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ABSTRACT 

The feasibility of utilizing detonations for air-breathing propulsion is the subject 

of a significant research effort headed by the Office of Naval Research. Pulse Detonation 

Engines (PDE) have a theoretically greater efficiency than current combustion cycles. 

However, pulse detonation technology must mature beginning with research in the 

fundamental process of developing a detonation wave. This thesis explores various 

ignition conditions which minimize the deflagration-to-detonation transition distance 

(XDDT) of a single detonation wave in a gaseous mixture. 

Specifically, the minimum XDDT was determined for different Ethylene and 

OxygedNitrogen gaseous mixtures under varying ignition energy (0.33-8.3 1 Joules), 

mixture equivalence ratios (0.6-2.0), and ignitor locations. To conduct the experiments a 

6ft. long, 3in. diameter tube combustor, support equipment, and operating software was 

built. Four independent test scenarios were investigated and trends developed to 

determine the minimum X D D T  while reducing oxidizer blend ratios. 

Results show that X D D T  significantly depends on mixture equivalence ratio (cp) and 

was minimized at cp = 1.1. No dependence on ignition energies greater than 0.5 Joules 

was observed. A further reduction in XDDT was observed with the ignitor located one 

combustor diameter fiom the head wall. These results will be useful in future designs of 

pre-detonators for larger PDEs. 
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.- . . . ... .. . .. . .. . . . . . . . .. . . .. . ... . . .. . . . . . _. . . . . . ... . - 

I. INTRODUCTION 

A. BACKGROUND 

Almost all current propulsion systems utilize a constant pressure (C,) combustion 

process to add energy to the working fluid. Most engine designs are based on the 

constant pressure burning of the fuel within the combustor. An approach, though not 

new, is emerging to investigate engine efficiency limits within the combustion process 

itself. This idea is based on the fact that fuels burn significantly more efficiently in a 

nearly constant volume compression based event verses a constant pressure process. In a 

practical flowing system, this is commonly referred to as a detonation. The practicality 

of applying a detonation to a propulsion system lies in the ability to couple this increase 

in thermal efficiency to an increase in propulsive efficiency. To do this, the physics 

behind establishing a detonation and its propagation along a combustor axis must be 

understood and harnessed before it can be used effectively in a controlled manner for 

propulsion applications. 

B. HISTORY OF DETONATION RESEARCH 

1. Discovery of the Detonation 

The first recognized detonation, then called a ‘violent explosion’, was discovered 

and later patented by A. Nobel in 1863. He, with his father, invented a mercury 

fulminate ignitor that initiated a detonation in a nitroglycerine charge. He later perfected 

this process in 1867 with the significant invention of dynamite [Ref. 11, however the 

scientific understanding of the physics behind the detonation phenomena was lacking and 

required substantial research to develop the technology to the level existing today. 
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In the early 1870’s, researchers such as F. A. Abel and M. Berthelot began to 

relate the strength of an explosion to how it was initiated and its propagation velocity. It 

was hypothesized that some form of mechanical or vibrational shock waves must initiate 

the detonation and that this wave must be sustained throughout the event. M. Berthelot 

and P. Vieille furthered this idea by analyzing the first measurements of detonation wave 

velocity conducted by F. A. Abel in 1874. The results were substantiated in similar 

experiments in the early 1880’s. Bethelot and Vieille concluded, based on numerous 

tests of different fuels and oxidizers at different equivalence ratios, that the detonation 

velocity is uniform and only dependent on the fuel and its mixture ratios. [Ref. 11 

E. Mallard and H. Le Chatelier found another significant property of the 

detonation phenomenon in 1883. Using a new device called a drum-camera, they were 

able to demonstrate that a deflagration, under the right conditions, will transition into a 

detonation wave. This new information led to their experimental proof that the 

detonation process can be seen as a rapid adiabatic process whose energy drives the 

detonation wave. It was also noted that the detonation wave velocity was on the same 

order as the sound velocity of the products of the combustion. This led to the formulation 

that there is an inherent relation between the chemistry of the reactants, the conditions in 

which they are ignited, and the detonation properties they exhibit. [Ref. 13 

2. 

The early discoveries and ideas produced in the 1880’s led to several of the top 

thermodynamicists and chemists of the day to become interested in the new detonation 

phenomenon. In 1890, V. A. Michelson, working through the Rankine Theory, showed 

the detonation pressure as a function of the detonation velocity and the reactant’s heat of 

2 
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reaction, and that through the system of equations there are two possible solutions. This 

is the first insight in that reactants, at different conditions, will bum naturally around two 

distinct conditions. He also noted that there exists a convergence of pressures at the 

upper point, which correlated to the detonation process. This was later proven by the 

work of D. L. Chapman and E. Jouget. [Ref. 11 

Chapman-Jouget theory was recognized as the relationship between velocities of 

combustion wave processes and the pressures at which they occur. It also is the 

realization that there are two regions at which a combustion process may occur. The 

theory is named for two individuals who worked independently and demonstrated two 

distinct properties for combustion events. D. L. Chapman published his findings in 1899 

that stated there exists a minimum velocity in which a detonation can occur and it is 

thermodynamically tied to the properties of the burned gas. The second part of the theory 

was provided by the work of E. Jouget. He worked from 1901-1905 and established the 

relation that the detonation wave velocity is equal to the sound velocity of the burned gas 

in which it propagated. He verified this result by comparing computed results with 

experimental data found by several of his predecessors. J. L. Crussard validated the C-J 

theory in 1907 by relating the two specific combustion pressure points on the Hugoniot 

curve (pressure-specific volume adiabat). The two solutions of the C-J theory can be 

seen on the well-publicized graph shown in Figure [ 1-11. The upper C-J point is related 

to a detonation and the lower C-J point showing the deflagration region. [Ref. 13 The 

relationship of the Chapman-Jouget points with the Hugoniot curve and a description of 

the distinct solution regions will be looked at in detail in Chapter 11. Research continued 

into the twentieth century as Von Neumann, Doring and Zeldovich further modeled the 

3 



detonation wave as a shock wave followed closely by the combustion process of the 

reactants. 

P i\. 

Figure [l-11. Chapman-Jouget Solutions on the Hugoniot Curve. [From Ref. 21 

3. Past Applications of Detonations 

With the physics of the detonation wave explained using C-J theory, many 

applications could be modeled and utilize the energy release rate of detonations. Before 

the 1 8 9 0 ’ ~ ~  detonations were commonly used in explosions, fireworks, and in dynamite. 

However, in these applications the detonation was not controlled or readily understood. 

The first unsuccessful attempt to utilize the thermal efficiency of a detonation in a 

propulsion system was seen in the German’s “Buzz Bombs’’ that created havoc among 

the Allied cities in World War 11. Another attempt at applying pulsed combustion in a 

propulsion system occurred in the mid twentieth century in the United States under 

“Project Squid”. This program studied the application of pulsed engines in both military 

and civilian combustion engines. These pulsejet engines were shown not to be detonation 

engines since their combustion processes occurred with a subsonic flame speed in a 
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"tuned-port" combustion chamber. These efforts were later abandoned since it was 

determined that the propulsion system did not have a high overall efficiency. [Ref. 31 

C. CURRENT DETONATION RESEARCH 

There is a lot of promising research in detonation fundamentals and applications 

by government labs, commercial enterprises, and academic facilities. The concept of 

utilizing detonations for propulsion was renewed in the 1960's with propulsion concept 

studies for new high-speed unmanned vehicles. Since that time, there have been many 

studies, experiments and simulations run by several independent organizations. The most 

documented and perhaps most well known of these studies include the research of Adroit 

Systems Incorporated and the Office of Naval Research funded academic consortium. 

Each of these independent groups has aggressive test plans in hopes to gain insight in the 

intricacies of effectively creating and controlling detonations for a useful propulsion 

system design. 

Adroit Systems Incorporated (ASI) has taken a vocal lead in the commercial 

development of detonation technology. T. Bussing and G. Pappas of AS1 published a 

technical paper for the American Institute of Aeronautics and Astronautics conference in 

January 1994 that summarized the technical feasibility of designing and building a Pulse 

Detonation Engine (PDE). This paper outlined some basic physics of detonations and 

arguments supporting future research and development of a PDE [Ref. 41. Since that 

time AS1 has developed and patented many pulse detonation technologies, such as using 

multiple combustors with a rotary valve. They have also invested in a Pulse Detonation 

Rocket Engine (PDRE) concept and using detonations for material synthesis and intense 

sound level generation [Ref. 51. 
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The United States Department of Defense is investigating detonation technology 

for use in future high-speed missile and aircraft propulsion systems or as a non-lethal 

weapon. The Office of Naval Research (ONR) has organized an integrated research team 

in hopes to understand the requirements needed for PDE development. This team consists 

of six prominent university laboratories and the Navy's research facilities including the 

Naval Research Laboratory (NRL), Naval Postgraduate School ("S) and the Naval Air 

Warfare Center (NAWC). The combined work of these institutions will cover PDE 

research from fundamental detonation studies to multi-cycle operation and cycle analysis. 

Figure [ 1-21 is a slide outlining the detonation research roadmap and the responsibilities 

of the participating institutions. 

N E N G I N E  RESEARCH ROADMAP 

/ 1 

Figure [l-21. ONR Pulse Detonation Research Roadmap. [From Ref. 61 

This thesis will explore some of the topics NPS is tasked to research in part one of this 

roadmap. Specifically, it researches the ignition energy/power requirements for 

minimization of XDDT as a function of ignition location and equivalence ratio for an 

ethylene and oxygen fuel mixture. [Ref. 61 
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11. PHYSICS OF A DETONATION WAVE 

A. INTRODUCTION 

In order to begin a detailed analysis of detonation waves, one must first look into 

the subject of combustion. Combustion is defined as an exothermic chemical reaction 

between a fuel and an oxidizer that once initiated can sustain itself as long as the 

ingredients in the proper proportions are present. However, not all combustion events are 

the same. The velocity at which a combustion wave propagates through a mixture is an 

accurate measure of the strength or violence of the event. This velocity is dependent on 

several factors including the mixture composition, pressure, temperature, and the 

geometry of the volume where the combustion occurs. The following sections describe 

three distinct combustion events and how they are initiated, sustained, and terminated. 

B. DEFINITIONS 

1. Deflagration 

Deflagration is the combustion process most commonly utilized in current flight 

propulsion systems such as ramjets, turbojets and rocket engines. Some practical 

examples of this type of combustion include a burning match, a campfire, or a flame 

moving along an open gasoline spill. A closer look reveals that a deflagration is a 

combustion wave propagating at a subsonic speed. The deflagration flame speed is a 

function of pressure, temperature, and turbulence of the reactants, and the permittable 

range is correctly predicted by the C-J theory falling somewhere near the lower C-J point. 

This speed is heavily dependent on the chemical makeup, mass diffusion rates and 

thermal transfer rates of the reactants. Typical wave speeds for a deflagration 
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combustion wave range from 1-30m/,. Though deflagration is the most common and most 

utilized combustion process, it is theoretically not the most efficient thermodynamic path 

for combustion to occur. This is because the entropy of the resulting gases is maximized, 

which reduces the amount of work available. [Ref. 21 

2. Explosion 

An explosion can be a combustion or non-combustion event and occurs when a 

reaction releases energy at a much greater rate than the surrounding environment can 

absorb. This exothermic reaction rate increases exponentially with the subsequent 

increase in temperature and pressure. This causes the combustion event to go quickly out 

of control. The volume of the explosion will expand due to the increase of pressure and 

break any boundaries placed on it. Even though the explosion is powerful and occurs 

very fast, the combustion event itself occurs as a deflagration wave as it travels through 

unburned reactants. This becomes an important distinction between the explosion and 

the detonation wave. [Ref. 31 

3. Detonation 

A detonation is a combustion event that happens when special conditions exist. It 

can be described as a supersonic combustion event that propagates at high velocities and 

produces a violent and rapid combustion of the reactants due to the strong shock wave 

leading the detonation. The mechanics of the detonation will be derived and discussed in 

detail in Section C of this chapter. 

A qualitative distinction between detonations and deflagrations is a good format 

to view the extreme differences between the two. The reference frame for this analysis 

will be a one-dimensional stationary combustion wave. The properties used to describe 
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the event will include ratios of, reactant velocity (u), sonic velocity (c), density (p), 

temperature (T) and pressure @). Subscripts will delineate the burned and unburned side 

of the wave. Figure [2-11 is a schematic diagram of the reference frame used for the 

analysis. 

T2m 

Stationary Combustion Wave 

(Unburned) 
u. - 

4 - 16 (heat addition) 8 - 21 (heat addition) 

Figure [2-11. Schematic of Stationary l-D Combustion Wave. [From Ref. 21 

PdP 1 

A qualitative comparison between a deflagration and detonation is given in Table [2- 11. 

0.06 - 0.25 1.7 - 2.6 

Note that the detonation pressures, velocities and density ratios are significantly larger 

than the deflagration process. These results depict dramatic differences between the two 

combustion events and lead to questions as to how it happens, and what can be gained 

from it. 

C. DETONATION WAVE THEORY 

1. Thermodynamics of a Detonation Wave 

Any detailed study into the origins and properties of a detonation wave must 

begin with a derivation and analysis of the Hugoniot curve. This relationship between 

enthalpy (h),  pressure, and density of the gases in a combustion event is directly related 
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to the various combustion conditions. The Chapman-Jouget points discussed in 

Chapter 1 are the two physical solutions to the Hugoniot relation for the constant area 

geometry given, and will the basis for analyzing the detonation phenomena. 

The governing equations of a thermodynamic process must be derived from the 

basic conservation equations of physics. These equations are: 

Continuity equation: -=o 
dx 

Conservation of momentum: 

Conservation of energy: 

Where the enthalpy (h) and the heat added (qcond) to the system is defined by 

h = C,T + ha  ~2-41 

12-61 

This derivation assumes steady one-dimensional flow, with no external heat added or 

rejected, negligible interdiffusion effects, no viscous effects, and occurs within a constant 

area combustor. By analyzing the detonation in this form, it can be viewed as a 

supersonic shock wave with calculable properties in front of and behind the wave. By 

integrating equation [2-11 the concept of a constant mass flow rate ( riz ) is revealed by 

jd(pu) = SOdx a pu = const. = rit 12-71 

Substituting equation [2- 13 into the momentum equation and simplifying, equation 12-21 

1 

becomes 
10 



" [ p . ' + p ] = o  dx 

Integrating equation [2-81 gives an alternate momentum equation to work with. 

p2 + p = const.' 

By similar analysis, the energy equation [2-31 becomes 

[2-81 

~2-91 

[2- lo] 

Referring back to Figure [2-11 and knowing that the change in temperature with respect 

to position (dT/dx) in front of and behind the detonation wave is equal to zero, specific 

conservation equations can be derived. These equations relate the thermodynamic and 

fluid dynamic properties between the two regions of the reference frame. These 

equations are: 

p lu ,  = p2u2 = const. = m 

cpr, +-+q=C,T2  4 +- u; 
2 2 

Using equation [2-41 and [2-51, equation [2-121 can be written as 

h,++=h,+- U 2  4 
c) 

L L 

[2-111 

[2-121 

[2-131 

[2-141 

The fourth and final equation needed for deriving the Hugoniot relation is found in the 

assumption that the gases in both the burned and unburned regions behave like a perfect 

p = pRT [2-151 

gas. The perfect gas law is defined for both regions and R is the specific gas constant for 

the reactants. Equations [2-113, [2-121, [2-141 and [2-151 are the basis set of equations 
11 
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used to solve the five unknowns of the system, u1, u2, p2, T2, a n d p ~ .  One equation with 

two unknowns (p2, p2) can be formed by manipulating the four basis equations in the 

following manner: 

2 2 b 1 u J  b2u2Y 
p2 - PI = P I U I  - P2U2 = -- 

PI P2 

Substituting equation [Z-71 in to [2- 161 yields 

Therefore, 

2 2 P2-P1 = m  
PI% = 1 1 

[Z-161 

[Z-171 

[Z- 181 

PI P2 

Equation [Z- 181 is the Rayleigh-line relation, which quantitatively describes the heat 

addition process in relation to velocity (u), pressure (p), and density (p) in a gas. 

Rearranging the Rayleigh-line relation in terms of Mach number (M) is a more useful 

way to describe the characteristics of the thermodynamics. This is done with the 

following approach: 

Where, 

Substituting equation [2- 151 gives, 

U 

C 
M = -  

c=JuAT 

[2- 191 

[Z-201 

[Z-2 13 
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Manipulating equation [2-181 and substituting in equation [2-2 13, the Rayleigh-line 

relation becomes: 

Knowing that, 

Y 

equation [2- 131 can be rewritten as, 

[2-221 

[2-231 

[2-24 J 

Using equation [2-121 to create an expressions for u: and u: , and substituting into 

equation [2-241, the relation becomes, 

[2-251 
P2 P2 

Combining equations [2-111 and [2-251 gives the final relation, equation [2-261, between 

heat addition and the gases initial and final pressures and densities. 

[2-261 

This relation can also be written, with some manipulation of equation [2-41, [2-51 and 

[2-151 and substituting into equation [2-261. 

h 2 - h ,  = i b 2 - p , ( L + ’ )  PI P2 [2-271 
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These final two equations are forms of the Rankine-relation, but formally named for 

Hugoniot who derived them and fit the various combustion conditions to the pressure 

versus specific volume ( l /p ) curve. 

The Hugoniot curve is a plot that describes the different possible combustion 

conditions. These combustion conditions include various strengths of deflagrations and 

detonations dependent upon the pressure and specific volume conditions at which the 

event is occurring. The Chapman-Jouget points described earlier can be plotted on this 

graph and prove to be the boundaries for strong and weak combustion events. 

Figure [2-21 is the Hugoniot curve along with a depiction of the different sections and 

boundaries of combustion events. The origin of the Hugoniot curve is labeled A and is 

constructed by 

Detonation) 

Upper Chapman- Jouguet Point 

P 

I 1  ( Weak Detonalionl 

Hugoniot Curve) 
I I /p, / 

pation) 

' I? 
Figure [2-21. Hugoniot Curve Depicting Different Combustion Regions. [From Ref. 21 

intersecting the tangents to the upper (U) and lower (L) C-J points. The combustion 

regions for both detonations and deflagrations can be described as both strong and weak, 

as depicted by regions I through IV in Figure [2-21. Region V is a portion of the curve 
14 



that is physically impossible in that it needs zi1 to be imaginary to satisfy the Rayleigh- 

line relation. However, the region of interest for studying detonation transitions lies near 

the upper C-J point. It can be shown, and will be seen in the discussion of the detonation 

wave structure, that a detonation tends to naturally occur at this critical point on the 

Hugoniot curve. [Ref. 21 

2. 

A detonation wave is sustained through a complex balance between a shock wave 

Structure of a Detonation Wave 

and the combustion event behind it. This symbiotic relationship is best understood 

through a one-dimensional analysis of a detonation wave. Three scientists completed the 

analysis independently in the early 1940's. Zel'dovich, von Neumann, and Doring 

believed the detonation wave could be viewed as three distinct regions whose widths are 

heavily dependent on the equivalence ratios and kinetics of the gaseous mixture. Figure 

[2-31 is a depiction of the thermodynamic properties in the three regions of the commonly 

named ZND detonation wave structure. The first region, the shock wave, has a width of 

just a few Angstroms, yet delivers a tremendous amount of energy into the unburned 

reactants seen as increases in pressure, density, and temperature. The dramatic increase 

in the thermodynamic properties increases the chemical reaction rates and accelerates the 

energy release phase of the wave structure. The deflagration region is made of two zones 

that describe the thermodynamics of combusting the reactants. The first, which is known 

as the Induction zone, has a relatively short width in which the chemical reaction is 

beginning but not yet impacting the thermodynamic properties. This shifts to the 

Reaction zone when the reaction rate increases exponentially, driving temperatures up 

and stabilizing pressure and density to their final equilibrium values. These three zones 

15 
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Figure [2-31. Physical Properties of the l-D Detonation Wave Structure. [From Ref. 21 

all occur within a distance on the order of a centimeter and each is dependent on the next 

to sustain the detonation wave. 

D. THERMODYNAMIC EFFICIENCIES 

1. Increased Thermal Efficiency of a Detonation Wave 

The motivation for utilizing detonations as a means of propulsion is the possibility 

of increased efficiency. This is not surprising because nearly all significant 

breakthroughs in combustion engines have come in the form of decreasing the 

thermodynamic losses within the engine. Thermodynamically, the efficiency of any 

system is directly related to its ability to minimize the entropy rise in the working fluid. 

Therefore, a careful analysis of the entropy budget must be completed to justify further 

research in detonations as a means of propulsion. 

An expression for the entropy (s) of a combustion event can be derived from the 

Hugoniot relationship discussed earlier. In order to prove the increased efficiency of a 

detonation, the entropy at the upper C-J point on the Hugoniot curve must be analyzed. 
16 



Kuo, in Principles of Combustion, describes this derivation in the following steps [Ref. 

21. To begin, the energy of the system must be defined and well understood. The 

enthalpy (h) is defined as 

P h = e + -  
P 

where e is the total internal energy within the system. Applying this two the 1-D 

stationary detonation wave, equation [2-281 becomes 

h, -h, =(e2  -el)+[&-”) 
P2 PI 

[2-281 

[2-291 

Substituting equation [2-291 into the Hugoniot relation, equation [2-271, and sorting 

terms gives 

[2-301 

Differentiating, 

de 2 - 2  - i ( d p 2 ( L - L ) - L [ d L ) ( p 2  PI P2 2 P + p , )  [2-3 13 

Combining the first and second laws, the following expression can be generated which 

introduces entropy into the analysis. 

T2ds2 = de, + p,d( $1 [2-321 

Substituting equation [2-3 11 into [2-321 and rearranging terms, gives an expression in 

terms of a change in entropy over a change in specific volume 
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Analyzing the Hugoniot curve at the upper and lower Chapman-Jouget points, the slope 

of the tangents to the curve at these points is 

[2-341 

Therefore, when equation [2-341 is applied to equation [2-331 representing the conditions 

at the upper and lower C-J points, it becomes 

[2-351 

This result indicates that the entropy value on the Hugoniot curve at the C-J points is 

either a maximum or a minimum. In order to determine what the condition is, the second 

derivative in entropy must be taken. 

Isolating the second derivative in entropy and using the condition outlined in equation 

[2-341, equation [2-361 reduces to 

[2-371 

[2-331 
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A separate analysis of the asymptotes of the Hugoniot curve shows the second derivative 

of pressure in equation [2-371 is greater than zero. 

[2-381 

Using this fact and knowing the difference between the specific volumes at the upper and 

lower C-J points, it can be determined which point maximizes entropy and which 

minimizes it. For deflagrations the specific volume (l/pl) behind the shock front is less 

than that behind it (Up*). Therefore for l/pl < l/pz 

[2-391 

which corresponds to a post combustion condition with the highest entropy rise for a 

specified amount of heat addition, at the lower C-J point. Conversely, at the upper C-J 

point, analogous to the detonation, the opposite holds true. At this point l/pl > l/pz, 

resulting in 

which corresponds to a post combustion condition with the lowest entropy rise for a 

specified amount of heat addition. Figure [2-41 is a graphical representation of the 

entropy variation over the entire Hugoniot curve. This analysis demonstrates the 

increased amount of work available and efficiency of the detonation process over 

deflagration combustion events 

19 
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Figure [2-41. Entropy Variation Along the Hugoniot Curve. [From Ref. 21 

2. Engine Cycle Analysis Comparison 

a. Comparison Approach 

A practical approach to demonstrating the increased thermodynamic 

efficiency of a Pulse Detonation Engine (PDE) is to compare the two idealized 

combustion processes that could be utilized for heat addition. This section will perform a 

cycle analysis on a constant pressure (C,) combustion, currently used by turbojets, 

ramjets, etc., and a detonation (C-J) cycle, which exists for a PDE system. Both cycles 

will be analyzed as ideal with the understanding they will not completely model the 

performance limit of a real world engine. The approach will, however, bound the real 

world benefits of a PDE cycle. This section will review the goals, assumptions, and 

equations needed to outline the analysis for each cycle. 

The ultimate goal of this analysis is to compare two idealized combustion 

cycles using the First Law of Thermodynamics and reveal the increased thermodynamic 

efficiency of a detonation combustion cycle. In doing this, a baseline understanding of 

the fundamental differences between C, and C-J cycles will be presented. This analysis 

will also build a solid thermodynamic approach to each cycle. The result will be a simple 

thermodynamic analysis for the Pulse-Detonation Engine (PDE) cycle. 
20 



The analysis involves several assumptions of the combustion parameters 

and cycle behavior. The working fluid that will be used is an Ethylene (C&) and air gas 

mixture at stoichiometric conditions. The stoichiometric condition is defined as the 

mixture's fuel to air ratio that facilitates complete combustion, leaving no fuel or oxidizer 

in the combustion products. A mixture's equivalence ratio is based on the reactant's 

actual fuel to air ratio divided by that of the stoichiometric condition. The mixture is 

assumed to behave in accordance with the perfect gas law, 

pv = RT [2-411 

The mixture will be treated as thermally and calorically perfect with constant specific 

heats through the isentropic portions of the cycle. This allows the enthalpy (h) and 

internal energy (u ') to be functions of temperature (T) only, 

h = C, JdT [2-421 

The energy released by the combustion process will be assumed to be simple heat 

addition (ql-2) based on the type of combustion process for the cycle. Further 

assumptions must be placed on the cycles in order to standardize them for a coherent 

analysis. Both cycles are started with an initial condition equivalent to that of an 

operating system at an altitude of 50,000 ft., and will be labeled as state (0). Next, both 

the compression (0-1) and expansion (2-4) paths will be modeled as isentropic. The heat 

addition path occurs between state (1) and (2) and will be supplied by the combustion 

process. The cycle will be completed by a constant pressure cooling which is physically 

seen as a new load of reactants at the initial condition along the (4-0) path. Figure [2-51 

is a generalized plot of a combustion cycle to outline the four paths within the cycle. 
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Figure [2-51. P-v Diagram of Generalized Combustion Cycle. 

It will be shown by carefbl analysis that this plot shifts with different combustion events 

that correspond to differences in the total work output and efficiency of the cycle. Table 

[2-21 outlines the state (1) parameters that will be used for each cycle [Ref. 71. Each 

cycle will assume an initial compression ratio of 10: 1. Parameters at each state of the 

cycles will be given during the analysis. These values will make it possible to calculate 

the work and efficiency of that cycle in order to adequately compare them. 

I I " 

Entropy I S 6.48 HkgK I 
The equations utilized for the analysis are derived from the basic laws of 

physics and thermodynamics. As previously outlined, the conservation of mass, 
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momentum and energy along with the second law of thermodynamics are required to 

perform the cycle analysis. These equations in cycle notation are presented again for 

convenience: 

Conservation of mass: 

Conservation of momentum: 

Conservation of energy: 

Or 

substituting in the relation, 

PI.: +PI = P24 + P2 

h,+'+q1+2 u2 =/I,+' U2  

2 2 

[2-431 

[2-441 

[2-451 

[2-461 

h = u ' + p v  [2-471 

The second law of thermodynamics combined with the Gibb's free energy function will 

also be utilized to determine the entropy between the phases of the cycles. It follows the 

form, 

s = cp ln(T/Ge/ 1- R ln(plpRe/ ) [2-481 

Another relation that defines how a combustible gas will behave in a given cycle is that it 

must follow the Hugoniot curve and Rayleigh line relation defined earlier in Section C of 

this chapter. The curves define all the mathematically possible end states for a gas with 

the specified amount of heat release and initial conditions, although only certain regions 

of the curve are attainable. The curves are hyperbolic in form and, by manipulating the 

three conservation equations, the velocity of the gas dependence can be removed. All of 

these relations must be satisfied for a given combustion process to occur in nature, and 

using them will produce the cycle parameters required for evaluating cycle efficiency. 
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Combustion cycle efficiency will be calculated thermodynamically using 

the standard definition, 

[2-491 

However, the total work of the cycle must be calculated first. This will be done utilizing 

the conservation of energy principle. 

Qm =Q4 [2-501 

By solving for the total work produced by the combustion cycle, the thermal efficiency 

can be solved by knowing the amount of heat released from the reactants during the 

combustion event. The thermal efficiency of both cycles will be conducted to determine 

the possible thermodynamic gains a detonation based cycle could give in a propulsion 

system. 

b. Deflagration at Constant Pressure Analysis 

This analysis will step through the procedure used to determine the state 

values through a constant pressure combustion cycle. The initial conditions used for all 

calculations is outlined in Table [2-21 at the pre-combustion state (1). To solve for the 

initial state (0), the isentropic relationship, shown by equation [2-5 11, coupled with the 

10: 1 compression ratio is used. The temperature at state (0) is then solved for utilizing 

the perfect gas law shown by equation [2-411. 

P vy = Const. [Z-5 11 

To solve for the post-combustion state (2), the thermodynamic code TEP was run for 

constant pressure conditions with the defined reactant ratios [Ref. 81. The output from 

TEP provided the post-combustion temperature, y, Cp,  and entropy of the mixture. 
24 



Assuming the products behave as a perfect gas, the specific volume for the state can be 

solved using the perfect gas law. The properties at state (4), are arrived at through an 

0 

isentropic expansion and are solved for using the same isentropic analysis used for the 

compression process. Table [2-31 depicts the results of this analysis. A pressure-specific 

(K) (KJKg-K) 
0.1 164.9 5.3 6.5 

volume (P-v) diagram, shown in Figure [2-61, displays the constant pressure combustion 

1 
2 

cycle. This diagram can be used to compare the constant pressure cycle with the C-J 

1 .o 300.0 0.8 6.5 
1 .o 2353.0 6.2 9.6 

detonation cycle. 

4 

Table [2-31. State Parameters for a Constant Pressure Combustion Cycle. 
State I Pressure (atm) I Temperature I v (m3m9 I entropy (4 

0.1 1361.1 39.3 9.6 

1.2 

1 

0.8 

E 

f 0.6 
e 

(D 
1 

.I 

0 

0.4 

0.2 

0 
0 5 10 15 20 25 30 35 40 45 

Specfflc Volume (v) (mA3/Kg) 

Figure [2-61. P-v Diagram of Constant Pressure Combustion Cycle. 

The constant pressure combustion cycle's thermal efficiency calculation 

requires the heat added by the combustion to be determined. The difference between the 

pre-combustion and post-combustion enthalpies were calculated to determine this value. 
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The conservation of energy equation shows that this difference is equal to the heat added 

to the reactants from combustion. Equation [2-521 depicts this calculation and is derived 

by manipulating equations [2-421 and [2-451 and assuming no change in the reactants 

velocity. 

C P A  - C P I T  = h; = q1-2 [2-521 

From this calculation, the heat added by combustion (q12) is equal to 3105.1 (KJKg-K). 

[2-531 

The heat released to the atmosphere is calculated, assuming a constant post-combustion 

C,, using equation [2-531. 

cP2T2 - ‘ P I T  = q4+0 

The net work (W,,,) of the cycle is then calculated to be 1749.2 (KJKg-K). Using 

equation [2-491, the thermal efficiency (VTH) of the idealized constant pressure 

combustion cycle is calculated to be 4 1.9%. 

c. Detonation Analysis 

This analysis will step through the procedure used to determine the state 

values through a C-J combustion cycle. In order to adequately compare the C-J cycle to 

the constant pressure cycle, the same initial pre-combustion compression ratios were 

used. The properties for states (1) and (2) were found utilizing the same procedure 

outlined in Section D.2.c. To solve for the post-combustion state (3), the thermodynamic 

code TEP was run under detonation conditions with the defined reactant ratios [Ref. 81. 

Again, assuming the products behave as a perfect gas, the specific volume for the state 

was solved for using the perfect gas law. The properties at state (4), were determined 

through an isentropic expansion and are solved for using the same isentropic analysis 

used for the compression process. Table [2-41 depicts the results of this analysis. A 
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pressure-specific volume (P-v) diagram, shown in Figure [2-71, displays the C-J 

detonation cycle and can be used to compare the cycle with the Cp combustion cycle. 

0 
1 
2 

Table [2-41. State Parameters for a C-J Detonation Cycle. 
State I Pressure (atm) I Temperature I v (m3/Kg> I entropy (4 I - 

(K) (KJ/Kg-Kj 
0.1 164.9 5.3 6.5 
1 .o 300.0 0.8 6.5 

18.2 2926.0 0.4 9.2 
~~ 1 4 0.1 1022.9 27.2 9.2 

-2 J I 

Specific Volume (v) (mA3/Kg) 

_. 

18 - 

16 - 

14 - 

12 - - 
E 

Figure [2-71. P-v Diagram of C-J Detonation Cycle. 

State (3) 

The detonation cycle's thermal efficiency was determined by analyzing the 

- z 1 0 -  
e 

- State (4) 
A A 

0 5 State (0) 10 15 20 25 

differences in the enthalpies in the pre and post-combustion states. The thermodynamic 

30 

conservation of energy shows that this difference is also equal to the heat added to the 

working fluid from the combustion process. Equation [2-541 is derived by manipulating 

equations [2-421 and [2-451. However, in a detonation the velocities of the reactants 
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contain a substantial amount of energy and cannot be ignored for the calculation. For an 

assumed stationary combustion wave, the equation becomes: 

[2-541 

This calculation determines the heat added by combustion (q12) to be equal to 2960.7 

(KJKg-K). The heat released to the atmosphere was calculated assuming a constant 

post-combustion C ,  and using equation [2-551. 

‘PZT4 - ‘PITO = q 4 + 0  [2-551 

With these values known, the net work (W,,,) of the cycle was then calculated to be 

1758.2 (KJKg-K). By equation [2-491, the thermal efficiency (~TH) of the idealized 

constant pressure combustion cycle equals 65.6%. 

3. Thermodynamic Analysis Results 

The analysis carried out in the previous two sections analyzed two separate 

combustion processes at the same initial conditions. The results of the analysis depict a 

substantial difference in the overall thermal efficiency of the two cycles. Table [2-51 is a 

summary of the important efficiency parameters, ~ T H ,  entropy change (As), and the 

percent difference between the two cycles. 

Table ycles. 

I Percent Difference I 56.6 % I -12.9 % I 
A graphical display of the difference in the net work can be seen in the integration 

under the P-v diagrams for both cycles. The C-J combustion process gains its advantage 

in the nearly constant volume combustion that drives the pressure 18 times that of the 
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constant pressure combustion. Figure [2-81 displays these differences, which can be seen 

by comparing the areas under each curve, which represents the net work. Another, more 

classical, way to compare the two cycles is to look at the net efficiency gain for each. 

Following the theory outlined in Section D. 1 of this chapter, the C-J detonation cycle 

results in a significantly lower entropy rise, which results in more work available. For 

this reason the Pulse Detonation Engine concept is a theoretically attractive alternative 

for a high-speed long-range propulsion system. 
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Figure [2-81. P-v Diagram Comparison of C-J Detonation vs. Cp Combustion Cycle. 

E. PHYSICAL MECHANICS OF A DETONATION 

1. Deflagration-to-Detonation Transition 

3 

The goal of this research is to determine conditions for minimum deflagration-to- 

detonation transition (XDDT) distance in a simple tube combustor with one open end. In 
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order to quantitatively measure this parameter, the concept of transitioning to a 

detonation wave must be understood. Kuo describes the sequence of events leading to a 

fully developed detonation wave in four generalized steps. 

First, laminar flames of an enclosed deflagration produce compression waves 

that coalesce to form a shock front in the unburned reactants. 

This shock front creates a turbulent reaction zone within the flame front, 

which eventually causes an ''explosion within an explosion" behind the shock 

front. 

This "explosion" produces strong shock waves in both directions and 

oscillations between them, called transverse waves. The rearward 

propagating shock is called a retonation while the forward shock is known as 

a superdetonation. 

Interactions between all of these events coupled with the reaction zone of the 

primary flame front combine to create a steady state supersonic C-J 

detonation wave. 

Figures [2-91 and [Z-101 are depictions of this developing detonation wave process 

outlined above. [Ref. 21 

Spherica I 
Shock 

Corn buation 
Zone 

I1 Center of Shock 
Explosion Front 

in Exploaion" 

Figure [Z-91. "Explosion Within Explosion" in a Developing Detonation. [From Ref. 21 
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Figure [2-lo]. Components of a Transitioning Detonation Wave. [From Ref. 21 

Experiments measuring the wall static pressure of the combustion wave front as it 

propagates down the combustor tube show that it is possible to determine where the wave 

transitions from a deflagration to a detonation. Figure [2-113 is a depiction of a typical 

transitioning detonation wave. Note the gradual rise in pressures and shock front speed 

in the first two transducers. This is indicative of the coalescing of shock waves in the 

transitioning process. Referring back to the ZND wave structure of a detonation, Figure 

[2-51, the fully developed detonation wave will show a sharp and drastic increase in 

pressure as it passes the transducer. This can be seen in the wave trace of transducer P5 

shown in Figure [2-113. That is the position at which the wave is determined to be fully 

transitioned. The retonation phenomena can be seen in the subsequent pressure peaks of 

P6 and P7 as the retonation propagates back over the transducers and reflects off the head 

wall of the combustor. 
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Figure [2-113. Pressure Trace of a Transitioning Detonation Wave. 

By analyzing the shapes and speeds of the wave at different points along the combustor, 

it is clear that the wave transitioned into a detonation between P4 and P5 transducers. 

Once transitioned, the wave continues to propagate at the steady-state C-J detonation 

velocity. 

2. Detonation Wave Velocity 

The key indication that a combustion event is a detonation is to measure its wave 

velocity and compare it with theoretical values. Detonation wave velocities can reach 

velocities of 1500-3000 meters per second dependent upon the chemical properties of the 

reactants. This detonation velocity, once reached, generally remains constant throughout 

the combustor. This fact is predicted by Chapman-Jouget theory of detonations and 

proven in well-documented experiments. This was also seen in the experiments 

conducted for this research. The detonation velocity (Vdet) was determined using the 
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static pressure traces of the wave as it traveled through the combustor. The rate equation 

was used for this calculation by timing the wave as it passed over a known distance 

between transducers. Figure [2-121 depicts a detonation wave trace as it propagates over 

pressure transducers spaced 2 inches apart. This fact along with a measured time 

between them, allows the experimental Vdet to be calculated to be 2822k180 meters per 

second for this particular run. 

Run Data Input/ O a u t  

Vdet=2822 mlr 
P l  9in 

I I I 

................................. i ........... ............. ... .... i ....... .......... .. ...... j ............. .,. ..........., . ..j. ........... ,. 

Run S.hl Numb., 
Time (seconds) 

Figure [2-121. Detonation Wave Pressure Trace for Calculating Vdet. 
I JPR000223-71 

Occasionally, speeds of 30% to 40% greater than theoretical velocities were seen in many 

of the experiments. This phenomenon is explained by the Von-Nuemann spike theory. 

He states that there is a short period of over pressurization and overdriven velocities 

generated at the onset of a detonation transition. 
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Once the wave speed is known using this technique, it can be compared to the 

theoretical values to determine if a detonation wave was present. The theoretical 

detonation wave velocity can be analytically determined using the formulas derived in 

Chapter II.C, however the computer code TEP quickly solves this problem for a given 

reactant mixture, equivalence ratio and combustor pressure and temperature parameters 

[Ref. 81. Figure [2-131 is a plot of this comparison completed for ethylene/oxygen 

mixture at several equivalence ratios. 

P W  
atonability Umlt 

Theoretical 
+ Experimental 

0 1 2 3 
Equivalence Ratio (oxidizerlfuel) 

Figure [2- 131. Theoretical vs. Experimental Detonation Velocity Comparison. 

The drastic fall off in wave velocities for the experimental cases at equivalence ratios of 

0.6 and 2.2, show the observed detonability limits of the reactants for the geometry 

tested. The TEP code does not account for this limitation and carries out its calculations 
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with no physical meaning. The error bars in the plot quantify experimental error in the 

time and distance measurement of the propagating wave and vary with the wave's 

velocity. This error analysis is rigorously derived in Chapter IV.B.5. Once the 

combustion event is determined to be a detonation, the point at which the wave 

transitioned can be determined. 

3. 

The ignition source parameters are the means by which the combustion event is 

Ignition Source Level and Location 

initiated and play integral roles in the development of detonations. The initial energy 

provided is directly related to how quick the flame front becomes turbulent resulting in 

the deflagration-to-detonation transition. This energy may be provided by any number of 

means including a spark ignitor, focused acoustic energy, or by another detonation wave. 

The spark ignitor propagates a flame kernel hemi-spherically into the reactants initiating 

the flame front. A detonation that sparks another detonation in a separate mixture is 

called a pre-detonator, and is currently the means by which the larger combustors of 

PDEs are being initiated. Each type of ignition source drives a detonation transition at 

different distances. The key is to force the detonation to transition as early and simply as 

possible. 

A means by which this is optimized is to focus the available energy into a smaller 

volume of reactants. This would theoretically create greater turbulence in the initial 

flame front, driving the detonation to transition earlier. This research will look into a 

simple focusing technique of superimposing the flame fronts of an ignitor spark. This 

will be accomplished by placing the ignitor along the combustor's sidewall at different 

locations. Once sparked, the flame front will propagate both forward and aft along the 
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combustor until the latter reflects back and coalesces with the forward wave. This creates 

a greater energy flux through the reactants forcing a detonation to occur earlier. If proven 

successful, other techniques of energy focusing may also prove to substantially decrease 

the deflagration-to-detonation transition distance. 

4. 

In order for a detonation combustion process to be used viably in a propulsion 

Thrust Generated by a Detonation Wave 

cycle, it must be able to provide a means of thrust. A look back to the C-J cycle analysis 

and experimental results give insight into this issue. A detonation in an open-ended tube 

type combustor produces significant pressure on the combustor's head wall. This 

pressure is derived from the post combustion properties of the products behind the 

detonation wave by performing a Taylor-Zeldovich expansion. The properties of the post 

detonation state in the cycle can be seen in Figure [2-71 as state (2) and the properties at 

the head wall as state (3). The pressure at the post detonation state (P2) in the ethylene / 

oxygen mixture is calculated to be 18.7 atm or 274.9 psia. The expanded pressure at the 

head wall (P3) is calculated using the Taylor-Zeldovich isentropic expansion relation 

shown by equation [2-561. Using the post combustion specific heat ratio (yz), P3 is 

calculated to be 135 psia. 

.2y 

[2-561 

The head wall pressure can also bee seen experimentally as shown by a pressure trace 

three inches from the head wall of a detonation as it propagates through the combustor. 

Figure [2-141 depicts this average head wall pressure generated by the detonation. 
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Figure [2-141. Head Wall Pressure Generated by Detonation. 

The average pressure of the combustion products (P3) pressure in Figure [2-141, is 150 

psig. This correlates to a momentary thrust level of 1060 lb for the three-inch diameter 

combustor. The gradual decay in pressure 1.35 milliseconds after the detonation wave 

passes corresponds to the corresponding isentropic blowdown process after the wave 

exits the combustor into the atmosphere. The short time period of the thrust is overcome 

by the use of a pulsed cycle. A pulse detonation engine will need to generate detonations 

at cycle rates of 100 Hz or more to produce the quasi steady-state thrust required by a 

flight vehicle. 
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111. EXPERIMENTAL SETUP AND PROCEDURE 

A. INTRODUCTION 

The test facility is located at the Naval Postgraduate School's Rocket, Propulsion 

and Combustion Laboratory (RPCL) in Monterey, California. The test apparatus was 

designed and built specifically to investigate parameters that affect a transitioning 

detonation wave. The test cell in which the experiment was set up is a hardened bunker 

that is well protected against potentially serious accidents. The facility's hardware 

consists of a simple constant area tube combustor, a variable energy ignition system, 

control valves and pumps, and high-speed pressure transducers. The gases that made up 

the reactants were a detonable mixture of ethylene (C2&), oxygen ( 0 2 ) ,  and nitrogen 

(N2). The control of all valves and data acquisition was provided by a Microsoft@ Visual 

Basic GUI code developed specifically for this experiment [Ref. 91. The four 

independent variables of the experiment, ignition energy, ignition location, stoichiometry, 

and oxygen ( 0 2 )  content, were evaluated in order to determine their effect on the 

deflagration-to-detonation transition distance 

B. HARDWARE DESCRIPTION AND FUNCTIONS 

1. Combustor Tube 

The most important piece of hardware in the test facility was the combustor tube. 

The tube was 75 inches long and 3 inches in inside diameter and made of type3 16 

stainless steel. It consists of two individual sections connected by a flange assembly to 

allow for different test conditions. Thirty-three test ports are used to place pressure 

transducers along the inner surface of the tube wall. There are also ports placed along the 
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tube wall to allow for injection and extraction of the reactants during a test. The tube is 

secured and supported laterally by two notched braces and longitudinally by a thrust wall 

at its head end to absorb the impulse force generated by the detonation. Each brace is 

mounted to a massive stationary test table. Figure [3-11 is a photograph of the combustor 

tube with all its support equipment. 

Figure 13-1 J. Detonation Tube Combustor with Support Equipment. 

2. Variable Ignition System 

An important component evaluated in this experiment was the ability to 

accurately vary the ignition source energy delivered to the reactants within the 

combustor. This was effectively accomplished using the Unison manufactured Vision-8 
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Variable Ignition System (VIS-8). Figure [3-21 is a photograph of the Vision-8 system 

with the ignitor installed into the combustor. 

Figure [3-21. Unison Vision-8 Variable Ignition System. 

The ignition energy delivered to the ignitor could be varied from 0.33 to 8.3 1 

Joules. The energy delivered to the reactants is substantially less due to the manner in 

which a capacitive discharge system works. These losses are nominally 75 percent at 

high energies to 65 percent at energies less than 1 Joule. The conditions for the VIS-8 

were entered using a remote box that allows the adjustment of energy levels and voltage 

to achieve the desired ignition energy. 
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3. Vacuum System 

The vacuum system is an integral part in ensuring the mixture being detonated is a 

known composition. It is made of a solenoid operated vacuum valve at the aft end of the 

combustor and the vacuum pump itself. A view of the vacuum valve looking towards the 

head end of the combustor can be seen in Figure [3-31. 

Figure [3-31. Vacuum Valve in the Closed Position. 

The system allows the combustor to be evacuated down to 0.2 psig so that it may 

be refilled with the desired reactants and equivalence ratio. It also allows the combustor 

to be isolated from the atmosphere while the reactants are mixing through diffusion over 

a 10 to 15 minute period. Once the reactants were mixed, the vacuum valve was opened. 

A micro-switch embedded in the valve closes when the valve is open, thereby enabling 

the ignition system to be discharged. 
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4. Fuel Control System 

The fuel control system allowed the gases to be delivered to the combustion tube. 

Since equivalence ratio of the reactants is a controlled variable, the measurement and 

management of gas flow is a critical factor in the validity of the experimental procedure. 

It was accomplished through a series of solenoids, ball valves, flow restrictive needle 

valves and check valves. The experiment calls for two separate pure gases, ethylene and 

oxygen, and air, therefore two plumbing lines were run in parallel to the combustor. 

Figure [3-41 is a schematic of the fuel control system. 

Figure [3-41. Schematic of Fuel Control System. 

The gases were supplied from pressurized gas bottles regulated down to a constant 

pressure of 100 psig. The combustor was isolated from the gases by nitrogen-actuated 

ball valves that were opened only during run operations. During the filling process, the 

specific gas was delivered at a rate which resulted in a chamber pressure fill rate of 0.4 

PS'g/sec through a needle valve into the sidewall of the combustor. Stoichiometry was 

controlled by monitoring the tube pressure. A check valve provided the safety to prevent 

backflow of gases or shock waves into the fuel lines. The pressures within the lines and 

in the combustor were constantly monitored through calibrated transducers. 
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C. REACTANTS 

The reactants chosen for this experiments were chosen due to the ease at which 

they detonate and the relatively short deflagration to detonation transition (XDDT) 

distance. The mixtures detonated were various equivalence ratios of ethylene (Czb) and 

oxygen ( 0 2 )  / nitrogen (N2) blends. The oxygen content of the mixture was then lowered 

by combining it with air to test the effects of nitrogen dilution on XDDT within the 

combustor. The mixture was loaded into the combustor starting at 0.3 psi vacuum and 

filled sequentially until the calculated amount of gas is present. Ethylene was filled first 

to ensure the maximum amount of natural diffusion could take place under sub- 

atmospheric pressures. This followed immediately by filling of oxygen until the absolute 

pressure inside the combustor reached 1 .O atm. 

Using partial pressures of the individual reactants, derived from the desired 

equivalence ratio, the amount of each reactant within the tube could be accurately 

measured. The following equations were derived for the partial pressure of the reactant 

for a given equivalence ratio (cp). The equivalence ratio is defined as the ratio of the 

actual fuel to oxidizer ratio to the stoichiornetric fuel to oxidizer ratio. The fuel to 

oxidizer ratio (F/O) can be calculated by dividing the number of moles fuel by the 

number of moles of oxidizer. 

Using this definition along with the relationship of partial pressures, 
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~ ~~~~~ ~~~~ 

where yli is the number of moles of the gas in the mixture, the required partial pressure of 

the reactant for a given cp can be determined. For the pure ethylene / oxygen mixture the 

equation for the fill pressures become, 

Po - 
Pethyl - - 

P + 3  

3 
P, =- [3-41 p+3p0  

The experiments investigating N2 dilution required the use of air within the mixture. The 

significant percentage and known content of nitrogen ( 3 2 )  in air lends itself as a good gas 

to incorporate into the reduced oxygen mixture. Experiments led to the conclusion that a 

75/25% oxygen to nitrogen would be the lowest possible ratio to evaluate and still 

produce XDDT distances within the combustor tube. Conducting a similar analysis noted 

above, the fill pressures for the individual gases became, 

Pethyl = - Po 
P + 4  

2.734 
P o x  -- - 

p+4 Po 

1.266 p .  =- air ~ + PO 

Because the combustor is filled sequentially, the final pressure of the tube is one 

atmosphere (Po). The control screen that allows the user to change run conditions within 
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Figure [3-51. Control Screen for Altering Mixture Ratios. [From Ref. 91 

D. SOFTWARE DESCRIPTION AND FUNCTIONS 

The software used for the experimental procedure was designed and written to 

allow precise control of the gas flow and monitoring of the combustor parameters. It 

accomplishes this while leaving the human interface open to initiate the ignition or to 

counter any malfunctions within the system during the test. The control code was 

designed and written using Microsoft@ Visual Basic 5.0 GUI software [Ref. 91. Initial 

test parameters, including mixture type and equivalence ratio could be changed prior to 

each test within a subroutine of the control code shown in Figure [3-51. The program 

also allowed for the real-time visual representation of the detonation facility in operation. 

All valve and ignition commands were executed by TTL signals through a PI024 board 

with a bank of Crydom 6321 solid-state relays to the specific component. The control 

code continually updated the detonation tube pressure and the pressures of the individual 

reactants to allow a visual check of the facility's status. Imbedded within the program 

were timing sequences that controlled critical safety measures in firing delays and timing 
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of the data acquisition sequence. The layout of the facility operation screen can be seen 

in Figure [3-61. 
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Open the facility and set experimental parameters including type of mixture, 

equivalence ratio, ignition source energy level and ignitor location. Start the 

run sequence and allow code to complete the following steps. 

Close the vacuum valve and turn on vacuum pump to decrease the tube 

pressure to 0.3atm. 

Open ethylene fuel valves to the combustor and fill to calculated partial 

pressure of fuel needed to match the desired equivalence ratio. 

Secure ethylene. Open oxygen lines to combustor and fill it to a pressure of 

1 atm. 

Isolate the combustor and allow mixture to naturally diffuse inside for 10 

minutes. 

Code enables ignitor. Once a safety check on the firing range is cleared, the 

spark was enabled and the vacuum valve opened. 

The data acquisition board was initiated once the end cap was completely 

open. 

A micro-switch inside the vacuum valve closes the ignitor loop when it is 

opened, initiating the detonation with the selected spark energy. 

Upon completion of detonation, data was stored and the facility closed. 

The formalized standard operating procedure for the facility's setup, operation and 

securing for a given test day is included as an Appendix. Careful review of this 

procedure prior to each day of experimentation allowed for the safe operation and careful 

control of the testing integrity. 
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F. DATA GATHERING AND PROCESSING 

The only source of data that was utilized to analyze the wave structure of the 

combustion event was the static pressure of the wave as it passed over given lengths of 

the combustor as a function of time. Due to the severe pressures, temperatures, and 

significant wave speeds created by a detonation, the pressure transducers were required to 

be protected with a silicone coating. Seven Kistler 603B 1 pressure transducers which 

have a frequency response greater than 500 KHz were used to accomplish this. They 

were amplified through 5010B dual mode charge amplifiers with 540kHz notch filters. 

Two Microstar Labs 3400d4 15 12-bit data acquisition boards recorded the signals 

generated by the amplifiers. The sample rates of the boards were set to 500 KHz per 

channel and were synchronized to record all channels simultaneously. 

The data acquisition sequence was initiated when the opening vacuum valve 

closed the ignition loop. The board recorded data for 2.5 seconds before the storage 

capacity on the data acquisition boards was full. This allowed enough time to capture the 

detonation wave as it transitioned and traveled out the combustor tube. Figure [3-71 is a 

plot of the raw data points acquired through a detonation wave in a typical detonation 

experiment. 
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Figure [3-71. Pressure-Time Data Points Through a Detonation Wave. 

Once recorded the pressure-time traces could be analyzed using the graphics software in 

TecPlot 7.5 

G. EXPERIMENTAL TEST MAT= 

The goal of the experiment was to determine how specific changes in the initial 

conditions of the reactants and ignition source affected the length at which the 

combustion process transitions from a deflagration to a detonation wave. In order to 

logically test all parameters being investigated without convoluting their effects, a careful 

test matrix was developed. This matrix looked at four independent variables, ignition 

source energy, ignition source location, reactants' equivalence ratio, and reactants' 

oxygen content. Table [3-11 lists the specific conditions tested for each parameter. 
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Through combinations of each of these, the deflagration-to-detonation transition 

(XDDT) distance was determined by analyzing the developing wave’s pressure traces. Not 

all combinations were tested, due to time constraints and little experimental value certain 

data points would produce. Each experiment was conducted at least once, therefore, little 

analysis was conducted on the shot-to-shot deviation of the experiments. 
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IV. EXPERIMENTAL RESULTS 

A. ANALYSIS CRITERIA 

The object of these experiments was to determine the deflagration-to-detonation 

transition (XDDT) distance for various combinations of initial conditions listed in Chapter 

1II.G. A standard set of guidelines was outlined to compare experimental data for XDDT 

determination. The following is a list of these guidelines and an explanation of why they 

were positive indications of a detonation transition. 

0 The wave velocity is greater than 90% of the theoretical detonation velocity. This 

is the strongest indication that a detonation had fully transitioned. Both theory 

and experiments show that there exists a 500 to 1200 m/s difference in deflagration 

driven shock velocities and detonation wave velocities. This criterion in velocity 

difference is common and has been used in the earliest experiments of detonation 

waves [Ref. 13. 

The wave's static pressure must exhibit a substantial step increase. The ZND 

wave structure models the detonation wave with a sharp increase in pressure. 

This is caused by a normal shock followed immediately by a reaction zone as seen 

in Figure [2-31. Experimentally this is seen as a near step increase in the pressure 

traces of known detonations. This can be seen in Figures [2-81, [2-91, [2-113 and 

[3-41, and proves to be a strong indication of a detonation wave. 

0 

If both of these criteria were met, the wave was considered fully transitioned at that 

transducer location. The XDDT distance was then deemed to occur midway between that 
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transducer and the previous transducer. The margin of error on the XDDT distance 

determination is the distance between transducers. 

B. COMPLETED EXPERIMENTAL TEST MATRICES 

1. 

The goal of the first experimental test matrix was to complete a detailed plot of 

Ethylene / Oxygen with Ignitor at Head Wall 

the effects of varying ignition energy level and mixture equivalence ratio on XDDT 

distance. The simplest conditions were set to ensure a detonation within the test 

combustor and gain experience with the gaseous mixture. The reactants used were 

ethylene and oxygen, which are known to have XDDT distances of less than 12 inches near 

stoichiometric conditions. The second condition evaluated was the ignition source 

location. The ignitor was placed on the head wall to minimize any effects of multiple 

combustion fronts or shock focusing. Pressure transducers were placed two inches apart, 

to ensure capturing estimated XDDT distance. Once successful operation of the test 

facility was confirmed and the initial course test m-atrix completed, the test procedure 

outlined in Chapter 1II.E and the Appendix was initiated. 

The test matrix covered a range of ignition energies from 0.3 to 8.0 Joules over 

several mixture equivalence ratios from 0.8 to 2.0. The ignition energy range was based 

on the limits of the ignition system. The equivalence ratio parameter range was based on 

the detonability limits found experimentally and discussed in Chapter III.E.2. The results 

of this experimental matrix are recorded in Table [4-11. 
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Table [4-11 
Energy Level Supplied to Ignitor 

(Joules) 

Head Wall. 

The data point at a 4 of 0.8 and ignition energy of 2.5 was not taken, however the point is 

not at an inflection and there is no reason to believe the trend would be upset. Each data 

point was only sampled once; therefore, no statistical results can be made. 

Graphically, this data can be presented in two separate ways. The first is an 

inverted carpet plot, Figure [4-11, that displays how XDDT varies with the initial mixture 

and spark energy conditions. The optimal conditions are also pointed out at an 

equivalence ratio of 1.3 and spark energy of 0.3 Joules. 
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The second way to present the data is a contour plot of XDDT as a function of the reactant 

equivalence ratio and ignition energy. In the plot, depicted in Figure [4-21, the contour 

levels are the transition distances for the corresponding ignition energy and equivalence 

ratio. The light color region shows the optimal conditions to minimize XDDT and required 

ignition energy. 
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Figure [4-21. Contour Plot of Ethylene / Oxygen Baseline Variables Test. 

Analysis of the results of the experimental test matrix will be discussed in Sections C and 

D of this chapter. 

2. 

The goal of this test matrix was to sample the effects of lowering the oxygen 

Ethylene / Oxygen-Nitrogen Blend with Ignitor at Head Wall 

content of the oxidizer, through N2 dilution, on XDDT distance. The ignition level and 

mixture equivalence ratio range were duplicated and compared with the first test matrix. 

The ignitor was left on the head wall of the combustor. 
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The test matrix covered the same range of ignition energies and mixture 

0.8 
1 .o 

equivalence ratios as the ethylene/oxygen test matrix. The results of this experimental 

16 14 12 
16 12 12 

matrix are recorded in Table [4-21. 

Table [4-21. Ethylene / Oxygen-Nitrogen Blend 
Test Matrix for Ignitor Position on Head Wall. 

Energy Level Supplied to Ignitor 
(Joules) 

I 1 I I XDDT I 0.33 I 0.5 I 1.0 

Outside Outside Outside 1 1 tube I tube I tube 

I 1.2 I 16 I 12 I 12 
I I 2.0 I 20 I 20 I 18 

XDDT transition distances could not be determined for tests conducted at a 4 of 0.6. 

Pressure traces showed that a strong shock wave was forming, but wave velocities at the 

end of the tube were not yet equal to that of a detonation. 

The contour plot presents the results in the best manner. The optimal conditions 

are pointed out at an equivalence ratio of 1.1 and spark energy of 0.5 Joules. Figure [4-31 

is a graphical representation of the contour plot. 
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Figure [4-31. Contour Plot of XDDT for Ethylene / Oxygen-Nitrogen Blend 
with Ignitor Located on the Head Wall. 

3. Ethylene / Oxygen-Nitrogen Blend with Ignitor 3" from Head Wall 

The goal of this test matrix was to determine the effects of relocating the ignitor 

on XDDT distance. The ignitor was placed one tube diameter, 3", from the head wall to 

determine the benifits of creating two reaction fronts, thereby doubling the inital energy 

release rate and shorten the XDDT distance. The ignition level and mixture equivalence 

ratio were again the variables varied with the test matrix outlined in Section B.2 of this 

chapter. 
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The test matrix covers the same range of ignition energies and mixture 

equivalence ratios as in the previous experiments. The results of this experimental matrix 

are recorded in Table [4-31. 

Table [4-31. Ethylene / Oxygen-Nitrogen Blend 
Test Matrix for Ignitor 3" from Head Wall. 

Energy Level Supplied to Ignitor 
(Joules) 

I 

0 (1. I XDDT I 0.33 I 0.5 I 1.0 1 8.31 I 
39 1 33.5 1 33.5 I 33.5 I 

The contour plot of the results is shown in Figure [4-41. The optimal conditions 

shown at the start of the light region are at an equivalence ratio of 1 .O and spark energy of 

1.0 Joules. 
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Figure [4-41. Contour Plot of XDDT for Ethylene / Oxygen-Nitrogen Blend 
with Ignitor Located 3" from the Head Wall. 

4. 

The goal of the last test matrix was to continue to evaluate the effects of 

relocating the ignitor on XDDT distance. The ignitor was placed approximately two tube 

diameters, 7", fiom the head wall to determine if there exists any further benefits in 

minimizing XDDT. The ignition level and mixture equivalence ratio were again varied as 

described in Section B.2 and B.3 of this chapter. 

Ethylene / Oxygen-Nitrogen Blend with Ignitor 7" from Head Wall 
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The test matrix covers the same range of ignition energies and mixture 

equivalence ratios as in the previous experiments. The results of this experimental setup 

are recorded in Table [4-41. 

Table [4-41. Ethylene / Oxygen-Nitrogen Blend 
Test Matrix for Ignitor 7"from Head Wall. 

Energy Level Supplied to Ignitor 
(Joules) 

I I I 

1 .o 18 16 16 16 
1.2 20 18 18 18 

I 2.0 I 31.5 I 31.5 I 31.5 I 31.5 I 

The contour plot is shown in Figure [4-51 depicts the data contained in Table [4- 

41. The optimal conditions are shown to be at an equivalence ratio of 1.0 and spark 

energy of 0.5 Joules. 
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Figure [4-51. Contour Plot of for Ethylene / Oxygen-Nitrogen Blend 
with Ignitor Located 7" from the Head Wall. 

5. Uncertainty Analysis 

There are inherent errors in the measurements taken for these experiments due to 

the nature of the parameters being measured. Specifically, the two values that are of 

interest in the uncertainty calculations are in the detonation velocity (Vdet) and the 

deflagration-to-detonation transition distance. Two parameters that are critical in making 

judgments on the detonation wave structure and transition characteristics. 

The detonation velocity, Vdet, was calculated by analyzing the pressure-time trace 

and applying the rate equation to the passing detonation wave. This analysis is detailed 
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in Chapter II.E.2. The error in this calculation stems from the two variables in equation 

[4-11. The error in Ax is due to the physical errors of pressure ports in the combustor. 

Ax 
Vdet = A, [4- 11 

U L  

Tolerance specifications on these ports were 0.005 inches from centerline, which 

corresponds to a total distance error between test ports of Ax=* 0.01 inch. The second 

source of uncertainty arises from the sample rate of the data acquisition board. The board 

samples at a 500 KHz frequency, therefore the pressure wave may hit the transducer in 

between data samples. The time error in the rate equation becomes 2~0.5OxlO-~ seconds. 

Knowing these sources of error, the detonation velocity uncertainty can be calculated 

including error terms from the experiments. 

The error in determining XDDT is not as definitive as the velocity's error term due 

to the required interpretation of the developing wave structure. This technique is 

described in detail in Chapter I1.E. 1. The error in determining XDDT is derived from the 

distance between the pressure transducers. The transitioning wave may not have been 

developed at one test port, but at the next show a fully transitioned wave. Therefore, the 

actual transition occurred between the two transducers. The error in this determination 

becomes the actual distance between the two transducers where the transition occurred. 

This was not a precise measurement with errors on the order of one or two inches due to 

human interpretation of the pressure traces. However trends can be developed with these 

measurements describing the effects of changing initial parameters on XDDT 
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C. EFFECTS OF EQUIVALENCE RATIO ON XDDT 

The detonable mixture's equivalence ratio was an important factor in how rapidly 

it was able to transition into a detonation. This was expected since most of the energy 

released during the event comes from the chemistry of combustion. To analyze the 

specific effect of altering the equivalence ratio of the reactants, a breakdown of the 

contour plots into a two-dimensional X-Y plot is provided. By holding all other variables 

constant, a good indication of the strong influence the mixture equivalence ratio has on a 

transitioning detonation can be seen. The following figures, Figure [4-61, [4-71, and [4- 

81, represent each of the three ignitor locations. Each plot displays the four different 

ignition energies tested for the specific ignition location. Five different equivalence 

ratios of the ethylene / oxygen-nitrogen blend were tested and presented. 
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with Ignition 3" from Head Wall. 
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Figure [4-81. XDDT Distance as Function of Equivalence Ratio 
with Ignition 7" from Head Wall. 
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It can be seen in these plots that the optimized equivalence ratio for every 

condition lies from a range of 'p's from 0.9 to 1.2. In addition, there is a sharp increase in 

XDDT for cp's less than 0.75. In contrast, there was a much more gradual increase in XDDT 

for higher equivalence ratios. In a practical system, the data supports the running a Pulse 

Detonation Engine with this specific mixture at equivalence ratios slightly greater than 

stoichiometric. This would minimize the detonation transition distance while also 

allowing for fuel load variations without substantially impacting the engine's cycle. 

These results produce a repeatable trend in the behavior of a transitioning detonation 

wave varying mixture equivalence ratios. 

D. EFFECTS OF IGNITION ENERGY ON XDDT 

Ignition energy was investigated to determine the minimum energy required to 

initiate a detonation in the shortest distance. The XDDT distance was expected to be 

minimized at high ignition energies due to the amount of energy initially supplied to the 

reactants. A series of two-dimensional figures show the effects of ignition energy on a 

transitioning detonation for the three geometries investigated. The following figures, 

Figure [4-91, [4-lo], and [4-111, represent each of the three ignitor locations. Each plot 

displays the five different equivalence ratios tested for the specific ignition location. 

Four different ignition energies supplied to the ethylene / oxygen-nitrogen blend were 

tested and plotted. Ignition energies of 2.0 and 5.0 Joules were also tested and showed no 

difference in XDDT. For this reason, data points between 1 .O and 8.3 1 Joules were not 

shown as they had little influence on the final results. 
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Figure [4-91. XDDT Distance as Function of Ignition Energy 
with Head Wall Ignition. 
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Figure [4-lo]. XDDT Distance as Function of Ignition Energy 
with Ignition 3" from Head Wall. 
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Figure [4-111. XDDT Distance as Function of Ignition Energy 
with Ignition 7" from Head Wall. 

The data presented in the above figures support the fact that there is little to no 

dependence on ignition energies greater than 0.5 Joules on XDDT. At energy levels lower 

than 0.5 Joules the transition distance begins to increase showing that, there is a 

minimum ignition energy requirement to maintain a minimum XDDT in the initiation of a 

detonation. This result was a common result throughout all tested conditions. 

E. EFFECTS OF IGNITION SOURCE LOCATION ON XDDT 

Three separate ignition locations were tested to determine if there exists a way to 

increase the energy release rate of the reactants in order to shorten the deflagration-to 

detonation transition distance. The first tests were completed with the ignitor placed at 

the head wall of the combustor. The following two test matrices were tested at ignition 

locations one and two combustor tube diameters from the head wall. Reviewing the data 

presented in Tables [4-21, [4-31, and [4-41, it is clear that there was some influence of 

ignition location on XDDT. The average value of the minimized XDDT for head wall 
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ignition taken from Table [4-21 is 12.5 inches. The average value of the minimized XDDT 

for the ignition located one tube diameter from the head wall, taken from Table [4-31, is 

9.5 inches. The average value of the minimized XDDT for the ignition located two tube 

diameters from the head wall, taken from Table [4-41, is 16.5 inches. 

It is clear that by placing the ignitor one tube diameter from the head wall reduced 

the XDDT by 24%. However, there is a limit to how far you can move the ignitor from the 

head wall. By placing the ignitor two tube diameters from the head wall, the XDDT was 

increased by 24%. This result shows the advantage to locating the ignition source to a 

position that amplifies the energy release rate of the reactants just after ignition. Future 

testing could explore this phenomenon by altering ignition strategies to further reduce the 

deflagration-to detonation transition distance. 

F. EFFECTS OF DECREASED OXYGEN CONTENT ON XDDT 

In order to understand the effects of N2 dilution in the oxidizer, four separate 

mixtures of ethylene (C2H4, oxygen (Oz), and nitrogen (N2) were tested to determine the 

effect on XDDT. Since an air-breathing propulsion system should utilize as much air for 

the oxidizer as possible, the pure oxygen carried on board must be minimized for volume, 

safety, and performance considerations. The four mixtures tested were various 

percentages of oxygen and nitrogen that make up 75% of the total mixture. Ethylene was 

the fuel used for all the tests. The first test mixture was made up of pure oxygen with no 

nitrogen present. The second test attempted to use air (24% oxygen to 76% nitrogen). The 

third and fourth test used a 50%/50% and 25%/75% oxygednitrogen blends respectively. 

Using these parameters, the effect of varying the nitrogen content in the mixture could be 

investigated. 
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The gaseous mixture with no nitrogen dilution, only ethylene and oxygen, 

produced the shortest XDDT, as expected. Averaging the minimized distances from Table 

[4-11, the tests show an average XDDT of 3 inches. Tests using ethylene and air and the 

50%/50% oxygednitrogen blend were unsuccessful in producing a detonation within the 

combustor tube. It can be deduced from these failures that if the mixture was detonable, 

the transition distance is greater than 75 inches and not likely practical for the pre- 

detonator component of a propulsion system. The fourth and final oxidizer ratio of 

75%/25% oxygednitrogen was tested and detonated within the combustor tube. 

Averaging the minimized distances from Table [4-21, the tests show an average XDDT of 

12.5 inches. These results show a substantial and detrimental effect of adding an inert 

gas to the mixture on its detonation characteristics. Although not unexpected, they do 

show the need for alternate tube geometries and ignition strategies to further minimize 

XDDT in an air-breathing Pulse Detonation Engine. 
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V. CONCLUSIONS 

Pulse detonation technology is theoretically a viable propulsion concept with a 

higher thermal efficiency and simpler combustor design. Utilizing detonations for an air- 

breathing propulsion system requires a comprehensive research effort that is currently 

being conducted throughout the aerospace propulsion industry and by the Office of Naval 

Research. Pulse detonation technology must mature beginning with research in the 

fundamental behavior of practically developing a detonation wave reliably, many times a 

second. This thesis investigated fundamental issues by exploring the effects of ignition 

location, ignition energy, and reactant mixture ratios to minimize the deflagration-to- 

detonation transition distance of a single detonation wave. The test program revealed, 

clear trends and demonstrated the effects of these parameters. 

The equivalence ratio of the ethylene/oxygen/nitrogen blends was the most 

important variable since the mixture makeup delivers nearly all of the energy release to 

sustain the detonation. It was found that the optimized equivalence ratio for nearly all 

condition range from cp's 0.9 to 1.2. There existed a sharp increase in XDDT for 'pls less 

than 0.75, while proving less significant increases for higher equivalence ratios. In a 

practical system, the data supports the running a Pulse Detonation Engine with mixtures 

at equivalence ratios that are slightly fuel rich. 

The effects of ignition energy and ignition location on XDDT were conducted to 

explore the minimum ignition requirements to initiate a detonation in a reasonable 

distance. The ignition energy supplied to the ignitor was independently varied from 0.33 

to 8.31 Joules and revealed that ignition energies above 0.5 Joules had little to no affect 
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on XDDT. Only for values below 0.5 Joules did the transition distance begin to increase. 

This indicates that large power requirements for the ignition system in a Pulse Detonation 

Engine are not required. 

The second part of this thesis investigated ignition locations and revealed that 

when the ignitor is strategically placed one tube diameter from the head wall, the 

transition distance could be furthered reduced. These results lead to the conclusion that a 

Pulse Detonation Engine operating with the tested reactants could be initiated from 

energy levels on the order of standard automobile spark plugs. 

The third and final goal of this thesis was to determine the effect of lowering the 

oxygen content of the reactant on XDDT. The purpose of this investigation was to 

determine the oxygen content required to develop a detonation in a reasonable combustor 

length through the deflagration-to-detonation transition process. Four mixtures were 

used with various percentages of oxygen and nitrogen that make up the oxidizer in the 

reactants. It was found that for the given combustor length of 75 inches, the minimum 

oxygen to nitrogen ratio was 75%. This result reveals the sensitivity of detonation 

initiation in fuel/air mixtures and must be further studied to understand techniques which 

may be used to accelerate the process on an actual PDE. 

This research bounds some of the fundamental limitations on the initiation of a 

detonation in ethylene/oxygen/nitrogen gaseous mixtures. Though not immediately 

practical for real-world applications, this fundamental work will aid in future designs of 

pre-detonators for larger complex Pulse Detonation Engines. 
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APPENDIX. DETONATOR TEST FACILITY OPERATING PROCEDURE 

Standard Operating Procedure (SOP) 
Facility Open Procedure 

Verify “Emergency Shutdown” switch is pushed IN. 
Turn on 1 lOVAC power supply switch in black wall mounted cabinet. 
Turn on yellow “compressed gas present” warning lights. 
OPEN C2H4 and Oz isolation ball valves. 
Verify vacuum line isolation ball valve is OPEN. 
Turn on Kistler electronics and set to proper gain and set to OPERATE mode. 
Turn on video cameras, and other data recording as required by experiment. 
Open all gas bottles (actuator Nz, Ethylene CzH.1 and 0 2 )  and set gas supply pressures in bottle 
room to: PNZ >75 psig, PczH4 z 90 psig and Po2 z 90 psig. 
Turn on “Boomer” computer and enter into DETONATION Visual Basic control program. 
In the program, enter the FACILITY OPERATION form. 

Verify “Emergency Shutdown” switch to the OUT position. 
OPEN the facility. 
Wait for 3 minutes or more for tube to vent any combustible mixture. 
Reboot ignition system and verify it displays default settings. 
Verify all igniter, solenoid control, and pressure transducer lines are secure. 
Set desired ignition levels on Remote Ignitor Box. 
Set RUN CONDITIONS and ignitor energy level within the program. 
Change FILE NAME to appropriate serial number to save data. 
Cycle End Cap and verify ignitor sparks 
Notify Lab personnel that “Single Pulse Detonation Run is about to commence”. Ensure all 
personnel return to the Control Room. 
Ensure VHS tapes are VCRs. Start Facility VCR and set to RECORD. 

The next step will commence the run sequence. 
To STOP the run, depress the ABORTpushbutton in the program. 

Depress START RUN. Wait for gas mixing countdown. 
30 seconds prior to detonation, check for golfers on video monitors. 
When golfers are clear, turn on sirens. 
Start Line VCR and set to RECORD. 
Enable SPARK. 
Press FIRE / ENDCAP Control pushbutton. 
Depress the SAVE DATA pushbutton 
Turn off sirens. 
STOP VCR recording. 
Upon completion of data collection, CLOSE the facility. 

Securing the Facility 
1) 
2) 
3) 

Depress “Emergency Shutdown” switch and verify it is pushed IN. 
Exit DETONATION Visual Basic control program. 
Turn off power to ignition system. 
Turn off 1 lOVAC panel switch. 
Secure N2, C2H4 and O2 gas bottles. Turn OFF “Compressed Gas Present” warning lights. 
Close C2H4 and O2 isolation ball valves. 
Turn off Kistler electronics, cameras and VCR. 
Close door to test cell # l .  

4) 
5 )  
6 )  
7) 
8) 
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