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ABSTRACT

Matched-Field Processing (MFP) and Matched-Mode Processing (MMP)

are two popular techniques for passively localizing an underwater acoustic

emitter in range and depth. One major drawback of these techniques has been

their sensitivity to uncertainty concerning the acoustic environment. Several

methods of addressing this phenomenon have been proposed in the literature,

with varying degrees of success. Achieving high-quality location estimates

remains a problem except in simple range-independent experiments or

numerical simulations. In this study, we demonstrate an approach for robust,

accurate emitter localization in a highly range-dependent real environment

using MMP. The main factors contributing to successful localization are: 1) use

of the high-resolution Multiple Signal Classification (MUSIC) algorithm, which

performs well even when only a few robust modes can be obtained by mode

filtering; and 2) use of an acoustic propagation model incorporating mode

coupling, which is able to generate accurate replica fields in a strongly range-

dependent environment. A secondary objective of the study was to

demonstrate the application of higher-order statistical estimation techniques

to reduce noise effects. Our results indicate that these techniques show

unacceptable sensitivity to noise- and model-induced estimation errors and

require further refinement before they will be useful in the underwater acoustic

localization problem.
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I. INTRODUCTION

Throughout the history of anti-submarine warfare, there has been

great interest in the use of passive acoustic measurements to localize

submarines. Numerous methods of estimating the Direction-Of-Arrival

(DOA) of acoustic emissions from a target of interest have been developed

over the years for sonar applications. However, these techniques are

inherently incapable of directly determining the range and depth of a target

(emitter), although there are indirect means of determining range by

observing target DOA as a function of time. Because knowledge of range and

depth is so vital in military applications, there has been considerable interest

in developing techniques for direct determination of these parameters. One

such technique, which has attracted considerable attention in recent years, is

a generalization of DOA estimation known as Matched-Field Processing

(MFP), along with a variation on MFP known as Matched-Mode Processing

(MMP).

Because of the similarity between DOA estimation and MFP/MMP,

many of the techniques used in DOA estimation may be generalized for use in

MFP/MMP. Two of the most popular DOA estimation methods—Bartlett and

Minimum-Variance—have been studied extensively in the context of MFP

(although the Minimum-Variance method has not been addressed in MMP)

[Refs. 1, 2, 3, 4, 5, 6]. The MUSIC method has received extensive coverage in

the DOA estimation literature, but relatively scant attention in the MFP

literature [Refs. 7, 8, 9] and no attention in the MMP literature, possibly

because of a perception that it would not perform well in realistic underwater

acoustic environments.



One of the most noteworthy results from MFP/MMP studies to date is

the great sensitivity of the location estimates to uncertain knowledge of the

acoustic environment. Numerous researchers [Refs. 10, 11, 12, 13, 14, 15]

have studied this phenomenon and proposed various methods for addressing

it, with varying degrees of success. The problem remains an open issue.

Because of this sensitivity, and also because of the limited availability of real

data sets, most MFP/MMP research to date has involved either simple range-

independent experiments or numerical simulations.

The objectives of this dissertation are to:

• Demonstrate the application of MFP/MMP to experimental data

obtained in a strongly range-dependent environment during the

1992 Barents Sea Polar Front Experiment [Refs. 16, 17, 18, 19];

• Demonstrate that a coupled-mode propagation model is able to

model the acoustic fields used in MFP/MMP with sufficient

accuracy for high-quality localization estimates;

• Demonstrate that the high resolution of the MUSIC algorithm in

combination with MMP is able to produce accurate location

estimates in a realistic environment; and

• Demonstrate the application of higher-order statistics to the

MFP/MMP problem. Although such methods have received some

attention in the DOA estimation literature [Refs. 20, 21, 22], they

have not yet been applied to MFP/MMP.

Chapter II gives an overview of pertinent background material,

including DOA estimation algorithms, modeling of underwater sound



propagation, and MFP/MMP theory. In that chapter, we: describe three of the

most popular DOA estimation algorithms—the Bartlett, Minimum-Variance,

and MUSIC methods; review the modeling of the acoustic field via

decomposition into normal modes for both range-dependent and range-

independent environments; discuss the application of higher-order statistics

to DOA estimation; and derive the extension ofDOA estimation techniques to

MFP/MMP. Except for the portion regarding application of the MUSIC

algorithm and higher-order statistics to MMP, this chapter contains no

original material. Chapter III gives a brief overview of those features of the

Barents Sea Polar Front Experiment which are relevant to this dissertation,

including the physical characteristics of the channel and a description of the

emitter and receiver. Chapter IV provides additional information concerning

the data analysis procedure; it also presents and interprets the results of the

analysis. Chapter V gives the conclusions reached from the research and

proposes areas for further investigation.





II. BACKGROUND

This chapter provides the framework for our analytical approach. It

includes overviews of the following topics: DOA estimation fundamentals,

including an extensive description of the MUSIC algorithm; application of

higher-order statistics to DOA estimation; normal mode modeling of the

acoustic field; and theoretical foundations of MFP/MMP.

A. DOA ESTIMATION

One of the most fundamental parameters of interest in military

applications is the Direction-of-Arrival (DOA) corresponding to a target of

interest. This parameter is one of the primary outputs of virtually all military

radar and sonar systems. DOA may be expressed in terms of azimuth

(bearing) and/or elevation. Over the years, numerous techniques have been

developed for DOA estimation (for a good overview, see [Ref. 23] and

references therein); the most important of these techniques are discussed

briefly in this chapter. As we will see later, these techniques may be

generalized in a straightforward manner for use in Matched-Field Processing.

1. Signal Model

As is generally the case in signal processing algorithms, DOA

estimation techniques make certain assumptions about the signals being

processed. They assume, in particular, that the sound pressure field in the

underwater acoustic channel may be expressed as a plane wave (i.e., that the

surfaces of constant phase are planar). As we will see later, this assumption

is not true in general, but is useful in many cases of practical interest. We

will also assume that the signal is temporally narrowband with center

frequency ft); i.e., that amplitude and phase modulation do not introduce



appreciable amplitude and phase changes over the physical extent (length) of

the receiving array. If a signal does not satisfy this latter condition, the

signal may be decomposed via Fourier techniques into narrowband

components which do satisfy the condition. For the sake of generality, during

most of the background discussions, we will allow the number of emitters to

be arbitrary, even though the presence of a single emitter will be assumed

during all actual data analysis.

For mathematical convenience, we will conduct our analysis using the

complex envelope representation of the signal rather than the real (physical)

signal itself. Thus, if s(t) is the real signal, the corresponding analytic signal

or pre-envelope [Ref. 24] is given by

s(t) = s{t) + js(t),

where s(t) is the Hilbert transform of s(t),

The pre-envelope of a real bandpass signal at center frequency co may be

determined as follows [Ref. 25]

:

• Multiply the real signal s(t) by the complex carrier exp(j(Ot);

• Pass the resulting signal through a low-pass filter to remove the

component at twice the carrier frequency;

• Multiply the resulting baseband signal by the complex carrier.

All signals appearing in the sequel will be the pre-envelopes of real

narrowband signals unless otherwise indicated. The narrowband assumption



mentioned earlier is equivalent to requiring the complex pre-envelope of the

received signal to be of the form

s(t) = S
t
exp(jcat),

where the (complex) amplitude <S- is a slowly varying function of time, i.e.,

sm-sL-L)
\ v)

where I is the length of the array and v is the speed of sound.

The concept of an array response vector is one that arises often in DOA

estimation and MFP. To illustrate this concept, we consider an arbitrary

receiving array of N elements. We may represent the signal as an N-

dimensional, time-varying, complex vector whose components are the signals

at the individual array elements. For convenience, we will assume that only

the azimuth 6 of the target is of interest, although extension to include

dependence on elevation is straightforward. In DOA estimation, the array

response vector a(0) is defined to be the unit-normalized (i.e., length of

a(0)=l), noise-free, pressure field vector expected (based on the modeling

assumptions) at the receive array given that an emitter is at the angle 6. The

set of a vectors for all possible values of 6 is known as the array manifold.

More generally, a could be a function of parameters other than DOA as well.

For the simple case involving a single emitter, a receiving array of N

identical, omnidirectional elements in an arbitrary geometry and a

narrowband, plane-wave signal with center frequency co, a(0) may be

expressed as

a(0) = -

7
L[l e-

jmi ••• e-
janN

'>f,



where x
l
(a function of 6) represents the time delay seen by the incoming

plane wave between sensor i and sensor and superscript T denotes (non-

conjugate) matrix transpose. In the general case where d emitters are

present, the signal model used in DOA estimation is

p = As + n, (1)

where p = [p 1
(t) p2

(t) ••• pN (t)] and n = [n^t) n2 (t)
••• nN (t)] are

vectors whose elements are the received pressure and noise, respectively, at

each element of the array; s = [s^t) s2 (t)
• sd (t)] is the vector of signals

produced by the d emitters (sft^Sfixpijcot), with S
L
a complex amplitude,

because of the narrowband assumption); A = [a^) a(0
2 )

••• a(0d )J
is a

matrix whose columns are the array response vectors corresponding to the

DOAs of the d emitters; and t is time. Assuming that the signal and noise are

uncorrelated, the signal-plus-noise covariance matrix R
p

is then given by

R
p
= £[pp"]

= AR
S
A" +R n , (2)

where R
s
= E[ssH

]
and Rn = £j[nnH

]
are the signal and noise covariance

matrices, respectively, superscript H denotes Hermitian (conjugate)

transpose and E denotes statistical expectation. An estimate of R
p
derived

from the measured data is the fundamental quantity used in virtually all

DOA estimation algorithms studied to date.

2. Algorithms

Numerous signal processing algorithms have been studied in the

context of DOA estimation. Many are fairly obvious generalizations of

techniques used for estimating the spectra of time series.
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a. Weighted-sum beamforming

Weighted-sum beamforming (see, for example, [Ref. 26]) is the

most commonly used technique (in practice) for DOA estimation, and is used

in virtually all modern military radar and sonar systems. This technique is

analogous to the Finite Impulse Response (FIR) filters used in time-series

analysis. The output b(t) of the beamformer is simply a linear combination of

the signals received by the elements of the array,

b(t) =wH
p(t),

where w is the vector of weights. The weight vector w is chosen to satisfy a

statistical constraint which is appropriate for the given situation. The

expected value B of the output power of the beamformer is given by

B = E[\b(tf'] = w"R
p
w. (3)

A particular value for w generally produces high gain only in a single look

direction, i.e., for a single value of 6. In practice, multiple look directions are

of interest, so that multiple w vectors are required (this approach is

analogous to the use of a "bank" of matched filters in, for example, active

sonar). Thus, in general, both w and B are functions of 6. The value of 6 for

which B is maximized is taken as the estimated DOA of the emitter; this

value may be obtained by conventional one-dimensional search techniques.

The Bartlett beamformer is a special case of weighted-sum

beamforming in which the weight vectors w are simply the array response

vectors a for all look directions of interest. When the noise is spatially

homogeneous, it can be easily shown that the output of this beamformer has

the highest possible Signal-to-Noise Ratio (SNR) of any weighted-sum

beamformer. This beamformer is analogous to the periodogram [Ref. 271 used



in time-series analysis. Since for the Bartlett beamformer w=a(0), the

expected value of the output power of the beamformer is

B(0) = a"(0)R
p
a(0) (4)

and the DOA estimate is given by

= arg max aH (0)R
p
a(0).

The Minimum-Variance method (MVM), also (somewhat

misleadingly) known as the "Maximum Likelihood" (ML) beamformer [Refs.

28, 29] selects the beamformer weights to minimize the beamformer output

power, subject to the constraint of unity gain (i.e., zero distortion) in the

desired look direction 6. Formally, w is chosen to

minimize wHR
p
w

subject to wH
a(0) = 1.

The effect of this minimization is to produce the lowest array response at

directions that have the strongest signals. Thus, this method is useful in

reducing the effects of directional noise on beamformer performance. The

required weights may be easily shown (e.g., [Ref. 23]) (using the method of

Lagrange multipliers) to be

RMe)
w(e) = -77

&H(e)R-Mey

Substituting into (3) and simplifying gives a beamformer output power of

For a comparison of the performance of the Bartlett and MVM techniques,

see Lacoss [Ref. 29]

.
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b. MUSIC

The MUSIC (for MUltiple Signal Classification) method [Refs.

30, 31, 32] is one of the first and probably the most widely studied of a class

of techniques which address the DOA estimation problem from a geometric

perspective; such methods offer potentially large improvements in resolution

with respect to beamforming [Ref. 23]. Because MUSIC is central to the

investigations of this dissertation, a full discussion of it is provided in the

sequel. This discussion will attempt to develop an intuitive understanding of

the algorithm rather than to provide a rigorous proof of its methods.

Signal Subspace. Figure 1 is a geometric illustration of the

behavior of the received signal vector p(t) due to d emitters at various DOAs.

The coordinate axes represent the responses of the N sensors. The

components of the vector p are the outputs of the individual sensors and are

functions of time. As time progresses, the tip of p then sweeps out a curve as

shown in the figure. Due to obvious limitations, our illustrations can show at

most N=S and will show sensor outputs as real. These limitations will not

adversely affect the illustration of key concepts.

Sensor 3

Sensor 2

Sensor 1

Figure 1: Behavior of signal vector

11



Now consider an example involving a single emitter (<f=l; Figure

2). For this case, as time progresses, each component ofp is multiplied by the

same time-dependent phase factor. The (complex) magnitude of p changes,

but its direction does not. Therefore, the "curve" swept out by p in this case is

a straight line passing through the origin.

Sensor 3

p(*2)

P(*i)

Sensor 2

Sensor 1

Figure 2: Signal Subspace (d=l)

Next consider an example involving two emitters (d=2) at angles

d
x
and 62 (Figure 3). For this case, p is the vector sum of contributions from

the individual signals; specifically,

p = s
1
(*)a(0

1 ) + s2 (*)a(02 ). (6)

These contributions s-(£)a(0-) are vectors whose magnitude

varies with time, but whose direction is fixed by a(0,). Since the two vectors

are multiplied by different time-varying phase factors sft^Spxpijcot)

(provided that the slowly varying complex amplitudes S
t
are not perfectly

correlated), their sum p sweeps out a curve which is confined to a plane

passing through the origin.

12



In general, for d emitters, the tip of the received signal vector p

sweeps out a curve which is confined to a d-dimensional subspace of <p
w

. This

subspace is known as the signal subspace. Intuitively, then, the number of

emitters could be determined by measuring the dimension of the signal

subspace. We will show later how this can be done.

Sensor 2

Sensor 1

Figure 3: Signal Subspace (d=2)

Array Manifold. Figure 4 illustrates an array manifold, i.e.,

the locus of the array response vectors a(0) for all possible values of 6. Note

that, by definition, a is independent of time, so that time does not participate

in this illustration. In practice, it is not necessary to have an analytical

expression for a(6); we can instead determine it experimentally at a finite

number of points, store the results, and recall them when desired

(interpolating when necessary).

13



It may happen that the array manifold "runs over itself (i.e., the

mapping a(0) from the interval to 2n into §
N

is not one-to-one). In such a

case, the array is said to have an ambiguity. Such an ambiguity is not the

only kind possible. For example, when the a vectors corresponding to 3

different DOAs lie in a single plane, the array also has an ambiguity (for

reasons which may not be obvious at this point). In general, when the a

vectors corresponding to n+1 different DOAs lie in a subspace of dimension n

or less, the array is said to have a rank n ambiguity.

Sensor 3

Sensor 2

Sensor 1

Figure 4: Array manifold

DOA Determination. For the case of one emitter, it is clear

that the array response a corresponding to the emitter DOA lies in the (1-

dimensional) signal subspace illustrated in Figure 2. In order to determine

the DOA, we would observe the behavior of the signal vector p (if no noise

were present) to determine the signal subspace and find the single unit vector

that spans the subspace. This unit vector represents a point on the array

manifold corresponding to the angle of the emitter. We would then invert the

14



mapping a(0) (which is one-to-one unless the array has an ambiguity) to

determine the DOA 6.

Now consider the case of two emitters and recall that the signal

vector p is the sum of (vector) contributions from the individual emitters (6).

At any time t, these contributions are scalar multiples of the a vectors

corresponding to the two emitter DOAs. Thus, the signal subspace is spanned

by two vectors a(^) and a(0
2)
which correspond to the points where the array

manifold intersects the signal subspace (Figure 5). If the array has no

ambiguities, there is no third a vector that lies in the subspace. Thus, just as

in the case of one emitter, we can invert the a(0) mapping provided by the

array manifold to determine the DOAs (Figure 5).

Sensor 3

Sensor 2

Figure 5: DOA Determination for 2 emitters

In general, we observe the data vector p, determine the signal

subspace, find its intersection (d different a vectors) with the array manifold,

and invert the mapping a(0) to estimate the DOAs of the emitters. It is

apparent that, in general, this method requires the number of emitters d to

15



be fewer than the number of array elements N (if d>N, the entire array

manifold may lie within the signal subspace). Clearly, if the array manifold is

such that the a vectors corresponding to the emitter DOAs are not linearly

independent (array ambiguity), the signal subspace dimension is less than

the number of emitters. In such a case, the method described above fails to

give the correct number of emitters and fails to identify one or more of the

emitter DOAs. Such ambiguities can often be avoided by proper array design

(although sometimes physical constraints, such as in line arrays, preclude

such design).

Multipath. It is possible for the emissions from a single emitter

to arrive by two or more different paths (e.g., as a result of reflection from the

water surface, in the sonar case). To illustrate the effect of such a situation,

we consider the case of an array receiving signals from one emitter via two

different DOAs. In such a case, the two signals will exhibit perfect temporal

correlation (at least in theory). Recall that it is the independent variation

with time of the array output due to individual signals from different DOAs

that causes the signal vector to sweep out a two-dimensional subspace

(Figure 3). In the multipath case, however, the array no longer responds

independently to signals received from the two DOAs: the signal subspace is

one-dimensional. In addition, note that this signal subspace is not spanned by

any combination of vectors in the array manifold. Thus, the geometric

approach is incapable of dealing with perfectly coherent multipath.

Fortunately, such multipath is rarely, if ever, observed in real life. However,

the performance of most geometrically-based algorithms degrades rapidly as

the correlation between emitters (or multipath arrivals) approaches 1.

Noise. The above discussion assumes that no noise is present.

With noise present, the signal-plus-noise vector p sweeps out a curve that no

16



longer lies in the signal subspace. Thus, the simple techniques described are

not valid if noise is present.

Essentially, the technique described above for noise-free

conditions must be modified as follows. For simplicity, we will assume that

the noise is spatially isotropic and uncorrelated, so that (2) becomes

R
p
=AR

s
AH +<j%,

where IN is the NxN identity matrix and the covariance matrices Rs and R

represent theoretical, not estimated statistics. We now consider the following

eigenvalue problem:

R
p
e = Ae.

Since R
p

is Hermitian, the eigenvalues are real and the associated

eigenvectors may be selected to be orthonormal [Ref. 33] . Then,

= det[R
p
-AI Ar

]

= det[AR
s
AH -(X-g 2

)In \
(7)

Per the definition of the Nxd matrix A, the columns ofA are the a vectors

corresponding to the d emitters. As mentioned above, if the array has no

ambiguities, these a vectors are linearly independent and thereforeA has full

(column) rank d. The elements R
s
(ij) ofR

s
have the form r^S^*, where r

y
is a

correlation coefficient between the ith and yth signals and S
t
represents the

(complex) signal amplitude (not a function of time in this case) of the itb.

signal. Thus, the dxd matrix R
s
has full rank d unless one or more pairs of

emitters are perfectly correlated (in which case r
tj
=l for some i, j and

therefore the ith and jth columns are linearly dependent). Thus, assuming no

array ambiguities and less than perfectly correlated emitters, the first term

17



in equation (7) is an NxN matrix of rank d. That term therefore has d non-

zero eigenvalues v, and N-d zero eigenvalues. Since the eigenvectors of this

term are also eigenvectors of the second term (identity matrix), the

eigenvalues of the sum of the two terms in equation (7) are the sums of the

respective eigenvalues; i.e., the eigenvalues ofR
p
are

{Aj = {v
1
+ cr

2
,...,v

rf
+cr

2
,cr

2
,...,cT

2

}.

The eigendecomposition ofR
p
may thus be expressed as

R
p
= EAEH

= ESNSE*+<7
2
I„,

where E is the matrix of eigenvectors, A=diag(A,), Es contains the columns of

E corresponding to non-zero eigenvalues of AR
S
AH , and Ns=diag(V;). Now

consider the equality

ARSA"=ESN SE£. (8)

Obviously, both the dxd diagonal matrix Ns and the Nxd matrix Es have rank

d. Thus we see that the right hand side of (8) consists of a NxN matrix with

rank d, each of whose columns is a linear combination of the d columns ofEs .

Therefore, theN columns of the right hand side must span the same subspace

as the d columns of E s . Similarly, the columns of the left hand side of (8)

must span the same subspace as the d columns of A. Consequently, the

columns of Es must span the signal subspace (the subspace spanned by the

columns of A). In the presence of noise, then, the signal subspace may be

determined by performing an eigendecomposition. The N-d eigenvectors

corresponding to the zero eigenvalues of AR
8
AH span what is referred to as

the noise subspace (the orthogonal complement to the signal subspace). In the

case where the noise is not isotropic and spatially uncorrelated, a generalized
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eigendecomposition [Ref. 23] must be used; such a decomposition requires

that an estimate of the noise covariance be available. The existence of an

estimate of the noise covariance will not be assumed in the data analysis to

follow, so we will not address this generalized eigendecomposition further.

Obviously, there is some price to be paid for not incorporating the structure of

the noise covariance in our method; we expect this price to increase as signal-

to-noise ratio decreases.

In the real world, the covariance matrices are never known

exactly, but must be estimated from observations. In the data analysis to be

presented later, the following estimate of the covariance matrix will be used:

R
p
=PP*/L,

where L is the number of observations and P is an NxL matrix whose

columns are observations of the received signal p at successive times; i.e.,

p=[ptoiPfe);-ip(*L)]-

Because of estimation errors, the N-d noise eigenvalues of this estimated

covariance matrix will not have exactly the same value a2
, so that even the

number of emitters d cannot be estimated with certainty. For the purpose of

the present discussion, however, we assume that d is known. Estimates of the

signal subspace may then be obtained via the familiar Linear Least Squares

and Maximum Likelihood techniques [Ref. 23]. For the simple case of

Gaussian noise, these techniques give the same result, but one which is not

computationally feasible in most practical situations (since both involve a

global minimization over a space with dimension equal to the number of

emitters). The MUSIC algorithm discussed in the sequel arose out of the need

to reduce computational complexity.
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Estimating the Subspace Dimension. In an optimal

estimator, the problem of estimating the subspace dimension cannot be

decoupled from that of estimating the subspace itself. However, in the

interest of reducing computational load, we can estimate the dimension

separately. This feature of the MUSIC algorithm therefore causes it to be

suboptimal.

Estimating the Signal Parameters. As mentioned earlier, in

the presence of noise, we can no longer depend on precise intersections

between the signal subspace determined from the estimated covariance

matrix R
p
and the array response vectors corresponding to the signal DOAs.

To estimate these DOAs, we must therefore determine those a vectors which

are "closest" (in some sense) to the signal subspace. There are several

possible methods for doing this; we consider only the simplest method

(Conventional MUSIC) here.

Recall from the earlier discussion that when the theoretical (i.e.,

not estimated) covariance matrix R
p
is used to determine the signal and noise

subspaces, the array response vectors corresponding to the signal DOAs span

the signal subspace and are orthogonal to the noise subspace. Thus, the

squared length of the projection of an a vector onto the noise subspace, given

by

Length squared = aH (0)ENE£a(0),

will be zero when 6 is one of the emitter DOAs. However, because of

estimation errors (as well as because of inaccuracies in the signal model used

to determine a(0)), when the estimated covariance matrix R
p

is used to

determine the signal and noise subspaces (i.e., to determine EN ), this quantity

will generally not be zero for any a. We must therefore search the array
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manifold for the set of d array response vectors which result in the lowest

value for the quantity. An alternative method for accomplishing this is to

define the function

P» {e)
= *»(e)ENE»Na(ey

(9)

The estimates of the signal DOAs then correspond to the peaks of this

function. Although this function is similar in some respects to beamformer

output power functions such as that in (5), the peak heights of this function

do not necessarily provide any information about the power in their

respective components.

B. HIGHER-ORDER STATISTICS

In recent years, there has been increasing interest in the use of higher-

order (i.e., order greater than 2) statistics in signal processing. One reason for

this interest is that the statistics known as cumulants are identically zero for

Gaussian random variables, provided that the order of the cumulant is

greater than 2. Intuitively, we would expect that, in situations where the

noise is Gaussian but the signal is not, cumulant-based methods offer

potentially large performance improvements over conventional methods

based on second-order statistics, by removing the noise without affecting the

signal. A detailed treatment of higher-order statistics is beyond the scope of

this dissertation; for the purposes of this discussion, a brief consideration of

the 4th-order cumulant will suffice. Broader treatments of the topic

(including the material in the sequel) may be found in articles by Shiryaev

[Ref. 341, Brillinger [Ref. 35], and Brillinger and Rosenblatt [Ref. 36]; tutorial

articles by Nikias and Raghuveer [Ref. 37] and Mendel [Ref. 38]; and the

recent textbook by Nikias and Petropulu [Ref. 39]

.

21



The joint characteristic function® of a set {x v x2,..., xn ] ofn real

random variables is defined [Ref. 25] by

0(fi)1( ©2 , . .. , (On ) = E{exp[j(o)
1
x

1
+ co2x2 + + (Onxn )]],

where E denotes statistical expectation, as before. The form of this function

obtained by making the substitution s
i
=jco

i
is known as the moment-

generating function; the moments of the x
t
can be obtained from the

coefficients of the Taylor expansion of the moment-generating function about

s-=0. The second characteristic function *P of these same random variables is

defined as vF=ln O. The joint cumulants of order r=k
x
+k

2
+ +kn

of these

random variables are defined [Ref. 25] as

Cum\x^ x
k
> x

k
«

1 = (- tY^^ ^cum\x
x , x2 , . .

.
, xn j

-
{ j) ,

d(O
k

x

l

d(0
2

2
•••d(Qn

n
(10)

(o
l
=(o

2
=..=(on =0

i.e., the coefficients of the Taylor expansion of *F about &>~0. For the 4th-order

cumulant of zero-mean real random variables x
v

, it can be shown [Refs. 34,

39] that (10) reduces to

-E[x
x
x
3 ] E[x2x4 ] - E[x

x
x4 ] E[x2x3 ] (11)

It may further be shown [Ref. 25] that, if the x
t
are jointly Gaussian, the 4th

order moment is given by

E[x
x
x
2
x
3
x4 ]

= E[x
x
x2 ] E[x

3
x4 ] + E[x

x
x
3 ] E[x

2
x
4 ] + E[x

x
x
4 ] E[x2x3 ]; (12)

therefore the cumulant vanishes as claimed. For complex random variables,

(11) takes the form [Ref. 40]
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—EIx-^q] E[x*
2xl]

- Eix-^xl] E[x*
2
x
z ] (13)

where the third term is generally assumed to be zero due to the symmetry

property between the real and imaginary parts of a stationary, bandpass,

complex process [Ref. 41] . We will retain this term for generality.

A spatial 4th-order cumulant matrix C 4 may be defined as follows:

C 4
= Cum

Pi{t)pl(t)'

P2MP2M
[Pi{t)p*i(t),P2 {t)pl{t),---,PN {t)p*N {tj] (14)

where "*" denotes complex conjugate and the p t
(t) are sensor signals (complex

pre-envelopes) at each of AT sensors in an array. This definition differs from

the one used by Nikias and Petropolu [Ref. 39] , but was selected so that C
4
is

Hermitian. By substituting (11) into (14), and using vector notation, we

obtain

C
4
=£{(pop*)(pop-)

H
}-B{pop'}£{(pop')

fl

}

-E{pp»}°E{pV}-E{pP
T}°E{ppH

} ;
(15)

where o denotes the element-by-element product of the vectors and

superscript T indicates (non-conjugate) matrix transpose. The fourth term of

(15) is generally assumed to be zero due to the symmetry property discussed

in conjunction with (13) but will be retained for generality. Substituting the

signal model of equation (1) (for the case of a single emitter) into (15) gives

C4
= EUaso aV )(as o aY ) i - EJas o aY }e\ (as o aY ) \

-E{ass*Si
H }o E{aYsar

} - E{assa
T
}
o JSJaVsV}
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provided that the signal and noise are independent (the single-emitter

assumption is made here for notational convenience and will also be made

during the actual data analysis in the sequel). Since a is deterministic, it may

be factored out of the expectation operators, and we obtain, after some

algebra

C 4
=y(aoa*)(aoa')"

f (16)

where

y = Cum{s{t),s*(t),s{t),s*{tj\

is the kurtosis measure of the (single) emitter signal s(t) and a is the array

response vector corresponding to the location of the emitter.

The structure of C
4

is therefore identical to that of the covariance

matrix defined in (2), except that: 1) the noise covariance vanishes due to the

properties of the 4th-order cumulant; 2) the array response vector a is

replaced by aoa*, which is real; and 3) C 4
has rank 1 (see (16)) due to the

assumption of a single emitter and is real. This structure allows the use of a

modified version of the previously discussed MUSIC algorithm as follows:

• Form an estimate C4 of the C
4
matrix from the measured data

using (15), with expectation operators replaced by time averages;

• Perform an eigendecomposition of C4 . Because it has rank 1, there

will be (theoretically) a single non-zero eigenvalue.

• Select the eigenvector corresponding to the largest eigenvalue; as

shown earlier (8), this eigenvector must span the same subspace as

the a vector corresponding to the actual emitter location. The
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remaining eigenvectors span the noise subspace and form the

columns ofEN .

• Form the function

PM = r— . .,„

l —

;

(17)
[a(e)oa*(e)fENE»[a(e)oa*(e)]'

the estimate for the emitter location corresponds to the peak of this function.

This method can be easily generalized to the multiple-emitter scenario,

provided that the signal subspace dimension is selected to correspond to the

number of emitters. However, our experimental work with real data does not

require this generalization.

Cumulant-based versions of the Bartlett and MVM methods also exist

[Ref. 39], but these will not be used in the data analysis. It should also be

noted that the form of the 4th-order cumulant appearing in (15) is a reduced

form of that used by Porat and Friedlander [Ref. 201 •

C. ACOUSTICS AND MODELING

1. Helmholtz Equation

Whereas in DOA estimation the received signals are assumed to be

plane waves, in MFP the pressure field amplitude p(r,z) in an underwater

channel (see Figure 6) due to a narrowband emitter with center frequency co

is assumed to satisfy the Helmholtz equation [Ref. 42]

1JL
r dr

r
Mr1 z)_

dr

d2p
(
r
:
Zh k(r,z)

2
p(r,z) = 0, (18)

where r is the range from the emitter to the observation point, z is the depth,

and k=co/c is the wavenumber. Cylindrical coordinates are used in (18)
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because of the symmetry which exists when changes in sound speed in the

azimuthal direction are negligible. The sequel will present an overview of

methods for solving ( 18) numerically which are pertinent to this dissertation.

In this section, it will be assumed that no observation noise is present.

ro

>

• ))))
J

Source •

Receiver

r=0 <
z=0

*0

<-
Figure 6: Generic Underwater Channel

2. Normal Mode Solution

In a channel where all properties (sound speed, water depth, bottom

type, etc.) are independent of horizontal range, it is well known [Ref. 42] that

the pressure field p at range r (relative to an arbitrary origin; see Figure 6)

sufficiently far away from the emitter and at depth z may be expanded in

terms of normal modes as follows:

p(r,z,t;r ,z )
= ]T

m=lVMr - ro)

zm (z)z1.(2b
yi-^ (^ , i.

(19)

where: zQ and r are the emitter depth and range, respectively; r is taken to

be greater than r ; A is a constant which depends on the emitter power; and

the Zm and km are the eigenfunctions and eigenvalues, respectively, of the

ordinary differential equation

26



d 2Z„
+

c*(z)

2

-k:
(0 ,2 Zm =0. (20)

dz 2

The boundary conditions for (20) depend on the acoustic properties of the

surface (which is always assumed to be pressure-release; i.e., p(z=0)=0) and

the bottom. Attenuation due to sediment and water column is incorporated,

as is customary, via a small imaginary part in the km . Although the sum in

(19) is over values of m from 1 to infinity, all modes for which m is greater

than some integer M are attenuated enough to be ignored at the ranges of

interest; such modes include the strongly bottom-interacting and evanescent

modes. In the discussions to follow, we will ignore these modes and

incorporate only the lowest M modes in our normal mode expressions. It

should be noted that, in general (i.e., for range near zero), the expansion (19)

is only approximate, since it only accounts for the discrete spectrum of the

modal solution to the Helmholtz equation ( 18). This fact does not present a

problem, however, because the contribution to the pressure field from the

continuous spectrum is negligible at the ranges of interest in MFP/MMP.

Numerous methods exist for implementing (19) on a computer (see, for

example, [Ref. 43]). As is characteristic of solutions of boundary value

problems such as (20), the Zm are orthogonal with respect to the density

function p(z), i.e.,

f-^ Zm (z)Zn (z)dz = vn8(m ~ n), (21)

where

Jo
p(
z)

^ I
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This orthogonality will prove useful later in the discussion of Matched-Mode

Processing.

3. Adiabatic Approximation

As mentioned above, the normal mode expression ( 19) is strictly valid

only in range-independent environments; nevertheless, it can be modified

slightly to apply to a limited class of range-dependent environments.

Whenever range dependence exists (due to a sloping bottom or change in

sound speed profile, for example), it is clear that the Zm and km must be

functions of range. If the range dependence is relatively weak, it can be

assumed that a mode does not exchange energy with other modes, but merely

adapts itself to local environmental conditions. This assumption is known as

the "adiabatic" approximation. In such a case, (20) is solved at each of the

ranges of interest. The resulting Zm and km are then functions of range, so

that the pressure field can be expressed as

p(r,z,t;r ,z )=^ , Zm (r,z)Zm (r ,z )exp

r

jcot-j\km (r)dr
r

.(22)

4 Coupled Mode Model

Due to the energy exchange between modes in a strongly range-

dependent environment, the use of a normal-mode model in such an

environment becomes more complex. For simplicity, we assume that

horizontal refraction and azimuthal scattering are negligible (see [Ref. 44] for

a fully three-dimensional treatment). As will be discussed in more detail

later, this approximation is satisfactory for the acoustic environment

addressed in the data analysis to follow [Ref. 19]

.

Mode coupling may be accounted for in a manner consistent with the

notation used above by defining a range-dependent mode amplitude AJr)
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(i.e., the complex constant A in (22) becomes a function of both range and

mode number m) [Ref. 45]. The pressure field is then given by

p(r, z,t; r , z ) = £-_=^=2= Zm (r, z)Zm (r , z ) exp

VMrXr
~ roJm = l

r

j(Ot-j\km (r)dr .(23)

In this expression, all coupling between modes is accounted for by the Am (i.e.,

each Am depends on the mode amplitudes and phases of all other modes along

the propagation path). The Broadband Coupled Mode model developed by

Chiu et al. [Ref. 19] has demonstrated high accuracy in predicting the modal

structure observed in the Barents Sea Polar Front Experiment and will be

used for all data analysis in the sequel.

D. MATCHED-FIELD AND MATCHED-MODE PROCESSING

A good overview of this topic may be found in the textbook by Tolstoy

[Ref. 46]. Only background material pertinent to the later data analysis

(along with some preliminary material) will be presented here.

1. Motivation

Several limitations in applying DOA estimation techniques to the

underwater acoustic localization problem arise from the inability of the

simple plane-wave signal model to describe the acoustic field adequately. In

this section, we describe these limitations, which provide the motivation for

study of MFP/MMP.

a. Ability to determine target parameters

Because of the assumption that the received signal is a plane

wave, the only degree of freedom in the array response vector is DOA.

Therefore, DOA estimation is inherently incapable of providing any other

information. In particular, it gives no range information, which in military
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applications is of vital interest (although it should be pointed out that it is

possible to determine range by observing DOA information over time,

provided that certain assumptions concerning target motion are valid; see

[Ref. 47]).

b. Estimation error

Since the speed of sound in seawater is a function of position,

the sound "rays" (i.e., paths normal to the surfaces of constant phase) are

curved. Consequently, the DOA estimates will, in general, be different from

the actual directions of the emitters. In many practical situations, the

receiving array has no depth extent (e.g., a horizontal line array) and the

ocean may be considered to be horizontally stratified (i.e., speed of

propagation is a function primarily of depth). In such situations, the plane

wave signal model is relatively accurate. Even in such cases, the DOA

estimates will often be significantly in error due to reflection of sound energy

from boundaries (surface and bottom).

c. Loss ofgain

We have noted earlier that the Bartlett beamformer results in

the highest output SNR, provided that the noise is spatially homogeneous.

Essentially, this feature is due to the fact that the signals from different

receive array elements add constructively (because the beamformer

introduces phase shifts to account for the shape of the wavefront) while the

noise components do not. In an underwater acoustic channel, however, the

wavefronts may not be planar (particularly in the vertical direction), so that

the signals from the array elements will no longer be added perfectly

constructively (since the beamformer assumes the wavefront is planar when

it actually is not). Consequently, the gain of the beamformer will be lower

than when the incoming signal is a plane wave.
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d. Inability to resolve multipath arrivals

As mentioned earlier, many eigenstructure-based methods

(including MUSIC) are unable to handle signals from multiple highly

correlated emitters. Reflections from boundaries in the underwater acoustic

problem can often result in the same signal arriving at the receiver from

multiple directions. This situation is equivalent to the presence of multiple,

highly correlated emitters; thus, MUSIC and similar methods break down in

such a situation.

2. Generalization of array processing algorithms

a. Matched-Field Processing (MFP)

For the case of a single signal, (1) becomes

p = as(t) + n. (24)

We can use (23) to express the pressure at a receiving array consisting of a

set ofAT vertically-aligned hydrophones at depths {z
l5
z 2 ,...,zN } in the form (24)

ifwe identify

P =

p(r,z
ly

t)

P{r,z2 ,t)

p{r,zN ,t)

(25)

and

M
= 1

m=\

Mr)

^km (
r){r-r

)

ZmWZ-(r0^o) eXP -j\K(r)dr (26)

where exp(/ (ot)=s(t) and Z^rMZJr^), Zm (r,z2),..., Zm (r,zN)f. The array

response vector a is now a function of emitter range r and depth z rather

than azimuth, as in DOA estimation. The air^z^ are obtained by calculating
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the pressure field seen at the receive array using an appropriate propagation

model, for every possible (r^) combination of interest. In the previous

discussions on DOA estimation, no assumptions were made concerning the

form of a. Furthermore, the dependence of a on azimuth alone was for the

purposes of illustration only, and is not required for the DOA estimation

techniques to be valid. Therefore, the algorithms discussed above in the

context of DOA estimation may be used in MFP as well [Refs. 3, 7]. It should

be noted that MFP does not require that the acoustic field be expressed in

terms of normal modes; the above analysis is valid for other types of

propagation models as well.

The well-known principle of acoustic reciprocity (see, e.g. , [Ref.

48]) is very useful in minimizing the computations required to generate the

array manifold. This principle states that, under a set of reasonable

assumptions, the acoustic pressure at a location (r,z) generated by a simple

source at location (r ,z ) is the same as the acoustic pressure at location (r
Q
,z )

generated by that same source at location (r,z). In MFP, the construction of

the array manifold requires that the field at a known receiver location (r^) be

computed for every possible emitter location (r ,z ), whereas one run of a

propagation model will generally produce the acoustic field at every possible

receiver location due to an emitter at a known, fixed location. Thus, it may be

seen that this principle of acoustic reciprocity allows construction of one

component (corresponding to one element of the receive array) of the array

manifold with a single run of a propagation model. The total number of runs

required will be the same as the number of elements in the receive array.

Clearly, this approach allows huge savings in computation compared to a

"brute force" approach which performs one run of a propagation model for

each possible source location.
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The procedure for MFP may be outlined as follows:

• Determine the pre-envelopes of the received (real) signals at each

receive hydrophone. Use these pre-envelopes to generate an

estimate (using time averages instead of statistical expectations) of

the covariance matrix R
p
(or the 4th order cumulant matrix C4);

• Using a suitable propagation model and invoking the principle of

acoustic reciprocity, generate the array manifold vectors a(r ,z )

(which in the context of MFP/MMP are generally called replica

fields) for values of (r ,z ) on a suitable grid;

• Generate the functions in equations (4) (Bartlett), (5) (MVM), (9)

(MUSIC), or ( 17) (cumulant MUSIC), as desired. These will now be

functions of two variables (roy2 ) rather than one (6), i.e.,

B(r ,z )
= a"(r ,z )R

p
a(r ,z )(Bartlett), (27)

^-^
a« (ro ,, )R

p
-a(ro ,, )

(MVM)
-

PM {r ,z ) = -
;
—^ (Cumulant). (30)

[a(r ,2 )oa*(r ,z
)j
ENE£[a(r ,z )°a*(r ,z

)J

The estimated emitter locations are the (r ^ ) combinations for

which these functions are maximized. In MFP/MMP, plots of these

functions are generally referred to as ambiguity surfaces.

b. Matched-Mode Processing (MMP)

MMP [Refs. 4, 49, 50, 51] requires the pressure field in the

channel to be expanded in terms of normal modes. As will become clearer
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later, it may be understood intuitively as a transformation of the

observations from the space of individual hydrophones to the space of modal

amplitudes. This transformation is known as mode filtering. As before, we

will assume that an accurate representation of the field (23) requires only a

finite number of terms M.

As with MFP, the pressure field is sampled with an iV-element

vertical array of identical elements at depths [z
x , z2

,...,zN}, located a distance r

relative to an arbitrary origin. The vector of received pressures (defined in

(23) and (25)), without additive noise, may be expressed in matrix form as

p=Zu, (31)

where

Z =
Z\r,z2 ) Z

2
(r,z2 )

Z
x
(r,ZN )

u

zM {
r^\)

ZM (
r>zN )

and

= [u
x

u2
• uM ]

,with

U^ =
/TTw Zm {r ,z )exp

r

jcot-jjkm {r)dr (32)

Z thus contains all information about the receiving array, while u contains

all information about the location of the emitter relative to the receiver. Both

Z and u contain information about the channel via the eigenfunctions Zm ,

which are derived from normal mode analysis. An estimate u of u may be

obtained from (31) using either of two classes of methods.

The first class of methods regards estimation of u from a purely

mathematical perspective, namely, as a least-squares problem [Ref. 33],
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either overdetermined (N>M) or underdetermined (N<M). In this problem, u

is selected to minimize the quantity

||Zu-pt (33)

the squared Euclidean norm of the residual (Zu-p). In the overdetermined

case, assuming that Z has full rank, the solution u is unique. In that case,

the selection of a suitable method is based on considerations of numerical

stability and computational complexity. If the problem is underdetermined

(as is the case with the data to be analyzed in this dissertation) or Z is rank-

deficient, there is an infinitude of vectors u which minimize (33). Two

subclasses of least-squares methods exist in this case: those which produce a

solution u with minimum norm (such as the pseudo-inverse method discussed

below) and those which do not (such as certain versions of the QR

factorization method). Methods in the latter subclass give solutions with

significantly greater sensitivity when p is contaminated by observation noise.

We will consider only the pseudo-inverse method in this dissertation.

The singular value decomposition (SVD) of Z is given by [Ref.

33]

UHZV = diag(cT
1
,cr

2
,...,cT

p )

°N

= 1

where U and V are NxN and MxM unitary matrices respectively,

p=min(M,AD, and the a
l
are the (real and non-negative) singular values (some

of the (7, will be zero if Z is rank-deficient). Note that the matrix partition
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shown assumes N<M ; the partition when N>M is analogous. The

pseudoinverse Z+
ofZ is defined as

z+ = vruH
,

where

(1 1 "ir =diag —,...,— ,0,...,0 (34)

and i?=rank(Z). The minimum-norm solution of (31) can be expressed as

u=Zp. (35)

Obviously, the expression (30) is very sensitive to the presence of small but

non-zero singular values (due, e.g., to roundoff error). This phenomenon may

be satisfactorily dealt with by treating all singular values on the order of

machine precision (or smaller) as zero. As is well known, ifN>M and Z has

full rank, the unique least-squares solution is given by

u = Z+
p = (Z

HzfzHp,

This method of modal decomposition is referred to by Yang [Ref. 52] as the

"Eigenvector Method". Obviously, modes which are so poorly sampled by the

receive array that the corresponding columns of Z are nearly linearly

dependent cannot be resolved using this approach.

As mentioned earlier, the analysis to follow does not assume the

existence of an estimate of the noise covariance. It is worth noting that, when

p is contaminated by observation noise with known covariance {i.e., known,

except possibly for a constant multiplicative factor), u should be determined

via the generalized least-squares method [Ref. 331 in order to ensure that
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undue weight is not given to data from hydrophones with high levels of

observation noise. Since this method will not be used in our analysis, it will

not be discussed further.

The second class of methods (see, for example, [Ref. 51]) for

estimating u regards the problem from a more physical perspective; i.e., it

exploits the orthogonality property of the mode functions (columns of Z) (21).

In (21), if the spacing of hydrophones is sufficiently dense, the integral may

be replaced by a sum without significant loss of accuracy. Furthermore,

within the water column, the density p is approximately independent of

depth. Thus, the columns of Z are approximately orthogonal, at least for the

lower modes (i.e., for those modes which are well sampled by the receiver

depths z
t
), i.e.,

Z*Z«£diag(v
1
,va ,... >

vJf ),
AZ

where Az is the spacing of the vertical grid on which the mode function is

evaluated. To obtain an estimate of u, we premultiply (31) by ZH

Z*p = Z"Zu

«-^diag(v
1,v2 ,...vif)u.

We may thus take the estimate of u to be

Az (\ 1 O
u =— diag —,—,-,— ZHp. (36)

P v v i
V2 vMJ

This method of estimating u, which we will refer to as the projection method,

is obviously very similar mathematically to the pseudoinverse method.

Because of the mode orthogonality assumption, only modal amplitudes
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corresponding to those columns of Z which form a (nearly) mutually

orthogonal set may be accurately estimated.

When observation noise is present, (31) becomes

p = Zu + n

.

As mentioned earlier, because we do not assume that an estimate for the

noise covariance is available, the presence of this observation noise does not

affect how we estimate u (although, of course, the value of the estimate will

be affected). Using the pseudoinverse method to estimate u, we obtain

u = Zp
= ZZu +Zn
= u +Zn (37)

From (32) we have

u = as(^),

where

a„ =

a(r ,2 )=[a
i
(r ,z ), a2(r ,z ),..., aM(r ^ )]

T
,

Am{nr ,z
)

V^W(r - ro)

Zm (r ,z )exp -j\K{r)dr , and

(38)

If we define

s(t)=exp(jcot).

n=Zn,
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(37) becomes

u = as(*) + n'. (39)

The expression (39) is of the form (1), again for the special case of a single

signal. Therefore, once u is known, the MFP techniques discussed above may

be used to find the emitter range and depth. As discussed earlier, no estimate

of the observation noise will be used in the analysis to follow. Thus, the fact

that the "noise" n' has a different character from n does not affect our

analysis. The analysis for the case of the projection method is essentially the

same as the foregoing and will not be presented separately. Yang [Ref. 52]

notes that this method of modal decomposition gives a localization estimate

which is mathematically equivalent to the MFP approach when the Bartlett

processor and all modes are used.

Regardless of which method of estimating u is used, care is

required in selecting which subset (i.e., which components of u and a) of the

full mode set (obtained from either (35) or (36)) is to be used, because:

• As the mode number increases, so does the vertical wavenumber

[Ref. 421; thus, for higher-order modes, a closer vertical spacing of

receive hydrophones is necessary for adequate "sampling"

(analogous to the sampling theorem in time-series analysis);

• Propagation models generally show greater sensitivity to

uncertainties in the environmental parameters when predicting

high-order modes than when predicting low-order modes (see, e.g.,

[Ref. 52]);
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• Modes which are only weakly present (i.e., which have low modal

amplitude) at the receiver location can generally not be estimated

accurately;

• Only those modes which have most of their energy at depths within

the physical extent of the receiving array are likely to be estimated

accurately (see, e.g., [Ref. 52]);

• When the number of receive hydrophones is less than the number of

modes supported by the channel (as is the case with the data to be

analyzed later in this dissertation), the inversion of (31) is an

underdetermined problem and therefore cannot provide accurate

values for all modes.

The first and second considerations usually favor the lower-order modes. This

generalization is not valid in all situations: for example, incorporation of

poorly resolved higher-order modes into the estimator can sometimes reduce

sidelobe levels when the low-resolution Bartlett processor is used [Ref. 52].

The third consideration also tends to favor low-order modes, at least when

the emitter and receiver are widely separated (since higher-order modes are

attenuated more rapidly). The fourth consideration is relatively easy to

employ, since the modal structure (i.e., mode shapes) at the receiver location

is known. The fifth consideration favors modes which are well sampled by the

receiving array and which are therefore nearly orthogonal, since only nearly

orthogonal modes are well resolved by mode filtering. Again, these modes are

generally the low-order ones. In general, an initial localization estimator

should be constructed based on a mode set selected using the above

considerations. The peaks of this estimator may be regarded as candidate

emitter locations. Then, revised estimators (one estimator per candidate
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source location) may be obtained by using only those modes which are

expected to be present at the receiver due to sources at these candidate

locations. Thus, a strategy of iterative improvement may be used to refine the

estimator.

The MMP technique may be summarized as follows:

• Perform quadrature demodulation on the received (real) signals at

each receive hydrophone to obtain p(t);

• Use either the pseudo-inverse or projection methods to estimate u(t)

from p(t) using (31);

• Generate an estimate of the modal covariance matrix Rm=£[uufl
]

(or the 4th order modal cumulant matrix C
4);

• Using a suitable propagation model and invoking the principle of

acoustic reciprocity, generate the array manifold vectors a(r ,z )

(from (38)) for values of (r9z ) on a suitable grid;

• Select a subset of the full mode set for use in further processing;

• Generate the functions in equations (27) (Bartlett), (28) (MVM),

(29) (MUSIC), or (30) (cumulant MUSIC), as desired. The estimated

emitter location is the (rorz ) combination for which the function is

maximized.

• As is apparent from our discussion above concerning mode

selection, the major advantage (at least from the perspective of our

research) of performing MFP in mode space (i.e., MMP) rather than

in hydrophone space is that estimation errors due to environmental
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mismatch may be reduced by using by using only robust modes,

which are less sensitive to such mismatch.
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III. EXPERIMENTAL SETUP

This chapter provides an overview of those aspects of the Barents Sea

Polar Front Experiment which are applicable to this research. This

experiment provided the data on which the MFP/MMP algorithms were

tested.

A. ENVIRONMENT

The data used in the analysis to follow was obtained during the 1992

Barents Sea Polar Front Experiment [Refs. 16, 17, 18, 19]. Most of the details

of that experiment are not pertinent to our analysis, but may be found in the

listed references; the pertinent aspects are provided below.

1. Bathymetry

Figure 7 shows the bathymetry of the acoustic channel, as well as the

locations of the source (far left side of the plot) and the receiver (located at

roughly 34 km range) (to be discussed later). The geometric axis from the

source to the receiver was almost directly downslope.

2. Sound Speed Profile

Figure 7 and Figure 8 illustrate the sound speed field in the channel.

The curves in Figure 8 were obtained by interpolation of sensor casts made at

roughly 10 km intervals; the dotted and solid curves correspond to the source

and receiver locations, respectively. The sound speed field obtained from the

interpolation was used as input to the BBCM model for all data analysis. The

higher resolution sound speed field of Figure 7 was obtained by tomographic

inversion [Ref. 19] ; it is provided for illustration only and was not used in our

analysis.
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Figure 7: Sound speed field and bathymetry

The plot uses MATLAB's "pseudocolor" feature: the gray level at each

point in the plot maps to a sound speed (in meters per second) per the gray

level bar at the left side of the plot. The plot clearly shows the front which

was the primary subject of interest in the Barents Sea Polar Front

Experiment; this front was nearly perpendicular to the axis between the

source and receiver. This fact, combined with the fact that sound propagation

was almost entirely downslope, allows us to make the assumption that no

horizontal refraction or azimuthal scattering occurred [Ref. 19]. The front

was observed to move upslope and downslope with a dominant periodicity of

about two hours and a peak-to-peak amplitude on the order of 4 km. The

sound speed and density in the bottom were obtained from standard Navy

databases and were found to be 3200 m/s and 2600 kg/m 3
, respectively; these

values were verified by SUS measurements [Ref. 53]

.
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Figure 8: Sound Speed Profiles

B. SIGNAL AND NOISE

The transmitted signal consisted of M-sequences with a center

frequency of 224 Hz. Two sets of M-sequences, separated by about nine hours,

were transmitted during the experiment. Each set consisted of 30 M-

sequences, each of about five-second duration, giving a total of about 2.5

minutes of transmission per set. The unique properties of the M-sequence

were needed to achieve the goals of the Barents Sea Experiment (i.e.,

accurate travel time determination), but are not relevant to this dissertation

and will therefore not be discussed here. For the present analysis, the

received signal was filtered using a Minimum-Variance filter to remove the

M-sequence properties; this type of filter was selected to ensure that any

strong interfering signals due to engine noise from the test ship were nulled

out (see, e.g., [Ref. 54]). We found, not surprisingly, that use of this filter
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resulted in emitter location estimates superior to those obtained using the

usual Fast Fourier Transform (FFT) approach. Figure 9 shows the power

spectral density (relative to the peak) of the unfiltered received signal at a

particular hydrophone and a particular time. The received signal (at 224 Hz),

when averaged over all hydrophones, has a SNR of about 10 dB (ratio taken

over the entire signal bandwidth); the exact value of the SNR is not

particularly important for our analysis.

Signal Power Spectrum

300 400 500
Frequency (Hz)

800

Figure 9: Power Spectrum

C. RECEIVER

The receive array consisted of a vertical string of 16 identical,

omnidirectional hydrophones with 10 m spacing. The uppermost hydrophone

was at a depth of 123.8 m. Prior to the collection of data used in this

dissertation, hydrophones 1, 2, 4, 6-8, and 16 experienced partial failure

(separation of the two piezoelectric cylinders comprising each hydrophone)
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which reduced their sensitivity by 6 dB. This sensitivity reduction was

incorporated into the data analysis.
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IV. ANALYSIS AND RESULTS

This chapter provides further details of the analytical technique,

including preprocessing methods. It also provides and interprets our main

results (which take the form of ambiguity surface plots) from application of

the MFP/MMP estimators to the Barents Sea data for various choices of

parameters (noise, data length, etc.).

A ANALYSIS TECHNIQUE

1. Signal Processing

The computational procedure may be outlined as follows:

• Construct the density and sound speed fields (functions of range

and depth) from in situ measurements using bilinear interpolation);

• Using sound speed, density, receiver horizontal location, and

bathymetry as inputs, and regarding each receive hydrophone as a

unit emitter, generate (using a suitable propagation model) and

store the parameters appearing in (31) (a separate set of

parameters for each hydrophone depth);

• Using a numerical implementation of (31) and invoking the

principle of acoustic reciprocity, calculate the array manifold on a

suitable grid of (r ,z ) values;

• Take the raw hydrophone data (an M-sequence) and add the

desired amount of noise (measured in the same environment during

a period when no transmissions occurred);
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• Pass the resulting signal through a 50th order minimum-variance

filter to eliminate out-of-band noise and to remove the M-sequence

properties from the signal (i.e. make it into an ordinary narrow-

band process);

• Calculate estimated spatial and modal covariance and cumulant

matrices from the resulting signal;

• Match these covariance matrices against the replica fields

calculated above (for MMP, use only the components corresponding

to the desired modes).

All computations were done using Matlab 4.2c on a Hewlett-Packard

735 Workstation. The propagation modeling used the Broadband Coupled

Mode (BBCM) algorithm [Ref. 19]. In every case, the ambiguity surfaces were

calculated for a grid with the following specifications, selected to ensure

peaks would not be missed while keeping the computational load reasonable:

Parameter Minimum Maximum Increment

(Emitter) Range 15 km 40 km 40 m

Depth 2 m 146 m 2 m
Table 1: Computation grid

The emitter range used in the plots is measured with respect to a reference

different from those shown in Figure 6 and Figure 7: it is measured with

respect to a point 1675 m downslope from the receiver. The 15—40 km range

window was selected to allow a fair assessment of our estimators, while

keeping the amount of computation manageable. Because the water gets

deeper as one gets closer to the receiver, more modes are required to

construct the pressure field (the number of modes supported is roughly

proportional to the water depth for a fixed frequency). The run time required

50



by the BBCM model appears to be proportional to the number of modes

cubed.

2. Plotting

The ambiguity surface plots were generated using Matlab (version

4.2a) on a Macintosh LCIII and printed on a 600 dot per inch (dpi) HP

LaserJet 4, using the Matlab "pseudocolor" plot function with 32 gray levels.

Because a 600 dpi printer is not able to generate a dot screen with adequate

resolution to display data on a grid as large as that found in Table 1 without

requiring an excessive amount of space on the page, the ambiguity surface

data was smoothed before plotting: at each depth grid point, the value plotted

is the average for three adjacent range grid points. Subjectively speaking,

little information appeared to be lost as a result of this smoothing.

The quantitative assessment of the effect of various parameters on

localization performance presents an interesting problem. On all plots, the

bright areas correspond to maxima of the functions (27) through (30). No gray

scale is provided, since, for the MUSIC algorithm, the peak height does not

necessarily correspond to the power of the received signal. In fact, the values

corresponding to "white" and "black" differ somewhat from plot to plot. A

more suitable approach for quantitatively comparing the different plots may

be based on three major performance measures used in DOA estimation

literature (see, e.g., [Ref. 23]):

• Bias in the emitter location estimates;

• Ability to resolve multiple closely spaced emitters; and

• Existence of peaks at locations where no emitters exist.
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In the present case, because the precise location of the emitter is not known,

the first measure is not applicable in the form stated. Also, only one emitter

is present, so the second measure is not particularly useful either. The third

measure is applicable, although not easy to quantify. We have elected instead

to use the following:

• Ratio of the height of the correct peak to that of the highest false

peak (Ml);

• Size (area) of the correct peak relative to the area of the entire grid

(M2);

• Ratio of the average height of all false peaks to the height of the

correct peak (M3).

Obviously, when M1<1, an incorrect estimate for the emitter location will be

obtained. The values of these three measures are given in the caption for

each figure that follows.

B. OVERVIEW OF RESULTS

In each section to follow, we consider the effect of the variation of a

single parameter (e.g., data length, algorithm type, SNR, etc.) while holding

all other parameters fixed at the following nominal values (for which

performance is good):

• Matched-mode method (using projection method of mode filtering

and modes 1^4);

• Data length of 1024 points;
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• Data taken from the beginning of the second set of M-sequence

transmissions;

• SNR=10 dB (i.e., no noise beyond that actually observed with the

signal);

• MUSIC method of array processing;

• Second-order statistics;

• Coupled-mode propagation model; and

• Hydrophone data corrected for reduced sensitivity of damaged

phones.

Each plot to follow has a title at the top containing the most

significant parameters (MFP/MMP, SNR, data length, and array processing

algorithm). Additional pertinent information appears either in the caption or

in the text referring to the plot. In every case, the correct emitter location is

at approximately 36 km range and 122 m depth.

C. MATCHED-FIELD VERSUS MATCHED-MODE PROCESSING

As mentioned earlier, propagation models are generally more sensitive

to errors in knowledge of the environment when predicting high-order modes

than low-order modes. We therefore expect MFP to exhibit a higher incidence

of false peaks than MMP, since MFP uses all available modes (26). Figure 10

(MFP) and Figure 11 (MMP) illustrate this effect. For purposes of

illustration, we have added a small white circle at the correct emitter location

in Figure 10, although we have not done so with subsequent plots, because

the emitter location is fixed. Although MFP gives a peak at approximately
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the correct emitter location (M 1=0.94), there are 2 other peaks which are

higher, as well as numerous smaller peaks (M3=0.043). MMP gives the

highest peak at the correct location (Ml=1.7) and has fewer and smaller false

peaks (M3=0.016).

MF, MUSIC, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10 4

Figure 10: Matched-Field Processing (Ml=0.94; M2=0.0077; M3=0.043)
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 1024 pts

2.5 3
Range (m)

3.5

x 10 4

Figure 11: Matched-Mode Processing (Ml=1.7; M2=0.012; M3=0.016)

D. BEHAVIOR OF DIFFERENT ARRAY PROCESSING METHODS

Both Figure 12 (MVM) and Figure 13 (Bartlett) show poor resolution

compared with MUSIC (Figure 11). Both of these methods produce the

largest peak at the correct location (Ml=1.26 and 1.03, respectively), but

there are large and numerous false peaks (M3=0.11 and 0.14, respectively).

In particular, with the Bartlett method, the correct peak is nearly impossible

to identify visually. The behavior of these three methods when used on this

data set is thus consistent with that observed in DOA estimation and with

modeled MFP data (see, e.g., [Refs. 3, 23]).
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MM, MVM, Modes 1-4, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10 4

Figure 12: Minimum-Variance Method (Ml=1.26; M2=0.033; M3=0.11)

MM, Bartlett, Modes 1-4, SNR=+10 dB, 1024 pts

2.5 3
Range (m)

3.5

x 10 4

Figure 13: Bartlett Method (Ml=1.03; M2=0.017; M3=0.14)
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E. EFFECT OF DATA LENGTH ON PERFORMANCE

As the length of data increases (assuming temporally stationary data

and fixed SNR), the accuracy of the estimate of spatial covariance should

improve. On the other hand, if significant non-stationarity is present, we

expect that increases in data length past a certain point (depending on SNR)

may actually degrade the accuracy of this estimate. This is the case with our

data, as may be seen in Figure 14 through Figure 16, where the ambiguity

surface for a data length of 512 shows some improvement (Ml=2.2,

M3=0.015) with respect to the surface for a data length of 1024 (Figure 11),

and the size of the false peaks increases noticeably for data lengths of 2048

(Ml=1.6, M3=0.019) and 4096 (Ml=1.4, M3=.020). This behavior is

presumably due to surface wave effects, which are the only likely source of

temporal variability over the roughly one-second time scale involved here.

Obviously, data length can only be reduced so far before the benefits gained

by avoiding non-stationarity are outweighed by estimation errors arising

from low information-to-noise ratio. In fact, performance degradation became

evident at SNR=+10 dB when the data length was reduced to 256 points (not

shown).
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MM, MUSIC, Modes 1 -4, SNR==+10 dB, 512 pts
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Figure 14: Data Length 512 (Ml =2.2; M2=0.012; M3=0.015)

MM, MUSIC, Modes 1-4, SNR=+10 dB, 2048 pts

2.5 3
Range (m) x 10 4

Figure 15: Data Length 2048 (Ml=1.6; M2=0.012; M3=0.019)
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 4096 pts
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Figure 16: Data Length 4096 (Ml=1.4; M2=0.012; M3=0.020)

F. EFFECT OF NOISE ON PERFORMANCE

Figure 17 through Figure 19 illustrate the effect of additive noise.

These plots exhibit high false peaks compared with Figure 11 (no added

noise). Below a SNR of -10 dB, the MUSIC method using 2nd order statistics

no longer gives the largest peak at the actual emitter location (Ml=0.72 for

Figure 18). Interestingly, the MUSIC method with 4th-order statistics

actually gives poorer results than with 2nd-order statistics at all SNRs

(Figure 19 shows the dB result). One reason for this somewhat surprising

result appears to be that the signal turns out to be roughly as close to

Gaussian as the additive noise, as measured by the difference between its

4th-order moment and the 4th-order moment of a Gaussian process with the

same lower-order moments (11). Specifically, let us define a measure G for

quantifying Gaussianity for the received signal as follows:
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G = nrr' (40)

II

M4 I

where | ||F indicates the Frobenius norm*, C4 is defined by (14), and M4 is the

matrix of 4th order moments; i.e.,

M4 {i,j) = E[p
l

p*p
J
p*}.

As discussed earlier, if the processes p i
are Gaussian, C4

=0 and therefore

G=0. We find that, in this experiment, for noise alone, G=0.13 and for signal

alone G=0.12 (the use of different norms in (40) does not significantly affect

these values). Recall that our motivation for using higher-order statistics in

the first place was based on an expectation that the noise would be Gaussian

and the signal would not. It appears that this Gaussian property is

characteristic of the filtered M-sequence signal; for continuous wave (CW)

data gathered later in the experiment (at which time, unfortunately,

environmental measurements are not available), G is significantly higher.

|V
2

* The Frobenius norm of a matrix A is defined as ||A|L =
f X. Av »

where Aj are the

components of A.
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MM, MUSIC, Modes 1-4, SNR=-10 dB, 1024 pts

2.5 3
Range (m)

Figure 17: SNR = -10 dB, 2nd order statistics
(Ml=l.l; M2=0.014; M3=0.028)

x 10 4

MM, MUSIC, Modes 1-4, SNR=-11 dB, 1024 pts

2.5 3
Range (m) x 10 4

Figure 18: SNR = -11 dB, 2nd order statistics

(Ml=0.72; M2=0.012; M3=0.035)
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MM, MUSIC, Modes 1-4, SNR=+0 dB, 1024 pts
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Range (m)

3.5

x 10"

Figure 19: SNR = dB, 4th order statistics
(Ml=0.34; M2=0.008; M3=0.015)

A more significant flaw in the cumulant-based MUSIC estimator is

illustrated in Figure 20 through Figure 23, which show the performance of

cumulant-based MUSIC MFP versus that of conventional MUSIC MFP when

applied to a synthetic data set (no mismatch between the actual and predicted

sound fields) for SNRs of +10 dB and dB. At +10 dB, the cumulant-based

method (Ml=12.3) greatly outperforms the conventional method (Ml=2.9).

However, at dB, the conventional method is superior (Ml=2.7 vs. Ml=1.6),

despite the fact that the signal subspace is estimated much more accurately

for the cumulant method than for the conventional method (as quantified by

the angle between the signal subspaces at +10 dB and dB). This behavior is

due to the fact that both the cumulant matrix C
4
and the array manifold

vectors (aoa*) are defined to be real: since both MFP and MMP rely heavily on

phase information for accurate localization, use of amplitude information
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alone causes the estimators to be highly sensitive to noise-induced errors in

the estimate ofC
4

.

MF, MUSIC, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10 4

Figure 20: Conventional MUSIC, synthetic data
(Ml=2.9, M2=0.0091, M3=0.014)
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MF, MUSIC, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10"

Figure 21: Cumulant MUSIC, synthetic data
(Ml=12.3, M2=0.0021, M3=0.0022)

MF, MUSIC, SNR=+0 dB, 1024 pts

2.5 3
Range (m) x 10"

Figure 22: Conventional MUSIC, synthetic data
(Ml=2.7, M2=0.0093, M3=0.015)
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MF, MUSIC, SNR=+0 dB, 1024 pts
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Figure 23: Cumulant MUSIC, synthetic data
(Ml=1.6, M2=0.0022, M3=0.015)

G. BEHAVIOR OF DIFFERENT MODE INVERSION METHODS

Figure 24 shows the result when the pseudoinverse method is used

instead of the projection method. As mentioned above, the two methods are

very similar mathematically and give about the same performance (compare

with Figure 11). The false peaks are slightly larger and more numerous with

the pseudoinverse method (M3=0.020 vs. 0.016 for the projection method).
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10 4

Figure 24: Pseudo-inverse mode filter (Ml=1.7; M2=0.013; M3=0.020)

H. EFFECT OF ARRAY SHADING

Figure 25 shows the effect of not including the required sensitivity

correction for the failed hydrophones (i.e., no array shading). The higher false

peaks are apparent (Ml=l.l and M3=0.025, as compared with Ml=1.7 and

M3=0.016 when shading is used).
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 1024 pts

2.5 3
Range (m)

3.5

x 10 4

Figure 25: No phone sensitivity correction
(Ml=l.l; M2=0.012; M3=0.025)

I. TEMPORAL VARIABILITY OF RESULTS

Figure 26 shows the results from a data segment obtained during the

first set of M-sequence transmissions. Although there is a peak at the correct

emitter location, it is not the largest peak (Ml=0.46). The change in

localization performance with respect to that obtained with a data segment

from the second set of transmissions is probably due to temporal fluctuations

in the sound speed field, since none of the other physical parameters changed

significantly between the two data sets. This behavior is not surprising, since

the period of frontal motion (two hours) is much less than the time between

the sets of M-sequence transmissions. Although the plots are not shown here,

we found that the localization performance remained qualitatively the same

for all data segments within a given set of transmissions.
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 1024 pts
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Range (m)

3.5

x 10 4

Figure 26: Data from 1st transmission (Ml=0.46; M2=0.015; M3=0.026)

J. EFFECT OF MODE SELECTION ON MMP RESULTS

As discussed above, it is important to choose a suitable mode subset to

ensure satisfactory results. Obviously, with 60 modes available, there is a

very large number of potential combinations, only a few of which will be

presented here. Figure 27 shows the result when only the first 3 modes are

used; a small peak is visible at the correct location (Ml=0.46). Figure 28

shows the result when modes 1—5 are used; the plot shows a slight

improvement in performance compared to the result with modes 1—4 (Ml=1.8

and M3=0.015 vs. 1.7 and 0.016, respectively). Using more than the first five

modes tends to increase the number and size of the false peaks. Figure 29

(modes 1-6 used) shows this effect (Ml=1.3, M3=0.018).
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MM, MUSIC, Modes 1-3, SNR=+10 dB, 1024 pts

2.5 3
Range (m)

3.5

x 10 4

Figure 27: Modes 1-3 (Ml=0.46; M2=0.0070; M3=0.025)

MM, MUSIC, Modes 1-5, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10 4

Figure 28: Modes 1-5 (Ml=1.8; M2=0.011; M3=0.015)
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MM, MUSIC, Modes 1-6, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10'

Figure 29: Modes 1-6 (Ml=1.3; M2=0.011; M3=0.018)

K. EFFECT OF MODEL SELECTION ON PERFORMANCE

Figure 30 shows the result when the mode coupling accounted for by

the BBCM method is not included in calculation of the replica fields, that is,

when the range dependence of the replica fields arises only from the range

dependence of the mode functions and wavenumbers (the adiabatic

approximation of (22)). There is no indication of a peak at or near the actual

emitter location, so the performance measures Ml, M2, M3 are meaningless

and are not provided.
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MM, MUSIC, Modes 1-4, SNR=+10 dB, 1024 pts

2.5 3
Range (m) x 10 4

Figure 30: Adiabatic model
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V. CONCLUSIONS

The results presented in the body of this dissertation clearly

demonstrate that MUSIC-based MMP techniques may be effectively

employed even in a very challenging acoustic environment such as that which

existed during the Barents Sea Polar Front Experiment. It is appropriate to

review some of the unique features of this environment (as compared to

idealized numerical simulations or simple experiments):

• Strong range dependence of bathymetry and the sound speed field

(which included a strong, rapidly moving front);

• A degraded receive array spanning about half the water column

and having many fewer elements than the number of modes

supported by the channel;

• Relatively coarse sampling of the sound speed field (only about once

per 10 km interval, notwithstanding the presence of a front);

Despite these challenges, we achieved considerable success with our

localization approach. Some of the specific findings and original contributions

of this research are:

• Contrary to much conventional wisdom, the subspace-based MUSIC

method produced good results despite the inaccuracies inherent in

experimental data. In fact, the MUSIC algorithm's high resolution

was vital to accurate localization, because the receive array was

relatively short and few robust modes were available.
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• The Broad Band Coupled Mode (BBCM) model generates replica

fields with sufficient accuracy to allow localization via MMP in this

strongly range-dependent environment. The adiabatic approxima-

tion was found to be grossly inadequate for this environment.

• The cumulant-based MUSIC estimator used in this dissertation

was too sensitive to noise-induced and model-induced estimation

errors to be useful with real data. This behavior was due to the fact

that the cumulant matrix and the replica fields were defined as real

quantities; thus, the phase information, which is vital to robust and

accurate localization, was not available.

• In an environment with strong temporal variability, localization

performance can vary drastically over relatively short time scales.

In summary, our approach, which combined the high-resolution MUSIC

algorithm with MMP, allowed accurate localization estimates, even though

only a few robust modes could be obtained via mode filtering.

The approach used in our analysis may be modified in three obvious

respects, each of which offers potentially significant improvement in

localization performance and is worthy of further study.

The first modification relates to the assumptions concerning

observation noise. The basic MUSIC algorithm used in our research assumes

that the noise covariance is some multiple of the identity matrix (i.e.,

spatially isotropic). As mentioned earlier, the MUSIC algorithm may be

extended to the case where the noise is not isotropic via use of a generalized

eigendecomposition. Use of this extended MUSIC algorithm has the potential
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to further lower the SNR threshold (the SNR above which the estimator

performs satisfactorily) observed in our results.

A second way to improve localization performance involves

modification of our cumulant-based MUSIC estimator. We noted earlier that

an extended version of the cumulant matrix has been defined [Ref. 20].

Although an estimator based on this matrix would be more computationally

intensive than the estimator defined here, it is expected to be less sensitive to

estimation errors.

Refinement in the process of selecting suitable modes for MMP

localization is a third means of improving the estimator. Although the simple

approach described here was effective in generating an appropriate mode set

for this environment, it may not produce results of the same quality in other

environments. An approach relying more heavily on the propagation physics

of the channel could greatly reduce the amount of "trial and error" involved in

the process.
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