperature T. for a target at an unknown 

temperature becomes 

(14) 

where YD is the voltage offset due to the receiver temperature and the radiometer calibration 

constant c is determined as 

(15) 
C " �T�~�"�,� - Tcolll 

�Y�~�"�,� - YC"III 

where the voltages V"",and V_are the measured output voltages for the respective Ttoe, and 

T",," loads (janssen, (993) 

In the case of the SSM/I. the calihration error of the hot load is measured first prior 

to launch, during the thennal vacuum calihration Thermal vacuum radiometer calibration 
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is accomplished using two precision microwave refen::nce targets, ea(;h instmmented with 

eight precision platinum temperature sensors, as well as the space(;raft hot load to simulate 

an operational configuration. A liquid nitrogen cooled precision target is �~�u�b�s�t�i�t�u�t�e�d� for the 

cold sky reflector, and a variable precision target is positioned over the fcedhorn to simUlate 

active scan data Calibration error is measured by comparing the variable reference target 

temperamre when equal to that of the hot load 

Dunng flight, the spacecraft hot target is �u�~�e�d� as the calibration hOi reference, The 

spacecraft hot reference is instrumented with three flight platinum temperature sensors 

The temperature of the variable target serves as a primary standard calibration reference 

for the in-orbit hot-load and cold targets used in thermal vacuum calibration 

For its cold reference the SSl .. 1/l possesses a calibration reflector that reflc(;ts the cold 

cosmic background into a calibration feedhorn designed to minimize the possible reception 

of extraneous energy from the spacecraft or from the eanh. The radiometric tempcrature of 

thc comic background is consistent with a blackbody radiator at 3 0 K (Hollinger et aI., 

19&7) 

D. MULTIPLE REGRESSION \\llND SPEED RE'mrEVAL ALGORITHMS 

D - Matrix Algo rithm 

The first attempt at retrieving surface ocean wind speeds from SSfI:lI1 data was the 

linear regression, "D-matrix" algorithm developed by Environmental Research and 

Technology, lnc. (ERT) for Hughes Air(;raft (La, 1983) 

(16) sw = + Clj . 1'1I (19H) + Cli 1'1I (22V) 

1',, (37V) + C,] . 1',, (37H) 

Equation (16) is valid only over open ocean, where the wind speed, S\\I, is in mls and is 

�r�~�f�e�r�e�n�c�e�d� to a height of 19.5 m above the surface The term Til. represents the brightness 

temperature offrequencyipolarization combination '·x". C'i represents D-matrix coefficients 

where "J , the climate code index. is a number from \- 11 that represents of one of eleven (9 

]9 



distinct) climate codes established by ERT according to a particular season and latitude 

band. As discussed earlier, microwave radiation at the SSM!I frequencies is heavily 

attenuated by rain. This phenomenon results in the ohfuscation of wind speed signatures 

generated by waves and foam on the ocean surface. The amount of microwave radiation 

detected by the SSMII under rainy conditions is, therefore, unreliable. Understanding this, 

ERT sought to "rain flag" conditions that might lead to unreliable measurements The 

origi nal D-matrix rain flag logic was (Hollinger, 1991) 

IT: TB(19H) >- J9DK 
OR: rTs(37V) - Ts(37H)1 -; 25K 
Then possible rain flag exists and rain flag =; I 

IF: [Ts(37V) - Ts(37H») -; 10K 
Then heavy rain exists and rain t1ag "" 2 

Other\vise rain flag =; 0 

The accuracy specification for wind retrievals under rain flag =; 0 (clear) conditions 

was :l: 2 mls over the range 3 to 25 m/s. Accuracy was not specified fo r winds retrieved 

under rain-nag I conditi ons, and retrieval was not even attempted under rain-flag 2 

2. CalibrationNalidation (CV) Algorithm 

Once the SSMil aboard spacecraft FS was launched and operating, the Naval 

Research Laboratory undertook to evaluate the effectiveness of the V-matrix algorithm in 

retrieving ocean surface winds. This process was accomplished by comparing SSMIT wind 

retrievals with coincident surface wind speed measurements taken from open ocean buoys 

maintained by NOAA . As the TOGA array had not yet been deployed, the buoys used were 

NDSe: buoys located mostly in the mid- latitudes and set further than 100 km from land to 

avoid mixed landlocean pixels 

Results of the validation showed that roughly 15% oflhe total data were rain flagged 

Scatter plots that displayed the performance of the D-matrix algorithm againslJhe buoy 

measured wind speeds revealed that the algorithm did not meet tht: specified <leeumc), 

rcquiremt:nt of ",2 mls in rain-flag a conditions (Figure [I). The D-matrix algorithm 

performed well near the global average wind speed of 7 m/s and performed poorly (both in 
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terms of standard deviation and bias) in high wind speed regions (> 15 m/s) 

Armed with these findings, the l\'RL validation team sought to adjust the D-matrix 

algorithm �~�o� that it would meet the accuracy requirements Using linear regression on 

paired buoy wind speeds and SSM/I brightness temperatures, a set of new coefficients for 

the algorithm were developed (Hollingtr, 1(91). The accuracy specifications were 

�~�u�b�s�e�q�u�e�n�t�l�y� met �(�F�i�~�,�'�u�r�e� 12), but the revised climate coded algorithm still underestimated 

high wind speeds and produced discontinuities across climate code boundaries (Goodbedet 

et aI, 1(89). 

In 1989, Goodberlet et al. published a new, global algorithm which utilized a single 

set of coefficients valid in all latitudes and seasons Coefficients for the global algorithm 

were generated using a weighted linear regression of the buoy wind speeds on the coincident 

�S�S�~�l�f�I� brightness temperatures. The weights used in the regression were set equal 10 lover 

the square rool of the wind "peed den.,ity function evaluated at the panicular buoy wind 

speed This type of weighting has the effect of making all wind speed ranges equally 

Important, whereas the originallillweighted D-matrix regression tended to emphasize those 

wind speed ranges where few data were coUected. The improved D-matrix or 

CalibrationiValidation (eV) algorithm is as follows (Goodberlet, et. al" 1(89) 

(17) SW " 147.9 I 1.0%9 T,l19V) �~� 0.4555 TinV) 
�~� 1.7600 . 1'8(37 V) + .7&60 . Ti37 H) 

In addition to revising the li near regression coefficients, new rain flag thresholds 

were determined. The new rain flag cutoffs were determined from plots of the D-malr ix 

residual versus the D-matrix rain flag, by locating tht;: values of the rain flag parameters for 

which either the standard deviation or bia.> curve crossed $ome predetermined accuracy level 

(nom1aliy 2 m!s). In this manner fOllr new rain flags, separate and independent of the rain 

nags developed by ERT were defined (GoodberJet, et. al. , 1989) 
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Rain flag Criteria Accuracy 

TB(37V) - �T�~�(�3�7�H�)� > 50 < 2 m/s 

/\.1"TI 
TH(! 9H) < 165 

I'jj(37V) - �T�~�(�3�7�H�)� < 50 2-5 m/s 
OR 

�T�~�(�1�9�H�)� > 165 

Tjj(37V) - Tn(37I-1) < 37 5-10 mls 

r B(37V) - TA(37H) < 30 > 10 m/s 

Once constructed, performance of the CV algorithm was tested against the same data 

used to examine the performance of the D-matrix algorithm. Use of the CV algorithm 

removed much of the high-wind speed bias and zonal discontinuity associated with the 

original algorithm. However, CV retrieval accuracies in rain flagged regions continued to 

exceed ± 2 mls 

Improved Gootlberlet, Swift, Wilkerson (GSW) Algorithm 

In 1992, Goodberlet, Swift and Wilkerson modified the CV algorithm in an effort 

to improve wind speed retrieval accuracy, particularly in high moisture regimes 

[rnprovement in retrieval accuracy under rain flagged conditions was partiall y achieved in 

the medium to high wind speed range (6-20 m/s). This improved performance was a(;hieved 

in large part by abandoning a �~�t�r�i�c�t�l�y� linear algorithm and introducing a non-linear 

relationship between wind speed and brightness temperature with respect to the {\'10 

polarized brightness temperatures at 37 GHz. Goodberlet et. al. empirically described the 

weather bias exhibited by the CV algorithm as 

(18) 

where Wc;is a wind speed retrieval from the CV algorithm and W,is the corresponding tme 

surface wind speed, and BI , R;. and Nare 18.56, 30.7 and 4 respectively. The GSW wind 

speed retrieval algorithm was formed by solving for Wr in equation (18) The GSW 
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algorithm is a'; fo llows 

(J9a) WasH' = 

�w�h�e�n�~� We. �i�~� equation (18) ann, 

(t9b) 

In each case, t!.Jl = T 8 (37V) T r{37H). The GSW algoriThm can be reliably �l�I�~�e�d� under 

conditions when the t!.11 differential is greater than 40 K and, with care, when t!.J7 is 

greater than 15 K The GS\\' algorithm should be used with caution for t!.ll less than 35 

K and should not under any circumstances be used when t!.JJ is less than 31 K (Goodberlet 

et al. , 1992). It is clear from equation (19b) that when t!.'l approaches 30.7 K, equation 

(19a) has a singularity and the expression becomes meaningless. Unfortunately, t!.)7 

measurements less than 31 K often correspond to higher moisture regimes which may be of 

Because the modifications to the CV algorithm that resulted in the GSW algorithm 

were made based only on F-8 SSfl.trI brightness temperature data, Goodberlet et al. further 

state that the GS\V algorithm can be reliably applied only to data from SSI\1Jl r-R. This 

study, hOwever, will demonstrate, among other things, how the GSW algorithm performs 

on data from other SSMfI instruments 

E, ARTIFlCL\L NEURAL NETWORK WIND SPEED RETRIEVAL I\.{[THODS 

An alternative method for retrieving wind speeds from SSMiI data is through a 

method of artificial intelligence known as the neural nework. The simplest definition of a 

neural network, is provided by The inventor of one of the first neurocomputers, Dr. Robert 

Hecht-Nielsen He defines a neural network as (CaUdill, 1 f)Sf) 
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Neural nem'orks arc processing devices that are lomely modeled after the neuronal structure 

of the mammalian ccrebral cortex Artificia l neural networks cannot yet approach the 

oomplexity of those found in nature, yet they may have hundreds of thousands of processor 

Neural network.-; arc typically organized in layers. Layers are made up of a number 

of intercotmected "nodes" which contain an "activation function" Patterns are presented to 

the nemmk via the "input layer", which communicates to one or more "hidden layers" where 

the actual processing is done via a system of weighted "connections", The hidden layers 

then link [0 an "output layer" where the answer is output (Figure 13) 

:\lost neural networks contain some form of "leaming rule" that modifies the weights 

of the wnnections al,;cording to the input patterns that it is presented wit h. L ike the 

mammals they arc designed to emulate, neural net\vorks "l earn" by example 

One of the most common learning ru les used by neural networks is the delta ru le 

The delta rule is often uti li zed by [he most common class of neural networks - called 

backpropagational neural networks (B P;-'W's). 13ackpropagation is an abbreviation for the 

backwards propagation of error 

Wit h the delta rule, as wit h other types of Backpropagation, "learning" is a 

supervised process that occurs with each cycle through a forward activation flow of outputs. 

and the bachvards error propagation of weight adjusunenK In short, when a neural network 

is initially presented with a pattern it makes a random guess as to what it might be, It then 

sees how far �i �t�~� answer �w�a�~� from the actual one and makes an appropriate adj ustment to its 

connection weights 

Once a neural network is "trained" to a satisfactory level it may be used as an 

analytical tool on other data. To do this, the user no longer specifies any training runs and 

instead allows the network to work in forward propagation mode only. New inputs are 

presented to the input pattern where they fi lter into and are processed by the middle layers 

as though traini ng were taking place, �h�o�w�e�v�~�r�,� at th is point the output is retained and no 

backpropagation occurs. The output of a forward propagation run is the predicted model for 
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the data which can then be used fur further �a�n�~ �l �y�s�i�s� and interpretation 

Whereas conventional computing systems are determ:nistic, sequcntial and logical, 

ncural networks are nO! There are no complex central processors, rather there are many 

simple ones which do little more than wke the weighted sum of their inputs from other 

processors. _"eural networks do not e:,<C'(.:ute programmed instnKtlOns. �r�~�t�h�e�r� they respond 

in parallel to the patern of inputs prC'sented to it Because a neural network can �e�a�~�i�l�y� model 

non-l inear phenomena which otherwise may be difficult to explain, they are useful in 

modeling meteorological phenomena like global ocean winds 

The Stogryn, Butler, Bartolae (SBB) J'lieural Network 

]'he first neural network trained on a set of SSfI:ffI brightness temperatures matched 

with buoy winds was developed by Stogryn, Butler and Bartolac (1994). 5togryn et al 

employed a type of back propagation neural network referred to as a feed forward fully 

connected neural network (Figure 14). In this design, the neurons of the inpIll layer do no 

processing but provide ((lpies of an input vector to the first processing layer In the case of 

wind retrievaL the input vector is the brightness temperature. The neurons in subsequent 

layers form linear combinations of the outputs of neurons in the preceding layer, add an 

offset, and transtann the result into an output signal For layC'r N, the wind speed estimate 

i is calculated as (5togryn et al 1992) 

(20) 

whereljl is a scale factor and P is an offset 

Stogryn et aL partitioned the same F8 SSM/! data set used hy Goodberlet et al. for 

the calibration/validation of the D-matrix into two sets, one for training the neural network 

and the other for testing it. The 5BB neural networks were trained and tested using 

primarily the 19V, 22V, nv, and 37H SSMfI channels as input data The 19H channel was 

used to help discriminate clear from cloudy or rain conditions and in determining which 

network to usc The trainingitest �s�e�t�~� were further divided imo three subset.'; The first 

contained all 5511.'1/1 buoy matchups in designaled "clear" conditions 
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["he second subset included �S�S�~�1�I�I� buoy matchups that occurred unde! "cloudy" conditions 

�T�~� (37V) - TE(37H) :: SO K 

TE( 19V) < T R(37V) 

TR(l9H) " 185 K 

TJ3(37H) :: 2\oK 

The third suhset comprised those matchups exceeding the cloudy condition criteria and 

�r�e�p�r�e�s�e�n�t�~� conditions where attenuation effects render the retrieval of wind speeds unwise 

Using two separate feed forward fully connected neural networks, Stogryn et al 

achieved dramatic improvements in performance on the partitioned data set The SBB 

neural networks claimed a 30 % im provement in wind retrieval accuracy for clear conditions 

over earlier li near regression wind retrieval �m�e�t �h�o�d�~�,� and a 250% improvement under cloudy 

conditions. Attempts to further improve perfonnance of the SBB neural networks hy 

increasing the number of neurons per layer andlor the number of layers, met wahoul 

�~�i�g�n�i�f�i�c�a�n�t� success. These advances notwithstanding, application of the SBB neural network 

remains limited as it was trained on a relatively restricted data �~�e�t� comprised solely of data 

provided by the SSMIJ aboard spacecraft Fl\. Most importantly, this data set does not 

include clear day wi nd speed values greater than 18 mls 

2. The Krasnopolsky, Breaker, Gemmill (NMC) Neural Network 

In 1994, Kransnopolsky, Breaker and Gemmill of the National Meteorological 

Center published a single "all-weather" neural network algorithm for estimating ocean 

�~�u�r�f�a�c�e� winds from the SSMII. This neural network sought to improvtl upon the results 

achieved previously by Stogryn et a!. by eliminating the necessity for partit ioning wind 

speeds based on "clear" and "cloudy" atmospheric conditions, thereby avoiding the 

unceminties that nCl;essarily arise in the region that separates the two regimes. in addition. 

the NMC neural network was dtlsigncd so thaI its application could be extended to 

atmospheric conditions where higher levels of moisture exist - regions where previous 

�a�l�g�o�r�i�t�h�.�!�l�\�~� had performed poorly As a result, the NMC neural networks were trained to 
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cover adverSI: atmospheric conditions considered by SBA to be beyond the region wherl: 

llseful retrievals could be obtained 

The data used by Krasnopolsky et ai, to train and test their neural networks is the 

same data set used previously by GSW and SBB to fOllm!late their algorithms. The 

brightness temperatures werl: acquired from the SSM!I tlown aboard DI\1SP satel lite FS 

Again. mat<:hups were produced only when the SSWI retrievals were within 25 km of the 

buoy location and the time of satellite data acquisition was within 30 minutes of the buoy 

observation, �A�~� before, wind speeds were adjusted to a standard height of 19 5 Ill , Finally, 

as was the case in the SBB neural networks, neither the training nor the test data set induded 

w ind speeds greater than 18 lIlis 

I n an effon to reprmiu<:e the results of SRB and make their findings directl y 

comparable with tf'lose of SBB, tf'le 1\yfC group adopted the same m:ural network design 

architecture, NXTC constmcted a feed.forward, fully.connected neural network that 

employed back propagation. The 1\}.1C neural nl:twork contains three layers, a four node 

input layer (layer 0), one two node hidden layer (layer I), and a single node output layer 

(layer 2). At the nodes in [ayer5 I and 2. linear combinations of the outputs from the nodes 

in tf'le previous layers (layers 0 and I) are fomled rhe combined input to node j in layer I 

can be expressed 

(21) 

where the f,are the four input brightness temperatures, n'i are the weights, H, are �h �i �a�s�e�~�,� and 

j '= 1,2 (nodes of hidden layer), Combining this input into an output at each node require.> 

a nonli near transfer or "squashing" fum:tion, Thus, the output fOf the i -th node is expressed 

(22) x, = frY,) 

where/is the squashing function 

(23) f(x) -; tall h(x) 



The bias term, Hj , serves to center the squashing functioo about the ordinate which makes 

the training process more efficient The output of hidden node Xj provides the input to the 

output node, which in turn produces the neural network output 

(24) 

where the w,are the weights, n is the bias, and a and b are scaling factors (Krasnopolsky 

et ai , 1994) 

Once the traini ng is complete and weights have been determined, the desired wind 

speed, W(m/sec), is calculated as 

(25) W " Net(n 

where T is the input vector of brightness temperatures (Krasnopolsky et al., 1994) 

Prior to training the network, initial weights for each of the connections within the 

network arc specified. Next, the brightness temperalUre inputs are applied to the neural 

network and the output wind speed is calculated. This output is then compared to the 

observed wind speed contained in the matchup. The difference between the calculated wind 

speed and the target wind speed is fed back (backpropagation) through the network and the 

�w�e�i�g�h�t�~� at each node are changed unti l an acceptably small error is realized, (Krasnopolsky 

el aI., 1994) 

Training takes place as the nem'Ofk is repeatedly exposed 10 matched pairs of SSM/I 

brightness temperatures and buoy wind speed, After exposure, the weights and biases are 

adjusted according to the backpropagational algorithm until convergence is achieved 

During training several hundred thousand iterations were required to achieve convergence 

(Krasnopolsky et ai , 1994) 



W. STUDY PROCEUURES 

T he li near regression algorithms and neural netv.-orks used to retrieve ocean wind 

speeds from SSl'vill data have all been developed and tested using the same SSM/[ - NOAA 

buoy pair data base used to validate the original D-matrix algorithm. That data is for 

spacecraft F8 during the period 10 July 1987 through 31 March 1988 and consists of NOAA 

huoys that lie predominately in the mid-latitude ocean region The lack of algorithm 

validation against buoys in equatorial regions. where lower wind speeds dominate. was 

discussed at the SSM/J Algorithm Symposium, held in June 1993, as was the need for an 

expanded data seltha! would enCDmpass regions varied enough for the SSM!] - NOAA buoy 

pair data �~�e�t� to be considered truly global This study seeks to validate the performance of 

four wind speed retrieval methods over an expanded data set that represents, as closely as 

possible. the wind speed distribution found throughout the world 

For this study SSM/! wind speed retrievals from the 01\1SP F8, flO and Fll 

�~�p�a�c�e�c�r�a�f�t�s� were taken over a 6 month period from September 1991 to April 1992 and 

�c�o�m�p�a�r�t�~�d� to �i�n�- �~�i�t�u� buoy wind speed �m�e�a�~�u�r�e�m�e�n�t�s� for the same period. SSI\VI wind speed 

retrievals were obtained using the CV and asw linear regression algorithms and the SBB 

and l\':\1C neural networks 

A, BUOY f)AT A SET 

The in-situ buoy wind speed data were obtained from t\\.'o sources - TOGA buoys 

and NUBC buoys_ TOGA buoy data were provided by the Pacific Marine Environmental 

Laboratory (PMEL) while NDBC data were provided by the National Oceanic Atmospheric 

Administration (NOAA) Not all of the TOGA buoys thaI comprise the TOGA array were 

used in this study_ Those thai were used are listed in Appendix B Table I. Nineteen NUBC 

�b�u�o�y�~� were used, To prevent land contamination of ocean brightness temperatures and to 

insure that the land did not �r�e�~�t�r�i�e�t� the wind speed fetch distance �n�e�c�e�s�~�a�r�y� for creating fully 

developed seas, only !'-.-DBC buoys further than 100 km from land were chosen (Appendix 

B Table 2) (U\aby et aI., 1986) 
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The meteorological parameters collected from the buoys include: wind speed, air 

temperarure, sea surface temperature, relative humidi ty and barometric pressure, TOGA 

buoy wind speed measurements were made at a height of 3,8 meters above the ocean 

surface, NDSe buoy wind speed measurements were taken at a height of either 5 or 10 

meters depending on the model of buoy. In the case of both �b�u�o�y�~�,� the recorded wind 

speeds were convened to an equivalent wind speed at 19.5 meters above the ocean surface, 

the height at which SSMIl wind �s�p�e�t�d�~� are calculated, using Smith's (\988) open ocean drag 

coeffic·ient 

B. SSi\Vl-llUOY j\HTCHUP CRITtRL<\ 

The matchup of SS!'v1I1 retrieved winds with in-situ buoy winds was conducted along 

the lines of the original D-matrix: cahbratiowvalidation. For this study, SSlvUI wind speeds 

for each of the four wind retrieval methods were matched with buoy wind speeds The 

SSW! wind speeds and buoy wind speeds were paired by the Naval Research Laboratory 

when the SSW! retrieval was located within 25 km of the buoy position and the SSM!! 

overpass time was within 30 min of the buoy wind speed measurement. According to the 

work of i'vlonaldo (1988), the average value of these spatial and temporal differences 

increases the total allowed standard deviation of 2 mis by less than 10% (Goodberlet et al., 

1989). SS!'vU! geolocation problems reponed by Hollinger (1991) are insignificant at a 

spatial separation of2S km. NDBC buoys make an 8.S-min. average of the wind once every 

hour with an a!.:curacy of ± 0,5 mls for winds less than 10 mls and 5% for winds greater than 

10 mls (Gilhousen, 1986). Additional sources of error include the uncertainties associated 

with the fact that the buoy winds are averaged over an 8.5 min, period whereas the SSMi! 

measurements are instantaneous. Finally, the paired SS1fII and huoy measurements may 

differ, of course, by up to 25 km and 30 min 

Because the SSMil tield of view is a swath of 1400 km, a single SSM/I overflight 

may produce several wind speed retrievals that meet the spatial and temporal criteri<l. Such 

a sel of retrievals are highly correlated with each other (Goodberlet e1. ai, 1989). To 

overcome this, three different methods of generating a single SSl'vtll wind speed retrieval 
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from an overpass Wtn.! employed, The first involves finding the SSIvVl retrieval that is 

spatially nearest to the blloy, this measurement lS temJed the "nearest neighbor" The second 

method is to take a straight average of aii of the SSM!! n:trievals that meet the matchup 

criteria and generate a single SSi'vVI wind speed, Third, an inVl;:fSe distance weighted 

average of the brightness temperatures was computed 

For the six month ptriod of th is study, a total of 127,524 SS/I.1Jl measurements 

were generated by the SSr-..VI that met the spatial and temporal mat<:hup criteria - an avt:rage 

of \8 correlated SS/l.1fl measurements for each buoy wind speed measlJrement. Of this total, 

93,125 SSMlJ measurements are matched with )lOBe buoys, while 34,309 S5)...1II 

measurements are coincid ent with TOGA buoys_ There are a greater number of NDSC 

rnatchups because there arc more NOBC buoys than TOGA buoys included in the study 

From the total 127,524 data points, 70S) independent, uncorrclated observations 

were distilled - S42i NOBC buoy malchups and ! 65S TOGA buoy matehups. There are, 

therefore, 70S5 nearest neighbor data points that comprise the global data set upon which 

most of the data analysis contain herein is conducted 

C WIND SPEED DlSTRIllUTION 

Fi gure 15 .,hows the distribution of wind speeds measured by in-situ TOGA and 

l\TIBC buoys for the sixth month period examined in this study , September 1991-April 

1992 The term "glohal" refers to the combined data set comprised of both TOGA and 

NOBe buoy �m�e�a�~�u�r�e�r�n�e �n �t�s� Figure 16 displays roughly 500,000 wind speed measurements 

obtained from TOGA and NOBC buoys over a full two year period. A comparison of 

Figures 15 and 16 clearly demonstrates that the distribution of wind speeds oomprising the 

study data set are representati ve of the global winds likely to be found in the sampled 

regions over an extended penod of time 

Importantly, the study data set includes signi ficant numbers of data �r�e�p �T�e �~�e�n�t�i�n�g� 

wind speeds in excess of20 mls and less than 3 mis, permitting the validation of wind speed 

retrieval methods in these regions. The locations of the buoys used in this study arc shown 

in Figure 17 r he obj ective, then, is 10 evaluate the four wind speed retrieval methods over 
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a range of wind speeds that are reasonably representative of a known distribution of global 

wind speeds 
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IV. OBSERVATIONS 

A. SSJ\'lJ1 W IND SPEED VS IN-SITU BUOY WIND SPEED 

All SSMfI -Buoy Matchups 

The first (;omparisons madl: to determine the efficacy of each oflhe four wind speed 

retrieval methods employed the full 127,524 data points meeting the spatial and temporal 

matchup reqUirements None of the "rain flags" developed for use by the rt:spcctive wind 

rt:tricval methods were applied to the data. Figures 18-22 give a first cut estimation of how 

well each method pcrfnnns. A least squares fit is calculated and displayed against a diagonal 

reference line that represents a perfect match bctwl:cn SSMil retrieved wind speed and the 

measured buoy wind speed. Figure 18 �s �h �o�w�~� that the CV algorithm overestimates wind 

speeds by roughly 2,7 mis. Figure 19 displays only the CV algorithm measurements that are 

coincident with the lower wind speed regions associated with TOGA buoys. In the lower 

wind speed regime, the CValgorithm overestimates wind speeds by 3.9 mls. This problem 

was recognized by th.e authors oflhe CV algorithm and lcd, in part, to the formulation of the 

improved Goodberlet. Swift, Wilkerson (GSW) algorithm 

Fi!,'Ure 20 demonstrates the improved performance of the GSW algorithm over the 

CV algori thm for the same data set. The GSW algorithm overestimates total wind speeds 

by only I mls - a marked improvement. Figure 21 shows that the GS\V performs better than 

the CV algorit h.m largely because of increased performance in the low wind speed regions 

The improvement in performance achieved by the GSW algorithm over the CV algorithm 

is discussed in greater detail later 

Figures 22 and 23 examine the performance of the SBB and NMC neural networks 

respectively, over the same, non-raint1agged 127,524 point data set. At the lower wind 

speeds, the t\VO neural networks overestimate buoy wi nd speed by up to 3 m/s. Agreement 

with blloy wind speed measurements is al:hieved, in both neural networks, at approximately 

7 mls - the global wi nd speed average. As wind speed inl: reases beyond 7 mis, the neural 

networks display a tendency to increasingly underestimate buoy wi nd speed 
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Underestimates of buoy wind speed range from 8-12 mis at wind speeds of 20-22 m/s 

These characteristics arc similar to those reported by Sayward ( 1994) based on his three 

month TOGA buoy analysis 

2. Nearest Neighbor, Average or Weighted Average SSMII Data 

The remainder of the data analysis conducted in this srudy focuses on the 

performance of the four wind retrieval methods upon the smaller. uncorrt:lated data set 

comprised of the single nearest neighbor, average, or weighted average value retr ieved for 

each buoy wind speed measurement. Furthermore, the rain flags developed for each of the 

wind retrieval methods (with the exception of the "all weather" NMC neural network") are 

included, Recall, however, that the term "rain flag" is somewhat of a misnomer, Rain flag 

tags indicate any condition (including rain) whi<.:h leads to reduced retrieval accuracy 

Therefore, wind retrieval methods are examined under the conditions thei r authors intended 

l' able 3 shows the number of data points included in each rainflagged subset of the 7085 

point uncorrelated data set for each of the three wind speed retrieval methods that employ 

rain flags 

The first set of plots applied to the um:orrelated data set examines the performance 

of each wind retrieval method under "clear" conditions which vary depending upon the 

retrieval method. Because the original D-matrix algori thm was required to meet the DMSP 

specification of ±2 mis, the standard deviations achieved hy the four wind speed retrieval 

methods are a primary mea.>ure of achievement. Furthermore, it is assumed that the DMSP 

requirement refers to the standard deviation, in an average sense, of the difference between 

all coincident buoy and SSIWI wind speed measurements. Admittedly, this interpretation 

can disguise the fact that over certain wi nd speed subintervals the a<.:curacy of a given wind 

speed retrieval method may exceed 2 mis. This is often true for regression-type algorithms, 

li ke the CV and GSW algorithms, which tend to make especially good �p �r�e�d�i �c �t�i�o�n�~� near the 

overall average wind speed and predictions of less accuracy for wind speeds which arc 

removed f rom the average wind speed (Goodberlet et aI., 19R9) 

Figures 24-27 are scatter plots which illustrate the effectiv eness of the four wind 

34 



speed retrieval methods in clear conditions. [n these figures, t ilt horizontal axis represents 

the range of buoy wind speed measurements and the vertical axis represent.> the SSMIT 

nearest :;cighbor wind speeds retrieved �l�l�~�i�n�g� a particular method For each method a plot 

was generated using nearest neighbor (nn), average Cavg) and weighted average (wavg) 

Tables 4-6 summarize the results for the TOGA NDBC and combint:d (global) data sets, 

respectively 

Table 4 shows that ail four wind speed retrieval methods possess acceptable standard 

deviations of �l�e�~�s� than 2 mis The standard deviation of the two neural �n�c�t�v�v�'�o�r�k�~� is lower 

than the standard deviation achieved by the two linear regression algorithms. The smallest 

standard deviation �i�~� achieved by the Ni'vfC neural network. In addition to performing 

slightly better than the linear regression algorithms in terms of standard deviation, the neural 

network retrievab display significantly better correlation. The l inear regression algorithms, 

hov.ever, possess far better slopes to their linear least squares fit lines and display less bias 

The GS\V algorithm clear weather data bias, in particular, �i�~� superlative 

In every measure of performance, the GS\V algorithm �p�e�r�f�o�r�m�~� better than the CV 

algorithm it was designed to improve upon. This improvement, however, is due in large part 

to the far more restri(;tive clear day bri ghtness temperature cri teria imposed by the GS\V 

algorithm. Of the total 7085 data points in this set, only 63% of GSW data appears as clear 

day while 81 % ofCV data appears as clear day 

Using a single SSMlI average or weighted average data point to coincide with buoy 

measured wind speed, as opposed to the nearest neighbor, degrades the slope and bias of 

each of the wind speed retrieval methods. At the same time, an average or weighted average 

value slightly increases ead\ method's performam:e in terms of corrdation and, most 

im portantly, standard deviation 

The next series of figures (Figures 28-33) display the error in SS;\-1/I retrieved wind 

speeds plotted against buoy wind speeds. For these plots the 7085 �n�e�a�r�e�~�t� neighbor SSM)1 

values were plotted against their coincident buoy values. In Figure 28, CV rain nags 0, I , 

2 and 3 are represented by circles, diamonds, squares and crosses respectiv!;:ly rhe �s�y�m�b�o�l�~� 
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are the same for the GSW algorithm shown in Figure 29 excepting rain !lag J, which the 

GSW algorithm does not possess. The SBB neural networks' two rain flags �r�e�p�r�e�~�e�n�t�i�n�g� 

clear and cloudy �c�o�n�d�i�t�i�o�n�~� are represented by circles and diamonds (Figure 30). The NMC 

neural network does not contain rain �f�1�a�g�~� since Krasnopolsky ct al. developed the l\'NIC 

neural network without partitioning the data based on atmospheric moisture conditions. The 

N:\1C data was, however. filtered through the CV rain flag algorithm so that values of 6. 37 

greater than 165 - 5 % of the data set - are not included (Figure ]1) 

In Figure 28, for rain flag 0, the CV algorithm generates a distribution of wind 

speeds that correlate �r�e�a�~�o�n�a�b�l�y� well witb buoy wind "peeds within the 5-14 m/s wind speed 

range. Rain flag 0 wind speed retrievals for very low wind speeds are biased slightly high 

while those greater than 14 m/s are �b�i�a�~�e�d� slightly low. The algorithm performs increasingly 

poorly as atmospheric conditions deteriorate, as evidenced by the appearance of rain flagged 

data. Values retrieved under rain flag conditions signiticantly overestimate wind speeds 

throughout the range of observed wind speeds - severely at low wind speeds and less 

severely at higher wind speeds. Figure 32 clearly demonstrates the high wind speed bias 

exhibited by CV wind speeds retrieved under rain flag conditions in equatorial regions 

Figure 29 shows how the GSW algorithm performs over the full range of wind 

speeds when its more discriminating rain flags are applied. In contra.>t to the CV algorithm, 

the GSW rain flag 0 data tend to underestimate winds overall, including the 5-10 mls range 

where most wind speed values are registered. At lower wind speeds, the GSW rain flag 0 

retrievals agree fairly well with measured values. �A�~� wind speed increases, however, the 

GSW rain flag 0 retrievals increasingly underestimate wind speed. The GSW algorithm 

achieves some success in anenuating the high wind speed bias displayed by CV rain flagged 

retrievals in equatorial regions (Figure 33). These GSW values remain biased high, 

however. In contrast to the CV algorithm, rain !lagged GSW retrievals at higher wind 

speeds l> 15 mls) increasingly Il11dereSlimaie measured wind speed GSW rain flag 2 data, 

in particular, is prone to sizeable error 

The SBB neural network is shown (Figure 30) with only clear and cloudy conditions 
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�p�l�o�t�t�~�d� Although SEa �a�c�k�r�l�o�w �l �e�d�g�~� a third ' very clolldy" condition, a m:ural network was 

nOl developed for this case, very cloudy points arc then:forc excluded SSS rain flag 0 data 

displays a distinct inclination to underestimate wind speed as measun:u wind speed 

increases. For �w�i�n�d�~� in �t�h�~� 0-5 mig range, SBR exhibits a slightly high bias_ From 5-10 

mfs, SSB underestimates measured wind by up to 4 mis. Beyond 10 ml s SSB accuracy fal ls 

off steadily so that low bias errors up 10 8 mis are observed Thl: pattern �i�~� the same for 

SSS retrievals under cloudy conditions, except that in the cloudy case the high bias at low 

wind speeds and the low bias at high wind speeds are more pronounced 

The NMC neural network does not employ rain flags. Yet, the NMC neural network, 

too, exhibits increasingly low bias as measured \vind speed increases (Figure 3\) NMC 

retrieved wind speeds overestimate wind speed in the 0-5 mls range, increasingly 

underestimate wind speed in the 5-10 mis range, and significantly underestimate wind 

speeds greater than 10 mls At very high \vinds (>20 m/s), NMC retrieved winds 

underest imate measured wind speed by up to 10 m/s 

B. BRIGHTNESS TEMPER4.TURE-BASED DATA PARTITlONlNG 

Due to existing shortcomings in the theoretical models used to describe radiometric 

emission from �I�h�~� ocean as a function of wind speed, most �r�e�t�r�i�~�v�a �l� algorithms are 

necessarily empirical "-'Iofeover, until the development of the GSW algorithm they were 

usuall y linear (e.g., D-matrix, CV) Each algorithm has been developed for specific 

atmospheric conditions. Thrce of the four algorithms (excepting NMC) used in th is study 

employ brightness temperature as the primary basis for discriminating between various 

levels of atmospheric moisture and to establi sh rain !lags and retrieval criteria Because of 

its overriding importance in the development of wind speed retrieval algori thms, the next 

group of figures in. this study examines morc closely the performance of algorithms in 

regions partitioned according 10 brightness temperature 

Figure 34 illustrates the CV error (SSMIJ wind speed - buoy wind �~�p�e�e�d�)� plotted 

against the difference of brightness temperature, �~�1�7� (37 GHz (V) - 37 GHz (H)), prior to 

the application of rain llags Figure 35 shows the same plot after the CV rain !lags have 
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been appli ed Figure J 5 shows that the algorithm performs quite well in the region above 

L!.l7 --' 50. Below L!.ll '" 50, the algorithm performs increasingly poorly, tending to 

overestimate the buoy wind speed, Below �L�!�.�1�1�~� 30, the algorithm frequently overestimates 

winds by up to 20 mis, Indeed, in high moisture region several �d�a�t�~� points (not shown) 

exceed 20 m/s 

Figure 36 �i�!�l�u�s�t�r�~�t�e�s� the OSW error (SSW! wind speed �~� buoy wind speed) planed 

against the difference in brightness temperature, L!.11' prior to �~�s�s�i�g�n�i�n�g� ram flags, Of note 

in this fib'Ure is the extreme low bias evident below L!.ll = 35. This shows that in an attempt 

to rectify the high bias exhibited by the CV �~�l�g�o�r�i�t�h�m� in high moisture regions, the OSW 

algorithm coefficients provide �~� low bias counterweight, Recognizing that a bias, albeit in 

different form, still exists in the high moisture regions, OS\\/ applies a strict rain flag to 

prohibit the use of the OSW algorithm in this region (Figure 37), In Figure 37, points below 

L!.ll = 32 are not plotted as recommended by the algorithm's authors. Above L!.11 = 45, the 

algorithm wi nd speed is biased slightly low, although the vast majority of the bias lies within 

the region ± 5 mis, Below Al7 "" 45 down to L!.11= �~�2�,� the algorithm performs increasingly 

poorly, with both high and low wind speed bias error escalating 

Figures ]8 and 39 illustrate that, although the error associated with L!.J7 < 50 is 

slightly higher than that for L!.11 > 50, in general, the performance of the SBB neural 

network doe;; not significantly depend upon the L!.J1 parameter Similarly, the l'><'MC neural 

net\>.'ork, which is based only in part on brighmess temperature, appears to operate equally 

effectively in all moisture regions (Figure 40) 

C. PHYSICAL PARAl\'JETER-BASED DATA PARTITIONrNG 

More recently , a number of SSW! algorithms have been developed to estimate 

various moisture-related quantities such as liquid water path (L WP), water vapor path 

(\vVP) and rain rate (RR), Other algorithms use a combination of brightness temperature 

data and physical parameters to retrieve a wind speed. The NM:C algorit hm, fO! example, 

uses LWP, \VP and RR algorithms, in addition to brightness temperature information, to 

classify its data (Krasnopolsky et aI., 1994). Schlussel and Luthardt ( 1991) estimate wind 
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speeds from the SSMIi usi:1g simulaud brightness temperatures obtained by calculating the 

radiative transfer from the ocean surface through the atmosphere for f ive of the seven SSl\1I1 

channels These results arC applied :0 a global set of vertical profiles of temperature and 

humidity (Kras!lopolsky el aI., 1994) The next set of figures �e�x�a�m�i�n�e�~�,� in grealer detail, 

the role that thc physical parameters water vapor, cloud water, relative humidity and 

barometric pressure play in the effective retrieval of SS\1I1 winds 

For this comparison. water vapor (WV) and cloud liquid water (CW) values are 

obtained from SSMJI channels 22.2 GHz and 85.5 GHz. Water vapor is the gaseous 

atmospheric water constituent whereas cloud liquid waler �i�~� that portion of the liquid 

atmospheric water consisting of water droplets too small to precipitate - generally having 

radii less than 100 microns Figure 41 and 42 funher reinforce earlier findings regarding 

the pelfonnance of the CV algorithm in high mOisture conditions_ The algorithm displays 

a nominally high wi nd speed bias under low moisture conditions but increasingly 

overestimates wind speed as the atmospheric moisrure content increases Overestimation 

of �i�n�-�~�i�r�u� wind speeds by 10 m/s or more OCCUI"S when water vapor content exceeds 50 kglm' 

and when cloud water values exceed 0 3S kg/m'. As expected, the rain nagged values 

associated with lower �~�1�7� values and corresponding to higher water vapor content, exhibit 

the greatest error 

Figure 43 shows that, for the GS\V algorithm. wind speed bias is sl ightly high for 

water vapor content values ranging from 5-12 kglml, �i�~� generally low for values ranging 

from 13-50 kglm2 Above 50 kg/rn' �e�x�h�i�b�i�t�~� significant low and high wind speed error 

Rain nag 1 data above 50 kg/m" is clearly biased low, providing further evidence of the 

eife!.:t the refined GSW coefficients have on the performance of the algorithm in regions of 

high moisrure content. Similar tendencies are evident in the cloud liquid water plot (Figure 

44) Again, the severe low wind speed bias is exhibited in high moisture regions 

Figures 45 and 46 illustrate the performance of the SBB neural network over the 

range of water vapor and cloud liquid water values. The SHB neural netv".'Ork performs 

nearly uniformly. exhibiting a marginally low wind speed bias over the entire range 1n 
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addition, it is clear from Figure 45 that the neural net\vork performs worse under rain flag 

I (cloudy) conditions than in rain flag 0 (clear) conditions - �i�r�r�e�~�p�e�c �t �i�v�e� of the amount of 

water vapor present. Similarly, the NMC neural network is biased low over the range of 

water vapor and doud l iquid water values (Figures 47 and 48) 
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V. ANALYSIS 

This chapter c1illmines more clo!>ely the perfonnance rerulls desclibed in tbe previolls 

chapter, and endeavors to explain where and wby the perfonnance of allY given wind speed 

retrieval method is degraded 

A. CV ALGORITHM 

Tile CV algorithm represents tbe first effort undertaken to improve the original D

Illatrix algorithm Subsequent to its development, tbe authors, Uoodbedet, ct. ai., validated 

its periormance. The buoys used to validate the CV algorithm, however, were NOAA buoys 

(;oncentrated largely in arid-latitude regions. Many of the deficirocies uncovered by the 

algori:thnts authors are reinforced by this study, despite its broader, more inclusive data set. 

The CV algorithm's performance over the entire range of wind speeds in clear 

weather (rain flag 0) conditions is actually quite good (SO < 2 mls). The algoritbm possesses 

a very low overall bias (1.246) while retaining an impressive 81 % of original data points to 

achieve dear day conditions. This is due, in large part, to the wind speed density weighting 

distribution developed by Goodberlet, ct. a1. (1989) which served to make aU .... ind speed 

ranges equally important. Yel, in very low « 3 m1s)and very high \\ind speed regions (> 15 

mls) the algorithm does not perform well 

That the CV algorithm perfomls poorly in both high and low wind speed regions is 

due ill part to the fuct that tbe data set upon whicb tbe coefficients for the CV algorithm is 

based was very nearly bereft of .... inds in these ranges. Funhemlore, the CV algorithm 

performs poorly in regions of high moisture content. As a rerult, the accuracy of low wind 

speed retrievals from moist. equatorial regions is further degraded. Retrievals under 

conditions where water vapor COllteDt exceeds 50 kgi m2 are e;'lJecially poor 

B. GSW Al ,GORlTml 

A\lempts by Goodberlet et. aI., to refine the CV algoritbm resulted in tbe GSW 

algorithm - the first non-linear treatment of SSM!I data. In this study, each and every trial 

data set used to evaluate the performance oflhe different algorithms indicates that the GSW 
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algorithm perfonns better, overall, than the CV algorithm. However, the price paid to 

achieve this level of performance is �~�t�e�e�p�.� The CV algoritlilll �e�m�p�l�o�y�~� 81°"0 of all data for 

use in generating v.ind speed retrievals in clear day conditions· GSW uses only 63% 

[be IllOre reo;trietive rain flags employed by GSW dfel-1iveiy mitigate the high vrind 

speed bias fOlUld at low wind speeds [or CV It accomplishes this task, however, largely by 

eliminating high moisture data points from the data set. Despitc thc vel)' fine filter applied 

by the GSW algorithm to achieve improved accuracy, errors remain. Because GSW 

eliminates the dllta points ",hlch are the source of the high hias exhihited hy CV, the majority 

ofGSW retrievals are biased low, including those within the global average .... ind s]Jeed rang!: 

TIle mitigation of CV high bias due to eil;;'.'ated �a�t�m�o�~�]�J�h�e�r�i�e� moisture content is aeeompli&hed, 

in part, by replacing the �~�r�i�e�t�1�y� high bias values found in CV retrievals above 50 kgim' and 

replacing them ",-jth errors biased both low and high, 

C. SBB AND K\[C :'II'"El,'RAL NETWORKS 

The SBB and NMC �n�t�~�u�r�a�l� nctworks perform very sllnilarJ:y Both overestimate low 

wind s]Jeeds « 3 mis) and underestimate higher wind s]Jeeds (> 11 m1s), Middling wind 

s]Jeeds are biased "ughtly low. These �e�r�r�o�r�~� are almoo;t certainly due to the �a�b�~�e�n�e�e� oflowand 

high speeds in the training set used to develop tIle neural networks. Because tbe original 

training data set possessed few points in the low and high .... ·ind speed regions, the neuraJ 

networks perfonn poorly there. Moreover, SBB and NMC neural networks do not currently 

talt: into consideration the dt:nsity of buoy wind s]Jeed measurements and assign an 

appropriate wind speed density dio;trihution weighting factor to the training set 

Hoth the SHH and NMC neural nmvorks exhibit little variation in performance based 

upon the aJllOlUlt of atmospheri<.: moisture, '{be absence of atmospheri<.: moiSlure·based 

"eros!'ltalk" of the kind that plagues the regression algorithms providllS the neural networks 

v,rith a significant advantage, Lastly, the NMC neural network, although ostensibly an "all 

weather network, performed markedly better when filtered thcougb the clear day rain [lags 

established for the CV algorithm, indicating that some fonn of rain flag is useful even when 

neural networh are applied 
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VI. CONCLliSIONS A.'(O RECOM3-'1ENOA nONS 

Applied over the global wi nd speed distribution represented by the combined TOGA 

and NDBC buoy data set, all four of the wind speed retrieval algorithms examined in this 

study meet the OivlSP requirement that the standard deviation be no greater than ± 2 m/s 

Empirically derived �r�e�g�r�e�s�~�i�o�n� algorithms. while straightforward and easy to maintain, are 

significantly affected by the presence of atmospheric moisture Strictly linear regression 

algorithms, like CV. fail to accurately model the non-linear dependence of wind speed on 

brightness temperarures at high moisture levels 

Validation of the CV algorithm over the global wind distribution confirms the 

problems with performance described by its authors following the vali dation of the 

algorithm against predominately mid-latitude buoys The GS\V algorithm mitigates the high 

bias exhibited by the CY algorithm in high moisnlre regimes It does so, however, by 

eliminating �~�1�1� brightness temperature values less than 31. Data retrieved through a water 

laden atmosphere, however, are equally as imponant as data retrieved under cloudy 

conditions. The variation in performance between the CV and GSW algorithms highlights 

the central problem with algorithms that are significantly affected by atmospheric moisture 

Namely, that attempts to improve algorithm performance are necessarily dependent upon 

excluding or modifying values retrieved under high moisrure conditions. For this reason, 

among others, neural network-based algorithms appear to hold greater promise for broad

based effectiveness than do regression algorithms 

Both the SBS and N11C neural network perform equally well across the full range 

of water vapor values. !\'eural network values retrieved under lower �~�1�7� �v�a�l�u�e�~� are �l�e�~�s� 

accurate than those retrieved under "clear" conditions. The error generated by the SSB 

neural nen.vork during cloudy conditions is greater than that retrieved during clear conditions 

by up to J m/s Though designed as an "all weather" algorithm, the ]\,TMC neural network 

performance is enhanced when its data are filtered through the CV rain flag used to 

segregate dear weather conditions Neural nerv.'orks perform best where the wind speed 
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density distribution is the greatest 

1'0 achieve the greatest wind speed retrieval accuracy across the broadest possible 

wind speed range, it is recommended that the authors of the respective neural networks 

develop revised training data sets that represent the full distribution of global winds 

Increased representation of low and high speed winds in the training data set will help 

eliminate the bias generated by the neural networks in those regions Alternatively, it should 

be possible to accurately retrieve winds in all regions by employing a combination of 

regression and artificial intelligence techniques. Neural networks may be used when 

regression algorithms begin to fail due to high atmospheric moisture content 
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APPE:"IDIX A : FIGlTRES 
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Figure 1: Sources ofThennal Radiation, From [Swift, L 990] 
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Figure 2 Inci dence Angle Polari zation Effects, From [Swi{l 1990] 
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Figure 3 foam Coverage, From [Swift, 1990] 
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Figure 4 1\'DBC 10-meter Discus Buoy, From [NOAA, 1995J 
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Figure 5: NDBC Buoy Data Flow Path, From [NOAA , 19951 
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Figure 7" TOGA Buoy Data Flow Path, From [P"MEL , 1995] 
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Figure g SSM/I on DMSP SateiJite (Deployed Position), From [Hollinger et aI., 1987] 
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Figure 9: Instantaneous Field of View, From (Hollinger et aI., ]987] 

53 



Figure 10: SSMIl Successive Orbits, From [Hollinger, \9871 
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Figure 11: D-matrix Wind Speeds, From [Hollinger. 1991] 
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FiguH': J2: D-matrix Wind Speeds, From [Hollinger, 1991J 
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Figure 13: Topology ofa Multi-Layer Feed-Forward Ncural Nctwork, From [Dawson, 1993] 
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Figure 14 Neural Net',vork Architecture used by SBB andN"MC, From [Krasnopolsky, 1994J 
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Figure 15: NOSe and TOGA Wind Speed Distributio n 
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Figure 16" NDBC and TOGA Wind Speed Distribution (2-Year Period) 
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Figure 17· Location of TOGA and NDBC Buoys 
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Figure 19: CV Wind Speed vs TOGA Buoy Wind Speed 

63 



25 

�~� 20 

�~� 15 

" 
�~� 10 

10 15 
Buoy Wind Speed 

20 
MiS 

I Meosurements per 0.5 Tis bin 

25 

Figure 20: All GSW Wind Speed Data YS Buoy Wind Speed 
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Figure 21: G$W Wi nd Speed vs TOOA Buoy Wind Speed 
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Figure 22 All SBB Wind Speed Data vs Buoy Wind Speed 
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Figure 23: All NMC Win d Speed Data vs Buoy Wind Speed 
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Figure 24: CV Nearesl Neighbor Wind Speed vs Buoy Wind Speed, Rain Flag 0 
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Figure 25: GSW �N�e�a�r�c�~ �t� Neighbor Wind Speed vs Buoy Wind Speed, Rain Flag 0 
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Figure 26: SBB Nearest Neighbor Wind Speed vs Buoy Wind Speed, Rain Flag 0 
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Figure 27: NMC Nearest Neighbor Wind Speed vs Buoy Wind Speed, CV Rain Flag 0 
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Figure 28: (CV Nearest Neighbor - Buoy) Wind Speed vs Buoy Wind Speed 
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Figure 29: (GSW Nearest Neighbor Buoy) Wind Speed vs Buoy Wind Speed 
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Figure 32: (CV Nearest Neighoor - TOGA Buoy) Wind Speed "s TOGA Buoy Wind Speed 
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Figure 34 (CV Nearest Neighbor-Buoy) Wind Speed vs T837 
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Figur e 37 (GSW Nearest Neighbor - Buoy) Wind Speed vs To 37 
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Figure 38 (SBB Nearest Neighbor - Buoy) Wind Speed vs TB 37 
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Figure 39 (SBB Nearest Neighbor . Buoy) Wind Speed vs T B 37 
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Figure 4) (GSW Nearest Neighbor - Buoy) Wind Speed vs Water Vapor 
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Figure 45: (SBB Nearest Neighbor - Buoy) Wind Speed vs Water Vapor 
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Figure 46 (SBB Nearest Keighbor - Buoy) Wind Speed vs Cloud Water 
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A PPE:'IDIX B: TABLES 

TOGA BUOYS USED FOR SSMfl COMPARlSONS 

�~�O�O�'�;�l�'�/�!�l�l�l�"� 'f_mli �~� 
90001 02,0 N 250.0 Equatorial 

90002 02,0 S 250,0 Equatorial 

90003 00.0 235,0 Equatorial 

90004 02.0 S 235,0 Equatorial 

90005 05.0 S 235.0 Equatorial 

90006 05,ON 220,0 Equatorial 

90008 05.0 S 220,0 Equatorial 

90009 05,ON 205,0 Equatorial 

90010 00.0 205,0 Equatorial 

90011 05,0 S 205,0 Equatorial 

90012 08,ON 190,0 Equatorial 

90013 05.0 S 190,0 Equatorial 

90014 08.0 S 190,0 Equatorial 

90015 05.0N 156,0 Equatorial 

90016 02,ON 156,0 Equatorial 

90018 05,ON 165,0 Equatorial 

90019 02.0 N 165.0 E uatoria! 

Table 1: TOGA Buoys 



NDBC BUOYS USED FOR SSMII COMPARI SONS 

"UOVl.D. LAT1"1"\Jl>l;.Q9 r.ol'llllT\Jlll;(li) ZONE 

51002 17.2 202.2 Tropics 

51004 175 207.4 Tropics 

51003 19.2 199.2 Tropics 

51001 23.4 197.7 Low-lal;IUcielnl!lsitJon 

42001 25.9 270.3 mid-latitude 

42002 26.0 266.5 mid-latitude I 
42003 26.0 274.1 mid·latitude JI 
41006 29.3 282.6 mid-latitude II 
41002 32.2 284.7 mid-latitude 

44004 38.5 289.4 mid-latitude I 
46006 40.8 222.4 mid-latitude I 
44011 41.1 293.4 mid-latitude I 
46002 42.5 229.6 mid-latitude 

44005 42.7 291.7 mid-latitude 

46005 46.1 229.0 mid-latitude 

46004 50.9 224.1 mid-latitude 

46003 51.9 204.1 mid-latitude 

46001 56.3 211.7 Arctic 

46035 57.0 182.3 Arctic 

Table 2: NDBC Buoys 
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vrSTRlBUTION 01- DATA POINTS WITHIN RAJN FLAG SUBSETS 

Wind Speed TOlalData Rain Flag 0 Rain Flag 1 Rain Flag 2 Rain Flag3 

Retrieval Points Points (%) Points (%) Points(%) Points(%) 

Method 

CV 1658 1106 (67%) 453 (27%) 46 (3%) 53 (3%) 

NDBC 5427 4614 (85%) 5" (1 1%) 94 (2%) 132 (2%) 

7085 5720 (80%) 1040 (15%) 140 (2%) 185 (3%) 

GSW TOGA 1658 638 (38%) 944 (57%) 16 (1%) N/A 

t>.'DBC 5427 3852 (71%) 1384 (26%) 43 (1%) N/A 

GtohaJ 7085 4490 (63%) 2328 (33%) 59 (1%) N/A 

SHH TOGA 1658 1166 (70%) 408 (25%) 84* " (5%) N/A 

5427 4620 (85%) 675 (12%) 132'" (2%) N/A 

7085 5786 (82%) 1083 (15%) 216'" (3%) N/A 

1\l\'IC TOGA 1658 1106" (67%) N/A N/A N/A 

NDBC 5427 4614" (85%) N/A N/A N/A 

GlohaJ 7085 5720* 8001a) N/A N/A N/A 

Table 3: RainFiagData 

Filtered through CV rain flag 0 criteria 

.'" Not Empluyed in Study 
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GLOBAL WIND SPEED RETRIEVAL PERFORMANCE 

[CLEAR DAY (RAIN FLAG 0) DATA} 

CV CV CV GSW GSW GSW 

(00) (avg) (wavg) (nn) (avg) (wavg) 

SLOPE 0.843 0,822 0.828 0,877 0.856 0,862 

BIAS 1.246 1.499 1.434 0.070 0,300 0.232 

COR 0,855 0.866 0.869 0.846 0,862 0.864 

SD 1.942 1.837 1.820 1.973 1.824 1.816 

SBB ssa SBB NMC NMC NMC 

SLOPE 0.697 0.677 0.683 0.630 0.615 0.619 

BIAS 1,388 1.577 1.517 1.815 \,962 1.922 

COR 0,862 0.884 0.885 0.864 0.884 0.885 

SD 1.851 U5l 1.738 1.891 1.827 1.819 

Table 4: Global Wind Speed Retrieval Performance 
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TOGA W[ND SPEED RETRIEVAL PERFOR.;\1ANCE 

[CLEAR DAY (RAIN FLAG 0) DATA] 

CV CV CV GSW GSW GSW 

(lUI) (avg) (wavg) (no) (avg) (wavg) 

SLOPE 0641 0,600 0,614 0,707 0.685 0,695 

BIAS 2.416 2,775 2,664 0,252 0.529 0,444 

COR 0.649 0,688 0.697 0,729 0.800 0.801 

SD 1.628 1,464 1.449 1.394 1.154 1.153 

SBB SBB SBB 1\'M:C NMC NMC 

I SLOPE 
0,737 0,701 0.717 0,584 0,568 0,574 

BIAS 0.698 0,990 0.872 L763 U81 1.838 

COR 0.762 0.804 0.808 0,751 0.802 0.803 

SD 1.366 1.205 1.196 1.295 1.184 1.180 

Table 5: Wind Speed Retrieval Performance (TOGA Buoys) 
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NDBC wlNU SPEED RETRlEV AL PERFO.RMA.NCE 

[CLEAR DAY (RAIN FLAG 0) DATAl 

CV CV CV GSW GSW GSW 

(on) (avg) (wavg) (on) (avg) (wavg) 

SLOPE 0,850 0.829 0.835 0.869 0.849 0.855 

BIAS 1.235 1.491 1.426 0.287 0.503 0.436 

COR 0.862 0,872 0,874 0.850 0,864 0.866 I 
SD 2.010 1.915 1.898 2.022 1.884 1.874 I 

SBB SBB SBB NMC NMC NMC 

SLOPE 0,682 0.662 0.668 0,623 0,607 0.612 

BIAS 1.616 1.796 1.737 1.957 2.118 2,074 

COR 0.866 0,887 0,888 0,867 0,886 0,850 

SD 1.954 1.863 1.849 2.006 1.950 1.940 

Table 6: Wind Speed Retrieval Performance (NDBC Buoys) 
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