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clearance TDA MIXER. A constrained form of MIXER'S original

local optimal search method is proposed, followed by an

exhaustive search method, and then a simulated annealing

method.

Computational efficiency and program run times are

examined for the exhaustive search method. Also, a performance

comparison of "optimal" solutions for the local search and
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I . INTRODUCTION

This thesis proposes and tests improvements to the

optimization feature in the tactical decision aid (TDA) MIXER

[Ref . 1] . MIXER is a FORTRAN program intended as a tool to be

used during naval mine clearance operations. This thesis

begins with a brief discussion of the mine threat problem and

the Navy's current best software tools designed to deal with

mines. MIXER is then introduced with a short description of

its features not concerned with optimization. Next MIXER'S

optimization feature is presented with a detailed break down

of the underlying theory and assumptions it uses to model

minesweeper-mine interactions. Then a description of the

present optimization method and of some associated shortfalls

is given. Next several approaches to improve the optimization

method are proposed, implemented, and tested. Finally a brief

discussion of areas open for further analysis is presented.

A. NAVAL MINE WARFARE

Naval mine warfare is laying or clearing mines to prevent

or restore the use of sea ways, harbors and coastal waters.

Examples include clearing boat -lanes for amphibious landings,

clearing channels or shipping lanes to allow free movement of

commercial traffic, or laying mines in coastal waters and

ports to deny access to enemy forces. The U.S. Navy's mine

warfare community is charged with accomplishing these tasks.

The various types, abundance, and relatively low cost of mines

make mine clearance a very difficult problem to solve.

Mines today range from bulky WWII mines to new sleek

Manta mines. Mines can actuate by pressure, magnetic, and/or

acoustic influence, as well as by contact. Mines are easily

deployed from most seagoing vessels, and have been used

successfully in many conflicts throughout history. Today,

whether old or new, simple or sophisticated, a minefield is



still a potential "show stopper".

Tools for mine clearance are as varied as the mines

themselves. Special ships with quiet propulsion and low

magnetic signatures enter minefields and locate mines with

sonar. Helicopters pull sleds capable of exposing and

actuating mines. Teams of divers and sea mammals are trained

to locate and destroy mines. Other tools include airborne

mounted laser systems that can detect mines several meters

below the sea surface, and nets of exploding line charges that

are hurled across the surf zone to the beach. These and other

systems are used separately or in combination to neutralize

minefields

.

The Navy has a history of fluctuating emphasis with

regard to mine warfare. Resources and R&D efforts tend to peak

and wane with the latest mine incident. Recently, however, the

Navy appears ready to cease past trends, with the procurement

of a new and capable Mine Countermeasure (MCM) force. The

growing base of assets in Corpus Christi, TX, and the newly

converted MCM Command and Control ship (USS INCHON) point to

a strong commitment . Although mine and mine clearance

technology progresses, many current assets remain untested in

a real war environment

.

1. Are sea mines still a threat?

Worded differently the question is whether or not the

Navy really needs a strong MCM force? The USS TRIPOLI and USS

PRINCETON incidents during the Persian Gulf crisis indicate

there was a need then. Those encounters with mines were nearly

six years ago - what about today? There are signs today that

may indicate a greater need then ever.

Mines are more abundant today, as many countries

manufacture mines for sale on the open market . The frequency

of small regional conflicts in which poorer third world



countries are involved is on the rise . Those countries with

larger coastlines and small pocketbooks may look to the

inexpensive sea mine as an effective way to prevent

interference from the sea.

In an era when national interests turn Naval operations

towards littoral waters, mines are a huge concern. The late

Chief of Naval Operations, Admiral Jeremey Boorda recently

explained, "With 95% of all materials to be sent to support

future regional conflicts going by sea, the ability to close

vital waterways comprises a threat of strategic dimensions."

[Ref. 2]

The answer to the question posed in the heading then is

"Yes", mines are still a threat, and the Navy needs a strong

countermeasure . Though historically a less emphasized issue

for the Navy, today development of new equipment and resources

for its MCM forces is a top priority.

2 . Goal of the Mine Warfare TDA

In the mine laying and mine countermeasure arena, the

Navy has many assets at its disposal like the ones mentioned

earlier. To complement these physical tools, the Navy is using

computers to improve its mine warfare capabilities. The Navy's

C4I architecture incorporates computer assisted data and

communication links as key elements in maintaining an accurate

and up-to-date "big picture". As a genuine warfare area, Mine

Warfare has its niche within this architecture. At the heart

of this niche lies the tactical decision aid.

The goal of the mine warfare TDA is to help plan,

practice, evaluate and conduct mine laying and clearance

operations. The TDA gives the mine warfare commander a tool to

develop a plan of action, or to warn against a possibly bad

plan of action. A good TDA accomplishes this task in an easy

and timely fashion.



The mine warfare TDA, like any simulated or analytical

analysis tool, is no better then the information it is given.

Mine warfare, by design, possesses many unknowns, and

clearance operations are usually information starved. During

MCM missions unknowns such as the numbers and types of mines

present, the boundaries of the minefield, the most effective

way to employ mine warfare assets, and even the effectiveness

of those assets are difficult to determine. Intelligence,

surveillance and reconnaissance may give some insight to these

questions; however, the problem is still difficult.

The mine warfare model is a simulated or analytic

approach to minefield construction or countermeasure . An

analytic model limits the definition and scope of the unknowns

involved to a point where proven relations and theoretical

equations can be employed. Analysis of this type tends to be

less time consuming, but also requires many simplifying

assumptions. Computer simulation, on the other hand, allows

greater freedom for the unknowns, achieving accuracy through

extensive replication. Although more realistic, large

simulated models are slow and not well suited for tactical

purposes. A good TDA attempts to incorporate the best of both

worlds, providing sufficient realism and speed to be accurate

and usable on existing computers.

3 . Current Mine Warfare Analysis Tools

A model must start with some basic assumptions. Mines are

tricky, but so far none have been developed to detonate twice.

Therefore all models start with this assumption. Although one

mine's detonation may actuate other mines nearby, or possibly

trigger a timing mechanism for future actuations, all TDA's at

present assume no mine interaction. The data needed to model

this would be nearly impossible to derive. Mines and

minefields can be very sophisticated and are rarely



predictable

.

Some theater level models, such as the Navy's wargame

model ENWGS , include minefield threats. Although lacking the

detail needed for a TDA, ENWGS does make use of some basic

mine warfare modeling techniques. Ships entering a minefield

are destroyed with some probability based on basic geometric

relationships between the area of the minefield, the distance

the ship has traveled in the minefield and the actuation

radius of the mine [Ref . 3: p. 5] . When the mine actuates, the

mine and ship (unless designated an MCM unit) are both removed

from the model. In this way ENWGS allows the users to

experiment with minefield location, account for assets needed

to lay and remove mines, and observe the effects minefields

have on the overall battle. ENWGS is a simulation model and

minefields are only one of many details it must consider.

Most tactical level models are designed for either

minefield planning or mine countermeasures . The Navy's

Uncountered Minefield Planning Model (UMPM) is an analytic

model used for tactical minefield planning. UMPM employs

damage curves; the probability of a ship being destroyed by an

actuated mine depends on the separation distance at

detonation. UMPM outputs several Measures of Effectiveness

(MOE's) which describe or quantify the "goodness" of a

particular plan [Ref. 3: p. 10] . One such measure is simple

initial threat (SIT) , which is the probability that the first

unit to transit the minefield will be destroyed. This quantity

will be examined more closely later. UMPM is a more detailed

minefield model than ENWGS, and provides measures for closer

analysis of minesweeper-mine interactions.

A major flaw in UMPM's model is its use of "pre -averaged"

actuation probabilities [Ref. 3: p. 13], which do not allow

separate calculations for each type of mine encountered. The

result in certain situations is an over estimation in the



ability of the minefield to kill ships. This would clearly be

an unsafe error from the minefield planner's perspective.

There are several examples of TDA's designed for mine

countermeasures, including the Navy's Non Uniform Coverage

Evaluator (NUCEVAL) and Uniform Coverage Planner (UCPLAN)

.

Unlike a minefield planning model, these models attempt to

distribute rather than channelize the tracks (mine sweepers)

in the minefield. The objective of these models is to resolve

the fraction of mines removed from the minefield following

execution of a particular sweep plan. NUCEVAL asks the user to

input a sweep plan and then provides the fraction of mines

swept, while UCPLAN asks for the desired clearance level and

produces a sweep plan. Minesweeper-mine interactions proceed

in a similar fashion described for UMPM. [Ref . 3: p. 16]

In assessing the effectiveness of a particular sweep plan

the results provided by NUCEVAL and UCPLAN are incomplete at

best. These models fail to address several very important

factors relevant to most tactical clearance operations; the

number of mines present, the types of mines present, and the

possibility of damage to MCM assets.

A third mine clearance TDA, Cognitive Planning Aid

(COGNIT) , addresses the number of mines and asset damage

possibility. COGNIT is an analytic TDA, written in FORTRAN in

the late 1980' s, designed to assist the MCM team in developing

an "optimum tactic" or sweep plan [Ref. 4] . In addition to

damage probabilities and navigation errors, COGNIT' s minefield

model includes the effects of mine counter-countermeasures

.

Each mine has an assigned ship count setting which allows

mines to actuate several times prior to detonation.

COGNIT incorporates the number of mines present by use of

a cross channel mine density (mines/nm) , which is constant

over the width the minefield. The number of mines swept is

determined by the number of detonations that occur during each



minesweeper's runs or tracks through the minefield.

COGNIT incorporates three problem types. The problem type

is selected by the user upon execution of the program. Each

problem type corresponds to a different measure of

effectiveness (MOE) . The three MOE ' s are countermeasure effort

(accounts for sweep time), average clearance level, and

expected number of casualties to countermeasure platforms.

COGNIT treats one of the MOE's as the primary objective to be

either maximized or minimized, and the remaining two MOE's as

the constraints. The user proceeds by running each problem

type several times, making manual trade-offs among the

constraints between each run, until a plan is produced that

adequately satisfies each MOE.

Although much improved over previous TDA examples, COGNIT

does have several drawbacks. Although mines in the minefield

may be given different ship count settings, all mines must be

the same type. In addition, all sweepers must be the same

type. COGNIT can not model a situation involving different

mine and sweep types simultaneously. COGNIT 's optimization

method is iterative in nature requiring the user to make

decisions and trade-offs between each iteration.

B. WHY THIS THESIS?

The new prototype TDA MIXER, [Ref . 1], attempts to

correct many of the shortfalls of current mine clearance

models. MIXER provides a combination of simulation and

analytic tools for analysis of minefield clearance plans.

MIXER can evaluate a given plan or produce an optimal plan

given the necessary data. MIXER is still in its infancy and is

presently not very user friendly, but it does provide the

foundation for further development. The purpose of this thesis

is to improve MIXER'S optimization feature.



1 . Main Purpose

MIXER includes an optimization subroutine OPT that

provides the user a mine clearance (or sweep) plan.

Optimization only occurs at the request of the user. This

feature minimizes a "cost" that accounts for the reduction in

SIT as a result of sweeping, for the potential danger to the

sweeping units, and for sweep time. OPT requires quantifying

the value of mine sweeper assets and gives full consideration

to the vulnerability of those assets as they clear mines.

Accounting for the cost for each sweep plan requires OPT

to solve a combinatorial optimization problem that is

nonconvex and integer in nature . The problem is combinatorial

because the objective function is a collection of terms that

are not analytically dependent or related. The problem is

integer because the solution is based on the premise that once

the decision is made to continue sweeping, at least one

complete transit (or sweep) through the minefield with a

chosen sweeper must occur. The nonconvexity of the problem and

detailed descriptions of all terms will be discussed at length

in the following chapters.

OPT finds a solution that is locally optimal. Given an

initial sweep plan, OPT finds a better plan as long as it can

be obtained by incremental changes without an increase in

cost. This solution would be the absolute best, or globally

optimal, if the objective function were noninterger and

convex. With the current objective function, however, all that

can be said is a locally optimal solution may be better than

the initial solution. Clearly if improvements to the locally

optimal plan can be realized then it is worth some

investigation

.

Another aspect of OPT that has area for improvement is

its consideration of sweep time, which is the total time mine

sweepers spend hunting and/or sweeping in the minefield. OPT



includes sweep time as a cost term in the objective function.

The sweep time is multiplied by a "value" for time and added

to other cost terms. The value factor acts as a Lagrangian

multiplier that relaxes an otherwise constrained version of

the problem. If the mine warfare commander can estimate the

"value" for sweep time then he can use OPT to get a locally-

optimal sweep plan. The actual sweep time is left for OPT to

compute. Although this method of handling sweep time removes

the constraint, a commander pressed for time himself would

most likely prefer a direct constraint. If a time constraint

does not extensively complicate an already difficult problem,

then its inclusion is also worth some investigation.

It is important here to discuss the actual run time

required for MIXER to perform optimization, especially

considering the above complications. OPT finds the locally

optimal sweep plan almost instantaneously. A tactical decision

aid, emphasis on tactical, could be considered deficient if it

required extensive run time to solve its problem. Therefore,

any change to OPT should not be considered an improvement

unless the additional run time required is minimal.

2 . Overview of Improvement Process

The first step in solving any problem is gaining a firm

understanding of the problem itself. Chapter II describes

MIXER and gives a detailed description of OPT in its present

form. In Chapter III the objective function in OPT is

evaluated, its terms defined, and its computations explained.

Then various changes to MIXER'S objective function are

presented. In Chapter IV several optimization methods are

applied and tested. Then test results are examined to

determine if any improvement occurred. Finally, in Chapter V

a review of the thesis is given followed by suggestions for

further research.
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II. MIXER: A TDA FOR MIXED MINEFIELD CLEARANCE

MIXER is a menu driven computer program written in

FORTRAN. MIXER gets its information from pre-constructed data

files (see Appendix A and B) , as well as from questions it

asks the user during execution. MIXER outputs results in

numeric tables to the screen and to a data file.

A. PROGRAM EXECUTION

MIXER consists of a main program and several subroutines

each with a specific task. The main program (MAIN) supervises

the overall execution of MIXER, and directs the user to the

desired application. MAIN reads data from the data files and

writes results to data files, and to the screen. MAIN

terminates execution once the user is finished. The original

version of MAIN can be found in [Ref . 1]

.

MAIN reads data from two files. The first data file is

called PARAMS.DAT. This file contains most of the parameters

that describe the minefield model and the minesweeper-mihe

interactions. Included in this file are the number of

different mine, sweep and resource types. Resources are the

individual assets that combine to form a sweep type. One

"helicopter" (a resource) and one "sled" (another resource)

might be combined to form one "magnetic sweep" sweep type.

PARAMS.DAT contains an assignment table that allocates the

number of resources required to form a specific sweep type.

PARAMS.DAT also contains assignment tables for minesweeper-

mine interactions. These include actuation distances or sweep

fronts, actuation probabilities, danger distances or dangerous

fronts, and damage probabilities. The actuation tables provide

the distances and probabilities with which a particular sweep

type can detonate a particular mine type. The danger and

damage tables describe the distances and probabilities

11



required for a detonated mine to damage a particular sweep

type.

Other information found in PARAMS.DAT include minefield

dimensions, navigation errors, sweep speeds, resource and

target traffic (here called high value unit) "values", and mine

probability actuator settings. Probability actuators are mine

counter-countermeasures which would be set by minefield

planners to prevent mines from being swept. PARAMS.DAT was

designed to hold information that would most likely be known

prior to the start of MCM operations and that would not change

as operations are carried out.

The second data file read by MAIN is NUMBERS.DAT. This

file contains most of the information regarding the initial

sweep plan. NUMBERS.DAT contains the number of tracks through

the minefield each sweep type will use and the number of runs

each sweep type will make on its respective tracks. It also

contains the track positions measured in yards from the left

side of the minefield. NUMBERS.DAT also holds information

about the numbers of mines for each mine type suspected to be

in the minefield, and the number of assets available for each

resource type. The data in this file is intended as an initial

guess or starting point from which MIXER can begin execution.

Once MIXER completes an application that updates the initial

plan, MAIN writes the new plan to a file called NEWNUM.DAT,

which can then be renamed NUMBERS.DAT and used as the new

initial plan for subsequent executions of MIXER.

Once MAIN has read the data files, it does preliminary

actuation and damage threat calculations and performs a

theoretical assessment of the given initial sweep plan. MAIN

then outputs to the screen a tabular description of the sweep

plan, the clearance levels for each mine type, the sweep time

required, an approximate SIT, and the average number of

resources lost during sweeping. MAIN then asks the user to

12



select one of its primary applications from MIXER'S main menu.

Once MAIN reads the input from the user it executes the chosen

application and passes control to the respective subroutine.

When an application has completed execution the user can

either run the application again or return to the main menu

and select another application, or terminate the program. Upon

termination MAIN writes the final sweep plan to NEWNUM.DAT.

There are five different applications that can be

selected from MIXER'S main menu. First is the optimization

feature (OPT) which will be discussed at length later. The

second application (INPUT) allows the user to make manual

changes to the initial sweep plan by selecting a desired sweep

type and changing the total number of runs . The third

application is MIXER'S Monte Carlo simulation feature (MONTE)

.

MONTE gives a table of results that includes the percentage of

each sweeper's runs completed, the average number of mines

from each mine type that were swept, the average loss of

resource types, and SIT. The accuracy of MONTE ' s calculations

are dependent on the number of replications, but MONTE is

potentially the most accurate application in MIXER for

determining the effects of a particular sweep plan.

The fourth application (REHEARSE) runs a single

replication of the simulation in MONTE. REHEARSE outputs the

remaining mine and resource data to NEWNUM.DAT, which can then

be used as the initial numbers, along with a new initial sweep

plan, in the event further sweeping is desired. With this

application the MCM operations can be tested in phases. As

each phase of the operation completes the final mine and

resource numbers are saved as the starting point for the next

phase

.

The fifth and final application is REALITY. It is similar

to REHEARSE except that instead of running a simulation,

actual results from an ongoing MCM operation are used. As

13



mines and resources are actually depleted their numbers are

entered in REALITY. FORTRAN code for all applications is given

in [Ref . 1] .

B. OPTIMIZATION

The remainder of this thesis is dedicated to MIXER'S

optimization application (OPT). As was mentioned in Chapter I,

the original version of OPT finds the local best solution to

a combinatorial nonconvex integer problem. The details of the

problem will be given in Chapter III. In this section the

general execution of OPT will be explained, and some

background information regarding OPT ' s methodology and

assumptions will be given.

Once selected OPT asks the user to input a price for time

(LAMBDA) . The value input for LAMBDA is completely arbitrary

except that a larger input value will produce a plan that

requires less sweep time, while a smaller value will produce

a plan that requires more sweep time. OPT then executes, finds

its best sweep plan, and outputs a table of results. The table

includes the sweep time, SIT, and the average losses to

sweeper assets. Then OPT asks the user to input a new value

for LAMBDA or to return to the main menu.

OPT provides the mine warfare commander a place to start

preparing for mine clearance operations. Given the best guess

information about the minefield and the MCM assets on hand,

OPT produce's a sweep plan that theoretically can be executed

in a set amount of time and produce results that are in some

sense optimal. The decisions OPT makes are based on

theoretical calculations and analytic relationship's that are

only rough approximations of the real world. OPT does,

however, attempt to account for the value of the sweep

resources and of the high value unit (HVU) , and of course

MIXER'S Monte Carlo simulator (MONTE) can be used to test

14



OPT's results for a more accurate indication of its effects on

the minefield.

1. The Minefield Model and Lost Resources

The minefield model MIXER uses for optimization is

defined by the data provided in PARAMS.DAT and NUMBERS.DAT. In

this model the minefield is treated as a single entity that

has varying states. In each state the minefield responds

differently depending on the type of stimuli it is presented.

The states of the minefield correspond to the level of

clearance that exists at any given time. The stimuli are the

different sweep types and the HVU that pass through the

minefield.

The sequence in which sweep types pass through the

minefield is one of the inputs in PARAMS.DAT. A sweep type

does not begin its runs through the minefield until the

previous sweep type is finished, the idea being to prevent

detonations by one sweep type from damaging another. It might

be expected that the least vulnerable MCM assets would be used

first, however, this is not a requirement, nor is it assumed.

The only requirement with regards to the sequence order is

that the HVU is last, for obvious reasons.

The modeled interaction between the mines and sweep types

is defined by two important derived arrays, SURV{I,J) and

TH(I,J) . Their values are calculated by MAIN with data from

the actuation and damage threat tables provided in PARAMS.DAT.

The equation for SURV(I,J) is

SURV(I,J)=l-
A{I ' JUBtI ' J)

,

(1>

"^"minefield

where A(I,J) is the actuation width for sweep type J

confronting mine type J, and B(I,J) is the probability that
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sweep type J" actuates mine type X, given mine I is within

sweeping range of sweep J. SURV(I,J) is, therefore, the

probability that a mine of type J remains in the minefield

following one complete run of sweep type J.

The basic equation for TH{I,J) is

TH(I,J) =
AF{I > J) * BF{I > J)

,

(2)

A(I,J)

where AF{I,J) is the distance required for mine type I to

damage sweep type J, and BF(I,J) is the probability that a

mine of type J will damage sweep type J". BF(I,J) is

conditional on mine type I actuating, and on sweep type J

closing to the damage distance. TH{I,J) is, therefore, the

probability that mine I kills sweep type J, given mine I is

actuated by sweep type J. The actual computation of TH{I,J)

includes a trapezoidal factor which tends to sheer off the

corners of an otherwise square actuation curve [Ref . 3: p. 6]

.

Unlike MONTE, which assigns sweep tracks in accordance with

the current sweep plan, OPT assumes tracks are located

independently across the width of the minefield.

As sweeping progresses the mean number of mines remaining

decreases. In subroutine F OPT calcultes the probability that

any mine of type I remains. Values are held in £>( J) , which is

initially set to one for all mine types. As each sweep type

completes its turn in the minefield, Q{I) is reduced

accordingly. The equation for Q{I) is

J= PRIOR IN SEQ (3 )

Q(I)= II SURV( I, J)
X{J)

,

J= FIRST IN SEQ

where X(J) is the total number of runs sweep type J makes

during its turn, a decision variable in OPT. At the start of

any given sweep type's turn, Q(I) is the probability that a
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mine of type I still exists. Upon completion of the turn Q(I)

is updated for the next sweep type. This is how the the levels

of clearance for the minefield model change.

Equations 1, 2 and 3 fully describe the minesweeper-mine

interaction OPT employs. These terms can now be combined to

compute the probability of actuating a mine, and the

probability of damaging a sweep type, at any given point in

the sweep plan. The following relationships restate the above

terms

;

Q{ I) =PROB{ANY MINE OF TYPE I EXISTS}

,

(4)

SURV(I, J) =PROB{J DOES NOT ACTUATE I
|

I EXISTS} , (5)

TH(I,J)=PROB{I KILLS J | J ACTUATES 1} . (6)

The probability of a given mine of type I being actuated

by some minesweeper of type J is given by

Q{I) x
[ 1-SURV( I, J)

X{ J)
] ' an<3 tne probability that a mine kills

a sweeper is given by TH(I, J) *Q(I) * [1-SURV(I, J)
X{J)

]
•

The above minefield model provides the basic theory

behind each mine encounter. Aside from a few further

assumptions, [Ref . 1: p. 7], this is the foundation from which

OPT computes the changing cost in the objective function. The

cost term that accounts for the losses to resources is based

on the probability that a mine kills a sweeper,

TH( I, J) *Q{I) * [1-SURViI, J)
X{J)

]
• Combining this term for each

mine with the values for each resource type gives the cost of

losses to the MCM force for the proposed sweep plan [Ref. 1:

p. 9] . LOSS(K) , where K is the resource type, is the average

number of resources lost due to damage by mines. This is the

first of the three terms in the objective function and from
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here on is referred to as "resource cost". A small number for

resource cost should indicate that the associated sweep plan

is effective against mines, but not excessively wasteful to

the mine sweeps

.

2. The KATZ Distribution and SIT

The HVU only makes one run through the minefield, and SIT

is the probability that it is destroyed during that run. SIT

is computed in OPT using a KATZ distribution. This class of

distributions is particularly useful for estimating the number

of mines in a shrinking minefield. KATZ distributions have two

parameters, which are similar to mean and standard deviation

in the normal distribution, and are analytically derived from

them. The mean number of mines for each mine type and their

respective standard deviations are given in NUMBERS.DAT. When

MIXER is executed, MAIN converts mine data into the

corresponding KATZ parameters. A detailed explanation on the

benefits of using the KATZ distribution is described in [Ref

.

7] . One benefit is a simple formula for SIT, namely

SIT=1- TT [

1+KZB{I)xTH{1 ' JMAX)xQ(I) yKzAU)/KZBii)
i

( 7 )

ALL MINE TYPES l'KZB { I)

where KZA{I) and KZB(I) are the KATZ parameters for mine type

I [Ref. 3: p. 18] . Subroutine F does the actual calculations.

SIT is then combined with the value of the HVU as the second

cost term, from here on referred to as "SIT cost", in the

objective function. This SIT cost accounts for the sweep plans

effectiveness against the minefield in terms of safety to

future traffic. A small number for SIT cost should be a good

indication that most if not all of the of the mines have been

cleared.
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3 . The Lagrangian Multiplier and Sweep Time

The third and final cost term in MIXER'S objective

function accounts for the sweep time required to execute the

current sweep plan. Sweep time is measured in hours and is a

computed by adding the hours each sweep type requires to

complete its turn in the minefield. The hours required to

complete one run of a particular sweep type depends on its

speed, turn velocity, and on the length of the minefield [Ref

.

1: p. 6] . This hours-per-run term is then multiplied by the

number of runs for each sweep type, and then summed over all

sweep types to get the total sweep time.

OPT calculates sweep time for the proposed sweep plan and

then multiplies the sweep time by the user's input for the

Lagrangian multiplier LAMBDA to get "sweep time cost". Sweep

time cost is then added to the resource cost and SIT cost to

arrive at a total cost for the current plan. This Lagrangian

method allows OPT to execute in an unconstrained mode. To

summarize, the objective function in OPT is

minimize: (8)

KMAX

MOE=LAMBDA* TIME+ £ VAL ( K) * LOSS ( K) +VAL ( KMAX+1 )
x SIT ,

where VAL(K) is the value given to the iCth resource type, and

KMAX+1 is the resource index of the HVU [Ref. 1: p. 8]

.

4. Unconstrained Local Optimization

OPT changes the total cost of a particular sweep plan by

changing the total number of runs of a particular sweep type,

X{J) , with all other terms held constant. It is important to

note that X[J) is actually a combination of two separate

terms. The equation for X(J) is
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X(J) =TOTRUN(J) *NP(J) (9)

where TOTRUN(J) is the actual number of runs a sweep type

makes, and NP{J) is the number of resource dependent parallel

sweeping units that make up sweep type J". NP(J) is a fixed

value completely dependent on the number of resources

available. It is assigned its values in MAIN. TOTRUN(J) is

variable, and the only factor that OPT controls. OPT finds an

optimal sweep plan by determining the optimal runs, TOTRUN(J)
,

for each sweep type. For the rest of the thesis TOTRUN{J) will

be used when referring to sweep runs.

When OPT is executed it begins by computing the total

cost (Equation 8) for the current sweep plan. OPT then

attempts to increase or decrease TOTRUN(J) for each sweep type

by considering only unit changes, and compares the new total

cost with the old total cost. If a complete loop through each

sweep type produces no improvements in total cost, OPT

terminates, saving the sweep plan TOTRUN(J) corresponding to

the lowest total cost. The pseudo code in Figure 1 outlines

OPT ' s local optimization algorithm.

1. Get initial sweep plan TOTRUN(J) .

2. Set jbest = cost ( TOTRUN( J) ) .

3. Set J equal to first sweep type.
3.1 Continue until J equals last sweep type.

3.1.1 Set TOTRUN(J)' = TOTRUN(J) + 1.

3.1.2 If cost (TOTRUN(J)') < best,
best = cost (TOTRUN(J)') ,

TOTRUN(J) = TOTRUN(J)'

,

Got to 3.

3.1.3 If cost (TOTRUN(J)') > best and TOTRUN(J) > o,

3.1.3.1 Set TOTRUN(J)' = TOTRUN(J) - 1.

3.1.3.2 If cost {TOTRUN(J)') < best,
best = cost (TOTRUN(J)')

,

TOTRUN(J) = TOTRUN(J)',
Got to 3.

3.2 Set J equal to next sweep type.
4. Return TOTRUN(J)

Figure 1. Local Optimization
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5. Shortfalls

The two primary shortfalls in MIXER'S current

optimization feature are the optimization method itself, and

the unconstrained, or Lagrangian method, for handling sweep

time. The objective function, as mentioned earlier, is

nonconvex and integer. This problem is a classic case that is

difficult and well studied. A visualization of the objective

function may provide some insight to the difficulties facing

the local optimization method.

Three dimensional plots, Figures 2 and 3, can be obtained

by limiting the modeled scenario to two sweep types. In this

sparse scenario there are six mine types . Two of the mine

types are very effective against the sweep types and

ineffective against the HVU. Two other mine types are very

effective against the HVU but ineffective against the sweep

types. The remaining two mine types are moderately effective

against both minesweepers and the HVU. The scenario is

somewhat contrived in order to accentuate the nonconvexity of

the objective function.

Figure 2. Surface Plot View 1
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Figure 3 . Surface Plot View 2

These figures show the number of runs for each sweep type

plotted against the total cost of the MOE for LAMBDA equal to

2200. There are three local minimums . The first is located in

the "valley" or center area, the second is along the Runs(l)

axis, and the third is in a trough that parallels the Runs (2)

axis. Since most of the surface area tends to slope into the

center, this local minimum will probably be the favorite

choice for a local optimizer, given a random initial solution.

In Figure 4 a contour plot for the same scenario is

given. The staircase line leading from the top down to the

"valley" area is the actual solution path OPT finds when

presented this problem. As OPT updates its best plan it is

actually moving on this path along the surface of the state

space. The final plan at this local minimum has a total cost

of 4 8.7. The solution at (0,12) along the Runs(l) axis,

however, is the global minimum with a total cost of 47.7.
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Figure 4 . Path to Local Opt

If it were possible to give an optimization method human

characteristics, OPT would probably be called lazy and near

sighted. OPT is lazy because it always selects the easy or

downhill move. If OPT finds no downhill move it just gives up.

OPT is nearsighted because it can only see one sweep run out

in all directions. In all fairness, OPT does have some good

qualities as well. OPT is fast, providing its answer almost

instantaneously. OPT is also meticulous since its answer is

always accurate. If OPT could be changed so that it could move

uphill as well as downhill, and/or see over hills and around

corners, then it would have a better chance of finding the

global minimum. In this sense, OPT may just need a little

training so that it won't be afraid to take on a few of those

hills.

The second shortfall is the Lagrangian method OPT uses to

handle sweep time. A plot of LAMBDA versus sweep time is given

in Figure 5. These points were generated for the dense
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Figure 5. Sweep Time (hrs.) vs. LAMBDA

scenario in Appendix A. The dense scenario has seven sweep

types and five mine types. The data in this scenario tends to

be more realistic than in the sparse scenario.

Figure 5 reveals jumps between sweep times for changes in

LAMBDA, and intervals of LAMBDA that produce levels of sweep

time. Note that some of the jumps between the levels are

rather large. The difference in sweep time for LAMBDA equal to

112 and 113, for example, is 51.2 hours, certainly enough time

to complete additional sweep runs. Since each sweep time level

corresponds to a particular sweep plan it appears that some

sweep plans are being missed. In reality, if the mine warfare

commander has an additional 51.2 hours he would be interested

in a sweep plan that uses it. Unfortunately, with a Lagrangian

method OPT can not locate such a sweep plan. A solution would

be to move the Lagrangian term out of the objective function,

and treat sweep time instead as a constraint, which can be set

by the user. The question is whether or not this solution can

be implemented efficiently.
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III. CONSTRAINED LOCAL OPTIMIZATION

With the problems facing MIXER'S present optimization

feature described, it is now possible to begin work on

improvements. The first half of this chapter is dedicated to

improving the efficiency of the minefield model calculations

and the MOE in Equation 8. A revised objective function with

sweep time handled as a constraint, rather than as sweep time

cost, is presented. The second half of the chapter details a

local optimal search method that solves the constrained

version of the revised objective function. This is done to

test the accuracy of the above transformations and to provide

a possible initial solution for follow-on optimization

methods

.

A. IMPROVEMENTS TO THE MOE

The optimization problem written in a constrained form

(i.e., no Lagrangian multiplier) is

minimize: (10)

KMAX

MOE=Y, VAL{K) *LOSS{K) +VAL(KMAX+1) *SIT
K=l

subject to: (11)

MAX-

1

£ TOTRUN(J)*HOUR(J)< SWEEP TIME ,

JMAX-l

£
j=i

where VAL (KMAX+1) is the value of the high value unit (HVU)

,

LOSS(K) is the average number of lost or killed type K

resources, and HOUR{J) is the length of time required for one

run of sweep type J. Although this form of the problem appears

concise, in order to compute SIT and LOSS(K) , F must perform
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some fairly cumbersome calculations. If any of these can be

simplified, then it is worth some investigation.

1. Transformation of Resource Cost

The first transformed term is resource cost, which is

mAX (12)
resource cost = Jj VAL(K) *LOSS (K) ,

k=i

where LOSS(K) is the number of type K resources destroyed by

mines, and VAL{K) is the value of resource type K. The

equation for LOSS(K) is

JMAX-l (13)
LOSS(K)= £ KILL (J) xh{K, J) ,

j=i

where KILL(J) is the average number of type J sweepers

destroyed by mines [Ref . 1: p. 9] , and h{K,J) is equal to one

if type K resource is killed when type J sweeper is killed and

zero otherwise. The equation for KILL{J) is

(14)

IMAX

KILL [J) = Y, MEAN (I) *TH(I, J) *Q(I) * [1SURV(I, J)
totruni^* npi^

] ,

where IMAX is the number of different mine types present in

the minefield, and MEAN{I) is the user's guess at the total

number of mines of type I thought to be in the minefield at

the beginning of mine clearance operations. The other terms

were defined in the previous chapter.

Instead let

S(I,J)=SURV(I,J) NP{J)
, (15)

where S(I,J) is the probability that a mine of type T remains
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with parallel sweeping considered where applicable. Also let

WAX (16)
MU( I, J) =TH{I, J) xMEAN(I) x

[ }2 ^AL(K) xh{K, J) ] ,

JC=1

where MU(I,J) is the average value destroyed by mines of type

I for one run by type J minesweeper, assuming all mines are

still present. Finally let the clearance level be

NQ(I, J) = II S(I,P) T0TRUN{P]
,

(17)
VP<J

where P is all sweep types that have completed their turns in

the minefield prior to sweep type J's turn.

With the above definitions of MU and NQ it can be shown

that resource cost is

IMAX JMAX-l

E E
1=1 J=l

resource cost =£ £ MU{I, J) *[NQ(I, J) -NQ{I, J+l) ] ; (18)

a more efficient calculation than Equation 11, and the one to

be used from here on.

2 . Approximating SIT

The SIT cost term in Equation 10 accounts for simple

initial threat to the HVU. Unfortunately the exponential term

KZA{I) /KZB{I) in Equation 7 is not an integer and therefore

cannot be implemented in a loop. This makes the KATZ

approximation for SIT a fatally slow calculation.

It may not be obvious why a speedy calculation for SIT is

necessary. A slight digression will offer an explanation. In

order to find a better than local optimal solution to the

objective function, consider that at some point an exhaustive

search may have to be implemented. An exhaustive search will

check the total cost for every possible sweep plan within the
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limits of the sweep time constraint. An exhaustive search

algorithm will be presented in Chapter IV.

If all S sweep types require the same H hours to complete

one run, then for the sweep time constraint T

n- iJiwmu, (i9)
S\ * (T/H) !

where N is number of all feasible solutions. If T is small, an

exhaustive search may be completed within a reasonable time

frame. As T and/or S increases, N gets big in a hurry, and so

do the number of times subroutine F is called and calculations

like Equation 7 performed. When H is different for each sweep

type, N can increase even faster than in Equation 19.

If SIT can be approximated in a more efficient fashion

that maintains an accurate representation of the threat to the

HVU, then it would be worth testing. In Equation 7 SIT is

approximated as the expected number of lethal mine hits given

that the HVU sinks at the first lethal hit. If instead SIT is

approximated as the expected number of lethal mine hits given

the HVU does not sink then the transformed SIT cost is

IMAX

SIT cost = J2 MU(I f JMAX) *NQ(I, JMAX) , (20)
i = i

where JMAX is the HVU. Besides avoiding the exponential

calculation, this equation follows nicely the format given in

Equation 18 for resource cost.

The error suffered for the new approximation of SIT can

be determined easily. Figure 6 plots differences between SIT

values with the old and new approximations against sweep time

constraints. These data points were obtained by executing OPT

with the dense scenario in Appendix A.

Figure 6 shows that the difference DELTA decreases

rapidly as the sweep time increases, and even with small sweep
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SWEEP TIME

Figure 6. SIT Difference vs. Sweep Time

(hrs.)

times the new approximation is less than .3 away from the KATZ

approximation. Assuming that sweeping will continue until SIT

is small, the expected number of lethal mine hits provides a

good approximation. In addition, the new approximation is

consistently larger than the KATZ approximation, making it a

more conservative estimation.

3. A Revised Objective Function

The last step in the transformation is to restate the

optimization problem with the new MOE . The new problem is

minimize

:

21

IMAX JMAX-1

£ £
i=i j=i

IMAX

J2 ]C MU( I, J) x [NQ(I, J) -NQ(I, J+l) ] +£ MU{I, JMAX) *NQ( T, JMAX)
i=i

subject to

JMAX-

l

(22

£ TOTRUN{J)xHOUR(J)< SWEEP TIME
j=i
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B. LOCAL OPTIMAL SEARCH METHOD

In this section a local optimization method for the

revised objective function is presented. The difficulty of the

problem has increased as feasibility is now an issue. As a

result, OPT s movement towards an optimal sweep plan must

account for sweep time as well as total cost.

1 . Approach

The FORTRAN code for the revised local optimal search

method is given in Appendix E. OPT begins by asking the user

to input a time constraint. Next OPT must get an initial

solution. Since the current plan held in memory may not be

feasible, OPT must check the total time it requires. If the

current plan is feasible, OPT starts the optimization

algorithm with this initial sweep plan. If not OPT simply

divides the input time constraint by JMAX, the number of sweep

types, and gives each sweep type its share of the time. The

initial plan is then the number of runs each sweep type can

complete in its share of time.

Once the current sweep plan is feasible, OPT begins its

search for an optimal plan. OPT proposes new plans by

increasing or decreasing runs for each sweep type

incrementally, similar to the method described in Figure 1.

Decisions regarding choice of a new "best" sweep plan, however,

must consider the sweep time. Once OPT determines the proposed

sweep plan has an improved total cost, it must insure it is

the most time efficient plan. By dividing the cost difference

by the sweep time difference resulting from the proposed sweep

plan, OPT selects a new sweep plan in a "biggest bang-per-buck"

fashion. This method forces OPT to move toward the optimal

sweep plan while minimizing movement toward the limit of

feasibility.

Once OPT reaches the limit of feasibility it does not
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quit. Although all sweep time has been consumed and movements

to the feasible limit were done as efficiently as possible,

there is a chance that swapping runs between the sweep types

will produce a better answer. This can be thought of as moving

laterally along the feasibility limit. This movement is also

done in a "biggest bang-per-buck" fashion. Once additional

lateral moves result in no cost improvement OPT terminates

.

2 . Solution

To better understand OPT ' s new local optimization method

another sparse scenario is used for illustration. The data

files used to generate this scenario are given in Appendix B.

The scenario is similar to the one described in Chapter II.

Figures 7 and 8 show a surface plot of the MOE without the

sweep time cost of Figures 4 and 5.
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Figure 7 . Surface Plot View 1

As can be seen from Figures 7 and 8 a major difference is

that the "valley" area is not closed-off but instead continues
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Figure 8. Surface Plot View 2

to slope down away from the Runs (1) axis. Another difference,

seen best in Figure 8, is the flapped over edge near the far

end of the Runs (2) axis. It is quite obvious from these

figures that the constrained objective function is still

nonconvex. The time constraint used here is 2600 hours.

Figures 9 and 10 show contour plots of the objective

function. The solid lines represent constant values of the

MOE . The line of feasibility is plotted as well. This line

shows the number of runs for each sweep type beyond which the

problem is infeasible due to the sweep time constraint. The

feasible region is to the left of this line. Also shown are

the local and global minimums for this scenario plotted as

circles. The global minimum is 46.288 at the point (35,0)

.

In Figure 10 actual paths OPT takes during executions of

its search algorithm for different initial solutions are

presented. Stars indicate randomly choosen initial solutions.

As can been seen, infeasible initial solutions are immediately

moved to a feasible point.
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Figure 9 . Contour Plot

Figure 10. Paths to Local Opt.

Most of the time OPT finds the local minimum in the

"valley" area. This is due to the fact that most of the surface

area slopes into this region. In the upper lefthand corner,

however, the initial solution is on the backside of a ridge

that parallels the Runs (1) axis. In this case OPT moves
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toward the axis and then down to a local minimum.

In the bottom right hand corner is an initial solution

that is very close to the limit of feasibility. Since OPT

could not increase sweep runs from here it tries decreasing,

which leads to moving down the back side of the ridge running

parallel to the Runs (2) axis, and ultimately to the global

optimal solution.

Also visible in Figure 10 are cases when OPT reaches the

feasible limit before reaching the local optimal. In several

of the searches OPT moves laterally along the feasible limit

swapping sweep runs at each move. Also notice that some of

OPT's movements seem to follow straight lines and then sharply

turn towards the minimum point. These tracks display OPT's

"biggest bang-per-buck", feature. Unlike in Chapter II where

OPT zigzags toward the minimum point, here OPT may stay in one

direction until another direction has a more efficient path to

a local optimal sweep plan. These figures show that the

algorithm works as expected. OPT moves towards the local

minimum one run at a time, except when infeasible.

The new OPT allows the user to input the time he has to

sweep and produces the locally best sweep plan that can

execute in the given time limit. This version of OPT is more

flexible by providing a solution for any time constraint the

user gives it. The user no longer has to deal with the clumsy

Lagrangian multiplier. In addition, tests with this version of

OPT on large problems have shown the program is as fast as the

Lagrangian version.
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IV. SEEKING A BETTER SOLUTION

Although the local optimizer just presented is fast and

accurate, the nature of the problem prevents assurance that it

finds the global optimal sweep plan. As stated in Chapters I

and II the nonconvex problem is extremely difficult to

optimize. In fact there is no quick solution that can promise

a global optimal answer. In this Chapter two optimization

methods will be discussed that may find better then local

optimal solutions. The first optimization method is an

exhaustive search algorithm. Exhaustive search involves

checking the cost of every feasible sweep plan. The second

optimization method is a heuristic approach. The method is

called simulated annealing because its implementation

resembles the annealing process that takes place in the

physical world when liquids are cooled to form solids.

The exhaustive search algorithm will be discussed first.

A brief description of the algorithm is given, and then a

discussion of some of its shortfalls. As may be expected this

method, although promising on small problems, is not the

ultimate solution method.

A. EXHUASTIVE SEARCH METHOD

The exhaustive search algorithm checks every sweep plan

that can occur within the given time constraint. As the

algorithm selects plans from the solution set it determines

their total costs. Each time a sweep plan is found with an

improved total cost that sweep plan is saved as the best sweep

plan. Once the testing has exhausted the solution set the

algorithm terminates. The improvement this method provides is

that it can claim to find the global optimal sweep plan.

The draw back to this method, as mentioned in Chapter III

is the actual time the program requires to execute. In Chapter
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Ill the cost calculation was streamlined in the hope that the

program's run time could be decreased. Unfortunately the

solution set size, N, grows as the number of sweep types

increases and as the time constraint increases. It is not

difficult to imagine a scenario with many sweep types and

large sweep time given a large minefield. One example was in

the Persian Gulf, where minesweeping efforts that started

during the war continued long after the war was over.

1 . Approach

The exhaustive search algorithm in OPT checks every

possible sweep plan within the sweep time constraint . Once the

user has input the sweep time limit, TLIM, OPT finds the total

cost for no sweeping and sets it equal to best. Then OPT

begins an algorithm that finds all feasible sweep plans. Each

time a feasible sweep plan is found OPT calls the F subroutine

and gets its total cost. OPT then compares it with best, and

if less OPT updates best. Then OPT finds the next feasible

sweep plan and repeats the process. Once all feasible sweep

plans have been compared with best OPT terminates, saving the

sweep plan that produced best. The FORTRAN program for

exhaustive search is given in Appendix D.

2 . Solution

OPT's exhaustive search finds the global optimal sweep

plan for the sparse scenario used in Chapter III, Appendix B.

A contour plot of the state space for this scenario is given

in Figure 11. This plot shows all the sweep plans OPT checked.

OPT required about three seconds to complete an exhaustive

search given a time constraint of 2600 hours with this sparse

scenario

.

In Figure 12 a plot of the actual best plans the

exhaustive search algorithm finds along its path to the global
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Figure 11. Exhaustive Search

Figure 12 . Path to Global Opt

.

optimal is given. The borders of the contour plot are

suppressed here so that the sections of the path that run

along the axes can be seen. Note that the steps taken along

the exhaustive search path of best solutions are not always

unit length. An example is the step from (0,15) to (20,15).
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3. Shortfalls

The two sweep type scenario is an example of a sparse MCM

operation. In many cases several different sweep types will be

employed. The dense scenario given by the data files in

Appendix A, involves seven sweep types and five mine types,

which makes it a more difficult problem. The set of all

possible feasible solutions for this scenario is much larger

then that of the two sweep type scenario. To illistrate Figure

13 compares the solution set sizes of the sparse and dense

scenarios for increasing time constraints. Clearly the rate at

which the solution set size, N, increases for the dense

scenario is orders of magnitude greater than for the sparse

scenario

.

Dena e Soenario

\y/ \

Spareie Seer
\ \

m rio

-:-

\ :

SwaapTim* Constraint

Figure 13. JV vs. Time Constraint (hrs.)

In Figure 14 exhaustive search run times are plotted

against sweep time constraints. Run time data was produced

with a UNIX time profiling application [Ref . 6: p. 186].
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Figure 14. Run Time (min.) vs. Time

Constraint (hrs.)

Subroutine F accounts for 93% of total run time during

exhaustive search. As can be seen the exhaustive search method

quickly becomes too slow for tactical purposes, especially

considering that the relatively dense scenario given may

actually be a sparse example in real world terms.

Our streamlining efforts in Chapter II were not in vain.

The dashed line above represents computer run times for the

original computations of subroutine F, and the solid line is

for the transformed computations . Figure 14 shows that the new

cost computations reduced run times by almost half. Also

apparent, however, is that the solution set's growth rate far

outmatches the time saved with the improvements. Yet, by

pushing the envelope of efficiency there are now a greater

number of scenarios that can be exhaustively solved in a

reasonable amount of time.

B. SIMULATED ANNEALING METHOD

The local optimal search method in Chapter III finds a

solution almost instantaneously, however, it is merely a local

minimum. The exhaustive search algorithm finds the global
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minimum, but the run time is impractical for many scenarios.

The difficulty of the nonconvex problem is such that no search

method can guarantee a global optimal solution quickly. A

compromise therefore would be a method that has a good chance

of finding a better then local optimal solution in a

relatively short amount of time. Heuristics encompass a

variety of search methods that implement these types of

compromises. Simulated annealing is known to be a particularly

good approach for the class of optimization problem presented

here .

1. What is it?

Simulated annealing is a search method that is based on

the cooling of liquids to form solids. In the physical world

solids can be formed through annealing, a process by which the

material is cooled slowly. If the material is cooled too

quickly, energy may be trapped in the solid, forming weak

points or irregularities. By cooling at just the right rate

most of the trapped energy can escape allowing molecules to

stabilize uniformly. This process produces stronger and more

pure solids. [Ref. 7]

In the optimizer's world the local optimal search method

parallels a process that cools too quickly. The local search

always moves downhill if possible. When no downhill moves are

present the search terminates. This in a sense freezes the

solution in a state that may be less then globally optimal.

The simulated annealing search, however, cools more slowly. It

allows the search to proceed uphill at times with the prospect

of crossing to an adjacent area with a better local minimum.

The cooling process, or decrease in temperature, is analogous

to a decrease in probability that simulated annealing will

allow an uphill move. A simulated annealing run that is cooled

slowly will have a greater number of uphill moves. As the
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temperature is cooled to a frozen state, the chance for uphill

moves approaches zero.

Cooling is conducted by decreasing the temperature in

discrete levels. In the physical world a material is held at

a constant temperature until sufficient time has passed for

all the trapped energy to escape. In the optimization world

the probability for uphill moves depends on the temperature

level (TEMP), which is decreased according to a cooling ratio

(r) . Downhill moves are always accepted when proposed, so once

a peak has been crossed the search will not freeze until it

has checked the new local minimum. If this local minimum is an

improvement over past local minimums then it becomes the best

solution and the next hill is attempted. Once the temperature

has cooled and the chance for uphill moves decreased to a

level that prevents the search from crossing any local peaks,

the process is deemed frozen. [Ref .7]

Although simulated annealing can not promise the global

optimal solution, its does prevent solutions that are not

solely dependent on the local minimum of the initial solution.

With each peak that is crossed this search method finds a new

locally optimal solution that would have been missed by the

local optimization search method. If any of the local minimums

found by simulated annealing are better than the one found

with the local optimizer, then simulated annealing has

accomplished its goal.

2 . Solution

As with the local optimal search method, simulated

annealing proposes new sweep plans in incremental steps . Once

the user has selected simulated annealing, OPT starts the

process with an initial solution equal to the local optimal

solution found by the local search algorithm. OPT proposes a

new solution selected at random from the neighborhood of the
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current solution. The neighborhood consists of all solutions

that are one sweep run away from the current solution. The

proposed solution is then checked for feasibility. Unlike the

local search method, simulated annealing can move beyond the

feasible limit, but only at an increased cost. If infeasible,

a penalty factor (a) is multiplied by the amount of time

beyond the constraint the proposed plan requires. This penalty

value is then applied to the total cost of the proposed

solution.

Next OPT compares the total cost of the proposed solution

to that of the current solution. If the proposed solution has

a lower cost, a downhill move, OPT accepts the proposed

solution by making it the current solution. If the proposed

solution has a greater cost, an uphill move, then OPT accepts

it with some probability. The penalty factor {a) discussed

above must be large enough that an infeasible sweep plan

appears to be a large uphill move. The probability of an

uphill move depends on the current temperature level and the

difference in total cost between the current and proposed

solutions , DELTA, according to the formula

PROB { UPHILL MOVE } - e
~ A/ TEMP (23)

[Ref . 7: p. 868] .

OPT continues checking solutions in this manner at the

current temperature level for a preset length of proposals.

This preset temperature length, L, is a function of the

average neighborhood size multiplied by a parameter called

SIZEFACTOR. A full explanation of this and other parameters is

given in [Ref. 7] . Once L solutions at the current temperature

level have been proposed and either accepted or rejected, OPT

decreases the temperature level and begins checking solutions

for another temperature. Each time a temperature is completed,
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OPT determines the percentage of accepted proposals that

occurred. If this percentage is less than the preset parameter

MINPER then OPT increments a counter SCNT by one. If during

any temperature level an accepted proposal improves the

overall best plan, CHAMP, then upon completion of that

temperature level, SCNT is reset to zero. When SCNT equals the

preset parameter FROZ the process is deemed frozen.

Once the process is frozen OPT checks to see if the last

accepted plan was feasible, and if not OPT increases a,

decrements SCNT by one, and begins a new temperature level.

This process continues until the last accepted plan from the

last temperature level run is feasible. Then OPT terminates

the simulated annealing algorithm saving the best plan found.

Once terminated OPT asks the user whether or not further

simulated annealing runs are desired. Since the annealing

process is a heuristic there is a chance that more

improvements can be realized through further iterations. The

FORTRAN code for simulated annealing is given in Appendix F.

In Figure 15 a plot the simulated annealing search path

for the sparse scenario is presented. This contour plot shows

a sample of the accepted solutions during a full annealing

run. Many accepted moves are duplicates, since there is

nothing preventing simulated annealing from retracing its

steps. In this scenario simulated annealing finds the global

optimal solution at point (0,35) . Examination of Figure 15

shows the explorative nature of the annealing search. Many

paths are terminated prior to reaching a boundary. As the

search spreads out from the initial solution, marked with a

star, it explores the nearest hill and, as is the case here,

may successfully cross it. Also shown are moves into the

infeasible region, as well as long jumps back to the current

best solution which occurs at the beginning of each new

temperature level

.
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Runs(2)

Figure 15. Simulated Annealing

C. COMPARISON TESTS

Two tests compare the local optimal search method to

simulated annealing, one with the dense scenario and one with

the sparse scenario. Searches were performed by each search

method on various versions of each scenario. 120 iterations of

both search methods were performed. The scenarios were altered

every sixth iteration by randomly generating new actuation

probabilities A (I, J) (see Equations 1 and 2) . At each

iteration values for an initial TOTRUN(J) between and 10,

and sweep time constraint, TLIM, between 500 and 1000, were

randomly generated.

The data for resource values used in the dense scenario

test were slightly modified as shown in Figure 16. H(K,J) was

also modified for the dense scenario so that damage could

occur to sleds used for the HELCUT sweep type. These

modifications were performed because the author had become too

familiar with results for the original values. All other input

data remained constant. Each algorithm successfully completed
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RELATIVE RESOURCE VALUES VAL(K) FOR OPTIMIZATION, LAST FOR FIRST TRANSIT

2.20 2.00 2.15 0.64 11.50

Figure 16. Modified Resource Values for Dense Scenario

120 searches on each scenario type. Once the local optimizer

performed a search it passed its local minimum solution to

simulated annealing for possible improvement. The parameters

used in the comparison tests are shown in Figure 17. Results

of the tests are given in Figure 18

.

Parameter Value

Penalty Factor (a) 0.0005

Temperature Factor (r) 0.95

Size Factor (SIZEFAC) 25.0

Minimum acceptance % {MINPER) 40.0

Initial Temperature Level (TEMP)

KMAX+1

£ VAL(K)
K=l

Figure 17. Parameter Settings

These tests show that simulated annealing can find

improvements to solutions found with the local optimizer. They

also reveal that the chance of an improvement occurring and

the size of the improvement vary considerably with the

scenario. In the dense scenario tests, simulated annealing

reduces the total cost 95.8% of the time, with the average

reduction being 6.84%. In the sparse scenario tests, simulated

annealing reduces the cost 15% of the time, with the average

reduction being 35.9%. The dense scenario has a lower average

45



Scenario Type

For 120 Iterations of Dense Sparse

Local Optimizer's Mean Cost 2.1599 14.5310

Simulated Annealing's Mean Cost 2.0163 13 . 0512

# Improvements 115 18

Overall Mean Improvement 0.1463 1.4798

Maximum Improvement . 9978 31.8443

Overall % Improvement 6.65% 10.18%

% Improvement When Found 6.84% 35.88%

Figure 18. Test Results

cost, but provides considerably more opportunities for

improvements. The sparse scenario provides fewer improvements,

but the improvements are larger. In one instance of the sparse

scenario the local optimizer's best plan cost is 3 9.3, while

simulated annealing finds a solution that costs only 7.5, an

improvement of roughly 80%. This level of improvement is on

the same order of magnitude as results reported by Johnson and

Aragon et al [Ref . 7] .

Johnson and Aragon et al discuss efforts to optimize the

annealing parameters for the graph partitioning problem. The

graph partitioning problem is very different from the

objective function found in MIXER. The neighborhood sizes, for

example, are much larger in general then those encountered

here. Therefore, the optimal SIZEFAC setting given in [Ref. 7]

is too small for use in OPT. Also the differences in the cost,

or cutsize, for any two neighboring solutions in graph

partitioning can be orders of magnitude greater then those in

OPT's problem. Therefore, the penalty factor for infeasibilty

{a) and the initial temperature levels given in [Ref. 7] are

not going to be optimal here. Another consideration is that

the mine warfare problem is always changing. No two scenarios
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are exactly the same. The dynamic environment in which MCM

operations are performed may make it nearly impossible to pin

down a set of parameters that are optimal in all scenarios. It

is suggested that further investigation of parameter settings

may show improvements to the results reported above.

The actual run time required for a simulated annealing

iteration is a function of the preset parameters. Given a slow

enough cooling schedule simulated annealing would,

theoretically, check all solutions, as in the exhaustive

search. This, however, would take as long if not longer then

the exhaustive search, defeating the purpose of the heuristic

approach. There exists a trade off between run time and the

probability for solution improvement. The parameter settings

values should be set to conduct a search that has a reasonably

good chance of finding an improvement, and that can be

completed in a time frame that is tactically practical . None

of the annealing runs performed with the above parameter

settings required more then a few seconds to complete.

D. FINAL PRODUCT

An improved version of OPT given in Appendix C attempts

to utilizes the best characteristics of each of the search

methods developed above; the local optimizer, the exhaustive

search, and simulated annealing. When OPT is executed and the

time constraint is input, OPT begins by computing the

approximate run time that is required to complete an

exhaustive search. If this time is less than one minute OPT

executes the exhaustive search and displays in table form the

total sweep time, SIT, total cost, and average resource losses

for the globally optimal sweep plan. If OPT estimates that the

exhaustive search will require more then one minute it asks

the user to choose between the exhaustive search or local

optimization. When local optimization is selected, OPT runs
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the local optimizer and then prompts the user to select

simulated annealing or to quit. When simulated annealing is

selected the annealing run executes. Upon completion the user

is asked to choose either further simulated annealing or to

quit. After completion of each optimization method OPT outputs

the above results

.

By combining this set of three search methods, OPT draws

from each of their strengths, the speed of the local

optimizer, the completeness of the exhaustive search, and the

flexibility of simulated annealing, to provide the user with

the best sweep plan within the given time constraint. If the

user has sufficient opportunity OPT provides the globally best

sweep plan for even very large and complicated scenarios. If,

however, the user needs an answer quickly OPT can provide the

user with the locally best answer instantaneously, and then

with just a little more effort OPT can try to improve the

locally best plan. The combination of the three methods

provides a powerful tool for solving a very difficult problem.
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V. CONCLUSION

A. REVIEW

Many of the current mine warfare TDA's fall short of

bringing to bear the full potential of today's improved

computer speeds and capacities. The TDA MIXER, currently under

development, provides a combination of Monte Carlo simulation

and analytical optimization techniques with sophistication

equal to the challenge. This thesis has shown that by removing

sweep time from MIXER'S objective function and treating it

instead as a constraint, the user has a direct input for sweep

time and the local optimal search algorithm developed still

provides its optimal solution very quickly.

In addition, this thesis has shown that for MCM

operations involving a small number of sweep types and

requiring relatively little sweep time, the exhaustive search

algorithm, running on a 486 DX2 processor or better, provides

a global optimal answer to the objective function in under a

minute. Once the objective function's solution size is beyond

the capacity for a timely answer by exhaustion, the simulated

annealing algorithm developed can be used in conjunction with

the local optimizer to provide the best possible sweep plan.

Although simulated annealing can not guarantee the global

optimal solution, tests have shown that improvement to the

local optimal plan can be realized without a large time delay.

B. AREAS FOR FURTHER RESEARCH

Parameter settings for the simulated annealing algorithm

require further investigation in order to develop quick

methods to optimize their values given a particular MCM

scenario. Since the algorithm begins with a locally optimal

answer most improvements occur very early in the cooling

schedule. A schedule that decreases the temperature level
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slowly at first, and then more rapidly as time progresses, may

provide some improvement

.

The search algorithm for the local optimizer needs

further research. At present sweep runs are decreased only in

the face of infeasibilty , or when an increase gives a more

costly solution. When the current solution rests precisely in

the peak of a local optimal area hill, an algorithm that

investigates a decrease in sweep runs on par with increases

would allow the search to progress down the backside of the

hill and possibly to a better local optimal solution. Other

areas for improvement are discussed in [Ref . 1: p. 35] .
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APPENDIX A. DATA FOR DENSE SCENARIO

PARAMS . DAT :

MINE TYPES, SWEEP TYPES, RESOURCE TYPES
NOTE THAT THE LAST SWEEP TYPE IS TARGET TRAFFIC

5 8 4

INDICATOR FOR WHETHER MINE COUNTERS WORK AS COUNTERMEASURE FOR SWEEP00111101
WIDTH (YDS), LENGTH (N. MI. ) , TRAPEZ, HUNT ID TIME(HR.)

1000. 25.00 .15 .10
NAVIGATION STANDARD ERROR BY SWEEP TYPE

20.00 20.00 20.00 20.00 30.00 20.00 40.00 60.00
TABLE H(K,J) USAGE OF RESOURCE K PER UNIT OF SWEEP J, 2= VULNERABLE
RESOURCE NAMES READ FROM THIS SECTION

SHPHNT EODHNT SHPMAG HELMAG SHMGAC HELACU HELCUT
SWEEPER 2 12 2

HELICOP 10 11
EODTEAM 12

SLED 2 2

RELATIVE RESOURCE VALUES VAL (K) FOR OPTIMIZATION, LAST FOR FIRST TRANSIT
2.00 2.00 2.00 0.50 10.00

ORDER OF ENTRY INTO MINEFIELD SEQ(J)
4 5 6 3 7 2 1

TABLE TURN (J) HOURS PER RUN OF CHANNEL (HOURS)
.20 .10 .20 .10 .20 .10 .20

TABLE VEL(J) VELOCITY WHILE SWEEPING
3.0 1.0 5.0 30.0 5.0 30.0 20.0

TABLE DUTY (J) MULTIPLY TIME ON TASK BY DUTY TO GET REAL TIME
6.0 8.0 4.0 10.0 6.0 10.0 12.0

PROBABILITY ACTUATOR SETTINGS BY MINE TYPE
ACT (I) 0.1 0.5 0.33 0.33 1.0
TABLE A(I,J) SWEEP FRONT (NAMES READ FROM THIS SECTION)

SHPHNT EODHNT SHPMAG HELMAG SHMGAC HELACU HELCUT TARGET
BOTMAG 200.00 100.00 200.00 100.00 100.00 .00 .00 50.00
BOTACU 100.00 100.00 50.00 .00 100.00 100.00 .00 50.00
BOTPRS 150.00 100.00 .00 .00 .00 .00 .00 20.00
TETMAG 200.00 .00 200.00 200.00 100.00 .00 150.00 70.00
TETCNT 200.00 .00 .00 .00 .00 .00 150.00 70.00
TABLE B(I,J) ACTUATION PROBABILITIES

SHPHNT EODHNT SHPMAG HELMAG SHMGAC HELACU HELCUT TARGET
BOTMAG .50 .50 .50 .50 .50 .50 1.00 .50
BOTACU .50 .50 .50 .50 .50 .50 1.00 .50
BOTPRS .50 .50 .50 .50 .50 .50 1.00 .50
TETMAG .50 .50 .50 .50 .50 .50 1.00 .50
TETCNT .50 .50 .50 .50 .50 .50 1.00 .50
TABLE AF(I,J) ]DANGEROUS FRONT

SHPHNT EODHNT SHPMAG HELMAG SHMGAC HELACU HELCUT TARGET
BOTMAG 20.00 10.00 50.00 50.00 10.00 .00 .00 50.00
BOTACU 20.00 20.00 50.00 .00 10.00 50.00 .00 20.00
BOTPRS 20.00 30.00 .00 .00 .00 .00 .00 20.00
TETMAG 30.00 .00 50.00 70.00 10.00 .00 .00 70.00
TETCNT 40.00 .00 .00 .00 .00 .00 10.00 70.00
TABLE BF(I,J) :DAMAGE !PROBABILITIES CONDITIONAL ON DETONATION

SHPHNT EODHNT SHPMAG HELMAG SHMGAC HELACU HELCUT TARGET
BOTMAG .15 .15 .15 .15 .15 .15 .15 1.00
BOTACU .15 .15 .50 .15 .15 .15 .15 1.00
BOTPRS .15 .15 .15 .15 .15 .15 .15 1.00
TETMAG .15 .15 .15 .15 .15 .15 .15 1.00
TETCNT .15 .15 .15 .15 .15 .15 .15 1.00
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NUMBERS . DAT :

SHPHNT EODHNT SHPMAG HELMAG SHMGAC HELACU HELCUT TARGET
NTRK(J) 53395999
TRACK POSITIONS FOR EACH OF ABOVE SWEEP TYPES FOLLOW (FORMAT 1316)

100 300 500 700 900
100 500 900
100 500 900
100 200 300 400 500 600 700 800 900
100 300 500 700 900
100 200 300 400 500 600 700 800 900
100 200 300 400 500 600 700 800 900
100 200 300 400 500 600 700 800 900

RUNS PER TRACK PER SWEEPING UNIT FOLLOW: (FORMAT 1316)
2 2 2 2 2

2 2 2

2 2 2222222222
2 2 2 2 2222222222222222222

BOTMAG BOTACU BOTPRS TETMAG TETCNT
AVERAGE 10.00 6.00 6.00 6.00 9.00
STD_DEV 20.00 6.00 3.00 1.00 3.00

SWEEPER HELICOP EODTEAM SLED
RESOURC 2 2 2 2
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APPENDIX B. DATA FOR SPARSE SCENARIO

PARAMS . DAT :

MINE TYPES, SWEEP TYPES, RESOURCE TYPES
NOTE THAT THE LAST SWEEP TYPE IS TARGET TRAFFIC

6 3 4

INDICATOR FOR WHETHER MINE COUNTERS WORK AS COUNTERMEASURE FOR SWEEP
1

WIDTH (YDS), LENGTH (N. MI. ) , TRAPEZ, HUNT ID TIME(HR.)
1000. 45.00 .01 0.00

NAVIGATION STANDARD ERROR BY SWEEP TYPE
20.00 40.00 60.00

TABLE H(K,J) USAGE OF RESOURCE K PER UNIT OF SWEEP J, 2= VULNERABLE
RESOURCE NAMES READ FROM THIS SECTION

HELACU HELCUT
SWEEPER
HELICOP 1 1

EODTEAM
SLED 2 2

RELATIVE RESOURCE VALUES VAL (K) FOR OPTIMIZATION, LAST FOR FIRST TRANSIT
10.00 10.00 10.00 10.00 10.00

ORDER OF ENTRY INTO MINEFIELD SEQ(J)
1 2

TABLE TURN (J) HOURS PER RUN OF CHANNEL (HOURS)
.15 .35

TABLE VEL(J) VELOCITY WHILE SWEEPING
19.0 13.6

TABLE DUTY (J) MULTIPLY TIME ON TASK BY DUTY TO GET REAL TIME
20.8 20.3

PROBABILITY ACTUATOR SETTINGS BY MINE TYPE
ACT (I) 1.0 1.0 1.0 0.33 1.0 1.0
TABLE A (I, J) SWEEP FRONT (NAMES READ FROM THIS SECTION)

HELACU HELCUT TARGET
BOTMAG 744.00 150.00 650.00
BOTACU 55.00 895.00 50.00
BOTPRS 400.00 999.00 643.00
TETMAG 420.00 180.00 70.00
TETCNT 87.00 305.00 240.00
FLTCNT 25.00 690.00 100.00
TABLE &{I, J) ACTUATION PROBABILITIES

HELACU HELCUT TARGET
BOTMAG .92 .07 .95
BOTACU .15 .00 .00
BOTPRS .30 .00 .83
TETMAG .69 .80 .00
TETCNT .00 .35 .34
FLTCNT .00 0.38 1.00
TABLE AF(I,J) DANGEROUS FRONT

HELACU HELCUT TARGET
BOTMAG .00 .00 300.00
BOTACU 38.00 139.00 20.00
BOTPRS .00 .00 290.00
TETMAG 617.00 8.00 70.00
TETCNT 35.00 87.00 145.00
FLTCNT 5.00 130.00 10.00

53



TABLE BF(I,J) DAMAGE PROBABILITIES CONDITIONAL ON DETONATION
HELACU HELCUT TARGET

BOTMAG .00 .00 .88
BOTACU .10 .00 .00
BOTPRS .00 .00 .70
TETMAG .63 .00 .00
TETCNT .00 .00 .83
FLTCNT .00 .65 .00

NUMBERS . DAT :

HELACU HELCUT TARGET
NTRK(J) 9 9 9

TRACK POSITIONS FOR EACH OF ABOVE SWEEP TYPES FOLLOW (FORMAT 1316)
100 200 300 400 500 600 700 800 900
100 200 300 400 500 600 700 800 900
100 200 300 400 500 600 700 800 900

RUNS PER TRACK PER SWEEPING UNIT FOLLOW: (FORMAT 1316)222222222222222222
BOTMAG BOTACU BOTPRS TETMAG TETCNT FLTCNT

AVERAGE 10.00 6.00 6.00 6.00 9.00 6.00
STD_DEV 20.00 6.00 3.00 1.00 3.00 12.00

SWEEPER HELICOP EODTEAM SLED
RESOURC 2 2 2 2
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APPENDIX C. SUBROUTINE OPT

SUBROUTINE OPT

(

I KZA,KZB,TH,SURV,NP,MEAN
O , SIT, LOSS, TIME, HUNT
U ,TOTRUN,SEED)
IMPLICIT NONE

C LIMITS ON MINE TYPES, SWEEP TYPES, MINES, RESOURCES, TRACKS
INTEGER*4 01,02,04,05
PARAMETER (01=10 , 02=9, 04=8 , 05=4 0)

REAL*4 KZA(Ol) , KZB(Ol) ,A(01,02) ,B(01,O2) ,AF(01,02) , WIDTH, TR, HUNT
+ ,BF(01,02) ,H0UR(02) ,SURV(Ol,02) ,SIG(02) , COST, SIT, TIME, HT
+ ,ACT(01) ,TH(01,02) , LOSS (04) , MEAN (01) ,Q(02) ,VAL(04)
+ ,SUMVAL(02) , S (01,02) ,MU(01,02) , TLIM, MINH, AVGH, TCONV, EST
CHARACTER NM (01) *7 , NS (02) *8 , NR (04) *7
INTEGER*4 IMAX, JMAX, KMAX, JM1 , NP (02 ) , TMP
+ ,IND(02) ,SEQ(02) ,H(04,02) , I , J, K, TOTRUN (02 ) , FLAG
+ ,MAXINT,OPTYPE, SEED
COMMON A, B, AF, BF, HOUR, ACT, WIDTH, TR, SIG, VAL,HT
+ ,SEQ, IMAX, JMAX, KMAX, IND,H
+ , NM , NS , NR
DATA MAXINT /2147483647/

JM1=JMAX-1

C PRE -COMPUTE S(I,J) AND MU(I,J)
DO 60 J=1,JM1

SUMVAL(J) =0.
DO 40 K=1,KMAX
IF(H(K, J) .EQ.2)THEN
SUMVAL(J) =SUMVAL(J) +VAL(K)

ENDIF
4 CONTINUE

DO 50 1=1, IMAX
S(I, J) =SURV(I, J) **NP(J)
MU(I, J) =TH(I, J) *MEAN(I) *SUMVAL(J)

50 CONTINUE
6 CONTINUE

DO 70 1=1, IMAX
MU(I, JMAX) =TH(I, JMAX) *MEAN(I) *VAL(KMAX+1)

7 CONTINUE

C ++++++++++REMOVE COMMENT TO WRITE S AND MU TO SCREEN++++
C DO 75 1=1, IMAX
C WRITE(6,80) (S(I, J) , J=l, JM1)
C 75 CONTINUE
C WRITE (6, 80)
C 80 FORMAT (10F8. 4)
C DO 85 1=1, IMAX
C WRITE(6, 90) (MU(I, J) , J=l, JMAX)
C 85 CONTINUE
C WRITE (6, 90)
C 90 FORMAT (10F8 .4)
C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C INPUT SWEEP TIME CONSTRAINT
100 WRITE (6,*) 'INPUT TIME, OR FOR MAIN MENU: '
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READ ( 5 , * ) TLIM
WRITE (6,*)
IF (TLIM. LE. 0) RETURN
MINH=MAXINT
DO 110 J=1,JM1

IF (HOUR (J) .LT.MINH)THEN
MINH=HOUR(J)
ENDIF

110 CONTINUE
IF (TLIM . LT . MINH) THEN
WRITE (6, 12 0) MINH

120 FORMAT ('TIME TOO SMALL, NEED AT LEAST ' , F6 . 2
,

' HOURS!')
GO TO 100

ENDIF

C ESTIMATE TIME FOR EXHAUSTIVE SEARCH BASED ON POLYNOMIAL
C APPROXIMATION FOR SCENARIO WITH 7 SWEEP TYPES AND A MEAN
C HOUR (J) OF 48 .6

C CONVERT CASE SCENARIO AND FLAG IF < 1 MIN
OPTYPE=0
AVGH=0
DO 130 J=1,JM1
AVGH=AVGH+HOUR ( J)

13 CONTINUE
TCONV= (4 8.6/AVGH) *TLIM*JM1
EST= ( . 0003*TCONV*TCONV) - ( . 22*TCONV) +40

.

IF(JM1.LE.7) THEN
I F ( TCONV . LT . 3 7 5 . . OR . JM1 . LT . 3 ) THEN
OPTYPE=l
ELSE
EST=EST** (JM1/7.

)

ENDIF
ELSE
EST= (EST* (48.6/AVGH) +JM1) *+ ( JMl/7 .

)

ENDIF
I F ( OPTYPE . EQ . ) THEN
IF(EST.LE.l. )THEN
OPTYPE=l
ENDIF

ENDIF
I F ( OPTYPE . EQ . 1 ) THEN
WRITE ( 6, *) 'EXHAUSTIVE SEARCH IN < 1 MINUTE'
ENDIF

C ++++++REMOVE COMMENT TO SKIP AUTO EXHAUSTIVE SEARCH++++++
C OPTYPE=0
C +++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C SELECT OPTIMIZATION METHOD
I F ( OPTYPE . EQ . ) THEN
WRITE (6, 14 0) EST

14 FORMAT (' EXHAUSTIVE SEARCH IN ABOUT ' , F7 . 2
,

' MINUTES')
WRITE (6,*)' CHOOSE: OPTIMIZE(O), EXHAUSTIVE SEARCH (1)'
READ ( 5

, * ) OPTYPE
ENDIF

I F ( OPTYPE . EQ . 1 ) THEN
WRITE (6 ,*) 'EXHAUSTIVE SEARCH'

56



CALL EXH(S,MU,TLIM, TOTRUN)
ELSE
WRITE (6,*) 'LOCAL OPTIMUM'
CALL LOPT(S,MU,TLIM,TOTRUN)

ENDIF
FLAG=0

C ++++++++REMOVE COMMENT FOR KATZ SIT++++++++++++++++++++++++++
C FLAG=1
C +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

150 CALL F(TOTRUN,NP,TH, SURV, KZA, KZB, MEAN, JM1,FL&G
+, LOSS, COST, SIT, Q, HUNT)
TIME=0
DO 160 J=1,JM1
TIME=TIME+TOTRUN(J) *HOUR(J)

16 CONTINUE
TIME=TIME+HUNT*HT
WRITE (6, 170) TIME, SIT, COST

170 FORMAT (' THEORETICAL RESULTS ARE TIME (HRS) :

'
, F8 . 2

,
' SIT:',F6.4,

+' COST:
'
,F8.4)

WRITE ( 6 , *
)

' AVERAGE LOSSES NEXT :

'

WRITE (6, 180) (NR(K) , LOSS (K) , K=1,KMAX)
180 FORMAT (5 (A7, '

:

'
,F6.2,2X)

)

TMP=0
I F (OPTYPE . EQ . ) THEN
WRITE (6,*) 'FURTHER SIMULATED ANNEALING MAY IMPROVE COST

'

WRITE (6, *) 'CHOOSE: QUIT(0), S IMULTED ANNEALING (1) '

READ ( 5 , * ) TMP
IF(TMP.EQ.1)THEN
WRITE (6,*) 'SIMULATED ANNEALING'
CALL SIM(S,MU,TLIM,TOTRUN,SEED)

GO TO 15
ENDIF

ENDIF
GO TO 100
END

SUBROUTINE F(
I TOTRUN , NP , TH , SURV , KZA , KZB , MEAN , JM1 , FLAG
O , LOSS, COST, SIT, Q, HUNT)
IMPLICIT NONE
INTEGER*4 01,02,04
PARAMETER (01=10, 02=9, 04=8)
REAL*4 KZA(Ol) , KZB (01) ,A(01,02) ,B(01,02) ,AF(01,02) , WIDTH , TR , HUNT
+ ,BF(01,02) , HOUR (02) , SURV (01, 02) ,SIG(02) , FAC, TMP, VAL (04

)

+ ,ACT(OD ,TH(01,02) ,HT
REAL*4 LOSS (04) , COST, SIT, KILL (02 ) ,Q(02) , MEAN (01)
CHARACTER NM (Ol) *7 , NS (02 ) *8 , NR (04) *7
INTEGER*4 IMAX, JMAX, KMAX, J, JM1 , TOTRUN (02 ) , FLAG
+ ,IND(02) ,SEQ(02) ,H(04,02) , I , K, JP, R, NP (02)
COMMON A, B , AF , BF , HOUR , ACT , WIDTH , TR , S IG , VAL , HT
+ , SEQ , IMAX , JMAX , KMAX , IND ,

H

+ ,NM,NS,NR
COST=0.
HUNT=0.
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DO 5 K=1,KMAX
LOSS (K) =0.

5 CONTINUE
DO 8 J=1,JM1

8 KILL (J) =0
DO 10 1=1, IMAX

10 Q(I)=1.
DO 40 JP=1,JM1
J=SEQ(JP)

C CALCULATE LETHAL HITS ON TYPE J SWEEPS
R=TOTRUN (J) *NP (J)

DO 20 1=1, IMAX
FAC=SURV(I, J) **R
TMP=MEAN(I) *Q(I) * (1. -FAC)
IF(IND(J) . EQ . ) HUNT=HUNT+TMP
KILL (J) =KILL(J) +TH(I, J) *TMP
Q(I)=Q(I)*FAC

2 CONTINUE
C TRANSLATE SWEEP KILLS TO RESOURCE KILLS

DO 3 K=1,KMAX
IF (H (K, J) . EQ . 2 ) THEN

LOSS (K) =LOSS (K) +KILL (J)

COST=COST+VAL (K) *KILL (J)

ENDIF
3 CONTINUE
4 CONTINUE
C CALCULATE SIT

SIT=0.
DO 50 1=1, IMAX

TMP=TH(I, JMAX) *Q(I)
SIT=SIT+MEAN(I) *TMP

50 CONTINUE

IF (FLAG. EQ.l) THEN
C CALCULATE SIT USING KATZ GENERATING FUNCTION

SIT=1.
DO 60 1=1, IMAX

TMP=TH(I, JMAX) *Q(I)
FAC=KZB ( I

)

IF(ABS (FAC) .GT. .001) THEN
SIT=SIT* (1+FAC*TMP/ (1 . -FAC) ) ** (-KZA(I) /FAC)

ELSE
SIT=SIT*EXP (-KZA(I) *TMP)

ENDIF
6 CONTINUE

SIT=1. -SIT
ENDIF
COST=COST+VAL (KMAX+1) *SIT
END
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APPENDIX D. EXHAUSTIVE SEARCH SUBROUTINE

SUBROUTINE EXH

(

I S,MU,TLIM
U , TOTRUN)
IMPLICIT NONE

C LIMITS ON MINE TYPES, SWEEP TYPES, MINES, RESOURCES, TRACKS
INTEGER*4 01,02,04,05
PARAMETER (01=10 , 02=9 , 04=8 , 05=4 0)

REAL*4 A (01, 02) ,B(01,02) ,AF(01,02) , WIDTH, TR
+ ,BF(01,02) , HOUR (02) , SIG(02) , COST, TIME, HT
+ ,S(01,02) ,BEST,ACT(01) , TLIM, MU (01, 02) ,VAL(04)
CHARACTER NM (01) *7 , NS (02 ) *8 , NR (04 ) *7
INTEGER*4 IMAX, JMAX, KMAX, JM1 , MAXRND, X (02

)

+ , IND(02) ,SEQ(02) , H (04,02) , J, JP, TOTRUN (02)
COMMON A , B , AF , BF , HOUR , ACT , WIDTH , TR , SIG , VAL , HT
+ ,SEQ, IMAX, JMAX, KMAX, IND,H
+ ,NM,NS,NR

JM1=JMAX-1
C MAXROUND GIVES THE USER AN ESTIMATION OF PROGRESS

MAXRND=INT (TLIM/HOUR ( JM1) ) +1
C INTIALIZE RUNS TO FOR ALL SWEEP TYPES

DO 10 J=1,JM1
TOTRUN (J) =0

10 X(J)=0
C INITIALIZE BEST, THE MINIMUM COST

CALL NF1(X,S,MU,BEST)
J=l
TIME=0

40 X(J)=X(J) +1
. TIME=TIME+HOUR(J)

IF (TIME . GT . TLIM) THEN
X(J)=0
J=J+1
IF(J.GT. JMDTHEN
GO TO 50
ELSEIF (J . EQ . JM1 ) THEN

C ++++++REMOVE COMMENT TO WATCH ROUNDS COMPLETE++++++++++++++
C WRITE (6,*) 'FINISHED ROUND ' ,X(J)+1,' OF ', MAXRND
C +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

ENDIF
C PREVENT ROUNDOFF ACCUMULATION IN TIME BY AVOIDING SUBTRACTION

TIME=0
DO 2 JP=J,JM1

20 TIME=TIME+X(JP) *HOUR(JP)
GO TO 4

ELSE
CALL NF1(X,S,MU,C0ST)
IF (BEST . GT . COST ) THEN
BEST=COST
DO 3 JP=1,JM1

30 TOTRUN (JP) =X(JP)
ENDIF
J=l
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GO TO 4

ENDIF
5 CONTINUE

END

SUBROUTINE NF1

(

I TOTRUN,S,MU
O , COST)
IMPLICIT NONE
INTEGER* 4 01,02,04
PARAMETER (01=10 , 02=9 , 04=8)
REAL*4 A(01,02) ,B(01,02) ,AF(01,02) , WIDTH, TR,SP
+ ,BF(01,02) ,H0UR(02) ,SIG(02) ,MU(01,02)
+ ,ACT(01) ,HT,C0ST,Q(01) , S (01,02) ,VAL(04)
CHARACTER NM (01) *7 , NS (02) *8 , NR (04) *7
INTEGER* 4 IMAX, UMAX, KMAX, TOTRUN (02

)

+ ,IND(02) ,SEQ(02) , H (02 , 04) , I , JP, LJ
COMMON A , B , AF , BF , HOUR , ACT , WIDTH , TR , S IG , VAL , HT
+ , SEQ, IMAX, JMAX,KMAX, IND,H
+ ,NM,NS,NR

COST=0.
DO 150 1=1, IMAX

Q(D=1.
15 CONTINUE

DO 155 JP=2,JMAX
LJ=SEQ(JP-1)
DO 160 1=1, IMAX
SP=S(I,LJ) **TOTRUN(LJ)
COST=COST+ (MU(I,LJ) *(Q(I)*(1-SP)))
Q(I)=Q(I)*SP

16 CONTINUE
15 5 CONTINUE

DO 170 1=1, IMAX
COST=COST+ (MU ( I , JMAX) *Q ( I ) )

170 CONTINUE
END
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APPENDIX E. LOCAL OPTIMIZATION SUBROUTINE

SUBROUTINE LOPT

(

I S,MU,TLIM
U , TOTRUN)
IMPLICIT NONE

C LIMITS ON MINE TYPES, SWEEP TYPES, MINES, RESOURCES, TRACKS
INTEGER*4 01,02,04,05
PARAMETER (01=10 , 02=9 , 04=8 , 05=4 0)

REAL*4 A (01, 02) , B (01,02) ,AF(01,02) , WIDTH, TR
+ ,BF(01,02) ,H0UR(02) ,SIG(02) ,COST,HT
+ , ACT (01) ,TMPC,VAL(04) ,S (Ol,02) ,MU(01,02)
+ ,TOTIME,TLIM, PERTIME, PERBANG, SPECMUL
+ , BESTBANG , OVERTIME , PERBANG2 , BESTBANG2 , TIMEFAC
CHARACTER NM (01) *7 , NS (02) *8 , NR (04) *7
INTEGER*4 IMAX, JMAX, KMAX, JM1 , FEAS , BESTJ
+ , IND(02) ,H(04,02) , J , TOTRUN ( 02 ) ,BESTRUN(02)
+ , TRIAL , BESTJD , BESTJDD , BESTJDD1 , HOLDD , MINUSRUN
+ , HOLDDD , H0LDDD1 , HOLD , JP , FLAG , FLAG3 , FLAG2 , SEQ (02

)

COMMON A , B , AF , BF , HOUR , ACT , WIDTH , TR , SIG , VAL , HT
+ , SEQ , IMAX , JMAX , KMAX , IND ,

H

+ ,NM,NS,NR

JM1=JMAX-1
FEAS=0

C CALCULATE INITIAL TOTAL TIME
TOTIME=0.
DO 10 J=1,JM1
TOTIME=TOTIME+TOTRUN (J) *HOUR (J)

10 CONTINUE

C CHECK TO SEE IF INITIAL PLAN IS FEASIBLE
C AND IF NOT GET A FEASIBLE PLAN
2 IF(TOTIME.LE.TLIM)THEN

ELSE
PERTIME=TLIM/ (REAL(JMl)

)

TOTIME=0.
DO 3 J=1,JM1

TOTRUN(J)=INT(PERTIME/HOUR(J)

)

TOTIME=TOTIME+HOUR (J) *TOTRUN (J)

3 CONTINUE
ENDIF
TOTRUN (JMAX) =1

C INITIALIZE TMPC, THE MINIMUM COST
CALL NF1 (TOTRUN , S , MU , TMPC

)

C +++++++REMOVE COMMENT TO WRITE INTIAL PLAN TO SCREEN++++++++++
C WRITE (6, *)' INITIAL PLAN'
C WRITE (6, *) "TIME =

'
, TOTIME

C WRITE (6,*) (TOTRUN (J) ,J=1, JMAX)
C WRITE(6,*) (HOUR(J) , J=l, JM1)
C WRITE ( 6, *) 'COST = ' , TMPC
C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C SET INITIAL BEST RUNS
DO 40 J=1,JMAX

BESTRUN (J) =TOTRUN (J)
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4 CONTINUE
PERBANG=0

.

PERBANG2=0

.

TRIAL=0
SPECMUL=0.

C BEGIN LOCAL SEARCH
50 FLAG=0

FLAG2=0
FLAG3=0
TRIAL=TRIAL+1
BESTBANG=0.
BESTBANG2=-1.

C SET TRIAL BEST RUNS
TOTIME=0
DO 6 J=1,JM1

TOTRUN (J) =BESTRUN (J)

TOT IME =TOT IME +TOTRUN (J) *HOUR (J)

6 CONTINUE
C SET TRIAL BEST COST

CALL NF1 (TOTRUN, S,MU, TMPC)

C SET SPECIAL MULTIPLIER FOR CASES OF IMPROVED
C COST THROUGH DECREASE IN SWEEP EFFORT

IF(TOTIME.GT. 0)THEN
SPECMUL=TMPC/TOTIME

ELSE
SPECMUL=0.
ENDIF

C +++++++REMOVE COMMENT TO WRITE TRIAL RESULTS TO SCREEN+++++
C WRITE ( 6, *) 'TRIAL # ', TRIAL
C WRITE ( 6, *) 'TIME =

'
, TOTIME

C WRITE (6,*) (TOTRUN ( J) ,J=1,JMAX)
C WRITE (6,*) 'CURRENT BEST COST = ' , TMPC
C+++++++++++++++++++++++ ++++++++++++++++++++++++++ +++++++++++

DO 90 J=1,JM1

C RESET RUNS AND TIME TO LAST BEST
TOTIME=0
DO 70 JP=1,JM1

TOTRUN (JP) =BESTRUN ( JP)
TOTIME=TOTIME+HOUR ( JP) *TOTRUN ( JP)

7 CONTINUE

C INCREASE SWEEP RUN J BY 1

TOTRUN ( J ) =TOTRUN ( J ) +

1

TOTIME=TOTIME+HOUR (J)

C CHECK IF FEASIBLE
IF (TOTIME . LE . TLIM) THEN
CALL NF1 (TOTRUN, S,MU, COST)

C INCREASE IN TIME W/O A SWAP
C CHECK IF BETTER THAN BEST BANG FOR
C THE BUCK

IF ( COST . LT . TMPC ) THEN
PERBANG= (TMPC -COST) /HOUR (J)
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IF ( PERBANG . GT . BESTBANG) THEN
BESTBANG=PERBANG
BESTJ=J
HOLD=TOTRUN(J)
FLAG=1
FLAG2=0

ENDIF

C WHEN NOT BETTER TRY DECREASING SWEEP RUN
ELSEIF(TOTRUN(J) .GT.1)THEN

TOTIME=TOTIME-2*HOUR (J)

TOTRUN(J) =TOTRUN(J) -2
CALL NF1 (TOTRUN,S,MU,COST)

C DECREASE IN TOTIME W/O A SWAP
C AND CHECK IF BETTER

IF (COST . LT . TMPC) THEN
PERBANG2=TMPC-COST+ (HOUR (J) *SPECMUL)
IF ( PERBANG2 . GT . BESTBANG2 ) THEN
BESTBANG2=PERBANG2
FLAG3=1
BESTJDD=J
HOLDDD=TOTRUN (J)

C SINCE NO SWAP LET SECOND CHANGE REPEAT
C FIRST CHANGE

HOLDDDl=TOTRUN (J)

BESTJDD1=J
ENDIF

ENDIF
ELSE
GO TO 90
ENDIF

C WHEN NOT FEASIBLE
ELSE

C COMPUTE AMOUNT OF INFEASIBILITY
OVERTIME=TOTIME-TLIM

C TRY REDUCE OTHER SWEEP RUNS AND
C CHECK IF A BETTER PLAN

DO 80 JP=1,JM1

C FOR OTHER SWEEPS COMPUTE RUNS NEED TO
C REDUCE TO MAKE FEASIBLE

IF(JP.NE.J)THEN
MINUSRUN=1+INT (OVERTIME/HOUR (JP)

)

C WHEN ABLE TO REDUCE REQUIRED RUNS CHECK COST
C OF PLAN

IF(TOTRUN(JP) .GE.MINUSRUN)THEN
TOTRUN ( JP) =TOTRUN ( JP) -MINUSRUN
CALL NF1 (TOTRUN, S,MU, COST)

C W/SWAP
C CHECK IF BETTER

IF ( COST . LT . TMPC ) THEN
TIMEFAC=HOUR ( J) -MINUSRUN*HOUR ( JP)
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C DECREASE IN TIME W/SWAP
C WHEN BETTER AND TOTIME DECREASES (OR UNCHANGED) SET UP
C BEST OF BEST CHECK

IF(TIMEFAC.LE. ) THEN
PERBANG2=TMPC-COST- (TIMEFAC*SPECMUL)
IF (PERBANG2 . GT . BESTBANG2 ) THEN
FLAG3 = 1

BESTBANG2=PERBANG2
BESTJDD1=JP
BESTJDD=J
HOLDDDl=TOTRUN ( JP)
HOLDDD=TOTRUN (J)

ENDIF

C INCREASE IN TIME W/SWAP
C WHEN TOTIME INCREASES DO A STANDARD CHECK
C OF BEST

ELSE
PERBANG= (TMPC- COST) /TIMEFAC
IF ( PERBANG . GT . BESTBANG) THEN
FLAG2=1
FLAG=0
BESTBANG=PERBANG
BESTJ=J
BESTJD=JP
HOLD=TOTRUN(J)
HOLDD=TOTRUN ( JP)
ENDIF

ENDIF
ENDIF

ENDIF
ENDIF

8 CONTINUE
ENDIF

90 CONTINUE
IF ( FLAG3 . EQ . 1 ) THEN
BESTRUN (BESTJDD) =HOLDDD
BESTRUN(BESTJDDl) =HOLDDDl
GO TO 50
ELSEIF ( FLAG2 . EQ . 1 ) THEN
BESTRUN (BESTJ) =HOLD
BESTRUN (BESTJD) =HOLDD
GO TO 50
ELSE
IF(FLAG.EQ.1)THEN
BESTRUN (BESTJ) =HOLD
GO TO 50

ELSE

C SET TOTRUNS TO BEST AND
C GET FINAL BEST TIME

TOTIME=0
DO 100 J=1,JM1

TOTRUN (J) =BESTRUN (J)

100 CONTINUE
ENDIF

ENDIF
END
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APPENDIX F. SIMULATED ANNEALING SUBROUTINE

SUBROUTINE SIM(
I S,MU,TLIM
U ,TOTRUN,SEED)
IMPLICIT NONE

C LIMITS ON MINE TYPES, SWEEP TYPES, MINES, RESOURCES, TRACKS
INTEGER*4 01,02,04,05
PARAMETER (01=10,02=9,04=8,05=4 0)

REAL*4 A (01, 02) ,B(01,02) ,AF(01,02) , WIDTH, TR, TLIM
+ ,BF(01,02) ,H0UR(02) ,SIG(02) , COST, HT, TMPT
+ , ACT (01) ,TMPC,VAL(04) ,TOTIME,S (01,02) , PNLTY
+ , CHAMP , R, S I ZEFAC, MINPER, MCNT, TEMP, TEMPI , ALFA, TMP
+ , DELTA, SIGN, MPROB , PERACPT, OVERTIME , MU (01 , 02

)

CHARACTER NM (01) *7 , NS (02 ) *8 , NR (04) *7
INTEGER*4 IMAX, JMAX, KMAX, JM1 , SCNT, MAXINT
+ , IND(02) ,SEQ(02) , H(04,02) , J, TOTRUN (02 ) , TRIAL
+ ,L,CNT,N, TRACK, PLAN, DOWNJ (02) , SEED, PICKJ, U (05)
+ ,CHAMPRUN(02) ,TMPRUN(02) , FROZ ,

K

COMMON A , B , AF , BF , HOUR , ACT , WIDTH , TR , S IG , VAL , HT
+ , SEQ, IMAX, JMAX, KMAX, IND,H
+ ,NM,NS,NR
DATA MAXINT /2147483647/
JM1=JMAX-1

C GET INITIAL TIME AND COST
C AND SET PRESENT AND CHAMPION VALUES

TMPT=0.
DO 10 J=1,JM1

TMPRUN (J) =TOTRUN (J)

CHAMPRUN (J) =TOTRUN (J)

TMPT=TMPT+TMPRUN (J) *HOUR (J)

10 CONTINUE
TMPRUN (JMAX) =1
CHAMPRUN (JMAX) =1

CALL NF1 (TOTRUN, S,MU, COST)

TMPC=COST
CHAMP=COST

C +++++++REMOVE COMMENT TO WRITE INTIAL PLAN TO SCREEN++++++
C WRITE (6,*) 'SIM ANNEAL INITIAL PLAN'
C WRITE (6, *) 'TIME = , TMPT
C WRITE (6, *) (TMPRUN (J) ,J=1,JM1)
C WRITE (6, *) 'COST = • , TMPC
C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C SIMULATED ANNEALING
C SET VARIOUS PARAMETERS

C COOLING RATIO: DETERMINES THE RATE AT WHICH
C THE CHANCE OF MOVING TO A WORSE PLAN DECREASES

R=0.95

C FROZEN: A COUNTER IS INCREMENTED CONDITIONALLY
C EACH TIME A TEMPERATURE RUN IS COMPLETED. WHEN
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C THE COUNTER EQUALS FROZEN THE ANNEALING PROCESS
C TERMINATES.

FROZ=5
SCNT=0

C MINPERCENT: AT COMPLETION OF A TEMPERATURE
C IF THE PERCENTAGE OF ACCEPTED MOVES
C IS <= MINPERCENT AND NO NEW CHAMPION PLAN
C WAS FOUND THEN AN INCREMENTAL MOVE TOWARD
C FROZEN OCCURS

MINPER=3

.

MCNT=0.

C SIZEFACTOR: THIS IS MULTIPLIED
C BY THE SIZE OF THE NEIGHBORHOOD TO DETERMINE THE
C NUMBER OF MOVES (NEW PLANS) THAT WILL BE PROPOSED AT
C CURRENT TEMPERATURE. SIZEFAC*N=L (TEMP. LENGTH)

.

SIZEFAC=25.

C TEMPERATURE: THIS IS THE STARTING TEMPERATURE WHICH
C IS SUBSEQUENTLY REDUCED AT THE AND OF EACH (TEMPERATURE
C LENGTH) NUMBER OF PROPOSED MOVES. (INITIALLY SET AS
C THE SUM OF ALL VALUES OF SWEEP TYPES AND HVU

TEMP=0.
DO 15 K=1,KMAX

TEMP=TEMP+VAL (K)

15 CONTINUE
TEMP=TEMP+VAL (KMAX+1)

C ALFA: THIS IS A PENALTY FACTOR APPLIED TO COST OF PLANS
C THAT ARE INFEASIBLE. THE AMOUNT OF INFEASABILITY (OVERTIME)
C SQUARED TIMES ALFA IS ADDED TO THE COST.

ALFA=.0005

TRIAL=0

C BEGIN PROCESS AND CONTINUE WHILE NOT FROZEN
20 IF(SCNT.LT.FROZ)THEN

C ++++++++REMOVE COMMENT TO WATCH TEMPERATURE DECREASE++++++
C WRITE (6,*) 'TEMP = ', TEMP
C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C RESET TEMPORARY AND TOTAL RUNS TO CHAMP
C FOR START OF NEW TRIAL

TMPT=0
TMPC=CHAMP
DO 30 J=1,JM1

TOTRUN (J) =CHAMPRUN (J)

TMPRUN ( J) =CHAMPRUN (J)

TMPT=TMPT+TMPRUN (J) *HOUR (J)

3 CONTINUE

C DETERMINE CURRENT NEIGH (N) SIZE AND COMPUTE TEMP LENGTH (L)

N=JM1*2

.

L=INT(N*SIZEFAC)

MCNT=0.
TRACK=0
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C BEGIN BEGIN BEGIN RUN AT CURRENT TEMPERATURE
DO 60 PLAN=1,L

C DETERMINE NEW NEIGH SIZE AND STORE J'S FOR WHICH
C REDUCING THE NUMBER OF RUNS IS FEASIBLE

CNT=0
N=0
DO 40 J=1,JM1
IF(TOTRUN(J) .GT.0)THEN
CNT=CNT+1
DOWNJ(CNT) =J
ENDIF

4 CONTINUE
N=JM1+CNT

C GET A RANDOM NEIGHBOR OF CURRENT PLAN BY GENERATING
C A RANDOM NUMBER BETWEEN 1 AND N

CALL RAND (1,U, SEED)
TMP=1. 0*MAXINT
TMP=(U(1) -1) /TMP
PICKJ=1+ (TMP*N)

I F ( PICKJ . LE . JM1 ) THEN
TOTRUN(PICKJ) =TOTRUN( PICKJ) +1
SIGN=1.

ELSE
PICKJ=PICKJ-JM1
PICKJ=DOWNJ (PICKJ)
TOTRUN (PICKJ) =TOTRUN( PICKJ) -1
SIGN=-1.0

ENDIF

C DETERMINE IF NEW PLAN IS FEASIBLE, AND IF
C NOT COMPUTE THE PENALTY TO APPLY TO ITS COST

TOTIME=TMPT+ (SIGN*HOUR (PICKJ)

)

IF (TOTIME . GT . TLIM) THEN
OVERTIME=TOTIME - TLIM
PNLTY=ALFA*OVERTIME *OVERTIME

ELSE
PNLTY=0

.

ENDIF

C GET COST WITH NEW PLAN
CALL NF1 (TOTRUN, S,MU, COST)
COST=COST+PNLTY
DELTA=COST-TMPC

C WHEN DELTA VERY NEAR ZERO SET TO CONSTANT
IF (DELTA. LT . . 0001) DELTA= . 0001

C CHECK IF PROPOSED PLAN'S COST IS BETTER THEN CURRENT
C PLAN'S COST AND IF SO ACCEPT IT.

IF (COST . LE . TMPC) THEN
TMPC=COST
TMPRUN ( PICKJ ) =TOTRUN ( P ICKJ

)

TMPT=TOTIME
MCNT=MCNT+1

C WHEN PROPOSED PLAN'S COST IS WORSE ACCEPT IT
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C WITH SOME PROBABILITY
ELSE
DELTA=DELTA* 100 0.

TEMP1=TEMP*1000 .

MPROB=EXP (-1.0 *DELTA/TEMP1

)

MPROB=MPROB*10 00

.

CALL RAND (1,U, SEED)
TMP=1. 0*MAXINT
TMP= (U(l) -1) /TMP
TMP=TMP*10 00

.

IF ( TMP . LE . MPROB ) THEN
TMPC=COST
TMPRUN(PICKJ) =TOTRUN(PICKJ)
TMPT=TOTIME
MCNT=MCNT+1
ENDIF

ENDIF

C WHEN PROPOSED PLAN IS ACCEPTED AND FEASIBLE
C COMPARE TO BEST PLAN AND UPDATE BEST PLAN IF
C PROPOSED PLAN IS BETTER

IF(TMPRUN(PICKJ) . EQ . TOTRUN (PICKJ) ) THEN
IF (TMPT . LE . TLIM) THEN
IF ( TMPC . LT . CHAMP ) THEN
CHAMP=TMPC
DO 50 J=1,JM1
CHAMPRUN ( J) =TMPRUN (J)

50 CONTINUE
TRACK=1
ENDIF

ENDIF
ENDIF

C RESET RUNS AND TIME IN CASE PROPOSED PLAN
C WAS NOT ACCEPTED

TOTRUN (PICKJ) =TMPRUN (PICKJ)
TOTIME=TMPT

6 CONTINUE

C COMPLETED COMPLETED COMPLETED CURRENT TEMPERATURE
TRIAL=TRIAL+1

C ++++++REMOVE COMMENTS TO WRITE TRIAL RESULTS TO SCREEN++++++
C WRITE (6,*) 'TRIAL = ', TRIAL
C WRITE (6,*) (TMPRUN(J) , J=l, JMAX)
C WRITE (6,*) 'CURRENT PLANs TIME = ' , TMPT
C WRITE (6,*) 'CURRENT PLANs COST = '

, TMPC
C WRITE (6,*) 'NUMBER OF ACCEPTED PLANS = ' , MCNT
C +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C CALCULATE PERCENT OF ACCEPTED PLANS
PERACPT=100*MCNT/L

C CHECK IF THIS TEMPERATURE FOUND A NEW BEST PLAN
C AND IF SO THEN RESET COUNTER FOR PROCESS TO

IF (TRACK. EQ. 1)THEN
SCNT=0

C +++++++++REMOVE COMMENT TO INDICATE IMPROVEMENT FOUND++++++++

68



WRITE ( 6 , * )
' ** IMPROVING* *

'

C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C OTHERWISE IF THE PERCENTAGE OF ACCEPTED PLANS
C IS <= MINPER INCREMENT PROCESS COUNTER

ELSEIF ( PERACPT . LE . MINPER) THEN
SCNT=SCNT+1

ELSE
ENDIF

C COOL TEMPERATURE TO NEXT LEVEL
TEMP=R*TEMP

GO TO 20
ENDIF

C ANNEALING RUN COMPLETED

C CHECK FINAL ACCEPTED PLAN FROM ANNEALING
C RUN FOR FEASIBILITY. IF INFEASIBLE INCREASE
C PENALTY AND DO ANOTHER ANNEALING RUN

I F ( TMPT . GT . TLIM ) THEN
SCNT=FROZ-l
ALFA=ALFA*2

.

GO TO 2

ENDIF

C SET TOTRUN TO CHAMP
DO 100 J=1,JM1

TOTRUN (J) =CHAMPRUN (J)

100 CONTINUE
END
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