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ABSTRACT

In this thesis, large deflection plate compatibility

and equilibrium differential equations are derived using finite

deformation theory including the non-linear five constant stress-

strain relationship. In addition, the assumptions of classical

large deflection plate problems under classical elasticity

theory are discussed in connection with the more general

approach proposed by this thesis.
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NOTATION

a, b, c = Curvilinear Coordinates

X, y, z = Cartesian Coordinates

X, Y, Z = Body Forces in the x, y, and z directions

A, B, C, D = Coefficients =

A = 2^
I - >»

B = s I -aj

D =. -n
Et

D also = Flexural Rigidity = • , —T»

j

E = Young's Modulus = Modulus of Elasticity

/I o o
E^ = Unit Matrix =

O I o

O O I

F = Stress Function defined such that

6.^ ^If
^b'

r,.

G =

h =

^3 =

J ^

J =

Shear Modulus

First Invariant of Strain Tensor

Second Invariant of Strain Tensor

Third Invariant of Strain Tensor

First Invariant of Curvature Tensor

Second Invariant of Curvature Tensor

First Invariant of Large Deflection Tensor

Jacobian ^ «iMii) :-
[

51 ^^ ^^
d^A.b.c) i,H ^M ^

^4. db ^C
^ 51 ^Tu 5c.

Transpose of Jacobian =

fit da

(^
i\

2)^ d*
^W

v^-/ i* ^^ *A-
\Oc/ K^^ ^c- ^<^





1, m, n - Third Order Elastic Constants

M = JJ= 2n + E

Also

M = Moment Tensor =

M subscripted (M , M , M ) = Moment per unit length

P = Pressure

Q subscripted (Q , Q ) = Shear per unit length
X y

R = Rotational Matrix

d\ = Curvature Tensor = I ^Z

1 1

^'\
1 _i_

ric 1

1 1

rc«. rci> -hJ
) = Radius of Curvaturer subscripted (r , r , r^ x^ y^ xy

S subscripted = Area of Elemental Side After Deformation

S subscripted = Area of Elemental Side Before Deformation

T = Stress Tensor = ( % ^1 i^

V = Volume of Element Before Deformation

V = Volume of Element After Deformation

^ = Initial Density

jO = Deformed Density

/^ = Compression Ratio
/At

1
= Strain Tensor = l-^VyX €»*

'^re« i^ij
I

2
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VE _ ZG-y

jU - Lame's Constant =

\ = Lame's Constant =

y = Poisson's Ratio

6 = Tensile or Compressive Stress (Subscripted to indicate

orientation)

'C = Shear Stress (subscripted)

6 = strain normal to face of element (subscripted)

Y = Shear Strain (subscripted)

6 = Term indicating small quantity « 1 for purposes of

determination of order of magnitude,

W»j = /^r = Energy of deformation / unit initial volume

V = Laplacian = (^jj-^ + ^^ ^ ^^x

VI
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INTRODUCTION

The approach to the large deflection plate problem pro-

posed by this thesis, as suggested by the title, is one utilizing

non-linear elasticity theory, or theory dealing with finite defor-

mation of elastic solids. In reference [l ] Francis D, Murnaghan

provides an excellent discussion of the theory, and derives the

basic stress-strain relationship used in this thesis (see appendix

B). The use of this basic non-linear stress-strain relationship,

sometimes called Murnaghan' s law [2], places the scope of this

thesis more appropriately into the field of rheology rather than

structures per se (see Figure l).

In actuality, predicting how materials will behave in

response to forces lies in the domain of rheology - literally

the study of flow. The Society of Rheology uses the words of

Heraclitus, ffO&VZTft ^*l (everything flows), as its motto, and

books on rheology quote this philosopiiical conviction in their

introductory pages, [3]. Because rheology deals with the flow

of matter under the action of forces, by an obvious extension

it also includes all deformations of materials by forces. Thus,

[l] References are listed beginning on page 66.

[2] i\ovozhilov states "The elastic law corresponding to it (the
five constant stress-strain theory) is ordinarily called
Murnaghan' s law, although it was actually first proposed
much earlier by Voigt in 1893. The first attempt to examine
the stress-strain relation in a form different from Plooke's
law was made by Bulffinger in a paper published in the works
of the Russian Academy of Sciences in 1729" pp. 127.
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as shown in Figure 1 , rheological theories have as their model

the classical theories of elasticity and hydrodynamics in which

it is assumed that a material, whether solid or liquid, deforms

linearly in response to a force. From the classical models have

grown more and more general theories, first by abandoning classical

distinctions between a solid and a liquid, and then by abandoning

the requirement that the response be linear. The most general

theory, as shown in Figure (l), is the theory of nonlinear visco-

elasticity which includes all other theories as special cases.

A theory of non linear visco-inelasticity exists (shown in Figure

1 dashed) but is of historical interest only [3].

CLASSICAL
ELASTICITY
(SOLIDS)

A

LINEAR
VISCOELASTICITY

NONLINEAR
ELASTICITY
(FINITE ELASTICITY)

CLASSICAL
HYDRODYNAMICS

(LIQUIDS)

NONLINEAR
VISCOINELASTICITY

NONLINEAR VISCOELASTICITY

FIGURE 1

(From "Deformation and Flow" by Charles J. Lynch as appeared in
International Science and Technology January 1966)
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Since the end of Vorld Var II there has been a consid-

erable change in the approach to rheology and to the formulation

of Theological theories. The origin of this change is two-fold.

First, certain flow phenomena, observed first in flame-thrower

fuels and later in a wide variety of other fuels, were in direct

opposition to classical hydrodynamic theory. The other factor,

which was perhaps of greater significance in its contribution

to the changing approach to rheology, at least to those primarily

interested in structures, was the development of a continuum

theory for elastic materials.

Although the theory of finite deformation of an elastic

solid applies equally to all elastic materials, most of the

research accomplished to date has been in the rubber industry.

The theory as applied to metallic structures has only recently

become of practical interest with the increased emphasis on

limit design, and the more stringent requirements of high per-

formance aircraft and missiles, space craft, and deep submergence

pressure hulls. In the majority of experimental research con-

ducted so far, rubber is generally used because it has a large

elastic range and its nonlinearities are therefore more easily

measured.

Vulcanized rubber differs from other elastic materials in

the extent of its elastic deformation. A rubber rod or strip

may be stretched to four or five times its initial length without

suffering permanent deformation. When rubber is subjected to

shear deformation and the corresponding shearing force is measured,
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the relation between the shear strain and the shearing force

is found to be approximately linear, just as with most elastic

solids. On the other hand, when rubber is stretched by tensile

forces, the relation between the tensile force and the elonga-

tion shows considerable departure from linear behavior.

While this may at first sight appear surprising, it can

in fact be demonstrated mathematically that a material having

a linear shear relationship cannot possibly have a linear tensile

relationship. From this we can conclude that a true Hookean

solid is only a convenient fiction - an elastic material cannot

possibly have a linear relationsiiip in both tension and shear as

assumed in classical elasticity theory. The classical theory is

only valid because the departure from linearity does not show up

when the deformations are small - even a curved line appears

straight if one is only concerned with a little piece of it. [3j,

In finite elasticity theory, the material properties are

characterized by an expression for the energy of deformation per

unit initial volume, (^()7) ), [l] (see appendix B). This strain

energy function and the associated material constants have been

determined by experiment for various vulcanized rubbers and the

actual manner in which stored energy depends on the deformation

has been determined from them. Using this experimentally deter-

mined stored energy, the results of other experiments witli vulcan-

ized rubber have been predicted with considerable accuracy, pro-

viding an excellent verification of the theory [3]. Although

the material constants of interest to the structural engineer
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(modulus of elasticity and shear modulus plus the three addi-

tional third order elastic constants shown in appendix B) have

been evaluated for several structural materials as shown in

Table I, the numerical values show a wide variation between

investigators with a wide spread for some materials and much

more work is required,

TABLE I

THIRD ORDERELASTIC CONSTANTS ( ± numbers are the range of values)

Reference and
Material

E psi X lo'^
Relative Value psi X 10"^

"^
6

psi X 10 '^ psi X 10 ^

Hughes and Kelly
Armco Iron

27.5
± 6.5

- 10.3
± 7.0

+ 110
±110

Hughes and Kelly
-Pyrex

2.0 f i.u
± u.o

-h 9.2

± 5.0
+ hz

± 35

Seeger and Buck
Copper

17.0 - 22.6
±10

- gg.O
± 1.3

- 225

± 3

Seeger and Buck
Iron

29.5 - 2U.3
± 6

- 110
± 1.5

- 215
t le5

Smith
.6 Carbon Steel

21.1 -U6 - 60 -67

Smith
Austenitic Steel

18.

3

- 53.5 -75.2 - Uo.o
1

Crecraf

t

Nickel-Steel
I7.U -U.6 -59 - 73.0

Rollins etal.
6016-T6 Aluminum

- 31.2.

Borg -
Calculated values
based on

>> = .25

30.0 -^5 - 3U.2

Data as reported in reference L^]
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Finite elasticity theory has successfully predicted a

number of effects that are not predicted by classical theory.

For example, experimental observations of a rod of circular

cross section subjected to simple torsion made by Polynting

in 1909 with steel wires and in 1913 with vulcanized rubber

rod showed that the rod will not only twist as predicted by

classical theory, but will also elongate. As is often the

case when knowledge available in the literature remains unused

for some time, these results seem to have been forgotten until

recently when the application of finite deformation theory

predicted this result [3].

That Murnaghan's finite deformation theory [l] should

be applied to plates and shells in the large deflection region

has been proposed verbally by S. F. Borg for some time. In refer-

ence [4], Borg, Hoppe and Kopchinski, and in references [5], [6],

[7] and [8] Borg discusses large deflection of plates, including

the derivation of plate compatibility equations from a finite

deformation theory approach. This thesis is a continuation and

extension of Borg's work as applied to plates.
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GENERALDISCUSSION OF NQN LINEAR ELASTICITY

Non linearity is introduced into the theory of elasticity

dealing with isotropic materials in three ways. It can be intro-

duced through the generalized strain tensor or strain displacement

relation (appendix A), through the stress-strain relations (appen-

dix B) or through the equations of equilibrium of a volume element

of the body (appendix C).

In the equations of equilibrium and the strain tensor

relations, the retention of non-linear terms is conditioned, by

geometric considerations, or the necessity of considering the

angles of rotation in determining dimensional changes of line

elements and in formulating the conditions of equilibrium of a

volume element. However, in the stress-strain relation, non-

linear terms appear if the strain exceeds in magnitude, physical

constants characteristic of the material and referred to as the

limits of proportionality. It should be noted that the above

discussion does not presuppose a linear elasticity origin.

Actually, linear theory is developed by successively ignoring

those terms or quantities which give non-linear characteristics

to the resultant equations. For many materials, e.g. aluminum,

the limit of proportionality can be quite low or non existant,

and a finite deformation, continuum, theory is required where

deformations are sufficiently large as to invalidate linear

elasticity theory (Hooke's law).

Thus, two types of non-linearity must be considered in

large deflection problems, geometrical and physical. Since, in
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general, smallness of angles of rotation of the body as a whole

does not imply the smallness of elongation or shear strain of an

infinitesimal element of volume of the body (and conversely), the

geometrical and physical non-linearity can be regarded as inde-

pendent of each other. This independence is useful for purposes

of classifying problem types and for purposes of making reasonable

assumptions to simplify the problem to enable an engineering

solution.

As a result, elasticity problems can be classed as one of

four basic types [2]:

(1

)

Elasticity Problems having both physical and geometrical

linearity .

In problems of this type, the effect of the angles of

rotation are of the same order of magnitude as the elongations

and shear strains, while the elongations do not exceed the limit

df proportionality of the material. An example of this type of

problem is the simple tension test when the stresses are main-

tained below the proportional limit,

(2) Elasticity Problems which are physically non linear

but geometrically linear.

For these problems, angles of rotation can be neglected

in projecting the forces which act on a volume element and in

determining strains. However, the elongations exceed the pro-

portional limit and require a non-linear stress-strain relation.

-8-





The simple tension test becomes a problem of this type when the

stresses in the rod exceed the proportional limit,

(3) Elasticity Problems linear physically , but non -

linear geometrically .

In problems of this type, the angles of rotation are

essentially large but the strains do not exceed the limit of

proportionality. An example of this type is the bending of a

thin steel strip, or the buckling of a slender column within

the elastic range where the original shape and position is re-

gained after removal of the load, i.e. no permanent deformation.

(4) Elasticity Problems non linear both physically and

geometrically .

In problems of the fourth type, the strains exceed the

limit of proportionality and the angles of rotation are so large

that it is necessary to retain non-linear terms both in the stress-

strain relation, and in the equations of equilibrium. Plate and

shell problems become examples of this type if the deformation

is large and the stresses exceed the limit of proportionality.

-9-





LISCUSSION OF PLATE PROBLEM

A plate may be defined as a three-dimensional deformable

body whose thickness is small compared to its least lateral

dimension. Because the thickness is small compared to the

other linear dimensions, classical elasticity theory treats a

relatively thin plate in an essentially two dimensional manner.

The linear small-deflection theory of plates, developed

by Lagrange (1811) is based on the following assumptions [9]:

1

,

points which lie on a normal to the mid-plane of the

undeflected plate lie on a normal to the mid-plane of the deflected

plate ( ll = U = O ) ;

2, the stresses normal to the mid-plane of the plate,

arising from the applied loading, are negligible in comparison

with the stresses in the plane of the plate ( 62 ^"^ ^x , 6u ) ;

3, the slope of the deflected plate in any direction is

small so that its square may be neglected in comparison with

unity (curvatures — = -^r^, J_ = - ^-^5^. ) ;

4, the mid-plane of the plate is a neutral plane: i.e.

any mid-plane stresses or membrane stresses arising from the

deflection of the plate into a non-developable surface may be

ignored.

In classical large deflection theory where deflection is

of the order of magnitude of the plate thickness, and greater,

the first three assumptions above for small deflection theory are

-10-





retained. However, the fourth assumption is no longer valid with

large deflection, and middle surface stresses must be considered.

As a result of the large deflection, the problem becomes

non linear. The question is, does the problem become one of

geometric non linearity as assumed in classical theory, or is it

one of both physical and geometrical non-linearity as proposed

by this thesis? Physical non linearity is currently introduced

in the inelastic buckling problem as a variation in Poisson's

ratio and variation of the Elastic Modulus in the so-called tan-

gent/secant modulus theory. Gerard, [lO] provides a good "state

of the art" summary of this theory. However, it is highly possible

that the correct approach lies in the determination of the addi-

tional elastic constants introduced by finite deformation theory.

Assuming, for the moment, that the large deflection plate

problem is physically linear, but geometrically non linear, there

is some error introduced by the classical differential equations

formulated by vonKarraan [ll] due to his treatment of the problem

in a two dimensional manner. This error is negligible for very

thin plates but becomes significant for plates of finite thickness.

To illustrate this error, the classical large deflection assumptions

will be applied to the generalized large deflection strain tensor

(appendix A)

.

The assumption that points which lie on a normal to the

mid-plane of the undeflected plate lie on a normal to the mid-

plane of the deflected plate require that zi£ = ^ = •
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Thus the large deflection strain tensor derived in appendix A

reduces to:

or

0)
:t]

In the von Karman formulation;

/^\ /^^\^ ^^u ^^v /^\^ J /^v\^

^y^tj j*

are neglected, which seems reasonable, but even without the

above terras, there are terms remaining in the expressions for

and gg which are still significant.

If we assume that the elements of the generalized strain

tensor, as applied to a plate of finite thickness, are of the

order of magnitude shown below, i.e.

(l ) Terms ^S' and ^W are of the order €. and are

of the same order of magnitude as the derivatives of the

shear forces Q x ^^^ 0^ •
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4

/^x T, ^ «|idr ^ «^ ^ /'i**')^ l^)^ and
(2) Terms 1^ > 5^ ) ^x ^ dv^ > ^Z. > ^^^^^^ J Uw ^

2.^ i^ are of the order of magnitude e

(3) Te™s II , |y ,(|.J%(|^f,^t^ , t-^^ , (1^)"

Z^)^ and/^") are of the order of magnitude €

and can be neglected.

Retaining terms up to the order of magnitude C the generalized

large deflection plate strain tensor can be reduced to

(2) yj^^y 2\^j

11? ^ ^3

1 ^v*/

^ <^;<

1 ^K/

<^W

^i

If the Poisson's effect across the thickness of the plate is

ignored, and ^ is taken to be zero, the above strain tensor

becomes identical to that obtained by Borg, Hoppe, and kopchinski L4j

In the differential equations formulated by von Karman [II],

the strain elements are assumed to be

(3) ^^ S^ Z \^)

(4)

-13-





By comparing the von Karman elements with the elements of the

three dimensional plate strain tensor, it is shown that von Karman
2.

retains terms of the order fe and yet neglects terms of the

order 6 which are introduced by the shear strain elements Wz.

and Yt^z , and also ignores the Poisson's effect across the

thickness of the plate ©^ . Thus, even with the assumption

that the problem is linear physically and non-linear geometrically,

a feeling for the magnitude of the error resulting from the two-

dimensional approacti can be achieved. This points out a significant

value of the continuum mechanics approach to the problem.

At this point, it should be noted th;'t the large deflection

strain tensor was developed in terms of a Lagrangian curvilinear

coordinate system which at all points remains parallel to the de-

formed plate (see appendix A), The treatment of a developable

plate problem in the Lagrangian coordinate system lends itself

readily to inextensiona 1 bending theory, but becomes a major diffi-

culty in dealing with a flat piate with extensional plate theory.

Thus, the use of the plate strain tensor derived above assumes

that the deflections are small enough tiiat an Eulerian coordinate

system can be used. Even though it is recognized that error is

introduced by the assumption of an Eulerian coordinate system, the

plate strain tensor does provide an improvement over the von Karman

two dimensional ax)proach as discussed above, and should lead to

less error for any practical plate problem. Indeed, if point

strains are sufficiently large to invalidate the above assumptions,

it is probable that plastic deformation would also invalidate

-14-





the assumption of an elastic body and a non-isotropic or plastic

theory would then become necessary.

In reference [l2] Bleich gives an excellent historical

sketch of the evolution of the von Karman equations and subse-

quent strain energy approaches to the large deflection plate

problem by Timoshenko, Marguerre and Trefftz. In a series of

papers by Levy [13], [14], [l5], [l6J and [l7], solutions of a

theoretically exact nature were given to the von Karman differen-

tial equation [ll]. In Levy's solutions, deflections and normal

pressure were expressed in the form of Fourier series and sol-

utions were obtained for various cases of loading and support.

Although the method is involved and laborious, it has been recog-

nized as one of the more accurate solution techniques available

under the von Karman theory. However^ the only plate solution

known to the author using finite deformation theory incorporating

the associated third-order elastic constants is a preliminary or

exploratory study of a circular plate by Borg in reference l7j.

Although the solution in reference [7] is close to Timoshenko's

solution of a similar problem contained in reference [l8], the

approach to the two solutions was vastly different. Rather than

using the classical approach of Timoshenko, Borg's solution is

obtained from the non linear stress-strain relation developed

in appendix B, This would tend to lend evidence to the validity

of the Finite Deformation Theory approach to large deflection

plate problems, particularly where both physical and geometrical

non linearity are required,
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Another non linear large deflection thin plate approach

using the non linear inextensional bending theory is described

by Borg in references [5] and [S], In this approach, a theory

analogous to the Murnaghan non linear elasticity theory is

developed. In the non linear thin plate inextensional bending

theory, it is assumed, essentially, . that the large deflection

is one which occurs without the development of membrane stresses

and a large deflection form of the bending deformation relation

is obtained, [8], The non linearity occurs in the second derivative

of the deflection terms and arises as a consequence of the analo-

gous behavior of a thin plate to that of an elastic body in gen-

eral, and in a sense, bears the same relation to linear thin

plate theory that the elastica (column) solution f^ears to the

Euler column theory.

If the deflection of a plate is not small, the assumption

regarding the inextensibility of the middle surface of the plate

holds only if the deflection surface is a developable surface,

therefore, there is some question about the generality of the

inextensional theory. Although the non linear moment-curvature

tensor equations analogous to the non linear stress-strain rela-

tions, as set down by Borg [8], provides a possible solution to

the non linear plate problem, it would seem that the most general

differential equations would result from the non linear stress-

strain relation, where the classical equations of equilibrium

incorporate non linear stresses, and the Compatibility equation

results from the non linear stress-strain tensor equation. In
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other words, the large deflection plate problem should be

treated as one which is non linear both physically and geometri-

cally, and incorporates the third order elastic constants.

Borg [6] has shown that the order of magnitude of the three

additional elastic constants resulting from Murnaghan's stress-

strain relation are of the same order of magnitude as the elastic

constants G & E (see Table 1, page 5). As a result, their

inclusion in the large deflection plate problem may be signi-

ficant and would certainly warrant the derivation of more gen-

eral differential equations.
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DERIVATION OF PLATE COMPATIBILITY EQUATIONS

1 . General Discussion

Borg, Hoppe and Kopchinski derived non linear strain

compatibility equations in reference [4] by:

a) First, assuming ^^=

b) Second, neglecting entirely the requirements on 62

and simply utilized the non linear relations for ^^ 6tf and

'^xu as obtained from the non linear stress-strain relation.

(6) T - Al, E3 -f-2GrY + (^lf-2mIa)E3 -h2KTiI.K^ -t-ncon

The major limitation of the derivation in reference [4] is that

it uses a stress-strain relation which neglects compressibility

terms and other terms of the same order of magnitude as those

retained. The more complete stress-strain relation, as derived

by Murnaghan (see appendix B) is:

In addition, the derivation given in reference [4] assumes ^^ =

as discussed on pages 13 and 24 which in effect says that the

deformation distribution across the thickness of the plate must

be constant and ignores any Poisson's effect across the thick-

ness. This is not an unreasonable assumption for very thin plates,
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but is a constraint that is open to some question for plates

of finite thickness. (See the discussion of the order of mag-

nitude of ^ on page 24 following equation (19) ).

Using an approach similar to that used in reference [4],

Borg derived improved compatibility equations, the results of

which are reported in reference [6]. In the improved derivation

Borg used the second form of the stress-strain relation that

includes compressibility terms of the correct order of magnitude.

Borg's derivation reported in reference [6] is verified in the

derivation shown later in pages 31 to 37 • It should be

noted, however, that Borg's improved derivation assumes s^fii r Q

and thus ignores any Poisson's effect across the tiiickness of

the plate.

Intuitive reasoning would indicate that although the

large deflection plate problem is neither truly plane stress

(as implied by the von Karman theory), nor plane strain, with

the exception of the very long narrow laterally loaded plate,

it more closely approaches a condition of plane stress than

plane strain. In linearized theory, a plane stress assumption

V /would require that Yxi = Vyi - ^-^ ^ and 6^ - -
J^:^ (^x-H Gu) f^

Thus it would appear that a more valid derivation in the general

case, for plates of finite thickness, would be based on »^ ^
j

as shown in the plate strain tensor derived on pages 11 to 13,
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2. Derivation based on generalized plate strain tensor

with ^w :^ Q

By setting Og = and solving for ^^Jfi^ in terms ofOB
w, X, y, u, and v, we can obtain a relationship which is in

accordance with classical large deflection theory and which

will be valid in the majority of cases (one exception might

be relatively thick shell pressure vessels subject to very

high external hydrostatic loads, i.e. very deep diving sub-

marine pressure hulls).

Thus, solving for the terms of the stress-strain

tensor equation

we have (retaining terms up to the order 6. )

2. 5«j ^g
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(8) KST^itT]

(9)

I.
1 ^

1 ^yj
\

-f

2- ^x

-H

I

\ ^W c^)'' ^ ^
IV

§7 2 Wm/d^
i)

or, retaining terms to the order £ •

Co>0 = Cofactor matrix of the strain tensor

Cth

/
7-

7-

7.3

7"

/
7u 7-

?3. ^33

V -Ju ?-

\
Wxi ^

+

7.,

^3'

7

733

73>

'»3

?» •!"

J,. 1
13

+
y., 7-

If 31 7»

7" 7.Z

1 ^,. y^^

-h
f"

ft

7- h
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Retaining terms to the order of magnitude C t
^^ have:

(10)

(11)

r

j^
^

\

-(i^r

y,, y,. yji^
7" 1- 1

Z3

33

= I

Idy

T ^ T 2-

J,. and X.I y] contain terms of order higher than 6

and are neglected.

Thus, writing out the stress-strain tensor equation, we have:

'/C 7^ T \

Til tjj 6ij

+ Z&

\ JU ^
:^

^^
-L ^

^2

+ &
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The equations for the elements of the stress tensor can now be

written

(13) 6;

(14) <$^ =

+ & (W

(15)

(16)

('7> r^^ -ir^^^ G- ^

(18) 7-, = 7* - /~ ^^
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Assuming ^jr_ =0 as stated before, we have

6. = - (At 26) 1^ . > (§5 %^^ ^tM^,t]] - (? ^ i^f^f]
solving for SSL

(19) dw _ _/ A V*^4-^^ - (MJliiJ:^ f/^f +/iEf

It should be noted that _^ =
.

• ": which for steel

where V = .3 is about .43.

Thus r^ contains terms of the same order of magnitude as
2.

the terms retained in the basic derivation, (6 ), and is of

the same order of magnitude as the remaining terms in the first

invariant of the strain tensor, and should, therefore, not be

neglected.

Substituting the expression for ^^ into the expression

for (5/, ^^^ 6u ) ^e have
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Rearranging terms, we have

(20b) ^ -

-|-f][(^X-GT/J

(21b) <$3= 2
<^.)( ^-: ' §)-5(-) ^ "-i^'(-^) - ^ ri W (̂^)1

^^^Ih -^(!f)' -2<^(l^

since
>-»-2&

and A =
>»£

(i+zXi-zy)

2 g-V

we can write the above expressions for ^x ^-^^ ^"j i^ terms

of the engineering constants

(20c)

(21c)

-25-





If we now define coefficients as

26 ^(22) A =
I

- )^

^ V i-v^

(24) C = £(;.

(25) D = - n.

we can write

*^^' 6,= A(|.,.t-).B[(|^/.(|-;;J.c|^ ^»(l?; -<lf)'

Since we want to ultimately arrive at an e(;uation in the form

^-1^ -Z ^l^'t . <^.)^1. " ^ s~ "*" —

,

which satisfies the stress

lunction relation v H - 5,.^ "" <- z ^ < x -t- ^j —

^

'^^ ~ <^^^^^ " 3x'

v» 1-

where F is defined by 6-^ = t—

:

; 6u = r —, ; 2%^ = - - —

-

as developed in the classical theory, we perform the indicated

differentiation.
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e)<j' \^V

(^°' B-4A^^i;)^'l;W<Wl -5aiH-(l?/-l^^(i-;T

(31 ) 2 ^L^l

Thus

(3£a) VV = - ^1^' -^.^ = A V(|..|^) .B^
^X^U lU)

ijV '^^J

^c[f;(i^}H.(g;j -[^(S^ii^^^^'J

where ^« = V [(t)V(|^/J 1 st invariant of the large

deflection tensor.

From the identity ^J^^J ^ ^ J^) = ^ f¥^P)

the tliird term goes to zero and we are left with
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(32b) vv= Avti.*p.y Bi,^ .c\^jfM.(rj-2L(t'.'4)]

4-

Carrying out the differentiation in the last two terms, we have

and 2D V^\V ^^ +/^\^+. ^ ^^ 4_^lvv:<^'vy ^^^ ^_^^ -^/^l^ f

If we consider the second invariant of the curvature tensor

and considering the expanded form of the 1st invariant of the

large deflection tensor ^„ = v'^|^)V(^;^= ^ (0) V<fej '^ (^H)

"

i-<S>x ^x^ ^ oJ^ <;;) X <5^/e^^^
-I-

j
^;<^o)

^

^^W \^
By adding and subtracting Z D f r —r —

)

we can write the last two terms as — 2c ^zc +- D <silo +--2-D & xc

Thus, the equation for V r can be written as:

-28-





(33) V^- = AV^(|-^^|5) ^CB-P)i,u. + 2(D-0^,,.c,

In order to get rid of the term A ^ ( t^ "^ T^ ) ^e go back to

the stress relations

(26) ,. .. Ait -t;) ^ B [(|?)V(§^/J ^Cti ^ 0(p\ c (§^J
^

(2T) ^^=a(|-M-Mv bUI7")WJ ^^t^ ^^(ty --is"

Adding ve have

(3^) 6..^,^z,(m;)^zBmK%fJ^i^^%)^^^^4'^Hp']

Giving for
i r^ + v^ I

we have

Nov taking the Laplacian of the above expression, we have

(36) vYl^^-l!, ,.

Taking the Laplacian V ('^^Af^o.^j > by adding and subtracting

^
we have { ^^'^ - Z^'^^ -^

^''^^)
i-( l^'^ i^ff^^^'^^)

w
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Thus we have

<"' V^ (It ^ 1^^) -(£^cXv> - (^^ - -^^."}

Substituting this expression into

(33) vV = a[vXI$ ^Iu)] +(s.d) J,,„ .2(d-c)4.

gives

(34) V 2A+C
A -t- Cjfr^^''-'4^-^ji.»-2(o-c)^.,

since A, £ 3^>*
1 -V

B^ - O^^ . ^_.2^ . p_n
^ Ci-v^)

we can write the above equation in terras of the elastic constants.

Since (B^D) -
A (2 S+ D1-C)

~

2A -hC
\ =

{r.

A+-C
r: y + \

)[?(l-^') -^ -^^^'J

and £( P-c) = -2. (5 +2(^j ^ (4&.n;

we have finally

4- _ r

(35) V h = L a
m

(l-^>') - ^ -S&yj^f,., -(^+1X46-4")^^^
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3, Derivation of Plate Compatibility Equations based on the

assumption ^ = o

<i wFor the assumption ^ - O , we have the identical

expression for the strain tensor as derived by Borg, Hoppe

and Kopchinski [4];

(36)
i ^^ t ^^

I y<j, e^
i ^^^

^ ^ 'i\ ex/

1 ^
a ax

-f

J. ^_w

1

z

\

2

o

Thus, the terms of the stress-strain tensor equation

(37) T = AI, E3 -^ 20>^ +j^(^_X)l' --2ml2 JE3+ 2(m + ?\-G)I,^ + n Coy + 1-6y»9

3

.re (retaining terms to the order c ):

(38) I, = (1^
^V

dx • d^) + 2[(d>/y '^(o^y' -I

(39) T 1 /^^w^^ /^\2-l
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(40) Co » t

\

-(§7/ O

(41)
?:^

^^} - J-

^ 8x^

it;)\t,)i

Terms I, w and 1, contain terms of the order £. and can be

neglected.

Substituting the above expressions into the stress-

strain relation gives

+ 2&i

J- /^w \

'TW.T^m° '

«>W\^
(IT)

+^fisi^ fir)'

o l!M4^r]

o
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The equations for the elements of the stress tensor (equation

[42] ) are as follows:

(43) ^.-x[lt + |^,^i[(!f/.(|^tj/ + 2^ [1^ Ht^/j

(44) ^r-Mlt^l^^I Cl^/Hl^rl ^ 2^[r, H%^)1 -^ i[(i^)Mtf ii
- f (IT)'

(^^^ ^.-Hi;^i-;-i[(i:JH^;r| " ft^/^apy^^[(irHi^r

(46) r« ^ - ^yA - ^
( ^^ +

^x". \ 4 / a)x <^M

(47) z-,, , r 2A

(48)
y? -- ^-ay

Since, regardless of assumptions, we want to eventually have an

equation in terms of a stress function F- or V F wherep

^li-

'^'

4i-
or

6^ = or

r^u. - - &f al""^'
<ax. <5

•t =
^
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we can carry out the indicated differentiation and add the

resulting expressions

Thus, we have

(49) ^v ^^ X ( ^x ^^^y ^ i^-Lw -^ lyJ + ^^^. Ux

^V

(50) ^5m

4- ^x^ U>^

(51) ^*rx, 2 &^
,

^u ^v

Thus

(52a)

4" L^u^^U«;fj ^x^U?ty ^'^^^c^^^^)^ <^'j/_Tn
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From the identity -^^ It" ) + c-, 1 t~" ) - ^ v '
I ^: —*" e- 1

and the definition of the 1st invariant of the large deflection

Te.ao. ^,.„ =
(f.. + %)te^KrJ = V^[(|^)%(|^)^

ve have (carrying out the remainder of the differentiation)

(52b) VV =>^^Xi^-^r) +

From the second invariant of the thin plate curvature tensor

by adding and subtracting -— (a~T ) ^® have

(52c) Y-'F = w"(||+|^^) ^- [A+m]^,,,-4s-i,^-^(^„, + 2^„}

Combining terms we have

(53) VV=XVX|+|^) ^'^-^^^^"^i.co -(^&^i)i.c

If ve now assume 62, = , we have from equation (45)

^r

Avtl5^l^) = (2i±i!l±i^) ^ JLO
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Substituting tiiis expression into equation (53) above, we have

(This form agrees with that derived by Borg [6] )

If we now make no assumption on 6^ and work entirely with the

elements of the stress tensor (5^ » du and 2^6* , as was

done in reference [4], we have, by adding equations (43) and (44)

Taking the Laplacian of each term, we have

(56) V'((5,+5^)- ^(A^6) ^Ylj^l^) ^(^^rnrZ(.-^)^,uD

By adding and substracting 2.^'^ i
^® have

(57) vV = ^.C^^G)V\fi^^)^{^^mvzG-^)i,^

Thus, solving for V l^><, ^'^J » ^^ have

Substituting equation (58) into equation (53), we have

Combining terms and reducing, we have

(60) y^p ^ ^(^4&) r, >(>f>vi-f26-% ) ^^;,-HM)-h ]. -.^^^^tf)^,^
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or since
A+2G- > - -T

2&y
i-iy

?\-^(^ = Q
I -XV

l-^ y
2.(Ai-(^)

ve have

(61) vV-=(,-b^

^ J

Reducing and collecting terms, we have

(62) vV = (^)['G>' - f 0-/) ^ f r.-x/j^,., -/±)(u^^)^.

( ^ - ^ , No restriction on 63 )

Equation (62) is identical to that derived by Borg [6],

Thus, we now have three new compatibility equations under the

assumptions indicated that can be tailored to a particular

problem,

(35) vV = [f C-^"^-;^ -ZO^]4,.. -(X.iX+^.|)i,,

FOR USE IN PROBLEMSTHAT APPROACH

PLANE STRESS

c
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(54) VV = -(g.+ ^)^,^o -(4&+-i)^3c

62-0
FOR USE IN VERY THIN PLATES WHERE

POISSON'S EFFECT ACROSS THE THICKNESS

CAN BE IGNORED AND WHERETHE PROBLEM

APPROACHESPLANE STRESS

,52) vv= [§^i^j -^ -nu^o-oh,i^<^-n.)i..

I

\

^ =
No restriction on (ig

FOR USE IN PROBLEMSTHAT APPROACH

PLANE STRAIN OR WHERE 6z MAY NOT

BE NEGLIGIBLE AND-1^ = IS JUSTIFIED

And finally, for comparison, the classical von Karman equation
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DERIVATION OF EQUILIBRIUM EQUATIONS

In the classical linear theory of elasticity, the equations

of equilibrium are

div T H- ^F =

or

(64) ^ -H ^-Sl* 4- ^^^ + ^x Fk = O

(65) i^i +- %iy ^. j^^k^ +/?uF^ = ^

(66) ^T»& 4_ ^g^g ^ ^^g ^^ p = ^
^x ^u <DZ. f^ *

However, for the large deformation case, one must remember that

the above equations are referred to the original coordinate system

and that the curvilinear coordinates a, b, c, are identified with

X, y, and z so that when the forces are projected, the changes in

position of the points of the body due to its deformation are

neglected. Stated another way, in the linear theory, no distinc-

tion i^s made between undeformed and deformed values of the magni-

tudes and positions of the elemental areas on which the stresses

act. In other words, in projecting the forces, the rotation which

an element of volume experiences as a result of deformation is

neglected. This assumption is open to question and is far from

admissible in the general case. In the general case, it is nece-

ssary to take into account the fact that differentiation is with

respect to a, b, c (the coordinates of the points before deforma-

tion). Since the nature of the simplified linear equations of
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equilibrium rests on the assumption of small elongations, shears

and angles of rotation, and in view of the interaction of these

quantities in the higher order equations, whether or not the

non-linear terms can be neglected depends not only on the mag-

nitude of the terms of the strain tensor, but also on the com-

paritive magnitude of the corresponding terms of the stress ten-

sor. It follows that the smallness of the angles of rotation in

comparison to unity is not a sufficient condition for lineariza-

tion of the equations of equilibrium. It is also essential to

know whether the stresses which are multiplied by rotations are

large in comparison with those stresses which enter linearly into

the equations. The problems of elastic stability or of thin plates

with large deformation are cases in point.

The curvilinear form of the equations of equilibrium

(67) ^ ^*- 4- ^ '^b '*- i- ^_^€0l -^ /y^Fk. = O
^ a. ^ b (^ c

(68) ^Llk^ -H ^ ^ +- ^ ^"^ -^/^fcFb -^

can be transformed to the cartesian coordinates of the points

of the body before its deformation. Novozhilov [2J has derived

a vector form of the generalized equations of equilibrium as:

'-^i-.(i^<^".>i-^(if^-; ^ii(
>5i

6n.l + ^ h =0
^z ^ '»/ ' v
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where On, ^w^ and Sn^ are vectors,

^ = (l+2ejX,.2e,)-(^r^^^^
•>v

§/= f(N2e.Xu^es)-(i/,i/

lf-]/(^.2e.X,^Ze^)-(^y^f

}

J

Ratios of area of
elemental sides before
deformation to area of
sides after deformation

V
V

ratio of volume of element after deformation
to volume of element before deformation

= D

D-

' Ox.

Ov

^W
'^A

«5u

?
1 + d2

Jl -{ ^^I, ffl^-HSi;

and I., I^ and I, = 1st, 2nd and 3rd invariants of strain tensor

Resolving the vectors (5n, 6>^^ ,
6>n^ in the directions i, ,j and k,

we can write Novozhilov's equation

r 3-

»« __^
^5i rirr^«-^'+^*^/'-'4-<^)] ^ ^ ^ ^ o
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Projecting this vector relation on the x, y, z axes we have:

(72) |j>^0^/-ae,,-^,)r./Yie«^^5)r.t J

+^

(73) ^J]iex,4^a)^x% ('^^>)rx^''+(^e^,-^.;r.*J

=

(74) |iL(ie„-^,)<$* *(ie^^+^:)n* ^(t^e,)z'*]

E"x , *^«i <^<J ^2 ~ Blongatione In fibers in directions x,y and t
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The above values of normal and shear stresses are not, strictly

speaking, stresses. They can be called stresses referred to the

dimensions of an element of volume before, not after, the deforma-

tion. [2]

Writing the non linear form of the general equation of

equilibrium in terms of u, v and w (the displacements) we

have

:

fz^r/i>x4|-»'a -^^fcJi^^z '^^^^^^^>^ *"

^ ^r* ^'^

-fz^r"
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Tiie above relations clearly show tlie interdependence between

the rotation and the stresses in the equations of equilibrium

in the general case. However, the above equations are in gen-

eral far too complicated to be of significant practical value.

Since the basic assumption of this thesis is that the

large deflection plate problem is both physically and geomet-

rically non linear, the classical equations of equilibrium can't

be used without a further analysis since their derivation is

based upon

(1) The assumption of plane stress

(2) Geometric non linearity without regard to the physical

non linearity.

The classical equilibrium equations (appendix C) are valid

approximations of the more general equations (75), (76) and (77)

and thus, the geometrical portion of their derivation remains

valid for the purposes of this thesis. Thus, the equation

remains valid, and the moments per unit length and twisting moments

still are given by

(79) M, = J 6^ 2 di
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At this point, however, a departure from the classical

approach becomes necessary. Instead of using the linearized

stress relations to obtain a relationship between moments and

deflection w, we will use the non linear form developed in

appendix B, i.e.

(7) T=>vl.h"3 4-2G)j+[(l-A)lN2mIi]E3 -»-2(m+x-&)I.>^ + nco)^ -h^Gh*-

Using the analogy between the stress-strain tensor equation

and the moment-curvature tensor equation as suggested by Borg [5j

we have

:

(82) M= -AicB^+2Q(f(-h[U-X)^,c--^m^^^^s-hZ(m-hA-&)^,,(^ + nco^ -^-f(^''

where M is the moment per unit length tensor

\-QaC -QbC -"^^

and U\ is the curvature tensor given by

(83)

fe) +\I^V,) K^ 5?5Sv> "^daAb^b* cJta*>c9k'^ da^^d^ da^bdb^ bk^dc'"
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If we now use the classical large deflection theory assumption

that the slope is small and the square is negligible compared

to unity, and assuming Eulerian Coordinates, we have:

(84) ^= i-
Y.X

'uc r^

^V '^ ^ \
Sx*" '^x^«4, ^H^2. \

At this point, it is necessary to consider what actually happens

to the plate when we make the assumption ^^ "^ • This assump-

tion, in effect, assumes a deformation gradient through the thick-

ness of the plate (Poisson's effect) which alters the limits of

integration in the expression for the moments per unit length.

Thus, to be exact, for the assumption ^^L "^ O ^e should write:

(85) M

^•L

(86) M
-V5

</a
+ 5

(87) Mx, = j Tx^^J^
^%-S

where S is the change of the neutral surface due to the deform-

ation gradient ^iaf across the thickness of the plate as shown

in figure 2 below.
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Deformed Locus of Centrolds
in the Middle Surface

for^^^o J
Neutral Surface

for ^ = o

5^ ^r-^U .

Z.

FIGURE 2

From figure 2, it can be seen that the total thickness is

essentially not altered by either the assumption ^ sf O ^^^^ z^ o t

but that the plate deflection W is altered in the case of ^^ifi' = o

by an amount ^ , which in effect, requires an additional constrain-

ing force F(i) such that the total deflection is now W»VV/x t|)'*'W(<S)*

Thus 5 is in effect, a measure of the error of the assumption

A complete investigation of the effect of the S factor

is beyond the scope of this tliesis, however, it can be seen from

equation (84) for the curvature tensor, that the curvature elements

containing .2 —
- are all of the order of magnitude € as dis-

cussed on page 13. Accordingly, to the degree of accuracy of

the other equations of this thesis, we can write the curvature

tensor as

(88) ^ -=

O O

J- -1

'2X rz5,
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From equation (88), we can see that we are left with the express-

ions for curvature that are identical to those contained in the

classical theory in two dimensional form, where the third dimen-

sion terms are assumed to be zero.

From the curvature tensor [equation (88)] we have the

following relations

(90) 4 - If -f^)' ^ t.rrr^s In.oWin^ f 1 and 1.

(91 ) ^3|<^ contains terms of higher order than desired and thus

can be neglected

O o
(92) C ^ =

o o

Terms of higher order than desired ( € )
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v(9\ - terms of the order 6 and can be neglected

*^lc (f\ terms of the order £ and can be neglected

Thus, we have, retaining terms to the order e

^ ^ \ o d o

It should be noted at this point that retaining only those terms
a.

to the order € reduces the Moment-Curvature tensor to a form

that is analogous to the linearized Hooke's lav l'=^J-itj \-ZGV

Thus, we can see that the classical assumptions in effect force

the equilibrium equations into a case of geometric non linearity

and physical linearity where the third order elastic constants do

not appear. This fact is born out by the fact that the tiiird

order constants 1, m and n are multipliers of non linear terms

and cannot appear under the classical assumptions for the equi-

librium equation.

Inasmuch as we are now left with a linearized stress-strain

relation and its analogous Moment-Curvature relation, the classical

equilibrium equation derived on the basis of plane— stress becomes

valid for cases where the actual case approximates plane-stress.

Thus we have, from appendix C and reference [18] (neglecting body

forces)

(94) V w - y -H
p-^^^, ^^a + ^^x -^. ^^.^^t;:^^)

(PLANE STRESS)
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Proceeding with the development for the assumption ^^ = c>

we have, from e.zi 3. in the two dimensional case and the
r

analogy between tensor equations

(95)

Thus

(96) ^. - -H r> (1^. -^1^) -^ i<^ ^^. ]

(97) <$^=-2[^(^.^|^)^-^<^^.]

Substituting equations (96), (97) and (98) into the expressions

for moments per unit length, we have

(99) M. = /-Z^fAf^+jL-) V2<^^^]d^

''''' Mx^ = / \z' 2(.^d^
-t y^ ^)c^5

Performing the above integration, we now have:

(103) M^= -i^[^(0-¥?>2^0J
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(104) Mxu = +-^ ( 2G ^)

Differentiating equations (102), (103) and (104) to obtain

(106) '^.^--f^[^(.%,^-t?J -2^f5j

adding, we have

(108) ^iM« .gf^i+^-j = -^v^+2*)ri^+^i^.-0ex»- ^><-«^'j c^ij /Z \ /^ ^x^ o)x*^j^ '^'^^^

=r -^ ('A+2&) V^VV

Using the relationship 7i+ZO = A^ -t- 2Cr = ^^
.

and G- f7no\ f ^® ^^^^ /\ 4-2G- - ^ ^ <-V

Since the flexural rigidity is D n
lZ(l->'*)

We have finally

(109) ^^M^ ^2^^+^1 - - PlLl^'" V^W
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The equation of equilibrium for the assumption ^^ =- O

now becomes (neglecting body forces)

(110) ^illjH'' V'^w/ = P + Nx£*!t ^-2Nxu,^ vNlu^,
(1-2^) y

or from the stress function F defined as

(111) Nk =
t

6^ = ^'F

(112) N«j ^ '^ - ^^
(113)

t

Ve have

(114)

As a check on the above equation, since the basis was a linear-

ized tensor equation, we should be able to obtain the identical

expression using the linearized plane strain equations resulting

from the linearized Hooke's law

7~ = 'XI, Ell + 2Gy) where for plane strain

we have the elements ^ ^ =- Vux - Y.x — ^ =z O

Thus, we have the expressions

(116) 6ij •= >reu4-exj) -H26-e^
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Since, in the linear relations

Vxu -(" 1-^+1^) = -2Z ^ where UL^-Z^ i ^=-'^^

and e» = A - -7 ^^^

^ - H - « 3 ^"-w

we have the expressions

(118) <^. = ->z(|^..^^y-^^^^^

Equations (118), (119) and (l20) are identical to equations (96),

(97) and (98), thus we could have derived the equilibrium equation

(114) directly by the plane strain linear relations. The point to

be stressed in the derivation of equation (114) is that the classi-

cal large deflection assumptions, when coupled with the assumption

-T—= O leads to a plane strain equilibrium equation rather than

a plane stress equation as derived by von Karman.

In summary, within the limitations of the assumptions of

classical large deflection plate problems, we now have two equilibrium
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equations, the von Karman equation where the derivation is based

on the linearized Hooke's law with strain a function of stress

and the equation derived in this thesis with stress a function of

strain. Thus we have an upper and lower bound on the assumption

of plane stress or plane strain as follows:

PLANE STRESS (Neglecting Body Forces)

(94) V^W = -£4-:^ /ilf ^ + ^Fdlw .p^!jF ^U^\

PLANE STRAIN (Neglecting Body Forces)

(114) v'^w^ ^i::^^ J^4-'^ (^^^^/^^'"^ 4.^1f^l^ -.:>^lf ^''^\

As previously discussed, the actual case will be somewhere between

the limits of the above equations.

Applying the correction r. as a linear correction to

the flexural rigidity in the data reported in references [l4]

and [19] and comparing the results with experimental results

shown in reference [19] we can see by figure 3 that the correction

appears to be about the correct order of magnitude and in the

correct direction. Thus, for this case, it would appear that the

actual case is closer to plane strain than to plane stress. On

the other hand, one must be cautious about drawing hasty conclu-

sions based upon figure 3 since there was insufficient data available

in reference [l9] to accurately evaluate the boundary conditions

of the experimental results. Further discussion of the implications
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of the correction of Levy's solution and the divergence of both

theoretical solutions from the Galcit experimental results is

contained on page 62.
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CONCLUSIONS

In addition to the classical large deflection thin plate

equations derived by von Karman, we now have three new compat-

ibility equations and one new equilibrium equation based on the

assumptions indicated below:

A. COMPATIBILITY EQUATIONS

Classical von Karman Compatibility Equation [ 1 1

]

(a) V^F = -E<^,^ = -(y-M;26r^ic

Based on ^^ = 0, linear stress-strain relation and plane

stress

Borg Cornpatibility Equations [6]

(b) VV = -C& + 5)^,uo -(4&*f)^ac
Based on 6t. = 0, ^^ = and a non linear stress-strain

relation

(c)

Based on xi2^ = 0, no restriction on 6z and a non linear

stress-strain relation.

Compatibility Equation Developed in this Thesis

(d) vV = [f (i-z*-) -^ - 2&>'J^.u, -()'+0O&+f)^c
Based on 6* ~ 0, no restriction on d>w and a non linear

stress-strain relation.
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B. EQUILIBRIUM EQUATIONS

Classical von Karman Equilibrium Equation [ 1 1

]

Based, on a linearized plane stress assumption (Assumes

strain is a function of stress).

Equilibrium Equation Developed in this Thesis

(:

Based on non-linear development approaching plane strain,

but linearized by use of the classical large deflection

assumptions, (Assumes stress is a function of strain).

From the above four compatibility equations and two equilibrium

equations, we can now tailor the equation to suit a particular

large deflection plate problem dependent upon the degree of

accuracy required and the degree and type of deflection or

loading involved. In other words, the equations can be tailored

as follows:

(1) Equation (a), or the classical compatibility

equation can be used where the problem is linear physically,

but non linear geometrically (moderately large deflections),

or where the degree of accuracy is not critical.

(2) Equation (b) can be used for ver;) thin plates where

the problem is non linear both physically and geometrically,

but where the Poisson's effect across the thickness can be

ignored, and the assumption 6i =0 is valid,

(3) Equation (c) can be used for thin plates where the
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j^roblem is non-linear both physically and geometrically, but

where the Poisson's effect across the thickness can be ignored,

and where the normal {62 ) stresses can no longer be neglected,

(4) Equation (d) can be used for moderately thick plate

problems non linear both physically and geometrically, and

where the Poisson's effect across the thickness of the plate

must be included, but where the assumption 61 - still remains

valid (Thicker than Thin Plate Theory).

(5) Equation (e), or the classical large deflection

equilibrium equation, can be used in cases where the boundary

conditions and loading are such that the actual case is closer

to plane stress than plane strain.

(6) Equilibrium equation (f) can be used for problems

where a plane stress assumption is not valid and where the

Poisson's effect across the thickness of the plate can be

ignored (|| = ).

Reflecting on the above equations, the question arises:

why do the von Karman equations predict results that often closely

approximate experimental results, but occasionally are signifi-

cantly at Variance? Particularly interesting is the fact that

for the preliminary solutions Borg has achieved with equation

(b) for circular j)lates with circular symmetry, the results are

very close to those obtained with the classical von Karman equations

(aj and (e) [?]. In view of the apparent wide variation in equa-

tions (b) and (a), one must ask - why?
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If we neglect the term in equation (d) involving the

large deflection term ^mp , we can note the similarity to the

classical von Karman equation i.e.

(a) V«F = -(y<-l) Z6- 4,.c

modified i-

From equation (a) and (d) -, . x. • j» ^^ can see that if the^ modified'

third order elastic constant n is equal to -4G, the von Karman

equation is identical to equation (d) if the term I ^(i-2.>0 -— -•i<»*'^u.p

can be neglected.

As shown in Table I, Borg obtained values for n (corres-

ponding to Young's Modulus of 30 x 1
0^

) of -34.2 x 10^ .

Also, Smith obtained values for Austenitic Steel of -40.0 x 10

and for 0.6 Carbon Steel of -67 x 10 . If we assume an average

of the above values of n = -47 x 10 and the commonly accepted

value of G •= 11.5 X 10 , or 4G = 46 x 10 , we can see that

the actual numerical value of n probably does in fact lie

very close to - 4G. Hence, we can approximate ec^uation (d) as:

v'F s [(f +G-;(i-i>')U^ - (v'+ij) 2&^4c
The above equation still does not explain why the von Karman

equation (a) provides valid results in the majority of the cases

since we have only explained the right terra and not the term

involTing ^iu> .

If we analyze the function ^xu> = Cd7* "^ ^» J lC^-^ ^"^^ A
by vector algebra, we can see that grad w =5^i'*"55[-j = Vvv

and hence grad w • grad w =(5^) ''^s^j -
I V wl

but the maximum directional derivative dvy := I Qra.^'^\
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t^S -
I

a^^-'"!' = (I^^KI^)'max "t

hence, the vector meaning of o/u> is that it refers to the

Laplacian of the square of the maximum directional derivative,

I.e.

But in the classical large deflection assumptions, the square

of the slope was considered small compared to unity, therefore

the Laplacian of the square of the directional derivative will

be much smaller than unity. Thus, within the limits of the

classical assumptions for large deflection plate problems, the

function involving <^iu>will be negligible unless the slope, and

hence, the deflection is very large. Stated another way, when

the deflections become such that the term involving ^luo cannot

be ignored, the classical assumption, in which the square of the

slope is much smaller than one, is questionable.

If we further consider the elastic constants associated

with ^aiUD i.e.
(_ ^ ( •"i*'^ " ^ " XQr9\ ^"^^ assume that n = -4G

,

ve have VV = ( ^,^C,)(^.X9) ^„p - (/+,) ifi- 4x.

From Table 1, for Borg's and Smith's values of m, we can assume

an average value for steel of approximately m - -60 x 10 , or

about -5.2G. With this assumption, we can approximate the com-

patibility equation (d) as - Cl, 6 ^)(|-2X) ^,i.p -(y^\) XG^:^c.
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or, for y = 6.3 , V '^ F = -.G^G^ilo -Z.CoG^zc or

Hence, we can see that the elastic constant contribution to

the terras of the classical equation is about 4 times as great

as the contribution to the term involving ^\ld .

From Figure 3, it can be seen that experimental values

for the simply supported square plate tend to diverge from

theoretical values above —-? of about 1.5 for the data presented.

Thus, from the hypothesis regarding the contribution of the term

involving Stuo and the results shown in figure 3, we can further

hypothesize that for very large deflections ( -^ greater than

about 1.5) the term involving ^luo begins to become significant

and the von Karman equations lead to increasing error with in-

creasing deflection. Below the divergence area, the Si\.t> term

is not significant and the von Karman equation is very close to

the more exact equation (d).

The classical equation of equilibrium (e) is identical

in form to the equilibrium equation derived in this thesis (f),

with the exception of the coefficient involving Poisson's ratio

(i-v')'' • -Po^ ^ Poisson's ratio of .3 the coefficient is 0.816

and for V = .25 , the coefficient is 0.89. However, as the

deflections become very large arid the deformations approach the

plastic range, we have a different situation. In classical

theory, when an isotropic material reaches plastic deformation,
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i'oisson's ratio is taken to be ^ [23], However the coefficient

{\-v)>- goes to zero at r = 2 ^^^ hence, equation [f) becomes

Vw= 0. Reference [25] states that some investigators have

obtained values of Poisson's ratio in the plastic range much

greater than | (as high as 0.8) which leads to further questions
4-

since the equilibrium equation (f) becomes Vw = -f (F,v,x,y).

As a result, ve are led to the tentative conclusion that equation

(f) is only valid in the elastic range where the range of y* is

0,25 to 0,35, or that for deflections approaching the plastic

range, we can no longer ignore the Poisson's effect across the

thickness of the plate (the assumption -2^ =0 is not valid)
da

and a three dimensional development similar to the development

of equation (f) with ^~- ^ will be required. It should be

noted that the three dimensional development of an equilibrium

equation where ^^ ^ , as proposed, would be based on the

assumption that stress is a function of strain as opposed to the

classical assumption of strain is a function of stress.

One final point to be noted in the discussion of this

thesis is that in equation (d)

(d) v*F = [fO-zv) - ;=: -^>'j ^,uD - ( >'+« )(4e. + ^ ) ^^^

the derivation was based upon the classical large deflection

plate problem assumptions, but including terms applicable to

plates of finite thickness, and with finite deflection theory.

As a result, the development involves a compromise between thick

and thin plate theory. Hence, we have a third category of plate

theory which may be called "Thicker than Thin Plate Theory",
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RECOMMENDATIONS

The work done so far in the application of finite

deformation theory to structures has hardly scratched the

surface of a wide and virgin field of science. To attempt

a discussion of areas requiring further investigation would

be the subject of a thesis in itself,

A few of the more obvious areas of interest to the

structural engineer which require further investigation

are

:

(1) To obtain more reliable values of the third order

elastic constants 1, ra, and n,

(2) To obtain solutions to large deflection plate

problems by use of the equations developed in this thesis,

and for Wiiich there are experimental results available by

which one can obtain an idea of the significance of the third

order constants, and to determine the validity of the hypothesis

made in the conclusions of this thesis.

(3) Determine values of d as applied to the limits

of integration of the moment per unit length equations in order

to determine the magnitude of the error involved in neglecting

i'oisson's effect across the thickness of the plate.

(4) Through dimensional analysis, attempt to determine

a physical relationship for the third order elastic constants

as has been done with Lame's constants in linear theory. In

other words, attempt to obtain a relationship between 1, m, and

n, and the defining parameters of a material that determine its
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therinodynamic solid state point (Temperature, Pressure, Specific

Volume or Density, Conductivity, etc.). The long term impli-

cation of the above analysis is the development of a combination

Solid State Physics/Thermodynamics approach in the determination

of material properties, A logical extension would be to include

time dependent functions for purposes of analysis of creep, fatigue,

etc

.

(5) Attempt to determine equations for critical stresses

for buckling or instability using the plate strain tensor derived

in this thesis with a linear stress-strain relation in addition

to buckling equations using the compatibility equations of this

thesis which include the effect of the tiiird order elastic con-

stants of the non linear stress-strain relation.

(6) Derive a Compatibility Equation under which no re-

striction is made on either 6i or 2^!?1 ( 6z. ^ andr^ ^ )

for use in "Thicker than Thin Plate Theory" where 6jl must not

be neglected (as in the case of very deep-diving submarines).
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APPENDIX A

Strain Tensor )9

In tensor notation, the state of strain of a body, initially

unstressed where point "a", having coordinates (a,b,c) , then

strained to point "x" having coordinates (x,y,z)^ is given by: [5]

(A-1) STATE OF STRAIN = dx dx "^ Oa do.

Since dx = J da, where J= ^('<>
Ij » ^ ^

and

or J" = / «ii

<^4 ^A ^
e<L ^ dc

I ^ <^z dz

dx = da J"

Jacobian matrix of (x,a)

= a tensor

where vj is the transpose of the Jacobian

55: dA da. ^

and is also a tensor, we can say:

(A-2) STATE OF STRAIN =

where E-^ is the 3x3 unit matrix

da^(j*J-E,)<ic.

C + vVSince x=a-fu. , U=b+V , Z -

where X -X(a, b, c) ^ U^ U(a, b, c)
,

anc/ Z = Z(^A, t, c)

A-1





we nave ^^ + iJd iJd =
<d&.

H = 1^

db

5^ » da.

etc. (using chain rule for other terms)

we can express Jacobian as:

(A-3) J= \ i:i

"5^

1+^ do

and
(A-4) J*=

1 +
da.

d̂c

Expanding J J we have:

(a-5) J*J-

\

a symmetric tensor
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Writing above expression in terms of orders of tensors, we have:

where )9j is a 1st order tensor

and Y)^ is a 2nd order tensor

is the combination 1st and 2nd order strain matrix
f
X

and rearranging, we have

(A-7)

yf.
j^j - c,

From the e

ve have

xpansion of vJ" J and the relation ^ ~ T C*-^ ^""^s)

(A-8)

iifit^itT^i-r.^] [is^^^it-t!-:] 6tA(i!;<lr/J
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The above expression expresses the strain tensor in the Lagrangian

coordinate system where the movement of each particle in the body

is followed (i.e. the initial coordinates of a particle were (a,b,c)

then the final coordinates of the same particle in the deformed

position at (x, y, z) is [ x(a,b,c), y(a,b,c)j z(a,b,c)] ). [5]

If the assumption is made that the deformation is sufficiently

large that the 2nd order strain tensor must be included, but is

sufficiently small that "a" is essentially the same as "x", the

expression for strain can then be expressed in the Eulerian coordi-

nate system (i.e. conditions are exj^ressed at each point in the

deformed body, and a particular point rather than a particular

particle is considered and quantities considered are functions of

X, y and z )

.

Hence, we have the approximation

ex i y^ I

(A-9)

?
I^«JX

-H:lr

niu^U ^^»'^+i^^l 1^^+^^ i- ^^1 ff^U\^ fdv\^ /o>V^/\^7

(using American notation for elongation and shear strain)
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APPENDIX B

Derivation of Finite Leformation Stress-Strain Relation

I, The fundamental relation of elasticity theory connecting

stress and strain is:

(B-1) T=(^.] J- ^ J*
where T is the stress tensor

Li]

T = J = Jacobian

'/

ciJL is the compression ratio
det J"

= (pCYj) = energy of deformation / unit

initial vol. = yOa. y

- strain matrix =

(B-2)

(see Appendix A)

II. If the deformable medium is assumed to be isentropic, it

is elastically insensitive to every rotation of the initial

;nce {Z^(y) == <j^ ( R^y R)Cartesian reference frame and hei

where R = the rotation matrix.

Further, a deformable medium is elastically isentropic if and

only if <p Cy)) is a function of the three invariants I. , I^ and

of
y
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In reference [l] it is shown that:

/I o o

(B-3) Ali. - E3 -

(B-4) dli ^ I, E3 -^

J

(B-5) ^ - Co
!

It follows, that for an isotropic medium

^
or ^^

^7
III, Assume the energy of deformation per unit initial volume

is developed as a power series in terms of the three strain

invariants I^ , I,., and I->. If W is assumed infinitesimal,

, andI. is of the order of 6.

I^ of the order £

, I^ of the order fe'

We can then say:

(B-7) <;^(y^) = <!^Cl,J^^^) ^ Ao ^Kl,^-LA^C ^^A^l-i-"'

3
Neglecting terms of higher order than ^ we have
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or in terms of ^ = fZ^<» i^ <P , + <Px ^ j^i + ' • '

where <^^ consists of terms independent of )/

96, terms linear in elements of w

^X terms quadratic in elements of ^

and hence a linear combination of i/ and 1^ , and

0^ a linear combination of I« j Iilx and X3

(B-9) ^ .- ^. ^ A, I. -1- C4> i: ^ B, I,) ^ (t^' + £; r, Ix + D, Ejj

Differentiating with respect to W , we have:

(B-IO) ^ =/|,iI. + ^xT.^ + B, ill ^ A3 1,^41,

Since sl; r:

(B-11)
1^ = A.E3 +A.r.ir3 -^ B. (1,^3-)^) + A^l,X^|-[r,E-3H-T.(r.tv>j)j

Let

(B-12) i,Aa + B,) rr > - o*V)^»-a/ Lame's Constants {'\ k /a. )

(B-13) 8, = -Z/*. - -^<^
( y = Poisson's ratio)

(B-.14) A3J1C. _ ^
2.

(B-15) x^ — —2, KH 1j"i> and n = 3rd order constants

(B-16) D» - n
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Substituting the elastic constants into 2-^ we have:

(B-17) 1^ = 4.£:3+"^^''=3 +i6j,+-('/r.'-^^ij£3 ^7»v,r,^ ^-ncoy^

which is the 3rd order approximation obtained by Murnaghan [l].

The higher order relation between stress and strain

resulting from the generalized relationship T =: ^ J ( v~ )
*^

is then:

(B-18) T= '^ J^^f,-^>l.C3+'^^>;+('^I^'^w^Jt"3^-:imL«+i1c^J?J T*
If the elastic medium is initially unstrained, ^^ = 1 and W

is a zero or null matrix, therefore J" is a rotation matrix only.

If T is the initial stress in the unstrained condition, the
o '

above tensor equation becomes

(B-19) To * A.E3

where T is due to a hydrostatic pressure or tension.

For an isotropic medium, we can say A. == -p (i.e.

initial hydrostatic pressure) or T = -p E^ , With an

initial hydrostatic pressure of -p , equation (B-18) becomes

(B-20)T=gj[-f.h-3+Al.f3^2&>7^(>(C-;ir»,rjE3^-ZmI.y^-ncoy] J^

For an isotropic medium, the coordinates of the stress tensor

are furnished in the final rectangular Cartesian reference

frame in which the coordinates of vJ J are furnished by the

elements of M = >J by the elements of the matrix /^ M^^
where J r 1^ M and J""^J'= M= 2. Yj ^ ^s
Thus, the relation between stress and strain becomes

/>A <^
1
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y
^ n CO W

J+ 2h^ I.

j' -/^[-f5oE,^-Ar.L-3-f2(<i-^o)/; -(^I,^--2>^Ix)lE-3 + ;2(»M+A)l,y

h ncoKj ^ ^Qiftj j
1 n

or for 'jPo •= o

(B-22) T'= ^ [Ar.£3^.2Gy-^(>^r,'*-irvir,)Ej f ^(:w+:\)r,>7 +Mcdw + ^^yW

Murnaghan [1], has shown that

(B-23) ('^j'-^ olet(E3+ii^) = (det J"J' =
| + ^I, 4-41, + 81.

or
'H = ((+21, MIx^?xJ'^^

To a second order approximation, the compression ratio is

neglecting terms higher than 2nd order, we get

(B-25) T= "Xr,E3+-2&y •<-L(^">)^.'"-^^Ii] 1^3 +" ^^Wl+A-Gr)!, 17

+ V2 Co >7 4- ^-Cr >J>)

<n
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SUI#1ARY

Third-Order Approxinnition oi' stress-strain relation (three

dimensions )

.

(B-25) T=UE3+26y^f{'^^)I^^>^I^]EJ + ;i(m-f;^-G)I,)7 ^rycovj +^(;r>iri

where "T = stress tensor

W = strain tensor

£7

3

= identity tensor

X, = First invariant of strain tensor

Xx = Second invariant of strain tensor

^ G- = Second order elastic constants

(elastic constants of Lame)

i,)*i, Ki = Third Order Elastic Constants

y = Poisson's ratio \. »

E - Young's Modulus - G(3'h-^ ZCr) = 26.(K/)

Gr - fc- = shear modulus
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APPENDIX C

DERIVATION OF CLASSICAL EQUILIBRIUM EQUATIONS

I. Balance of Forces

Considering the elemental plate shown in figures C-1 and

C-2, we have for the x and y component forces

X component

(CI) (Nx ^'^''olx)olo -Nxdi^ +• CN^k f ^x ol.j)olx -Njxctc +^^xdL=0

where jC is the x body or tangential force component per unit

area of the middle plane of the plate

y component

Similarly we have for the y component forces

(C~2) ^Nx^ ^ ^NjJ ^ Y = O

If we assume 2— and ^^ are small compared to dx and diu

we have for the projection of the N ;< forces on the 2; axis:

(c-3) (N.^l^c^.)(^^^^c^^)d^ ^ Nx|^

^^Ni.^olxot^ ^H^p/alyciu ^^^^!^J(\cL^

c-1





or, reducing to second order terms, we have

(C-4) Nx d^W dx cIm

and similarly, the Z component of the N «j forces becomes

since N^u =' Nlu,x from equilibrium of moments about the ^ axi:

the Z component of the Nxi« and I^HX forces is

(C-6) Z N
1

K/

(i)x.c>

'I

Thus, the membrane portion of the 2 component forces become

«ix dX^i^ -> ^^'

The effect of shears dx and Q,^ , as shown in figure C-3 also

contribute to the equilibrium of Z component forces, and can be

shown to be : / ^Qx . <^ Qm
]

J^ J^.

The lateral load component is JO oy, oIm and the body force com-

ponents are -^ |)5/ Jk^Li and -^^olxoL,

Thus, the combination of 2 components in the general case is:

{C-8)

C-2





BALANCE OF MOMENTS

Considering figure C-3, by taking moments about the x axis

and considering the right hand rule for positive moments, we

have

(C-9) (Mx^4.^|L»')olK)ci^ --. Mx^ol^ ^\^Ux-(^A^^^^)ck^)dK

Simplifying and retaining terms up to the second order only, we

have

(c-10) ^jli«i - i^'i -+- (3u =o

Similarly, by taking moments about the y axis, we have

Differentiating the 1st equation with respect to y and the

2nd with respect to x and adding, we have:

(C-12) ^^lH*^ 4. ^^M|j x ^ ^^Mu - ,^lM)cjj _ Q><3t
^ _ ^Qx ^ Q

or since '^ y X = ""^^Ir ^ ^M ^ '^t^^

we have

(C-13) ^i^ _2^^')+.|lM^ = ^x ^ ^M ^^64. c9X ^ k.

But from the 2 component force equation, we have

(c-i4) .^Qk_ ^ = -/^f -i-Nx^ +:iNKu^ + Nu<£^i^ -x^ - T^

c-3





Thus we iiave

(c_,5) ^!i^-2^^1 + ^1= -^^-^Jx^ + iNxMik^.Nu^-X4^-Y^^

The moments resulting from the stresses distributed on the x and

y faces of the differential element shown in figure C-3 are

(c-16) Mx - 6.^clz

From the plane stress equations of the linearized Hooke's law,

we have

(c-21) V = iO±>'^ rx
^

or, in terms of stresses, we have

(C-22) X _
X -

,-:fr
Ce. + ^e^)

(C-23) 6(3 -

(^-24) r,^

e:

Gr Yx»
J

C-4





since

e. =
I; - 2 sr-

by substituting the stress relations (C-22), (C-23) and (C-24)

in terras of Z and the curvatures into equations (C-16), (C-17)

and (C-18) and integrating, we have:

(c-26) M^ = -D ( djx » ^ ^2^

{C-27) \A^^ ^ D(l-X) -^ ^VV/

<$>^d •)

where D is the f lexural rigidity Q ^^ ^

Differentiating equations (C-25), (C-26), and (C-27), we have

(C-28) ^^Mx _ _ / ^Sn/ ^yh^^ )

(C-29) r

(C-30) ^iM2«i -- pr ,-y) <^**»^

'^ ^X^(^^

Thus

(-31 ) ^ -zSt^ ^» - -J)^^..^^^..f5^ -^nH)= -^^ '^

C-5





Finally, substituting equation (C-31 ) into equation (C-15) ve have

(C-32) VV = ^ 4 i-/^N, '^ + jN^^ fNu^^yr^wJY^]

From the Stress Function F defined as

t

rx.
N ^•j

Ve have

(C-33)
A

V w

C-6





*-x

Figure C-1

Undef ormed Plate Element

^ X

X Y q Z = Components
of Body Forces

Figure C-2

N, t Mi dx

Deformed Plate Element Showing Forces and Slopes ( Greatly Exaggerated )

Q%

^X
Mxj-^^

y^^i^ ««*^A'C|X

Figure C-3

Sub-Element Showing Moments and Shear

-C-7 -
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