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ABSTRACT

Propeller noise can be modeled as an amplitude modulated (AM) signal.

Cyclic Spectral Analysis has been used successfully to detect the presence of

analog and digitally modulated signals in communication systems. It can also identify

the type of modulation. Programs for Signal Processing based on compiled

languages such as FORTRAN or C are not user friendly, and MATLAB based

programs have become the de facto language and tools for signal processing

engineers worldwide.

This thesis describes the implementation in MATLAB of two fast methods of

computing the Spectral Correlation Density (SCD) Function estimate, the FFT

Accumulation Method (FAM) and the Strip Spectral Correlation Algorithm (SSCA), to

perform Cyclic Analysis. Both methods are based on the Fast Fourier Transform

(FFT) algorithm. The results are presented and areas of possible enhancement for

propeller noise detection and identification are discussed.
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I. INTRODUCTION

A. MOTIVATION

Propeller related acoustic signatures typically exhibit modulation

characteristics. These modulation characteristics originate from the cavitation

process that takes place in the water due to the cyclic movement of the propeller.

The cavitation process is basically the collapse of air and vapor bubbles

due to variations in the static pressure. These variations in static pressure are a

consequence of the passage of the propeller blades through the water. This

movement, cyclic in nature, causes amplitude modulation in the static pressure,

and as a consequence an amplitude-modulated (AM) signal can be detected in a

receiver.

Cyclostationary processing techniques have been used to detect and

identify analog and digital communication signals very successfully. These

techniques have the advantage of using a more realistic model for the signal

than the stationary model used in most of the more conventional signal

processing techniques.

B. BACKGROUND

The basic elements of cyclic spectral analysis are the time-variant cyclic

periodogram and the time-variant cyclic correlogram. These two functions form a

Fourier transform pair. This fact is known as the cyclic Wiener relation or the

cyclic Wiener-Khinchin relation [Ref. 1 : p. 49.]
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In order to estimate the cyclic spectrum of a signal of interest, both the

time-smoothed cyclic periodogram and the frequency-smoothed cyclic

periodogram can be used, giving rise to two classes of computational algorithms:

the time-smoothing algorithms and the frequency-smoothing algorithms.

Although both classes of algorithms produce similar approximations to the

cyclic spectrum, time-smoothing algorithms are considered to be more

computationally efficient for general cyclic spectral analysis [Ref. 2: p. 38]. Taking

advantage of the efficiency, two computationally fast algorithms based on the

time-smoothed cyclic periodogram were developed by Roberts et al. [Ref. 2]: the

FFT Accumulation Method (FAM) and the Strip Spectral Correlation Algorithm

(SSCA).

C. THESIS GOALS

The purpose of this thesis is to implement the FFT Accumulation Method

as well as the Strip Spectral Correlation Method in MATLAB [ Ref. 3]. These two

methods are already implemented in C [Ref. 4]. MATLAB is a more user-friendly

and widely-used language that makes simulations and evaluations accessible for

students and researchers. These cyclic spectral analysis programs written in

MATLAB can easily be modified and are transportable across operating systems

(i. e., UNIX, PC systems, MAC systems, VMS, etc).

Both programs are used to compute the spectral correlation density (SCD)

function estimate for a number of analog and digital modulated signals, such as



AM, PAM, ASK, and BPSK. The simulation results are then compared to the

theoretical ones. After that the attention is focused on the AM signals for which a

number of different signal-to-noise ratios (SNR) are processed using both

methods. The results are presented and discussed for two types of modulation

messages: a periodic message (a tone) and a random message (white noise).

Results are presented by showing a three-dimensional plot of the cyclic

spectrum surface, a contour plot, a plot of the power spectral density (PSD)

obtained by setting the value of the cyclic frequency equal to zero, and some

additional two-dimensional plots for cyclic frequencies of interest.





II. NOISE IN THE OCEAN

Ross [Ref.5] defines noise as unwanted sound. The noise presence

interferes with the signals that are of interest. If one is interested in detecting the

presence of a particular class of surface ships, the sound generated by a near by

submarine can be interpreted as noise. The reverse situation also leads to a

similar statement. Therefore, the concept of noise has no absolute definition. It is

a relative concept, and its characterization depends on the signal of interest in a

particular situation.

In this thesis, as we are interested in the detection and possible

identification of the noise radiated by propeller, underwater noise is defined as

any sound that interferes with our ability to detect and identify those signals.

As reported by Ross [Ref. 5: p. 1], underwater noise is defined as sound

in the water that limits the military effectiveness of naval detection and

identification systems. Noise is unavoidable and sources that radiate as much as

one watt of acoustics power can be detected at relatively long ranges by modern

passive sonars.

A. TYPES OF UNDERWATER NOISE

There are several different sources of underwater noise that are grouped

and classified in different ways according to the reference used. The main

sources of underwater noise can be divided in ambient noise, self noise, and



radiated noise. Ambient noise and self-noise together constitute what is called

the background noise which interferes with the operation of a sonar system.

1. Ambient Noise

Ambient noise is the prevailing, sustained unwanted background of sound

at some location in the ocean. It excludes momentary, occasional sounds, such

as the noise of a close-by passage of a ship or of an occasional rain squall. It is

the background of noise, typical of the location and depth where a measuring

hydrophone is located, against which a "signal," such as the sound of a

submarine or the echo from a target, must be detected [Ref. 6: p. 1-1]. It

comprises all noises associated with the medium in which a sonar operates that

would exist in the medium if the sonar platform or vehicle itself were not present.

The spectrum and characteristics of this kind of noise are complicated and

depend upon location, position of the receiver, direction, and weather conditions.

In its most general form, the ambient noise spectrum has some frequency bands

where tonal components occur, and others where the spectrum is continuous

and negatively sloping ("pink" noise), separated by portions where the spectrum

is flat ("white" noise) or even reversed in slope [Ref. 6: p. 2-1]. This observation

indicates that different sources of noise must exist and be prevalent in different

regions of the spectrum.

Urick [Ref. 6] divides the overall frequency range into five frequency

bands: the ultra-low band (<l//z), the infrasonic band (\to20Hz), the low sonic



band (20 to 200Hz), the high sonic band (200to50,000//z), and the ultrasonic

{> 50kHz).

Almost nothing is known about the noise in the ultra-low band, since just a

few measurements are reported. The infrasonic band contains the strong blade-

rate fundamental frequency of propeller-driven vessels, plus one or two of its

harmonics. It is of great interest to low frequency passive sonars. The low sonic

band is characterized by the noise of distant shipping in areas where distant

ships are prevalent. In areas remote from shipping lanes, the noise in this band

is mainly dependent on wind speed [Ref. 6]. According to Ross [Ref. 5: p. 280],

ship-generated noise is the dominant source of ambient noise in the spectral

region between 20 and 200 Hz in most deep-water, open ocean areas and in

highly traveled seas such as the Baltic and Mediterranean. The noise in the high

sonic band is very dependent on the sea state and the wind speed. Thermal

noise begins to dominate the noise background in the ultrasonic band.

2. Self Noise

Self noise is the noise associated with a platform and its sonar

hydrophones. It includes the electronic noise generated by its preamplifiers, as

observed by the sonar hydrophone array [Ref. 5: p. 4]. It can reach the receiver

by transmission through the mechanical structure and by transmission through

the water either directly from the source or by reflection from the sea surface.

Self noise usually tends to increase as the speed of the platform



increases. At low frequencies and slow speeds, machinery noise dominates,

whereas at high frequencies propeller and flow noise become important.

Actually, as the speed is increased, these latter sources of noise assume more

importance at all frequencies.

At very low speeds, self noise is usually less important than ambient

noise. At higher speeds the self noise can become the limiting factor [Ref. 7: p.

413].

3. Radiated Noise

Radiated noise is that sound radiated into the water which can be used by

some receiver to detect the presence of the emitter at a considerable distance.

It is very important for passive sonars, which are designed to exploit the

peculiarities of this form of noise and to distinguish it from the background of self-

noise and ambient noise in which it is normally observed [Ref. 8: p. 328].

A detailed discussion of the mechanisms involved in the radiation of

sound through the ocean can be found in several references such as Ross [Ref.

5], Kinsler et al. [Ref. 7], and Urick [Ref. 8].

B. RADIATED NOISE FROM SHIPS, SUBMARINES, AND

TORPEDOES

The sources of noise on ships, submarines, and torpedoes can be

grouped into three major classes: machinery noise, propeller noise, and
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hydrodynamic noise.

Machinery noise comprises that part of the total noise of the vessel

caused by the ship's machinery. It originates as mechanical vibration of the

many and diverse parts of a moving vessel. This vibration is coupled to the sea

via the hull of the vessel.

Machinery vibration can originate from five different sources. The first

source of machinery noise are rotating unbalanced parts, such as out-of-round

shafts or motor armatures. The second one are repetitive discontinuities, such as

gear teeth, armature slots, and turbine blades. Reciprocating parts, such as the

explosions in cylinders of reciprocating engines, are the third source of

machinery vibration. The fourth are cavitation and turbulence in the fluid flow in

pumps, pipes, valves, and condenser discharges. And mechanical friction, as in

bearings and journals, is the fifth source of machinery noise.

The first three sources of machinery vibration produce a line-component

spectrum in which the noise is dominated by tonal components at the

fundamental frequency and harmonics of the vibration-producing process; the

other two give rise to noise having a continuous spectrum containing

superimposed line components from structural members that are excited into

resonant vibration. The machinery noise of a vessel may therefore be visualized

as possessing a low-level continuous spectrum containing strong line

components that originate in one or more of the repetitive vibration-producing



processes listed above.

Even though the propeller is a part of the propulsion machinery of a

vessel, the noise it generates has both a different origin and a different

frequency spectrum from machinery noise. Machinery noise originates inside the

vessel and reaches the water by various processes of transmission and

conduction through the hull. Propeller noise, on the other hand, originates

outside the hull as a consequence of the propeller action and by virtue of the

vessel's movement through the water.

The source of propeller noise is principally the cavitation induced by the

rotating propellers [Ref. 8: p. 334]. Because cavitation noise consists of a large

number of random small bursts caused by bubble collapse, it has a continuous

spectrum, covering a wide frequency range.

Hydrodynamic noise originates in the irregular and fluctuating flow of fluid

moving by the vessel. The noise created by the turbulent boundary layer is

sometimes called "flow noise." Under normal circumstances, hydrodynamic noise

is likely to be only a minor contributor to radiated noise, and is apt to be masked

by machinery and propeller noises.

C. PROPELLER NOISE

Ross [Ref. 5: p. 253] describes cavitation of marine propeller as the most

prevalent source of underwater sound in the oceans. Furthermore, when it

10



occurs, propeller cavitation is usually the dominant noise source for any single

marine vehicle. Submarines and torpedoes often operate deep enough to avoid

cavitation. Surface ships, on the other hand, generally have well-developed

propeller cavitation, with the result that their entire radiated spectra from as low

as 5 Hz to as high as 100 kHz are controlled by this source [Ref. 5: p. 253].

Cavitation is essentially the rupture of bubbles in a liquid caused by

reduction of local static pressure. It differs from boiling because the first is

caused by a reduction of local static pressure while the second is due to an

increase of temperature. Because of the pulse nature of the individual collapses

and the random sequence of occurrence, the resultant spectrum covers a wide

frequency range. Also, the pulsations of the aggregate volume of cavitation

radiate strong tonals at frequencies below 70 Hz [Ref. 5: p. 270].

Of the various types of cavitation, blade-surface cavitation on the suction

surface is the one that produces the highest noise levels. A more detailed

explanation on the different types of cavitation, particularly on the blade-surface

cavitation noise is found on Ross [Ref. 5: pp. 253-260].

Radiated spectra of surface ships are dominated by propeller cavitation

noise except when the ships are operating at very slow speeds [Ref. 5: p. 272].

Some characteristics of surface ship noise that confirm the dominance of

propeller cavitation are strong modulation of the broadband spectrum at shaft

and blade frequencies and the radiation of low-frequency tonals at harmonics of

11



these frequencies.

Propeller noise has been known for many years to be amplitude-

modulated and to contain "propeller beats," or periodic increases of amplitude,

occurring at the rotation speed of the propeller shaft, or at the propeller blade

frequency, which is equal to the shaft frequency multiplied by the number of

blades. The modulation at the shaft rotational frequency is due to slight physical

differences between blades, that causes one blade to cavitate more than the

others. It is this shaft-rate modulation that can be detected by the human ear and

which enables an experienced sonar operator to determine the propeller

rotational rate (rpm) and often classify the target [Ref. 5: p. 269]. Propeller beats

have long been used by listening observers for target identification and for

estimating target speed [Ref. 8: p. 338].

Propeller noise, with its origin in the flow of water about the propeller,

creates tonal components in addition to the continuous spectrum of cavitation

noise. Low-frequency spectra of cavitating ship propellers are usually dominated

by tonal components at harmonics of the rotational frequency. More often, at the

low-frequency end of the spectrum, propeller noise contains discrete spectral

"blade-rate" components occurring at multiples of the rate at which any

irregularity in the flow pattern into or about the propeller is intercepted by the

propeller blades. The frequency of the blade-rate series of line components is

given by

12



fm = mns, (1)

where fm is the frequency, in Hertz, of the m'
h harmonic of the blade-rate series

of lines, n is the number of blades on the propeller, and s is the propeller

rotation speed in number of turns per second.

Shaft and blade modulation frequencies for merchant ships are now

significantly higher than they were during WWII. Forty years ago most merchant

ships had three- or four-bladed propellers and operated at from 60 to 100 rpm.

Shaft modulation frequencies were generally between 1.0 and 1.6 Hz and blade

frequencies were from 3.5 to 6.5 Hz. Today, typical merchant propellers have

four, five or six blades and operate at from 75 to 135 rpm; shaft frequencies

range from 1.3 to 2.2 Hz, and blade frequencies are typically 6 to 12 Hz [Ref. 5:

p. 279].

13
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III. CYCLOSTATIONARY PROCESSING

The majority of the current signal processing techniques for intercepting or

analyzing manmade signals in a noise contaminated environment typically

utilize probabilistic models based on stationary statistics. In other words, they

describe the signal on the average, and they have to restrict themselves to a

small time interval in order for this approximation to hold. That limits the amount

of data that can be used to derive the features in the signal and the resulting

information.

Most manmade signals, as are typically encountered in communication,

radar, and sonar systems have some parameters that vary with time. Examples

include sinusoidal carriers in amplitude, phase and frequency modulation

systems, periodic keying of the amplitude, phase, or frequency in digital

modulation systems, periodic scanning in some radar systems, and amplitude

modulation in propeller noise. This requires that the random signal be modeled

as cyclostationary, in which case the statistical parameters vary in time with

single or multiple periodicity.

Much of the background material in this chapter was taken from Gardner

[Ref. 1].

A. CYCLOSTATIONARITY

According to Gardner [Ref. 1], the essence of cyclostationarity is the fact

that sinewaves can be generated from random data by applying certain

15



nonlinear transformations. As a consequence, a continuous signal x{t) is

cyclostationary of order n (in the wide-sense) if and only if we can find some ri
h

order nonlinear transformation of the signal, y{t) = f(x(t)) , that will generate

finite-amplitude additive sine-wave components, which produce spectral lines. In

the same sense, a discrete-time signal x[m] is cyclostationary of order n (in the

wide-sense) if and only if we can find some ri
h
order nonlinear transformation of

the signal, y[m] = f[x[m]] , that will generate finite-amplitude additive sine-wave

components, which will produce spectral lines [Ref. 1 : p. 2].

A continuous signal y{t) contains a finite-amplitude additive sine-wave

component with frequency a , a * 0, if the Fourier coefficient

M;=(y(t)e- 2^) (2)

is not zero. In the same way, a discrete-time signal y[m] contains a finite-

amplitude additive sine-wave component with frequency a ,a * 0, if the Fourier

coefficient

,
a

-i ik—m

M a

y
=[y[m)e '•

j (3)

is not zero. Here, fs
denotes the sampling frequency and i is the square root of

minus one.

The operation (•) is the time-averaging operation defined as

16



T/2

0=lim- \{)dt (4)
T—ken / »

r/2

for analog signals, and as

<-> =lim ^r-r£(-) (5)

for discrete-time signals.

For second-order cyclostationarity, the nonlinear transformation for a

continuous signal x(t) (i. e., y{t) = f(x(t))) is given by

y T
{t) = x(t + z/2)x(t-T/2), (6)

while for a discrete-time signal x[m] (i. e., y[m] = /[x[/w]] ) it is given by

>>Jm] = x[m] x'[m-£]

,

(7)

where the symbol * stands for complex conjugation.

B. THE CYCLIC AUTOCORRELATION FUNCTION (ACF)

The Fourier coefficient M" for second-order cyclostationarity is given by

Ma
y
= {x(t + r/2)x*(t-r/2)e'

2nca
>. (8)

This quantity is the fundamental parameter of second-order periodicity in

continuous time and is called the cyclic autocorrelation function (ACF), R"(r) ,
of

x(t).

For discrete-time signals, the ACF is defined as

17



KM = ( x[n]x* [n - Z]e-
ilna"

) e'
nai

, (9)

since delays other than sampling increments are not allowed.

The ACF can be interpreted as measuring the amount of correlation

between different frequency-shifted versions of a given signal, as shown in detail

in Appendix A for an AM signal.

Therefore, a signal exhibits second-order cyclostationarity in the wide-

sense when its cyclic autocorrelation function, R"(t) for a continuous time

signal or R"[t] for a discrete-time signal, is different from zero for some nonzero

frequency a . The frequency a is called cycle frequency or cyclic frequency, and

the discrete set of cycle frequencies a for which R°(t)*0 or R"[£]*0 is called

the cycle spectrum or cyclic spectrum.

If a signal is cyclostationary, the cycle spectrum contains only harmonics

(integer multiples) of the fundamental cycle frequency. Neverthless, if the signal

has more than one fundamental cycle frequency, then the cycle spectrum

contains harmonics of each of those frequencies. In this situation the signal is

said to be polycyclostationary.

C. THE SPECTRAL CORRELATION DENSITY FUNCTION (SCD)

Signals usually have distinctive features in the frequency domain that are

not easily seen in the time domain. Those features are generally used for

detecting the presence of those signals. For instance, is very hard to detect the

18



presence of a sinusoidal signal, when embedded in noise, by just looking at its

time-domain representation. The same signal can easily be detected in the

frequency domain, provided the integration time can be made sufficiently long.

For the same reason, it is beneficial to determine in the frequency domain

the amount of correlation between frequency-shifted versions of x{t). The

spectral correlation density function (SCD) is defined as the Fourier Transform of

the cyclic autocorrelation function (ACF), to allow the localization in the

frequency domain of the amount of time-correlation between frequency-shifted

versions of the signal x{t) . The SCD is given by

00

S:(f)= \R a
x {r)e-

2^ dr, (10)
-00

for a continuous signal x(t) , and by

s:(f)=fd
R:[£]e-i2afi

, (11)
e=-ao

for a discrete-time signal x[n]

.

To determine the correlation in the frequency domain, we simply pass

both of the two frequency translates u{t) = x{t)e"
nc" and v(t) = x{t)e"

ra
' through

the same set of bandpass filters and then measure the temporal correlation of

the filtered signals, as shown in Figure 1 (The signal u{t) represents a downshift

in frequency by a/2 while v(t) represents an upshift in frequency by a/2 of the

signal x(t)). In the limit when the bandwidth B of these narrowband components

19



approaches zero, we obtain

1

»->o5
S;(f) = )imj-( [hi(t)®u(t)][h'B (t)®v(t)\ ), (12)

where the symbol 8 stands for convolution, and hfB (t) is the impulse response

of the bandpass filters.

it)

exp(— inat)

BPF

BPF

exp(+ mat)

<>:
£(/)

Figure 1 Spectral Correlation Analyzer (after Gardner [Ref. 1])

Strictly speaking, the SCD is not a valid density function in the usual

sense, since it is not nonnegative and, in fact, not even real-valued. However,

because of the similar properties that the SCD does share with the PSD, the

term density is retained.

20



The SCD is also called the cyclic spectral density. Observe that although

the argument / of the SCD is continuous, as it always will be for a random

signal, the argument a is discrete, as it always will be since it represents the

harmonic frequencies of periodicities underlying the random time-series.

A detailed example of the computation of the SCD for an amplitude-

modulated (AM) signal is given in Appendix A.

21
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IV. ESTIMATION OF THE SPECTRAL CORRELATION DENSITY
FUNCTION

Cyclic spectral analysis is used to detect the presence of a signal via the

spectral correlation density (SCD) function. To accomplish this goal a series of

codes that estimates the SCD function were developed in MATLAB language.

Those codes are implementations of two FFT based time smoothing algorithms

called the FFT Accumulation Method (FAM) and the Strip Spectral Correlation

Algorithm (SSCA). The majority of the background material in this chapter was

taken from Roberts et al. [Ref. 2].

As reported by Roberts et al. [Ref. 2], cyclic spectral analysis algorithms

generally fall into two classes: those that average in frequency (frequency

smoothing) and those that average in time (time smoothing). Although both

classes of algorithms produce similar approximations to the cyclic spectrum, time

smoothing algorithms are considered to be more computationally efficient for

general cyclic spectral analysis.

Both methods are based on modifications of the time smoothed cyclic

cross periodogram, defined as:

KM/). =lH"-/+ f)
YinJ -§))„• (13)

where At represents the data time span, and XT \n,f + — \ and YT \n,f- — \ are

the complex envelopes of narrow-band, bandpass components of the signals

23



x(n) and y{n) , respectively. The complex envelopes are also called the complex

demodulates of the signals. These complex demodulates are computed in the

following way:

r=-N'/2

and

YT{nj)= I,a(r)y(n-r)e-
i2*l"-')T', (15)

r=-N'l2

where a(r)\s a data tapering window of length T = N'T
S
seconds, with T

s
being

the sampling period. The Fourier transform of a(r) plays the role of a spectral

window. The particular shape of window, especially the spectral window, is of

considerable importance. Windows other than the rectangle have a tapering

effect on the data they multiply, since data occurring away from the aperture

center are attenuated relative to the data at the aperture center. A data tapering

window whose Fourier transform has low skirts and low sidelobes is desirable to

reduce cycle leakage. A Hamming window is used for the input bandpass filters.

Figure 2 shows a basic implementation of the discrete time smoothed

cyclic cross periodogram, where the symbol * stands for complex conjugation.

The complex demodulate frequencies /, and f2
are related to the spectrum

frequency / and the cyclic frequency a of the point estimate by the following
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two equations:

/ = /i+/2

(16)

and

<* = fi-A (17)

y\ri\

A"\

c{n]< P*fa v

M^nfA

exp{-ilTrf.n)

y— i27tf2nj

LPF
^r (/)^

At

exp

Figure 2 Discrete Time Smoothed Cyclic Cross Periodogram (after Roberts et al.

[Ref. 2]).

A. FFT ACCUMULATION METHOD (FAM)

In this method, the complex demodulates are estimated efficiently by

means of a sliding N' -point FFT, followed by a downshift in frequency to
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baseband. In order to allow for an even more efficient estimation, the N' -point

FFT is hopped over the data in blocks of L samples (channelization). This

means that L data points are skipped between successive computations of the

N' -point FFT. The value of L was chosen to be equal to N'/4 since, according

to Reference 2, p.462, it allows for a good compromise between maintaining

computational efficiency and minimizing cycle leakage and cycle aliasing. The

value of N' is determined according to the desired resolution in frequency (A/)

used in the algorithm, and is given by

N'=j^. (18)

N' is chosen to be the power of 2 equal to or larger than the number

given by Eq. 18 to take advantage of the Fast Fourier Transform (FFT) algorithm

without making use of zero-padding.

After the complex demodulates are computed and the product sequences

between each one of them and the complex conjugate of the others are formed,

the time smoothing is accomplished by means of a P -point FFT. The value of P

is determined according to the desired resolution in cyclic frequency ( Aa ), and is

given by

P = Tf~- (19)
L Aa

Again, P is chosen to be the power of 2 equal to or larger than the
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number given by Eq. 19 to take advantage of the FFT algorithm avoiding zero-

padding.

Figure 3 illustrates the generation of the complex demodulates while

Figure 4 shows the implementation of the FAM method.

gk^-QxHI/N')

x{kL+\ikL+N')

k=0,...,P-f

N'-point

Hamming window
N'-point FFT

x(kL,f
( )

£=i...,N'

XT[kL,fej

Figure 3 Computation of the Complex Demodulates

XTykL,f(J

XTykL,fej

P-point FFT

s^Je,X

/.,/,= lA...,iV

Figure 4 Implementation of the FFT Accumulation Method
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An advantage of having complex demodulates is that there is no need to

worry with a correction factor to take care of the phase shift introduced by

overlap processing. The last multiplier in Figure 3 (i. e., complex exponential)

provides the correction to compensate for the overlap processing artifacts.

The MATLAB codes that compute and plot the SCD function estimate

using the FAM method are called AUTOFAM and CROSSFAM. AUTOFAM

computes and plots the auto spectral correlation density function (amount of

correlation between frequency shifted versions of a given real or complex valued

signal) estimate. CROSSFAM computes and plots the cross spectral correlation

density function estimate for two different real or complex valued signals.

The inputs required for these programs are the signal(s), the sampling

frequency (fs ), the desired frequency resolution (A/), and the desired resolution

in cyclic frequency (Aa). In the case of two signals, the sampling frequencies

must be the same.

The programs are listed in Appendices B and C.

B. STRIP SPECTRAL CORRELATION ALGORITHM (SSCA)

In the SSCA algorithm, the complex demodulate of one of the signals is

computed in the same way it is done for the FAM method (channelization). The

complex demodulated sequence is directly multiplied by the complex conjugate

of the other signal. Then, the resultant signal is smoothed in time by means of an
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N -point FFT. Here, vV is the total number of data points (N = PL).

Figure 5 shows the implementation of the SSCA. The complex

demodulated component XT{kL,fe
) is obtained as shown in Figure 3.

It appears that the complex demodulate XT\kL,fe ) is at a sampling rate

fJL due to the introduction of the decimation factor L , and consequently it can

not be directly multiplied by x[n] which is at a sampling rate fs
. However, the

demodulated sequence is interpolated to match the sampling rate of x[n] by

means of a process called replication. Replication is accomplished by holding the

value of each complex demodulate sample for L samples [Ref.2].

The MATLAB codes generated to compute and plot the SCD function

estimate for given signal(s) using the SSCA method are called AUTOSSCA and

CROSSSSCA. AUTOSSCA computes and plots the auto spectral correlation

density function (amount of correlation between frequency shifted versions of a

given signal) estimate. CROSSSSCA computes and plots the cross spectral

correlation density function estimate for two real or complex valued signals.

The inputs required for these routines are the signal(s), the sampling

frequency (fs ), the desired frequency resolution (A/ ), and the desired resolution

in cyclic frequency {Aa). In the case of two signals, the sampling frequencies

must be the same.

The codes are given in Appendices D and E.
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Figure 5 Implementation of the SSCA
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V. EXPERIMENTAL RESULTS

In this chapter, the theoretical results of computing the SCD function for

some analog and digital modulated signals are presented, together with the

experimental results obtained as output from the programs AUTOFAM and

AUTOSSCA. An interpretation of the results is also provided.

A. ANALOG MODULATED SIGNALS

1. Amplitude-Modulated (AM) Signal

Consider the following amplitude-modulated (AM) signal, x[n], given by

x[n] = a[n]p[n]
, (20)

where a[n] is a purely stationary low pass message signal with power spectral

density Sa \f) , and p[n] is a sinusoidal carrier wave given by

p[n] = cos{27tf n +
<f> ). (21)

In Eq. 21, f = FJFS
is the carrier digital frequency and cj> is the carrier

phase. F is the carrier frequency in Hz and F
s

is the sampling frequency in

Hz.

The SCD function for this amplitude-modulated (AM) sine wave is given

by
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s:(/)=

\s.{f + fo) + \sm(f-f.) 9
a =

\sa (f)e
±l2

'°, cc = ±2f (22)

0, otherwise.

Details of the derivation are given in Appendix A.

When a[n] is a tone, some of the assumptions made to obtain Eq. 22 are

not valid. If the message a[n] is a tone at digital frequency fa
given by

a[n] = cos(27rfa
n)

, (23)

then it is necessary to go through the same steps as for a stationary lowpass

signal with no spectral lines in the message's power spectral density (PSD), as

shown in Appendix A.

Let us assume that x[n] is an amplitude-modulated single-sideband

(AMSSB) signal, obtained by transmitting only the lower-side frequency, given by

x[n]= -[cos(2ttfa
n) cos(2nf n +

<f> ) + sm{2nfan) sin(2xf n +
#,)]

= |cos[2;r(/ -/> + &]. (24)

Since the cyclic autocorrelation function (ACF) is given by

R?U] = (x[n] x'[n-l] e^2*"") e
ixai

, (25)

replacing x[n] and x[n-£] by Eq. 24 leads to,

RM=~MHfo -fa )t]e'*
a(

(e-'
2™) +
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]_ e
,n\a-2{f -fa )\t I i2^[«-2(/ -/„)]» \ i2 * + }_ g

»r[«+2(/ -/e)W -/2*[«+2(/„ -/.)]» \ -,74,
_ (26)

This can be rewritten as

CM=
jcos[2^(/ -/ )4 a =

a = ±2(f -fa ).-e±a *°

8

(27)

The SCD is the Fourier transform of the cyclic autocorrelation function.

Therefore, the SCD is given by the Fourier transform of Eq. 27 leading to

s:(/)=
\[s{f-fo+fahS{f + fo-fa)\ « =

fay** a = ±2(f -fa ).

(28)

Now, let us suppose that x[n] is an amplitude-modulated double-

sideband supressed carrier (AMDSB-SC) signal given by

x[n\ = cosllirfan) cos[27rf n +
<f> ). (29)

This can be written using a trigonometric identity as

x[n] = « {cos[2^(/ + fa )n + <j> ] + cos[2;r(/ -fa)n + ^ ]}

.

(30)

So, replacing x[«] and x[«-^] by Eq. 30 into Eq. 25 leads to,

*;[*]= i[cos2*(/ + /a )* + cos2*{/. -/.)/]e^2™) +

J_ ,>[a-2(/0+/a)]W -i2«(«-2(/.+/,)]"\ «A ,J_ "r[a+2(/„-/jW -,2*(a-2/>\

16 \ / 16 \ I

]_ m\a-2{f -fa ))t I -i2x{a-2f„)n\ ,2^ .^_Ma+2(f0+fa j\el-i2n\a+2{f0+f )\n\ l2 to

16
e Yo +— e

16
e r° +
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J_fcr[«+2(/„ -/„)]*/ -i2*{a+2/a )n\ -12*. J_ m\a-l{j -

f

)\t
/^-i2„{a+2/a )n

16 \ / 16

J_ e M«+2(/ +/JW -««(a+2/.)i.\ J_ /4«-2(/ +/„)]«/ -/2*(«-2/ )«\ ,2&

16 \ / 16 \ /

J_ «[a-2(/„-/.)]< / -i2*[a-2(/
e -/„)]« \ ,2^ J_ .*[ a +2 (/„+/„)W ->2^(«+2/„)« \ -,2&

16 \ / 16 \ I

This can be rewritten as

*;m=

^[cos2;r(/ + /.)/ + cos2;r(/ - /a)4 a =

a = ±2/.

« = ±2(/ -/J

« = ±2/.

« = ±2(/0+/ ).

16 16 8
°

—

e

±<2*
,

16

8
7a

1

(32)

16

Therefore, the SCD is given by the Fourier transform of Eq. 32 leading to

s°Af) =

16

a = ±2(/ -/J

« = ±2/

(33)

j^M*"*.

16K/-/*M/+/J]^

£<*"*. a = ±2(/ +/J.

For the case where x[n] is an amplitude-modulated double-sideband

transmitted carrier (AMDSB-TC) signal given by

x[n] = [l + cos(2;r./>)] • cos(2af n +
<f> ). (34)
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This can be written using a trigonometric identity as

x[n] = cos(2tt f n) + - {cos[2;r(/ + fa
)n + fa ]

+ cos[2^(/ -fa
)n + <p ]}

.

(35)

So, replacing x[n] and x[«-^] by Eq. 35 into Eq. 25 leads to,

RZ[t]=\\co!(2xfj) + Ucos24f +fa )i + cos24f -/.)/]} e" («-«--) +

8 8 8 8 J\
/
+

II /«[«+2(/.-/.)]< + 1 M«-2(/.+/.)]< + Ie *K«-2/.)< .1 g*K«+2/.)l/
g
-iM«-/>\j

[8 8 8 8 J\

J_ *r(a-2{/.-/.)]/ J_ **(«+2(/#+/.)]*l/ -i2«r(a+2/„)« \

,16 16 J\
/

J_ i«[«+2(/.-/.)J< J_ l«(a-2(/.+/.)]/\/
/>
-/2«(a-2/.)ii

16 16

J_ e
'>[a+2(/ -/a)]^-/2^/

e
-/24a+2(/<

,-/.)]«'
)

_L gM«-2(/.-/.)]<g
nA/g-'2«|«-2(/.-/.)]»

,

;

fl
e««(«+2(/.-/.)l< + I e

'*(«+2/ )* 1 -nA / -n«{«+(2/.-/.)]«\
+

IeM«-2(/.-/J]' + Ie
*K«-V.)U

g
l2A I

e
-i2f\a-{2f -fa )\n

}_ i*(a+2ft )t J_'-«|«+2(/ -/„)]/ J_it[« + 2(/,, +/„)]< L^2A l-iln(a+lJB )n

,4 16 16 J \

fl g M«-2/.)' ,_L-**{«-2(/.-/.)l< + _L e
"r

[

a - 2U +'*)]' L''2^/e
-'"2T(«-2/.)«

U 16 16 J \
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J.
b^a+2[f.*f.)]l }_ i*{a+2J )t \ -/2* / -i2x[a+{2fB +/.)]«

8 8
+

}_ i*[a-2{f +/a )\l }_ ix{a-2fe )l} 12* /p
-i2«[a^2/.+/.)]»

8 8 J

J_ /«-[«+2(/ +/a )]^ -/2A, /_ -n«{«+2(/-+/.)]«

16
e ™ \ e +

J_ i*{a-2{fc+fa )]l njj -i2x[a-2(f +fa )]n

16 \
(36)

This can be rewritten as

r:[£] =

\co{K(2f - fa )t] + ^cos[^(2/ + /a )4

±cw(2*/.j),

,±'2 A,

16
1

-co^7ifj)e
±l

4 8
v a

'

1

,±' 2^

cos^/^)^,

—e ±i2 *°

16

« =

« = ±2/.

a = ±2(/o -/a)(37)

a = ±(2/.-/.)

a = ±2/

« = ±(2/ +/J

a = ±2(/c+ /a ).

Therefore, the SCD is given by

s;(fh

2) 8

£<c/+/.)+i*/)+£*/-/.)
«"*,

16
</)«

«-*/. (38)

a = ±2(/„-/,)

a = ±(2/„-/„)

a = M2f„-f.)

a = ±2(f +f.).
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The results obtained from AUTOFAM and AUTOSSCA are presented as a

sequence of three plots, for each of the signals utilized. This presentation is

maintained throughout (i. e., Figure 6 - Figure 41). The first plot is a surface plot

that shows the magnitude of the SCD function estimate in each region of the

bifrequency plane with coordinates / and a. The second plot is a two-

dimensional contour plot. It gives a better view of the position of the features in

the bifrequency plane. The third plot is a set of two-dimensional slices of the

SCD function estimate for fixed values of the cyclic frequency a .

Figures 6-11 show the results obtained by using the programs

AUTOFAM and AUTOSSCA on an amplitude-modulated single-side band

(AMSSB) signal. For fa = 5\2Hz and f = 204SHz, Equation 28 leads to the

following result:

s;(/)=
-[S(f- 1536) + S(f + 1536)1 a =
8

i (39)

S(f)e ±l2
'°, a = ±3072Hz.

So, according to Eq. 39, ones expect to obtain peaks at / = ±\536Hz for

a = 0, and at / = for a = ±3072Hz. The results in Figures 6-11 are in

agreement with the theoretical results in Eq. 39 and show that AUTOFAM gives

a clearer picture than AUTOSSCA. This is even true when AUTOSSCA uses a

finer resolution in cyclic frequency (i. e., Aa = 64 Hz for AUTOFAM versus

Aa = 32 Hz for AUTOSSCA).

The results obtained for an amplitude-modulated double-side band
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suppressed-carrier (AMDSB-SC) are presented in Figures 12-17. For

fa
=5\2Hz and f = 2048Hz , Equation 33 leads to the following result:

sM =

—\s(f -2560) +S(f - 1536) + S(f + 1536)+S(f +2560)L a =
16 l

[S(f - 2048)

+

S(f + 2048)],

1

1

l6 l

16
to

~[S(/-512)+S(/+512)],
16

16
4A

a = ±\024Hz

a = ±3072/£

a = ±4096Hz

a = ±5\20Hz.

(40)

According to Eq. 40, ones expect to have four peaks at / = ±\536Hz and

/ = ±2560Hz , for a = 0; two peaks at / = ±204SHz , for a = ±\024Hz ; one peak

at / = , for a = ±3072Hz ; two peaks at / = ±5\2Hz , for a = ±4096#z ; and a

peak at / =
, for a = ±5\20Hz . Figures 12-17 confirm the theoretical results as

given by Eq. 40.

The results for an amplitude-modulated double-side band transmitted-

carrier (AMDSB-TC) are presented in Figures 18-23. For fa =5\2Hz and

f = 2048 Hz , Equation 38 leads to the following result:

*?(/)=

— S{/ + 2560) + -S(/ + 2048) +— S(f + 1536) +— <5{/- 1536) + - S(f - 2048) +— S(f - 2560), a =

- S(f + 2304) + - S(f + 1 792) + - S(f -
1 792) + - S{f - 2304),

o o o o

!<5{/ + 2048) + -i5(/-2048).

\b
w*-.

S{/ + 256) + -S(f -256)

I<$(/ + 256) + I <5(/-256)

bw

a = ±512*

a = ±1024//r

a = ±3072/£

a = ±3584/fc

a = ±4096//:

a = ±4608//r

a = ±5120//r.

(41)

According to Eq. 41, ones expect to have two big peaks at / = ±204$Hz
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and four smaller peaks at / = ±\536Hz and / = ±2560 Hz , for a = 0; four peaks

at / = ±\792Hz and / = ±2304 Hz , for a = ±5\2Hz\ two peaks at / = ±2048 Hz,

for a = ±1024//r ; one peak at / =
, for a = ±3072//- ; two peaks at / = ±256Hz

,

for a = ±3584//r ; a big peak at / = and two smaller peaks at / = ±512//z , for

a = ±4096Hz ; two peaks at / = ±256Hz , for a = ±4608//z ; and a peak at / =
,

for a = ±5120//r . Figures 18-23 verify the theoretical results of Eq. 41.

To have a reliable estimation of the spectral correlation density function is

necessary that the product A/A/ »1 [Ref. 1]. This condition requires that

A/» Aa . In some of the results obtained (i. e., as in Figure 21), this

requirement was not met. Computational limitations did not allow for a better

resolution in the plots, since this translates to generating a large amount of data,

making impossible to obtain a plot on the printer and/or on the screen with the

available PC and workstation resources.
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aipha(Hz)

Figure 6 Surface plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Single-Side Band Signal, using AUTOFAM, with the following

parameters: &f = 256Hz , Act = 64Hz
, fc

= 2048//z
, / =5\2Hz , and fs

= 8192/fe

,

where fc
is the carrier frequency, /, is the tonal frequency, and fs

is the

sampling frequency.

40



4000 R

3000 -!

2000 -

1000 -!

£ oh

1000

-2000

-3000

-4000
-8000 -6000 -4000 -2000 2000

alpha(Hz)

4000 6000

Figure 7 Contour plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Single-Side Band Signal, using AUTOFAM, with the following

parameters: Af = 256Hz, &a = 64Hz, fc
=204SHz, ft

=512/fe,and fs
= S\92Hz,

where fc
is the carrier frequency, /, is the tonal frequency, and fs

is the

sampling frequency.
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Figure 8 Plots of the SCD estimate magnitude for an Amplitude Modulated (AM)

Single-Side Band Signal, using AUTOFAM, for a = and a = 3072Hz,

respectively, with the following parameters: Af = 256Hz, Aa = 64Hz,

fc
= 2048Hz

, /, = 5\2Hz , and fs
= %\92Hz , where fc

is the carrier frequency, /,

is the tonal frequency, and f is the sampling frequency.
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Figure 9 Surface plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Single-Side Band Signal, using AUTOSSCA, with the following

parameters: Af = 256Hz, Aa = 32Hz, /c
=2048tfz, f,=512Hz, and fs

= S\92Hz,

where fc
is the carrier frequency, /, is the tonal frequency, and fs

is the

sampling frequency.
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Figure 10 Contour plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Single-Side Band Signal, using AUTOSSCA, with the following

parameters: Af = 256Hz, Aa = 32Hz, /c
=2048//z, ft

=5\2Hz, and fs
= &\92Hz,

where fc
is the carrier frequency, /, is the tonal frequency, and fs

is the

sampling frequency
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Figure 1 1 Plots of the SCD estimate magnitude for an Amplitude Modulated

(AM) Single-Side Band Transmitted Carrier Signal, using AUTOSSCA, for a =

and a = 3072Hz, respectively, with the following parameters: Af = 256Hz,

Aa = 32Hz, fc
= 2048Hz, ft

=5l2Hz, and fs
= S\92Hz, where fc

is the carrier

frequency, ft
is the tonal frequency, and fs

is the sampling frequency.
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Figure 12 Surface plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Side Band Supressed Carrier Signal, using AUTOFAM,
with the following parameters: A/ = 256/fe , Aa = 32Hz

, fc
= 2048Hz

, ft
=5\2Hz

,

and fs
= 8\92Hz, where fc

is the carrier frequency, ft
is the tonal frequency,

and / is the sampling frequency.
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Figure 13 Contour plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Sided Band Supressed Carrier Signal, using

AUTOFAM, with the following parameters: A/ = 256Hz , Aa = 32Hz
, fc

= 204SHz

,

ft
=512Hz, and fs

= 8\92Hz, where fc
is the carrier frequency, /, is the tonal

frequency, and fs
is the sampling frequency.
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Figure 14 Plots of the SCD estimate magnitude for an Amplitude Modulated

(AM) Double-Side Band Supressed Carrier Signal, using AUTOFAM, for a =
,

a = 1024Hz, a = 3072Hz, a = 4096Hz, and a = 5\20Hz, respectively, with the

following parameters: A/ = 256Hz , Act = 32Hz
, fc

= 204SHz
, f,=5\2Hz, and

/, = 81927/z , where fe
is the carrier frequency, /, is the tonal frequency, and fs

is the sampling frequency.
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Figure 15 Surface plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Side Band Supressed Carrier Signal, using

AUTOSSCA, with the following parameters: Af = 256Hz, Aa = 32Hz,

fc
= 2048Hz

, f, = 5\2Hz , and /, = S\92Hz , where fc
is the carrier frequency, ft

is the tonal frequency, and / is the sampling frequency.
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Figure 16 Contour plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Sided Band Supressed Carrier Signal, using

AUTOSSCA, with the following parameters: Af = 256Hz, Aa = 32Hz,

fc
= 2048#z

, ft

= 5\2Hz , and fs
= S\92Hz , where fc

is the carrier frequency, ft

is the tonal frequency, and / is the sampling frequency.
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Figure 17 Plots of the SCD estimate magnitude for an Amplitude Modulated

(AM) Double-Side Band Supressed Carrier Signal, using AUTOSSCA, for a =
,

a = \024Hz, a = 3072Hz, a = 4096Hz, and a = 5\20Hz, respectively, with the

following parameters: Af = 256Hz, Aa = 32Hz, fc
=204SHz, ft

=5\2Hz, and

fs
= Sl92Hz , where fc

is the carrier frequency, ft
is the tonal frequency, and fs

is the sampling frequency.
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Figure 18 Surface plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Side Band Transmitted Carrier Signal, using AUTOFAM,
with the following parameters: A/ = 128/fe , Act = 32Hz

, fe
= 2048//z

, /, = 512Hz

,

and fs
= S\92Hz, where fc

is the carrier frequency, ft
is the tonal frequency,

and f is the sampling frequency.
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Figure 19 Contour plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Sided Band Transmitted Carrier Signal, using

AUTOFAM, with the following parameters: A/ = 128/fe , Aa = 32Hz
, fc

= 2048/fz

,

ft
=5\2Hz, and fs

= 8\92Hz, where fc
is the carrier frequency, ft

is the tonal

frequency, and / is the sampling frequency.
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Figure 20 Plots of the SCD estimate magnitude for an Amplitude Modulated

(AM) Double-Side Band Transmitted Carrier Signal, using AUTOFAM, for a = 0,

a = \024Hz, a = 3072Hz, a = 4096Hz, and a = 5\20Hz, respectively, with the

following parameters: Af = l2SHz, Aa = 32Hz, fc
=2048Hz, ft

=5\2Hz, and

fs
= S\92Hz , where fc

is the carrier frequency, /, is the tonal frequency, and fs

is the sampling frequency.
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Figure 21 Surface plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Side Band Transmitted Carrier Signal, using

AUTOSSCA, with the following parameters: Af = \2SHz, Aa = 128Hz,

fc
=204SHz, ft

=512Hz, and fs
= S\92Hz, where fc

is the carrier frequency, /,

is the tonal frequency, and f is the sampling frequency.
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Figure 22 Contour plot of the SCD estimate magnitude for an Amplitude

Modulated (AM) Double-Sided Band Transmitted Carrier Signal, using

AUTOSSCA, with the following parameters: Af = \2SHz, Aa = 32Hz,

fc
= 2048//z

, /, =5\2Hz , and fs
= 8192//z , where fc

is the carrier frequency, /,

is the tonal frequency, and fs
is the sampling frequency. .
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Figure 23 Plots of the SCD estimate magnitude for an Amplitude Modulated

(AM) Double-Side Band Transmitted Carrier Signal, using AUTOSSCA, for

a = 0, a = \024Hz, a = 3072Hz, a = 4096Hz, and a = 5120Hz, respectively, with

the following parameters: Af = 32Hz, Aa = 32Hz, fc
= 204SHz, /, =512ife,and

/, = S\92Hz , where fe
is the carrier frequency, /, is the tonal frequency, and /,

is the sampling frequency.
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2. Pulse-Amplitude Modulated (PAM) Signal

In the previous section, consider the following form for the carrier wave,

00

p[n]= ^S(n-mN
)

(42)
OT=-oo

where N is the pulse period. If the product x[n] = a[n]p[n] is filtered using a

pulse form with impulse-response q[n], then the result is the pulse-amplitude

modulation(PAM) signal

00

y[n]= X a
[
mN

o ]
l[n ~ mNo ]

• (43 )

m=-oo

The cyclic spectra for the PAM signal, when a[n] is stationary, is given by

s;{/)=
T.

a =

k

T

where Q{f) is the Fourier transform of the pulse form q[n], and Sa (f) is the

power spectral density of the signal a[n]

.

Figures 24-29 show surface and contour plots of the SCD estimate

magnitude for a PAM signal which is modulated by a random sequence of zeros

and ones.

From Eq. 44, ones expect to obtain something different from zero just at
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cyclic frequencies that are multiple of the bit rate. Figures 24-29 verify the result

obtained in Eq. 44. The poor resolution is more obvious in these examples,

making it difficult to obtain the appropriate SCD representation for the signal.
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Figure 24 Surface plot of the SCD estimate magnitude for a Pulse-Amplitude

Modulated (PAM) Signal, using AUTOFAM, with the following parameters:

Af = 5\2Hz, Aa = \6Hz, r
b
=\024Hz, and fs

=S\92Hz, where r
b

is the bit rate,

and f is the sampling frequency.
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Figure 25 Contour plot of the SCD estimate magnitude for a Pulse-Amplitude

Modulated (PAM) Signal, using AUTOFAM, with the following parameters:

Af = 5l2Hz, Aa = \6Hz, r
b
= \024Hz, and fs

=S\92Hz, where r
b

is the bit rate,

and fs
is the sampling frequency.
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Figure 26 Plots of the SCD estimate magnitude for a Pulse-Amplitude

Modulated (PAM) Signal, using AUTOFAM, for a = 0, a = 1024//-, a = 204SHz,

a = 3072Hz, and a = 4096Hz, respectively, with the following parameters:

A/ = 512//z , Aa = \6Hz , r
b
= \024Hz , and /, =S\92Hz , where r

b
is the bit rate,

and fs
is the sampling frequency.
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Figure 27 Surface plot of the SCD estimate magnitude for a Pulse-Amplitude

Modulated (PAM) Signal, using AUTOSSCA, with the following parameters:

Af = 5l2Hz, Aa = \6Hz, r
b =\024Hz, and fs

= 8\92Hz, where r
b

is the bit rate,

and fs
is the sampling frequency.
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Figure 28 Contour plot of the SCD estimate magnitude for a Pulse-Amplitude

Modulated (PAM) Signal, using AUTOSSCA, with the following parameters:

Af = 5\2Hz, Aa = \6Hz, r
b
=\024Hz, and fs = S\92Hz, where r

h
is the bit rate,

and fs
is the sampling frequency.
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Figure 29 Plots of the SCD estimate magnitude for a Pulse-Amplitude

Modulated (PAM) Signal, using AUTOSSCA, for a = , a = 1024Hz , a = 2048Hz
,

a = 3072Hz, and a = 4096Hz, respectively, with the following parameters:

Af = 5\2Hz, Aa = \6Hz, r
b
=\024Hz, and fs

= $192Hz, where rb is the bit rate,

and f is the sampling frequency.
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B. DIGITAL MODULATED SIGNALS

1. Amplitude Shift Keying (ASK) Signal

An ASK signal is simply an AM signal

(
fo

\

x[n] = a[n] cos 27r-f~n + o

v fs

in which the amplitude message a[n] is a M-ary PAM signal

(45)

a[n]= Y, a k
q{n-kN -n ).

k=-x

The spectral correlation density function for this ASK signal is given by

(46)

s^=M
a

Q\f + fo + 2J Q'{f+f -j)s;(f+f )

+ Q{f-f +^]Q
,

{f-f -fjs:(f-f )

-ilnan.

+ fl(/
+
§ + /.) Q'{f -§- /.) srf

- (/) e-'N«^>.^.i

+ e(/ +f- /.) e'(/ - § + /.) sr
!/

- (/) e-M"-^-2*i }
. (47)

For a full-duty cycle rectangle pulse, q[n] is given by

q[n] =
X \n\<Njl

0, H>iV./2

Its Fourier transform is given by

(48)
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sin(;r>2Vj

Q{f) =
~r

• (49)

Details on this result can be found in Reference 9.

Figures 30-41 present the outputs from AUTOFAM and AUTOSSCA for

some ASK signals. Figures 30-35 present the results for an ASK signal with bit

rate r
b
= 2048Hz , and Figures 36-41 present the results for the same signal with

r
b
=\024Hz. As f = 2048Hz , from Eq. 47, ones expect to obtain a

representation which is a combination of four PAM signals centered at

f = ±fo
= ±204SHz , for a = 0, and at / =

, for a = ±2f = ±4096Hz . The results

obtained in Figures 30-41 confirm that expectation.

2. Binary-Phase Shift Keying (BPSK) Signal

A phase-shift keying (PSK) signal is just a phase-modulated (PM) carrier

( f \
x[n] = cos 2n—r« + ^[«] (50)

in which the phase <p[n] is a M-ary PAM signal

00

4»]= Y, a \
mNo]An - mNo]- (51 )

Hence, the cyclic spectra for the BPSK signal, x[n], is given by Eq. 47,

already computed for a M-ary ASK signal. Of course, the results are the same

as for the M-ary ASK signal and are given by Figures 30-41

.
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Figure 30 Surface plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOFAM,
with the following parameters: A/ = 512/fe , Act = \6Hz

, fc
= 2048ife

,

r
h
=204$Hz, and fs

= 8\92Hz, where fc
is the carrier frequency, r

b
is the bit

rate, and fs
is the sampling frequency.
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Figure 31 Contour plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOFAM,
with the following parameters: Af = 5l2Hz, Aa = 16Hz, fc

=2048Hz,

r
b
=2048Hz, and fs

= 8\92Hz, where fc
is the carrier frequency, r

b
is the bit

rate, and / is the sampling frequency.

8000

69



ft-5000 -4000 -3000 -2000 -1000

f(Hz)

1000 2000 3000 4000

Figure 32 Plots of the SCD estimate magnitude for an Amplitude Shift Keying

(ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOFAM, for

a =
, a = 204SHz , a = 4096Hz , and a = 6144Hz , respectively, with the following

parameters: Af = 5\2Hz, Aa = \6Hz, fc
=204SHz, r

b
=2048Hz, and

fs
= $\92Hz, where fc

is the carrier frequency, r
b

is the bit rate, and fs
is the

sampling frequency.
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Figure 33 Surface plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOSSCA,
with the following parameters: A/ = 1024Hz, Aa = 8Hz, fc

= 204SHz,

r
b
=204SHz, and fs

= S\92Hz, where fc
is the carrier frequency, r

b
is the bit

rate, and fs
is the sampling frequency.
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Figure 34 Contour plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOSSCA,
with the following parameters: Af = \024Hz, Aa = SHz, fc

=204SHz,

r
6
=2048/fe, and fs

=8\92Hz, where fe
is the carrier frequency, r

b
is the bit

rate, and / is the sampling frequency.
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Figure 35 Plots of the SCD estimate magnitude for an Amplitude Shift Keying

(ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOSSCA, for

a = , a = 2048/fe , a = 4096Hz , and a = 6U4Hz , respectively, with the following

parameters: A/ = 1024#z, Aa = SHz, fc
=204SHz, r

b
= 2048Hz, and

fs
= S\92Hz, where fc

is the carrier frequency, r
b

is the bit rate, and fs
is the

sampling frequency.
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Figure 36 Surface plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOFAM,
with the following parameters: Af = 512Hz , &a = \6Hz

, fc
= 2048Hz

,

r
b
=\024Hz, and /5

= 8192//z, where fc
is the carrier frequency, r

b
is the bit

rate, and fs
is the sampling frequency.
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Figure 37 Contour plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOFAM,
with the following parameters: Af = 5\2Hz, Aa = \6Hz, fc

=204SHz,

r
b
=\024Hz, and fs

= 8\92Hz, where fc
is the carrier frequency, r

b
is the bit

rate, and fs
is the sampling frequency.
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Figure 38 Plots of the SCD estimate magnitude for an Amplitude Shift Keying

(ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOFAM, for

a = , a = 1024Hz , a = 2048/fe , a = 3072Hz , and a = 4096Hz , respectively, with

the following parameters: A/ = 5\2Hz , Aa = \6Hz
, fe

= 204SHz , r
b
= \024Hz , and

/, = 8192ife, where fc
is the carrier frequency, r

b
is the bit rate, and fs

is the

sampling frequency.
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Figure 39 Surface plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOSSCA,
with the following parameters: Af = 512Hz, Aa = \6Hz, fc

=204SHz,

r
b
= \024Hz, and fs

= 8\92Hz, where fe
is the carrier frequency, r

b
is the bit

rate, and fs
is the sampling frequency.
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Figure 40 Contour plot of the SCD estimate magnitude for an Amplitude Shift

Keying (ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOSSCA,
with the following parameters: A/ = 512Hz , t\a = 4Hz

, fe
= 204SHz , r

b
= 1024/fe

,

and fs
= 8\92Hz , where fc

is the carrier frequency, r
b

is the bit rate, and fs
is

the sampling frequency.
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Figure 41 Plots of the SCD estimate magnitude for an Amplitude Shift Keying

(ASK) or a Binary Phase Shift Keying (BPSK) Signal, using AUTOSSCA, for

a = 0, a = \024Hz, a = 204SHz, a = 3072Hz, and a = 4096Hz, respectively, with

the following parameters: A/ = 5\2Hz , Aa = \6Hz
, fc

= 2048#z , r
b
= 1024Hz ,

and

fs
= S\92Hz, where fc

is the carrier frequency, r
b

is the bit rate, and /, is the

sampling frequency.
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VI. CONCLUSIONS

A. SUMMARY

The purpose of this thesis was to implement the FAM and the SSCA

methods in MATLAB, allowing students, researchers, and engineers to take

advantage of the power of the cyclic analysis methods for solving signal

detection and modulation identification problems. Since MATLAB is user friendly

and easily portable to other operating systems, the implementation becomes a

proving ground, easily modified and set up on other computer systems.

The two methods are implemented as user friendly as possible. The only

inputs required for both are the signal(s), the sampling frequency (fs ), that

should be the same for both, and the desired resolutions for spectrum frequency

(/) and cyclic frequency {a). The results generated by both programs can be

displayed in different ways, such as surface plots, contour plots, and cross-

section plots.

Both programs generate a large amount of data when a good resolution is

desired. As a consequence, limitations in computational as well as printing

resources did not allow the presentation of more detailed plots. One can of

course easily create averaged spectral correlation surfaces, with a coherent or

power averaging method.
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B. SUGGESTIONS

A step that was not possible to reach during this work was an analysis

and experimentation of the performance of cyclic spectral analysis in a white-

noise contaminated environment. A natural extension to this work is an analysis

of how well cyclic analysis performs in a white and a colored noise environment

such as the one imposed by the ocean to the receiving elements.

Computationally, cyclic spectral analysis is an expensive task. Therefore,

any improvements to the speed of existing methods or even completely new fast

algorithms are desirable.

During the development of this thesis, it was intended to replace some of

the Fast Fourier Transform (FFT) operations by the fast Wavelet Transform. A

follow on to this work is the replacement of the FFT operations by Wavelet

Transforms, and an evaluation of how well the modified algorithm performs in

terms of identification and computational cost.
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APPENDIX A. CALCULATION OF THE SCD FUNCTION OF AN
AMPLITUDE-MODULATED SIGNAL

Let us consider the amplitude-modulated (AM) signal

x[n] = a[n] cos\2tuf n)

,

(52)

where a[n] is a stationary random lowpass signal with PSD Sa (f), with no

spectral lines in its PSD.

The fundamental parameter for second-order periodicity in discrete-time,

called cyclic autocorrelation function and denoted by R?[£] , is given by

K¥\= (x[n]x*[n- l]e-
2Kan

) e'
nai

. (53)

We can look at R"[e] from the following point of view:

Let u[n] = x[n] e-
na" and v[n] = x[n] e

+nran
, then

R°[e]=(x[n]e-
,7:a" x'ln-^e'™ e'

na(

)

= (x[n\e-*
a" x'[n-£]e-

ixa(n-e)

)

= (x[n]e-'™{x[n-l]e"
ra{"- ()

y

= (u[n]v
,

[n-£])

=RAn (54)

But, Since u[n] = x[n] e~
i7ra"

,
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R
u [£]

= (u[n]u[n-t])

= [x[n\e-
nan x[n-t]e imln- e)

)

= (x[«]x*[«-^]) e
-mat

e
-incd

-12*1 ^U
= Rx [t]e

K2)
(55)

and taking the Fourier transform leads to

S
u (f) = Sx (f)®s[f + ^)=Sx {f + ^]. (56)

Similarly, if v[n] = x[n] e'
nan

, then

i2*| -

and

S
v (f) = Sx[f-^j. (58)

Thus, we can redefine the second-order periodicity, by saying that x[n]

exhibits second-order periodicity if and only if frequency translates (frequency-

shifted versions) of x[n] are correlated with each other.

As long as the mean values of the frequency translates u[n] and v[n] are

zero (i. e., (w[«]) = 0and (v[«]) = 0), x[n] does not contain finite-amplitude
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additive sine-wave components at ±a/2 and therefore Sx (f) has no spectral

lines at f = ±a/2. The crosscorrelation Rm U] is actually a temporal

crosscovariance Kuv [i] , that is,

KM = ({u[n}-(u[n})}{v{n -t]-(v[n -e})Y

= (u[n]v*[n-£])

= RM- (59)

Based on this, we can define a temporal correlation coefficient, the

magnitude of which is upper bounded by unity, for frequency translates since

^ 14 =
TTnT

=
7 r i r i\

^" •
(60)RM [kMkM)

Since a[«] is a real stationary random ( R"[£] = 0, for all a * 0) signal with

zero mean ( i. e., (a[n\) = ), the cyclic autocorrelation function of x[n] is given

by

R° [£] = (x[n] x*[n-£] e''
2™ ) e

,KCd

= (a[n] cos(2/r/> + 6) a [n- i] co{2tt/ (n- i) + 0] e"
2™ ) e

imt

= (a[n]a [n - £]- {co^Itt/J) + cos[2;r/ (in - 1)+ 2d]} e-
2™ ) e

ixai
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^cos(2ttfj) {a[n]a[n - i\e"
2^) e

mat

+ -(a[ny[n- t]cos{27rf (2n- £)+20]e-
,2 *a

")e"
rae

i 1/ i[2xfo (2n-e)+20] -i[2xfa(2»-l)+20]

= -cos(2xfj)R:[£]+- la[n]a-[n-t]
„-i2xan \ „mai
e e

= -

R

a
a [t\co^27cfj) + -e

ne (a[n\a[n

-

^"'^/>| e'^/.V

+ — e \a\n\a \n-t\e y "'
) e y "'

= ±R:[i]co42xfj) +±e™ Rrlf°[tV\e-™ R^[i].

(61)

But since a[n] is a stationary signal (i. e., R"[£] = for all a * 0), the only

non-zero contributions are at a = and a = ±2f . Thus, the cyclic

autocorrelation function becomes

*?[/]-

-e» 2°R
a [tl a = 2f

4

Ra [£]™(2xfot\ « =

otherwise

(62)

Defining the temporal correlation coefficient as
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sx
a
[£]= (63)

where Rx [0]
= 7?;[^] for a = 0, computed at £ = , so #x [0]

= i?
a [0]/2

So, S"[i] becomes

sx
a
[£]=

— e
4

±neR.¥\

*M
= —e

2

±nesM a = ±2/

-Ra [e]M2*fo*)
- = Sa [£]cos(2xfj), a = 0.

\rm

(64)

Thus, the strength of correlation between x[n]e~
i7rcm and x[«-^] e'"

1^"'
is

given by

l*.M|. a = ±2f

<\sm [£]ux(2xf t% a =

0, otherwise.

(65)

It can be substantial for an amplitude-modulated signal, e.g.,|j/[0]| = 1/2 .

To localize in the frequency domain the average power (|x[«]| /
= i?JO] in

a stationary signal x[n], we simply pass the signal x[n] through a set of

narrowband bandpass filters and then measure the average power at the output

of the filters. In the limit when the bandwidths of these filters approach zero, the

corresponding set of measurements of average power, normalized by the
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bandwidth, constitute the "power spectral density ( PSD ) function", given by

^(y) = lim -^(^[/i] ® x[«]
|

2

)
, (66)

where hfB [n] is the discrete-impulse response of a bandpass filter with center

frequency / , bandwidth B , and unity gain at the band center.

In a similar fashion, to localize in the frequency domain the correlation

(w[«]v*[«]) = (|x[«]| e~'
2 'ran )^ R"[0] of frequency-shifted versions u[n] and v[n] of

a cyclostationary signal x[n] , we pass both of the two frequency translates u[n]

and v[n] of x[n] through the same set of bandpass filters. Again, in the limit

when the bandwidth of these filters approach zero, the corresponding set of

measurements of the temporal correlation of the filtered signals constitute the so

called "spectral-correlation density (SCD ) function", given by

5"(/") s jJ2^(feW® «[»]}{**W® *]}*)• <67 >

that yields the spectral density of correlation between u[n] and v[n] at frequency

/ , which is identical to the spectral density of correlation in x[n] at frequencies

/ + a/2 and f-a/2.

It's a well known result, called "Wiener relation" as opposed to its

probabilistic counterpart called "Wiener-Khinchin relation", that the PSD is equal

to the Fourier transform of the autocorrelation function,
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«,(/)= I A.M^- (68)
f=-oo

Similarly, the SCD can be obtained by Fourier transforming the "cyclic

autocorrelation function",

*;(/)= E*;M*"'
2jr/r

- (69)
^=-00

This result is known as the "cyclic ( periodic ) Wiener relation".

We observe that since R"U] is periodic in a with period two, so is

K +2M = (*M *'[n- £]e-
i2*{a+2)

" ) e'*
{a+2)e

= (x[n]x
t

[n-e]e-i2*a" e-
4
*") e'

nai
e'

l7d
, (70)

and, since n and £ are integers,

«-/4-=« /2*€ =l
l (71)

so,

Rr2 [^={x[n]x'[n-e]e- l2^)e"a(

= R a
M\. (72)

Thus,
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sr 2

(/)=X Rr2
[*]e-

i2*jTft

(=-0

= £ R?[t]e-
i2*fi

= S;(f). (73)

Also, since I takes on only integer values, then S°(f) is periodic in /

with period one

S,°(/ + l)=E R:[£]e-
i2*f+l)t

= Z KV\*~
n*Si

e'
1™

- (74)

and, since ^ is an integer, we have

e~
i2!re

=\, (75)

then,

= 5:(/). (76)

Furthermore, S°(f) also exhibits the following periodicity:

Sr l

{f + V2) = S;(f). (77)
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This is easily shown by

sr'|/+i) = £*r'M*-'
2 *(/4>

= |;{*["|x'[»-<k'
2 *(a* ,,")<;'* l °+ ' ) ' e-

1"" e
iid

(=-k

= Yi
(x[n]x'[n-l]e-

i2m
e
-i2m

)e
ixae

e
M

e- 2nfi
e

-inl

= Yd
{x[n]x'[n-i\e-

am
e~

i2m
) e

inat
e~

aKfl
,

£=-CO

and, since n is an integer, we have

(78)

e"
2™ = 1

,

(79)

hence,

= I KW-***
(=-<*>

= sa
Af) (80)

We also define a spectral correlation coefficient, p"(f) ,
given by

p!{/)-
s;(f)

*j/ +g</-t

91



(81)

Since |>o"(/)| is bounded by [o,l], it is a convenient measure of the

degree of local spectral redundancy that results from spectral correlation.

Going back to the AM signal, by Fourier transforming the cyclic

autocorrelation function, we get

s;{/)=

\e^%(/), a = ±2f„

7s.{f+f.)+7s-(f-f'\ a =

otherwise

(82)

and so, the spectral correlation coefficient is given by:

H/+ f

J

= ^W- for a = °' comPuted at / + f

= jSa{f + fo)+jSa{f-f ), computed at f+%

1 ( a ) 1 a
^Sa [f + - + f

J
+ -Sa [f + --f (83)

Also,

a) 1 ( a \ 1 ( a
(84)

So that, fora = 2/ ,
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s{f +^=Sx {f +f ) = \sa {f + 2f ) +\sa {f), (85)

and,

s{f~^= sAf - L) = \sXf) + \sXf -2f ),

and for a = -2f ,

and,

and, for a = 0,

and,

S,(/ + f)=S,(/-/„) = is„(/) + ^(/-2/„),

/-f)=S,(/ + /„) = isa(/ + 2/,)+|s„(/),

S,[/ +
f)

= «,(/) = jSo(/ + /„)+is„(/-/ ),

^(/-f)
= ^(/) = ^s„(/+/„) + ^s„(/-/„),

then,

fW-

s.(fy™
f, a = ±2/,

{[s„ (/ + 2/ ) + 5a (/)Js, (/) + Sa{f - 2/ )]}

2

1, a =

0, otherwise.

(86)

(87)

(88)

(89)

(90)

(91)
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Thus, the strength of correlation between the spectral components of x[n]

at frequencies f + a/2 and f-a/2 is unity (i. e., |p"(/)| = l, for \f\<f and

a = ±2f ), provided that a[n] is bandlimited to \f\<f . Hence Sa (f) = for

\Mfo-

94



APPENDIX B. FUNCTION AUTOFAM

function [Sx, alphao, fo] =autofam(x, f s, df , dalpha)

% AUTOFAM (X,FS,DF, DALPHA) computes the spectral auto- correlation

% density function estimate of the signal X, by using the FFT

% Accumulation Method (FAM) . Make sure that DF is much bigger

% than DALPHA in order to have a reliable estimate.

%

% INPUTS

:

% X - input column vector;

% FS - sampling rate;

% DF - desired frequency resolution; and

% DALPHA - desired cyclic frequency resolution.

Q,
O

% OUTPUTS

:

% SX - spectral correlation density function estimate;

% ALPHAO - cyclic frequency; and

% FO - spectrum frequency.

Q.
O

% Author: E.L.Da Costa, 9/28/95

.

if nargin ~= 4

error

(

v Wrong number of arguments.');

end

% Definition of Parameters

Np=pow2 (nextpow2 (fs/df ) ) ; % Number of input channels, defined

% by the desired frequency

% resolution (df) as follows:

% Np=fs/df, where fs is the original

% data sampling rate. It must be a

% power of 2 to avoid truncation or
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L=Np/4

;

P=pow2 (nextpow2 (fs/dalpha/L)

N=P*L;

% zero-padding in the FFT routines;

% Offset between points in the same

% column at consecutive rows in the

% same channelization matrix. It

% should be chosen to be less than

% or equal to Np/4

;

% Number of rows formed in the

% channelization matrix, defined

% by the desired cyclic frequency

% resolution (dalpha) as follows:

% P=fs/dalpha/L. It must be a power

% of 2;

% Total number of points in the

% input data

.

% Input Channelization %

oooooooooooooooooooooooo

if length (x) <N

x(N)=0;

elseif length (x) >N

x=x(l:N)

;

end

NN= (P-l) *L+Np;

XX=X;

Xx(NN)=0;

xx=xx ( : )

;

X=zeros (Np, P)

;

for k=0:P-l

X( : ,k+l) =xx(k*L+l:k*L+Np)

;

end

Windowing
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a=hamming (Np)

;

XW=diag(a) *X;

XW=X ;

% First FFT %

2-2-9-9-2-S-S-9-2-2-9-9-9-ooooooooooooo

XFl=f f t (XW)

;

XFl=fftshift (XF1)

;

XF1= [XF1( : ,P/2+l:P) XF1 ( : ,l:P/2) ]

;

Downconvers ion

E= zeros (Np, P)

;

for k=-Np/2:Np/2-l

for m=0:P-l

E(k+Np/2+l,m+l) =exp(-i*2*pi*k*m*L/Np)

;

end

end

XD=XF1.*E;

XD=conj (XD' )

;

% Multiplication %

000000000000000*00*0

XM=zeros (P,Np'
K
2) ;

for k=l:Np

for 1=1 :Np

XM(: , (k-l)*Np+l)=(XD(: ,k) .*COnj (XD ( : ,1) ) )

;

end

end
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% Second FFT %

2-S-S-B-B-2-S-2-S-9-S-S-2-2-oooooooooooooo

XF2=fft (XM)

;

XF2=fftshift (XF2)

;

XF2= [XF2 ( : , Np^2/2+l :Np^2 ) XF2 (

:

,l:Np
A
2/2) ]

;

XF2=XF2 (P/4 : 3*P/4 , : )

;

M=abs (XF2)

;

alphao=-l:l/N:l;

fo=-.5:l/Np: .5;

Sx=zeros (Np+1, 2*N+1)

;

for kl=l: P/2+1

for k2=l:Np*2

if rem(k2,Np) ==0

l=Np/2-l;

else

l=rem(k2,Np) -Np/2-1;

end

k=ceil (k2/Np) -Np/2-1;

p=kl-P/4-l;

alpha= (k-1) /Np+ (p-1) /L/P;

f=(k+l)/2/Np;

if alpha<-l alpha>l

k2=k2+l;

elseif f <- . 5 f > .

5

k2=k2+l;

else

kk=l+Np* (f+.5)

;

11=1+N* (alpha+1)

;

Sx(kk,ll) =M(kl,k2)

;

end

end

end
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APPENDIX C. FUNCTION AUTOSSCA

function [Sx, alphao, fo] =autossca (x, f s, df , dalpha)

% AUTOSSCA (X, FS,DF, DALPHA) computes the spectral auto-

% correlation density function estimate of the signal X,

% by using the Strip Spectral Correlation Algorithm (SSCA)

% Make sure that DF is much bigger than DALPHA in order to

% have a reliable estimate.

%

INPUTS

:

X

FS

DF

DALPHA

input column vector;

sampling rate;

desired frequency resolution; and

desired cyclic frequency resolution.

OUTPUTS

:

SX - spectral auto-correlation density function estimate;

ALPHAO - cyclic frequency; and

FO - spectrum frequency.

Author: E.L.Da Costa, 9/28/95

.

if nargin ~= 4

error (* Wrong number of arguments');

end

Definition of Parameters

Np=pow2 (nextpow2 (fs/df ) )

;

% Number of input channels, defined

% by the desired frequency

% resolution (df) as follows:

% Np=fs/df, where fs is the original

% data sampling rate. It must be a
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L=Np/4

;

P=pow2 (nextpow2 (fs/dalpha/L) )

;

N=P*L;

power of 2 to avoid truncation or

zero-padding in the FFT routines;

Offset between points in the same

column at consecutive rows in the

same channelization matrix. It

should be chosen to be less than

or equal to Np/4;

Number of rows formed in the

channelization matrix, defined by

the desired cyclic frequency

resolution (dalpha) as follows:

P=fs/dalpha/L. It must be a power

of 2;

Total number of points in the

input data

.

% Input Channelization %

9-9-9-9-9^S-2-9-9-9-9-2-2-S-2-2-2-2-2-9-S-B-S-2-"00000*0000000000000000000

if length (x) <N

x(N)=0;

disp('you will not get the desired resolution in cyclic frequency');

dalpha=fs/N;

disp (
[ ' cyclic frequency resolution= , num2str (dalpha) ] ) ;

elseif length (x) >N

x=x(l:N)

;

end

NN= (P-l) *L+Np;

xx=x ;

XX (NN) =0;

xx=xx ( : )

;

X=zeros (Np, P)

;

for k=0:P-l

X( : ,k+l) =xx(k*L+l:k*L+Np)

;

end
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% Windowing %

S-9-2-9-9-9-9-9-2-2-S-S-S-OOOOOOOOOOOOO

a=hamming (Np)

;

XW=diag(a) *X;

S-S-S-S-S-S-S-S-S-S-S-S-S-000000000*0000

% First FFT %

ooooooooooooo

XFl=fft (XW)

;

XFl=fftshift (XF1)

;

XF1=[XF1 ( : ,P/2+l:P) XF1 ( : ,l:P/2)]

;

% Downconversion

E= zeros (Np, P)

;

for k=-Np/2:Np/2-l

for m=0:P-l

E(k+Np/2+l,m+l)=exp(-i*2*pi*k*m*L/Np)

;

end

end

XD=XF1.*E;

% Replication %

9-9-9-S-9-S-9-S-2-9-2-?— 2-S-S-ooooooooooooooo

XR=zeros (Np, P*L)

;

for k=l:P

XR(
: , (k-1) *L+l:k*L)=XD(:,k)*ones(l,L)

;

end

% Multiplication %

101



xc=ones (Np, 1) *x'

;

XM=XR . *xc

;

XM=conj (XM 1

)

;

Second FFT

XF2=fft (XM)

;

XF2=fftshift (XF2)

;

XF2=[XF2 ( : ,Np/2+l:Np) XF2 ( : ,l:Np/2) ]

;

M=abs(XF2)

;

alphao= (-1:1/N:1) *fs;

fo=(- .5:1/Np: .5) *fs;

Sx=zeros (Np+1, 2*N+1)

;

for kl=l:N

for k2=l:Np

alpha= (kl-1) /N+ (k2-l) /Np-1;

f=((k2-l)/Np- (kl-l)/N)/2;

k=l+Np* (f+. 5)

;

1=1+N* (alpha+1)

;

Sx(k,l)=M(kl,k2)

;

end

end
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APPENDIX D. FUNCTION CROSSFAM

function [Sxy, alphao, fo] =crossfam (x, y, f s , df , dalpha)

% CROSSFAM (X, Y, FS,DF, DALPHA) computes the spectral cross-

% correlation density function estimate of the signals X

% and Y, by using the FFT Accumulation Method (FAM) . Make

% sure that DF is much bigger than DALPHA in order to have

% a reliable estimate.

%

%

%

%

%

%

%

Q,
O

%

Q,
O

%

"o

a,
O

INPUTS

:

X

Y

FS

DF

DALPHA

input column vector;

input column vector;

sampling rate;

desired frequency resolution; and

desired cyclic frequency resolution.

OUTPUTS

:

SXY - spectral cross-correlation density function estimate;

ALPHAO - cyclic frequency; and

FO - spectrum frequency.

Author: E.L.Da Costa, 9/28/95

.

If nargin ~= 5

error ( 'Wrong number of arguments .

' )

;

end

% Definition of Parameters

Np=pow2 (nextpow2 (fs/df ) )

;

% Number of input channels, defined

% by the desired frequency

% resolution (df) as follows:

% Np=fs/df, where fs is the original
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L=Np/4

;

P=pow2 (nextpow2 (fs/dalpha/L) )

;

N=P*L;

data sampling rate. It must be a

power of 2 to avoid truncation or

zero-padding in the FFT routines

;

Offset between points in the same

column at consecutive rows in the

same channelization matrix. It

should be chosen to be less than

or equal to Np/4;

Number of rows formed in the

channelization matrix, defined by

the desired cyclic frequency

resolution (dalpha) as follows:

P=fs/dalpha/L. It must be a power

of 2;

Total number of points in the

input data

.

% Input Channelization %

9-9-9-S-9-9-S-B-9-S-S-S-9-2-2-2-B-S-B-9-2-S-2-9-oooooooooooooooooooooooo

if length (x) <N

x(N)=0;

elseif length (x) >N

x=x(l:N)

;

end

if length (y) <N

y(N)=0;

elseif length (y) >N

y=y(l:N)

;

end

NN= (P-l) *L+Np;

XX=x;

yy=y;

xx (NN) =0;

yy(NN)=0;
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xx=xx ( : )

;

yy=yy ( : )

;

X=zeros (Np, P)

;

Y= zeros (Np, P)

;

for k=0:P-l

X( : ,k+l) =xx(k*L+l:k*L+Np)

;

Y( : , k+l)=yy(k*L+l:k*L+Np)

;

end

% Windowing %

S-S-S-S-S-S-S-S-S-S-S-S-9-ooooooooooooo

a=hamming (Np)

,

XW=diag(a) *X;

YW=diag(a) *Y;

% First FFT %

ooooooooooooo

XFl=f f t (XW)

;

YFl=fft (YW) ;

XFl=fftshift (XF1)

;

YFl=fftshift (YF1)

;

XF1=[XF1( : ,P/2 + l:P) XF1 ( : ,l:P/2) ] ;

YF1=[YF1 ( : ,P/2 + l:P) YF1 ( : ,l:P/2) ] ;

% Downconversion

E=zeros (Np, P)

;

for k=-Np/2+l:Np/2

for m=0:P-l

E(k+Np/2,m+l) =exp(-i*2*pi*k*m*L/Np)

;

end

end
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XD=XF1.*E;

YD=YF1.*E;

XD=COnj (XD ' )

;

YD=conj (YD 1

)

;

% Multiplication %

2-9-S-9-2-9-9-S-2-9-2-S-S-2-2-S-B-S-oooooooooooooooooo

XYM=zeros (P,Np
A
2)

;

for k=l:Np

for 1=1 :Np

XYM( : , (k-1) *Np+l) =XD ( : ,k) . *conj (YD ( : ,1) )

;

end

end

% Second FFT

XYF2=fft (XYM)

;

XYF2=fftshift (XYF2)

;

XYF2=[XYF2 (: , Np^2/2+l :Np"2) XYF2 (: ,l:Np*2/2) ]

;

XYF2=XYF2 (P/4:3*P/4, :)

;

M=abs(XYF2)

;

alphao= ( - 1 : 1 /N : 1 ) * f s

;

fo= (- .5:1/Np: .5) *fs;

Sxy=zeros (Np+1, 2*N+1)

;

for kl=l:P/2+l

for k2=l:Np A
2

if rem(k2,Np) ==0

l=Np/2;

else

l=rem(k2,Np) -Np/2

;

end

k=ceil (k2/Np) -Np/2;
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p=kl-P/4-l;

alpha= (k-1) /Np+ (p-1) /L/P;

f=(k+l)/2/Np;

if alpha<-l alpha>l

k2=k2+l;

elseif f<-.5
|
f>.5

k2=k2+l;

else

kk=l+Np* (f+.5)

;

11=1+N* (alpha+1)

;

Sxy(kk,ll)=M(kl,k2)

;

end

end

end
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APPENDIX E. FUNCTION CROSSSSCA

function

%

9-
o

% to havi

%

% INPUTS

% X

% Y

% FS

o DF

% DALPHA

[Sxy, alphao, fo] =crossssca (x, y, f s , df , dalpha)

CROSSSSCA (X,Y,FS,DF, DALPHA) computes the spectral cross-

correlation density function estimate of the signals X

and Y, by using the Strip Spectral Correlation Algorithm

(SSCA) . Make sure that DF is much bigger than DALPHA in order

to have a reliable estimate.

input column vector;

input column vector;

sampling rate;

desired frequency resolution; and

desired cyclic frequency resolution.

% OUTPUTS

:

% SXY - spectral cross-correlation density function estimate;

% ALPHAO - cyclic frequency; and

% FO - spectrum frequency.

O

% Author: E.L.Da Costa, 9/28/95

.

If nargin -= 5

error ( 'Wrong number of arguments .

' )

;

end

Definition of Parameters

Np=pow2 (nextpow2 (fs/df ) )

;

% Number of input channels, defined

% by the desired frequency

% resolution (df) as follows:

% Np=fs/df, where fs is the original
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L=Np/4

;

P=pow2 (nextpow2 (fs/dalpha/L) )

;

N=P*L;

data sampling rate. It must be a

power of 2 to avoid truncation or

zero-padding in the FFT routines;

Offset between points in the same

column at consecutive rows in the

same channelization matrix. It

should be chosen to be less than

or equal to Np/4;

Number of rows formed in the

channelization matrix, defined by

the desired cyclic frequency

resolution (dalpha) as follows:

P=fs/dalpha/L. It must be a power

of 2;

Total number of points in the

input data

.

% Input Channelization %

9-9-2-S-S-S-9-S-S-9-2-S-S-2-9-2-S-2-S-S-S-S-S-9-oooooooooooooooooooooooo

if length (x) <N

x(N)=0;

elseif length (x) >N

x=x(l:N)

;

end

if length (y) <N

y(N)=0;

elseif length (y) >N

y=y(l:N)
;

end

NN=(P-1) *L+Np;

xx=X;

Xx(NN)=0;

xx=xx ( : )

;

X=zeros (Np, P)

;
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for k=0:P-l

X( :
,k+l)=xx(k*L+l:k*L+Np)

;

end

9-9-S-9-2-2-9-S-S-S-9-2-9-ooooooooooooo

% Windowing

9-2-S-2-S-9-9-9-2-S-S-9-2-ooooooooooooo

a=hamming (Np)

;

XW=diag(a) *X;

% First FFT

XFl=fft (XW)

;

XFl=fftshift (XF1)

;

XF1=[XF1 ( : ,P/2+l:P) XF1 ( :,l:P/2)]

;

Downconversion %

E=zeros (Np, P)

;

for k=-Np/2+l:Np/2

for m=0:P-l

E(k+Np/2,m+l) =exp(-i*2*pi*k*m*L/Np)

;

end

end

XD=XF1.*E;

XD=conj (XD 1

)

;

% Replication %

ooooooooooooooo

XR=zeros (Np,P*L)

;

for k=l:P
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XR( : , (k-1) *L+l:k*L) =XD ( : ,k) *ones (1,L)

;

end

% Multiplication %

ooooooooooooooo

yc=ones (Np, 1) *y
'

;

XYM=XR . *yc

;

XYM=COnj (XYM' )

;

% Second FFT

% Second FFT %

S-S-S-2-2-S-9-S-9-2-S-2-2-9-oooooooooooooo

XYF2=fft (XYM)

;

XYF2=fftshift (XYF2)

;

XYF2=[XYF2 ( : , Np^2/2+l :Np"2 ) XYF2 ( : ,l:Np
A
2/2) ]

;

M=abs (XYF2)

;

alphao= (-1 :1/N:1) *fs;

fo=(-.5:l/Np: .5)*fs;

Sxy=zeros (Np+1, 2*N+1)

;

for kl=l:N

for k2=l:Np

alpha= (kl-i) /N+ (k2-l) /Np-l;

f=( (k2-l)/Np-(kl-l)/N)/2;

k=l+Np* (f+.5)

;

1=1+N* (alpha+1)

;

Sxy(k, 1) =M(kl,k2)

;

end

end
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APPENDIX F. PLOTTING ROUTINES

rSurface Plot 5

figure (1)

surf 1 (alphao, fo, Sx)

;

view(-37.5,60) ;

title ('SCD estimate using FAM');

xlabel (
' alpha

' )

;

ylabel ( '

f
' ) ;

zlabel ( 'Sx' )

;

%Contour Plot%

figure (2)

contour (alphao, fo, Sx)

;

xlabel (
* alpha (Hz) ' )

;

ylabel ('f (Hz) ' )

;

%Cross-Section Plots%

figure (3)

plot (fo, Sx (
: , l+N* (alpha/f s+1) ) ) ; % alpha is the desired cyclic

% frequency,

xlabel

(

% f (Hz) ' )

;

ylabel

(

x Sx (alpha) ' )

;
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