
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1997-03

Mulltivariate motion planning of autonomous robots.

Karamanlis, Vasilios
Monterey, California. Naval Postgraduate School

https://hdl.handle.net/10945/8705

Downloaded from NPS Archive: Calhoun

N PS ARCHIVE
1997,03
KARAMANLIS, V. POSTGRADUATE SCHOOL

Monterey, California

THESIS

MULTIVARIATE MOTION PLANNING OF AUTONOMOUS
ROBOTS

by

Thesis Advisor:

Co-Advisor:

Vasilios Karamanlis

March, 1997

Yataka Kanayama

Nelson Ludlow

Approved for public release; distribution is unlimited.

Thesis
K1425953

."•Jt.EY KNOX LIBRARY
'\l postgraduate school

;.
: Y CA 92943-5101

DUDLEY KNOXUBRARY

NAVAL POSTGRADUATE
SCHOOl

MOWTBKY CA 939*3-61

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden eslimate or any other aspect of this

collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave Blank)

I

2. REPORT DATE
March 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

MULTIVARIATE MOTION PLANNING OF AUTONOMOUS
ROBOTS

6. AUTHOR(S)

Vasilios Karamanlis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A problem of motion control in robot motion planning is to find a smooth transition while going

from one path to another.

The key concept of our theory is the steering function, used to manipulate the motion of our vehicle.

The steering function determines the robot's position and orientation by controlling path curvature and

speed.

We also present the - neutral switching method - algorithm that provides the autonomous vehicle with

the capability to determine the best leaving point which allows for a smooth transition from one path to

another in a model-based polygonal world.

The above mentioned algorithm is thoroughly presented, analyzed, and programmed on a Unix

workstation, and on the autonomous mobile robot Yamabico. The research data indicate that neutral

switching method improved the transition results for polygon tracking, star tracking motion, and circle

tracking. Moreover, neutral switching method enhances robot control and provides a more stable

transition between paths than any previously known algorithm

14. SUBJECT TERMS"
Robots, autonous mobile vehicle, local motion planning, steering function,

polygon tracking

15. NUMBER OF PAGES

118
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURn"Y CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited.

MULTIVARIATE MOTION PLANNING OF AUTONOMOUS ROBOTS

Vasilios Karamanlis

Lieutenant, Hellenic Navy

B.S., Hellenic Navy Academy, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1997

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA S394S-5101

ABSTRACT

A problem of motion control in robot motion planning is to find a smooth

transition while going from one path to another.

The key concept of our theory is the steering function, used to manipulate

the motion of our vehicle. The steering function determines the robot's position and

orientation by controlling path curvature and speed.

We also present the - neutral switching method - algorithm that provides the

autonomous vehicle with the capability to determine the best leaving point which

allows for a smooth transition from one path to another in a model-based polygonal

world.

The above mentioned algorithm is thoroughly presented, analyzed, and pro-

grammed on a Unix workstation, and on the autonomous mobile robot Yamabico.

The research data indicate that neutral switching method improved the transition

results for polygon tracking, star tracking motion, and circle tracking. Moreover,

neutral switching method enhances robot control and provides a more stable transi-

tion between paths than any previously known algorithm.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND AND MOTIVATION 1

B. PROBLEM STATEMENT 1

1

.

Concepts Definitions and Terminology 2

2. Problem Description 3

a. Path Classes 3

b. Path Classes and how we represent them 4

C. REVIEW OF RELATED WORK 5

1. Potential Field Methods 6

2. Roadmap and Cell Decomposition Methods 6

3. Polygon Tracking using Images 8

D. ASSUMPTIONS AND CONSTRAINTS 10

II. PATH TRACKING METHOD 13

A. THE CONCEPT OF THE STEERING FUNCTION 13

B. TRANSFORMATIONS 13

1. Steering Function Method 15

C. NEUTRAL SWITCHING METHOD 17

1. Intersection of two lines 19

2. Problem Statement 21

3. Conclusions 25

D. SIMULATION RESULTS 26

III. POLYGONS 31

A. INTRODUCTION 31

1. General Definitions 31

2. Problem Definition 33

B. SUMMARY 37

vn

IV. HARDWARE AND SOFTWARE ARCHITECTURE OF YAMABICO-

11 39

A. HARDWARE SYSTEM 39

1. CPU 39

2. Wheels 41

3. Sonars 43

B. SOFTWARE ARCHITECTURE OF YAMABICO-11 43

1. User Program Utility 44

2. Library Functions 44

3. Functions 45

4. Odometry Capability 45

V. CONCLUSIONS-FUTURE RESEARCH 47

A. SUMMARY 47

B. FUTURE RESEARCH 48

APPENDIX 51

LIST OF REFERENCES 103

INITIAL DISTRIBUTION LIST 105

vm

LIST OF FIGURES

1. Robot's world space 2

2. Motion planning problem 4

3. A world and paths 5

4. Visibility graph 7

5. Image on object 8

6. Images on world 9

7. Visibility from point p to convex polygon B (I) 10

8. Image type 10

9. Representation of a robot in a global coordinate system 11

10. Robot's relative transformation 14

11. Effect of smoothness in line tracking 17

12. Tracking of X-axis using the neutral switching method 19

13. Tracking of X-axis using the neutral switching method from dif-

ferent angles 20

14. Intersection of two lines 20

15. Intersection of two lines in the general case 22

16. Case where k > 24

17. Case where k < 25

18. Case where $ = (02 - 0i) = ±tt 25

19. Case where $ = (02 - 0i) = 26

20. Tracking a target line using Neutral switching method 27

21. Line tracking using Neutral switching method 28

22. Circle tracking using the neutral switching method 28

23. Star motion using the neutral switching method (I) 29

24. Star motion using the neutral switching method (II) 30

2-5. Examples of simple and non-simple polygons (I) 32

IX

26. Orientation of an edge 32

27. Interior and exterior angle of a simple polygon 33

28. Convex polygon 33

29. Concave polygon 34

30. Representation of a world data structure 34

31. Pointer manipulation for deletion of a node 34

32. Pointer manipulation for insertion of a node 35

33. A safety path around a polygon 35

34. Pseudocode for Tracking a line using the x* distance 36

35. Tracking the edges of a polygon 37

36. Pseudocode for Tracking a line using steer () function 37

37. Tracking of four given lines 38

38. Polygon tracking by using the neutral switching method 38

39. Diagram of Yamabico- 11 hardware architecture 39

40. Autonomous mobile robot, Yamabico- 11 42

41. Yamabico- 11 sonar configuration 43

42. MML-11 software conceptual architecture 44

LIST OF TABLES

I. Values for speed u, and smoothness a used in real time imple-

mentation 27

XI

Xll

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION
One of the most challenging problems man has ever faced and one of his ulti-

mate goals was the creation of autonomous robots. By that we mean that the robots

will be able to be programmed by high-level programming languages and will be able

to solve a variety of problems from a variety of fields. Hazardous material handling,

welding, painting, and assembly in factories would be some of their tasks. In addition,

it will be expected that autonomous robots will be able to perform more complex jobs,

such as mine searching or fire fighting. The tremendous progress in microelectronics

and software industry as well as the development of related technologies gives us the

ability and the power we need to build an complete autonomous robot.

The robotics and automation community is being swept by broad, pervasive

technological demands. Successful deployment of automomous and reprogrammable

robots is expanding the technology while theory and implementation continue to

advance rapidly.

Obstacle avoidance and motion planning in general are the most common prob-

lems a robot is encountered by acting directly on the world. In addition autonomous

robots are fundamentally multidisciplinary, incorporating technologies from mechan-

ical and electrical engineering, control theory, computer vision, estimation theory,

artificial intelligence, operations research, programming languages, mathematics and

physics. Consequently, a vast amount of disciplines are directly or indirectly relevant

to mobile-robot research.

B. PROBLEM STATEMENT
Almost all of the above tasks depend upon our deep understanding of the

motion problem. In order the robot to perform even the simplest task, a complicated

combination of movements is needed. In addition it is expected to move safely in

environments filled with various objects. So as we see the expectation from a robot

to move itself safely in an environment, make us deal with the problem called motion

planning problem. Figure 1 shows an example of an environment our robot is going

to perform various tasks in.

^* cw Polygon

Free Space

».

ccw Polygons

Figure 1. Robot's world space

Various techniques have been developed recently dealing with the motion plan-

ning problem and a lot of progress has been made during the last several years.

One of the most revolutionary theories is that of Professor Yataka Kanayama

at NPS. This thesis concentrates on the algorithms presented in his theory which are

trying to approach the motion planning problem.

1. Concepts Definitions and Terminology

The general motion planning problem for an autonomous vehicle can be stated

as follows: Given (1) an initial state of the vehicles, (2) a desired final state of the

vehicle, and (3) any constraints on allowable motions, find a collision-free motion of

the vehicles from the initial state to the final state that satisfies the constraints. The

above standard motion planning problem is extended and generalized in ways which

give us the possibility to deal with environments which are not unknown to the robot

but also dynamically changing.

Another definition of the motion planning problem can be given by the follow-

ing schema:

"Given a robot B, an environment E, and a motion objective 0, find a motion

x for B amidst E that achieves subject to some optimality criterion C(or report

that no motion exists). (Chee-Keng Yap).

Another idea that plays a major role in our research is that of localization.

What we mean by that is the exact determination of the current position of the robot

and its orientation.

One of the most fundamental concepts behind every motion planning theory

is that one local motion planning. What we mean by that is finding the best motion

among a path class using a local motion control algorithm. In our case we are going

to present the steering function algorithm in details.

2. Problem Description

The motion planning problem is a very fundamental one in robotics-even

though one of the most complex ones-and as we told before its main purpose is to

enhance the robot with the capability to generate its own motion. One of the parts

of this problem is called local motion control and we can see it in the next Figure 2.

A concept very much related to our work is that of "path classes", and af-

ter giving the necessary definitions and expanations of this concept we are going to

proceed to the description of the problem we deal with in this thesis.

a. Path Classes

This subsection defines a list of concepts about path classes and their

importance to our problem.

A path f in a world W is a continuous function

/ : [0, 1] -* /ree(W)

with /(0) ^ /(!)• We consider a path / to be a directed curve with natural direction

from /(0) to /(l). The two points /(0) and /(l) are called its endpoints and we say

that the path joins them. We usually denote /(0) as a start S and /(l) as a goal G.

We assume that / is rectifiable(its length is finite). A world of three ccw polygons

S.G.World

1

•

GLOBAL MOTION

path class

LOCAL

MOTION CONTROL

'

motion

Figure 2. Motion planning problem

Bi,B2 and B3, one cw polygon Bo, and the paths from S to G can be depicted in

Figure 3.

b. Path Classes and how we represent them

Given a starting point S and a goal point G in a polygonal world W,

our effort is to find a continuous, smooth path that connects the start configuration,

5, to the goal configuration, G. In Figure 3 for example, we can see three different

path classes. We are using the notion of directed v-edges to represent each path

class. In its most general form, a path class, p, that includes a path / is symbolically

represented by a path sequence. For instance, the path classes f\ and f2 in Figure 3

are represented by:

fi = [B3/Bo)[B2/B }[B1 /B }

h = [B3 lB)[BsIB2][B3 IB1 }[BolB1]

Figure 3. A world and paths

To find the best path class we have to take into consideration the

"weight" of each edge related to the cost function. This best path class we've just

found and the task we want our robot to execute affect the steering function and its

desired motion.

As we see the objective of using path classes is to provide useful in-

formation for the local motion control problem. In our research we are going to

investigate the safe navigation of an autonomous vehicle through an environment,

using the steering function and the Neutral Switching method, to achieve smoothness

of the motion.

C. REVIEW OF RELATED WORK
During the last years various techniques have been used trying to solve robot-

motion-planning problems. We're are going to review some of them here. Figure 3 is

an example of the different paths a robot would choose to approach a given goal, and

gives us the central idea of the problem we're dealing with.

We are going to say a few words about the different approaches to the motion

planning problem but we're going to focus our attention more to the last previous

method used for polygon tracking. This way the reader would have a very good back-

ground in understanding the problem and he would be able to see the advantages of

the new method Neutral Switching Method and its simplicity. There are three "clas-

sical" approaches to motion planning: roadmap methods, cell decomposition methods,

and potential field methods.We will also describe the concept of an image and we will

show how this notion was used for polygon tracking motion.

1. Potential Field Methods

Potential Field Methods can be very efficient. They are usually called local

methods while the roadmap and the cell decomposition are called global methods.This

method consists of defining a potential field which is represented by a function / :

VV —> 71 and it is a combination of attractive and repulsive potentials. Attractive

potentials tend to pull the robot towards the goal while at the same time repulsive

potentials push the robot away from them. The negated gradient of the total potential

over the free space is treated as an artificial force applied to our robot. The direction

of this force shows the direction of the motion the robot should follow.

The main disadvantage of these methods is since these methods are essentially

fastest descent optimization methods, the robot can become trapped in a local minima

of the potential field. Some of the approaches used to avoid this problem is to design

the potential functions in a way that they have no local minima, or to complement

the basic potential field approach with such powerful mechanisms which give us the

capability to escape from local minima.

2. Roadmap and Cell Decomposition methods

These two methods generally include an initial processing step aimed at cap-

turing the connectivity of the free space in concise representation. As we mentioned

above these methods are called global methods.

The roadmap method for example consists of capturing the connectivity of the

robot's free space in a network of one-dimensional curves, called the roadmap, lying

in the free space. It is also called skeleton approach and how it actually works is that

after a roadmap p has been constructed the path planning is reduced to connecting

the start and the goal configurations to p, and searching p for a path.

%oal

Figure 4. Visibility graph

Many other methods have been proposed based on this general idea. They

include visibility graph, Voronoi diagram, freeway net, silhouette and retraction.

Cell decomposition methods are the most widely studied and implemented

ones. The principle that lies behind them is that of decomposing the robot's free

space into simple regions, called cells. The path planning is then performed by finding

a path in G from the node corresponding to the start cell (the cell containing the start

configuration) to the node corresponding to the goal cell (the cell containing the goal

configuration).

Both methods consist of constructing a global data structure that can later

be used for solving one or more motion planning problems. There are two serious

problems though:

1. The computations of the data structures tend to be very expensive in both

time and memory, and

2. They do not seem to be suitable for robots with non-holonomic constraints

such as car-like robots or multi-body mobile robots.

Our readers will be able to find a thorough discussion of these approaches in [9].

3. Polygon Tracking using Images

Given an edge L and a point p, the image, im(p,L), of p on L is defined

as the closest point on L from p. The distance d(p,L) from p to L is defined as

d(p,L)=d(p,im(p,L)). We assume that in our world two distinct points p\ = (xi,yi)

and p2 = (£2,2/2) are given. The Euclidean distance d(pi,p2) between them is defined

as:

(1.1)d{pu p2) = v(x i - xif + (yi - 2/2

)

:

im(p, o)

P

Figure 5. Image on object

Assume now that there is an object o in a plane. An object might be the form

of a point, a line, an open line segment, a polygon, or other set of points. We define

the shortest distance d(p, o) between a point p and an object o as follows:

d(p,o) = mind(p,pi)
Plto

Eq. 1.2 generalizes the function d defined by Eq. 1.1.

(1.2)

Definition: An image im(p,B)°f a point p E free(B)on a polygon B is the closest point

from p on B.

The image is a vertex on B or a point on an open edge e in B. See (Figure 5).

If a world W has more than one object, an image im(p, W) is defined as the

image im(p,Oi) such that d(p, o,-) is the minimum over all objects in W (Figure 6).

/ im(p, o,

)

im(p, o)! /
i /

im(p, o4) P
im(p, ex.

)

Figure 6. Images on world

Given the images in a world we have to solve the following problem: given

a point p in free space and a convex polygon B, determine whether the image from

p to B is on an edge or on a vertex of B. The following definitions are useful in

understanding the concepts used in this method for polygon tracking:

Assume now that we are given a convex polygon B = (vi, • • • , vn) and a point

p E free(jB). The significant notion for our purpose is the following classification of

each vertex V{ of B with respect to the segment pvi. Each vertex of B is said to

be visible, invisible, cw-tangential, or ccw-tangential (we should add with respect to

segment puj, but we shall normally imply this qualification) (see Figure 7).

Definition: Let B be a convex polygon, and let a point p E free(5).

ccw-tangential

/ V
/ cw -tangential

Figure 7. Visibility from point p to convex polygon B (I)

Convex Polygon B

Point p

Find Convex Image

Algorithm

Image Type (Edge or Vertex)

Vertex v

Orientation from p to image

Closed Distance

Figure 8. Image type

• A vertex Vi is tangential from point p if the two vertices adjacent to Vi lie on

the same side of the line containing pvi.

• A vertex Vi is visible if the segment pvi does not intersect the interior of B and

the two vertices adjacent to t>; lie on opposite sides of the line containing pvi.

• A vertex V{ is invisible if the segment pvi intersects the interior of B.

D. ASSUMPTIONS AND CONSTRAINTS
The problem of finding the optimal path for the continuous motion of a given

vehicle from a given initial configuration to a desired final goal, is definitely subject to

certain geometric constraints during its motion. These constraints do not permit the

body of the vehicle to come in contact with certain obstacles or 'walls', of the given

environment. This way issues related to the mechanical interaction are avoided.

10

Also our robot has a fixed number of degrees of freedom. As we see in the

next figure 9 our vehicle has three degrees of freedom when moving on a flat surface.

Precisely what we mean by this is the following : relative to some global coordinate

system, the robot can be at any position specified by two coordinates, x and y, and

pointed in any direction specified by a third coordinate angle 6. These three degrees

of freedom (x,y,0) give us the distance to and the angle between the global frame,

and a local reference frame, R, on the robot. (We could have put the frame anywhere

on the robot but because the robot's center of rotation, is the point midway between

its two drive wheels, we chose that point).

y-axis

Figure 9. Representation of a robot in a global coordinate system

Also in the theory of Professor Kanayama we avoid any mathematical methods

which are coordinate system-sensitive. For instance, a curve is never represented in

a form of y=f(x). Most important of all according to this theory paths, motions and

environments of a robot are treated as continuous entities rather than discrete ones.

This policy causes some problems sometimes but make real applications easier.

Also, we believe that moving objects in general are handled better if direction

is attached. So all the geometrical objects like lines, circles and curves have directions

11

(forward or backward). We believe also that this approach allows a deeper study of

the inherent mathematical structure of the different problems.

12

II. PATH TRACKING METHOD

A. THE CONCEPT OF THE STEERING FUNCTION
In this chapter we introduce the mathematical framework that is used in our

theory and in particular we're going to discuss the steering function in details. We're

going to show how this function is used to manipulate the motion of our vehicle, how

it is related to the robot's position and orientation and how it affects the movement

of our robot in general. It is also necessary at this point, to give to the reader some

important definitions we are using through out the proposed theory of Professor

Kanayama.

B. TRANSFORMATIONS
Let 1Z denote the set of all real numbers.

Definition: A transformation, <?, is defined by

q =

I \
x

\
6

1

where x,y,9 £ 71.

The set of all transformations is denoted by T. For example, (3, l,7r/3)T £

T. Obviously, a transformation q is interpreted as a two dimensional coordinate

transformation from the global Cartesian coordinate system F to another coordinate

system T

.

Definition: The transformation group (T, o) consists of the set T of transformations,

where

T={(x,y,e)T \x,y,ee1l}

and the~binary operator (composition function), o, is defined as follows:

13

Let q1 = (zi,yi,0i)
i

, q2 = (x2 ,y2 ,92y 6 (T,o), then

q\ °Q2

Xi + x 2 cos $i — y2 sin $i

yx + x 2 sin 91 + t/2 cos #i

#1+02

The interpretation of (ft
o q2 in the domain of two-dimensional coordinate transfor-

mations, is the composition of the coordinate transformations q\ and q2 .

Definition: The inverse q
l of a given transformation g = (x,y,$)T is denned as:

(A ^—x cos v — ysmv

j-1 - x sin 9 — y cos 9

-9

Another poerful tool in this transformation theory is the concept of relative

transformations. We already know that a vehicle's configuration is represented by

q : global

q : local to e
E

Figure 10. Robot's relative transformation

14

9v = (zv ,S/v,0v)
T

(n.i)

This transformation represents the three degrees of freedom a rigid body possesses in

a place.

The relative transformation now is defined as

qv = (x*,y*,e*)
T

(II.2)

of the object with respect to the vehicle 's coordinate system.There exists also a

relation qv o q* = q between #v,<Zo and q*.

Proposition II. 1 If the transformations of a vehicle and an object are

qv = (xv , 2/v, #v)
T
and q = (x

, y ,

6

)

T
(11.3)

the relative transformation q* of the object with respect to the vehicle is

((x - Xv)cos6v + (y - yv)sm6v \

(—x — Xv)sm6v + (y — yv)cos$v

\ 9o-6v J

1. Steering Function Method

We know already that an ordinary vehicle has two control variables: curvature

k and speed v. The assumption we make in our theory is that each vehicle operates

at a relatively low speed and that speed is proportinal to the curvature k. We also

take into consideration that our robot's rotational rate u> is proportional to its path

curvature k if its speed v is constant.

LL> = K V (II.4)

One of the assumptions we made in our introduction was that a vehicle's

heading direction and curvature must be continuous. So we have to find a way to

control the curvature k of our robot.

In order to continuously change k we should compute 4j. Therefore we intro-

duce and adopt through our whole study the general form of the steering function

which we have tested and it works perfectly.

15

d,K— = -(clAk + bA0 + cAd) (II.5)

= -(a(K-Kd) + b(6-0d) + cAd),

where a, 6, and c are positive constants, and Ad is the "signed" distance between the

vehicle and a directed line. Also, k is the path curvature, 9 the vehicle's heading(which

is equal to the path tangential direction), Kd the desired curvature, and d the desired

heading direction. Ad is positive (Ad > 0) or negative (Ac? < 0)if the robot is on the

left or the right side of the reference path respectively.

A very important factor that influences the efficiency of the steering function

formula is the correct choosing of the three constants (a, 6, c). The proper track-

ing of our reference path depends heavily on the correct combination of these three

constants.

Professor Kanayama in his theory had linearized the system for computing

these constants and after solving the equation

A
3 + a\2 + BX + c = (II.6)

he found the eigenvalues A that satisfy that equation.

To obtain the proper condition on the coefficients for achieving asymptotic

stability,Professor Kanayama had to refer to Routh-Hurwitz criterion which says that

a, 6, and c must be all positive and ab — c > 0. According to this we have

a = Ki + k2 + k3 (II.7)

P = K 2 K3 + AC3K! + «i« 2 (II.8)

c = K1K2K3 (II.9)

and taking all the negative real eigenvalues equal,

a = 3/c (11.10)

P = 3/c
2

(11.11)

c = k
3

(11.12)

16

for some positive constant k.

At this point we have to say a few words about smoothness a and the important

role it plays in the steering function.

Smoothness is very essential for our robot's navigation and motion planning

in general because an unproper value of it could cause slippage of the wheels, or could

cause a very unsafe motion for the vehicle .

We define

<? = p (H.13)

where k is the curvature.

In general large smoothness a results in faster motion and smaller smoothness

in a slower one. Choosing a value for smoothness a depends on the environment our

vehicle is going to move in. In an environment with many obstacles we need to use

a smaller smoothness in order to avoid the obstacles while in the case we want to

move faster we have to use larger smoothness. The next figure gives us an idea of

how smoothness affects line tracing simulation results(using the old method).

y

Figure 11. Effect of smoothness in line tracking

C. NEUTRAL SWITCHING METHOD
The revolutionary method of neutral switching proposed by Prof.Kanayama is

explained in this section. We will also show here our simulation results obtained by

17

working on Sun/Unix workstation in the NPS Artificial Intelligence Lab.

To ensure that our robot has smooth motion behavior, while transitioning

from one path to another we have to find the best point the robot has to leave its

path it currently is moving on, and proceed to the next path. So the key notion

behind Neutral Switcing Method is selecting an appropriate leaving point from the

current path segment our vehicle is moving on to the next one. The method we 're

using gives us a unique point for each path combination.

An early leaving from the current path would have as a result an intersection

with the next path something we really want to avoid while a late leaving from the

current path would have as a result a strange "turning back" behavior away from the

next path. Both cases are undesirable and the way to avoid them is to select a point

where the steering function returns a "zero feedback" value:

da— = -{<iAk + bAO + cAd) =
as

For the beginning we apply this principle to a line-to-line switching and more

specifically from an Y axis to the X axis. When the vehicle is traveling on the Y axis

down, its curvature is and its orientation is equal to — |. So we obtain

d,K

ds

Therefore

= -(gAk + bA$ + cAd) = (&(-^) + cy) =

&7T 3k 2
7T 37T 37T(T m ,.v

V = -77 = TT-77 = TTT = "TT" = 4.712 (7 (11.14)y
c2 k3 2 2k 2

v ;

The results obtained by our simulation program for this case are clear to the next

figure 12 and show the effectiveness of this method. Also we are going to present

simulation results and how this method was used for polygon tracking and star track-

ing. (The reader will be able to find all the necessary codes for finding the leaving

point for the various cases in the Appendix of this Thesis).

18

Figure 12. Tracking of X-axis using the neutral switching method

Figure 13 shows the simulation results, when the vehicle is tracking the X-axis

from different angles:30 degrees, 60 degrees, 90 degrees, 120 degrees and 150 degrees.

The initial configuration is qo = ((0.0,0.0), — 7r/2,0).

As we see, all the above results were obtained for special cases where the

vehicle is moving on one of the two axis(X, or Y). Now we are going to examine the

more general case where the two lines-path segments- cross each other randomly.

1. Intersection of two lines

We consider the general case where we have two lines with configurations

q\ = (zi,yi,0i,*ci)

92 = (z2,</2,02,«2)

(11.15)

(11.16)

19

Figure 13. Tracking of X-axis using the neutral switching method horn different angles

respectively, given «i = Ki = 0. In other words the two path segments are straight

lines.

Let the intersection of the two lines be (x,y). Then it is obvious that the

distance between this point and either of the lines is zero (Figure 14). The calculation

of the leaving point is simple and straight forward, as we will see right away.

yaxis i

x axis

Figure 14. Intersection of two lines

(y — yi) cos $i — (x — Xi) s'm Qi = (11.17)

20

(y - y2) cos 2 - {x - x 2) sin 92 = (11.18)

This is rewritten as

(SH10!

sin 09

X\ sin 0i — y\ cos X

i z 2 sin 2 — 2/2 cos 02

Therefore, if

= sin 62 cos 0! — cos 2 sin 0i = sin(02 — 0\) i1

sin 0i — cos 0i

sin 2 — cos 2

we can solve the simultaneous equations 11.17 and 11.18 as follows.

1

x =
sin(02 - 0i)

{x\sm0\ — y\cos0i) — cos0i

(x2 sin 2 — y2 cos 2) — cos 2

— cos 2 [x\ sin 0i — yi cos 0i) + cos 0i(rr 2 sin 02 — y2 cos 2)

sin(02 - 0i

)

y =
sin

sin

sin 0i (xi sin0i — t/i cos0i)

sin 2 (x2 sin 2 — j/2 cos 2)

0i (x2 sin 2 — y2 cos02)
— sin02(a;i sin0i — y\ cos

(^2-0i)

sin(02 -0l)

*l)

2. Problem Statement

Suppose that we have two lines with configurations

q\ = (zi,yi,0i,/ci)

(11.19)

(11.20)

(11.21)

(11.22)

(11.23)

92 = {x 2 ,y2,02 ,K 2) (11.24)

respectively.We assume that in our case the curvature values for both lines equal zero.

The main problem then is focused on finding the point pu = (iu ,j/n) on q\

so that pu will become the leaving point for neutral switching. From this point an

autonomous mobile vehicle -under the nonholonomic constraint- will use to track the

next line. Upon competion of the above calculation we will simulate the motion of

21

Figure 15. Intersection of two lines in the general case

the robot in C language. The value sigma -cr-(smoothness) will be given by the user.

The leaving point pu = (in,j/n) must satisfy two conditions:

First condition

d,K— = -(aA/c + bA$ + cAd) =
as

In our case

Also we have

k = 0, and = 1

C AT
(11.25)

22

On the other hand

Ac? = 0, where (a:*, y*)

is in q'
2 's coordinate system.

Ad = y* = (x - x 2) sin 2 + (y - 2/2) cos 2

(11.26)

(11.27)

Second condition

The point (x,y) must be on the first directed line. On the other hand y* =

on the G/i 's coordinate system.

From (1),(2)

y* = (x-xi)sin0i + {y-yi)cos0i

— x sin $2 + y cos $2 = —x 2 sin 62 + J/2 cos 2 + 3cr(02 — #1)

— x sin #i + y cos 0i = — xi sin 0x + yx cos 0i

From (3),(4)

/
sin&i + cos $i

i Sm02 + COS 02

/^
v 3/ y

—Xi sin 0i + yi cos 0i

-x2 sin #2 + 2/2 cos 2 + 3(t(02 - #i) j

(11.28)

(11.29)

(11.30)

(11.31)

The next condition also must satisfy:

D = sin 62 cos B\ — cos 62 sin 0i = sin(02 — #i) /

ion:By solving the equations (11.31) we find the coordinates of the point in quest

1 (— X! sin^i + yi cos^i) + cos0i

(—

x

2 sin02 + y2Cos#2 + 3cr(02 — #1) + cos02

;0i) — cos#i(—X2 sin 02 + 2/2 cos 62 + 3<j(02 — 0i)

sin(0o -0A

(11.32)

X
sin(02 - X)

cos 02{— xi sin 9\ + yi cos

sin(02 - ^i

)

(11.33)

y

sin9\

sin

sin

{— xi sin 0i + yi cos 0i)V y ;

(11.34)

\&2 (—

x

2 sin02 + y2cos0 2 + 3o-(0 2 — 01

)

+ y2 cos 2 3cr(02 — 0i)) + sin02(—Xi sin0i + y\ cos0i)

sin(02 -0i)

sin(02 - 0i)

,0i(—x2 sin 2 + y2 cos 2 3(j(02 — 0i))

3^(02-0!)

23

As we see, the equation of the steerinf function, governs the behavior of the

robot and manipulates its motion, by forcing changes in its position and orientation.

The most interesting feature of the neutral switching method is that is based also on

symmetry. This means that it works and it predicts perfectly the behavior of the

robot in all the cases.

We will now discuss now the various cases we will encounter in the real

world.We're also going to show, the way this symmetry affects each one of the inter-

actions of the robot in the real world. In other words the symmetry that exists in

nature interchanges the terms within the equation, yet leaves the equation the same.

We must now determine the different cases the motion of our robot falls in.

Case 1. This case is depicted very clearly in Figure 16 and is the case where

the vehicle should turn when the condition ^ > is fulfilled.

Figure 16. Case where k >

Case 2. This case is similar to case 1 with the difference that now the curvature

k is less than zero. This means that the vehicle has to turn when the condition 4^ <
as —

is fulfilled.

Case 3. If $ = (02 — #i) = ±7r we have the case that is depicted in Figure 18

Case 4. If $(#2 — 0i) =0 then either L\ = L2 or the two lines are parallel as

we can see in Figure 19

24

Figure 17. Case where k <

vehicle

Figure 18. Case where $ = (d2 — #i) = ±x

3. Conclusions

From our discussion so far the reader should be able to distinguish neutral

switching method's two essential features:

1. symmetry

2. The ability to explain large amounts of experimental data with the most eco-

nomical mathematical expressions.

25

L
1

vehicle

Figure 19. Case where $ = (02 - 0j) =

D. SIMULATION RESULTS
Here we present more simulation results obtained by the imlementation in

C language of neutral switching method.All the codes were tested in UNIX/SUN

workstation at the AI laboratory. Those results show clearly the practical aspect and

the efficiency of our method.

In Figure 20, the vehicle is supposed to have initial configuration q\ = ((0.0, 20.0), 45.0, 0.0)

and the target line q2 = ((30.0,0.0), —45.0,0.0). The value of smoothness, a = 10,

while for Figure 21, the value of smoothness, a = 40.

The example in Figure 22, shows the result of the trajectory of circular track-

ing. The center of the circle is at (0.0,0.0), the radius equals 10, and the value of

smoothness, a = 10. Our vehicle's configuration is qv — ((0.0, —12.5), 0.0, 0.0).

In Figure 23, and Figure 24 we can see simulation results for "star" tracking,

for smoothness, sigma = 5, and smoothness, sigma = 10 respectively.

The neutral switching method algorithm described in this thesis has been

impemented in MML, and tested on the experimental robot Yamabico-11 in AI lab.

We tried various values for the smoothness a and the speeds of the robot. The robot

started with initial configuration q = ((0.0, 0.0), 0.0, 0.0) and was supposed to track

the line-^i. The results obtained so far show that the algorithm is working well and

26

'••:/

Figure 20. Tracking a target line using Neutral switching method

it is very efficient for robot motion planning and motion control.

a speed v 4.712a

10 30 qi = ((47.12, 0.0), tt/2, 0.0).

20 20 qi = ((94.24, 0.0), tt/2, 0.0).

30 10 qi = ((141.36, 0.0), tt/2, 0.0).

Table I. Values for speed v, and smoothness a used in real time implementation

27

y

Figure 21. Line tracking using Neutral switching method

Figure 22. Circle tracking using the neutral switching method

28

Figure 23. Star motion using the neutral switching method (I)

29

Figure 24. Star motion using the neutral switching method (II)

30

III. POLYGONS

A. INTRODUCTION
The purpose of this chapter is to present the various concepts and definitions

about polygons, and polygonal worlds. We cover basic concepts which form the

basis of our theory as well as the necessary schemas(data structures) we are using

to represent a polygon. After that we use the neutral switching method to track a

polygon.

1. General Definitions

We represent a polygon by an ordered set

B = {vi,u2 ,
••-,*>„}, n > 3

of n distinct points(vertices) in a plane.

As we see from the above definition the simplest polygon is a triangle, since a

polygon must have at least three edges. We call a polygon with n vertices a n-gon.

The union of all edges in a polygon B is considered to be the value, val(B),

of the polygon.

Definition: A polygon is called simple if it satisfies the following two condi-

tions(Kanayama)

1. if no triple of vertices (u, ip{v),(p2 (y)) in B are colinear

2. if there is no pair of nonconsecutive edges sharing a point in it

A simple polygon partitions the plane into two disjoint regions, the bounded, and

unbounded ones, separated by the polygon(Jordan curve theorem).

In our theory we make the assumption that the first vertex in a polygon B is

considered that with the minimum x-coordinate among all the vertices.

The direction of an edge v,tp(v) in a polygon B is defined as

ty(pi,p2)
= atan2(y2 - yu x 2 - x x)

31

simple simple not simple

(a) (b) (c)

Figure 25. Examples of simple and non-simple polygons (I)

where pi = (xi,yi) and P2 = (x 2 ,y2) are two distinct points.

Figure 26. Orientation of an edge

In a polygon B we define an exterior angle, £,-, as the normalized angle between

the directions of an edge and its previous one related to vertex V{.

Si = $ (V(vh <p(vi)) - *(^
_1

(t;,-),wO)

An exterior angle is positive or negative. It is not equal to or ± 7r, because any

three consecutive vertices are not colinear. A vertex v t , on a polygon is said to be

convex if all the vertices in B are convex. Otherwise, it is said to be concave.

32

v
4 V(v

2
, V3) ^

V(v,. ^)

Figure 27. Interior and exterior angle of a simple polygon

Convex Simple Polygon

Figure 28. Convex polygon

2. Problem Definition

Given v, one vertex on a polygon, find a straight path parallel to Vip(v), which

has a clearance of w from v^p(v)(by (a,6,a) representation configuration). Track this

path by using neutral switching method.

The approach we are using for polygon tracking proceeds through the following

steps-phases: In order for our method to be clear enough to the reader we reformulated

the previous phases in more detailed terms and we decomposed most of the steps into

their connected components. This way the solution is developed in subsequent clearer

sections.

Phase 1-: Build a polygon (B) world.

33

Figure 29. Concave polygon

The world, illustrated in Figure 33, is represented as a linked list of polygons,

where each polygon is a doubly linked list of its vertices. Access to the world is gained

through the manipulation of a pointer to one of the polygons of the list. (The reader

should be able to find all the necessary code for a generarion of a polygonal world in

the Appendix).

'

P2 P 3Pi

Figure 30. Representation of a world data structure

Figure 31. Pointer manipulation for deletion of a node

Phase 2 : Compute one line(ccw or cw) with clearance of w
,
given a vertex v in a

polygon B, of a polygonal world W.

Since our motion planning problem emphasizes ostacle avoidance we compute

a safe path for our vehicle. In our case the safest path is one that is on a certain

34

Pi

\

?}

l"'
^^""^

V "\
C j

)

tl _y
Figure 32. Pointer manipulation for insertion of a node

II

next(v)

•

.-'" B /
w
o

A i iw
prev(v)

\

1

V

Figure 33. A safety path around a polygon

distance away from the polygon we are going to track. This way the robot departs

from the original path, and tracks the computed line by simply specifying the safety

distance.

Phase 3 : Compute 5 lines around B. The various steps we went through in order to

compute the edges of a polygon in our world can be described as follows:

Tracking an edge UjVj+i

Input: w desired safety distance

Output: line the configuration of a line

Define the edge configuration e,-

begin

1.

35

e; = (ut-,\P(ut-,t>,-+i),0)

2. Define the safety distace configuration

safe = (0, — tyo ,0)((—) for ccw, (+) for cw)

3. line = e2
- o safe

4. return line

end

Phase 4 : Track the lines by using neutral switching method. For the vehicle to

exhibit the previously described problem of tracking a computed edge we simply

need to specify the desired safety distance. Now its time to show how to specify the

desired path sequence.

We followed two methods as we were proceeding to the solution of our problem:

(a)using x* as our calculated condition, and (b)using steerQ function

1st method

begin

1. while {

2. (x ,y)
<— compute leaving point

3. (x*) <—compute x* switch line (i = i + 1)

4. aPply next function to advance the vehicle one step

5. }

'

end

Figure 34. Pseudocode for Tracking a line using the x* distance

2nd method

In the next section of this chapter we present simulation results of the previous

methods. To track a polygon we used the second previously described algorithm(using

steer () function) for its simplicity and efficiency.

36

Figure 35. Tracking the edges of a polygon

begin

1. while i < N
2. if steer() >=
3. switch line (i =i + 1)

end

Figure 36. Pseudocode for Tracking a line using steerQ function

B. SUMMARY
This chapter develops a method a representation of a polugonal world suitable

for the motion of an autonomous robot lika Yamabico. This world as we saw is

a polygon with one exterior boundary polygon, and zero or more non-intersecting

polygons inside it. After that we showed how to track a specific polygon of this world

in a safety distance w from it, using the neutral switching method.

37

Figure 37. Tracking of four given lines

Figure 38. Polygon tracking by using the neutral switching method

38

IV. HARDWARE AND SOFTWARE
ARCHITECTURE OF YAMABICO-11

In this chapter we describe the hardware and software system of the robot

—

Yamabico-11 which we're using to test our theory experimentally.

A. HARDWARE SYSTEM
Yamabico-11 (see Figure 40) is an automomous, experimental, wheeled robot

which has been developed at the Naval Postgraduate School (NPS) over the last years

under the supervision of Professor Yataka Kanayama.

Macintosh Power Book

VME BUS

UNIX

Syslcm

ScnaJ

Board

Image

Board

Sonar

Board

CCD
Camera

Axis

Controller

Ultrasonic

sonar

(12)

SPARC

CPU

Motor

Controller

Shaft Encoder

I*
Figure 39. Diagram of Yamabico-11 hardware architecture

1. CPU
Yamabico is an autonomous robot and it contains a Sparc CPU which is able

to run executable files which have been previously downloaded via ethernet. The

CPU is controlled through the Sparc Debug Monitor via an RS-232 connection to an

Apple Powerbook. The Ironies IV-SPARC-33 is a single processor, VMEbus Interface,

CPU board. It contains a 25 MHz SPARC Integer Unit, a Floating Point Unit, and

39

a Cache Controller and Memory Management Unit. The card installed in Yamabico

has 64 Kbytes of cache, and 16 Mbytes of 80ns DRAM. It provides two RS-232 serial

I/O ports, two programmable timers, and seven user-definable LEDs.

The Ironies SPARC board contains 16 Mbytes of physical memory, yet pro-

vides 32 bit addresses (4 GBytes). This 4 GBytes address space is logically divided

into several regions. The three most important regions are the Local DRAM, Region

3, and Local I/O.

(l)Local DRAM The local DRAM is the physical memory present on the board, and

is addressed from 0x00000000 to 0x01000000. The lower limit is fixed, while the upper

limit is determined by the amount of physical memory present. This space is used

for the kernel and user programs, and for allocating dynamic memory.

(2)Region 3 Region 3 starts at the end of region 2, and extends to the bottom of

the EPROM space. The default configuration provides addresses from OxfcOOOOOO

to OxffOOOO, however, only the upper boundary is fixed. The lower boundary may

be changed by writing to the appropriate register as defined in the Ironies manual.

MML11 currently does not change the default address map, but does provide for Re-

gion 3 to be VME bus A16 addressable. All devices on the VME bus are addressed

from Region 3. Addresses are obtained by adding the 16-bit base address of a specific

hardware device to the region 3 oifset of OxfcOOOOOO. This includes the shaft encoders,

quad serial boards, and sonar board.

(3) Local I/O The local I/O region contains the addresses for the registers which con-

trol the operation of the Ironies SPARC board. They are addressed from 0xfff0000

to Oxffffffff.Both limits are fixed. Internal interrupts are those generated on the CPU

board. The two most important are the Timer 1 and Timer 2 interrupts. Timer 1 can

be set to provide interrupts at 50, 100, or 1000 hz. Currently, MML11 uses Timer 1 to

provide the 10ms (100 Hz) motion control interrupt. Timer 2 provides a broader range

of interrupts, and is currently unused. The interrupt vectors for Timer 1 and Timer

2 are defined by the Local Interrupt Vector Base Register(0xfffc0057). Yamabico's

40

communication interface can be accomplished by the help of an input/output sub-

system that provides three important functions;screen input/output via the on board

laptop computer, facilities for downloading executable programs to Yamabico's main

memory, and functions for retrieval of sonar data collected by Yamabico.

External interrupts are those generated off the CPU board. The most impor-

tant are from the quad serial boards, and the sonar board, which are handled through

the 7 VMEbus Interrupt Request lines.

2. Wheels

In Yamabico-11, there are six wheels in total. Two wheels, lying on the robot's

center line, drive the robot. The remaining four casters are smaller than the drive

wheels and each has a shock absorbing material connected to the robot's chassis,

two in the front and two in the rear. Two DC motors are used to drive the wheels,

one for each drive wheel. There is also a reduction gear box connected between

the motor and the drive wheel. The motor control board controls the motors. In

Yamabico the control program is called MML system. In this system there is an

integer variable called 'pwm.' The pwm value is ranged from —127 to 127, its absolute

value represents the amount of time the motor will be activated and its sign represents

the motor rotational direction. The positive sign is clockwise for right wheel control

value(rpwm) and is counterclockwise for left wheel control value(lpwm). The negative

sign is just opposite. Each motor is activated by the amount of time which the pwm

value represents. If we want the motor to get half of the motor's maximum rotational

speed, we will set the pwm value to 64 or -64 and if we want the motor to get all the

rotational speed we '11 have to set it to 127 or -127. The real relationship between

the pwm value and the actual robot velocity are obtained by experiments. As we see

the robot's control program gives us the capability to achieve the velocity we desire

and this capability is the very basis of our robot Yamabico-11. The Yamabico-11

hardware architecture is illustrated in Figure 39.

41

Figure 40. Autonomous mobile robot, Yarnabico-11

42

3. Sonars

Sensors include twelve sonar transducers, precision dead-reckoning wheel en-

coders, and a color video camera. The Yamabico's software is written in C, and

lately a lot of efforts have been made to upgrade the system so it'll support C++.The

motion of the robot is achieved by an electric motor powered by batteries.

Forward

Figure 41. Yamabico-11 sonar configuration

B. SOFTWARE ARCHITECTURE OF YAMABICO-11
All programs on the robot are developed using a Sun 3/60 workstation and

the Unix operating system. These programs are written in the 'C programming lan-

guage, compiled and then downloaded to the robot via a RS-232 link at a rate of

19600 baud. The software system consists of an operating system kernel and a user

program loaded at different addresses in the robot's main memory. The kernel needs

to be downloaded only once during the course of a given experiment. A user program

user(), can be modified and downloaded quickly to support rapid development. An

on board notebook computer is provided to accomplish command level communica-

tion to and from the user. The Model based Mobile-robot Language MML is the

driving force behind the robot. It is actually a reprogrammable software system and

43

a multitasking operating system that provides robot motion and sensor functions and

also allocates processing resources while performing odometry functions. Tasks are

assigned according to their priority level. This is accomplished with the help of the

eight interrupt levels that the motorola CPU has.

Operating System

Module Initialization

i

i

i

i

1Motion Planning

Module

*<
User Program

Motion Control

Module
i

i

i V

Sonar Control

Module
Termination

Function Library System Main Body

Interrupting Request *
i

i

i

Function Support *
Sonar Control Motion Control

Sequential Execution >
Subsystem Subsystem

Figure 42. MML-11 software conceptual architecture

1. User Program Utility

We distinguish two kind of programs in Yamabico's software structure:system

programs and user programs. User programs control the robot's motion in our ex-

perimental environment by including all the necessary instructions. An example of a

user() program is given in the APPENDIX.

2. Library Functions

A special importance should be given to Yamabico's geometric module which

provides the necessary mathematical support for the various required spatial rea-

soning tasks. There are three important components in this susystem;assignment

functions for specifying geometric variables,math utility functions for manipulating

the geometric variables and path tracking geometric support functions for reasoning

about path elements.

44

3. Functions

The path utility functions provide a library of routines for the algebraic ma-

nipulation of geometric variables. For example,the composition function is used to

perform 2D transformations and the inverse function determines the algebraic inverse

of a given configuration. These functions support algebraic manipulations for auto-

matic dead reckoning error correction. Also provided are an assortment of utility

functions for spatial reasoning math on board Yamabico. Examples include three

types of normalize functions and a ceiling function. All of these utilities support

path tracking vehicle control. The path tracking geometric support functions serve

to connect individual path elements for smooth vehicle motion. This subsystem is

composed of two types of functions which are related.

4. Odometry Capability

We should say a few words about how Yamabico's software system maintains

its odometry estimate. A set of functions are used to provide automatic vehicle

odometry correction. What they're doing actually is setting the initial configuration

of the robot, reading the current value of the robot's odometry estimate and updating

this value according to the new estimate.

45

46

V. CONCLUSIONS-FUTURE RESEARCH

A. SUMMARY
We conclude our thesis by summarizing the technique of neutral switching

method and its contributions to the field of Robotics. We also give in this chapter a

final reflection on the long-term aim of our research in Intelligent Robotics.

The neutral switching method which was thoroughly presented in Chapter IV

was described by the equation (II. 5) and is a major contribution toward more au-

tonomous and efficient robots. We could even say more smart robots. This method

is extremely useful as we saw for the motion control of the autonomous vehicles and

enhances their capabilities by the following way:

First, it gives a description of the desired motion of the vehicle in a more

transparent way, than any other existing methods.

With our method the motion of the robot is simply described in a more general

way. This gives the AI researcher the capability to program and control the behavior

of the vehicle more efficiently. The movement of the vehicle along a polygonal world

is smoother and all the target tracking maneuveurs are being safer at the desired

speed.

Secondly, another contribution of N.S.M is the safe path tracking where a path

in our programs is represented by a configuration.

By using the algorithm described in chapter VI we were able to generate a

sequence of path segments that represented the desired path of the robot and, we were

able to program the robot on a simulator to maneuver on this path and gradually

track a polygon.

We also saw how the smoothness a played an important role in our research

by determining it as the distance the robot moves along the reference path before it

converges to this path. After this we examined what kind of data structures were

suitable- for representation of a polygonal world. This way we gave the robot the

47

capability to correctly perceive its surrounding environment and program its behavior.

Autonomous robots like Yamabico, should be enabled by their navigational

system to autonomously navigated through various worlds to their required destina-

tions. This autonomous navigation capability can be used in various applications such

as unmanned explorations or operations of dangerous environments, manipulation of

hazardous materials e.t.c

The problem of robot navigation has been studied by several researchers so

far as the reader can very easily see in the list of references used for this thesis.

Robotics as a research area of computer science has been proven to be full of

a variety of issues ranging from abstarct mathematical to highly realistic problems.

The algorithm for polygon tracking proposed by Professor Kanayama based on

N.S.M has provided many practical advantages for the guiding of the movement of an

autonomous vehicle. Fist of all it is reliable and easy to understand and implement.

Secondly, it is very well documented and it is supported by a strong mathematical

theory. Its contribution to the Robotics science is considered a major one.

B. FUTURE RESEARCH
As we saw in chapter VI the key notion behind Neutral Switcing Method is

selecting an appropriate leaving point from the current path segment our vehicle is

moving on to the next one. The method we 're using gives us a unique point for each

path combination. The selection of that point is done when the steering function

returns a "zero feedback" value:

dtz— = -(clAk + bA6 + cAd) =
as

Another more general and efficient approach would be to consider the leaving

point calculated when the folowing condition is considered:

dK— = - (aAk + bA0 + cAd) = min
ds

48

Also a future researcher should consider the case where the navigation of au-

tonomous mobile robots like Yamabico, is not always done in worlds whose models

are considered known a priori.

We expect this Thesis to be useful as a future reference by other students who

are going to have the luck to work in Robotics field.

49

50

#if

APPENDIX.

Thesis Research

Filename

Author

Operating System

Description

Line_Tracking

Karamanlis Vasilios

Unix

This file contains all the necessary functions to compute

the leaving point for neutral switching used in line tracking.

#endif

#include <stdic».h>

#include <math. h>

#define SO 0.0

#def ine PI 3.1415926536

#define SQR(x) x*x

#define QUB(x) x*x*x

#define S_Max 500

FILE *fl;

typedef struct

{

double x;

double y;

}P0INT;

typedef struct

{

POINT p ;

double theta;

double kappa;

CONFIGURATION;

/*******************************^

51

Function name : NormalizeO
Purpose : This function is used to get the value of sigma from the user

Parameters :
-

Return Type : double

**

double Normalize (double angle)

{

while (angle > PI)

{

angle -= 2*PI;

}

while (angle < -PI)

{

angle += 2*PI

;

}

return angle;

}

Function name

Purpose

Parameters

Return Type

Get_Circ_Transformation

This function is used to compute the circular transformation

&delta_theta , &delta_s

CONFIGURATION

CONFIGURATION Get_Circular_Transformation (double delta_s, double delta_theta)

{

CONFIGURATION q;

q.p.x = (1.0 - ((delta_theta * delta_theta)/6.0) +

((delta_theta*delta_thet a*delta_theta*delta_theta) /120 . 0)) * delt a_s

;

q.p.y = (0.5 - ((delta.theta * delta_theta)/24.0) +

((delta_theta*delta_theta*delta_theta*delta_theta) /720 . 0)) * delta.theta

* delta_s;

q.theta = delta_theta;

return (q)

;

52

/**

Function name

Purpose

Parameters

Return Type

next()

apply steering function , get next configuration

&delta_theta, &delta_s, double sigma, double s

CONFIGURATION

CONFIGURATION next (double s, double sigma , double delta_s , double delta_theta
,

CONFIGURATION ql .CONFIGURATION q2)

{

double k,a,b,c,lamda;

k = 1.0/sigma;

a = 3 * k;

b = 3 * SQR(k);

c = QUB(k);

lamda = - (a * ql. kappa + b *Normalize(ql .theta - q2.theta) +

c *(-(ql.p.x-q2.p.x)*sin(q2.theta)+(ql.p.y-q2.p.y)*cos(q2.theta)))

;

ql. kappa = ql. kappa + lamda * delta_s;

delta_theta = ql. kappa * delta_s;

q2 = Get_Circular_Transformation(delta_s,delta_theta);

ql.p.x = ql.p.x + q2.p.x * cos(ql .theta) - q2.p.y * sin(ql .theta)

;

ql.p.y = ql.p.y + q2.p.x * sin(ql .theta) + q2.p.y * cos (ql .theta)

;

ql. theta = ql. theta + q2. theta;

return (ql)

;

}

Function name : Get _ Input _For_ql()

Purpose : This function prompts the user to enter the initial

configuration for ql

.

Parameters :
-

Return Type : CONFIGURATION

CONFIGURATION Get_Input_For_ql()

{

CONFIGURATION ql ;

53

double xl,yl,thetal,kl;

printf ("\nEnter the value for xl please : ") ;scanf 07,lf " ,&xl)

;

printf ("\nEnter the value for yl please: ") ;scanf ("°/.lf ", &yl) ;

printf ("\nEnter the value of the angle theta (deg)for ql please :");

scanf (*7.1f ",&thetal)
;

printf ("\nEnter the value of the curvature for ql please :");

scanf (
u,/.lf",&kl);

ql .p.x = xl;

ql.p.y = yl;

ql. theta = thetal*PI/180;

ql .kappa = kl;

return ql

;

}

Function name : Get _Input_For_q2()

Purpose : This function prompts the user to enter the initial

configuration for q2.

Parameters :
-

Return Type : CONFIGURATION

CONFIGURATION Get_Input_For_q2()

{

CONFIGURATION q2;

double x2,y2,theta2,k2;

printf ("\nNow enter the value for x2 please :"); scanf ('"/.If " ,&x2) ;

printf ("\nNow enter the value for y2 please : ") ;scanf ("°/,lf " ,&y2) ;

printf ("\nNow enter the value of the angle for q2 please :");

scanf 07,lf",&theta2) ;

printf ("\nEnter The value of the curvature for q2 please :");

scanf ('"/.If", &k2);

q2.p.x = x2;

q2.p.y = y2;

q2. theta = theta2*PI/180;

q2 .kappa = k2;

54

return q2;

}

Function name : Leave

Purpose : This function is used to calculate the leaving point

Parameters : CONFIGURATION, CONFIGURATION

Return Type : double x, double y

POINT Leave (CONFIGURATION ql, CONFIGURATION q2, double sigma)

{

POINT temp;

double N,T;

N=Normalize(q2.theta-ql.theta)

;

T=sin(N);

temp . x= (cos (q2 . thet a) * ((-ql .
p . x*sin (ql . theta) + (ql .

p
.
y*cos (ql . thet a)))

)

-

cos (ql . theta) * ((-q2 .
p . x*sin(q2 . theta) + (q2

.
p

.
y*cos (q2 . theta)

+

(3*sigma*N)))))/T;

temp
.
y= (-sin(ql . theta) * ((-q2 .

p . x*sin(q2 . theta) + (q2 .
p

.
y*cos (q2 . theta)

+

(3*sigma*N))))+

sin(q2.theta)*((-ql.p.x*sin(ql.theta)+(ql.p.y*cos(ql.theta)))))/T;

return temp;

}

main()

This function is the main program

int

Function name

Purpose

Parameters

Return Type

int main()

{

double s;

double delta_s,delta_theta , sigma;

55

CONFIGURATION ql,q2;

fl = fopen ("s20150.dat",V);

ql = Get_Input_For_ql()

;

q2 = Get_Input_For_q2()

;

printf ("\nEiiter the value of sigma please : ") ;scanf ("%lf " ,&sigma)
;

printf ("\nEnter the value of delta.s please : ") ;scanf C"/,lf ",&delta_s) ;

ql.p= Leave (ql,q2, sigma)

;

printf ("\n x=°/.f y= ,/„f\n",ql.p.x,ql.p.y)
;

for(s=0;s<= S_Max;s+= delta.s)

{

fprintf (fl,"\n°/,15.10f °/,15 . lOf " ,ql .p.x , ql.p.y);

ql = next (s, sigma, delta_s, delta_theta,ql, q2)

;

}

fclose(f 1)

;

printf ("\nOk! Now let's see the results. \n")

;

printf ("\nType 'gnuplot' please\n")

;

#if

Thesis Research

Filename

Author

Operating System

Description

Tracking_of_Lines

Karamanlis Vasilios

Unix

This file contains all the necessary functions for tracking

four lines forming a rectangular(intermediate step for polygc

tracking) using the new method 'neutal switching'

#endif

#include <stdio.h>

#include <math.h>

#def ine PI 3.1415926536

56

#define SQR(x) x*x

#define QUB(x) x*x*x

FILE *fl;

typedef struct

{

double x;

double y;

}P0INT;

typedef struct

{

POINT p ;

double theta;

double kappa;

}CONFIGURATION;

Function name : Normalize ()

Purpose : This function is used to get the value of sigma from the user

Parameters :
-

Return Type : double

double Normalize (double angle)

{

while (angle > PI)

{

angle -= 2*PI;

}

while (angle < -PI)

{

angle += 2*PI;

}

return angle;

}

Function name : Get_Circ_Transformation

57

Purpose

Parameters

Return Type

This function is used to compute the circular transformation
&delta_theta , &delta_s

CONFIGURATION
**

CONFIGURATION Get_Circular_Transformat ion (double delta.s, double delta_theta)

{

CONFIGURATION q;

q.p.x = (1.0 - ((delta.theta * delta_theta)/6.0) +

((delta_theta*delta_theta*delta_theta*delta_theta) /120 . 0)) * delta. s

;

q.p.y = (0.5 - ((delta.theta * delta_theta)/24.0) +

((delta_theta*delta_theta*delta_theta*delta_theta) /720 . 0)) *

delta_theta * delta.s;

q.theta = delta_theta;

return (q)

;

}

Function name : next()

Purpose : apply steering function , get next configuration

Parameters : double s, double sigma , double delta_s ,

double delta.theta .CONFIGURATION ql, CONFIGURATION q2)

Return Type : CONFIGURATION

CONFIGURATION next (double s, double sigma , double delta_s ,

double delta.theta , CONFIGURATION ql, CONFIGURATION q2)

{

CONFIGURATION q3;

double k,a,b,c,lamda;

k = 1.0/sigma;

a = 3 * k;

b = 3 * SQR(k);

c = QUB(k);

lamda = - (a * ql. kappa + b *Normalize(ql.theta - q2.theta) +

c *(-(ql.p.x-q2.p.x)*sin(q2.theta)+(ql.p.y-q2.p.y)*cos(q2.theta)))

;

58

ql. kappa = ql. kappa + lamda * delta_s;

delta_theta = ql. kappa * delta_s;

q2 = Get_Circular_Transformation(delta_s,delta_theta)

;

ql.p.x = ql.p.x + q2.p.x * cos(ql .theta) - q2.p.y * sin(ql .theta)

;

ql.p.y = ql.p.y + q2.p.x * sin(ql .theta) + q2.p.y * cos (ql .theta)

;

ql. theta = ql. theta + q2. theta;

return (ql)

;

}

/***

Function name : Get_Input_For_Lines()

Purpose : This function prompts the user to enter the initial

configuration for ql.

Parameters :
-

Return Type : CONFIGURATION

CONFIGURATION Get_Input_For_Lines()

{

CONFIGURATION ql ;

double xl ,yl,thetal,kl;

printf ("\nEnter the value for x please : ") ;scanf ('"/.If " ,&xl)
;

printf ("\nEnter the value for y please: ") ;scanf

(

u%lf " ,&yl)

;

printf ("\nEnter the value of the angle theta (deg)for the line please :");

scanf ("'/.If ",&thetal)
;

printf ("\nEnter the value of the curvature for the line please :");

scanf ('"/.If ",&kl);

ql .p.x = xl;

ql.p.y = yl;

ql. theta = thetal*PI/180;

ql .kappa = kl

;

return ql

;

}

/***

59

Function name : Leave

Purpose : This function is used to calculate the

leaving point

Parameters : CONFIGURATION, CONFIGURATION

Return Type : double x, double y

POINT Leave (CONFIGURATION ql .CONFIGURATION q2, double sigma)

{

POINT temp;

double N,T;

N=Normalize(q2 .theta-ql .theta)

;

T=sin(N)

;

temp.x=(cos(q2 .theta)*((-ql .p.x*sin(ql .theta)+(ql .p.y*cos(ql .theta))))-

cos (ql . theta) * ((-q2
.
p . x*sin(q2 . theta) + (q2

.
p

.
y*cos (q2 . theta)

+

(3*sigma*N)))))/T;

temp
.
y= (-sin (ql . theta) * ((-q2 .

p . x*sin (q2 . theta) + (q2
.
p

.
y*cos (q2 . theta) +

(3*sigma*N))))+

sin(q2.theta)*((-ql.p.x*sin(ql.theta)+(ql.p.y*cos(ql.theta)))))/T;

return temp;

}

I ^F ^* ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F t* ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F

main()

This function is the main program

int

Function

Purpose

Parameters

Return Type

int main()

{

double s, xx

;

double delta_s,delta_theta,sigma;

int i =
;

const int N=4;

CONFIGURATION qo,qv,ql;

CONFIGURATION q[N+2]

;

60

fl = fopenO'p.dat'V'w");

for(i=0;i<N;i++)

{

q[i]=Get_Input_For_Lines()

;

}

/* necessary for the tracking to close nicely by corresponding

q[0]=q[4]and q[l]=q[5] */

q[N]=q[0];

q[N+l]=q[l];

/* qv is the actual point we're on */

qv=q[0]
;

/* printing the starting point */

printf ("\nThe coordinates of the starting point are :\n");

printf ("\nqv: x=°/,f y='/,f \n" ,qv.p.x,qv.p.y)

;

printf ("\nEnter the value of sigma please : ") ;scanf ("7.1f " ,&sigma) ;

printf ("\nEnter the value of delta.s please : ") ;scanf ("'/.If " ,&delta_s)
;

/* calculating the first leaving point */

qo.p= Leave(q[0] ,q[l] , sigma)

;

qo.theta = q[0] .theta;

qo. kappa = q[0] .kappa;

/* printing the coordinates of the first leaving point */

printf ("\nThe coordinates of the first leaving point qo are :\n");

printf ("\n x=°/.f y=°/.f " ,qo.p.x,qo.p.y)
;

i = 0;

while(i<=N+l)

{

fprintf (fl,"\ny,15.10f %15. lOf " ,qv.p.x , qv.p.y);

xx = (qo.p.x-qv.p.x)*cos(qv.theta)+(qo.p.y-qv.p.y)*sin(qv.theta)

;

if(xx < 0.0)

{

i++; /* switching lines */

qo = q[i] ;

qo.p= Leave (q [i] ,q[i+l] , sigma)

;

qo.theta = q[i] .theta;

qo. kappa = q[i] .kappa;

61

if (i<4)

printf ("\nThe coordinates for the line i='/,d x='/,f y= p

/,f\n"

,

i+l,qo.p.x,qo.p.y);

>

qv = next (s,sigma,delta_s,delta_theta,qv,qo)

;

}

fclose(f 1)

;

printf ("\nOk! Now let's see the results. \n")

;

printf ("\nType 'gnuplot' please\n")

;

#if

Thesis Research

Filename

Author

Operating System

Description

Build_of.Polygon .

c

Karamanlis Vasilios

Unix

This file contains all the necassary functions to build a

polygon, using old data structures (not Lombardo's)

#endif

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

FILE *f4;

typedef struct {

double x;

double y;

}

POINT;

typedef struct {

POINT point;

double theta;

double kappa;

62

}

CONFIGURATION;

typedef struct Vertex{

POINT coord;

int name

;

int convex;

struct Vertex *Next;

struct Vertex *Prev;

}

Vertex;

typedef struct Polygon{

int name

;

int mode;

struct Vertex *VertexList;

struct Polygon *Next

;

>

Polygon;

typedef struct {

int name

;

Polygon *PolygonList

;

}

World;

double WorldDataD =

{1.0, 0.0, 4.0,

153.2, 118.0,

397.2, 118.0,

397.2, 182.0,

153.2, 182.0

>;

Function name : OpenFile

Purpose : This function is used to open a file

Parameters

Return Type

63

void OpenFileO

{

f4= fopen("p.dat", "w");

}

Function name

Purpose

Parameters

Return Type

buildWorld

This function is used to build a polygon

World

World*

buildWorld(World *curWorld)

{

int Vertexcount

;

int polycount;

double tempX, tempY ,tempxo ,tempyo;

Polygon *curPoly;

Vertex *curVertex;

Vertex *PrevVertex;

Vertex *NextVertex;

Vertex *FirstVertex;

int i, numvert, numpoly;

int nvert , nconvexvert

;

Vertexcount = 0;

polycount = 0;

nconvexvert =
;

i = 0;

curWorld = (World*)malloc(sizeof (World))

;

curPoly = curWorld->PolygonList =

(Polygon *) malloc(sizeof (Polygon))

;

numpoly = (int) WorldData[i++]

;

/* loop until all Polygons are read */

while (1) {

curPoly->name = (int) WorldData[i++]

;

64

numvert = nvert = (int) WorldData[i++]

;

polycount++;

curVertex = curPoly->VertexList =

(Vertex *) malloc(sizeof (Vertex))

;

tempxo=WorldData[3]

;

tempyo=WorldData[4]

;

/* loop until all vertices for this

Polygon are read */

while (numvert > 0) {

tempX = WorldData[i++]

;

tempY = WorldData[i++]

;

Vertexcount++

;

curVertex->name = Vertexcount;

curVertex->coord.x = tempX;

curVertex->coord.y = tempY;

if (curPoly->name ==0)

fprintf (f4,"\n °/.f %f ", curVertex- >coord. x,

curVertex->coord.y)

;

numvert—

;

{

/* last Vertex read for this Polygon */

if (numvert == 0)

curVertex->Next = curPoly->VertexList

;

curPoly->VertexList->Prev = curVertex;

PrevVertex = curVertex;

curVertex = FirstVertex = curPoly->VertexList;

NextVertex = curVertex->Next

;

fprintf (f4, "\n °/,f °/f " ,tempxo,tempyo)
;

}

else

{

curVertex->Next = (Vertex *) malloc(sizeof (Vertex))

;

PrevVertex = curVertex;

curVertex = curVertex->Next

;

curVertex->Prev = PrevVertex;

}

numpoly—

;

65

if (numpoly <= 0) {

curPoly->Next = NULL;

return curWorld;

}

else {

curPoly->Next = (Polygon *) malloc(sizeof (Polygon))

;

curPoly = curPoly->Next

;

Vertexcount = 0;

nconvexvert = 0;

return curWorld;

Function name : main

Purpose : This function is the main file

Parameters

Return Type

int main (void)

{

World *curWorld;

OpenFileO
;

curWorld=buildWorld(curWorld)

;

fclose(f4)

;

}

#if

Thesis Research

Filename : Polygon.

c

Author : Karamanlis Vasilios

Operating System : Unix

Description : This file contains all the necessary functions to build

a polygon (using Lombardo's data structures) and create

66

path segments at a given safety distance from it. After

that it uses the neutral switching method to track it

.

(It uses : "Leave" function and x* distance)

#endif

#include <stdio.h>

#include <math.h>

/* manifest constants */

#def ine FAILURE -1

#define PI 3.1415926536

#define SQR(x) x*x

#define QUB(x) x*x*x

FILE *fl;

/* typedefs */

typedef struct point {

double x,y;

} Point;

typedef struct vertex {

Point point;

struct vertex

previous,
next

;

} Vertex;

typedef struct {

Point point;

double theta;

double kappa;

[(-CONFIGURATION
;

typedef struct polygon {

int degree;

Vertex *vertex_list ; /* this is the first vertex */

struct polygon

previous,
next

;

} Polygon;

67

typedef struct world {

int degree;

Polygon *poly_list;

} World;

I ^F ^F ^F *r ^F ^F *f* ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F *r ^F ^F ^F ^F ^F ^F T ^F ^F ^F ^F ^F ^F ^F T ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F ^F *F "I* ^F ^F

Function name : OpenFile

Purpose : This function is used to open a file

Parameters :
-

Return Type :
-

void OpenFileO

{

fl= fopenO'pl.dat'V'w");

}

Function name: fatal ()

Parameters : char *message

Purpose : on fatal error print message then print system message

then exit

Called by : create_world() <world.c>

create_polygon() <world.c>

add_vertex_to_polygon() <world . c>

Calls : NONE

void fatal (message)

char *message;

{

fprintf (stderr , "Fatal error occured: ");

perror(message)

;

exit (FAILURE);

}

Function : create_world()

68

Purpose

Returns

Called by

Calls

Comments

create instance of a world

World *

ANYBODY

fatalO <utilities.c>

this function allocates space for a world and returns a pointer

World *create_world()

{

World *w;

/* allocate memory for a world */

if((w = (World *)malloc(sizeof (World))) == NULL) {

fatal("create_world: malloc\n")

;

exit (FAILURE)

;

}

/* initialize fields */

w->degree = 0;

w->poly_list = NULL;

return (w)

;

}

Function name : Composition

Purpose : This function is used to compute the composition

of two given transformations

Parameters : two two dimensional coordinate transformations

Return Type : CONFIGURATION-the composition of the two

transformations ql and q2

CONFIGURATION composition(ql,q2)

CONFIGURATION ql

;

CONFIGURATION q2;

{

CONFIGURATION q3;

q3. point. x = ql
.
point. x + q2. point. x * cos(ql .theta) - q2. point.

y

* sin(ql .theta)

;

69

q3. point. y = ql. point. y + q2. point. x * sin(ql .theta) + q2. point.

y

* cos(ql .theta)

;

q3. theta = ql. theta + q2. theta;

return q3;

}

/***

Function name : Get_Circ_Transformation

Purpose : This function is used to compute the circular

transformation

Parameters : &delta_theta , &delta_s

Return Type : CONFIGURATION
**

CONFIGURATION Get_Circular_Transformation(delta_s,delta_theta)

double delta_s,delta_theta;

{

CONFIGURATION q;

q. point. x = (1.0 - ((delta_theta * delta_theta)/6.0) +

((delta_theta*delta_theta*delta_theta*delta_theta)/120.0))

* delta_s;

q. point. y = (0.5 - ((delta.theta * delta_theta)/24.0) +

((delta_theta*delta_thet a*delta_theta*delt a.theta) /720 . 0)

)

* delta.theta * delta_s;

q. theta = delta_theta;

return (q)

;

}

/***

Function name : Normalize ()

Purpose : This function is used to get the value of sigma from the user

Parameters :
-

Return Type : double
***/

double Normalize (angle)

double angle;

{

70

}

while (angle > PI)

{

angle -= 2*PI;

}

while (angle < -PI)

{

angle += 2*PI;

}

return angle;

Function name : next()

Purpose : apply steering function , get next configuration

Parameters : double s, double sigma , double delta_s ,

double delta.theta CONFIGURATION ql, CONFIGURATION q2)

Return Type : CONFIGURATION

CONFIGURATION next (sigma ,delta_s ,delta_theta ,ql,q2)

double sigma ,delta_s ,delta_theta
;

CONFIGURATION ql,q2;

{

CONFIGURATION q3;

double k,a,b,c,lamda;

k = 1.0/sigma;

a = 3 * k;

b = 3 * SQR(k);

c - QUB(k);

lamda = - (a * ql. kappa + b *Normalize(ql .theta - q2.theta) +

c *(-(ql .point . x-q2. point . x)*sin(q2. theta)

+

(ql .point .y-q2. point .y)*cos(q2 .theta)))

;

ql. kappa = ql. kappa + lamda * delta_s;

delta_theta = ql. kappa * delta.s;

q2 = Get_Circular_Transformation(delta_s,delta_theta)

;

ql. point. x = ql. point. x + q2. point. x * cos(ql .theta) - q2. point.

y

71

* sin(ql .theta) ;

ql. point. y = ql. point. y + q2. point. x * sin(ql .theta) + q2. point.

y

* cos(ql .theta)
;

ql. theta = ql. theta + q2. theta;

return (ql)

;

}

Function name : Leave

Purpose : This function is used to calculate the

leaving point

Parameters : CONFIGURATION, CONFIGURATION

Return Type : double x, double y

Point Leave (ql ,q2,sigma)

CONFIGURATION ql,q2;

double sigma;

{

Point temp;

double N,T;

N=Normalize (q2 . thet a-ql . theta)

;

T=sin(N);

temp . x= (cos (q2 . theta) * ((-ql
.
point . x*sin(ql . theta)

+

(ql. point
.
y*cos(ql.theta))))-

cos (ql. theta) *((-q2. point .x*sin(q2. thet a)

+

(q2
.
point

.
y*cos (q2 . theta) + (3*sigma*N))))) /T

;

t emp.y=(-sin(ql. thet a) *((-q2. point .x*sin(q2. theta) +

(q2
.
point

.
y*cos (q2 . theta) + (3*sigma*N))))

+

sin (q2. theta) *((-ql. point .x*sin(ql .thet a)

+

(ql
.
point

.
y*cos (ql .theta))))) /T

;

return temp;

Function : create_polygon()

72

Purpose : create instance of a polygon

Returns : Polygon *

Called by : ANYBODY

Calls : fatal () <utilities.c>

Comments : this function allocates space for a polygon and

returns a pointer to it

Polygon *create_polygon()

{

Polygon *p;

/* allocate memory for a polygon */

if ((p = (Polygon *)malloc(sizeof (Polygon))) == NULL) {

fatal ("create_polygon: malloc\n")

;

exit (FAILURE)

;

}

/* initialize fields */

p->degree = 0;

p->vertex_list = NULL;

p->previous = NULL;

p->next = NULL;

return (p)

;

}

Function : add_vertex_to_polygon(x, y, p)

Parameters : double x x coordinate of new vertex

double y y coordinate of new vertex

Polygon *p pointer to an existing polygon

Purpose

Returns

Called by

Calls

Comments

add a vertex to an existing polygon

void

ANYBODY

fatalO <utilities.c>

adds vertex to the end of the vertex list - no way to insert

NOTE: polygon must exist before adding vertices
***/

73

void add_vertex_to_polygon(x, y, p)

double x, y;

Polygon *p;

{

int i; /* loop variable */

Vertex

new_vertex, / pointer to the new vertex */

current.vertex; /* pointer to the current vertex */

/* allocate space for the new vertex */

if ((new_vertex = (Vertex *)malloc(sizeof (Vertex))) == NULL) {

fatal ("add_vertex_to_polygon: malloc\n")

;

exit (FAILURE)

;

}

/.* install coordinates */

new_vertex->point .x = x;

new_vertex->point .y = y;

/* check if first vertex */

if (p->degree == 0) {

new_vertex->previous = new_vertex;

p->vertex_list = new_vertex;

}

else {

/* set up the links */

current _vertex = p->vertex_list

;

current_vertex->previous = new_vertex;

/* find the last vertex */

for(i = 1; i < p->degree; i++)

current_vertex = current _vertex->next;

new_vertex->previous = current.vertex;

current _vert ex->next = new_vertex;

}

new_vertex->next = p->vertex_list

;

p->degree++;

74

/**

Function : display_vertices_of_polygon(p)

Parameters: Polygon *p pointer to an existing polygon

Purpose : display the vertices of a polygon of the existing world

Returns : void

Called by : ANYBODY

Calls : NONE

Comments :

**

void display_vertices_of.polygon (p)

Polygon *p;

{

Vertex *current, *first;

first=current= p->vertex_list;

do{

printf ("\n°/,f °/,f\n" ,current->point .x , current->point .y) ;

current = current->next

;

}while (current != first);

return;

/**

Function : add_polygon_to_world(p, w)

Parameters: Polygon *p pointer to an existing polygon

World *w pointer to an existing world

Purpose : add an existing polygon to an existing world

Returns : void

Called by : ANYBODY

Calls : NONE

Comments : adds polygon to end of polygon list - no way to insert polygon
***/

void add_polygon_to_world(p, w)

Polygon *p;

World *w;

75

Polygon *current .polygon; /* pointer to current polygon */

/* check if first polygon */

if (w->degree == 0) {

w->poly_list = p;

}

else {

/* find the last polygon */

current.polygon = w->poly_list

;

while (current_polygon->next != NULL)

current.polygon = current _polygon->next;

p->previous = current .polygon;

current _polygon->next = p;

}

w->degree++;

}

Function : Find_Path_Segment (v)

Parameters: vertex

Purpose : computes the path segment according to a given safety distance

Returns : CONFIGURATION

Called by

Calls

Comments

ANYBODY

NONE

safety distance is -50 by default (- shows ccw polygon, + cw)

CONFIGURATION Find.Path.Segment (v)

Vertex *v;

{

CONFIGURATION safe;

CONFIGURATION edge;

safe
.
point . x=0 .

;

safe. point .y=-50 .0;

safe.theta=0.0;

76

safe.kappa=0.0;

edge
.
point . x=v->point . x

;

edge
.
point

.
y=v->point

. y

;

edge.theta= atan2(v->next->point .y - v ->point.y,

v->next->point .x - v->point.x);

edge . kappa=0 . ;

return(composition(edge,safe))

;

}

Function name : main()

Purpose : this is the main function

int mainO
{

Vertex *new_vertex;

Polygon *pl;

World *w;

Vertex *v,*first;

double X,Y,s,xx;

double delta_s,delta_theta,sigma;

int i=0;

int N=4;

CONFIGURATION e,q[6] ,qo,qv;

/* make a world */

w = create_world()

;

/* make a polygon */

pi = create_polygon()

;

/* add three vertices */

add_vertex_to_polygon(153.2, 118.0, pi)

add_vertex_to_polygon(397 .2, 118.0, pi)

add_vertex_to_polygon(397.2, 182.0, pi)

add_vertex_to_polygon(153.2, 182.0, pi)

display_vertices_of_polygon(pl)

;

77

/* attach polygon to world */

add_polygon_to_world(pl , w) ;

OpenFileO ;

v=first = pl->vertex_list

;

do{

q[i] = Find_Path_Segment(v)

;

X = q[i] .point .x ;

Y = q[i]
.
point. y ;

printf ("%f °/,f\n",X,Y);

v = v->next

;

i++;

}while(v != first);

q[N]=q[0];

q[N+l]=q[l];

/* qv is the actual point we're on */

qv=q[0] ;

printf ("\nEnter the value of sigma please : ") ;scanf ("'/.If " ,&sigma) ;

printf ("\nEnter the value of delta.s please : ") jscanf ("°/,lf " ,&delta_s) ;

/* calculating the first leaving point */

qo.point= Leave (q [0] ,q[l] , sigma) ;

qo.theta = q[0] .theta;

qo. kappa = q[0] .kappa;

i=0;

while(i<=N+l)

{

fprintf (fl,"\n°/.15.10f %15 . lOf" ,qv. point .x , qv. point .y) ;

/*printf ("\n%15.10f °/.15. lOf" ,qv. point .x , qv. point .y) ;*/

xx = (qo. point .x-qv. point .x)*cos(qv.theta)+(qo.point .y-qv. point .y)

*sin(qv. theta)

;

if(xx < 0.0)

{

i++; /* switching lines */

qo = q[i] ;

qo
.
point= Leave (q [i]

, q [i+l] , sigma)

;

qo.theta = q[i] .theta;

qo. kappa = q[i] .kappa;

- }

78

qv = next(sigma,delta_s,delta_theta,qv,qo)

;

fclose(f 1)

;

return 0;

#if

Filename

Author

Project #3

Operating System

Description

Thesis Research

: main4 .

c

: Karamanlis Vasilios

: Circle Tracking

: Unix

: This file contains all the necessary functions for

circle tracking

(Using the Neutral Switching method)

#endif

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#define SO 0.0

#define S_MAX 600.0

#define PI 3.1415926536

#define RAD 180.0/PI

FILE *fl
;

/* Data structures for defining coordinates X , Y and angle theta */

typedef struct

{

double X;

double Y;

}P0INT;

typedef struct

79

POINT point;

double theta;

double kappa;

[(-CONFIGURATION;

/***

Function name : Get_Circ_Transformation

Purpose : This function is used to compute the circular transformation

Parameters : &delta_theta , &delta_s

Return Type : CONFIGURATION
***/

CONFIGURATION Get_Circular_Transformation (double ds, double dt)

{

CONFIGURATION q;

q. point. X = (1.0 - (dt * dt)/6.0) *ds;

q. point. Y = (0.5 - (dt * dt)/24.0)*dt*ds;

q. theta = dt

;

return (q)

;

}

/***

Function name : Print _to_File

Purpose : This function is used to write the data to the output file

Parameters : f,q

Return Type :
-

***/

void Print_to_File(FILE *f CONFIGURATION q)

{

fprintf(f ,"\ny.f '/.f" , q. point. X , q. point. Y);

}

/***

Function name : Normalize ()

Purpose : This function is used to get the value of sigma from the user

Parameters :
-

Return Type : double

80

double Normalize (double angle)

{

while (angle > PI)

{

angle -= 2*PI;

}

while (angle < -PI)

{

angle += 2*PI;

}

return angle;

}

/***

Function name : sgn()

Purpose : This function is used to return the sign of a value

Parameters : double

Return Type :
-

int sgn (double v)

{

int SIGN;

if (v==0.0)SIGN =0.0;
else if(v>0.0)SIGN = 1;

else SIGN = -1;

return (SIGN)

;

}

/***

Function name : Circle_Tracking()

Purpose : This function is used to get the next configuration

Parameters : double s, double sig, double ds, double dt , CONFIGURATION ql,q2

Return Type : CONFIGURATION

CONFIGURATION Circle_Tracking(double s, double sigma, double ds, double dt

,

81

{

CONFIGURATION ql , CONFIGURATION q2)

CONFIGURATION qc;

double k,kl,a,b,c,A,E,D,Dl,rad,Nl,N;

int SGN;

sigma=0.5;

rad=10.0;

k=1.0/sigma;

kl=l/rad;

a=3*k;

b=3*(k*k)-(kl*kl);

c=(k*k*k)-3*k*(kl*kl)

;

SGN = sgn(rad)

;

for (s=SO ; s<=200 ; s+=ds)

{

Print_to_File(f 1 ,ql)

;

E=atan2((q2. point .Y-ql. point .Y) , (q2 .point .X-ql .point .X))

;

Dl=(q2. point. X-ql. point. X)*(q2. point. X-ql. point. X)+(q2.po int.

Y

-ql. point .Y)*(q2. point .Y-ql .point .Y)

;

D=sqrt(Dl)

;

Nl=ql.theta-(E-(SGN*PI/2));

N=Normalize(Nl)

;

A=- (a* (ql . kappa- 1 . 0/rad) +b*N+c* (rad-SGN*D))

;

ql .kappa=ql .kappa+A*ds;

dt=ql . kappa*ds

;

qc=Get_Circular_Transformation(ds,dt)

;

ql. point. X = ql. point. X +qc. point .X*cos(ql. theta) - qc. point.

Y

*sin(ql .theta)

;

ql. point. Y = ql. point. Y +qc. point .X*sin(ql .theta) + qc. point.

Y

*cos(ql .theta)

;

ql. theta = ql. theta +qc. theta;

}

return (ql)

;

}

Function name : main()

Purpose : main program

Parameters :
-

82

Return Type : int

int mainO

{

/* declarations of the variables */

double s;

double delta_s,delta_theta,sigma;

CONFIGURATION ql,q2,qpoint

;

/* declares the values used in the program */

delta_s=0.5; /* value for the length */

ql. point .Y=0.0; /* Y value of the vehicle */

/*ql. point .X=-14.53;*/ /* X value of the vehicle for sigma=1.0*/

/*ql .point .X=-16.8;*/ /* X value of the vehicle for sigma=1.5*/

/*ql .point .X=-19.2;*//* X value of the vehicle for sigma=2.0*/

ql .point .X=-12.3;/* X value of the vehicle for sigma=0.5*/

ql .theta=0.0; /* theta value of the vehicle */

ql .kappa=0.0; /* kappa value of the vehicle */

qpoint .point .X=.0; /* X value of the center of the circle */

qpo int .point .Y=0.0; /* Y value of the center of the circle */

qpoint .theta=0 .0; /* theta value of the center of the circle */

qpoint .kappa=0 .0; /* kappa value of the center of the circle */

/* prints the current date and time */

time_t now;

now = time (NULL);

printf("The current date and time is : '/,s" ,ctime(&now))
;

/* welcomes the user to the program */

printf ("\nWelcome to my Circle tracking program in C.\n");

printf ("\nYou are going to deal with advanced Robotics material An")

;

printf ("\nl think you are a little bit nervous An")

;

printf ("Xnlt's not a big deal, just only ADVANCED R0B0TICS\n") ;

printf ("XnLet's start An");

/* opens the output file */

fl=fopen("path.dat","w");

/* makes the circle tracking */

q2=Circle_Tracking(s ,sigma,delta_s,delta_theta,ql
,
qpoint)

;

Print_to_File(f l,q2)

;

/* closes the output file*/

83

fclose(f 1)

;

/* prompts the user to use 'gnuplot' drawing program*/

printf ("\nOk!Now let's see the results\n")

;

printf ("\nType 'gnuplot' please. \nu
);

#if

Thesis Research

Filename

Author

Operating System

Description

Polygon.

c

Karamanlis Vasilios

Unix

This file contains all the necessary functions to

build a polygon and create path segments at a given

safety distance from it. After that it uses

''Neutral switcing method' ' to track it.

#endif

#include <stdio.h>

#include <math.h>

/* manifest constants */

#define FAILURE -1

#define PI 3.1415926536

#define SQR(x) x*x

#define QUB(x) x*x*x

FILE *fl;

/* typedefs */

typedef struct point {

double x,y;

} Point;

typedef struct vertex {

Point point;

struct vertex

84

previous,
next

;

} Vertex;

typedef struct {

Point point;

double theta;

double kappa;

CONFIGURATION ;

typedef struct polygon {

int degree;

Vertex *vertex_list ; /* this is the first vertex */

struct polygon

previous,
*next

;

} Polygon;

typedef struct world {

int degree;

Polygon *poly_list;

} World;

Function name : OpenFile

Purpose : This function is used to open a file

Parameters

Return Type

void OpenFileO

{

fl= fopen("poly5.dat","w");

}

Function : fatal ()

Parameters: char *message

85

Purpose : on fatal error print message then print system message then exit

Called by : create_world() <world.c>

create_polygon() <world.c>

add_vertex_to_polygon() <world.c>

Calls : NONE
**

void fatal (message)

char *message;

{

fprintf (stderr, "Fatal error occured: ")
;

perror(message)

;

exit (FAILURE);

>

/**

Function

Purpose

Returns

Called by

Calls

Comments

create_world()

create instance of a world

World *

ANYBODY

fatalO <utilities.c>

this function allocates space for a world and returns a pointer

World *create_world()

{

World *w;

/* allocate memory for a world */

if ((w = (World *)malloc(sizeof (World))) == NULL) {

fatal ("create_world: malloc\n")

;

exit (FAILURE);

}

/* initialize fields */

w->degree =
;

w->poly_list = NULL;

return (w)

;

}

86

/**

Function name : Composition

Purpose : This function is used to compute the composition

of two given transformations

Parameters : two two dimensional coordinate transformations

Return Type : CONFIGURATION-the composition of the two

transformations ql and q2
**/

CONFIGURATION composition (ql,q2)

CONFIGURATION ql

;

CONFIGURATION q2;

{

CONFIGURATION q3;

q3. point. x = ql. point. x + q2. point. x * cos(ql .theta) -

q2. point. y * sin (ql .theta)

;

q3. point. y = ql
.
point. y + q2. point. x * sin(ql .theta) +

q2. point. y * cos (ql .theta)

;

q3. theta = ql. theta + q2. theta;

return q3;

}

Function name : Get_Circ_Transformation

Purpose : This function is used to compute the circular transformation

Parameters : &delta_theta , &delta_s

Return Type : CONFIGURATION
**

CONFIGURATION Get_Circular_Transformation(delta_s,delta_theta)

double delta_s,delta_theta;

{

CONFIGURATION q;

q. point. x = (1.0 - ((delta.theta * delta_theta)/6 .0) +

((delta_theta*delta_theta*delta_theta*delta_theta) /120 . 0)

)

* delta_s;

q. point. y = (0.5 - ((delta.theta * delta_theta)/24.0) +

((delta_theta*delta_theta*delta_theta*delta_theta)/720.0))

87

* delta.theta * delta_s;

q.theta = delta_theta;

return (q)

;

}

/******************************^

Normalize ()

This function is used to get the value of sigma from the user

double

Function name

Purpose

Parameters

Return Type

double Normalize (angle)

double angle;

{

while (angle > PI)

{

angle -= 2*PI;

}

while (angle < -PI)

{

angle += 2*PI;

}

return angle;

}

Function name : steer()

Purpose : computes steering function

Parameters : double a, double b , double c ,

CONFIGURATION ql, CONFIGURATION q2

Return Type : double

double steer(a,b,c,ql,q2)

double a,b,c;

CONFIGURATION ql,q2;

{

88

return (- (a * ql. kappa + b *Normalize(ql .theta - q2.theta) +

c *(-(ql .point .x-q2. point .x)*sin(q2.theta)+

(ql
.
point

.
y-q2

.
point

.
y) *cos (q2 . theta))))

;

/**

Function name : Get_constants()

Purpose : calculates the value of the constants a,b,c

Parameters

Return Type

void Get_constants(sigma,a,b,c)

double *a,*b,*c, sigma;

{

double k;

printf ("\nEnter the value of sigma please : ") ;scanf ("'/,lf ",&sigma)
;

k = 1.0/sigma;

*a = 3 * k;

*b = 3 * SQR(k);

*c = QUB(k);

}

/**

Function name : move_next_step()

Purpose : apply steering function , get next configuration

Parameters : double s, double sigma , double delta_s ,

double delta.theta .CONFIGURATION ql .CONFIGURATION q2)

Return Type : CONFIGURATION
***/

CONFIGURATION move_next_step(a,b,c,delta_s ,ql,q2)

double delta_s,a,b,c;

CONFIGURATION ql,q2;

{

CONFIGURATION circ;

double lamda, delta.theta, sigma;

89

lamda = - (a * ql. kappa + b *Normalize(ql .theta - q2.theta) +

c *(-(ql .point .x-q2. point .x)*sin(q2. theta)

+

(ql
.
point

.
y-q2

.
point

.
y) *cos (q2 . theta)))

;

ql. kappa = ql. kappa + lamda * delta_s;

delta_theta = ql. kappa * delta_s;

circ = Get_Circular_Transformation(delta_s,delta_theta) ;

ql. point. x = ql. point. x + circ. point. x * cos(ql .theta) -

circ. point. y * sin(ql .theta)

;

ql. point. y = ql. point. y + circ. point. x * sin(ql .theta) +

circ. point. y * cos (ql .theta)

;

ql. theta = ql. theta + circ. theta;

return (ql)

;

}

Function : create_polygon()

create instance of a polygon

Polygon *

ANYBODY

fatal () <utilities.c>

this function allocates space for a polygon and returns a pointer

Purpose

Returns

Called by

Calls

Comments

to it

Polygon *create_polygon()

{

Polygon *p;

/* allocate memory for a polygon */

if ((p = (Polygon *)malloc(sizeof (Polygon))) == NULL) {

fatal ("create_polygon: malloc\n")

;

exit (FAILURE)

;

}

/* initialize fields */

p->degree = 0;

90

p->vertex_list = NULL;

p->previous = NULL;

p->next = NULL;

return (p)

;

}

/***

Function : add_vertex_to_polygon(x, y, p)

Parameters: double x x coordinate of new vertex

double y y coordinate of new vertex

Polygon *p pointer to an existing polygon

Purpose : add a vertex to an existing polygon

Returns : void

Called by : ANYBODY

Calls : fatal () <utilities.c>

Comments : adds vertex to the end of the vertex list - no way to insert

NOTE: polygon must exist before adding vertices
**

void add_vertex_to_polygon(x, y, p)

double x, y;

Polygon *p;

{

int i; /* loop variable */

Vertex

new_vertex, / pointer to the new vertex */

current_vertex; / pointer to the current vertex */

/* allocate space for the new vertex */

if ((new_vertex = (Vertex *)malloc(sizeof (Vertex))) == NULL) {

fatal ("add_vertex_to_polygon: malloc\n")

;

exit (FAILURE)

;

>

/* install coordinates */

new_vertex->point .x = x;

new_vertex->point .y = y;

/* check if first vertex */

if (p->degree == 0) {

91

new_vertex->previous = new.vertex;

p->vertex_list = new_vertex;

}

else {

/* set up the links */

current.vertex = p->vertex_list

;

current_vertex->previous = new_vertex;

/* find the last vertex */

for(i = 1; i < p->degree; i++)

current .vertex = current_vertex->next

;

new_vertex->previous = current.vertex;

current.vert ex->next = new.vertex;

new_vertex->next = p->vertex_list

;

p->degree++;

}

Function : display.vertices.of.polygon (p)

Polygon *p pointer to an existing polygon

display the vertices of a polygon of the existing world

void

ANYBODY

NONE

Parameters

Purpose

Returns

Called by

Calls

Comments

void display.vertices.of.polygon (p)

Polygon *p;

{

Vertex *current, *first;

first=current= p->vertex_list

;

do{

pfintf ("\n'/,f '/.f\n" , current ->point .x , current ->point .y) ;

92

current = current ->next;

}while (current != first);

return;

}

Function : add_polygon_to_world(p, w)

Parameters: Polygon *p pointer to an existing polygon

World *w pointer to an existing world

Purpose : add an existing polygon to an existing world

Returns : void

Called by : ANYBODY

Calls : NONE

Comments : adds polygon to end of polygon list - no way to insert polygons

void add_polygon_to_world(p, w)

Polygon *p;

World *w;

{

Polygon *current .polygon; /* pointer to current polygon */

/* check if first polygon */

if (w->degree == 0) {

w->poly_list = p;

}

else {

/* find the last polygon */

current.polygon = w->poly_list

;

while (current_polygon->next != NULL)

current .polygon = current _polygon->next;

p->previous = current.polygon;

current_polygon->next = p;

}

w->degree++;

}

93

/***

Function : Find_Path_Segment(v)

Parameters: vertex

Purpose : computes the path segment according to a given safety distance

Returns : CONFIGURATION

Called by

Calls

Comments

ANYBODY

NONE

safety distance is -50 by default (- shows ccw polygon, + cw)

**/

CONFIGURATION Find_Path_Segment (v)

Vertex *v;

{

CONFIGURATION safe;

CONFIGURATION edge;

safe .point . x=0 . ;

safe
.
point

.

y=-50 . ;

safe.theta=0.0;

saf e . kappa=0 .
;

edge
.
point . x=v->point . x

;

edge. point .y=v->point .y;

edge.theta= atan2(v->next->point .y - v ->point.y,

v->next->point .x - v->point.x);

edge.kappa=0.0;

return(composition(edge,safe))

;

}

Function: main()

Purpose : this is the main function

int mainQ
{

Vertex *new_vertex;

Polygon *pl;

World *w;

94

Vertex *v,*first;

double a,b,c,k;

double delta_s , delta_thet a , sigma , lamda

;

int i=0;

int N=4;

CONFIGURATION e,q[6] ,qo,qv;

/* make a world */

w = create_world()

;

/* make a polygon */

pi = create_polygon()

;

/* add three vertices */

add_vertex_to_polygon(153.2, 118.0, pi)

add_vertex_to_polygon(397.2, 118.0, pi)

add_vertex_to_polygon(397.2, 182.0, pi)

add_vertex_to_polygon(153.2, 182.0, pi)

display_vertices_of.polygon (pi)

;

/* attach polygon to world */

add_polygon_to_world(pl, w)

;

OpenFileO
;

v=first = pl->vertex_list

;

do{

q[i] = Find_Path_Segment(v)

;

v = v->next;

}while(v != first);

q[N]=q[0];

q[N+l]=q[l];

/* qv is the actual point we're on */

qv=q[0] ;/*initialization of the vehicle configuration*/

printf ("\nEnter the value of delta_s please : ") ;scanf ('"/.If " ,&delta_s)
;

Get_constants(sigma,&a,&b,&c)

;

95

i=0;

do

{

qv = move_next_step(a,b,c,delta_s,qv,q[i])

;

fprintf (fl,"\n'/.15.10f %15. 10f" ,qv. point .x , qv. point .y) ;

if (steer(a,b,c,qv,q[i+l])>= 0.0)

{

i++;/* switching lines */

}

}while(i<=N);

fclose(f 1)

;

return 0;

#if

Thesis Research

Filename

Author

Operating System

Description

star .c

Karamanlis Vasilios

Unix

This file contains all the necessary functions to

track a star using the new method "neutral switching"

#endif

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

#def ine NUM 4 *PI/5

#define SQR(x) x*x

#define QUB(x) x*x*x

FILE *fl;

typedef struct {

double x;

double y;

96

double theta;

double kappa;

CONFIGURATION;

/**

Function name : write_to_f ile()

Purpose : This function is used to write the data to the

output file

Parameters : two doubles

Return Type :
-

**

void write_to_file(a ,b)

double a,b;

{

fprintf (f 1 , "W/.IO . 5f '/.10 . 5f "
, a , b) ;

}

Function name : Composition

Purpose : This function is used to compute the composition

of two given transformations

Parameters : two two dimensional coordinate transformations

Return Type : CONFIGURATION-the composition of the two

transformations ql and q2
**

CONFIGURATION

compose (first , second)

CONFIGURATION * first;

CONFIGURATION * second;

{

CONFIGURATION third;

double x,y, theta;

double xx,yy,tt;

x = second->x;

y = second->y;

theta = f irst->theta;

97

xx = cos(theta) * x - sin(theta) * y + first->x;

yy = sin(theta) * x + cos(theta) * y + first->y;

tt = first->theta + second->theta;

third. x = xx

;

third. y = yy;

third. theta = tt;

third. kappa = 0.0;

return third;

}

Function name : Normalize ()

Purpose : This function is used to get the value of sigma from the user

Parameters :
-

Return Type : double

double Normalize (angle)

double angle;

{

while (angle > PI)

{

angle -= 2*PI;

}

while (angle < -PI)

{

angle += 2*PI;

}

return angle;

}

Function name

Purpose

Parameters

Get_Circ_Transformation

This function is used to compute the circular transformation

&delta_theta , &delta_s

98

Return Type : CONFIGURATION
***/

CONFIGURATION Get.Circular.Transformat ion (delta_s, delta.theta)

double delta_s,delta_theta;

{

CONFIGURATION q;

double delt a_theta2 , delt a_theta4

;

delta_theta2=delta_theta*delta_theta;

delta_theta4=delta_theta*delta_theta*delta_theta*delta.theta;

q.x = (1.0 - ((delta_theta2)/6.0) + ((delta_theta4)/120 .0)) * delta.s;

q.y = (0.5 - ((delta_theta2)/24.0) + ((delta.theta4)/720.0))

* delta.theta * delta.s;

q.theta = delta.theta;

}

return (q)

;

/**

Function name

Purpose

Parameters

steer()

computes steering function

double a, double b , double c
,

CONFIGURATION ql, CONFIGURATION q2

Return Type : double
**

double steer(a,b,c,ql,q2)

double a,b,c;

CONFIGURATION ql,q2;

{

return (- (a * ql. kappa + b *Normalize(ql .theta - q2.theta) +

c * (- (ql . x-q2 . x) *sin(q2 . theta) + (ql
.
y-q2

.
y) *cos (q2 . theta))))

;

}

/**

Function name : move_next_step()

99

Purpose : apply steering function , get next configuration

Parameters : double s, double sigma .double delta_s ,

double delta.theta .CONFIGURATION ql, CONFIGURATION q2)

Return Type : CONFIGURATION

CONFIGURATION move_next_step(a,b,c,delta_s ,ql,q2)

double delta_s,a,b,c;

CONFIGURATION ql,q2;

{

CONFIGURATION circ;

double lamda, delta.theta, sigma;

lamda=steer(a,b,c,ql,q2)

;

ql. kappa = ql. kappa + lamda * delta_s;

delta.theta = ql. kappa * delta_s;

circ = Get_Circular_Transformat ion (delta.s, delta.theta)

;

ql=compose(ql,circ)

;

return (ql)

;

}

Function name : Get _constant s()

Purpose : calculates the value of the constants a,b,c

Parameters

Return Type

void Get_constants(sigma,a,b,c)

double *a,*b,*c, sigma;

{

double k;

printf ("\nEnter the value of sigma please : ") ;scanf (" /,lf " ,&sigma) ;

k = 1 .0/sigma;

*a = 3 * k;

*b = 3 * SQR(k)

;

*c = QUB(k);

}

100

/*** **********

Function : def ineConf ig()
Parameters : double x,y,theta,kappa —The values that define a

configuration

Purpose

Returns

Comments

To allocate nad assign a configuration

CONFIGURATION: a configuration

Was called def_configurationQ in MML10

CONFIGURATION def ineConfig(x,y,theta, kappa)

double x,y,theta,kappa;

{

CONFIGURATION newConfig;

newConfig.x = x;

newConfig. y = y;

newConf ig.theta = theta;

newConfig. kappa = kappa;

return newConfig;

}

/**

Function : mainQ
Purpose : this is the main function
***/

int main()

{

int i;

double a,b,c,k;

double delta_s,delta_theta,sigma;

CONFIGURATION turn, q [6] ,qv;

q[0] =def ineConf ig(0. 0,0. 0,0. 0,0.0);

turn=def ineConf ig(300.0,0.0,NUM, 0.0);

fl=fopen("starl0.dat", ,,w");

101

for(i=0; i <=5; i++)

{

q[i+l]=compose(q[i] ,turn)

;

write_to_f ile(q[i+l] .x,q[i+l] .y) ;

}

/* qv is the actual point we're on */

qv=q[0] ; /^initialization of the vehicle configuration*/

printf ("\nEnter the value of delta_s please :
'*) ;scanf ("'/.If " ,&delta_s)

;

Get _const ant s(sigma,&a,&b,&c)

;

i=0;

do

{

qv = move_next_step(a,b,c,delta_s,qv,q[i])

;

fprintf (fl,"\n,

/.15.10f 7.15. lOf " ,qv.x ,qv.y);

if (steer(a,b,c,qv,q[i+l])>= 0.0)

{

i++;/* switching lines */

}

}while(i<=5);

fclose(f 1)

;

return (0)

;

}

102

LIST OF REFERENCES

[1] Kanayama, Y., "A Path Tracking Method with Neutral Switching" Technical

Report of the Department of Computer Science, Naval Postgraduate School,

Monterey, California, 1997.

[2] Kanayama, Y.,Fahroo, F., "A Circle Tracking Method for Nonholonomic Vehi-

cles" Technical Report of the Department of Computer Science, Naval Postgrad-

uate School, Monterey, California, 1997.

[3] Kanayama, Y., " Introduction to Theoretical Robotics," Lecture Notes of the Ad-

vanced Robotics Course, Deptartment of Computer Science, Naval Postgraduate

School, Winter Quarter 1997.

[4] Wahdan, M., "New Motion Planning and Real-Time Localization Methods Using

Proximity For Autonomous Mobile Robots," Dissertation, Naval Postgraduate

School, Monterey, California, September 1996.

[5] Preparata, P., and Shamos, I., "Computational geometry:An Introduc

tion." Springer-Verlag, 1985.

[6] Iyengar, S., and Elfes, A., "Autonomous Mobile Robots:Perception, Mapping

and Navigation." IEEE Computer Society Press Tutorial.

[7] Pobil, P.,and Serna, M., "Spatial Representation and Motion Planning" Springer-

Verlag.

[8] Schwartz, J., Sharir, M., and Hopcroft, J., "Planning, Geometry and Complexity

of Robot Motion" Ablex Publishing Corporation, Norwood, New Jersey.

[9] Latombe, J., "Robot Motion Planning" Kluwer Academic Publishers.

[10] Nakamuka, S., "Applied Numerical Methods in C" Prentice Hall

103

104

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Road., Ste 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

3. Hellenic Navy General StufF(GEN)/B2

Stratopedo Papagou

Xolargos, Greece

4. Chairman, Code CS
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

5. Professor Yutaka Kanayama, Code CS/Ka
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

6. Professor Nelson Ludlow, Code CS/Ld
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

7. Maj. Khaled Morsy, Code CS/Ph
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

8. LIEUT. Vasilios Karamanlis (Greece)

Grevenon Emilianou 8//Ippodromio Thessaloniki

54621//Greece

105

SftSWSSB?"*

3 2768 00336168 4

