
�&�D�O�K�R�X�Q�����7�K�H���1�3�6���,�Q�V�W�L�W�X�W�L�R�Q�D�O���$�U�F�K�L�Y�H

�'�6�S�D�F�H���5�H�S�R�V�L�W�R�U�\

�7�K�H�V�H�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q�V �������7�K�H�V�L�V���D�Q�G���'�L�V�V�H�U�W�D�W�L�R�Q���&�R�O�O�H�F�W�L�R�Q�����D�O�O���L�W�H�P�V

��������������

�5�H�D�O���W�L�P�H���V�R�Q�D�U���F�O�D�V�V�L�I�L�F�D�W�L�R�Q���I�R�U���D�X�W�R�Q�R�P�R�X�V

�X�Q�G�H�U�Z�D�W�H�U���Y�H�K�L�F�O�H�V

�&�D�P�S�E�H�O�O�����0�L�F�K�D�H�O���6�F�R�W�W

�0�R�Q�W�H�U�H�\�����&�D�O�L�I�R�U�Q�L�D�����1�D�Y�D�O���3�R�V�W�J�U�D�G�X�D�W�H���6�F�K�R�R�O

�K�W�W�S�������K�G�O���K�D�Q�G�O�H���Q�H�W����������������������

�7�K�L�V���S�X�E�O�L�F�D�W�L�R�Q���L�V���D���Z�R�U�N���R�I���W�K�H���8���6�����*�R�Y�H�U�Q�P�H�Q�W���D�V���G�H�I�L�Q�H�G���L�Q���7�L�W�O�H�����������8�Q�L�W�H�G

�6�W�D�W�H�V���&�R�G�H�����6�H�F�W�L�R�Q�������������&�R�S�\�U�L�J�K�W���S�U�R�W�H�F�W�L�R�Q���L�V���Q�R�W���D�Y�D�L�O�D�E�O�H���I�R�U���W�K�L�V���Z�R�U�N���L�Q���W�K�H

�8�Q�L�W�H�G���6�W�D�W�H�V��

�'�R�Z�Q�O�R�D�G�H�G���I�U�R�P���1�3�6���$�U�F�K�L�Y�H�����&�D�O�K�R�X�Q

NAVALPOSTGRADUATESCHOOL
Monterey, California

THESIS

REAL-TIME SONARCLASSIFICATION FOR
AUTONOMOUSUNDERWATERVEHICLES

by

Michael Scott Campbell

March 1996

Thesis Advisors: Don Brutzman
Xiaoping Yun

Approved for public release; distribution is unlimited.

Thesis
C19375

iCHOOL

REPORTDOCUMENTATIONPAGE Form Approved

OMBNo. 0704-0188

Public reporting burden for this collection of information b estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC20503

3. REPORTTYPE ANDDATESCOVERED
Master's Thesis

1. AGENCYUSEONLY(Leave Blank) 2. REPORTDATE
March 1996

4. TITLE ANDSUBTITLE
Real-Time Sonar Classification for Autonomous Underwater Vehicles

(U)

6. AUTHOR(S)

Campbell, Michael S.

7. PERFORMINGORGANIZATIONNAME(S) ANDADDRESS(ES)
Naval Postgraduate School

Monterey, California 93943-5000 USA

5. FUNDINGNUMBERS

8. PERFORMINGORGANIZATION
REPORTNUMBER

9. SPONSORING/MONITORINGAGENCYNAME(S) ANDADDRESS(ES) 10. SPONSORING/MONITORING
AGENCYREPORTNUMBER

11. SUPPLEMENTARYNOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum 200 words)

The Naval Postgraduate School autonomous underwater vehicle (AUV) Phoenix did not have any sonar classification

capabilities and only a basic collision avoidance system. The Phoenix also did not have the capability of dynamically

representing its environment for path planning purposes.

This thesis creates a sonar module that handles real-time object classification and enables collision avoidance at the Tactical

level. The sonar module developed communicates direcdy with the available sonar and preprocesses raw data to a range/

bearing data pair. The module then processes the range/bearing data using parametric regression to form line segments. A
polyhedron-building algorithm combines line segments to form objects and classifies them based on their attributes. When the

Phoenix is transiting, the classifying algorithm detects collision threats and initiates collision avoidance procedures.

The result of this thesis is a fully implemented sonar module on the Phoenix. This module was tested in a virtual world, test

tank and in the first ever sea-water testing of the Phoenix. The sonar module has demonstrated real-time sonar classification,

run-time collision avoidance and the ability to dynamically update the representation of the unknown environment. The sonar

module is a forked process written in the "C" language, functioning at the Tactical level. Source code and output from an actual

Phoenix mission displaying the object classification of the sonar module are included.

14. SUBJECTTERMS
Autonomous underwater vehicle, obstacle avoidance, sonar sensing, real-time

sonar classification, mine countermeasures, parametric regression

15. NUMBEROFPAGES

118
6. PRICE CODE

17. SECURITYCLASSIFICATION
OF REPORT

Unclassified

18. SECURITYCLASSIFICATION
OFTHIS PAGE

Unclassified

19. SECURITYCLASSIFICATION
OFABSTRACT

Unclassified

20. LIMITATION OFABSTRACT

UL
NSN7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

REAL-TIME SONARCLASSIFICATION FOR
AUTONOMOUSUNDERWATERVEHICLES

Michael Scott Campbell

Lieutenant, United States Navy
B.S.E.E., Ohio Northern University, 1989

Submitted in partial fulfillment of the

requirements for the degrees of

MASTEROFSCIENCEIN COMPUTERSCIENCE

MASTEROFSCIENCEIN ELECTRICALENGINEERING

from the

NAVALPOSTGRADUATESCHOOL

March 1996

JWD1EYKNOXLIBRARY

^1;
, T00L

ABSTRACT

The Naval Postgraduate School autonomous underwater vehicle (AUV) Phoenix did

not have any sonar classification capabilities and only a basic collision avoidance system.

The Phoenix also did not have the capability of dynamically representing its environment

for path planning purposes.

This thesis creates a sonar module that handles real-time object classification and

enables collision avoidance at the Tactical level. The sonar module developed

communicates directly with the available sonar and preprocesses raw data to a range/

bearing data pair. The module then processes the range/bearing data using parametric

regression to form line segments. A polyhedron-building algorithm combines line

segments to form objects and classifies them based on their attributes. When the Phoenix

is transiting, the classifying algorithm detects collision threats and initiates collision

avoidance procedures.

The result of this thesis is a fully implemented sonar module on the Phoenix. This

module was tested in a virtual world, test tank and in the first ever sea- water testing of the

Phoenix. The sonar module has demonstrated real-time sonar classification, run-time

collision avoidance and the ability to dynamically update the representation of the

unknown environment. The sonar module is a forked process written in the "C" language,

functioning at the Tactical level. Source code and output from an actual Phoenix mission

displaying the object classification of the sonar module are included.

VI

TABLEOFCONTENTS

I. INTRODUCTION 1

A. MOTIVATION 1

B. PHOENIXPROJECT 4

1

.

Software Architecture 4

2. Hardware Systems 5

C. THESIS OBJECTIVES 6

D. SUMMARY 7

II. PREVIOUSWORK 9

A. INTRODUCTION 9

B. TRI-LEVEL ARCHITECTURE 9

1

.

Paradigm 9

2. Strategic Level 9

3. Tactical Level 10

4. Execution Level 11

C. EXPERTSYSTEMFORSONARCLASSIFICATION 11

D. CIRCLE WORLDREPLANNER 11

E. VIRTUAL WORLD 12

F. CURRENTWORK 12

G. SUMMARY 12

III. PROBLEMSTATEMENT 13

A. INTRODUCTION 13

B. SONARDATAPROCESSING 14

1

.

ST725 Scanning Sonar 14

2. ST1000 Profiling Sonar 14

C. REAL-TIME SONARCLASSIFICATION 14

1. Line Fitting 14

2. Polyhedron Building 15

3. Classification of Objects 15

4. Representation of Obstacles 15

D. OBSTACLEAVOIDANCE 15

1 . When to Check for Collision Threats 15

VII

2. Identification of a Collision Threat 15

3. Collision Avoidance Actions 16

E. SUMMARY 16

IV. THEORETICALDEVELOPMENT 17

A. INTRODUCTION 17

B. SONARDATA 17

1. Initialization of Sonars 17

2. Gathering of Raw Data 18

3. ST725 Scanning Sonar 18

4. ST1000 Profiling Sonar 19

5. Coordinate Transformation 20

C. LINE FITTING USINGPARAMETRICREGRESSION 22

1

.

Parametric Regression 22

2. Representation of Line Segments 26

3. Starting Line Segments 26

4. Building Line Segments 27

5. Ending Line Segments 28

D. BUILDING OBJECTSFROMLINE SEGMENTS 30

1

.

Underwater Objects: Convex not Concave 30

2. Object Building 30

E. CLASSIFICATION 31

1. Check If New Object 31

2. Sequential Rule Firing 33

F. REPRESENTATIONOFCLASSIFIED OBJECTS 33

1

.

Method of Representation 33

2. Representation of linear objects (walls) 33

3. Representation of Polyhedra 34

G. COLLISION THREATS 35

1. When to Check? 35

2. What is a Collision Threat? 35

3. Collision Avoidance Actions 36

H. SUMMARY 36

V. EXPERIMENTALDESIGNANDRESULTS 37

A. INTRODUCTION 37

VIM

B. VIRTUAL WORLDTESTING 37

1

.

Using the virtual world 37

2. Experiments 37

3. Test results 38

C. TANKTESTING 39

1

.

Real Sonar Data 39

2. Position Problems 39

3. Testing Results 40

D. SEAWATERTESTING 40

1

.

Moss Landing Harbor 40

2. Real World Situations 42

3. Data and Results 42

E. POOLTESTING 43

1. NPSPool 43

F. FOLLOW-ONTESTING 44

1. New Virtual World 44

2. Results 45

G. SUMMARY 47

VI. CONCLUSIONSANDRECOMMENDATIONS 49

A. CONCLUSIONS 49

1. Real-Time Classification 49

2. Collision Avoidance 49

3. Object Representation 50

B. RECOMMENDATIONSFORFUTUREWORK 50

1

.

Testing 50

2. VxWorks 50

3. Video Camera Correlation with Sonar 50

4. Expanding Classification Rules 51

5. Improved Collision Avoidance Reactions 51

6. Virtual World Sonar Model 51

7. ST1000 Implementation 52

C. SUMMARY 52

LIST OFREFERENCES 55

APPENDIXA. SOURCECODEFORSONARMODULE 57

IX

APPENDIXB. SOURCECODEFORSONARCOMMUNICATIONS 85

APPENDIXC. CODEFORSONARGNUPLOTS 103

INITIAL DISTRIBUTION LIST 105

I. INTRODUCTION

A. MOTIVATION

Mine warfare has long been a major challenge for the United States Armed Forces.

Current mine countermeasure (MCM) methods, which are sometimes as rudimentary as a

sailor with an M-14 rifle, are unacceptable and need to be improved. In a recent White

Paper "Mine Countermeasures - An Integral Part of Our Strategy and Our Forces," Chief

of Naval Operations J. M. Boorda cited the recent damages to the USSSamuel B. Roberts

(FFG-58), Tripoli (LPH-10), and Princeton (CG-59) to demonstrate the threat of naval

mines (Boorda 96). The cost of the damages ($125 million) compared to the cost of the

mines (approximately $30 thousand) demonstrates the need for better research and

development of results in MCM. Because of the desirability of using robots to perform

undesirable and dangerous tasks, autonomous underwater vehicles (AUVs) are an

attractive possibility to the mine hunting problem in shallow waters.

Many capabilities are required for an AUVto support mine hunting. At a minimum

an AUVmust be able to perform real-time sonar classification and demonstrate run-time

collision avoidance. The abilities to detect, localize and classify unknown objects are

essential requirements for this mission. Collision detection and collision avoidance are

required for the safe operation of an AUVin unknown waters.

The Naval Postgraduate School AUV(named Phoenix) is an ideal platform for

shallow water mine hunting experiments. The current internal design of the Phoenix is

shown in Fig. 1.1, and an external drawing is displayed in Fig. 1.2. The Phoenix has

demonstrated the ability to operate untethered in an unknown environment, enabling

researchers to conduct complex experiments in mine hunting.

ST72S SONAR
DEPTHCELL
TRANSDUCER
RADIO
ETHERNET
BOARD

BOWLEAK
DETECTOR
BOWLATERAL
THRUSTER
VERTICAL
GYRO
BOWVERTICAL
THRUSTER
COMPUTERPOWER
SUPPLY<2)

MOTORSERV
CONTROLLER
SUNVOYAGER
COMPUTER

CONTROLFINS<8)

Drawn By D. Marco "9*

ST1000 SONAR

PSA 900 SONAR
TRANSDUCER

TURBOPROBE

FIN SERVO(8)

3 AXIS RATEGYRO

12 VOLTBATTERY(2)
FORCOMPUTER

GESPACCARDCAGE

D I VE TRACKER

12 VOLTBATTERY(2)
FORGYROS/MOTORS
FREEGYRO

GPSUNIT

REARLEAK DETECTOR

REARSCREWMOTOR(2)

REARSCREW(2)

Figure 1.1. Internal View of Phoenix (Marco 96).

/

DIVE TRACKER
TRANSDUCER

radio Ethernet
ANTENNA(FIXED
TOHULLORFLOATING)

GPSANTENNA

ST71J SONAR

ST 1000 SONAR

TURBOPROBE

DIFFEU.EMIAL
GFSAMCI\r\A

THIN WIRE /RADIO
ETHERNETPORT

REARSCREWS '—THRUSTER *—ACCESSHATCH

TOPVIEW Dnn a? llx ira M

Figure 1.2. External Views of Phoenix (Marco 96).

B. PHOENIXPROJECT

1. Software Architecture

The Phoenix is controlled by a tri-level architecture called the Rational Behavior

Model (RBM) (Byrnes 93). RBMconsists of a top level that is entirely symbolic with no

global variables, a bottom level that is synchronous and numerically intensive, and a

middle level which provides analytic modules and interfaces between the other two

levels. The current implementation also contains some of the hardware control at the

middle level.

The highest level of the model is the Strategic level, this level has the mission plan

and controls the actions of the vehicle. The Strategic level ensures that the mission is

completed to the greatest extent possible, by passing commands to the Tactical level.

The Tactical level is made up of numerous processes written in the "C" language,

the main process is the Officer of the Deck (OOD) module. The OODis the only module

that communicates with the Strategic and Execution levels. The OODforks all of the

other Tactical level modules, the Navigator module, the Replanner module, and the Sonar

module. The OODthen passes commands to these processes as required by the current

phase of the mission. The OODmodule also processes the data from the forked

processes and initiates the required actions, i.e., orders to the Execution level or responses

to the Strategic level.

The Execution level directly controls the hardware based on the orders from the

Tactical level. Real-time constraints required for the stability of the AUVare all handled

at this level. Many safety features are also built into this level that might cause a fail-safe

abort to the surface. The automatic abort situations include flooding, loss of

communications with the Tactical level, loss of DiveTracker acoustic navigation and loss

of depth control.

Pipes are used for interprocess communication (IPC) on the Tactical level.

Communication between the Strategic level and Tactical level is done with function calls

and returned values. Communication between the Execution level and Tactical level is

accomplished using sockets. The Sonar module and the Navigator module communicate

with their respective sensor hardware through serial ports. A communications diagram

appears in Fig 2.1.

2. Hardware Systems

The current hardware in the vehicle consists of a Gespac M68030 series computer

system and a Sun Voyager Sparc 5 workstation. The OS-9 operating system is used on

the Gespac providing the real-time multitasking needed by the Execution level for

hydrodynamic control stability. The Tactical and Strategic levels run on the Sun Voyager

under SunOS 5.4. The two computer systems form a LAN through Ethernet connections

within the vehicle, which can also be (optionally) networked through an external Ethernet

connection. Communications between systems is done through software sockets. The

Sonar and Navigator modules communicate with peripherals through serial ports, one of

which is used directly by the Voyager. Other serial ports connect through a SCSI serial

interface which increases the number of remaining serial ports available for future use.

The available sonar systems are a Tritech ST725, which is a 750 kHz scanning

sonar and a Tritech ST1000, a 1250 kHz profiling sonar [Tritech 92]. The ST725 has a

one degree wide by 24 degree vertical fan beam. This beam is steerable with azimuth

rotation step sizes of 0.9, 1.8 and 2.6 degrees. The range options for the ST725 are one,

two, four, six, ten, 20, 25, 30, 50 and 100 meters. The ST1000 sonar can operate both in

scanning mode and profiling mode. The ST1000 transmits a one degree conical beam.

The range scale consists of eight possible selections ranging from three to 1 60 feet. Both

sonar systems are steerable, thus providing 360 degree coverage. Some "baffling"

(i.e. occlusion) of sonar signals is possible when pointing astern due to returns from the

vehicle.

C. THESIS OBJECTIVES

The objective of this work was to create a Sonar module that operates at the

Tactical level where it receives orders from the OODmodule and conducts sonar searches

based on those orders. This module communicates directly with the sonar systems to

collect raw data, processes the raw data to perform real-time sonar classification and

produces the messages required to achieve run-time collision avoidance. To achieve

these goals, the information developed by the Sonar module in the form of "new worlds"

(i.e. circle models) and "collision threats" is passed to the OODto initiate the required

actions. A description of Phoenix sonar operations follows.

The modes of operation now available for Sonar are "Transit Search," "Sonar

Search" and "Rotate Search." Transit Search is performed when the Phoenix is transiting

between waypoints, continuously scanning the sonar between 325 and 035 degrees

relative bearing. The main purpose of Transit Search is collision avoidance. The Sonar

Search and Rotate Search are used when the Phoenix is stationary and a search of the

surrounding area is desired. These searches are used to locate and classify unknown

objects. The Sonar Search is a 360 degree rotation of the sonar with the vehicle heading

fixed, while the Rotate Search is done with the sonar head fixed and a 360 degree rotation

of the vehicle.

Sonar classification begins with the preprocessing of the raw sonar data The

resulting processed returns are then fitted to line segments using parametric regression.

Line segments are then combined based on proximity and orientation to form polyhedra.

The polyhedra are classified based on their characteristics. The classified objects are then

represented as circles in a world file, which is then used by the Replanner to plan the

paths between waypoints.

Collision avoidance is accomplished by evaluating the range and bearing of each

sonar return during the building of line segments. Whencollision threats are discovered

they are passed to the OOD, permitting collision avoidance actions to be taken. The

current execution level collision avoidance actions, which merely backs down until

headway is removed, can easily be improved to take less drastic measures.

D. SUMMARY

The recent losses the United States Navy has experienced due to mine warfare has

shown the urgent need to improve MCM. AUVs are one of the potential platforms that

could be used for mine-hunting in very shallow water. The Naval Postgraduate School

Phoenix AUVhas progressed to the point where it is an ideal platform for AUV

experiments in shallow-water mine-hunting.

The tri-level architecture of the Phoenix can be compared to the human chain of

command on board a real submarine with the Strategic level corresponding to the

Commanding Officer (CO), the Tactical level corresponding to the supervisory watches,

and the Execution level corresponding to the watchstanders in the spaces who operate the

equipment. The Sonar module create by this work represents the sonar watchstanders

who analyze the raw data and the sonar supervisor who evaluates their results and reports

to the OOD.

II. PREVIOUSWORK

A. INTRODUCTION

Previous work on the Phoenix project has created a software architecture paradigm

called the Rational Behavior Model (RBM) (Byrnes 93). Other previous work related to

the Phoenix project includes an expert system for sonar classification (Brutzman 92) and

a circle world replanner (Brutzman 92). All of these works have been improved and

reimplemented to advance the Phoenix project. The virtual world created by

(Brutzman 94) also played a vital role in the development of the software modules for the

Phoenix.

B. TRI-LEVEL ARCHITECTURE

1. Paradigm

The current implementation of the RBMis represented in Fig. 2.1. This control

architecture resembles the command structure of a manned submarine. The strategic

level corresponds to the Commanding Officer (CO), the tactical level corresponds to the

OODand watch officers, and the execution level corresponds to the actual equipment and

watchstanders operating the equipment.

2. Strategic Level

This level controls the overall condition of the vehicle through planning and

deciding on operational tasks, and then giving orders to the OOD. These orders are based

on the current phase of the mission. Responses from the Tactical level are evaluated to

determine the status for the current phase, as well as determining whether to proceed to

another phase or to abort the mission. The Strategic level is currently implemented in

Prolog.

Strategic Level

(Commanding Officer)

(Voyager)
i

Tactical Level

(OOD& Watch Officers)

(Voyager)

JL

OOD

Navigator—x

<=> Serial Port

<— Pipes

Socket

I
Sonar

x

GPS

Receiver

Replannei

<—> Function Calls

ST725
Sonar
Device

ST1000
Sonar

Device

Execution Level

(Watchstanders & Equipment)

(Gespac)

Figure 2.1 Current Software Architecture and Communication Modes.

3. Tactical Level

This level is run by the OODmodule, which forks the other modules at startup.

The OODis the only module that communicates with the other levels, via sockets with

the Execution level and via function calls and returned values with the Strategic level.

All communications within the Tactical level are done via pipes. Since there is no shared

memory established in the current implementation, all data that is required by more than

one module is either passed in message format or written to files to be accessed at a later

time by other modules. The modules that are currently operating at this level are the

OODmodule, the Sonar module, the Navigator module, and the Replanner module. All

processes in this level are implemented in the "C" language.

10

4. Execution Level

The Execution level alone resides on the Gespac system. This level is currently

implemented in the "C" language and is written to work both onboard the Phoenix and in

the virtual world. The Execution level handles the control and stability of the Phoenix

through the control of all of the control planes, thrusters, and screws. This level also

implements many safety features to perform an abort script that aborts the mission by

surfacing the AUV. This abort script can be triggered by low battery voltage, flooding,

loss of depth control, or loss of tactical level communications.

C. EXPERTSYSTEMFORSONARCLASSIFICATION

Previous work developed an expert system for sonar classification (Brutzman 92).

The sonar classification expert system was written in the Clips language (NASA 91) and

processed sonar data offline due to the computational demands of the expert system. The

starting point of this thesis was to convert that expert system into an onboard real-time

system. The existing expert system uses parametric regression to line fit the sonar data.

A sliding window is used to locate a suitable starting point for a line segment. Line

segments are combined based on time sequence, distance and orientation. The combined

line segments build polyhedra which are then classified based on their characteristics.

D. CIRCLE WORLDREPLANNER

Current work has developed a Replanner module at the Tactical level

(Leonhardt 96) . This module creates a safe path between the AUV's current location and

the desired location, using the "circle_world.inputX" file created by the Sonar module.

The input file has the format of "Circle x-position y-position z-position radius." This

module was derived from the work of (Brutzman 92). The Replanner uses the circle

world representation of the obstacles, the start point, and the goal point to create a file

containing segments and arcs which can be used to safely traverse the obstacle field.

11

E. VIRTUAL WORLD

The virtual world created by (Brutzman 94) is an invaluable asset in the

development of new software for the Phoenix. The virtual world allows for initial testing

of new software and software modifications without the vehicle being deployed in water.

F. CURRENTWORK

The Phoenix project has made significant advancements during the past six months.

Many of these improvements are discussed in this thesis and (Leonhardt 96). Other

recent work includes the combination of the virtual world's and Phoenix's Execution

levels to form a single execution program that works in both environments (Burns 96).

The installation of DiveTracker acoustic navigation on the Phoenix was part of the work

by (Scrivener 96), the integration of the DiveTracker and the GPSdata into the Navigator

module was accomplished by (McClarin 96).

G. SUMMARY

The use of autonomous vehicles for jobs that are either undesirable or dangerous

for human beings is the driving force behind many robotics research projects. MCMis an

area that is ideal for robots. Many organizations have been working on the issue of

autonomy for robots for many years. With the work of this thesis and the many works

cited above, the Phoenix has demonstrated the ability to operate in, and interact with, an

unknown environment. These capabilities allow for further testing and software

development in the support of mine-hunting solutions. It is now clear that AUVs are on

the threshold of effectively performing minefield search missions.

12

III. PROBLEMSTATEMENT

A. INTRODUCTION

Real time sonar classification and run time collision avoidance are mandatory

requirements for truly autonomous operation in unknown environments. To achieve

these objectives, the process starts with the gathering and processing of raw sonar data,

including the initialization the sonar system. The next problem is to create object

representations from the processed sonar data using polyhedra. Once the polyhedra are

built, object classification occurs. The final step in the classification process is the

representation of the objects in a format that allows for path planning. The flow of data is

shown in Fig. 3.1.

Raw Sonar Data

Sonar Pre-Processing

Range & Bearing

World Coordinate

Transformation

I X & Y position

Parametric Line Fitting

I
Line Segments

Polyhedron Building

Polyhedron

Object Classification

Object Representation For Path Planning

Figure 3.1 Sonar Classification Data Flow Chart.

13

The collision avoidance task is essentially independent of sonar classification.

Collision avoidance can be broken into two problems: first identifying the existence of

collision threat, and second reacting both properly and promptly to avoid a collision.

B. SONARDATAPROCESSING

1. ST725 Scanning Sonar

Sonar processing begins with the initialization of the sonar head. This step is where

the maximum range, azimuth rotation step size, receiver gain, and transmitter power

parameters are set. The second step in the process is to analyze the data returned by the

sonar head. The ST725 sonar returns a 33 byte string, with 32 bytes of the string

representing the strength (between zero and fifteen) of the sonar return over the range

scale divided into 64 bins. The preprocessing of this ping return data must produce a

single range/bearing pair, to be further analyzed by the classification algorithm.

2. ST1000 Profiling Sonar

The ST1000 sonar can be operated as a scanning sonar, like the ST725, with 64 or

128 bins thus presenting the same preprocessing requirements that the ST725 sonar

presents. The ST1000 can also be operated in profiling mode, where the return is a range

in mm. ST1000 profiling mode does not require range/bearing postprocessing as the

scanning mode does.

C. REAL-TIME SONARCLASSIFICATION

1. Line Fitting

The first step of the classification problem begins with fitting the processed sonar

data into line segments. The line fitting problem consists of starting the line segment,

adding to the line segment once started, and when to finish the line segment. The ability

to handle spurious and intermittent returns is a problem that also needs to be addressed

while fitting lines to the data.

14

2. Polyhedron Building

Once line segments are formed the problem becomes how and when to combine the

line segments to build objects. Our approach is to first create cylindrical polyhedra. The

storage of objects once they have been formed, presents problems regarding what data

structures are needed and what information needs to be maintained?

3. Classification of Objects

The final step in the process is the actual classification of the object. This step

involves determination of what characteristics should be used for classification, and how

the characteristics will be used for classification. Determining when an object should be

classified is also an important issue: should the object be classified during the building

process or only when an object is completed.

4. Representation of Obstacles

The final step in the classification process is how to represent the objects for path

planning purposes. This includes the problem of how to format this information and how

to share it with the OODto support autonomous path planning.

D. OBSTACLEAVOIDANCE

1. When to Check for Collision Threats

The first question in obstacle avoidance is to determine when to check for a threat.

Should a check be done for every valid return, when a return contributes to a line

segment, or when a line segment is ended? Weinvestigate this question and provide a

workable initial approach.

2. Identification of a Collision Threat

The next step in the obstacle avoidance problem is the determination of the

existence of a collision threat. This process begins with the declaration of what

constitutes a collision threat and then the ability to recognize it from the sonar data at run

15

time. An important criterion in the identification process is present (and intended) motion

oftheAUV.

3. Collision Avoidance Actions

With successful identification of a collision threat the next issue becomes deciding

what actions need to be taken and when they must be initiated. Such actions must take

into account the current phase of the mission.

E. SUMMARY

This chapter summarizes the problems addressed by this thesis. Real-time sonar

classification and run-time collision avoidance are critical parts of autonomous

operations. To achieve these features many problems must be solved. After the

initialization of the sonar systems, preprocessing of raw sonar data must be performed.

Then the real-time sonar classification problem is addressed by line fitting, polyhedron

building, and object classification. The problem of obstacle avoidance includes

determining what is a collision threat, when to check for a collision threat, and how to

respond to a collision threat.

16

IV. THEORETICALDEVELOPMENT

A. INTRODUCTION

This chapter examines the real-time sonar classification problem in detail. The

sonar classification process begins with the initialization of the sonar system, and then the

gathering and preprocessing of raw sonar data. Rangefoearing data is then fitted to line

segments using parametric regression. The polyhedron-building algorithm then takes the

line segments and combines them to form a polyhedron representation of the underwater

objects that caused the sonar returns. Object classification is done based on the attributes

of the polyhedron.

The collision avoidance problem is solved in two steps: first the ability to detect a

collision threat, and second the ability to react in time to avoid the collision. The ability

to react in a timely fashion results in the requirement of collision threat evaluation at a

much higher frequency than object classification.

The final stage of the classification process is the representation of the classified

objects for path planning purposes. A solution to the path planning problem is

demonstrated in (Leonhardt 96) using circle representations of obstacles, that are the

product of the sonar classification process.

B. SONARDATA

1. Initialization of Sonars

The parameters of the sonar to be set at the initialization phase are, maximum

range, receiver gain, azimuth change step size, transmitter power, mode (ST 1000 only),

and numbers of bins (ST1000 only). The initial settings are based on knowledge of the

operating area. The initialization of the sonar system also requires the initialization of the

serial port that is to be used for communications. The serial port used is "/dev/ttya" on

17

the Sun Voyager. The initialization that has to occur for the serial port every time the

Voyager is rebooted is as follows:

Become Super User to gain necessary permissions

cd /opt/CDsts

Vcdsoftcar -y /dev/ttya

2. Gathering of RawData

Sonar data can be collected using the AUV's ST725 scanning sonar or the ST1000

profiling sonar. The sonar used is based on which type of sonar search is chosen from the

three types of sonar searches that can be conducted. The first sonar search is the Transit

search. As its name implies, this search is conducted when the AUVis transiting

between points. The Transit search is a back-and-forth scanning search between relative

bearings 320 degrees and 040 degrees. The other two searches are complete 360 degree

searches, used to conduct a thorough search of an unknown area. These two searches are

the Sonar search where the sonar is scanned 360 degrees and, the Rotate search where the

AUVis rotated 360 degrees.

3. ST725 Scanning Sonar

The ST725 sonar is primarily used for the Transit search. The raw data from the

ST725 data is received as a 256 bit string representing 64 four bit values. Thresholding,

filtering and smoothing techniques were evaluated on raw data to determine the best

algorithm for preprocessing.

Our present algorithm employs a nearest-strong-return criterion, where a farther

return on the same bearing has to be greater than one level higher to override a nearer

return. This prevents a close weak target from being masked by a farther strong target. A

thresholding limit of eight was set for the initial sea-water experiments at Moss Landing

Harbor. This threshold is based on preliminary sonar testing results and likely needs to be

evaluated on a case-by-case basis dependent on the local sonar environment. Previous

returns are not used to filter spurious data, since a large distant target might mask a small

18

closer target. Instead spurious returns are identified and rejected at the parametric

regression level. Depending on the range scale used, some of the initial bins are ignored

as self noise. The number of bins ignored is a function of the relative bearing of the sonar

in order to reduce "baffling" (i.e. self-occlusion) problems. The output of the sonar

preprocessing algorithm is a single range/bearing data pair.

Figure 4. 1 shows example raw sonar data from Moss Landing. Corresponding

output of the sonar preprocessing algorithm is shown in Fig. 4.2, demonstrating the

efficiency of the preprocessing algorithm. Sonar returns in the forward port quadrant are

from a pier.

.
-..;•

-'•'•''•'•' 5 meters

.<*; i'i* -?

'/ <

x-
;

-

t J % i

• =

Figure 4.1. Raw Sonar Data Unprocessed. Returns in the

Forward Port Quadrant are From a Pier.

4. ST1000 Profiling Sonar

The ST1000 sonar can operate both in a scanning mode where all of the

preprocessing is the same as for the ST725, or in a profiling mode where the return is a

19

range in mm. Mode of operation is based on the initialization of the sonar head. The

profiling mode provides more accuracy and requires less processing of the sonar data.

Currently profiling mode is used during sector searches to take advantage of the superior

range accuracy.

UPS AUV sona > = utputs

""-'-'

9 <

-
"

'- J*

"

"

*
|,

-
\ H <

; >

< »
"

- * -
"

4-

-(
f

-30 -20 -10 20 30
East -> <y_world> (ft)

Figure 4.2. Preprocessed Sonar Data from Moss Landing

Using a Data Set Similar to that Shown in Fig. 4.

1

5. Coordinate Transformation

The output from the sonar processing algorithm is a relative range and bearing. The

range and bearing data is composed with the actual position and orientation of the

Phoenix AUV, to determine x_return, and y_return, which are then used by the line fitting

algorithm. The transformation to world coordinates is shown in Fig. 4.3.

Two-dimensional coordinate transformations are shown in Equations (4.1) and

(4.2). The x and y values represent the center of buoyancy coordinates of the AUV,

provided by the Execution level. The sonar offset from the AUVcenter is three feet. The

translation to the actual sonar is done by the 3*sin(AUVheading) portion of the equation,

with the units of feet.

20

North (x_world)

Sonar Bearing (000 to 360 relative)

Depth

(positive Z down)
East (y_world)

Figure 4.3. World Coordinate Transformation.

xjreturn = x + 3 * cos (A UVheading) + range * cos (A UVheading + bearing) (Eq. 4.1)

yjreturn = y + 3 * sin (AUVheading) + range * sin (AUVheading + bearing) (Eq. 4.2)

The effect of roll and pitch to the sonars is ordinarily small and is ignored due to the

small errors of the AUVon these axes. The preprocessing of sonar data is independent of

any motion by the Phoenix, due to the frequent (six to ten Hz) position updates provided

by the execution level. The execution level dead reckons (estimates) the position using

heading and speed. AUVspeed is determined using a mathematical model at low speeds

(less than one knot) and speed wheel sensor at higher speeds. The position is periodically

21

reset by the navigator module. The navigator module uses a kalman filter with inputs

from DiveTracker and GPS.

C. LINE FITTING USINGPARAMETRICREGRESSION

1. Parametric Regression

The usual method of linear fitting is using a least-squares fitting algorithm in

Cartesian coordinates. An unfortunate problem with this method is that it falls apart

when data points are parallel to the y-axis, producing lines with infinite slope and

resulting in a divide by zero situation (Kanayama 95). This problem has been eliminated

by reformulation of least-squares line fitting using parametric representations of lines.

The parametric approach is suited for real-time applications, due to its sequential

incremental characteristics which can provide usable results at any time. A derivation of

the algorithm follows. Further detail on the parametric regression line-fitting algorithm

can be found in (Kanayama 95).

Given a set R of sonar data points:

R = ((x
i ,y i)\i=l,...,n) . (Eq4.3)

The moments of R are defined as

n

mik = £ x j y
k

(0 <j,k< 2, andj + k<2) (Eq 4.4)

i=\

Notice that raoo= n. The centroid C of R is given by

C^(^,^) = aix,|l y) (Eq4.5)

The secondary moments about the centroid are given by

n

M20 = Ifo - M*)
2 = m20 - Q) 2 (Eq 4.6)

i= 1

22

Mu =I,(xi-\i x)(yi-\iy) = mu -(^^) 2 (Eq4.7)

Mo2 = T(y l -^) 2 = m 2-(^) 2 (Eq4.8)

The parametric representation of a line is adopted, with constants r and a. If a

point p = (x, y) satisfies the equation

r = xcosoc + ;ysina (-71/2 < a < 71/2) (Eq. 4.9)

then the point p is on a line L whose normal has an orientation a and whose distance

from the origin is r shown in Fig. 4.4. In the parametric representation, the signed

distance from a point p t
= (*,,)>,), to the line L = (r,oc), is called the residual (5), and

calculated as follows.

5,- = x
t

* cos (a) + yt * sin (a) - r. (Eq. 4.10)

Therefore the sum of the squares of all of the residuals is

n

S = X(r-;t,cosa-;y;sina) 2
. (Eq4.11)

i= 1

The best line fit of the set of data points will minimize S. The optimum line (r,a), must

satisfy

f = | = 0. (Eq4.12)

23

Thus,

North (x_world)
A

Line L with slope

jT residua l 8

East (y_world)

Figure 4.4. Representation of a Line. 6 is the Residual from a Point.

T" = 2]£(r - Jc,cos a - y,sin a)

n n n

= 2(r X 1 —(2 *i)cos a - (X y,-)sin a)

i = 1 i = 1 i = 1

(Eq4.13)

= 2(rmoo - miqcos a - moi sin a)

=

and
w io mo\

'oo m00
(Eq4.14)

where r may be negative. Substituting r in (Eq 4. 1 1) by (Eq 4. 14),

S = £((*i - l^x)cos a + 0, - (ly)sin a) 2
.

i = l

Finally,

35

(Eq4.15)

t- = 2 £((*i - |i^)cos a + (v/ - u^sin a)(-(x, - n*)sin a + (y ,- - fi v)cos a) (Eq 4. 1 6)

i= 1

24

= 2 S(CV; - m)
2 - (*i - M-x)

2
)sin acos a +

i= 1

n

2 XO/ - |ix)0/ - u\ v)(cos 2 a - sin
2

a)

i=\

= (M02 - M2o)sin 2a + 2M\\ cos 2o

= for a perfect line fit.

Therefore

a=
a t an2i-2M u M02 -M 20) ^^

Here atan2 is the modified arctangent function which returns an angle in the proper

quadrant. The solutions for the line parameters generated by a least-squares fit are given

by Equations (4.14) and (4.17).

The equivalent ellipse of inertia for the original n points is an ellipse which has the

same moments around the center of gravity. Mf^jo, and Mmi not are moments about the

major and minor axes respectively, shown in Fig. 4.5.

Mmajor = (M20 +MQ1)I2 - J(M 02 -M 20)
2 /4 + M2

1
(Eq 4.18)

Mmin0 r = (M20 + M02)/2 + J(M 02 - M2Q)
2 IA + m] v (Eq 4. 19)

The diameters dmaj OI on the major axis and dmi not on the minor axis of the equivalent

ellipse are

dminor = 4 jMmajoMoO (Eq 4.20)

dmajor = 4 Jm~oMoo (Eq 4.21)

25

Wedefine p , the ellipse thinness ratio, to be the ratio of dmi not and dmaj 0r

' major
(Eq 4.22)

A small p (near zero) means a thin ellipse. As p increases toward 1 , the ellipse opens to

a circle representing a non-linear set of points. For this reason, p, is used as a testing

parameter for linearity checks.

North (x_world)

A

Minor

Origin East (y_world)

Figure 4.5. Equivalent Ellipse of Inertia.

2. Representation of Line Segments

The variables maintained during the building of a line segment are enumerated in

Fig. 4.6. The sequential nature of the parametric regression algorithm is supported by

consistently maintaining the moments and secondary moments. These summations are

then updated every time a point is added to the line, keeping computational complexity

O(l) rather than O(N) while adding points.

3. Starting Line Segments

The previously existing expert system required five data points to begin a line

segment. A suitable set was found using a sliding window. This was the how the sonar

module also started line segments in the early stages. However, once data was collected

in an actual sea water environment, it was discovered that starting with four data points

provided better results. This window is large enough that spurious returns will not start a

26

line segment, and small enough to detect far objects that will not produce that many

returns.

The sliding window is implemented using two four-element arrays: initx and inity,

as shown in Fig. 4.6. These arrays are filled with the four most recent valid sonar returns.

A line is fitted to the data using Equations (4. 14) and (4. 17). If the thinness of the line is

satisfactory (less than 0. 1 for this implementation) then a segment is started. If the

proposed line by the sliding window does not meet validity requirements the oldest point

is thrown out and the next return is added. This process is repeated until the start of a

valid line segment is found.

4. Building Line Segments

To reduce attempts to add the current sonar return to the current line segment when

it does not fit, filtering of the sonar returns is performed. This filtering can often detect

the end of a line segment without performing the computations necessary to include it

into the current line and then ending it. The filtering consists of comparing the residual,

Equation (4.10), to an maximum allowable distance from the line and comparing the

residual to an maximum weighting of the standard deviation, a which is calculated:

a = jM major l{n-\). (Eq. 4.23)

The comparison is

8 < max(Cl * a, C). (Eq. 4.24)

If the point is within these parameters it is then added to the line, and the thinness ratio is

checked for the new line segment, if the line segment has exceeded the allowable

thinness, the line segment is ended, and the current point is stored for the next line

segment. If the line remains acceptable all of the line segment parameters are updated.

27

*"

1

typedef struct

i

double theta;

double r;

int num_points;

int line_status;

double initx[4],inity[4];

double sgm_delta_sq;

double start_time;

double startx,starty;

double endx,endy;

double sgmx,sgmy;

double sgmx2,sgmy2;

double sgmxy;

double d_minor,d_major;

} SEG_DAT;

^)
Figure 4.6. Segment Building Data Structure.

5. Ending Line Segments

A line segment needs to be ended when the latest data point no longer forms an

acceptable line, or when no sonar return is received for five seconds. Ending a line due to

an unacceptable data point is determined during the preceding section on building line

segments. A line segment is also be ended when the distance between the current return

and the last return added to the line is not within an acceptable range (two feet for this

implementation). Whenending a line segment the final calculations are performed to end

the line segment. When a line segment is ended the line parameters are calculated a final

time and stored in a LINE_SEG structure. One parameter that is only calculated at the

ending of a line segment is the orientation of the line, since the orientation is not used for

building a line segment and only for the combination of line segments. The orientation

is calculated using the atan2 function, = atan2{y_end-y_start,x_end-x_stari) . The

need for consistency in the orientation calculation regardless of the scanning direction of

the sonar can be seen in Fig. 4.7. Where the scan in the clockwise direction (Scan B)

28

would determine an orientation of 45 degrees, and the scan in the counter clockwise

direction (Scan A) would calculate an orientation of -135 degrees.

A Start

Figure 4.7. Scanning Direction and Line Orientation.

The scanning direction is not the only possible problem as shown in Fig. 4.8, AUVs

scanning in the same direction still may not produce the same results with a simple

atan2(endy - starty, endx - startx) calculation. For this example AUVscan "A" would

produce an orientation equal to -135 degrees, while AUVscan "B" would calculate 45

degrees for the same segment, even though both AUVs are scanning in the clockwise

direction.

Figure 4.8. Orientation Calculation from Opposite Sides of a Line Segment.

29

To provide the necessary consistency for the orientation comparison, the a of the

line segment is used. The issue to take into consideration when using this comparison is

that the value of r may be negative. When adjacent segments have opposing r values,

both r and a are negated for the second segment to permit proper comparison.

D. BUILDING OBJECTSFROMLINE SEGMENTS

1. Underwater Objects: Convex not Concave

Underwater objects of interest have predominantly convex shape. This fact is the

basis for the adjacent line combination algorithm used. If an object does have concave

features, it is instead represented as more than one object. Since concave objects are

ordinarily not of concern, and since the algorithm always produces a valid world

representation of convex and concave objects for path planning purposes, this is an

acceptable approach.

2. Object Building

Segments are combined to form polyhedron representations of objects. The first

condition checked to determine whether or not to combine segments is the distance

between the line segments. The distance comparison is done between the end points of

one line segment to the end points of the follow-on line segment, for both possibilities

this allows for out-of-order combination. The comparison using the most current line

segment's start point and the previous line segments end point is done first, as this is the

most likely combination.

If the distance between the line segments is less than the permitted maximum

tolerance the next comparison is orientation of the line segments. Alternatively normals

may be used for comparison instead of line orientations. If the line segments are adjacent

and colinear, then they are grouped together. The tolerance of the colinear check is

relaxed the closer the line segments are to each other, this is due to the fact that the closer

the line segments are the increased probability that they belong to the same object.

30

If the segments are not colinear it is then determined whether they are convex or

concave. Due to the characteristics of underwater objects the segments are grouped

together if they are convex and are not grouped together if they are concave. The

problem of a consistent comparison between line segments occurs due to the possible

change in sonar scanning direction, as well as AUVheading and bearing rate. A

consistent comparison is needed that is independent of scan direction and relative

position, as shown in Fig. 4.9.

*^ Convex

/
Concave

Figure 4.9. Convex versus Concave.

To solve this problem the bearings of the line segments relative to the AUVare

calculated and compared to determine the line segment which is more clockwise. The

clockwise line segment is then treated as the second line segment in the comparison,

OCi - a 2 . If the result of that comparison is negative, the segments are convex with respect

to the AUV.

E. CLASSIFICATION

1. Check If NewObject

The initial part of classification is to ensure that the new object has not already been

represented in the world. This is accomplished by comparing the classification of the

objects and the centroids, if the classification is a wall. If the classification is a mine the

test compares the areas of the objects as well as the centroids. The comparison is done

31

between the current object and all of the objects already defined in the world. More work

is needed here. The first area to address would be to combine overlapping polyhedra.

This can occur when the Phoenix AUVmoves to another position relative to the target as

demonstrated in Fig. 4.10. One way to combine polyhedra might be to calculate weighted

averages of centroids and radii as shown in Fig. 4.11.

Time t2

Polyhedron tl

Polyhedron t2 —
Time tl

SZ

Figure 4.10 Overlapping Polyhedra.

fnew ~ r\+T2
\
+r 2

(dr\r 2)

Figure 4.11. Merging Overlapping Circles.

32

2. Sequential Rule Firing

Classification is done based on the strength of returns, linearity and area of the

polyhedra, as well as any known characteristics of the environment. All new polyhedra

are tested to see if they are already represented in the world model. A check for a

possible moving target looks for objects that are identical but have traveled at a finite

speed. Much more work is possible here.

F. REPRESENTATIONOFCLASSIFIED OBJECTS

1. Method of Representation

Representation of the objects is achieved using circle representations for path

planning purposes. This representation is valid as most objects in the underwater

environment can be adequately approximated by individual cylinders or walls of

cylinders.

2. Representation of Linear Objects (Walls)

The Replanner module uses circle representation of objects for path planning.

Since the replanner uses circles, linear objects need to be represented as circles. A

predetermined radius is used to create circle representations of the linear object. This is

done as shown in Fig. 4.12.

/* split a wall into circles of global_radius */

number_of_circles = ceiling(length/global_radius);

delta_x = (tailx - headx) / number_of_circles;

delta_y = (taily - heady) / number_of_circles;

for (i = 0; i < number_of_circles; ++i)

{

fprintf(new_circle_ptr,"Circle %6.4f %6.4f %6.4f %6.4f\n",

(headx + i*delta_x),(heady + i*delta_y), z ,global_radius);

}

V
Figure 4.12. Circle Representation of Linear Objects.

33

3. Representation of Polyhedra

The area of a polyhedron is the summation of the triangle areas shown in Fig. 4. 13.

The area of a single planar triangle is given by Equation (4.25).

Area A = \\(X 2 -X
l

)(Y 3 -Y
l) -(X 3 -X

]
)(Y 2 -Y

l) (Eq 4.25)

The polyhedron is represented using centroid_x and centroid_y shown in Equations

(4.26) and (4.27). The radius of the circle is calculated in Equation (4.28).

Centroid x =

Centroid_y =

2^(sta rt_x+end_x)

2*number_of_line_sef>mei

£(start_y+end_y)

2 *number_of_line_segme)

(Eq 4.26)

(Eq 4.27)

Figure 4.13. Summing Triangle Areas to Determine Polyhedra Area.

radius = J2 * Area polyhedron lK (Eq 4.28)

The area is multiplied by two for a safety range from the polyhedron.

34

G. COLLISION THREATS

1. When to Check?

The issue of collision avoidance is an important safety issue of the AUV. To

ensure the safety of the AUVthe frequency of checks must be often enough to guarantee

a collision threat will not be missed. The elimination of the unnecessary processing of

spurious returns is also an issue of concern. Both problems are handled by the collision

threat check, which is performed for every sonar return that contributes to a line segment.

If a return does not contribute to a line segment then the return is considered spurious.

Further work will be needed to discriminate between spurious returns and objects which

do not provide consistent returns.

2. What is a Collision Threat?

A collision threat is any object that lies in the path of the AUVwithin a five foot

range i.e., a little more than one-half ship length. The safe width that is required for the

AUVis four feet. With the required four foot width for passage and five foot safety

range, the relative bearings that are checked for collision threats are from 336 degrees to

024 degrees, as shown in Fig. 4.14. This simple check will detect most problems when

transiting between waypoints.

Figure 4.14. Collision Avoidance Safety Range.

35

3. Collision Avoidance Actions

When a collision threat is detected the sonar module passes the message

"COLLISION_THREAT" to the OODmodule. The OODmodule then orders a full

backing bell until all headway is removed from the AUV. Future implementations should

include a "collision warning" message, when an object is in the path of the AUV, but not

close enough to be a collision threat, since this warning would allow for less drastic

measures and easier recovery. Other actions will need to be developed for hovering

mode. The best approach is probably to stop, hover in place, back away as necessary to

avoid collision, map the new collision threat, and replan the path.

H. SUMMARY

The algorithms above have been implemented in the current sonar module

operating on the Phoenix. The sonar module initializes the sonar system at startup. The

run-time processing of the module includes the gathering, processing and transformation

of the raw sonar data. The data is then fitted to line segments using parametric

regression. The implementation of the object building and classification algorithms have

demonstrated the ability to provide the required data for the autonomous operation of an

underwater vehicle. Collision avoidance implementation has also been supported with

message passing to the OODwhen a collision threat occurs.

36

V. EXPERIMENTALDESIGNANDRESULTS

A. INTRODUCTION

The goal for the Phoenix was to conduct a successful sea water mission of

detecting, localizing and classifying a mine-like object. Sonar code developments were

first tested in the virtual world, then the test tank and finally a larger mission

demonstrating the AUV's capabilities.

B. VIRTUAL WORLDTESTING

1. Using the Virtual World

A virtual world has been used throughout the development of this code

(Brutzman 94). The virtual world allows the user to run all vehicle software verbatim,

testing interprocess communications and algorithm correctness. While the virtual world

allows for testing correctness, it does not test for hardware robustness, and is currently

somewhat of an ideal environment even with sensor errors inserted.

2. Experiments

The initial virtual world testing was a simple mission with the AUVin the center of

the test tank. A 360 degree rotation was performed to gather sonar data and test the

classification algorithms. The resulting raw sonar data is shown in Fig. 5.1. The line

segments formed from the sonar data and the circle representations of those line segments

are shown in Fig. 5.2. The test was done once with no knowledge of the "world." The

initial run produced an output file called "new_world," this file is the representation of the

environment computed by the program. The second test uses the output from the first run

as input for the "world." This was to test the correctness of the "check_if_new" function.

The ability to compare objects with the known environment reduces the communication

between the OODand the Sonar module, as well as an unnecessary collision threat

reports. The results of the testing were satisfactory.

37

3. Test results

Figure 5.1 shows the virtual world range/bearing data. Figure 5.2 shows the line

segments fitted to the data and the center of the circles produced for path planning

purposes.

NPS AUV sonar outputs
1 1

..; w-3ci s s:o-;4v riitP o

-

j&fip " *^*
s<te

1

1

\\ •
i

i i i
1

East -> (y_world) (ft]

Figure 5.1 Sonar Data from Virtual World.

NPS AUV sonar outputs

__«—.-*•+•——

East -> (y_world) [ft]

Figure 5.2 Fitted Line Segments and Centers of Circle Representations.

38

C. TANKTESTING

1. Preprocessing Real Sonar Data

None of the computer hardware used in this thesis was installed or connected prior

to this work. The test tank was a useful environment at first to allow for communication

between the Voyager computer and the sonar systems. The test tank was the first

opportunity to evaluate raw sonar data and determine the best methods for preprocessing.

The sonar data collected was processed through various thresholding, smoothing, and

filtering algorithms. The final algorithm developed for the sonar preprocessing is

represented in Fig. 5.3. The input to the algorithm is a 64-bin range array, with each bin

containing a number between zero and 15 representing the average strength of the return

over that portion of the range scale. The first step of the algorithm is bin thresholding,

which is the process of ignoring some of the initial bins to eliminate interference from

self noise. The number of bins that are ignored completely is based on the relative

bearing of the sonar, in order to eliminate false returns from the AUVitself. The next

step is the sequential evaluation of all of the remaining bins and testing the bin value

against a threshold value. A threshold value of seven was used. If the bin strength is

greater than the threshold value, it is a candidate return. The next step is to compare it to

the current maximum value. The comparison between bin values is done by weighting

the closer bins such that a distant strong contact will not obscure a closer weaker contact

(which may present a collision threat).

2. Position Problems

The main disadvantage of the tank testing is the lack of positioning data available to

the Phoenix. Without an accurate dead reckon position for a moving vehicle, sonar data

is useless since a bearing and range mean nothing without a point of origin. Given these

limitations and separate problems with the dead-reckon model, the only useful sonar

testing that was accomplished in the test tank was performed with the Phoenix stationary

and in a known position.

39

RawRange Data (64 bins)

Bin Thresholding

Thresholding

Strength Comparison

TRange
Figure 5.3. Sonar Preprocessing Algorithm.

3. Testing Results

Tank tests conducted a 360 degree scan, and the data was processed by the sonar

module, with the results being evaluated for correctness. These tests were performed

with a mine-like object in the tank, to evaluate the classification rules. The plots and

output files demonstrate the classification of a mine-like object, in the test tank using a

stationary AUV. Sonar detection, localization and classification results were satisfactory

as demonstrated by Fig 5.4 and Fig. 5.5. The preprocessed sonar data and the fitted line

segments are shown in Fig. 5.4. The objects created by the module are shown in Fig. 5.5,

with the mine-like object classified at coordinate (4.06, 0.25) with a radius of one foot.

D. SEAWATERTESTING

1. Moss Landing Harbor

The first ever sea- water testing of the Phoenix took place at Moss Landing Harbor

in January 1996. Many problems were discovered during this testing. The initial tests

allowed for the evaluation of many systems that cannot be tested in the tank i.e., GPSand

DiveTracker. Unfortunately the positioning data of the Phoenix was not as accurate as

40

needed to accomplish the initial transit/search/transit mission designed for the harbor.

Poor dead reckoning and hardware reliability problems produced many unusable results.

NPS AUV sonar outputs
r

cft«

1

A <»
o.

line se^Be^ts aver data

r

points

ft
«, a»-»

{
s

si

h
/

i -, <V»*V '<o*w.
o o

1 . i_ i

East -> (y_world) [ft]

Figure 5.4. Sonar Data and Fitted Lines from Tank testing.

NPS AUV sonar outputs
1

1

: »»,, ; -l~ c -r .- ...

1

obj ects imposed ov " line segments —

-^ •

1 1

I

Ij

II i

1

1
:

1 !

1
i

Li

1 /

1
—

1 . .- J '

East -> <y_world) [ft]

Figure 5.5. Objects from Tank Testing. Note Small Mine-Like Object

at (4.0,0.0).

41

2. Real World Situations

The sonar data gathered from stationary and moving scans were used to test the

algorithms in a true sea-water environment. The major improvement to the algorithm that

was produced by this testing was the line ending condition of two consecutive zero

returns. Prior to the harbor testing all sonar testing was done in man-made environments.

Enclosed conditions produced the anomaly of always receiving a valid sonar return, and

therefore the condition of no return was not discovered until Moss Landing. This was an

excellent result.

3. Data and Results

The data gathered during the two weeks of testing was not as useful as originally

expected. This was due to the lack of accurate position data while the Phoenix was

transiting. Stationary data was gathered and the results were shown in Figs. 4. 1 and 4.2.

The output circle_world. input file is shown in Fig. 5.6 demonstrating the format of the

input to the replanner module. Object radii equal to 1.0000 indicates that these circles

were generated to approximate a wall.

OBJECT X Y Z Radius

Circle 9.6522 13.0779 2.0000 1.0000

10.4248 13.6633 2.0000 1.0000

11.1974 14.2488 2.0000 1.0000

11.9700 14.8342 2.0000 1.0000

12.7426 15.4197 2.0000 1.0000

Circle

Circle

Circle

Circle

Figure 5.6. Circle World Input File from Moss Landing Data.

42

E. POOLTESTING

1. NPSPool

After the results of the Moss Landing testing were evaluated we decided to attempt

further testing in the swimming pool at NPS. The goal was again a mission of detecting,

localizing and classifying a mine-like object. The lack of accurate position information

was once again the pitfall.

A very successful mission was accomplished during the pool testing. The Phoenix

was placed in a known location and a sonar search was conducted while the Phoenix was

stationary. This experiment demonstrated the ability for all software components to be

running together and achieve real-time performance from the sonar module. The

pre-processed sonar data and fitted line segments from this experiment are shown in

Fig. 5.7. The centers of the circles produced for path planning are plotted in Fig. 5.8.

The mine-like object was detected at coordinate (30,33-36), although at this range with

the ST725 the object only produced four returns and was classified as "unknown". The

ability to demonstrate the real-time capabilities of this module was an excellent result.

NPS AUV sonar outputs

fitted line segments +

^*"1 ; -

j i

10 20 30 40 50 60
East -> (v world) Iftl

Figure 5.7. Processed Sonar Data and Fitted Line Segments.

43

NPS AUV s onar outputs

- >

<

- %

'
' '

East -> (y_world) [ft]

Figure 5.8. Circle Representation of the Sonar World. Note Small

Mine-Like Object at (30,35).

F. FOLLOW-ONTESTING

1. NewVirtual World

The data that was gathered from the Moss Landing testing was implemented into

the virtual world. The virtual world was also updated to provide sonar data based on the

bearing of the sonar head, provided by the sonar module, and the graphical representation

of objects in the virtual world. A computational geometric sonar model provided returns

accurate within inches, with approximately a five percent error rate in generated returns.

This new version of the virtual world was used to perform sonar classification and path

replanning tests. Having a complete geometric model and complete real-time

visualization of sonar bearings and ranges immediately clarified several difficulties,

enabling immediate correction of several long-standing problems. This was merely one

of many occasions where visualization improvements resulted in suprisingly profound

insights which were previously elusive.

44

2. Results

The results of this testing were excellent, as an end-to-end mission of detecting,

localizing, classifying and replanning around a mine-like object was accomplished. A

picture of the mission running is shown in Fig. 5.9. The output from the sonar module is

shown in Fig. 5.10 displaying the sonar representation of the walls and the mine-like

object. The raw sonar data is shown in Fig. 5.1 1. The circle world output from the

mission is plotted in Fig. 5.12.

Figure 5.9. Virtual World Mission Snapshot.

Figure 5.10. The Sonar Module's Circle World from

Virtual World Data. Cylinders Shown Here Represent

Classified Objects from Fig. 5.12.

45

30

25

40

NPS AUV sonar outputs

fitted line segmebjs +

IIIIIIIIIII WI H IIIII I III II-

60 70 80 90 100
East -> (y_world) [ft)

!| r
i i

r

:
+

110 120

Figure 5.11. Raw Sonar Data with Fitted Lines from Virtual World Mission.

40 50

NPS AUV sonar outputs

f 1 1

»

1 T j i i |

1 1 1 1
'

1 1 1

P

70
East

80 90
> (y_world) [ft]

100 110 120

Figure 5.12. Classified Objects Created from Virtual World Mission. Note the Curved
Object Centered at Coordinate (20,46) Was Classified Mine-Like.

46

G. SUMMARY

Testing was a four step process. The initial testing done in the virtual world

allowed for the testing of the sonar module without the overhead of deploying the vehicle.

This was used to test and refine the basic algorithms. The virtual world also supplied the

ability to establish the communications between all of the parts of the software

architecture. The next step of tank testing, was useful in the refinement of the hardware

interface portion of the sonar module, but as mentioned above the lack of accurate

position data limited the amount of testing possible. The next testing, accomplished in

sea water, provided useful insights to the ability of the sonar and the algorithms. Many

hardware failures and less-than-expected accuracy of position data limited the amount of

useful results gathered from the sonar system during the Moss Landing tests. The fourth

set of tests were performed using a greatly enhanced geometric sonar model in

simulation. Accurate position data, accurate returns and some noisy returns were

successfully analyzed and classified using vehicle hardware and vehicle software in real

time.

The many difficulties involved with the deployment of the Phoenix, e.g., hardware

failures and logistic support, demonstrate what an invaluable asset a virtual world is in

the development of software. Despite the disappointing shortfalls of end-to-end system

testing, enough successful tests were conducted using the sonar module aboard Phoenix

to conclude that real-time sonar classification is achievable. Webelieve we have a

working system now. Further in- water testing is needed to tune coefficient choices and

validate overall system performance in a variety of real-world situations.

47

48

VI. CONCLUSIONSANDRECOMMENDATIONS

A. CONCLUSIONS

1. Real-Time Classification

The sonar module developed by this work has shown the ability to process sonar

data in real time. The real time classification of objects was not accomplished in an

untethered waterborne mission, due to many hardware and software problems, although

subsequent testing produced real-time classification in the virtual world. The dead

reckon position data of the Phoenix is not currently accurate or consistent enough to

support the real-time classification of sonar objects when underway. The sonar module

does process the sonar data received during waterborne testing and produces the required

outputs in real-time. Without reliable position information this data gathered cannot be

verified. Nevertheless the correctness of the algorithm has been demonstrated using

sonar data gathered with a fixed position and a 360 degree sonar search conducted using

vehicle hardware. With these two positive results, it is evident that real-time object

classification is achievable. Further improvements in dead reckoning are likely and

corresponding sonar results will be reevaluated.

2. Collision Avoidance

A simple collision avoidance algorithm has been implemented in the Phoenix. The

results of this algorithm are independent of the actual position of the Phoenix. The

algorithm uses relative sonar range and bearing for the determination of a collision threat.

This simplicity is a desirable feature, since it will protect the vehicle regardless of the

navigational accuracy. More testing and additional development will no doubt further

improve collision avoidance capabilities.

49

3. Object Representation

The representation of classified objects, for the purposes of path planning, is

performed with circle representations as shown in Fig. 5.3. This data is shared with the

replanner module by creating a file, which is later used by the replanner module as the

input for a path planning process. Circle representations are adequate for most (if not all)

target obstacles encountered by an AUV.

B. RECOMMENDATIONSFORFUTUREWORK

1. Testing

The current Tactical level needs to be further tested with adequate dead reckon

position information. Performing a complete mission will demonstrate the capabilities

and/or improvements needed for all current software.

2. VxWorks

The need for a shared memory system is evident by the large amount of message

passing required by the current implementation. The shared-memory needs of the tactical

level combined with the real-time requirements of the execution level can both be

satisfied with the implementation of the VxWorks operating system. It is likely that

performance gains are possible using shared memory. Process profiling analysis is

needed first before embarking on a system reconfiguration. Regardless of whether such a

transition is made, current results show that shared memory is not required and a standard

Unix approach can work.

3. Video Camera Correlation with Sonar

The next logical step in the MCMefforts of AUVs is to use a camera to provide

visual support of the classification performed by the sonar module. The idea here is that

once a mine-like object is classified, the AUVcan transit to a closer location and acquire

visual confirmation, or provide the new classification of the object. Image processing

50

will remain independent from sonar classification, and is not needed for mine-like object

classification or safe path planning.

4. Expanding Classification Rules

The current implementation has demonstrated the ability to process sonar data in

real time and create line segments from that data. The ability to build and classify objects

has also been accomplished, but the need for more classification rules is evident. Now

that the real time problem of sonar classification has been solved, the next improvement

is the expansion of the rules for detailed classification. Wewant to be able to

discriminate between mines, rocks, fish and other moving entities. Wealso want to

combine "blobbed" data points which come from the same target but do not yet provide

adequate resolution for line fitting.

5. Improved Collision Avoidance Reactions

The need for improved collision avoidance actions is obvious. The current

implementation is a fail-safe method suitable for the current testing. Improvements will

be needed once the platform is ready for more complex testing. The improvements can

be made both at the OODlevel, by taking less severe actions in accordance with the

phase of the mission, and at the sonar module level by creating another message (e.g.

"collision_warning") that might occur at a farther range from fast-moving objects to

provide the OODmore time to react to the situation. Another improvement that can

easily be made is for the OODmodule to replan after avoiding the collision, instead of

aborting the mission which the current implementation does.

6. Virtual World Sonar Model

The virtual world provides sonar data for objects defined in the virtual world, by

the user. The next step in the progression of the virtual world is the implementation of a

realistic noise distribution for the sonar data, in order to present data that is comparable to

data collect in waterborne experiments. The current sonar data produced by the virtual

51

world is an excellent representation of the ST1000 sonar, as it returns only a range and

bearing. An implementation that returns a 33 byte data string similar to the ST725 (or the

ST1000 in scanning mode) could be very useful in further testing of raw sonar

pre-processing. This implementation would require valid sonar returns on the same

bearing for multiple targets and would provide for the testing of pre-processing

algorithms. This would help improve the ability to locate weaker closer contacts that can

be masked by farther stronger contacts.

7. ST1000 Implementation

Due to the difficulties experienced with the waterborne testing, the ST1000 was

never fully implemented as an available sonar to the sonar module. The code for

communications with the ST1000 is already written. The testing required deals mostly

with the processing of the returns in the profiling mode. Operating the ST1000 in the

scanning mode would work identically to the ST725. The implementation of the ST1000

will also require three-dimensional transformations. These transformations will be

required due to the fact that the STIOOO's one degree conical beam will be more sensitive

to the AUV's pitch and roll than the 24 degree vertical beam of the ST725. This is a

straightforward task for implementation.

C. SUMMARY

This work resulted in a fully implemented sonar module for the Phoenix.

Improvements were made to the previous algorithm with the addition of checks for loss

of sonar returns and proximity checks between returns. Further improvements were made

in the polyhedra building with the algorithm being modified to allow for combination of

segments that are produced in any scanning direction. Although the entire mission of

detecting, localizing and classifying a mine-like object was not quite accomplished due to

other problems, a major step was taken with the demonstration of the sonar module's

ability to produce real-time in-water results detecting and localizing a mine-like object.

52

Subsequent testing in the virtual world demonstrated convincing real-time detection,

localization and classification of a mine-like object.

53

54

LIST OFREFERENCES

Boorda, J. M, "Mine Countermeasures - An Integral Part Of Our Strategy And Our Forces,"

White Paper, December 1995.

Brutzman, Don, A Virtual World for an Autonomous Undersea Vehicle, Ph.D. Dissertation,

Naval Postgraduate School, Monterey, California, December 1994. Available at

http://www. stl. nps. navy. com/~brutzman/dissertation

Brutzman, Don, NPSAUVIntegrated Simulator, Master's Thesis, Naval Postgraduate School,

Monterey, California, March 1992.

Brutzman, Don, "Virtual World Visualization for an Autonomous Underwater Vehicle,"

Proceedings of the IEEE Oceanic Engineering Society Conference OCEANS95, San Diego

California, October 12-15 1995, pp. 1592-1600. Available at

ftp.V/taurus. cs. nps. navy. mil/pub/auv/oceans95.ps.Z

Brutzman, Don, Software Reference: A Virtual World for the NPSAutonomous Underwater
Vehicle (AUV). Available at http://www.stl.nps.navy.mil/~auv/

Brutzman, Don, Compton, Mark A. and Kanayama, Yutaka, "Autonomous Sonar Classification

using Expert Systems," Proceedings of the IEEE Oceanic Engineering Society Conference

OCEANS92, Newport, Rhode Island, October 26-29 1992, pp. 554-559. Available at

ftp.V/taurus. cs. nps. navy.mil/pub/auv/oceans92. ps.Z

Burns, Michael, An Experimental Evaluation and Modification of Simulator-based Vehicle

Control Software for the Phoenix Autonomous Underwater Vehicle (AUV), Master's Thesis,

Naval Postgraduate School, Monterey, California, April 1996. Available at

http:/www. cs. nps. navy, mil/re search/auv

Byrnes, R.B., The Rational Behavior Model: A Multi-Paradigm, Tri-level Software Architecture

for the Control of Autonomous Vehicles, Ph.D. Dissertation, Naval Postgraduate School,

Monterey, California, March 1993.

Kanayama, Yutaka J., CS4313: Lecture Notes Addendum: Generalized Least Squares Fitting,

Naval Postgraduate School, Monterey, California, April 1995.

Kanayama, Yutaka J., Kovalchik, Joseph G., Chuang, Chien-Liang, Kelbe, Frank E., "Motion

Planning for Autonomous Mobile Robots," Proceedings of the Autonomous Vehicles in Mine
Countermeasures Symposium, Monterey, California, April 4-7 1995.

Leonhardt, Bradley, Mission Planning and Mission Control Software for the Phoenix AUV:
Implementation and Experimental Study, Master's Thesis, Naval Postgraduate School, Monterey,

California, March 1996. Available at http:Zwww.es. nps. navy.mil/research/auv

55

Marco, D. B., "Autonomous Underwater Vehicle: Hybrid Control of Mission and Motion,"

Journal of Autonomous Robots, 1996.

McClarin, Dave, Discrete Asynchronous Kalman-Filtering of Navigation Data for the Phoenix

Autonomous Vehicle, Master's Thesis, Naval Postgraduate School, Monterey, California, March
1996.

NASASoftware Technology Branch, CLIPS Reference Manual, Lyndon B. Johnson Space

Center, Houston, Texas, 1991.

Scrivener, Art, Acoustic Underwater Navigation of the Phoenix Autonomous Underwater Vehicle

using the DiveTracker System, Master's Thesis, Naval Postgraduate School, Monterey,

California, March 1996.

Tritech International Ltd, ST-725 Sonar: User Manual, Mike E. Chapman Company, Duvall,

Washington, 1992.

Tritech International Ltd, ST-1000 Sonar: User Manual, Mike E. Chapman Company, Duvall,

Washington, 1992.

Tritech International Ltd, ST-Sonar Head Control: Technical Notes, Mike E. Chapman
Company, Duvall, Washington, 1992.

56

APPENDIXA. SOURCECODEFORSONARMODULE
/***

FILENAME: sonar .

c

AUTHOR

:

DATE:
Mike Campbell
15 March 1996

PURPOSE

:

Gathers all of the sonar data and performs real time
object classification to support mine-hunting and supply
run-time collision avoidance.

REVISION: This code is constantly being improved and expanded current
revision is available at:
http: //www. stl .nps .navy.mil/~auv/tactical/

FUNCTIONS: sonar (

)

linear_f itting (

)

start_segment (

)

add_to_line (

)

add_circle (

)

normalize (

)

normal2 (

)

normal (

)

struct LINE_SEG *end_segment (

)

reset_accumulators (

)

build_poly (

)

print_list (

)

class if y__poly (

)

Power (

)

quadrant (

)

triangle_area (

)

init_next_poly (

)

end_poly(

)

**
/* # include "vxWorks.h" */

#include <stdio.h>
#include <stdlib.h>
include <math.h>
#include <ctype.h>
#include <string.h>
#include <stddef.h>
include "sonar_globals .h"

ttinclude "
. . /execution/globals .h"

#include "
. . /execution/def ines .h"

#include "
. . /execution/statevector .h"

ttdefine RECORD_SIZE sizeof (struct LINE_SEG)
#define MAXLINE 132

void linear_f itting (

)

void start_segment ()

;

void add_to_line ()

;

void add_circle ()

;

double normaliz();

57

double normal ()

;

struct LINE_SEG *end_segment ()

;

void reset_accumulators () ;

void build_poly ()

;

void print_list ()

;

void classify_poly ()

;

double Power ()

;

int quadrant ()

;

double triangle_area () ;

void init_next_poly () ;

void end_poly();
double norma 12 ()

;

char Sonar_String_back[MAXBUFFERSIZE]

;

char Sonar_data[MAXBUFFERSIZE] ;

char Sonar_Read_to_clear [MAXBUFFERSIZE]

;

extern int Sonar_to_OOD_fd [2] , 00D_to_Sonar_fd[2]

;

extern int Sonar_telemetry_fd[2]

;

extern int initialize_sonar_systems ()

;

extern double Ping_Sonar ()

;

/***
FUNCTION: sonar (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: Handles the communications within and outside of this
module

RETURNS: none, sends sonar data through socket comms to calling
function. (tactical. c)

void sonar (void)

{

/* Open file, testing for success */

if ((outf ile = fopen ("data_points . sonar " , "w")) ==((FILE *) 0))

{

printf ("Error opening out file \n");
exit (0)

;

}

if ((out2 = fopen (" line_segments . sonar" , "w")) == ((FILE *) 0))
{

printf ("Error opening out file \n")

;

exit (0)

;

}

if ((objectfile = fopen ("objects . sonar" , "w")) == ((FILE *) 0))
{

printf ("Error opening out file \n")

;

exit (0)

;

58

}

if ((new_world = f open ("new_wor Id. sonar " , "w")) == ((FILE *) 0))

printf (" Error opening new world file. \n")

;

if

else

((worldf ile = f open ("world" , "r")) == ((FILE *)

printf ("World file does not exist. \n");

while (fgets(line, MAXLINE, worldf ile)

{

sscanf (line, "%f %f
&tl,&t2,&t3,&t'
&il,&i2,&i3)

;

world [poly_num
world tpoly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
world [poly_num
++poly_num;

}

}

segment_data. theta = 0;

segment_data . r = ;

segment_data ,num_points = ;

segment_data . line_status = ;

while (1)

f %f %f %f %f %f %f %f %f %i %i %i",
4,&t5,&t6,&t7, &t8,&t9,

] . start = tl;

] .end = t2;

] .head_of_poly = NULL;
] .headx = t3

] .heady = t4
] . tailx = t5

] . taily - t6

] . centroidx = t7

] .centroidy = t8
] .area = t9

] . seg_count = il

] . status = 13

] .classif ication= i3

{

if (read(Sonar_telemetry_fd[0] , Sonar_data, MAXBUFFERSIZE)
{}

else

1)

{

parse_telemetry_string (Sonar_data)

;

if (read(OOD_to_Sonar_fd[0] , Sonar_data, MAXBUFFERSIZE)
else
{

if (strcmp (Sonar_data, " INITIALIZE") == 0)

== -DO

{

if (LOCATIONLAB)
{

sprint f(Sonar_String_back, "SONAR_INITIALIZED")

;

Sonar_mode = ;

59

SONAR_725_bearing = 0;

Scan_direction = -1;
write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE) ;

}

else
{

st_path = initial ize_sonar_sys terns ()

;

if (st_path > 0)

{

sprintf (Sonar_String_back, "SONAR_INITIALIZED")

;

Sonar_mode = ;

SONAR_725_bearing = ;

Scan_direction = -1;
write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE) ;

printf ("%s\n" , Sonar_String_back)

;

}

else
{

sprintf (Sonar_String_back, "SONAR_INITIALIZED_FAILED") ;

write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE)

;

}

}

}

else if (strcmp (Sonar_data, "SONAR_SEARCH") == 0)

{

Sonar_mode = 1

;

}

else if (strcmp (Sonar_data, "ROTATE_SEARCH") == 0)

{

Sonar_mode = 2

;

}

else if (strcmp (Sonar_data, "QUIT") == 0)

{

classify_poly (poly_num)

;

print_list ()

;

fclose (textf ile)

;

fclose (outf ile)

;

fclose (out2)

;

fclose (worldf ile)

;

fclose (new_world)

;

exit (0)

;

}

}

switch (Sonar_mode)
{

case -1:

break;
case :

if ((Scan_direction == -1) && (SONAR_725_bearing >= 60.0) &&
(SONAR_725_bearing <= 3 00.0)

Scan_direction = 1;

60

else if ((Scan_direction == 1) && (SONAR_725_bearing <= 300.0) &&
(SONAR_72 5_bearing >= 60.0))

Scan_direction = -1;

if (SONAR_725_bearing > 170 && SONAR_72 5_bearing < 190)
bin_threshold = 12;

else
bin_threshold = 4;

if (LOCATIONLAB)
{

SONAR_725_range = AUV_ST72 5_range;
}

else
SONAR_725_range =

Ping_Sonar (st_path, Scan_direction, bin_threshold)

;

SONAR_725_bearing =

normal2 (SONAR_725_bearing + step_size *-0
. 9*Scan_direction)

break;
case 1

:

if (Search_status == 0)

{

if (! LOCATIONLAB)
center_sonar (st_path)

;

x_search = x;

y_search = y;
SONAR_725_bearing = 0.0;
Search_status = 1;

}

if (SONAR_725_bearing > 17 && SONAR_725_bearing < 190)
bin_threshold = 12;

else
bin_threshold = 6;

if (LOCATIONLAB)
SONAR_725_range = AUV_ST725_range;

else
SONAR_72 5_range = Ping_Sonar (st_path, -1 , bin_threshold)

;

SONAR_725_bearing += step_size *0.9;
if (SONAR_72 5_bearing > 3 60)

{

SONAR_725_bearing = normal2 (SONAR_725_bearing) ;

Search_status = 0;

Sonar_mode = ;

sprintf (Sonar_String_back, "SONAR_SEARCH_COMPLETE") ;

write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE) ;

}

break;
case 2

:

if (Rotate_status == 0)

{

if (! LOCATIONLAB)
center_sonar (st_path)

;

SONAR_725_bearing = 0.0;
Rotate_status = 1;

Rotate_count = ;

}

61

if (LOCATIONLAB)
SONAR_725_range = AUV_ST725_range;

else
SONAR_725_range = Ping_Sonar (st_path, , 8)

;

Rotate_count += 0.5;
if (Rotate_count > 200)

{

Rotate_status = ;

Sonar_mode = ;

sprintf (Sonar_String_back, "ROTATE_SEARCH_COMPLETE") ;

write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE)

;

}

break;
}

if (SONAR_725_range >= 0.1)

{

one_bad_range = ;

if (Sonar_mode ! = 1 && t > 1 . && ! LOCATIONLAB)
{

x_return = x + 3*cos (normal (psi*M_PI/180)) +

cos (normal (psi*M_PI/180+
SONAR_725_bearing*M_PI/180)) *SONAR_725_range;

y_return = y + 3*sin (normal (psi*M_PI/180)) +

sin (normal (psi*M_PI/180+
SONAR_725_bearing * M_PI/180)

) *SONAR_72 5_range;
}

else if (Sonar_mode == 1 && t > 1 . && ! LOCATIONLAB)
{

x_return = x_search + 3*cos (normal (psi*M_PI/180)) +

cos (normal (psi*M_PI/180+
SONAR_725_bearing*M_PI/180)) * SONAR_72 5_range

;

y_return = y_search + 3*sin(normal (psi*M_PI/180)) +

sin(normal (psi*M_PI/180+
SONAR_725_bearing*M_PI/180)) *SONAR_725_range;

}

else if (t > 1.0)

{

x_return = x + 3*cos (normal (psi*M_PI/180)) +

cos (normal (psi*M_PI/180+
AUV_ST725_bearing*M_PI/180)) *SONAR_725_range;

y_return = y + 3*sin (normal (psi*M_PI/180)) +

sin (normal (psi*M_PI/180+
AUV_ST725_bearing*M_PI/180)) *SONAR_72 5_range;

}

if (t >= 1.0 && (((x_return - old_x) * (x_return - old_x)

+

(y_return - old_y) * (y_return - old_y)) >= 0.05))
{

sprintf (Sonar_String_back, "SONAR_725 %lf %lf %lf",
SONAR_725_bearing , SONAR_725_range, SONAR_72 5_strength)

;

write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE)

;

fprintf (outf ile, "%lf %lf %lf \n",x_return ,y_return
,AUV_ST72 5_bearing)

;

fflush (outfile)

;

old_x = x_return;

62

old_y = y_return;
linear_f itting ()

;

}

else
{

sprintf (Sonar_String_back, "SONAR_725 %lf %lf %lf" ,

SONAR_72 5_bearing, SONAR_725_range, SONAR_72 5_strength)
write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE)

;

}

SONAR_725_range = 0.0;

}

else if (one_bad_return == 1 && segment_data . line_status > 1)

{

build_poly (end_segment
,
poly_num)

;

reset_accumulators ()

;

}

else
one_bad_return = 1

;

}

}

}

/***

FUNCTION: Power (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: Provides a function that raises numbers to powers.

RETURNS: A double of Base raised to the Exp.
**

double Power (Base , Exp

)

double Base;
int Exp;

{

int Loop = Exp;
double Total = 1.0;
double BaseNum = Base;

while (Loop)

{

if (Loop > 0)

{

Total = Total * BaseNum;
Loop--

;

}

else
{

Total = Total / BaseNum;

63

Loop++;
}

}

return Total

;

}

/***

FUNCTION: quadrant (

)

AUTHOR: Mike Campbell

DATE: 4 March 199 6

PURPOSE: Returns the quadrant of the angle as a number from to 3

,

with representing the +Y and -X quadrant and rotating CW
from there.

RETURNS: An integer between and 3

.

**

int quadrant (Angle)

double Angle;

{

if (Angle > M_PI/2)
return ;

else if (Angle > 0)

return 1

;

else if (Angle > -M_PI/2)
return 2

;

else
return 3

;

}

/***

FUNCTION: triangle_area (

)

AUTHOR: Mike Campbell

DATE: 4 March 199 6

PURPOSE: Calculates the area of a triangle represented by the points
XI, Yl X2,Y2 and X3 , Y3

.

RETURNS: A double representing the area of the triangle P1P2P3

.

***/

double triangle_area (XI , Yl , X2 , Y2 , X3 , Y3

)

double X1,Y1,X2,Y2,X3 / Y3;

64

{

double Ans;

Arts = (0.5*(((X2 - X1)*(Y3 - Y1))-((X3 - XI) * (Y2-Y1)))) ;

return Ans

;

}

/A**

FUNCTION: normalize ()

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: Accepts a double representation of an angle (in radians)
and returns an angle between -PI and +PI

.

RETURNS: A double between -PI and +PI

.

it**/

double normalize (theta)

double theta;
{

double Ans;

if (theta < -M_PI)
{

Ans = theta + 2*M_PI;}
else if (theta >= M_PI)

{

Ans = theta - 2*M_PI;}
else

Ans = theta;
return Ans

;

}

/A***

FUNCTION: normal (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: Accepts a double representation of an angle (in radians)
and returns an angle between and 2PI.

RETURNS: A double between and 2 PI.

double normal (theta)

double theta;
{

65

double Ans;

if (theta < 0)

Ans = theta + 2*M_PI;
else if (theta >= 2*M_PI)

Ans = theta - 2*M_PI;
else

Ans = theta;
return Ans;

}

/***

FUNCTION: normal2 (

)

AUTHOR: Mike Campbell

DATE: 4 March 199 6

PURPOSE: Normalizes numbers (in degrees) between and 3 60.

RETURNS: A double between and 3 60 degrees.

double normal2 (theta)

double theta;
{

double Ans;

if (theta < 0.0)
Ans = theta + 3 60.0;

else if (theta >= 360.0)
Ans = theta - 3 60.0;

else
Ans = theta;

return Ans

;

}

/***

FUNCTION: linear_f itting (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: This procedure controls the fitting of range data to straight
line segments. First it collects four data points and establishes
a line segment with it's interim data values. After the segment
is established, the procedure tests each subsequent data point
to determine if it falls within acceptable bounds before calling
the least squares routine to include the data point in the line
segment. After inclusion of the data point the segment is again
tested to ensure the entire set of data points are linear enough.
If any of the tests fail, the line segment is ended and a new one
started. The completed line segment is stored in a data structure

66

called segment, and segments are linked together in a linked list

RETURNS: none, sends sonar data through socket comms to calling
function, (tactical. c)

**

void linear_f itting (

)

{

int num_points, line_status

;

double theta, r, sigma, delta, del_y, del_x;
struct LINE_SEG *f inished_segment

;

theta = segment_data. theta;
r = segment_data. r ;

num_points = segment_data .num_points

;

line_status = segment_data . line_status;
del_x = x_return - segment_data . endx;
del_y = y_return - segment_data . endy

;

/* FIRST CHECK TO SEE IF NEW POINT IS TO FAR FROM LAST POINT TO INCLUDE */

if (num_points > 0)

{

if (del_x*del_x + del_y*del_y > 4.0)

{

if (line_status > 1)

{

f inished_segment = end_segment ()

;

build_poly (f inished_segment ,poly_num)

;

}

reset_accumulators ()

;

segment_data.num_points = ;

segment_data. line_status = ;

line_status = 0;

num__points = ;

}

}

if (line_status ==0) /* not enough data points yet */

{

segment_data. initx[num_points] = x_return;
segment_data . inity [num_points] = y_return;
segment_data. endx = x_return;
segment_data. endy = y_return;
segment_data .num_points += 1 ;

if (num_points == 3)

{

start_segment ()

;

segment_data . line_status = 1;

}

}

else
{

sigma = segment_data . sgm_delta_sq /(double) num_points;

67

delta = x_return * cos(theta) + y_return * sin(theta) - r;

if (fabs (delta) < residual_tolerance)

|

fabs (delta) < (sigma * sigma_weighting)
{

switch (line_status)
{

case 1

:

segment_data .num_points += 1 ;

add_to_line (x_return, y_return)

;

if (segment_data . line_status == 1)

segment_data . line_status = 2 ;

else if (segment_data . line_status == 5)

{

reset_accumulators ()

;

segment_data. initx[0] = segment_data . initx [1]

segment_data . inity [0] = segment_data . inity [1]

segment_data . initx [1] = segment_data . initx [2

]

segment_data . inity [1] = segment_data . inity [2

]

segment_data . initx [2] - segment_data . initx [3

]

segment_data. inity [2] = segment_data. inity [3

]

segment_data . initx [3] = x_return;
segment_data . inity [3] = y_return;
segment_data.num_points = 4;

start_segment ()

;

segment_data . line_status = 1;

}

break;
case 2

:

segment_data .num_points += 1;

add_to_line (x_return, y_return)

;

if (segment_data . line_status == 5)

{

f inished_segment = end_segment ()

;

build_poly (f inished_segment ,poly_num)

;

reset_accumulators ()

;

segment_data . initx [0] = x_return;
segment_data. inity [0] = y_return;
segment_data .num_points = 1

;

segment_data . line_status = ;

segment_data . endx=x_return

;

segment_data . endy=y_return;
}

break;
case 3

:

segment_data . initx [1] = x_return;
segment_data . inity [1] = y_return;
segment_data . line_status = 4;

break;
case 4 :

segment_data .num_points += 1;

add_to_line (segment_data . initx [1] , segment_data . inity [1])

;

if (segment_data . line_status == 5)

{

f inished_segment = end_segment ()

;

68

build_poly (f inished_segment ,poly_num)

;

reset_accumulators ()

;

segment_data . initx[2] = x_return;
segment_data . inity [2] = y_return;
segment_data . num_points = 3;

segment_data . line_status = 0;

segment_data . endx=x_return;
segment_data . endy=y_return

;

}

else
{

segment_data . num_j?oints += 1 ;

add_to_line (x_return, y_return)

;

if (segment_data. line_status == 5)

{

f inished_segment = end_segment ()

;

build_poly (f inished_segment
,
poly_num)

;

reset_accumulators ()

;

segment_data . initx [0] = x_return;
segment_data . inity [0] = y_return;
segment_data .num_points = 1;

segment_data . endx=x_return

;

segment_data . endy=y_return;
segment_data. line_status = ;

}

else
segment_data . line_status = 2

;

}

break;
}

}

else
{

switch (line_status)
{

case 1

:

case 2 :

segment_data . initx [0] = x_return;
segment_data. inity [0] = y_return;
segment_data. line_status - 3;

break;
case 3 :

f inished_segment = end_segment ()

;

build_poly (f inished_segment,poly_num)

;

reset_accumulators ()

;

segment_data . initx [1] = x_return;
segment_data. inity [1] = y_return;
segment_data .num_points = 2;

segment_data . endx=x_return;
segment_data . endy=y_return;
segment_data . line_status = 0;

break;
case 4 :

f inished_segment = end_segment ()

;

69

build_poly (f inished_segment
,
poly_num)

;

reset_accumulators
()

;

segment_data . initx [2] = x_return;
segment_data. inity [2] = y_return;
segment_data .num_j?oints = 3;

segment_data . endx=x_return;
segment_data . endy=y_return;
segment_data . line_status = ;

break;

/***
FUNCTION: start_segment

(

AUTHOR

:

DATE:

Mike Campbell

4 March 1996

PURPOSE: This procedure establishes a new line segment with the four
data points contained in segment_data . init (x and y) . It
writes the appropriate data to the interim values in
segment_data

.

RETURNS

:

void start_segment (

)

{

double theta, r, mux, muy, muxx, muyy, muxy,sds = 0;

int i , j ;

segment_data. start_time = t;

segment_data.startx = segment_data . initx [0]

segment_data. s tarty = segment_data. inity [0]

segment_data . endx = segment_data. initx [3

]

segment_data.endy = segment_data . inity [3

]

for (i = 0; i < 4; ++i)

{

segment_data . sgmx += segment_data . initx [i]

;

segment_data . sgmy += segment_data . inity [i]

;

segment_data . sgmx2 += Power (segment_data . initx [i] , 2)

;

segment_data . sgmy2 += Power (segment_data . inity [i

]

,2) ;

segment_data. sgmxy += segment_data . initx [i] *

segment_data . inity [i]

;

}

mux = segment_data . sgmx/4 . ;

muy = segment_data. sgmy/4 . ;

muxx = segment_data. sgmx2 - Power (segment_data. sgmx, 2) /4 . ;

muyy = segment_data . sgmy2 - Power (segment_data . sgmy, 2) /4 . ;

70

muxy = segment_data . sgmxy - (segment_data . sgmx
* segment_data . sgmy) /4.0;

if (-2.0 * muxy ! =
|

muyy - muxx ! =)

theta = (atan2(-2.0 * muxy, (muyy - muxx))) / 2.0;
r = mux * cos(theta) + muy * sin(theta);
for (j = 0; j < 4; ++ j

)

{

sds += Power (segment_data . initx [j] - mux, 2) * Power (cos (theta) , 2)

;

sds += Power (segment_data . inity
[j] - muy, 2) * Power (sin (theta) , 2)

;

sds += 2.0 * (segment_data. initx [j] - mux) *

(segment_data . inity [j] - muy)* cos (theta) * sin (theta);

}

segment_data. sgm_delta_sq = sds;
segment_data. theta = theta;
segment_data . r = r;

/it**

FUNCTION: add_to_line (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: This procedure checks to see if the current return fit the
current line segment based on range and thinness ratio.

RETURNS: None. Sets line_status == 5 if cannot add return to current
segment

.

A***************************************

void add_to_line (x,y)

double x,y;

{

double num_jpoints ;

double m_major, m_minor, d_major, d_minor, theta, r;

double mux, muy, muxx, muyy, muxy, sds;
int i ;

num_points = (double) segment_data .num_points

;

segment_data. sgmx += x;

segment_data. sgmy += y;
segment_data. sgmx2 += Power(x,2);
segment_data . sgmy 2 += Power (y, 2);
segment_data. sgmxy += x * y;
mux = segment_data . sgmx / num_points

;

muy = segment_data. sgmy / num_j?oints;
muxx - segment_data. sgmx2 - Power (segment_data . sgmx, 2) / num_points;
muyy = segment_data. sgmy2 - Power (segment_data. sgmy, 2) / num_points;
muxy - segment_data. sgmxy -

(segment_data . sgmx* segment_data . sgmy) / num_points;
m_major = (muxx+muyy) /2 . -sqrt ((muyy-muxx) * (muyy-muxx) /4 . +

Power (muxy, 2))

;

71

m_minor = (muxx+muyy) /2 . +sqrt ((muyy-muxx) * (muyy-muxx) /4 . +

Power (muxy ,

2

]

d_major =4.0 * sqrt (fabs (m__minor/num_points)) ;

d_minor = 4.0 * sqrt (fabs (m_maj or /num_points))

;

if ((d_minor / d_major) < thinness_requirement

)

{

if (-2.0 * muxy ! =
|

muyy - muxx ! =)

theta = (atan.2 (-2.0 * muxy, (muyy - muxx))) / 2.0;
r = mux * cos(theta) + muy * sin(theta);
sds += Power(x - mux, 2) * Power (cos (theta) , 2)

;

sds += Power (y - muy, 2) * Power (sin (theta) , 2)

;

sds += 2 . * (x - mux) * (y - muy) * cos (theta) * sin (theta);
segment_data. sgm_delta_sq += sds

;

segment_data. theta = theta;
segment_data . r = r;

segment_data .endx = x;

segment_data . endy = y;
segment_data . d_major = d_major;
segment_data .d_minor = d_minor;
if ((normal2 (SONAR_725_bearing) > 336 ||

normal2 (SONAR_725_bearing) < 024) &&
SONAR_72 5_range < 5.0)

{

sprint f (Sonar_String_back, "COLLISION_THREAT")

;

write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE) ;

printf ("%s\n" , Sonar_String_back)

;

}

}

else segment_data . line_status = 5;

/A***

FUNCTION: LINE_SEG *end_segment (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: This procedure finishes off a line segment placing it into
the LINE_SEG data structure, including the calculation of
the orientation of the line segment.

RETURNS: Current LINE_SEG.
•A***/

struct LINE_SEG *end_segment (

)

{

struct LINE_SEG *seg_ptr;
double startx, starty, endx, endy, delta, theta, r, length, t = 0,

double bearing_end, bearing_start

;

startx = segment_data . startx;
starty = segment_data . starty

;

72

endx = segment_data . endx;
endy = segment_data. endy;
theta = segment_data . theta;
r = segment_data. r

;

delta = startx * cos (theta) + starty * sin (theta) - r;

startx = startx - (delta * cos (theta))

;

starty = starty - (delta * sin (theta))

;

delta = endx * cos (theta) + endy * sin(theta) - r;

endx = endx - (delta * cos (theta))

;

endy = endy - (delta * sin (theta))

;

length = sqrt (Power (startx - endx, 2) + Power (starty - endy,2));
seg_ptr = (struct LINE_SEG *) malloc (RECORD_SIZE)

;

seg_ptr->headx = startx;
seg_ptr->heady = starty;
seg_ptr->tailx = endx;
seg_ptr->taily = endy;
seg_ptr->alpha = theta;
seg_ptr->start_time = segment_data . start_time;
seg_ptr->f inish_time = t;

if((endx-startx != || endy-starty ! = 0) &&(endy != || endx != 0) &&
(startx !=

|
J starty != 0))

{

bearing_end = atan2 (endy , endx)

;

bearing_start = atan2 (starty , startx)

;

if (((abs (quadrant (bear ing_end) - quadrant (bear ing_start)) != 3) &&
(bearing_end - bearing_start >= 0.0))

((abs (quadrant (bearing_end) - quadrant (bearing_s tart)) == 3) &&
(bearing_end - bearing_start < 0.0)))

seg_ptr->orientation = atan2 ((endy-starty) , (endx-startx))

;

else
seg_ptr->orientation = atan2 ((starty-endy) , (startx-endx))

;

}

seg_ptr->r = r;

seg_ptr->length = length;
seg_ptr->dmajor = segment_data .d_major

;

seg_ptr->dminor = segment_data .d_minor

;

seg_ptr->next = NULL;
if ((normal2 (SONAR_725_bearing) > 336 ||

normal2 (SONAR_72 5_bearing) < 024) &&
S0NAR_72 5_range < 5.0)

{

sprint f(Sonar_String_back, "COLLISIONJTHREAT")

;

write (Sonar_to_OOD_f d [1] , Sonar_String_back,MAXBUFFERSIZE) ;

printf (
" %s\n" , Sonar_String_back)

;

}

fprintf (out2, "# LINE SEGMENT\n%41f %41f %41f %41f\n%41f %41f %41f
%41f \n\n" , seg_ptr->start_time, seg_ptr->headx,

seg_ptr->heady, seg_ptr->orientation,
seg_ptr->f inish_time, seg_ptr->tailx, seg_ptr->taily,

seg_ptr->orientation)
f flush (out2)

;

return seg_ptr;

73

FUNCTION: reset_accumulators (

)

AUTHOR

:

DATE:
Mike Campbell
4 March 1996

PURPOSE:

RETURNS

:

This procedure resets all of the cumulative segment data,
preparing for a new segment to begin.
None

.

**

void reset_accumulators (

)

{

segment_data .num_points =0.0;
segment_data . sgmx = 0.0;
segment_data . sgmy = 0.0;
segment_data . sgmx2 = 0.0,

segment_data . sgmy2 = 0.0
segment_data . sgmxy = 0.0

FUNCTION: add_circle (

)

AUTHOR

:

DATE:

Mike Campbell

4 March 1996

PURPOSE: This procedure produces the circle representation of the
classified objects.

RETURNS: None

.

***/

void add_circle()

char
FILE
double
char
double
int

newfile[22] , oldfile[22]

;

*new_circ_ptr

;

xtemp
,
y temp , rtemp , radius

;

command [MAXL I NE]

;

length, headx, heady, tailx, taily, area, del_x, del_y , num_circles
;

i;

headx = world [poly_num] .headx;
heady = world [poly_num] .heady

;

tailx = world [poly_num] . tailx;
taily = world [poly_num] . taily;
area = world [poly_num] .area;
length = sqrt (fabs (((headx - tailx) * (headx - tailx) +

(heady - taily) * (heady - taily))))

;

sprintf (newf ile, "circle_world. input%li " , poly_num)

;

sprintf (oldf ile, "circle_world. input%li " , poly_num - 1);
sprintf (command, "cp %s %s", oldfile, newfile)

;

if (poly_num > 0) system (command)

;

74

if ((new_circ_ptr = f open(newf ile, "a")) == ((FILE *) 0))

{

printf ("Error opening new world \n")

;

}

else
{

switch (world [poly_num] .classification)
{

case 1

:

radius = global_radius

;

num_circles = ceil (length/global_radius)

;

del_x = (tailx - headx) / num_circles;
del_y = (taily - heady) / num_circles

;

for (i = 0; i < num_circles ; ++i)
{fprintf (new_circ_ptr, "Circle %6.4f %6.4f %6.4f %6.4f\n",

(headx + i*del_x) , (heady + i*del_y) , z, radius)

;

}

break;
case 2

:

if ((sqrt (fabs(area*2/M_PI))) > 0.5)
radius = sqrt (fabs (area*2/M_PI))

;

else
radius = 0.5;

fprintf (new_circ_ptr, "Circle %6.4f %6.4f %6.4f %6.4f\n",
(world [poly_num] .centroidx / (world [poly_num] . seg_count * 2))

,

(world [poly_num] . centroidy / (world [poly_num] . seg_count * 2)1

z, radius)

;

break;
case 3

:

if ((sqrt (fabs (area*2/M_PI))) > 0.5)
radius = sqrt (fabs (area*2/M_PI))

;

else
radius = 0.5;

fprintf (new_circ_ptr, "Circle %6.4f %6.4f %6.4f %6.4f\n",
(world [poly_num] . centroidx / (world [poly_num] . seg_count * 2)),

(world [poly_num] . centroidy / (world [poly_num] . seg_count * 2

z , radius)

;

break;
}

}

f close (new_circ_ptr)

;

sprintf (Sonar_String_back, "REPLAN %s" ,newfile)

;

write (Sonar_to_OOD_fd[l] , Sonar_String_back, MAXBUFFERSIZE)

;

printf ("%s\n" , Sonar_String_back)

;

FUNCTION: check_i f _new (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

75

PURPOSE: This procedure determines if the current object just
finished is a new object or correlates to an already
existing object.

RETURNS: "1" if it is a new object or "0" if it is not new.
***/

int check_if_new(new_poly)

struct Polyhedron new_poly;

{

int i , ns , s

;

double ml , m2 , bl , b2 ;

for (i=0; i < poly_num ; i++)

{

ns = new_poly . seg_count * 2

;

s = world[i] . seg_count * 2

;

if ((fabs (world[i] .alpha - new_j?oly. alpha)) < 0.2 &&
world[i] . classification == 1

&& (fabs (new_poly . centroidx/ns - world[i] . centroidx/s) < 1.0) &&
(f abs (new_poly .centroidy/ns - world[i] . centroidy/s) < 1.0)

Sc&. new_poly .classification == 1)

{

return ;

}

else if ((fabs (new_poly. centroidx/ns - world [i] . centroidx/s) < 1.0) &&
(fabs (new_poly. centroidy/ns - world[i] . centroidy/s) < 1.0) &&

(fabs (new_poly. area - world[i] .area) < 5.0))
{

return ;

}

}

return 1

;

}

/•••••A***

FUNCTION: classify_poly (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: This procedure classifies the objects based on size length
and other characteristics.

RETURNS: None

.

void classify_poly (n)

int n;

76

double length, headx, heady, tailx, taily , area, alpha, del_x, del_y, num_circles

;

int i ;

headx = world [n] .headx;
heady = world [n] .heady

;

tailx = world[n] . tailx;
taily = world [n] . taily;
area = fabs (world [n] .area)

;

alpha = world[n] . alpha;

length = sqrt ((headx - tailx) * (headx - tailx) +

(heady - taily) * (heady - taily))

;

if ((length > 5.0) && (area/ length/ length < 0.1))
world[n] . classification = 1;

else if ((area >= 10.0) && (area <= 100.0))
worldfn] . classification = 2;

else
world[n] . classification = 3

;

if (check_if_new (world [n]) &&
(length > 0.5

|

world [n] . seg_count >= 2))

{

}

add_circle ()

;

else
{

reset_accumulators ()

;

poly_num -= 1;

}

/ + * * * ***

FUNCTION: end_poly (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: This procedure ends the polyheron and classifies it

RETURNS

:

None

.

void end_poly (ptr , n)

int n;

struct LINE_SEG *ptr;

{

world [n] . status = 1

;

77

classify_poly (n)

;

}

FUNCTION: init_next_poly (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: This procedure initializes the next polyhedron number once
the current polyhedron is completed.

RETURNS: None

.

void init_next_poly (ptr , n)

int n;

struct LINE_SEG *ptr;

{

double del_x,del_y;

world [n] .head_of_poly = (struct LINE_SEG *) malloc (RECORD_SIZE)
world [n] .head_of_poly->next = ptr;
ptr->prev = world[n] . head_of_poly;
ptr->next = NULL;
world [n] . centroidx = (ptr->headx + ptr->tailx)

;

world [n] . centroidy = (ptr->heady + ptr->taily)

;

world [n] . seg_count = 1;

world [n] .area = 0.0;
world [n] .alpha = ptr->alpha;
world [n] . tailx = ptr->tailx;
world [n] . taily = ptr->taily;
world [n] .headx = ptr->headx;
world [n] .heady = ptr->heady;
world [n] . status = 0;

del_x = world [n] .headx - worldfn] . tailx;
del_y = world [n] .heady - world [n] .taily;
if (del_x*del_x + del_y*del_y >= 16.0)

worldfn] . classification = 1; /*long enough to be a wall*/
else

world[n] . classification = 3; /*this means unknown*/

/**** + * + ****** + * + ******** + *** + ** + + *********** + * + + *** + ****** + + * + ********+

FUNCTION: build_poly()

AUTHOR: Mike Campbell

78

DATE: 4 March 1996

PURPOSE: This procedure builds polyhedron out of line segments.

RETURNS: None

.

void build_poly (ptr , n)

int n;

struct LINE_SEG *ptr;

{

struct LINE_SEG * tempi = NULL;
double tril, tri2 , alphal , alpha2 , bearingl , bearing2

;

if (world [n] .head_of_poly == NULL)
{

init_next_poly (ptr , n)

;

}

else
{

tempi = world [n] .head_of_poly->next;
while (templ->next != NULL)

tempi = templ->next

;

if (((ptr->heady - templ->taily) * (ptr->heady - templ->taily) +

(ptr->headx - templ->tailx) * (ptr->headx - templ->tailx)) > 36.0)

{

if (n == poly_num)
{

end_poly (ptr,n)

;

poly_num += 1;

init_next_poly (ptr,poly_num)

;

}

}

else
{

while (tempi ->next != NULL)
tempi = templ->next ; /* get to end of list */

if (ptr->r > 0.0)
alpha2 = ptr->alpha;

else if (templ->r > 0.0)
alpha2 = normal (M_P I + ptr->alpha)

;

else
alpha2 = ptr->alpha;

if (templ->r > 0.0)
alphal = tempi ->alpha;

else if (ptr->r > 0.0)
alphal = normal (M_PI + tempi - >a lpha)

;

else
alphal = tempi ->alpha;

bearingl = atan2 (templ->taily - y, templ->tailx - x) ;

bearing2 = atan2 (ptr->taily - y, ptr->tailx - x)

;

if ((fabs(normal (alpha2 - alphal))) < 0.1745)
{

79

ptr->prev = tempi;
tempi ->next = ptr;
ptr->next = NULL;

world [n] . centroidx += (ptr->headx + ptr->tailx)

;

world [n] . centroidy += (ptr->heady + ptr->taily)

;

world [n] . seg_count += 1;

if (world[n] . classification == 1)

world [n] . alpha =
((world [n] . seg_count - 1) *world[n] . alpha +

ptr->alpha) /world [n] . seg_count

;

tril = triangle_area (world[n] .headx, world [n] .heady,
world[n] . tailx, world[n] .taily,
ptr->headx, ptr->heady)

;

tri2 = triangle_area (world [n] .headx, world[n] .heady,
ptr->headx,ptr->heady

,
ptr->tailx,ptr-> taily)

;

world [n] . area +- (tril + tri2);
world[n] . tailx = ptr->tailx;
world [n] . taily = ptr->taily;

}

else if ((abs (quadrant (bear ingl) - quadrant (bearing2)) != 3) &&

((bearingl - bearing2 > 0.0)

ScSc (normaliz (alpha2 - alphal) > 0.0)
((bearingl - bearing2 < 0.0)

ScSc (normaliz (alphal - alpha2) > 0.0))))
(

}

ptr->prev = tempi;
tempi ->next = ptr;
ptr->next = NULL;
world [n] . centroidx += (ptr->headx + ptr->tailx)

;

world [n] . centroidy += (ptr->heady + ptr->taily)

;

world [n] . seg_count += 1

;

tril - triangle_area (world [n] .headx, world [n] .heady,
worldfn] . tailx, world[n] .taily,
ptr->headx,ptr->heady)

;

tri2 = triangle_area (world [n] .headx, world[n] .heady,
ptr->headx,ptr->heady

,
pt r- > tailx, ptr- > taily)

;

world [n] . area += (tril + tri2);
world[n] . tailx = ptr->tailx;
world[n] . taily = ptr->taily;

else if ((abs (quadrant (bearingl) - quadrant (bear ing2)) == 3) &&

((bearing 2 - bearingl > 0.0)

ScSc (normaliz (alpha2 - alphal) > 0.0)

((bearing2 - bearingl < 0.0)
ScSc (normaliz (alphal - alpha2) > 0.0))))

{

ptr->prev = tempi;
tempi ->next = ptr;
ptr->next = NULL;
world [n] . centroidx += (ptr->headx + ptr->tailx)

;

world [n] . centroidy += (ptr->heady + ptr->taily)

;

world [n] . seg_count += 1;

tril = triangle_area (world[n] .headx, world [n] .heady

,

worldfn] . tailx, world[n] .taily,

80

ptr->headx, ptr->heady)

;

tri2 = triangle_area (worldfn] .headx, world[n] .heady,
ptr->headx, ptr->heady,ptr->tailx,ptr->taily)

world[n] . area += (tril + tri2);
world [n] . tailx = ptr->tailx;
world [n] . taily = ptr->taily;

}

else
{

end_poly (ptr , n)

;

poly_num += 1 ;

init_next_poly (ptr
,
poly_num)

;

}

}

}

}

FUNCTION: print_list (

)

AUTHOR: Mike Campbell

DATE: 4 March 1996

PURPOSE: This procedure outputs the final results for further
evalutation.

RETURNS: None

.

••A**

void print_list (

)

{

struct LINE_SEG *temp_ptr

;

for (i = ; i < poly_num + 1; i++)

{

if (world [i] .head_of_poly == NULL)
temp_ptr = NULL;

else
temp_ptr = worldfi] .head_of_poly->next

;

while (temp_ptr != NULL)

{

fprintf (objectfile, "%4g %4g %4g\n%4g %4g %4g %4g\n" , temp_ptr->headx,

81

temp_ptr->heady, temp_ptr->orientation,
temp_ptr->tailx, temp_ptr->taily,
temp_ptr->alpha, temp_ptr->r)

;

temp_ptr = temp_ptr->next

;

}

fprintf (objectf ile, " \n") ;

/************ This section commented to facilitate plotting outputs

fprintf (outf ile, "Average centroidx is: %4g \n"

,

(world [i] . centroidx / (world [i] . seg_count * 2)))

;

fprintf (outf ile, "Average centroidy is: %4g \n"

,

(world[i] . centroidy / (world [i] . seg_count * 2)))

;

fprintf (outf ile, "Area is: %4g \n" , world [i] . area)

;

fprintf (outf ile, "Classification is: %i \n" , world [i] . classification)

;

fDrintf (outf ile "\n \n \n") •***/

fprintf (new_wor Id, "%f %f %f %f %f %f %f %f %f %i %i %i\n",
world[i] . start , world [i] .end, world[i] .headx,

world[i] .heady, world [i] . tailx, world[i] .taily,
world[i] . centroidx, world [i] . centroidy ,world[i] .area,
world [i] . seg_count, world [i] .status,
world[i] .classification)

;

}

/*fprintf (outf ile, "There are %2i objects \n",poly_num + 1);*/

/*This is sonar_globals .h */

FILE *worldf ile, *new_world, *textf ile, *outf ile, *out2 , *objectf ile;
char line [13 2]

;

int i , il, i2 , i3 , i4 , i5

,

st_path, Rotate_count , Rotate_status ,poly_num = , Sonar_mode=-l

,

one_bad_return, Search_status , bin_threshold, LOCATIONLAB = ;

double tl, t2, t3 , t4, t5, t6, t7 , t8, t9, tlO, til, tl2,
x_search,y_search, SONAR_725_range, SONAR_725_bearing;

double step_size = 1.0, SONAR_725_strength, sigma_weighting = 3.0,
residual_tolerance = 2.0, thinness_requirement =0.1, x_return,
y_return;

double old_x, old_y, z ,
global_radius = 1 ;

int Scan_direction = -1; /* -1 is cw scan 1 is for ccw scan */

typedef struct {

double theta;
double r;

int num_jpoints ;

int line_status;
double initx[4];
double inity[4]

;

double sgm_delta_sq;
double start_time;
double startx;
double starty;
double endx;

82

double endy;
double sgmx;
double sgmy;
double sgmx2

;

double sgmy2

;

double sgmxy;
double d_minor;
double d_major;

SEG_DAT;

struct LINE_
{

double

_SEG

start_time,
f inish_time;

double headx,
heady

;

double tailx,
taily;

double alpha,
orientation,

double
r ;

length;
double dmajor

,

dminor

;

struct LINE_SEG *next;
struct

} ;

struct Polyt

{

double

LINE_SEG *prev;

iedr< Dn

start_time;
double end_time;
struct LINE_SEG *head_of_poly;
double tailx,

taily;
double headx,

heady;
double centroidx,

centroidy;
double area ;

double alpha; /*for walls only*/
int seg_count

;

int status; /* building 1 complete */

int
};

classification; /*l=wall, 2=mine, 3=unknown*/

struct LINE. _SEG *head = NULL;
SEG_DAT segmsnt_data;
struct] [NE_ SEG *f inished_segment

;

struct] Poly hedron world [100]

;

83

84

APPENDIXB. SOURCECODEFORSONARCOMMUNICATIONS

FILENAME: sonar_comms .

c

AUTHOR: Mike Campbell
Sonar Communication Code: Modified from Dave Marco's Code
Serial Port Initialization Code :Modif ied from Dave

McClarin's Code
DATE: 22 January 1996

PURPOSE: Handle all communications with the sonar system including:
initialization and pinging sonar.

REVISION: This code is constantly being improved and expanded current
revision is available at:
http: //www. stl .nps .navy.mil/~auv/tactical/

FUNCTIONS: int initialize_sonar_serial ()

;

int initialize_sonar_systems ()

;

double Ping_Sonar ()

;

void initialize_sonar ()

;

char set_scanning_gain ()

;

void center_sonar ()

;

char send_command()

;

int read_port ()

;

**

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/ types . h>
ttinclude <fcntl.h>
#include <ctype.h>
#include <errno.h>
#include <string.h>
#include <stropts.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <unistd.h>
ttinclude "sonar_globals .

h"

ttinclude "termiox.h"
#include <sys/uio.h>
#include <termio.h>

FILE *outfp;
double sonar_heading;
int initialize_sonar_serial ()

;

int ini tialize_sonar_sys terns ()

;

double Ping_Sonar ()

;

void initialize_sonar ()

;

char set_scanning_gain ()

;

void center_sonar ()

;

char send_command ()

;

85

int read_port ()

;

/***

FUNCTION: initialize_sonar_systems (

)

AUTHOR: Mike Campbell

PURPOSE: Initializes the system including the serial port and
sonar head.

RETURNS: One if it is successful, zero if not
***/

int initialize_sonar_systems (

)

{

char c[l],xl[50],x2[50],x3[50],x[200],y[l];
char *t;

unsigned short bin_byte, dummy_byte, binO, binl , bin2 , bin3

;

char buffer [100]

;

int i , j , k, n, w_path, r_path, n_loops , n_bytes , nnn;
int RESET_PORT,timeout

;

int n_b;

char st725_mode; /* 'S' for Scanning, ' P' for Profiling */

int st725_Nbins; /* No. of bins to collect 64 or 128 */

int st725_max_range;
int st72 5_j?ower

;

int st725_Ecpuls; /* N/A */

int st725_psi_sonar_count

;

double st72 5_j?si_sonar

;

int st725_sweep_sign;
int st725_ssiz;
if ((outfp = fopen ("raw_data . sonar" , "w")) ==((FILE *) 0))

{

printf ("Error opening out file \n")

;

exit (0)

;

}

st72 5_mode = '

S
'

;

st725_psi_sonar_count = 0,

st725_psi_sonar = 0.0;
st725_sweep_sign = 1,

st725_ssiz = 1

st72 5_max_range = 6,

st725_power = 12;
r_path = initialize_sonar_serial (

" /dev/ttya") ;

initialize_sonar (r_path, st725_mode, st725_max_range, st72 5_power

,

&st725_Nbins , st725_ssiz , st725_Ecpuls) ;

center_sonar (r_path)

;

sonar_heading = 0.0;
return r_path;

86

/***

FUNCTION: Ping_Sonar_ (

)

AUTHOR: Mike Campbell

PURPOSE: Pings the sonar and scans in the Scan_direction, reads
the sonar response and calculates Range ignoring first
bin_threshold bins

RETURNS: Returns range in feet and sets SONAR_725_strength

double Ping_Sonar (r_path, Scan_direction, bin_threshold)

int r_path, Scan_direction, bin_threshold;

{

char c[l] ,x[200] ,y[l]

;

int Intensity [64] , i ,max_range = 0,max_loc = ;

char * t

;

unsigned short bin_byte, binO , binl, bin2 , bin3

;

int k, n, num_bytes;
double range;

switch (Scan_direction)
{

case -1:

c [] = ' R '

;

sonar_heading += 0.9;
break;

case :

c [] = ' S •

;

break;
case 1

:

c [] = ' L ' ;

sonar_heading -= 0.9;
break;

}

write (r_path, c, 1) ; /* write characters to path /t2 dev. */

ioctl (r_path, I_NREAD, &num_bytes)

;

for (k=0;k<16;++k) /* Read First 8 Bytes */

{

t = &bin_byte

;

n=read(r_path, x, 1)

;

t [] = x [] ;

n=read (r_path, x, 1)

;

t[l] = x[0]

;

bin3 = bin_byte << 12;
bin3 = bin3 >> 12;

87

bin2 = bin_byte << 8 ;

bin2 = bin2 >> 12;

binl = bin_byte << 4

;

binl = binl >> 12;

binO = bin_byte >> 12;

Intensity [k*4] = binO

;

Intensity [k*4 + 1] = binl
Intensity [k*4 + 2] = bin2
Intensity [k*4 +3] = bin3
if (k > 0)

}

n=read(r_path, x, 1)

;

f or (i = bin_threshold; i < 64; i + +)

{ if (Intensity [i] > max_range + 2 && Intensity [i] > 7)

{

max_range = Intensity [i]

;

max_loc = i;

}

}

if(max_loc > 0)

{

range = 0.5126*(1 + max_loc) ; /*conversion from bin # to range in feet
set for 10 meter scale*/

SONAR_725_strength = max_range;
}

else
{

range = ;

SONAR_725_strength = 0;

}

return range;
}

/•A***

FUNCTION: initialize_sonar_serial (

)

AUTHOR: Mike Campbell Modified from Code of Dave McClarin

PURPOSE: Initializes serial port /dev/ttya

RETURNS: if failed and 1 if succeeds
**
int initialize_sonar_serial (char port[50])
{

int i, path, stat;

struct termio term;

if ((path = open(port, 0_RDWR| 0_NONBLOCK)) == -1)

{

fprintf (stderr , "No serial connection. \n")

;

88

}

else
{

path = open (port, 0_RDWR)

;

memset (tterm, 0, sizeof (term))

;

term. c_i flag = IXOFF;
term. c_o flag = 0;

term.c_cflag = B9600 | CS8 | CLOCAL| CREAD| HUPCL;
term. c_l flag = 0;

term.c_line = 0;

term.c_cc [VMIN] = ;

term.c_cc [VTIME] = 1;

if (ioctKpath, TCSETAF, &term) == -1)

fprintf (stderr , "Unable to set port parameters . \n")

;

}

return path;
}

/***

FUNCTION: read_port (

)

AUTHOR: Mike Campbell Modified from Code of Dave Marco

PURPOSE: Reads the serial port

RETURNS: Number of bytes read

int read_port (int port_fd, int num_bytes, char *data)
{

const int MAX_RETRIES = 100;
int count = 0;

int num_tries = 0;

int nbr

;

while ((count < num_bytes) &&
(num_tries < MAX_RETRIES) &&
((nbr = read(port_fd, &data [count] , 1)) != -1)) {

num_tries++

;

count += nbr;
}

if (count != num_bytes) {

if (num_tries == MAX_RETRIES)
fprintf (stderr , "Error: too many retries reading serial port\n");

else
fprintf (stderr , "Error: serial port read failed\n")

;

fprintf (stderr ,

" in read_port\n") ;

}

return count;
}

/***

89

FUNCTION: send_command (

)

AUTHOR: Mike Campbell Modified from Code of Dave Marco

PURPOSE: This function sends a single character and reads back a

single
character from the sonar

RETURNS: char read from sonar

/

char send_command (path, command)
int path;
char command;

{

unsigned n,n_bytes=0;
char reply, x [20] , c [1] ;

c[0] = command;

n = write (path, c, 1)

;

while (n_bytes != 1)

ioctl (path, I_NREAD,&n_bytes)

;

if(n_bytes == 1)

{

n = read (path, x, n_bytes)

;

}

reply = x [0] ;

return (reply)

;

/**********************************•************************************

FUNCTION: initialize_sonar (

)

AUTHOR: Mike Campbell Modified from Code of Dave Marco

PURPOSE: Initializes sonar head to desired parameters

RETURNS: None
***/

void initialize_sonar (path, mode, max_range, gain, nbins , ssiz, Ecpuls)

int path; /* Path opened for particular head */

char mode; /* 'S' = Scanning mode, '
P' = Profiling mode */

int max_range; /* 1, 2, 4, 6, 10, 20, 25, 30, 50, or 100 meters */

int gain; /* <= gain <= 100 */

int *nbins; /* # of bins to collect 64 or 128 */

int ssiz; /* 1, 2 , or 4 = 0.9, 1.8, or 3.6 deg . */

int Ecpuls;
{

unsigned n_bytes

;

unsigned short Tl , T2 , T3 , Tchecksum;

90

char c[l] ,x[20] , *t,y[l] , reply;
unsigned short byte, bytel ,Nsampl , Nbins , Range_Code, checksum;
unsigned short TxPulseMSByte, TxPulseLSByte, Gecmin, Rng_unt

;

int i
, j , k, n, word, TxPulse;

int Timout , Lokout , Eswait , Gaindt , Ecsclx, Ecscly

;

int Maxdst , Dacscx, Dacscy;
int EchoSounder [10]

;

**
INITIALIZATIN PARAMETERSFOR SCANNING MODE (ST-725 AND ST-1000 HEADS)

Range TxPul se NSAMPL NBINS Range Code chec ksum
meters 1.96 usee Lowe r 8

sum
dec hex dec hex dec hex dec hex dec hex

6 30 001E 1 01 64 40 00 95 5F
10 30 001E 3 03 64 40 1 01 98 62

20 100 0064 3 03 128 80 2 02 233 E9
25 125 007D 4 04 128 80 3 03 4 04

30 150 0096 6 06 128 80 4 04 32 20
50 250 00FA 12 OC 128 80 5 05 139 8B

100 475 01DB 26 1A 128 80 7 07 125 7D
**

INITIALIZATIN PARAMETERSFOR PROFILING MODE (ST-1000 HEAD)

Range TxPulse NSAMPL NBINS Range Code TIMOUT Maxdst
meters

1 30 1 64 00 1500 1500
2 30 1 64 01 3000 3000
4 30 1 128 02 6000 6000
6 30 1 128 03 9000 9000

10 40 1 128 04 15000 15000
20 50 3 128 05 30000 30000
30 75 6 128 06 45000 45000
50 100 12 128 07 65535 65535

ECPULS = 30
LOKOUT = 200
ESWAIT = 25600
GECMIN = Byte
GAINDT = 64
ECSCLX = 16383
ECSCLY = 11374
DACSCX = 256
DACSCY = 312 5

Rng Unt = 1
***/

if (mode == 'S') /* Set up for Scanning */

{

switch (max_r ange

)

{

case 6

:

TxPulse = 30;

91

Nsampl = 1;

Nbins = 64;
Range_Code = 0;

Tl = 3;

T2 = 65;
T3 = 12;
Tchecksum = 80;

break;

case 10:

TxPulse = 30;
Nsampl = 3;

Nbins = 64;
Range_Code = 1;

Tl = 3;

T2 = 65;
T3 = 20;
Tchecksum = 88;

break;

case 20:
TxPulse = 100;
Nsampl = 3;

Nbins = 12 8;

Range_Code = 2;

Tl = 3;

T2 = 129;
T3 = 40;
Tchecksum = 172;

break;

case 25:
TxPulse = 12 5;

Nsampl = 4;

Nbins = 12 8;

Range_Code = 3;

Tl = 3;

T2 = 12 9;

T3 = 50;
Tchecksum = 182;

break;

case 30:
TxPulse = 150;
Nsampl = 6;

Nbins = 128;
Range_Code = 4;

Tl = 3;

T2 = 12 9;

T3 = 60;
Tchecksum = 192;

break;

case 50:

92

TxPulse = 250
Nsampl = 12

Nbins = 128
Range_Code = 5

Tl = 3

T2 = 129
T3 = 100
Tchecksum = 232

break;

case 100:
TxPulse = 475
Nsampl = 26
Nbins = 128
Range_Code = 7

Tl =3
T2 = 129
T3 = 200
Tchecksum = 76;

break

;

} /* End switch */

}

else if (mode ==
' P') /* Set up for Profiling */

{

switch (max_range)
{

case 1

:

TxPulse = 3

Nsampl = 1

Nbins = 64,

Range_Code =
,

Timout = 150C);

Maxdst = 1500;
break;

case 2

:

TxPulse = 30
Nsampl = 1

Nbins = 64

Range_Code = 1

Timout = 3000;
Maxdst = 3000;

break;

case 4

:

TxPulse = 30
Nsampl 1

Nbins = 128
Range_Code 2

Timout = 6000;
Maxdst = 60 D();

93

break;

case 6

:

TxPulse = 30
Nsampl = 1

Nbins = 128
Range_Code = 3

Timout
Maxdst

break;

9000;
9000;

case 10

:

TxPulse = 40
Nsampl = 1

Nbins = 12 8

Range_Code = 4

Timout
Maxdst

break;

15000;
15000;

case 20:
TxPulse = 50
Nsampl = 3

Nbins =128
Range_Code = 5

Timout
Maxdst

break;

30000;
30000;

case 30:
TxPulse = 75
Nsampl = 6

Nbins = 128
Range_Code = 6

Timout
Maxdst

break;

45000;
45000;

case 50:

TxPulse = 100
Nsampl = 12
Nbins =12 8

Range_Code = 7

Timout = 6553 5;

Maxdst = 6553 5;
break;

} /* End switch */

/* Values Common to all Ranges */

94

/*Ecpuls = 75;*/
/*printf (" Input Ecpuls\n");
scanf ("%d" , &Ecpuls)

;

print f
(

" \n")

;

printf (" ******* Ecpuls = %d\n" , Ecpuls)

;

printf (
" \n")

; */

Lokout = 200;
Eswait = 25600;
Gecmin = 2.55*gain;
/*printf (" \n")

;

printf (" ******* Gecmin = %d\n" , Gecmin)

;

printf (
" \n")

; */

Gaindt = 64;
Ecsclx = 16383;
Ecscly = 11374;
Daesex = 2 56;
Dacscy = 312 5;

Rng_unt = 1 ;

}

else
{

printf ("Wrong mode ! \n") ;

}

*nbins = Nbins

;

/* Send Sonar Parameters */

c [] = ' P '
;

write (path, c, 1)

;

/* Send TxPulse Length (Word) in 1.96 usee units */

word = TxPulse & OxOOff; /* Byte = LSByte of TxPulse */

byte = word;
TxPulseLSByte = byte;

y[0] = (char) byte;
n = write(path,y, 1) ; /* Send LSByte First */

word = TxPulse >> 8; /* Byte = MSByte of TxPulse */

byte = word;
TxPulseMSByte = byte;
y[0] = (char) byte;
n = write (path, y, 1) ; /* Send MSByte Last */

/* Send NSAMPL (Byte) NO. A/D Samples per Bin */

byte - Nsampl

;

y[0] = (char) byte;
n = write (path, y, 1)

;

/* Send NBINS (Byte) No. of Bins to Collect */

byte = Nbins;
y[0] = (char) byte;
n = write (path, y, 1)

;

95

/* Send Range Code 0-8 (obsolete) (Byte) */

byte = Range_Code;
y[0] = (char) byte;
n = write (path, y, 1)

;

/* Send DataByte checksum (Byte) . Should be the lowest 8 bits of */

/* the sum of all Bytes */

word = TxPulseMSByte + TxPulseLSByte + Nsampl + Nbins + Range_Code;
word = word & OxOOff; /* Mask MSByte to get last 8 bits for checksum; */

checksum = word;
byte = checksum;

y[0] = (char) byte;
n = write (path, y, 1)

;

sleep (1)

;

ioctl (path, I_NREAD, &n_bytes)

;

/* Read Reply to Checksum */

n = read (path, x, 1)

;

reply = x[0] ;

if (reply == "I")

{

printf (" Parameter Checksum Ok\n")

;

}

else
{

printf ("Parameter Checksum INCORRECT! ! ! \n")

;

}

/* Enable half step should reply 'H' */

reply = send_command(path, 'H')

;

if (reply == 'H'

)

{

printf ("Half step set\n")

;

}

else
{

printf ("Half step not set!\n");
}

/* Enable TVG should reply 'X' */

reply = send_command(path, '
X'

)

;

if (reply == 'X'

)

{

printf ("TVG set\n");
}

else
{

printf ("TVG not set!\n");
}

/* Set mode return Range bin Peak should reply 'K' */

reply = send_command(path, 'K')

;

if (reply ==
'

K'

)

96

printf ("Range bin Peak mode Ok\n");

else

printf ("Range bin Peak mode not set!\n")

;

Set Final Gain for TVG, should reply '
E' */

reply = set_scanning_gain (path, 83 ,

'

E
')

;

if (reply ==
'

E'

)

printf ("Final TVG Gain set\n")

;

else

printf ("Final TVG Gain not set!\n");

if (mode == 'S') /* Scanning mode */

/* Set Initial Gain for TVG, should reply ' C */

reply = set_scanning_gain (path, gain, '

C
')

;

if (reply ==
' C

)

{

printf ("Initial TVG Gain set\n")

;

}

else
{

printf ("Initial TVG Gain not set!\n");
}

}

else /* Profiling mode */

{

EchoSounder [0] = Ecpuls
EchoSounder [1

]

= Timout
EchoSounder [2] = Lokout
EchoSounder [3

]

= Eswait
EchoSounder [4

]

= Gaindt
EchoSounder [5] = Ecsclx
EchoSounder [6] = Ecscly
EchoSounder [7

]

= Maxdst
EchoSounder [8

]

= Dacscx
EchoSounder [9

]

= Dacscy

checksum = ;

/* Send Profiler Sonar Parameters */

c [] = J « ;

write (path, c, 1)

;

/* Send First 4 Parameters (Words) */

97

for (i=0; i<4; ++i)

{

word = EchoSounder [i] & OxOOff; /* Byte = LSByte of EchoSounder [i] */

byte = word;
checksum = checksum + byte; /* Add up the checksum */

y[0] = (char) byte;
n = write(path,y, 1) ; /* Send LSByte First */

word = EchoSounder [i] >> 8; /* Byte = MSByte of EchoSounder [i] */

byte = word;
checksum = checksum + byte; /* Add up the checksum */

y[0] = (char) byte;
n = write (path, y, 1) ; /* Send MSByte Last */

}

/* Send Gecmin (Byte) */

byte = Gecmin;
checksum = checksum + byte;
y[0] = (char) byte;
n = write (path, y, 1)

;

/* Send Last 6 Parameters (Words) */

for (i=4; i<10;++i)
{

word = EchoSounder [i] & OxOOff; /* Byte = LSByte of EchoSounder [i] */

byte = word;
checksum = checksum + byte; /* Add up the checksum */

y[0] = (char) byte;
n = write (path, y, 1) ; /* Send LSByte First */

word = EchoSounder [i] >> 8; /* Byte - MSByte of EchoSounder [i] */

byte = word;
checksum = checksum + byte; /* Add up the checksum */

y[0] = (char) byte;
n = write (path,y, 1) ; /* Send MSByte Last */

}

/* Send Rng_unt (Byte) */

byte = Rng_unt

;

checksum = checksum + byte;
y[0] = (char) byte;
n = write (path, y, 1)

;

/* Send DataByte checksum (Byte) . Should be the lowest 8 bits of */

/* the sum of all Bytes */

checksum = checksum & OxOOff; /* Mask MSByte to get last 8 bits */

printf ("Prof ile checksum = %d\n" , checksum)

;

byte = checksum;
y[0] = (char) byte;
n = write (path, y, 1)

;

sleep (1) ;

ioctl (path, I_NREAD, &n_bytes) ;

/* Read Reply to Checksum */

98

n = read (path, x, 1)

;

reply = x[0] ;

if (reply == "T '

)

{

printf (

" Prof ile Checksum Ok\n")

;

}

else
{

printf ("Prof ile Checksum Incorrect\n")

;

}

}

/* Check if head is using default settings. Reply is '

T
' if yes, */

/* 'F' if not */

reply = send_command(path, 'D')

;

if (reply -- "I")

{

printf ("Head is still using Default Settings ! \n")

;

}

else
{

printf ("Head not using Default Settings\n")

;

}

}

/***

FUNCTION: center_sonar (

)

AUTHOR: Dave Marco

PURPOSE: Function to set sonar gain, <= gain <= 100

RETURNS: none
**

char set_scanning_gain (path, gain, which_gain)

int path, gain;
char which_gain; /* which_gain = 'B' for Initial, 'E' for Final */

{

unsigned short byte;
unsigned n,n_bytes;
char reply ,y[l] ,x[20] ,c[l] ;

/* Set Initial or Final Gain for TVG should reply */

/* ' C for Initial or 'E' for Final */

c[0] = which_gain;
write (path, c , 1)

;

byte = 2.55*gain;
y[0] = (char) byte;
n = write (path,y, 1)

;

sleep (1)

;

ioctl (path, I_NREAD,&n_bytes) ;

read
(
path , x , n_by tes)

;

reply = x []

;

return (reply)

;

99

}

/***

FUNCTION: center_sonar (

)

AUTHOR: Dave Marco

PURPOSE: centers the sonar head

RETURNS: none
**

void center_sonar (path)

int path;
{

int i ;

int direction, encoder_width;
char encode;

encode= ' A' ;

encoder_width = 0;

direction = 1;

printf (" Inside center\n");
/* Clear out any junk from buffer at startup */

while (encode != '3')

{

printf ("encode = %c path = %d\n" , encode, path)

;

encode = send_command(path, 'V)

;

}

/* Are we inside the Encoder Sensor ? */

encode = send_command (path, 'M'); /* Test Head Direction (No Step) */

if ((encode == 't') (encode == 'T'))

{

while ((encode == 't') (encode == 'T'))

{

encode = send_command(path, '+'); /* Index Sonar '+' direction */

}

/* Outside Encoder Sensor Now */

direction = -1; /* Reverse Sonar Rotation to Establish Encoder Width */

}

while ((encode == 'f') (encode ==
' F'))

{

if (direction == 1)

{

encode = send_command (path, '

+
') ; /* Index Sonar '+' direction */

}

else
{

encode = send_command(path, '-'); /* Index Sonar '-' direction */

}

100

}

/* Found Edge of Encoder */

while ((encode == ' t ') (encode == "I"))

{

encoder_width = encoder_width + 1;

if (direction == 1)

{

encode = send_conimand(path /
'

+
') ; /* Index Sonar ' + ' direction */

}

else
{

encode = send_command (path, '
-

') ; /* Index Sonar '-' direction */

}

}

/* If direction - +1, Go Back 5 Steps to Establish Center
If direction = -1, Go Forward 5 Steps to Establish Center */

if (direction == 1)

{

for (i=0 ; i<5 ; ++i)

{

encode = send_coiranand(path, '-'
) ;

}

}

if (direction == -1)

{

f or (i=0 ; i<5 ; ++i)

{

encode = send_command(path, '

+
')

;

}

}

printf ("Center Established\n")

;

sonar_heading = 0.0;

101

102

APPENDIXC. CODEFORSONARGNUPLOTS
###
#

filename: excerpt from auv_plot_l_second. gnu

#

function: GNUPLOTV3 . 5 script to plot AUV telemetry data

to screen & to PostScript files

#

updated: 12 March 96

#

author: Don Brutzman, excerpt written by Mike Campbell

#

execution: gnuplot> load "auv_plot_l_second. gnu"

gnuplot> reread

#

unix> gnuplot auv_plot_l_second. gnu

#

re-plotting:

'xpsview' -wp -skipc -or landscape -/execution/ AUV_telemetry .ps &

ghostview -landscape -/ execution/ AUV_telemetry.ps &

#

C program call: system ("gnuplot auv_plot_l_second. gnu")

;

#

#

telemetry: mission. output . telemetry (AUV telemetry 0.1 sec interval)*
alternate: mission. output . l_second (AUV telemetry 1.0 sec interval)*
#

original plot: unix> gnuplot auv_plot.gnu

#

output files: AUV_telemetry.ps & *.eps plots

#

related files: execution.

c

#

underwater virtual world

#

output archive: ftp://taurus.cs.nps.navy.mi1/pub/auv/AUV_telemetry.ps.Z

#

gnuplot FAQ: ftp://ftp.dartmouth.edu/pub/gnuplot/faq/gpt_faq.html

#

distribution: http://www.cs.dartmouth.edu/gnuplot/

#

###

setup:

set terminal xll # gnuplot version 3.4 (no auto redraw)

set terminal iris4d # gnuplot version 3.5 (xll is OK)

set time
set grid
set data style linespoints

set samples 10 # data point plotting frequency

103

###

set xlabel "East -> (y_world) [ft]"
set ylabel "North A (x_world) [ft]"

pause -1 "hit enter to continue with sonar plots"

add sonar here

set title "NPS AUV sonar outputs" 26,.

8

plot ".. /tactical/data_points . sonar" title "processed sonar returns" with
points
pause -1 "hit enter to continue with sonar plot 2 "

set title "NPS AUV sonar outputs" 26,.

8

plot ".. /tactical/line_segments . sonar " using 2:3 title "fitted line segments"
pause -1 "hit enter to continue with sonar plot 3 "

set title "NPS AUV sonar outputs" 26,.

8

plot ".. /tactical/data_points . sonar" with points, \

".. /tactical /line_segments . sonar " using 2:3 title "line segments over
data points"
pause -1 "hit enter to continue with sonar plot 4 "

set title "NPS AUV sonar outputs" 26,.

8

plot ".. /tactical/line_segments . sonar " using 2:3, ".. /tactical/objects . sonar

"

title "objects imposed over line segments"
pause -1 "hit enter to continue with sonar plot 5 "

set title "NPS AUV sonar outputs" 26,.

8

plot ".. /tactical/objects . sonar " title "objects built from sonar data"

104

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Alexandria, Virginia 22060-6218

Dudley Knox Library 2

Naval Postgraduate School

Monterey, California 93943-5101

Computer Technology Programs, Code CS 1

Naval Postgraduate School

Monterey, California 93943-51 18

Chairman, Code EC 1

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5121

Dr. Donald P. Brutzman, Code UW/Br 2

Undersea Warfare Academic Group
Naval Postgraduate School

Monterey, California 93943-5126

Dr. Xiaoping Yun, Code EC/ YX 2

Department Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5121

Dr. Anthony J. Healey, Code ME/Hy 1

Mechanical Engineering Department

Naval Postgraduate School

Monterey, California 93943-5146

8. Dr. Robert McGhee, Code CS/Mz.
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-51 18

9. CDRMichael J. Holden, USN, Code CS/Hm.
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-51 18

105

10. Dr. Yutaka Kanayama, Code CS/Ka.

Computer Science Department

Naval Postgraduate School

Monterey, California 93943-51 18

11. Dr. Ted Lewis, Code CS
Chair, Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5 118

12. Russ Whalen, Code CS
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-51 18

13. Dave Marco, Code ME/Ma
Mechanical Engineering Department

Naval Postgraduate School

Monterey, California 93943-5146

14. Dr. Lawrence Ziomek, Code EC/Zm
Department Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5121

15. Commander, Naval Undersea Warfare Center Division

1176 Howell Street

Attn: Erik Chaum, Code 2251, Building 1171-3

Combat Systems Engineering and Analysis Laboratory (CSEAL)
Newport, Rhode Island 02841-1708

16. Dr. James Bellingham

Underwater Vehicles Laboratory, MIT Sea Grant College Program
292 Main Street

Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

17. Dr. John Leonard

Underwater Vehicles Laboratory, MIT Sea Grant College Program
292 Main Street

Massachusetts Institute of Technology

Cambridge, Massachusetts 02142

106

Kevin Gomes
4425 Archwood Dr.

Colorado Springs, Colorado 80920

19. LT Michael S. Campbell.

291 Welcome Way
Carlisle, Ohio 45005

107

3RARY
X-HOOL

DUDLEYKNOXLIBRARY

3 2768 00322400 7

