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ABSTRACT

The field of control systems has witnessed an explosion in state-space tech-

niques addressing a variety of critical design issues facing control engineers today.

Modern computational tools, such as the MATRIX^ Product Family developed by

Integrated Systems Incorporated, allow the designer to quickly design, test and imple-

ment control systems based on these state-space techniques. These new computing

advances shorten the time required to complete a control design from a few years

to a few months. However, as the design process progressed new inputs and ouputs

were required, which usually resulted in a confusing mess of connections that were

hard to follow. Therefore, a universal system was needed that could be used on any

controller design to aid in the understanding and tracking of the controller's inputs

and outputs. A desription of this system is given along with a detailed step by step

process on how it was implemented on an Unmanned Air Vehicle (UAV).
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I. INTRODUCTION

The field of control systems has witnessed an explosion in state-space tech-

niques developed to address a variety of critical design issues. These techniques

include ^2, ^00, ^i, feedback linearization theory, and Linear Matrix Inequalities to

name a few. To assess their usefulness, some of these techniques have been applied

to real-life problems with some success. Nevertheless, despite all this effort, the user

community remains skeptical of the utility of modern control techniques. This is

particularly true in the aerospace community, where most of the control systems in

service today were developed using classical control design techniques.

At the Naval Postgraduate School we were fortunate to have obtained several

unmanned aircraft from various agencies for testing purposes. Therefore, a goal was

set to design and flight test controllers developed with the aid of modern control tools.

Early in our research we realized that a completely integrated hardware/software

system was needed. This system would allow us to:

• Build and analyze controllers using a high level development tool

• Automatically generate computer code once a satisfactory controller has been

obtained

• Download the code into a hardware system capable of flying the aircraft.

We have been able to develop such a system using the MATRIX^Product

Family of rapid prototyping software available from Integrated Systems Incorporated

(ISI) [Ref. 1]. This software incorporates a program called RealSim that uses a

Graphical User Interface (GUI) to step the engineer through the design process. This

rapid prototyping process greatly reduces the time required to design, test and imple-

ment a controller when compared with the conventional design process. A comparison

of these two techniques, conventional vs. rapid prototyping is given next.



A. CONVENTIONAL DESIGN
Conventional design of control systems takes place in several stages, using

several different tools for control design, software engineering, data acquisition, and

testing. A typical procedure for the design process is:

• The engineer creates an accurate plant model.

• The model is simulated to see how it compares with reality. Data measuring

the behavior is collected, and the model is changed, if necessary.

• An engineer builds a control system for the plant. The control system, includ-

ing the plant, is tested.

• The model is implemented in hardware and tested. Modifications are made,

if necessary.

• After more testing, a functional prototype is obtained.

This method of design has two major shortcomings:

• It is expensive, because the prototype or the controller must be modified at

each stage.

• It is very time-consuming from conception to finished prototype.

B. RAPID PROTOTYPING
In contrast, the rapid prototyping design process uses one tool and two steps

to:

• Integrate the tools for each stage of the system development into a single

environment.

• Allow the design progress to easily flow through the development stages.

• Create a working prototype early in the design process.

A flow diagram comparing the conventional and rapid prototyping techniques

is given in Figure 1 [Ref. 1].



Traditional prototyping: Many sequential steps, many tools

Design Implementation Testing
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Figure 1. The Rapid Prototyping Concept [Ref. 1]

This thesis describes how the rapid prototyping software RealSim was used to

develop a universal system that can be used for any controller design. This system

was used to design a controller using Ti^ synthesis which was then tested on an

Unmanned Air Vehicle (UAV) called Bluebird.

Bluebird was donated to the Unmanned Air Vehicle Lab by the Naval Ocean

System Center, San Diego. It has a 12.5 foot wingspan, a 25 pound payload capability,

and is equipped with a full avionics suite, including IMU, GPS and air data sensors.

It is controlled through the use of a RF link that sends a Pulse Width Modulated

(PWM) signal that drives the aircraft's actuators. One of these links was modified





and connected to the controller on the ground so the aircraft could be flown by the

AC 100 system. A photograph of Bluebird is given in Figure 2.

Figure 2. Bluebird





II. EQUATIONS OF MOTION &
CONTROLLER DESIGN

Before discussing the specifics of the uniform system development, we present

the Equations of Motion (EOM) and the 7Yoocontroller designed for Bluebird, since

these were used to test the utility of the system.

First, we introduce the following notation suggested by [Ref. 2]:

P - position of the origin of {B} expressed in {/};

V = (w, v , w)' -linear velocity of the origin of {B} relative to {/}, expressed

in {£};

A =
(<f), 9, if))' - vector of Euler angles which describe the orientation of frame

{B} with respect to {/}

Q, =(p, q, r)' - angular velocity of {B} relative to {/}, expressed in {B};

qII. = ^7£(A) - rotation matrix from {B} to {/}.

Q = Q(A) - matrix that relates ^A to fi and satisfies the relationships J^A =
QO and Q(0) = /;

G - vector of gravitational acceleration expressed in {/}. We assume a constant

gravitational field.

Furthermore, let U denote the vector of control inputs acting on the vehicle. For

Bluebird, U consists of elevator el, thrust th, ailerons ail and rudder r.

Let {W} denote a wind axis. It is usually attached to the aircraft's center

of gravity and is defined using the right hand rule, with the z-axis pointing in the

direction of the apparent wind. For example, in the absence of wind the aircraft's

inertial velocity resolved in {W} has the following form: [||V|| 0]'. Now let ^1Z

denote the transformation from {W} to {B}. Notice, ^/R, can be computed using the

angle of attack a and the sideslip angle /?, where /? = sin
-1

77^77 and a = sin
-1

tt^tj.



Now, using the above notation, the Bluebird dynamics have the following form:
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wing reference area

air density

wing mean chord

mass

aircraft's inertia tensor resolved in {B}

air density

wing span

normalized drag, lateral force and lift

normalized roll pitch and yaw moments

normalized nominal force or moment coefficient

stability derivative: |^

x-component of vehicle''strimairspeed.

Notice, in equations (II. 1) we did not include p dynamics.

The set of trimming trajectories S for Bluebird is defined as follows:

s

P

c

m

Jb

P

b

d, y, I

1, m, n

CXq

Cxy

£:= <

Vc

Ac

ft Ac = Qc Sic,

(II.2)

•MVcftc.Ac) + iv {vc ,£ic )?t{vc ,nc ,uc ) = o

Jb(Vo-,flo,A ) + 2b(Vo,no)W(VOl fte,£4) = J

where Vc , fie and Ac can be computed using the desired airspeed vte , desired flight

path angle jc and the desired turning rate if)c . Now, given [vtc 7C tpc ]' and f3c — we

can solve for Vc ,£lc,Uc and Ac :

Fv{Vc,nc,Ac ) + iv (vc,nc)H{vc ,nc,uc ) = o

jr
fi (yc ,nc ,A c ) + Mvc ,n c )'H{vc ,sic,uc ) = o

Q-^c - A c =

\\vc \\-vt =o

0c - sin
1

IV,
=



7c -[0 1 0] arg(%1lf11) = 0, (II.3)

where Vc = [uc vc wc]' and the arg function extract the angles X from the rotation

matrix 1Z(X): X = arg(7Z.(X)) (for example, for straight line flight the last expression

in equations (II.3) reduces to 7C = 6C — ac ). Equations (II.3) consist of 12 equations

in 12 unknowns, since the trimming value of the heading angle if) is arbitrary and can

be solved using analytical or numerical methods. For an example of an interesting

analytic solution see [Ref. 3, 4].

Using the solution to equations (II.3) the linear model for Bluebird was ob-

tained along a straight line trajectory characterized by the velocity vc of 73 fps, jc

of zero and wings level (ipc = 0) (a typical cruise condition for Bluebird). This model

was used to design a linear feedback controller for the vehicle.

A. FEEDBACK CONTROLLER DESIGN
1. Open Loop Analysis

The linear model of Bluebird in cruise is typical for a fixed wing aircraft,

i.e. it naturally decouples into lateral and longitudinal dynamics. The longitudinal

dynamics are characterized by a short period mode with a natural frequency of .5

radians/second, a damping ratio of .7 and a lightly damped, stable phugoid mode.

Lateral dynamics include a lightly damped dutch roll mode with a damping ratio of

.03, a roll mode, and an unstable spiral mode [Ref. 9]. Bluebird utilizes standard

elevators, rudder, and differential ailerons for control and a single gas engine driven

propeller in the nose for thrust.

To ensure appropriate dutch roll response the RC pilot's flight technique of

tying positive rudder and negative aileron together was mimicked.

2. Design Requirements

The basic control strategy for the feedback controller is to emulate the ap-

proach used by the RC pilot. Classically, the pilot uses elevator and thrust to control

altitude and airspeed in steady state. These considerations motivate the following

8



design requirements for the feedback controller.

1. Zero Steady State Error

• Achieve zero steady state tracking errors in airspeed, altitude and bank

angle commands in the presence of constant and light variable winds.

2. Bandwidth Requirements

• The command-loop bandwidth for each command channel should be no

greater than 1 radian per second and no less than 1/10 radian per second.

• The control-loop bandwidth should not exceed 12 radians per second for

the elevator, aileron and rudder loops, and 5 radians per second for the

throttle loop. These numbers represent 50 % of the corresponding actuator

bandwidths and shall ensure the actuators are not driven beyond their

linear operating range.

3. Closed Loop Damping and Stability Margins

• The dominant closed loop eigenvalues should have a damping ratio of at

least 0.5. Simultaneous gain and phase margins of 6db and 45 deg in each

control loop must be achieved.

3. Linear Design: Ti^ Synthesis

The methodology selected for linear control system design was Ti^ synthesis

[Ref. 6]. This method rests on a firm theoretical basis, and leads naturally to an

interpretation of control design specifications in the frequency domain. Furthermore,

it provides clear guidelines for the design of controllers to achieve robust performance

in the presence of plant uncertainty. The basic steps in the controller-design proce-

dure, including the development of the synthesis model, were done using the approach

described in [Ref. 7]. This approach provides an intuitive and straightforward way

for converting the design requirements into the weights for the Tioo synthesis model.

Consider Figure 3. Here C\ is the controller to be designed, and Qi is the linear model

of Bluebird.

In Figure 3 the vector of exogenous inputs w represents the commanded inputs.

The vector t/i represents vehicle's airspeed, altitude and bank angle. The regulated

output z includes the outputs of the weighting matrices W\ and W^. These matrices



w

y\

W
su

W'

X

Figure 3. Synthesis and Analysis Model

had the following form:

W, =
s

£2.
s

£2.

s

c4

W2 = c5

c6

where the constants Cj-,i = 1,6 were used as the design knobs adjusted to meet the

closed loop tracking, damping, control and command loop bandwidth requirements.

Notice that the structure of W\ ensures the steady state tracking of constant com-

mands in all three channels. The resulting linear controller has the following form:

C,:={

SE = [6vt 6z 8<f>]'
- [Svtc 6zc Sjc]'

8U

= 8E

= Ccl6Xc + Vcl [6V 6W 6A'}',

10



where v t
= ||V||, the TiooState feedback gain is K. = [Cc\ T>ci] and SX C represents the

state of the integral errors. The feedback system consisting of the linear plant Q\ and

the controller C\ was found to meet all the design specifications given in Section 2.

Since the effectiveness of the aerodynamic control surfaces (these include ele-

vator, rudder and ailerons) is proportional to the dynamic pressure q = 0.5/9||F||
2 the

controller C\ was gain-scheduled on q:

cm =
8E = [6vt Sz 8<f>}'

- [6vtc 6zc 84>c}'

ft6Xc = 6E

SU = diag(f , f , 1){CC1SXC + Vel [SV SQ' 6A'}'},

where qo represents the nominal value of q.

4. Implementation of the Linear Controller

Using the T> technique for implementing the gain-scheduled controllers [Ref . 5]

the family of linear gain-scheduled controllers Ci(q) was implemented on the nonlinear

plant Q as follows:

E = [v t
- vtc z - zc <{> - <j>c ]

xc =f{cclxc + vcl [ftv Jiy JA]'}

u =xc ,

where the differentiation operator 4 was replaced by a causal operator with the

transfer function -^r-[ [Ref. 5].

11
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III. HARDWARE/SOFTWARE
DESCRIPTION

A. BACKGROUND
The primary tool for the research conducted in the Avionics lab is the hard-

ware/software interface provided by the MATRIX^ Product Family developed by

Integrated Systems Inc (ISI). This tool set greatly enhances the control engineer's

ability to test and evaluate a design concept. The primary software, called Realsim,

consists of an easy to use graphical user interface (GUI) that can be run on either a

workstation or PC. The interface interacts with a high speed digital signal processing

board developed by Texas Instruments, called the C30, that uses parallel process-

ing techniques to handle many tasks simultaneously. One of the unique features of

this software is the ability to automatically program higher-language code such as C

or ADA for the designed controller. This greatly reduces the time required for the

designer to test, modify and implement a designed controller.

B. HARDWARE
The hardware system in the avionics lab consists of two ISA bus PC adapter

boards, which can be placed in any IBM compatible PC with an ISA bus architecture

and available ISA slots. One of the boards is installed in a luggable PC called AC100

and the second is installed on the Pentium tower PC called America. America is per-

manently connected to the AA department network, while AC 100 can be connected to

the network via a TCP/IP connection. Using this TCP/IP connection these comput-

ers can communicate with the Realsim software installed on the UNIX workstations.

This software can be run on any Sun workstation in the AA department.

The two hardware boards included in the PC portion of the Realsim Series

AC- 100 Model C30 system are the following: a board which acts as a motherboard for

the C30 digital signal processor (DSP), and a "DSPJFLEX" board, which can hold

13



up to 4 "IP" modules. The "IP" modules are compact input/output (I/O) devices

that perform a particular type of I/O. The PC America has 4 IP modules, consisting

of one serial communications (IP_Serial) module, one Digital to Analog (IP_DAC),

and two Pulse Width Modulation (IP_68332) modules. The luggable PC AC100 has

3 IP modules, consisting of one serial communications (IP_Serial) module, one,one

Digital to Analog (IPJDAC) and one Pulse Width Modulation (IP_68332) module.

The two boards are connected by a seperate comm bus via a ribbon cable. The I/O

configuration for AC100 and America are given in Table I. These values are needed

when connecting the hardware to the software using the Hardware Connection Editor

(HCE), which will be explained later in the thesis.

1. IP .Serial Module

The IP_Serial module provides two channels of high performance multi-mode

serial communications with RS-232-C and RS-422 capability. The module can be

programmed to baud rates of 2 Mbit/sec supporting both asynchronous and syn-

chronous protocols. The PC AC100 has two serial modules labelled 1 and 2. As

stated in Table I each of these modules has two channels and they are defined as

channels A and B. To create a connection from a SystemBuild model to the IP_Serial

module, the Hardware Connection Editor (HCE) must be used. For the specifics on

this procedure please see [Ref. 1].

Table I. I/O Configuration

Module America AC100
IPJSerial 1 - -

IP .Serial 2 3 3

IPJIiADC 1 -

IPJDAC 2 2

IP_68322 4 4

14



2. IP_HiADC Module

The HiADC module provides 16 input analog channels with 12-bit resolution

and synchronous sampling of all inputs. The module can convert one analog channel

in 1.2 \istc or approximately 800 K samples/second. Conversion of all 16 channels

takes approximately 20 fisec. Each channel has a fixed voltage range of ± 5V with

an input impedance of 1 MOhm. There is no anti-aliasing filtering provided on the

HiADC module so inputs should be band-limited to 1/2 the sampling frequency of

the system. To create a connection from a SystemBuild model to the IPJHiADC

module, the HCE must be used. For the specifics on this procedure please see [Ref.

3. IP.DAC Module

The IPJDAC module provides six channels of 12-bit digital to analog conver-

sion. Each channel may be configured to either ±5V or 0-10V output ranges. To

create a connection from a SystemBuild model to the IPJDAC module, the HCE must

be used. For the specifics on this procedure please see [Ref. 1].

4. IP_68332 Module

The IP _68322 module is a time processing unit produced by Motorola, that

can perform one or more hardware I/O functions.

The software drivers for each of the IP modules are located in the C30-SP

subdirectory under the AC100DSP directory. These drivers will be merged into the

input and output fields in the c_c30.hce file, which is used by the Hardware Connection

Editor (HCE) to determine the allowable I/O devices. A copy of the c_c30.hce file

must be in the working directory of the project of interest to ensure the targeted

hardware configuration is used.

C. SOFTWARE
The Realsim software installed on the UNIX workstations gives the controls

engineer a vast array of tools that make the designing and testing of a control system
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much quicker and simpler than before. Through the use of a GUI (see Figure 4)

the designer can follow a flow diagram that steps the user through the various soft-

ware components to fully implement a given design. These software tools consists

of Xmath/ SystemBuild, Autocode, Interactive Animation (IA) Builder, Hardware

Connection Editor (HCE), and two utilities that compile, link, download and run the

control design. A brief description of these applications is given next.
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Figure 4. Realsim Graphical User Interface (GUI)

1. Xmath/SystemBuild

Xmath/SystemBuild is a software program similar to the Matlab/Simulink

software program developed by Math Works Inc. Xmath/Systembuild was designed
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to include an extensive set of design and analysis functions for both the classi-

cal input/output control techniques and the modern state-space control techniques.

Specifics on how to design and analyze a model can be found in the Xmath and

SystemBuild Core Manuals. The key requirement to test a model with external

inputs/outputs, and to eventually Autocode the model, is to have the external in-

puts/outputs in the highest level Superblock of the model.

The SystemBuild program uses a hierarchical method of organization, based

on the SuperBlock concept. SuperBlocks provide a way of organizing a group of blocks

that define a function into a compact form for display and understanding, for example

"Sensor Calibration-Display" or "Control_Block" . Through the use of this hierarchy,

variable names can be passed up and down the hierarchical structure allowing the

engineer to easily track and understand what variables are and where they interact

with the model. A diagram showing the interaction of Xmath and SystemBuild is

given in Figure 5.

Once the model is drawn and labeled, there are several ways to test it. It can

be tested within Xmath/SysyemBuild using the "SIM" function (see Core Manuals)

or by generating realtime code. The second method, generating realtime code, is

the preferred method since it allows for the gerenation of a higher-level language to

conduct hardware-in-the-loop testing. To generate real time code the user just uses

a pull down menu on the SystemBuild GUI and selects "Generate Real Time Code"

.

This produces a file with the models name followed by a .rtf extension. This Real

Time Code is a top level Input/Output code that is used by the AutoCode program

to produce a higher-level code such as C.

2. AutoCode

An integral part of the quick design and testing of a controller is the ability

to generate high-level code such as C or ADA automatically. AutoCode has this

capability, and generates optimized code from a library of standard functions and

calls. The Realsim package in the Avionics lab currently has a C code module.
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Figure 5. Xmath/SystemBuild Integration [Ref. 1]

To generate C code two tasks must be accomplished:

• Ensure settings in target_config.cfg are correct.

• Click on the AutoCode icon on main GUI.

The target_conflg.cfg file is created by using the Realsim utility retarget.

This utility can be run at the command prompt in the working directory or by clicking

on the Retarget icon on the utilities menu. This procedure will ask several questions.

First it will ask for the computer's host name, which will be either AC100 or America.

This host name designates the computer on the network where the application will be
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compiled, downloaded and executed. For the rest of the questions the default setting

should be accepted by hitting return.

Once the two above steps are completed a new file with a x extension will

be created in the working directory. This file will be used later to compile, link,

download and run the design.

3. Interactive Animation Editor (IA)

This program is used to build a graphical animation module to display desired

system outputs in various forms during testing. The animation diagrams are made by

a drag and drop process from a given library of predrawn gauges, strip charts, dials,

switches, and other various input and output devices. If a specific dial or gauge for

the user needs can't be found in the library, custom pictures can also be created. The

"RTF Names" button loads the I/O names from the model .rtf file, to help associate

given inputs and outputs to their display icons. A RTF file must be loaded prior

to making any connections. Using a connection editor similar to the one used in

SystemBuild the appropriate inputs and outputs are connected to the appropriate

devices.

Once a picture is completed the user selects "Save Picture" and a file with a

.pic extension is created in the working directory. This file will be used later in the

Hardware Connection Editor (HCE) and link process. Note: If the SystemBuild I/O

is changed, the I/A Editor must be run again and connections changed to reflect the

changes to the model. A sample IA picture is shown in Figure 6.

4. Hardware Connection Editor (HCE)

The hardware connection editor is used to associate external inputs and out-

puts in the SystemBuild model with either external I/O devices or the I/A module.

This is accomplished using two screens that have the same basic layout. The first

screen is for SuperBlock external inputs and the second for external outputs, (see

Figure 7).
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Figure 6. Sample of Interactive Animation Picture

The HCE reads the external inputs/outputs from the .rtf file with the same

name as the current target. The HCE automatically checks to see if a local copy of

the c_c30.hce is present, and if so reads it. If not, it reads one out of the default

AC100 directory. This file informs the HCE what type of external I/O devices are

present in the target AC100 computer, and the HCE will only allow these device

types to be selected. A detailed explanation of the columns on the screens and their

uses can be found in [Ref. 1].
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5. Compile and Link

Once the desired inputs and outputs are connected the design needs to be

complied and linked to the C30. The Realsim software will attempt to connect via

ftp with the AC 100 target computer. For the PC America the user must first type

"aclOOsvr" at the DOS prompt to enable the computer for ftp transfer. For the

portable PC AC100 the user repeats this same command, or if Windows is running,

double clicks on "aclOO terminal". Once the connection is made, the C source files

required will be transferred to the target computer for remote compiling and linking.

The compilier generates object code from the .c file, and the link creates a C30 DSP
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executable from the object code.

If there are other C files required for the project for compiling and linking,

there should also be a file in the working directory named "sa_user.cmd". In this

file, for each C file to be included, there should be a line that says COMPILE

<Cfilename>> .c and a line that says LINKWITH <Cfilename>> , where filename

is the source file name to be included, without extension. This only applies to C

source files. If there are header files referred to in the C source files, they must be

manually copied to the project directory on the AC 100 computer using ftp. If there

is more than one file included, and there are dependencies in one file from another

(i.e. function calls to functions defined in another source file), they should be listed

in sa_user.cmd in the order of dependency.

6. Download and Run

When this program is selected on the GUI, Realsim software will attempt to

connect to the target AC 100 computer through ftp. Once the connection is made,

it will load the C30 executable into the C30 memory and prepare it to run. It will

bring up the IA module on the workstation screen, and place a control panel called

IA Client, with 6 buttons below the IA module. See Figure 8.

Figure 8. IA Client Control Window

The first button, START CONTROLLER , will start the model if the

model has just been loaded and not run yet. It will stop the model if it is currently
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running, and it will restart the model if it has been previously stopped. The second

button, HARDWARE RESET , will cause the Realsim controller to immediately

reset and causes IA Client to exit. This is the best way to exit after a run, as it will

clear the C30 memory and return the AC100 computer to a ready status. The third

button, EXIT GRAPHICS , exits IA Client without rebooting the controller. This

is a software reboot only, which stops the model and terminates the ftp connection.

This button is not recommended for use, as it will not stop the model from running

on C30. If download and run is selected again by the original client which started the

model, it will ask if you wish to reconnect the model. If a different client attempts to

log on to run the same or a different model it will ask if the current model should first

be terminated. Therfore, it is always best to terminate the model by pressing the first

button. The fourth button, START DATA ACQUISITION , starts/stops data

acquisition. Data acquisition should always be stopped before rebooting the C30, or

the acquired data will not be saved to a file. The last button allows you to set certain

data acquisition parameters. The Scale Frequency button in the upper right corner

allows the user to slow down or speed up the animation.

In addition to the six main buttons on the Realsim GUI, there are additional

features that can be invoked from the menu located in the upper right corner of the

RealSim GUI. These utilities are hidden when Realsim is first started but can be

displayed by clicking on the Show Utilities button. These utilities give the user

the ability to accomplish such tasks as data collection, conversion of data for use in

Xmath, IA Client, and numerous other features. More information can be found in

[Ref. 1].
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IV. RAPID PROTOTYPING SYSTEM
(RPS)

A. RPS ARCHITECTURE
In order to conduct flight test a Rapid Prototyping System (RPS) was devel-

oped with the following features:

• synthesis, analysis and simulation of flight management algorithms using a

high level developmental tool.

• automatic generation of computer code once a satisfactory flight management

system has been obtained.

• code download into a hardware system capable of flying a UAV.

• display and collection of appropriate flight data.

A diagram of the RPS architecture is given in Figure 9.

The hardware architecture is divided into the following two major components:

a ground station and an unmanned aircraft.

1, Ground Station

The ground station handles all the flight management functions and data col-

lection. It consists of the following three components:

• Sparc II Workstation: this computer contains the software package RealSim

that is used to design, code, and implement a control algorithm.

• Luggable PC: this computer contains the TI C30 digital processor, and the

DSP-FLEX board that holds the IPJVIodules explained in Chapter II.

• Communications Box: this box houses various devices used to communicate

with the unmanned aircraft.

The devices that are used for communication with the aircraft are the fol-

lowing: two DGR-115 spread spectrum RF modems from Freewave Inc., capable of

transmission rates of 116 Kbaud at 20 miles, which are used to transmit and receive
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Figure 9. RPS Hardware Architecture

telemetry information, a Futaba pulse control modulated (PCM) transmitter which

was modifed to give the computer the ability to control the aircraft, and a PVT-6

differential GPS (DPGS) receiver from Motorola.

The Sun workstation is connected to the luggable PC by a standard TCP/IP

connection. The luggable PC is connected to the communications box by four ribbon

cables from the four IP.modules.

2. Unmanned Aircraft

The unmanned aircraft is equipped with a complete avionics suite that is nec-

essary for autonomous flight. The avionics suite consists of the following components:
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an Inertial Measurement Unit (IMU) from Watson Inc., air data sensors, and a PVT-

6 DGPS receiver. The data from these devices are transmitted to the ground station

via two additional spread spectrum RF links from Freewave Inc. The aircraft also

has a PCM receiver that is used to drive the actuators on the control surfaces and

throttle. An important feature of this avionics suite is its portability; it can be easily

duplicated or moved to a different platform.

B. FLIGHT TEST
Flight tests were conducted using the UAV Bluebird at an outlying field near

the Naval Postgraduate School. These tests involved transporting the Sun Sparc 2

workstation Intrepid, the luggable PC AC100, the communication box, the RF an-

tenna, the portable generator, and Bluebird to the field. To connect these components

the following steps should be accomplished:

• Ensure all computer connections are made (i.e. external hard drive, monitor,

etc.)

• Make all power connections to the portable generator.

• Connect TCP/IP cable from Sun to luggable PC.

• Connect the four IP.module ribbon cables to the communication box. Both

the ribbon cables and the box are label to ensure proper match-up.

• Connect the RF antenna cable to communication box.

Once all the connections are made the system should be booted up. Once

the Sun finishes its boot up sequence it will ask for a user ID and password. Once

the system is running change to the working directory, which is /mnt/home/ archy-

tas/realsim/baseline/night_test_current. This is the latest version of the test setup.

Start the RealSim software by typing <C realsim >> at the command prompt, this

will bring up the RealSim GUI mentioned earlier. See Figure 10.
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Figure 10. RealSim GUI

This GUI is slightly different than the one depicted in Figure 4 because the

system has been updated and the black lines connecting the software components are

now gray. To initiate a flight test complete the following two steps:

• On AC100 type <C aclOOsvr >>. This initiates the ftp program on AC100.

• Click on the download and run button on the RealSim GUI.

Once the download and run button has been pressed the generated C code is

downloaded to the C30 DSP chip. After reaching the DSP chip the code starts to

run and service the IP-modules loaded on the DSPJFlex board via the ribbon cable.

The code also controls the animation screens via a TCP/IP connection to the Sun

workstation.

The sytem will now display the following 2 screens, (see Figures 11, 12). The

Master page allows the tester to scroll through a series of Interactive Animation
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Screens that were developed using the Interactive Animation software explained in

Chapter II. By using the left mouse button and clicking on a displayed icon the

system will transfer to that IA screen. This allows the test engineer to accomplish

such tasks as conducting calibrations, monitoring the IMU, GPS data, or viewing

flight parameters during the test process. These screens are tied to the inputs and

ouputs in the SystemBuild diagrams. When inputs are entered on these screens the

data is incorporated in the running model and calibration equations located in the

SystemBuild diagrams. Below this picture is the iaclient window that starts/stops

the model. Next the steps necessary to conduct an actual flight test will be outlined.

MASTER
L

Cal Actuators IMU Master

Cal Com Rec GPS Master

Calibrate DAC Flight Display

Cal Air Data

Figure 11. Master Flight Test IA Screen

C. CALIBRATIONS
Before any flight test can be conducted, it is necessary to calibrate the ac-

tuators and sensors on Bluebird to ensure accurate data transfer. The calibration
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Figure 12. IAClient Screen

procedure consists of taking various measurements from the following sources: actua-

tor pots, command receiver, and command transmitter, then comparing this data to

ensure the same values are being recorded.

This procedure is accomplished by entering data into various windows of the

four IA screens: Cal Actuators, Cal Com Rec, Calibrate DAC, and Cal Air Data.

The data that is entered is assigned to variables that are associated with equations

located in the SystemBuild diagrams. The various SystemBuild diagrams and a

complete description of their use is given in Chapter V. The following subsections

will descibe in detail the use of the four IA screens.

1. Cal Actuators

This screen calibrates the actuators on Bluebird. The flow of variables for the

actuator calibration is outlined in Figure 13. First the voltages from the actuators

are measured, passed through the IMU, and transmitted down to the ground station

via the RF links. The data variables are: wordUmu, word2Jmu, word3_imu and

word4_imu. These four variables contain each actuator's position in volts. These

variables are input into block 2 of the AJDJMU superblock (see Figure 33) which

converts them to degrees. The trim values are then added to these variables, which

give the degrees of actuator deflection for the chosen flight condition. The variables

that are associated with this screen are given in Table II.
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The first four variables are connected in the AJDJMU Superblock to block

number 97, which is a summer. The remaining four variables are outputs from the

AJDJMU Superblock and are displayed on the four dials. See Figure 14.

In order to calibrate the aircraft's actuators a zero had to be denned. This

is an arbitrary location for the actuator position and was decided to be a cruise

condition of 70 kts at 1000 ft. The RC pilot flew the aircraft in this flight condition

and obtained trim settings. These trim settings were then read off the actuator pots

Table II. Actuator Calibration Screen Variables

VariableName VariableNumber
elev_servo_trim 238

rud-servo_trim 239

ail_servoJ,rim 240

trtjservo_trim 241

elevjservo_deg 301

rud_servo_deg 302

ail_servo_deg 303

trt_servo_deg 304
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and were converted to degrees for the three control surfaces and percent rpm for the

throttle. This data is given in Table III. This data should be entered into the Elev,

Rud, Ail, and Trt Trim boxes. See Figure 14. This data is for Bluebird only, and

would have to be recalculated for another aircraft or a different flight condition. Once

the user has entered the data the Return button should be pressed to return to the

previous screen.

2. Cal Com Rec

This screen calibrates the command receiver. The flow of variables for this

calibration is given in Figure 15.
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Table III. Actuator Calibration Data

Actuator Deflection

Elevator -6.8

Aileron -9.5

Rudder -2.52

Throttle -0.02

Position (deg)

Same

value

Figure 15. Variable Flow for Command Recevier Calibration

A picture of the Calibrate Command Receiver screen is given in Figure 16.

There are numerous variables associated with this screen and they are listed in

Chapter V under the Command_Tx superblock. The calibration of the three control

surfaces are similar, so only the steps for the elevator will be explained in detail. To

calibrate the other two surfaces the user must repeat the same steps. The calibration

of the throttle is slightly different, so it will also be explained.

First, the joystick for the elevator on the command receiver is moved until the

number under the ServoJmu column is reading -5. The variable associated with

this column is, elev_servo_deg, which comes from the A_DJMU superblock. The value

displayed in the PW(usec) column is read off and entered into the el_pwm_back5
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Figure 16. Calibrate Command Receiver Screen

box in the next column. This value represents the pulse width in fisec of the PWM
signal coming from the receiver and is read through the PWM IP_module. The value

is assigned the variable name tp7 and is input 4 in the Command_Tx superblock

(Figure 34). This variable is passed through a quantizer, (block 17), that rounds the

variable off and then is output as the elev_cmd_usec variable which is displayed in

the PW(usec) column. This procedure is repeated for and +5 degrees. Once these

steps are completed for the elevator calibration, they must be repeated for the other

two control surfaces.

To calibrate the throttle only two settings must be entered. First move the

throttle joystick to 100%. Read the PWM signal from column two and enter it into

the throt_pwm_100% box. Then repeat the procedure for 0%. The throttle PWM
signal also comes from the PWM IP .module. It is assigned the variable name tpl3

,

which is input 15 in the Command.Tx superblock (Figure 34). This variable is passed
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through a quantizer, (block 17), that rounds the variable off and then is output as

the trt_cmd_usec variable which is displayed in the PW(usec) column.

The data in Table IV was collected during flight test and represents initial

estimates of the PWM signals for the elevator, aileron, rudder and throttle. This

data is for the UAV Bluebird and will require recalculation for a different aircraft.

Table IV. Calibrate Command Receiver Data

Actuator -5 center +5 ,

Elevator 1270 1398 1550

Aileron 1564 1434 1292

Rudder 1702 1574 1438
- 0% 100% -

Throttle 1794 1164 -

Once the data has been entered press the Return button to return to the

Master display.

3. Calibrate DAC
This screen is used to calibrate the DAC signals. The flow of variables for this

calibration is given in Figure 17.

A picture of this screen is given in Figure 18. There are numerous variables as-

sociated with this screen and they are listed in Chapter V under the calibrate_rf_uplink

superblock. The calibration for the three control surfaces and the throttle are the

same, so only the elevator will be explained in detail.

To calibrate the elevator, first flip the Cal Mode switch to the on position.

Then move the elevator joystick on the command transmitter until degrees is dis-

played in the ServoJmu and PWM_deg column. This column displays the elev_servo_deg

variable from the A_DJMU superblock and the elev_cmd_tx variable from the Com-

mand.Tx superblock respectively. Read the voltage off the dial to the left of this

column which displays the voltage from the DAC IP.module and enter it into the

v_0deg box to the right of the column. Once this value has been entered, vary the
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Figure 17. Variable Flow for DAC Calibration

voltage on the dial to 2.7 volts (by highlighting the number and entering 2.7) and

enter the degrees from the center column into the deg_2.7v box. Repeat this pro-

cedure for 2.4 volts. To calibrate the other two surfaces and the throttle, repeat the

same procedure.

The data in Table V was collected from test nights and represents initial

estimates for the DAC Calibration. Once again these values are for Bluebird and

require recalculation for another aircraft.

Table V. Calibrate DAC Calibration Data

Actuator 2.7 2.4

Elevator -8.2 2.37 0.89

Aileron -9.35 2.35 -1.3

Rudder 5.57 2.52 -3.52

Throttle 0.66 2.25 0.21

Once the data has been entered press the Return button to return to the

previous display.
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Figure 18. Calibrate DAC Screen

4. Cal Air Data

This screen calibrates the four air data sensors: alpha, beta, velocity(vt), and

altitude. A figure of this screen is given in Figure 19. The variables associated with

this screen are connected to the AJDJMU superblock which is explained in detail

in Chapter V. Since the IMU has only a five word capacity for data transmission

these calibrations are not connected. The equations for the sensors are located in

the AJDJMU superblock and can be connected after calibrating the actuators. To

receive this data from the aircraft wires connecting the actuators to the pins must be

switched to the air data sensors.

D. DATA DISPLAYS
The three buttons located on the right of the Master IA screen (Figure 11)

connect the user to addition screens that give data on the IMU, GPS, and Flight. A
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Figure 19. Air Data Sensor Calibration Screen

short description of these displays is given below.

1. IMU Master

This screen displays information concerning IMU data. See Figure 20. The

IMU screen displays information for the nine states coming from the IMU: ax,ay,az,p,q,r,phi,theta,

psi. In addition to the states the five words being sent from the IMU to the controller

are also displayed. Currently these five words are assigned to: elevator, aileron, rud-

der, and throttle voltages. The fifth word is not connected. These words can be

changed by connecting the wires from the different sensors to the five pins located on

Bluebird. The variables associated with this screen are connected to the imuJogic

superblock located one level down from the Sensor calibrationJOisplay superblock.
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2. GPS Master

The GPS screen displays information relating to the differential GPS system

loaded on Bluebird. There is one receiver and antenna located on Bluebird and the

second receiver and antenna are located at the ground station. This screen provides

information from the GPS receiver such as, latitude, longitude, velocity, heading, and

a comparison of GPS height and pressure altitude. See Figure 21.

There are also two other GPS IA screens that provide information on differ-

ential GPS operation and Earth Centered Earth Fixed(ECEF) data. See Figures 22

and 23. The variables associated with these screens are connected to the gps su-

perblock located one level down from the Sensor calibrationJDisplay superblock.

3. Flight Display

This screen is the main flight test page. See Figure 24. This screen contains

switches, dials and displays to monitor flight test data. It is divided into five main

sections, each concerning a certain set of data or switchology. The first section in
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Figure 21. GPS Master IA Screen

the upper left corner contains the following three switches to toggle among: an open

or closed loop controller, external comands, and Hardware-in-the-Loop testing. The

next section displays the actuator commands for each actuator. The variables asso-

ciated with the displayed numbers come from the Control-block, Command_Tx and

AJDJMU superblocks. The States section gives either IMU data or model states

depending on the selection of the Display/Use switch located below the display. The

Commands section compares the gauge reading from the aircraft to what the com-

puter is commanding for aircraft altitude, airspeed or bank angle. The three windows

in the center allow the test engineer to increase altitude, airspeed or bank angle in

increments by depressing the arrows.

E. ACTUAL FLIGHT TEST
The flight test is commenced by pressing the START CONTROLLER but-

ton on the iaclient window with the left mouse button (Figure 12). This starts the
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Figure 22. Differential GPS IA Screen

controller and model. If data is to be collected the data parameters must be entered

by first depressing the DATA PARAMETERS button. This gives a screen similar

to the HCE and by turning on or off the variables, data in collected. See Figure 25.

Once the parameters have been set, click on the DATA ACQUISITION

button and data collection commences. At this point the RC pilot taxies the aircraft

and takes off. Once the aircraft is established in a cruise configuration, control is

handed off to the computer controller by turning on the computer's transmitter and

turning off the RC pilot's transmitter. If there is a problem with the controller, control

can be returned to the RC pilot by reversing this process. Data is collected until the

DATA ACQUISITION is again depressed. This must be accomplished before the

contoller is stopped or data will be lost. At the termination of the flight the RC pilot

lands the aircraft and the controller is stopped.
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F. DATA ANALYSIS
A series of flight tests were conducted using the unmanned air vehicle Bluebird

to validate the calibration equations and the capability of the RF uplinks/downlinks.

Data was collected using the data acqusition procedure described in Chapter IV. Once

the Stop Data Acquisition is pressed the data is saved in a file using the model

name followed by a .raw extension. This data must be converted to a format that

can be used by Xmath. This is done by depressing the Convert DA Data button

on the RealSim GUI (Figure 4). When the conversion is complete the data files will

have a .dat extension.

1. Test Data

The data collected for the Bluebird test showed a 0.2 sec delay from the time

the control input was sent from the computer to the time it reached an actuator.

This delay is shown in Figure 26 for the elevator actuator.

The flight test data plotted is for the variables dacl.volt, tp7 and word2_imu.
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These three variables measure commanded DAC voltage sent to the transmitter, the

PWM signal received by the ground station, and the voltage measured at the actuator

pot. This data has been normalized for ease of comparison. Studying the graph, one

can see that a 0.1 second delay occurs from the time the voltage is sent from the

DAC to the tramnsmitter and a second 0.1 second delay occurs from the time time

the transmitter sends the PWM signal until the actuator registers a movement. The

cause of this delay is most likely due to the time it takes the Futaba Transmitter to

convert a voltage to a PCM signal on the ground, and for the the Futaba receiver to

convert the PWM signal into an actuator command.
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V. IMPLEMENTATION

A. BACKGROUND
Numerous attempts were made to develop a universal outer shell using the

hardware and software explained in the previous chapter. Problems arose when the

number of inputs/outputs changed, additional switches were needed, or additional

monitor commands were needed to expand the model. Therefore a universal outer

shell was developed which is capable of growth and expansion. This outer shell is

shown in Figure 27.
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47



This shell has the capability to handle 250 inputs and 350 outputs. The inputs

and outputs are divided among the IP.modules and monitor commands which are

given in Table VI. Currently only the input/output variables needed are connected.

This saves time in the compiling process and keeps the variables in a logical order.

Table VI. Input/Output Configuration

Inputs Outputs

16 A/D 16D/A
10PWM 10PWM

60 Serial A 60 Serial A
80 Serial B 60 Serial B
20 Switch -

80 Monitor 180 Monitor

These inputs/outputs are connected to the Process_l superblock, which con-

tains four additional superblocks: Sensor ClibrationJDisplay, Control-block,

Sensor Filtering, and calibrate_rf_uplink. Each of these blocks performs a spe-

cific function and each will be explained in the following sections. See Figure 28.

One of the nice features of this structure is its flexibility. If the engineer designs

a new controller for the aircraft all he has to do is disconnect the old controller and

connect the new controller. This usually involves only a few mouse clicks. Then using

a pull-down menu in SystemBuild, real time code is generated and using AutoCode

the C code to drive the hardware is produced. This whole process can be accomplished

in a matter of minutes, where it used to take months for a group of programmers to

develop the C code for the hardware before testing can be accomplished.

B. SENSOR CALIBRATIONJDISPLAY
It is necessary to calibrate the actuators and sensors on Bluebird in order to

obtain accurate readings for the controller and to place the signals in the proper

format. The actuator pick-offs on Bluebird use voltages to sense control surface
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motion. Therefore a mapping was needed to match a certain voltage to a control

surface deflection in degrees. To obtain a calibration the following steps must be

accomplished.

• Using a voltmeter and a protractor measure the control deflection vs. voltage

data.

• Plot this data and obtain equations for the slopes of the lines.

• Type equations into the appropiate superblocks.

• Fly the aircraft and obtain trim settings.

• Type these trim settings into the Cal Actuators, Cal Com Rec, Calibrate DAC
and Cal Air Data IA screens.
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Data was collected for the elevator, rudder and aileron, which was then plotted

using Matlab. See Figures 29, 30, and 31.
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10

The data was interpolated using a least squares fit method to obtain a linear

approximation that could be used in the model. The linear approximation was chosen

so the data could later be scaled for trim settings in flight. If a non-linear curve fit

was used every time the trim settings were changed a new set of curves would be

required. Using a linear fit a new trim setting will simply shift the curve up or down

along the y-axis.

All the sensor and actuator calibrations are located in the Sensor Calibra-

tion-Display SuperBlock . Located in this superblock are the calibrations for the

GPS, IMU logic, Command receiver, and air data sensors (see Figure 32).

By opening these superblocks the equations calculated by the calibration pro-

cess are entered into algebraic blocks. For example, once the equations are calculated

for the actuators they are entered into the AJDJMU SuperBlock located two levels

down from the Sensor Calibration-Display SuperBlock. This is reached by double

clicking on the number in the upper right corner of the Sensor Calibration-Display

SuperBlock and repeating the procedure on the A.DJMU SuperBlock. A brief de-
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Figure 32. Sensor Calibration.Display Superblock

scription of the AJDJMU superblock and the Command_Tx superblock are given

next.

1. AJDJMU Superblock

The AJDJMU Superblock is used to calibrate the four actuator pots and air

data sensors. See Figure 33.

The superblock has 20 input and 10 output variables and these are given in

Table VII. Currently, only the first 14 inputs have variable names assigned. The

remaining six inputs are intended for growth.

The calibration equations given in Figures 29, 30, and 31 are entered into

block number 2 which is an algebraic block. The input variables in this block are

the four IMU words, in volts, and the output variables are these inputs converted to

degrees. These outputs are then sent through a switch and into a summer. At the

summer, the trim values entered in the Actuator Calibration IA screen, (Figure 14),

are added, and then the values are output to the Sensor_Calibration superblock.

The top half of the AJDJMU superblock is for the calibration of the air data
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sensors. This section is not connected due to the limitations of the IMU which only

allows five words to be transmitted to the ground station.

2. CommancLTx Superblock

The Command.Tx superblock is used in conjuction with the AJDJMU su-

perblock for actuator calibrations. This block has 45 input and 16 output variables.

See Figure 34. Inputs 4, 8, 12, and 15 are the four PWM signals for the elevator,

aileron, rudder, and throttle respectively. These four variables are input into a quan-

tizer which rounds off the values. The variables are then output to two locations: the

Calibrate Command Recevier IA screen (see explaination in Chapter IVchap5.tex)

and the elevator, aileron, rudder and throttle shift blocks.

The shift blocks take the PWM values from the receiver and subtract off the

PWM value for the center location of the joystick. This is necessary to put the PWM
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Table VII. A_DJMU Input/output Variables

Number Input name Output name
1 wordlJmu -

2 word2Jmu -

3 word3Jmu elevjservo.deg

4 word4Jmu rud_servo_deg

5 word5_imu ail_servo_deg

6 imu_servo_sw trt_servo_deg

7 elev_servo_trim alphaJmu_deg

8 rud_servo_trim betaJmu_deg

9 ail_servo_trim vtimuJps

10 trt_servo_trim altJmu_ft

11 alphaJmu_trim -

12 betaJmu_trim -

13 vtJmu.trim -

14 altJmu_trim -

signals in the proper format for the scaler blocks. The scaler blocks take the PWM
signals in microseconds and convert them to degrees. In addition to the shifted PWM

signal, the scaler blocks also has inputs for the PWM max up, PWM max down

variables in microseconds and full scale deflection variable in degrees. The values

for these inputs are obtained from the Calibrate Command Receiver IA screen and

are used in a formula developed in [Ref. 8] to convert PWM ^seconds into degrees.

After leaving the scaler blocks the PWM signals, now converted to degrees, are added

to the trim values from the Actuator Calibration IA screen. These variables are then

output to the Sensor_Calibration superblock.

The last two sets of blocks labelled channel5 and channel6 are used for the flap

and nose wheel steering. These will be used when the aircraft is fully autonomous,

i.e. computer controlled from takeoff to landing.

54



15-SEP-96

Discrete SuperBlock Sample Period Sample Skew Inputs Outputs Enable Signal
CommandJTx 0.04 0. 45 16 Parent

J ~ -syBg- --""" 3*

~~-^ Biz
tn, .,

3

r«tc; ™«a—

gi

Figure 34. Command.Tx Superblock

C. CALIBRATE_RF_UPLINK
This superblock calibrates the command transmitter for the RF uplink to

the aircraft. These calibrations are similar operations that are performed by the

Sensor Calibration-Display superblock, except in the reverse order. It takes controller

outputs, in degrees, and converts them to DAC voltages to be transmitted to Bluebird

via an RF link. This superblock has 56 input and 23 output variables which are tied

to the Calibrate DAC IA screen. (See Chapter IV for a complete explanation of this

screen.) Expanding the Calibrate_rf.uplink superblock gives a new set of blocks which

are described in Figure 35).

The first input to the degrees to DAC voltage algebraic blocks comes from

the Control-block superblock and the remaining three inputs come from the Calibrate

DAC IA screen. These inputs are used in an equation that converts degrees to DAC

voltage. Once the variables are converted to degrees they are sent into a switch which
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Figure 35. Expanded Calibrate_rf_uplink Superblock

is connected to the Calibrate DAC IA screen. If the switch is on the calibration mode

is activated, the calibration data is displayed on the screen. If the switch is off the

DAC voltages are passed through the switch into a DAC limiter that limits the DAC

voltage to 5 volts. From this block the DAC voltages are outputed to_ the DAC

superblock, which in turn sends them to the DAC IP_module.

D. CONTROLJBLOCK
This SuperBlock contains the controller, dynamics and kinematics for Blue-

bird. The equations that were derived in Chapter II are symbolically displayed

in this superblock. Inputs are fed from the Sensor Calibration-Display superblock,

Sensor Filtering superblock, and the Monitor Commands and Monitor Switches su-

perblocks located in the outer shell to this superblock. Outputs are fed to the Cali-

brate_rf_uplink, where the outputs are converted back to DAC voltages for RF trans-
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Figure 36. Expanded Control-block Superblock

mission to Bluebird, and the Sensor Filtering superblock where the signals are filtered.

Expanding the ControLblock a new set of superblocks is given (see Figure

36).

Looking at Figure 36, some Superblocks and blocks of interest are:

• bbird - this superblock contains the EOM of Bluebird.

• delta controller - this superblock contains the delta controller developed to

fly Bluebird in cruise flight.

• command hold - this block holds the RC pilot's last commands until control

is handed over to the computer.

The remaining blocks, 96, 97, 98, 99, 14, 6, and 7 perform functions such as

conversions and monitor command switchology used for flight test. A complete listing

of the superblocks are given in the Appendix.
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Figure 37. Expanded Sensor Filtering Superblock

E. SENSOR FILTERING

This superblock contains various niters needed for the controller. Inputs are

fed from the Sensor Calibration-Display superblock, Control-block superblock, and

the Monitor Commands and Monitor Switches superblocks located in the outer shell.

The filtered outputs are fed to the ContoLblock.

Expanding the Sensor Filtering superblock a new set of superblocks are

given (see Figure 37).

Looking at Figure 37, some Superblocks and blocks of interest are:

• gyro_angle_filters - this superblock contains kalman niters that damp out

the vibrations in the IMU.

• alt_vt_filter - this superblock contains filters to correct for errors in the pitot

static system.
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• incremental commands - this superblock contains rate limiters for altitude,

airspeed and phi.

A complete listing of the superblocks are given in the Appendix.
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VI. CONCLUSIONS AND
RECOMMENDATIONS

A. CONCLUSIONS
The MATRIX^-Product Family of hardware/software developed by Integrated

System Inc.(ISI) is an excellent tool for the design, test and implementation of con-

trollers. By stepping the engineer through the rapid prototyping design process the

time required to implement a design concept is significantly reduced. Where it used

to take years to develop a working prototype from a initial design concept, by using

ISI's product the time is reduced to months.

One of the great benefits of this product is the ability to automatically pro-

gram in a higher order language code such as C. This eliminates the necessity of

having dedicated software programmers to develop code for a working model. This

is especially true when changes are made in the controller and new code must to be

generated. Now, the 10,000 lines of C code are generated in minutes.

Another benefit of this product is the ability to collect and analyze data during

the flight testing process. During flight test we were able to make changes in the field

without having to dismantle the entire setup and transporting it back to the lab.

Using the data acquisition editor and Xmath, graphs were produced to analyze the

success of the controller and filter designs. With a conventional test setup this would

not have been possible.

The outershell developed in SystemBuild greatly increases the understanding

and tracking of the model variables. Prior to this setup every time the model was

changed or variables added the outer connections had to be modified. Now, using the

outershell with its built in growth capability, it is easy to add variables and monitor

commands.
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B. RECOMMENDATIONS
Based on the conclusions presented above and the experience of developing the

uniform system presented in this thesis, the following recommendations are forwarded.

• Test the uniform system with another aircraft model. Due to time constraints

and aircraft availability, Bluebird was the only UAV that was tested using the

system. Another UAV, called the FROG, is being set up for testing and could

be used for this purpose.

• Provide a realtime animation of the test aircraft in flight. When flight test

are being conducted it is very difficult to see the aircraft due to its small size.

Using a 3D simulation, such as that provided by Designer's Workbench, would

give the test engineer the ability to better monitor the aircraft's flight. This

will involve significant expertise in C programming and TCP/IP networking.

• Purchase a portable Unix based workstation. Currently it is necessary to

transport a full size Sun workstation to the test site. This is difficult due to

the large size and sensitivity of the hardware. We have already burnt out a

monitor and frayed a SCSI cable during the transport process.
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APPENDIX. ADDITIONAL SYSTEMBUILD
DIAGRAMS
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Figure 38. bbird
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Figure 39. Integrators
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Figure 40. Dynamics_Euler
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Figure 41. aeroJorces_and_moments
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Figure 42. lin_velocity_eq
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Figure 43. L_dot_eq
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Figure 44. nonlinear_ctrl
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Figure 46. delta.controller
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Figure 48. act.model

73



Discrete SuperBlock Sample Penod Sample Skew Inputs Outputs Enable Signal

Sensor Filtering (X04 0. 40 30 Parent

1S-SEP-96

I7<r>—

Tq

3*

~
Li.

c
SUPER

BLOCK >
0.04

gyro_angIe_ filters

SUPER

BLOCK

If

alt vt filter

H. -GI>

-O
SUPER

BLOCK >

incremental commands

Ea>—

Ct29>—
SUPER

BLOCK

ES>— 0.04

-E2>

-LID

—nr>

Figure 49. Sensor_Filtering

74



Discrete SuperBlock Sample Penod Sample Skew Inputs Outputs Enable Signal

gyro.angleJtUters OM 0. 13 12 Parent

15-SBP-96

kalman_pend

CD-
- - 1

L_

CD-
1

- 1
xo=

1 +

kaljnan pend

LT>-

- - 1

Ll

e>-
10
- 1

xo=
1

kalnianTpend

n>-
- + +

- - 1

Li2

- +

CD-
10
- 1

X0=
1 +

angle filter

E>-
- 1

Li.

*

E>- 1

xo =

anqle filter

d>-
- 1

L12

CD- 1

XO -.

angle filter

Q>-
- 1 *

ED- 1

XO =
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Figure 51. alt_vt_filter
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