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ABSTRACT

An approach to the classification problem is one that is dependent

on the amount of information assumed to be known about the distributions

of the populations. It is assumed in this thesis that nothing is known

about the distributions for a two population case. The probability of

misclassif ication of an individual Z is presented in general. The

approach is carried further to develop explicit forms of the error

probability when the two populations are bivariate exponential.
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1. INTRODUCTION

The discrimination problem may in a sense be considered

that of multiple classification, i.e., an individual Z is

known to belong to just one of j categories or populations

and it must be classified into one of these populations on

the basis of what is known about Z and the existing populations.

The problem lends itself to a statistical approach when avail-

able information about Z is in the form of observed values of

random variables which have probability distributions for each

of the different categories or populations.

Discriminatory analysis in its historical evolvement is

documented with an extensive bibliography by J. L. Hodges in

[1].

The history of discriminatory analysis may be represented

in several broad phases of development. A Pearsonian stage is

identified with the introduction and use of his coefficient of

racial likeness. This stage is considered to be followed by

a Fisher ian stage associated with the introduction of the linear

discriminant function and this stage is followed by a Neyman-

Pearson stage and a contemporary Waldian stage. The latter two

reflect the introduction of the concepts of probability of

misclassif ication and that of risk into the realm of discrim-

inatory analysis.

For simplicity and ease of computation the discrimination

problem will be considered only in the two population case, i.e.,



the individual Z is known to be distributed over some space

according to distribution F or according to distribution G and

it is desired to decide which of the distributions Z has on the

basis of the observed value z.

An approach to this classification problem is one that is

dependent on the amount of information assumed to be known about

F and G. This approach allows the problem to be segmented into

three types:

(1) F and G are completely known — On the basis of an

observation of Z, the problem is to determine which is the dis-

tribution of Z. Treatment of this problem has been extensive

and its solution lies within the Neyman-Pearson lemma.

(2) F and G are known but complete knowledge is lacking

in its parameters — F and G are of the same family of dis-

tributions but differ parametrically and on the basis of an

observation on Z, the problem is to determine which is the dis-

tribution of Z. Hodges and Fix discuss this in [2] and identify

the most familiar example of this process as the linear discrim-

inant function where the assumption is made that F and G are

p-variate normal distributions having the same (unknown) co-

variance matrix* It is noted that the approach is reasonable

if the assumptions are well founded but validity is questionable

if the populations are obviously not normal or if they are normal

but with obviously unequal covariance matrices.

(3) F and G are completely unknown — Nothing is assumed

about F and G other than their existence and on the basis of an
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observation on Z, the problem is to decide which of F .ind G is

the distribution of Z.

The last problem type is a problem of nonparametric class-

ification and is the area of concern of this thesis. The area

of nonparametric classification has its possibly first published

treatment in Hodges and Fix's [2] and [3]. In these papers

Hodges and Fix considered the two population problem, however,

they noted that the approach if general, has optimum properties

for large samples and applies to cases where there are more

than two populations to be discriminated. In [3] a comparison

is made of the nonparametric approach and the linear discrim-

inant approach, assuming both populations to be normal with

equal covariance matrices.

Eaton in [4] and Hager in [5] extend the work of Hodges

and Fix to one dimensional exponential populations. This paper

continues the investigation of exponential populations when the

distributions are bivariate exponential.

Section 2 will introduce and summarize the concepts and

methodology of [3]. Section 3 will apply these concepts to

calculate a probability of misclassification utilizing two

different distance functions to the two population problem when

both populations are bivariate exponential. Section 4 will

present the conclusions and recommendations evolving from the

effort set forth in Section 3.
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2. PERFORMANCE OF A NONPARAMETRIC DISCRIMINATOR WHEN THE TWO
POPULATIONS HAVE NORMAL DISTRIBUTIONS WITH

EQUAL COVARIANCE MATRICES

The two population classification problem will be defined

in the following manner. Let X , , X ,
• •

, X be a sample from
1 2 n

a p-variate distribution F and let Y. > Y0>
*•*, Y be a sample

1 2. m

from the p-variate distribution G. An observation z is made

and it is known to be distributed either as F or as 6. The

problem being to assign z to one of these two.

The approach utilized for the nonparametric procedure will

be through the concept of nearness. A distance function is

defined in the p -dimensional sample space which allows a ranking

of the combined samples according to their nearness to z. With-

in this framework, z would be assigned to the F population if

most of the nearby observations are X's and assigned to G if

most of the nearby observations are Y's. For simplification,

the sample sizes are assumed to be equal, i.e., m=n. As an

assignment criteria, an odd integer k is selected and z is

assigned to that distribution from which came the majority of

the k nearest observations. The case studied in this thesis

will be when k = 1, the rule of the nearest neighbor.

In [2] it is shown that several of these nonparametric

discriminators have asymptotically optimum performance as m

and n tend to infinity. By this is meant that probabilities

of misclassif ication,

12



P » P (Z is assigned to G | Z came from F)

P " P (Z is assigned to F |
Z came from G)

2

will approach the theoretical minimum values obtainable if F

and G were completely known as the sample size (m,n) tends

to infinity.

In [3] Hodges and Fix investigate the probabilities of

misclassif ication of the nonparametric procedure when the

sample size is small and compare the results with the linear

discriminant function probabilities of misclassification. The

populations are assumed to be normal with equal covariance so

the linear discriminant function is optimal and the nonpara-

metric procedure can be compared against the optimum for a

comparison as to how much discriminating power is lost when

the sample sizes are small.

This Section will present some of the concepts and results

of [3] developed in establishing this comparison.

Initially, it is stated that the problem can be reduced

by considering linear traru forma ions on the observation space

so that F and G will always have the identity covariance matrix,

i.e., the p transformed measurements are independent in each

population and that each measurement has unit variance. Also

the expectation vector of F can be placed at the origin and

that of G on the positive first axis. Thus only two parameters

p and X are required to specify the transformed populations

where

13



X E (first coordinate of Y)

distance between the means of the transformed

populations.

For the linear discriminant function, P, and P„ are
1 2

unchanged by this trans format ion, hence there is no loss of

generality. P and P for the nonparametric discriminators

are also unaffected since such linear transformations map the

totality of possible distance functions of the original space

one to one into the totality of the new space.

The univariate normal case is considered in depth due to

its computational simplicity both for the linear discriminant

function and the nonparametric procedure.

Considering the linear discriminant function first, the

univariate case eliminates matrix computation and allows the

classification problem to be stated as; compute the arithmetic

mean ot the sample means, =-^
, and assign Z to the population

2

whose sample mean lies on the side of (X + Y)/2 as does z

itself. An error is committed then if and only if;

Z > (X + Y)/2 and Y > X

or

Z < (X + Y)/2 and Y < X.

Hence,

P - P(Z > (X+Y)/2, Y > X) + P(Z < (X+Y)/2, Y < X)

and P due to the symetry of this particular problem.

In [3] it is shown by defining new variables of X, Y and Z, the

14



limiting value of P as n^» is .5.

Considering now the nonparametric procedure, again n=»m

and the populations are univariate normal. The discriminator

will be the case of k ° 1, i.e., assign Z to the nearest sample

(rule of the nearest neighbor). The distance function utilized

to measure the degree of nearness will be;

p ,
.

A (x,z) max |x. - z

i=l * *

This function, A (x,z), describes a hyper-cube in p space and

is only one of many functions that could be used. In the case

of p = 1, A (x,z) corresponds to Euclidean distance.

To arrive at the error probabilities a conditional prob-

ability F (z) is introduced and defined as the probability that

the nearest of the 2n sample observations to Z is a Y given that

Z z. Then

(1) P - E [P (z)] - ' f7 (z)
P (z) dz

1 Z 1 J A 1

where the distribution of Z,

f
z
(z) - (l/vT27T) exp (- j- z

2
),

is the distribution of the X's, F.

In order to calculate P,(z) in general the quantities H„( 6 )
1 &

and K (6 ) are defined as follows;
Z

H (8 ) - P (the distance of X from z < 6 )$

H
7 ($ ) "* P (the distance of Y from z < 6 ).
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The explicit forms of H (I ) and K ($ ) and therefore P, , will
Z i Z 1

be dependent on the distance function utilized to express the

nearness*

In [3] the distance function utilized is

P
A (x,z) = max |k. - z.

|

i=l *
a l

and since the univariate case is considered, H (6 ) and K (6 )
z z

can be expressed as:

H
z(|)

= P (|x-z| < 5 )

K (I) = P (|Y-z| < 6 )
z

The formulation of P (z) in terms of H (5 ) and K (6 ) can be
1 Z Z

done by considering the distance from z to each of the Y obser-

vations,

Iy^zI , |y
2
-z| ,

•••, |Yn-z|
.

Hence with the assumption of independence and of equiprobable

events

,

P(max |y
±
-2| <6 ) - PdY^zl <6) •••

P(Yn-z| <|) -(^(f))
11

.

Therefore,

P(min |Y -z| > §) = P(|Y -z| >| )
•••

i 1

n

or

P(|Y -z| > 6 ) - (1-K (6 ))
n

n Z

P(min |Y
±
-«| < 6 ) = 1 -(l-K^ ))

n
.

16



The density of the minimum distance between Y and z is then

n (1-K„(6 ))
n_1

dK (6 >
f

.

« Z

Similarly the minimum distance between X. and z can be treated

with the result that

P(min |x -z| > 6 ) = (1-H (6 )) .

i Z

Now, P (z) = P (nearest observation to Z is a Y given that

00

p
Z-Z) -

J
P(min \x

t
-z\ > 6 | min |Y,-z| «= b )f

min
|

v6) .|<*") d4-

In termc of H (6 ) and K (6 ) then
s

I

P
r

n n-1
(2) P (z) » n (1-H Co)) (1-K («)) dK (6) .

1 j Z /!. ^

o

Equations 1 and 2 form the basis for computations for the

tule of nearest neighbor for any p and any distance function,

the explicit form of H
z ( 6 ) and K (6 ) being dependent on the

distance function.

Figures 1 and 2 illustrate the comparison of the linear

discriminant function and the nonparametric discriminator error

probabilities when the distance function is A, k 1 and the

populations are univariate normal.

It is shown in [3] that for large n and in general,

00

ps E [ r< 2> 1- r s< z> f < z> dz

1 L f (z)+g(z) J ^ f (z)+g(z)

the value which by Schwartz's inequality cannot exceed % .

17
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nonparametric
discriminator

X = 1

X = 2

* = 3

L....L ) I u J 1 I t > \ I I

10 20 30 50 100
n

FIGURE 1
Probability of Error P-]_ vs. n for Linear Discriminant
Function and Nonparametric Discriminator, k = 1.
Both populations are univariate normal, X = distance
between the means. Distance function is a .
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.4 -

.3 -

.2 -

.1 -

FIGURE 2

Probability of Error P. vs. X for Linear Discriminant
Function and Nonparametric Discriminator, k = 1.
Both populations are univariate normal. Dotted line
indicates nonparametric procedure, n = 1 is identical
for both. Distance function is A .
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The dependence of P on the distance function was mentioned

earlier and Hodges and Fix in [3] present some results showing

how P is affected by alternative distance functions.

In considering these other distance functions, the sample

populations are assumed to be bivariate normal allowing a greater

choice of distance functions than can be encountered when p=l.

The function A (x,z) is in this case,

A ((x^), (z^)) -max (U^Z | , IXg-zJ ) ,

a locus of points centered at z in the form of a square*

Euclidean distance, describing a circle centered at z is

defined as,

A «« >* ), (« • )) » ((X -Z )

2
+ (X -Z )

2
)
%

.112 12 ll 22

A distance function describing a rectangle centered at z

in the ratio of one to three and whose sides are parallel to

the axes is,

A
2

((X
1

,

|2
>

*
(Z

1
,Z

2
)) = maX ( 'VZ

l' *
3

I
X2"Z

2'
)

'

i.e., a rectangle whose vertical dimension is three times its

horizontal dimension and the common multiple being the

max (|X
1
-Z

1
| , |X -Z | ).

Similarly a distance function describing a rectangle

centered at z in the ratio of three to one and having sides

parallel to the axes is,

A ((Xl ,x2),
(z^z^) = max (3^-zJ , |x -Z

| ) .

20



Limited computed results are offered in [3] regarding the

use of the^ distance functions A, A , A and A . The com-

parative results are illustrated in Figure 3 in the form of a

ftlot P (0,0) and n. P (0 0) is the conditional probability of

error given that z is at the origin. It was presented because

it was remarkably consistent with the value of P .

Comparison of the results in Figure 3 concludes that in

this case there is little difference in P whether A or A is
1 1

used. However there is great effect with respect to the use

of the other distance functions and hence a burden is placed

upon the statistician for selecting the appropriate distance

function.

Though not covered in this summary, Hodges and Fix in [3]

investigate to a limited extent:

(1) The nonpar ametric discriminator using A as a distance

function with k = 3 for the univariate and bivariate normal

distributions.

(2) The nonparametric discriminator using A as a distance

function with k = 1, n 1, and p ^ 2.

21



P-L^O)

5 -

.4

.3 -

.2

.1 -

n

FIGURE 3

Probability of Error P (0,0) vs. n for Various Distance

Functions for the Nonparametric Procedure, k s 1.
Both populations are bivariate normal, X = 2.
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3. NONPARAMETRIC CLASSIFICATION ERROR PROBABILITIES FOR TWO
DIMENSIONAL EXPONENTIAL POPULATIONS FOR

TWO DISTANCE FUNCTIONS

Hodges and Fix's work in [2] and [3] of comparing the

performance of the linear discriminant function and that of the

nonparametric procedure is applied to the two population expo-

nentially distributed case by Eaton in [4] and Hager in [5].

Eaton studies the small sample performance and Hager extends

Eaton's work to larger sample size and also gets some asymp-

totic results. In both [4] and [5] the study is limited to one

dimension, i.e., p 8 1. Hodges and Fix's major effort was for

the case p 1, with only limited presentation of results for

p ^ 2 for the nonparametric procedure and none for the linear

discriminant function.

This section will consider the following:

(1) The two population classification problem when the

distributions are two dimensional exponential.

(2) Formulation of the error probability P * P(Z is

assigned to g|z came from F) , utilizing the nonparametric pro-

cedure when the distance function is:

(a) Hyper-cube,

P
A (x,z) max [ |x -z

. |

]

i-1 *
L

(b) Hyper-sphere,

2 2 h
A.(x,z,) - [(x -z ) + •"+ (x -z ) ]1 11 P P

23



The density functions of F and G will be denoted by

1*2 2 12
l #

respectively where

-a x + x x )

f (x .x ) - X X e
Li z 2 forx.,X^0XX12 12 xi

12

B otherwise

and
-(u, y + |i y )

f v (y,»y ) - n> •
l 2 2 f°r y,»n. *

12 2

otherwise.

Independence is assumed between X and X and also for Y and

Y .

2

Following the procedures of Section 2, P * E [P (z)] .

1 Z i

oo oo

P - I [ P_(z) f_ z (z ,z ) dz dz
1 o

J
o l Z

l
Z
2

l
2 12

r r r
p

P - J J P ( 2) f (*,,*) dz
2 dz + J J P.(z) fz z (z.zjdz.dz.

1
z * z,

X 12 1 2 2 X
z * «_

X Z
1
Z
2 12 2 1

1 2 2 1

where

-(X z + X z ) for z ,X £
f (z.,z ) = XX e * 1 2 2 i i

Z
1
Z
2

2

otherwise

P (z) » n
J[

1 - H (6)] [ 1 - K (6)] dK (6)
1 2 Z 2

24



Y z) - p
. i-H

z (6)]

n

[ 1-1^(6) ]

n
dK (6)

6 < z < z
1 2

+ nJ Cl-H
z (6)]

n
[l-K

z
(6)]

n" 1
dK (6)

z <6 <z
1 2

+ J
[1-H

Z
<6>] [1-K

z
(6)]

n
dK

z
(6)

z <g < 5
1 2

when z ^ z . When z ^ z the subscripts interchange.
2 i 1 I

The explicit form of H (6) and K (6) will be dependent
Z Z

on the distance function utilized and the relationship of 6

and z.

The hyper-cube distance function will be considered first,

2 2
A (x,z) = max [ |x -z |] , A (y.z) max [ |y -z. |] .

i-1 x x i=l i L

For Z=z, and 6 ^ 0, H (6) and K„(6) can be defined.
Z z

H (6) - P( max [|x.-z.|] < 6 ) - P(max[ |x -z |, |x -zj] < 6 )

Z i=i i * ll 22

= P(|X
1
-«

1
I, |x

2
-z

2 |
< 6 ) = P(|X

1
-«

1
I
< 6 )P(|X

2
-z

2
|
< 6),

assuming independence of the differences. Hence H (6) will be
s

evaluated in six regions:

25



V 6 z + 6
2

V 6)
" I V*l> ^1 ^

fx
2

(X2> ^ 1
6 * z

2
* z

x

z - 6
1

z + 6

1

V 6

z n+ 6
2

J
£
Xl

<x
i) <"<! i £

x <*P
dx

2 V 6 £
"i

V 6

z + 6
1

z * z
1 2

z + 6

2

i

J
£

Xl
(\* d\ J VV dX

2 «2
*

"l*
6

z + 6 z + 6
2

J S^ dx,

v 6

z + 6

f
X
2

(X
2
>dX

2
6 ^V Z

2

z - 6
1

z + 6
2

J
£
x,

(5t
i>

dx
i

z + 6
1

z - 6
2

z + 6
2

f (x ) dx z £ 6 £ z
X^ 2 2 1
2

2 - Z

2 1

ISfv (xp d
X]L

f
X

(X
2)

dx
2

*1* V 6

Similarly

K (6) - PClYi-zJ < 6 ) P(|Y -z | < 6 )
7 * * 22 2

and will be defined as was H (6) in the six regions. Differ-

entiating K (6) yields dK (6) in the six regions.
z z
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Evaluating H (6) , K (6) and ^K (6) and combining terms

yields, when z
n
^ z ,

1 2

z
n 2 "^i z i

"*^<>z o
^(z) - a

J
[1-4 e

l L Z 2 sinh X 6 sinh X 6]

[1-4 e X 1 2 2
si

1*,*.-p.o«. n.l
sinh m. 6 sinh u- 6]

(4 e ) Lm- sinh u- 6 cosh n- 6
1 2 l

-:- n sinh u, 6 cosh j, 6 ] d6

]f
*1 2

Z
l |
P r -Xi z

i
~ X

lz l'
X
2z9"

X<
>

6 n-
+ n

J
[1-2 e

x
sinh ^ 5 + 2 e * * sinh X^]

z

2

-»*l*l
-u z.-u-.z -p. 6 n-i

[1-2 e sinh u^6 + 2e Xi * Z Z sinh p.^]*

-!»!«! ^ - u
2
z
2
-u

2
6

L2p.,e cosh iJi-6 - 2p-
1
e

- -M-iZi-M- z -|i 6

cosh p.^ + 2|i
2
e * z sinh p

x
6 ] d6

* r r
-X

i
zrX

l6 "X
2
zo"V -X

1
z
1
-X

2
z
2
-X

1
6-X 6 n

+ n Le +6°* -e J

z
l

-M. 1
z 1-ja 16 -n 2

z
2
-|i 6 »*

1
z
1
"lA

2
Z2"Ji

l
6 " ^ n_1

[e + e - e z
]

r
"M.

1
z
1
-^

1
6 -p. z -p 6 -p. z -p z "P^-p 6

CV + V "
(M,

1
+

^2)e ]d6
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and when z ^ z

2 1

V z) " n
J

C 1"* « sinh X 6 sinh X 6]

o

1 1-4 e * * sinh p. 6 sinh p.,6J
2 1

-p.
1 z,-p, z,

L4 e (11 sinh p> 6 cos p.. 6 + p. sinh p.,6

cosh p, 6)]d6

z
2

P -^ozo -^-iZ, -X
-)
z.-X..6 n+ n

J [1-2 e
Z 2 sinh X 6 + 2e

2 sinh X.6]
2 2

z
l

"l*2z2
"
M,
i
z l" |J,

2
z
2 "^l6 n " 1

[1-2 e sinh p, 6 + 2e sinh p, 6]
2 2

-H
2
z
2 -M-^i-^ * -M-jS

[2ii
2
e " cosh m>

2
6 - 2p>

2
e 2 2

-M, 1
z
1-n z ni.6

cosh p. 6 + 2p> e * * sinh p. 6] d6
2 1 2

£ -X a^-X^ -WX
2ii " X l

zr X
2
z2"H 6V n

n
+ n I L e + e * * ^ e J

z
2

-p, zj-p.,6 -H z o -t* 6 -p. z,-p, z -p. 6-p, 6 n-1
[e

1 +e 222 -e 1221 2
]

-V z
1
-p,

1
6 -n2

z -p. 6 ^ifl-V2^16 *lA
2
6

Lp^e + p-

2
e - (p.^) e

] d6#
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oo , Z..

-\\Then P = \ e P ( z) X e ' 4 dz dz +
1 *J 1 «J l

x/ 2 21

OT
\ „ z

P X
2
Z
2 p 2 *,,

J 2
6

J M*>V
o O 1 2

The Euclidean distance or hyper-sphere distance function

for p s 2 is:

2 2 % 2 2 %
A
i
(x,z) = [(x

1
-z

1
) + (x

2
-z ) ] , A^Cy.z) = fc^"^) + (x^) ] ,

Evaluation of P , P (z) , H (6), K (6) and dK (6) will follow
1 1 z z z

the same logic as that followed for the hyper-cube. The explicit

form will be more awkward however.

2 2 %
Consider H (6) = P([(X

]L

-z
1)

+ <X2~Z2* * < 6 )• F°r ease

of notation define:

Then,

where

S = X - z and T = X - z .

1 1 2 2

H (6) = P(S
2
+ T

2
* 6

2
) - | |

f
ST

(s,t) ds dt

S
2
-HE

2 £ 6
2

-^(s+z )

(s) = f„ (s+z) = Ke l

I

x
i 1 L

for s + z ^

= otherwise

V t} ' Vt+2
2> " V

X
2
(t+z ) for t + z ^0

otherwise.
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The definition of S and T translates the axes to center at

(z ,z ) and H (6) is the evaluation of the circle centered at12 z

(z ,z ) with 6^0. Here as before, evaluation of H (6) will12 Z

be over a region which is the union of six mutually exclusive

sub-regions. Therefore,

6 (^?
V6

>
= 4

J 1
f
8I

(,,t> dS dt

o o

6

1
•6 -z

fg^s.t) ds dt

6 J6
2
-s

2

11
z
l '

z
2

f (s,t) ds dt
ST

6 £ z * z
2 1

z £ 6 £ z,
2 1

z £ z <; 6

2 1

z„^ z
1 2

/2 2
6 k -6*

o o

f (s,t) ds dt
ST

6 Ja*-y
p p

. j
fST

(s,t) ds dt

-/72 2z. -/6--o-

J 1
-z, -z

1 2

IS
2 210 - s

f (s,t) ds dt
ST

5 * s,sf %

z z s z
2 2 l

z * z * 6
1 2
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K (6) is similarly treated by defining,

U -
Yi-.i

, v - Y
2
-z

2
.

1^(6) = P(U
2
+ V

2 * 6
2

) -
J J ^(u.v) dv du

U
2
+V

2 < 6
2

where

-M-j^CuH-z.)

f (u) - f„ (u+z,) = yi A for u + z *

otherwise

and

f (v) f (v+z ) u- e 2 2 for v + z ^
V

v
Y
2

V
2 2 2

= otherwisd.

The functional form of K (6) will be the same as H C6) . K (6)

and dK (6) will be defined over the same regions as H (6).
Z Z

Evaluating H (6), K^(6) and dK (6) and combining terms yields,

when z ^ z ,

1 2

2 [1 + 4e
1Z1

2
Z
2 - 4e

X L 2 2 L
-4e

X X 2 2

6
/o^T2

v/
XlS " x

2 dsf Cl + «.-wy2 ^-l-i-WY1
S

2
V °

"
S

, «- ^i«i-^« "Ml-^VM

- 4e
j>

-|AjU-u \|6
2-u n_!11 "2 2 H e da]

-^ z -n z -u 6 -a- .z -M- z

[-8u
1

e
X X 2 2 1 + 4n

1
e

L X 2 2
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P^z)

r
6 M «

-M-j^u-m, \l
A 2 2
6 -u

J

o

du ] d6

" 6 - u

r i -^izi
'nj [1 - 2 e sinh X

"Xl«rXA f

6
-X

!
s-Sv6

2
-s

2
n

L
6 + e U 22 je i 2 ds]

[l - 2 e * sinh \x 6 + e

5 2 2
-p. z

x
~,A

1
Z 1-,SZ

2 * "^i
u~^

2
v 6 -u n-1

+ e e

-6

du]

-p z. -p.-Zj-p z -p^-p z

[2M- e cosh n 6 - 2 e * * cosh ja 6 + n 6 e z 2

/2 2
6 -p u-p / 6 -u

- X 2e *•

J J 6
2
- u2

du] d6

+n p - Xl«l-X i
6 "

X
l
Z
l"

X
2
Z
2 ,

6
-^s- W6 2-s

2

L -z
1

ds]

-p. z -p. ,6 -«Vr»SS r "l^u-M. A 2""

J
e

"z l

du]
n-1

[**.«

-p z -p 6 -(jl-z -p. z -ji 6 -p.z -p z11 "1
- e

'in -2i -r + a .

/* 2 2
6 -P.u-p / 6 -u

i e

J *2 26*- u

du] d6
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and when z s z ,

2 1

P^z) = n
; -X z,-X z -X z -X z -X 6 -X z -X z
1
[1 + 4 e

l l 2 2
- 4e

L L 2 2 1 . 4e 11 2 2

6
-X.s-X /6 2-s

2

J X
x
e

X 2
ds]

o

-|*i «,-!*,»*,. "^-.Zi-M'^z^-M'. 6
"^i z

l"^2
Z
9

- 4e[l + 4e x 22 -4te

6 iT2 2
-M. u-m. 7 6 -u n-l

Ji e 2 du]

C-s^e ^iWi?!* . ,.. ^"iVa+ 4^

. -^i»—H„ /6
2
-u

2

M-
2
6 e L 2

° /^
du] d6

z
11

2
-X,z,-X X,s

2 2
. -,n+ n

j

2
[1 - 2 X e

l l 2 2
j e sinh Jb

2
-s ds]

[1 - 2u e

"
P
'l
Z
l'

lX

2
Z
2 2 2 ,

-.n- 1

e sinh v 6 -u du]

6 -p.,u

[* lt
^*Wl [' e

'"I'
cosh yg? du] d6

,// 6
2 -u2
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p <«>
1

+ n
, -Vi-v + ,-H«rV2 r

6

e -Vx
2^

J- ds]

-u « -u 6 -u z.-u- z rin + e
11-22

J

-M-jU-m^ n/ 6
2
-u n-1

du]

-z,

C^e l l l
- e

iVV2-*i6

+ ^ ."ViVa

*2 2

« i 2

-z. f&2-u
2

du] d6

Then,

\ " J J
P
!< 2) f

ZlZ <
z
!»

z
2
> *»!*•, + J I

P
1
(Z) f

Z
1
Z
2
(z

1
» z

2
)d2

l
dZ

2
z ^ z
1 2

Z 2: z
2 1

Representative values of P were obtained for the hyper-cube

distance function and are listed in Table 1. Evaluation was by a

computer program utilizing FORTRAN 63 and a sub-routine based on

Legendre-Gaussian quadrature. Appendix I lists the program as used.

The case X, X. and u =
M*9

was selected for comparison reasons and

also for reduced computer time. The program is general and allows

selection of any parameters greater than or equal to zero.

Time limitation prevented attainment of comparative results for

the Euclidean distance function.
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n

X
l

= X
2

= 20

Hj - ji - 10

X l
= x

2
= 30

V-l M-2 = 10

*1 - X
£

= 50

- |i

2
= io

1 .3435 .2387 .1318

4 .3820 .2842 .1733

8 .3939 .2994 .1862

20 .4020 .3071 .1969

X = X =10
1 2

X - X =10
1 2

X = X =10
1 2

n 1*1 ^ = 20 Hi - M-
2

" 30 H
L

M-
2

» 40

1 .5488 .5285 .5032

4 .4709 .3989 .3417

8 .4463 .3612 .2973

20 .4259 .3327 .2682

TABLE 1

Probability of Error P Nonparametric Discriminator, Bivariate

Exponential Distribution. Distance function, hyper-cube, A.

k 1, rule of nearest neighbor.
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4. CONCLUSIONS AND ACKNOWLEDGEMENTS

The application of Hodges and Fix's work to the two population

bivariate exponential case in Section 3 resulted in representative

results tabulated in Table 1. Though the results are small in number,

they allow comparison with that presented by Hager in [$].

The nonparametric discriminator error probability values in [£]

indicate similarity to that listed in Table 1. The case when

X, » X > [i. p. corresponds to the case c > 1 in [$]. In both [5]
1 2 1 2

and Table 1, probability of error P increases with increase in n.

Likewise X =• X < u = u- is analgous to c < 1 and P decreases with12 12 1

increasing n in both Table 1 and [j]. Table 1 does not indicate the

sensitivity of P to change in parameter magnitudes nor the effect of

the change of a single parameter.

The intent of this thesis was to develop the explicit forms of

the error probabilities for the two distance functions and then eval-

uate the probabilities to determine if there is any superiority of

one distance function over another. This goal was only partially

attained due to the programming complexity and extensive computer time

required to evaluate the error probability.

The following are recommended as areas of further work:

1. Examine sensitivity of P to change in parameter magnitudes

and variation of a single parameter.

2. Attempt to streamline program or approximation method to

shorten computer time.

3. Compute P, for the Euclidean distance function to compare

results with the hyper-cube.
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4. Develop functional relationship of P and P
9
when p = 2.

5. Examine other distance functions.

I wish to thank Professor J. R. Borsting for his enlightening

guidance and assistance in preparing this thesis. I also wish to

extend my gratitude to Mrs. Patricia Johnson for her programming

assistance in evaluating the equations of Section 3 and to the Computer

Facility for their help in processing the programs.
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APPENDIX I

PROGRAMT^HRECUBE
COMMON B1*B2»D1»D2»N,XN,IND»IMD

1 READ 10Q0»N,B1»B2»D1»D2
PRINT2.N.B1,B2.D1»D2

2 FORMAT(2X,2HN»I5t2X.3HBl=E15.8»2Xt3HB2=E15.8t3X»3HDl«E15«8.2X»3HD2
1=E15.8///)

1000 EORMAT (I5.4F10.0)
XN = N

IND=1
CALL TRAP KA1)
PRINT3»A|

3 F0RMAT(5)^3HA1 = E15.8///)
IND = 2

CALL TRAP 1 (A2)
PRINT 4»A2

4 FORMAT(5X,3HA2=E15.8///)
PI = XN*(A1+A2)
PRINT 2000»N»B1»B2.D1»D2»P1

2 000 FORMAT(2X,2HN=I5»2X,3HBl=E15.8»2X»3HB2«E15.8t2X»3HDl=E15.8»2Xt
1 3HD2=E15.8,2X,3HP1=E15.8///)
GO TO 1

END
SUBROUTINE TRAPKAREA)
COMMON B1»B2»D1»D2»N,XN.IND»IMD

10

NN=10
XINC >

XEND i

AREA i

XI =

XEND

20

10

12
15

20
30
40

50
60

= .5
= 0.
= 0.
XEND
= XEND +XINC

AREAX = GLQUAD (XI»XEND»NN)
AREA = AREA+AREAX
IF(AREAX-l.E-06) 20»20»10
RETURN
END
FUNCTION F(U)
COMMON Bl.B2tDl.D2»N»XN»IND»lMD
NN=10
XINC =.5
AREA = 0,
XEND = 0.

IF(ABSF(U)-l.E-06) 30.30tlO
XI=XEND
XEND = XEND +XINC
IF(XEND-U)15»15»12
XFND = U
AREAX = GLQUAD2 ( X I

•

XEND.NN»U )

AREA =AREA + AREAX
IF(ABSF<U-XEND)-l,E-06) 30,30,20
IF(AREAX-l.E-06) 30»30»10
GO TO (40t50) »IND
B=B1
GO TO 60
B=B2
F * B*EXPF(-B*U)*AREA
RETURN
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10

12
15

20
30

END
FUNCTION G(V»U)
COMMON B1»B2»D1,D2»N,XN,IND»IMD
IMD=1
CALL TRAP2 (0,V,U»V,A1)
IMD = 2

CALL TRAP2 (V.U,U,V,A2)
IMD = 3

CALL TRAP 3( U,U,V»A3)
GO TO (400,500) ,IND

400 B=B1
GO TO 600

500 B=B2
600 G = B* EXPF(-B*V)*(A1+A2+A3)

RETURN
END
SUBROUTINE TRAP2 ( A,C ,U,V,AREA

)

COMMON B1,B2»D1,D2»N»XN»IND,IMD
NN=10
XINC=.5
AREA=0.
XEND=A
IF(ABSF(C)-1.E-06)30,30»10
XI=XEND
XEND = XEND +XINC
IF(XEND-C) 15,15,12
XEND = C
AREAX = GLOUAD 3 ( XI ,XEND,NN»U , V

)

AREA=AREA+AREAX
IF( ABSF ( C-X END )-l.E-06) 30*30. 20
IF(AREAX-1.E-06)30»30,10
RETURN
END
SUBROUTINE TRAP3 ( A,U »V,AREA

)

COMMON B1,B2»D1,D2,N,XN»IND»IMD
NN = 10
XINC=.5
AREA=0.
XEND=A

10 XI=XEND
XEND = XEND +XINC
AREAX = GLQUAD 3 ( X

I

,XEND»NN »U, V

)

AREA=AREA+AREAX
IF(AREAX-1.E-06)20»20,10

20 RETURN
END
FUNCTION HF(X,U»V)
COMMON B1»B2»D1,D2»N,XN»IND»IMD
GO TO ( 100,500) »IND

100 Z1=U
Z2 = V
GO TO (200,300,400), IMD

200 HF= (1.-4.*EXPF(-B1*Z1-B2*Z2)» SI NH ( X,B2 ) *SI NH ( X, Bl )
) »»N»( 1 .-4.

»

1EXPF( -D1*Z1-D2*Z2)* S I NH ( D2 ,X ) *S I NH ( Dl ,X )
) *«{ N-l )* { 4.* EXPFC-D1*

2Z1-D2*Z2)*(D1*SINH(D2»X)*C0SH(D1»X)+D2*SINH(D1,X)»C0SH(D2#X) )

)

GO TO 900
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** '

300 HF = (1. -2.*EXPF(-B1*Z1)* S I NH( Bl .X ) + 2 . *EXPF ( -Bl *Z 1-B2*Z2-B2*X

)

1* SINH(Bl.X) )**N*( 1.- 2.*EXPF(-D1*Z1)*SINH(D1,X) +2 . *EXPF ( -D1*Z

1

2-D2*Z2-D2*X) * S INH( Dl »X )
) ** (N-l)*( 2 .*D1*EXPF ( -Dl*Z 1 ) * COSH

3 (Dl.X) - 2.*D1*EXPF(-D1*Z1-D?*Z2 -D2*X) * COSH(Dl.X) +2.*D2*EXPF
4 (-D1*Z1-D2*Z2-D2*X) *SINH(D1,X))
GO TO 900

400 HF= (EXPF(-B1*Z1-B1*X) + EXPF ( -B2*Z2-B2*X ) -EXPF ( -B1*Z 1-B2*Z 2-B1*
1 X-B2*X)»)**N* (EXPF(-D1*Z1-D1*X) +EXPF ( -D2*Z2~D2*X ) -EXPF ( -D1*Z 1-

2D2*Z2 -QJ*X-D2*X) )**(N-1 ) * ( Dl*EXPF ( -Dl*Z 1-D1*X ) +D2* EXPF(-D2*
3 Z2-D2*X)-(D1+D2) *EXPF ( -D1*Z 1-D2*Z2-D 1*X-D2*X )

)

GO TO 9 Op
500 Z1=V

Z2 = U
GO TO (600* 700,800) IMD

600 HF= (1.-4.*EXPF(-B1*Z1-B2*Z2)* S I NH ( X . B2 ) *SI NH IX, Bl ) ) *»N* ( 1 .-4.*
1EXPF( -D1*Z1-D2*Z2)* S I NH ( D2 »X ) *S I NH ( Dl ,X ) ) ** ( N-l )* ( 4.* EXPF(-D1*
2Zl-D2*Z2)*(Dl*SINH(D2»X)*COSH(Dl.X)+D2*SINH(Dl»X)*COSH(D2*X) )

)

GO TO 900
,

700 HF=(1. -2.*EXPF(-B2*Z2)*SINH(B2»X)+2.*EXPF(-B1*Z1-B2*Z2-B1*X)»
1SINH(B2»X) )**N*(l.-2.* EXPF ( -D2*Z2 ) * SINH(D2.X)+ 2.* EXPF ( -D1*Z 1-0
22*Z2-D1*X) *SINH(D2.X) )**(N-1) * ( 2 .*D2*EXPF ( -D2*Z2 ) * C0SH(D2»X)
3 -2.* D2*EXPF(-D1*Z1-D2*Z2-D1*X)*C0SH(D2.X) +2.*D1 *EXPF( -D1*Z1-D2
4*Z2 -Dl*X)* SINH(D2.X))
GO TO 900

800 HF= (EXPF(-B1*Z1-B1*X) +EXPF < -B2*Z2~B2*X ) -EXPF (-B1*Z1-B2*Z2"B1*
1 X-B2*X))**N* (EXPF(-D1*Z1-D1*X) +EXPF ( -D2*Z2-D2*X ) -EXPF ( -D1*Z1-
2D2*Z2 -D1*X-D2*X) ) ** ( N-l ) * ( Dl*EXPF ( -Dl*Zl^Dl*X ) +D2* EXPF(-D2*
3 Z2-D2*X)-(D1+D2) *EXPF (-Dl*Zl-D2*Z2-Dl*X-D2*X )

)

900 RETURN
END
FUNCTION COSH(Y.X)
COSH=(EXPF(Y*X)+EXPF(-Y*X) )/2.
RETURN
END
FUNCTION SINH(YtX)
SI NH=( EXPF (Y*X) -EXPF (-Y*X) )/2.
RETURN
END
FUNCTION GLOUAD (A.B.N)

C ' Dl UCSD GLQUAD F

C GAUSSIAN-LEGENDRE QUADRATURE OF F FROM A TO Bt 10*20 OR 40 NODES.
C
C P. YAGER 10/20/64 (RFF. KRYLOV PP338.341 AND SEC 7,2)
C

COMMON /GLQDATA/XK5) »A1(5).X2(10),A2(10).X4(20)»A4(20)
DATA (Xl= '

D .9739065285. ,8650633667. .6794095683. .4333953941. .1488743390)
DATA (Al=

D .0666713443. .1494513491. .2190863625. .2692667193* .2955242247)
DATA (X2=

D .9931285992. .9639719273* .91 72344283 • .8391169718* .7463319065*
D .6360536807. .5108670020.. .3737060887. .2277858511* .0765265211)
DATA <A2=

D .0176140071* .0406014298* .0626720483, .0832767416. .1019301198.
D .1181945320. .1316886384. .1420961093* .1491729865* .1527533871)
DATA (X4=
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c
c
c

c
c

.0104982845*

.0387821680,

.0613062425.

.0747231691,
Tl=(B-A)/2. $ Y*0

D .9982377097* .9907262387*
D .9020988070. .8659595032.
D .6719566846. .6125538897.

, D .3419940908. .2681521850.
\ DATA (A4=
D .0045212771.
D .0334601953.
D .0574397691,
D .0728865824.
T0=(A+B)/2. $

IF(N-10n.l.4
1 DO 2 K=l»5
2 Y=Y+A1(K)*(F(T0-T1
3 GLQUAD=Y*T1

RETURN
4 IF(N-20)5,5,7
5 DO 6 K=1.10
6 Y=Y+A2(K)*(F(T0-T1

GOTO 3

7 DO 8 K=1.20
8 Y=Y+A4(K)*(F(T0-T1

GOTO 3

END
FUNCTION GLOUAD2 (

Dl UCSD GLOUAD
GAUSSIAN-LEGENDRE

P. YAGER 10/20/64

.9772599500.

.8246122308,

.5494671251.

.1926975807.

.0164210584,

.0438709082,

.0648040135,

.0761103619,

.9579168192,

.7783056514,

.4830758017,

.1160840707,

.0222458492.

.0486958076.

.0679120458.

.0770398182.

.9328128083.

.7273182552,
•4137792044,
.0387724175)

.0279370070,
•0532278470,
•0706116474,
.0775059480)

*X1(K) )+F(T0+Tl*Xl (K) )

)

*X2(K) )+F(T0+Tl*X2(K) )

)

*X4(K) )+F(T0+Tl*X4(K) )

)

A.B.N.U)

QUADRATURE OF F FROM A TO B. 10.20 OR 40 NODES.

(RFF. KRYLOV PP338.341 AND SEC 7.2)

COMMON /GLQDA
DATA (Xl=

D .9739065285.
DATA (Al=

D .0666713443.
DATA (X2=

D .9931285992.
D .6360536807.
DATA (A2=

D .0176140071.
D .1181945320.
DATA (X4=

D .9982377097,
D .9020988070,
D .6719566846,
D .3419940908.
DATA (A4=

D .0045212771,
D .0334601953,
D .0574397691.
D .0728865824.
T0=(A+B)/2. $

IF(N-10)1.1»4
1 DO 2 K=l»5
2 Y=Y+A1(K)*(G(
3 GLOUAD2 =Y*T1

RETURN

TA/XK5) .Al( 5

.8650633667.

.1494513491.

.9639719273.

.5108670020.

.0406014298.

.1316886384.

.9907262387.

.8659595032.

.6125538897.

.2681521850,

.0104982845,

.0387821680,

.0613062425.

.0747231691.
Tl=(B-A)/2.

).X2(10) .A2(l

.6794095683.

.2190863625.

.9122344283,

.3737060887.

.0626720483,

.1420961093,

.9772599500,

.8246122308,

.5494671251,

.1926975807,

.0164210584,
•0438709082,
.0648040135,
.0761103619,

$ YsQ

0),X4(20),A4(20)

.4333953941, .1488743390)

.2692667193, .2955242247)

.8391169718. .7463319065.

.2277858511. •0765265211)

.0832767416. .1019301198,

.1491729865, .1527533871)

.9579168192,

.7783056514,

.4830758017,

.1160840707,

.0222458492,

.0486958076.

.0679120458.

.0770398182.

•9328128083,
.7273182552,
.4137792044,
.0387724175)

•0279370070,
•0532278470,
•0706116474,
•0775059480)

T0-T1*X1(K),U)+G(T0+T1*X1(K),U)

)

L.0



c

c
c

c
c

IF(N-20*5
DO 6 K-l,
Y=Y+A2(K)
GOTO 3 '

DO 8 K = l»

Y=Y+A4( <)

GOTO 3

END
FUNCTION

j

Dl UCSD G
GAUSSIAN-

,5,7
10
*(G(T0-T1*X2(K) tU)+G(T0 + Tl*X2(K) ,U) )

20
*(G(T0-T1*X4(K) ,U)+G(T0+T1*X4(K) »U)

)

GLQUAD3
LQUAD
LEGENDRF

( A,B,N,U.V)

QUADRATURE OF F FROM A TO B, 10.20 OR 40 NODES.

(REF. KRYLOV PP338.341 AND SEC 7.2)P. YAGER 10/20/64

LQDATA/X1 (5) »A1(5) ,X2(10) »A2(10) .X4(2Q),A4(20)

285. .8650633667. .6794095683. .4333953941. .1488743390)

443. .1494513491. ,2190863625. .2692667193. .2955242247)

COMMON /G
DATA (Xl=

D .9739065
DATA (Al=

D .0666713
DATA (X2=

D .9931285
D .6360536
DATA (A2=

D .0176140
D .1181945
DATA (X4=

D .9982377
D .9020988
D .6719566
D .3419940
DATA (A4=

D .0045212
D .0334601
D .0574397
D .0728865
T0=(A+B)/
IF(N-10)1

1 DO 2 K=l.
2 Y=Y+A1(K)
3 GLQUAD3 =

RETURN
4 IF(N-20)5
5 DO 6 K=l»
6 Y=Y+A2(K)

GOTO 3

7 DO 8 K*l»
8 Y=Y+A4(K)
GOTO 3

END
END
FINIS

-EXECUTE.

992. .9639719273. .9122344283. .8391169718. .7463319065.
807. .5108670020. .3737060887. .2277858511. .0765265211)

071. .0406014298. .0626720483. .0832767416. .1019301198.
320, .1316886384. .1420961093. .1491729865. .1527533871)

097, .9907262387, .9772599500, .9579168192, .9328128083,
070. .8659595032. .8246122308, .7783056514, .7273182552,
846, .6125538897, .5494671251. .4830758017. .4137792044,
908, .2681521850. .1926975807, .1160840707, .0387724175)

04982845. .0164210584, .0222458492, .0279370070.
87821680, .0438709082, .0486958076. .0532278470.
13062425. .0648040135. .0679120458. .0706116474,
47231691, .0761103619, .0770398182. .0775059480)
(B-AJ/2. $ Y=0

771, .01
953, .03
691, .06
824, .07
2. $ Tl=
,1,4
5

*(HF(T0-T1*X1 (K) ,U.V)+HF(T0+T1*X1(K) ,U»V)

)

Y*T1

,5,7
10
*(HF(T0-T1*X2(K) ,U.V ) +HF ( TO+T 1*X2 ( K ) ,U»V )

)

20
*(HF(T0-T1*X4(K) »U,V ) +HF ( T0+T1*X4 ( K ) .U»V)

)
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