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ABSTRACT 
 
 
 
The fog and stratus that frequently plagues the West Coast in the summer months 

is responsible for a variety of impacts on everyday life, the greatest being on aviation.  

Many flight delays and cancellations that are experienced around the Pacific Rim are 

attributed to the development and evolution of the fog and stratus on the U.S. West Coast.   

This thesis studies at the evolution of the fog and stratus events during the 

summer of 2000 through the use of geostationary, GOES-10, visual satellite imagery to 

develop a classification scheme. The synoptic-scale weather patterns as well as the 

mesoscale coastal regime were then associated with a type of stratus evolution. The 

Navy’s mesoscale model, coupled ocean/atmosphere mesoscale prediction system 

(COAMPS), provided detailed simulation of 11 events to highlight the boundary layer 

evolution and its relationship to fog and stratus evolution.  The fog and stratus 

classification scheme produced several consistent synoptic and mesoscale signals 

associated with stratus evolution.  These relationships provide some forecasting 

techniques that should aid forecasters with predicting the evolution of fog and status 

events. 
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EXECUTIVE SUMMARY 
 
 
The fog and stratus that frequently plagues the West Coast in the summer months 

is responsible for a variety of impacts on everyday life, the greatest being on aviation.  

Many flight delays and cancellations that are experienced around the Pacific Rim are 

attributed to the development and evolution of the fog and stratus on the U.S. West Coast.   

This thesis studies at the evolution of the fog and stratus events during the 

summer of 2000 through the use of geostationary, GOES-10, visual satellite imagery to 

develop a classification scheme. The synoptic-scale weather patterns as well as the 

mesoscale coastal regime were then associated with a type of stratus evolution. The 

Navy’s mesoscale model, coupled ocean/atmosphere mesoscale prediction system 

(COAMPS), provided detailed simulation of 11 events to highlight the boundary layer 

evolution and its relationship to fog and stratus evolution.  The fog and stratus 

classification scheme produced several consistent synoptic and mesoscale signals 

associated with stratus evolution.  These relationships provide some forecasting 

techniques that should aid forecasters with predicting the evolution of fog and status 

events. 
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I. INTRODUCTION 

A. PURPOSE/OBJECTIVE 

1. Background 

Marine stratiform cloudiness (MSC) (stratus, stratocumulus, and fog) is a 

widespread, primarily summertime, event over the eastern subtropical oceans where cold 

ocean currents predominate. The United States West Coast it is one of the foggiest areas 

in the country.  Ballard et al. (1991) stated that, “forecasting the formation, evolution, and 

the dispersal of fog is one of the most difficult problems facing local forecasters in many 

parts of the world.”  In particular, the MSC events along the West Coast of the United 

States during the summer are often responsible for numerous flight delays and 

cancellations at major airports from Seattle, Washington to San Francisco, and Los 

Angeles, California.  These events are so costly to airlines and airports that several 

research projects (California Coastal Studies program at Scripps Institute of 

Oceanography in San Diego, the University of Washington Department of Atmospheric 

Sciences, and the Marine Research Division at the Navy Research Laboratory in 

Monterey, California) have taken an active interest in studying the problem.  However, 

the most focused of research programs resides with the Federal Aviation 

Administration’s (FAA) Aviation Weather Research Program (AWRP) ceiling and 

visibility studies, which solely focus on the problem of MSC events. If  MSC events can 

be accurately forecast including formation, evolution, and dissipation; airlines could use 

this information for flight scheduling that currently affects the entire Pacific Rim. 

Airlines could thus save millions of dollars due to delays, not to mention an increase in 

customer satisfaction/understanding.  Naturally, imparred MSC forecasting would be 

very valuable for DoD operations and military aviation safety. To this end, the purpose 

and objective of this thesis is to develop a coastal cloud classification algorithm that is 

related to the synoptic-scale meteorological conditions that can be used as a coastal 

forecasting aid.  

This objective will be investigated through the use of relatively new technology,  

namely the use of a mesoscale model the Navy’s Coupled Ocean/Atmosphere Mesoscale 
 1



Prediction System (COAMPS) and through the use of a software visualization program 

developed at the University of Wisconsin called Vis5D.  Both of these tools are discussed 

in more detail in Appendix B, along with the General Meteorology Package (GEMPAK) 

Analysis and Rendering Program (GARP), which is also used.   

Vis5D will allow for a five-dimensional look at the coastal features and processes 

that produce MSC events. By viewing the atmosphere using this method, atmospheric 

processes can be confirmed; discarded, or developed that will improve forecasting 

techniques and accuracy.   

2. Limited Discussion (Summary) of Previous Work 

Based on climatology from the National Climatic Data Center (NCDC) in 

Asheville, North Carolina the entire area between Seattle and Los Angles experiences fog 

greater than 60 days per year when surface visibilities are one quarter mile or less, largely 

during the summer.  The exception to this region, oddly enough, is the San Francisco Bay 

region where the occurrence of fog is less than 60 days, but more than 40 days, using the 

same visibility criteria.  Additionally, the bight region of California (Point Conception to 

Baja) also experiences fog less than 60 days, but more than 40 days per year. 

MSC events in the bight region are often a result of the formation of a Catalina 

Eddy, which is briefly described as an interruption of the predominately northerly flow 

along the coast with  southerly flow, elevated marine layers, and an increase in low-level 

cloudiness.  It is limited to a narrow zone of approximately 100km from the coastal 

mountains and results in cooler temperatures and improved air quality for coastal 

residences. Mass and Albright (1989) describe the dynamics of the Catalina Eddy while 

others (Davis et al 2000, Thompson et al 1996, Ulrickson et al 1995, and Ueyoshi and 

Roads 1993) investigate the dynamics through computer simulations and case studies.  

All are insightful and informative. 

The Catalina Eddy, while not observed during the 11 case studies that are 

presented in this thesis, is an important meteorological event that takes place in the bight 

region of California. The feature is addressed in the following paragraphs to remind the 

forecasters of its importance to the development of fog and stratus. 
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The Cataline Eddy is initiated by the change from the climatological 

northwesterly to northerly winds and the impact of that northerly flow with the 

topography in the region.   As a result of synoptic-scale pressure falls along the central 

California coast and/or lee troughing southeast of Point Conception, south-north along 

shore pressure gradient is established in the coastal region, which interacts with the 

adjacent mountain barrier to cause the establishment of a southerly flow with a Rossby 

radius of about 100km within the coastal mountains.  This southerly flow results in 

considerable cyclonic vorticity in the coastal regions.   

Additionally, the eddy is strongly influenced by the diurnal cycle.  The 

northwesterly flow aloft, around 500m above mean sea level, impinges on the mountains 

north of the bight region. The flow is enhanced during the late afternoon, mainly in 

response to the land-sea temperature contrast.  The strengthening flow overlaps 

temporally with a minimum in low-level stratification due to surface heating.  The result 

is air that is characterized by a relatively high Froude number, which transverses over the 

coastal mountains and strongly depresses the marine layer over the bight region.  The 

depression in the marine layer causes a warm anomaly and cyclonic circulation.  Later at 

night, the incident northwesterlies weaken and the flow becomes more stable, which 

results in flow that goes around the coastal mountains rather than over them. 

During the early stages of a Catalina Eddy there may be little or no stratus in the 

bight region even though a circulation is present.  As the southerlies and the associated 

marine layer deepen, coastal stratus and fog develops and thickens.  Many studies have 

shown that in many cases, but not all, eddies form during the night as the moisture-laden 

southerly flow with (stratus and fog)  surges westward south of Point Conception and 

then is advected south by the strong northerly flow at and to the west of Point 

Conception. 

The West Coast fog is a marine fog.  It is associated with the cool waters of the 

Pacific Ocean and the California Current in particular.  This phenomenon is a year-round 

occurrence, but MSC events are not always present.  The ever-changing coastal 

atmosphere and microclimates controls it. The examinations of interannual variability of 

MSC events have been the subject of recent studies by Norris 1998, Norris et al 1998, 
 3



Norris and Leovy 1994, and Klein and Hartmann 1993. Norris (1997) has examined the 

seasonal variability of MSC over the North Pacific Ocean. He showed that variability is 

largest in two regions, the central and western Pacific Ocean. He contended that MSC 

events play an important role in the atmosphere-ocean coupling during the summertime 

when latent and sensible heat flues are not as dominant and the coupling between 

atmospheric circulation and sea surface temperature (SST) is not as strong as in winter. 

The seasonal variability observed over the Eastern Pacific Ocean is weaker but shows the 

maximum frequency of MSC events to occur in summer and that they are collocated with 

the region of strong SST gradient, i.e. the California Current.  

While this thesis will attempt to address the entire west coast, numerous studies 

on MSC events have focused on specific regions along the U.S. West Coast, particularly 

in California (Haack et al. 2001, Dorman et al. 2000, Dorman and Winant 2000, Dorman 

et al. 1999, Burk and Thompson 1996, Jannuzzi 1994, Felsch and Whitlatch 1993, 

Bridger et al. 1993, and Winant et al. 1988).  Although it is likely that terrain influences 

at least the evolution of MSC events; only one recent study addresses this issue, (Golding 

1999)  and is limited by the fact that its primary focus is on Perth, Australia.  However, 

the concepts are sufficiently general to be applied to the U.S. West Coast.  

Others have addressed such issues as wind reversals (sometimes referred to as 

coastally trapped disturbances, Kelvin waves and gravity currents) (Bond et al. 1996 and 

Mass and Bond 1996).  Such events for the most part occur during the summer and are 

broken down into two categories; coastally trapped wind reversals, in which the southerly 

flow is highly ageostrophic and restricted to the coastal zone, and synoptic wind 

reversals, which are associated with land falling fronts or troughs.  Coastal MSC events 

often accompany wind reversals, but by no means all of them.   

While much research has looked at parts of the MSC problem, the relationship to 

larger-scale patterns has not been systematically explored. Only one article, Leipper 

1995, was found that discussed forecast techniques relevant to the MSC problem.  

Leipper developed a system called Leipper inversion base statistics (LIBS) that 

emphasized the air-sea relationships.  His objective was limited to visibility forecasting 

only, and therefore, did not address the entire MSC event.   
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Leipper’s system is based on commonly observed sequences of day-to-day 

changes in the height of the inversion base and was a result of many years of analysis, 

experiment, and practice related to fog research on the West Coast beginning in the 

1940’s.  LIBS utilizes a single variable, the early morning value of the height of the 

inversion base, as the index of synoptic scale day-to-day weather affecting local 

visibility.  After determining the height of the inversion base, he compiled data whereby 

he showed the relationship between height of the inversion base with resulting observed 

visibility and duration.  He further broke down both inversion height and visibilities into 

ranges.  While helpful, it is very limited in scope.  Many times, forecasters look for that 

single key to unlock the mysteries of an event, but rarely find it.  This is a great example.  

The atmosphere is very dynamic and always demonstrating to mere mortal forecasters 

that following a single fluid is not always enough.  We must chase them all.  

There is no doubt that most, if not all, National Weather Service stations and 

private forecasting companies have “thumb rules” to help forecast  the MSC problem, but 

fail on many occasions for one reason or another. For example, the San Francisco 

weather office utilizes a technique whereby the pressure gradient force is measured from 

San Francisco to Eureka (along shore) as well as a cross-shore pressure gradient force 

(SFO to SAC) to determine the intensity of the on-shore flow.  This relationship is used 

to determine the extent of stratus expected.     

3.  Objectives 

This thesis addresses large-scale patterns in four regions along the West Coast 

with interesting and positive results. Those regions are approximated as follows: Seattle 

region covers Washington to Southern Oregon; Eureka region covers Southern Oregon to 

Cape Mendocino; Monterey region covers Cape Mendocino to Point Conception; and 

Los Angeles region covers Point Conception to Baja.  This study examines the unique 

relationship between the synoptic pattern and MSC events for each of the four regions 

and then looks for similarities between the regions that can be used by coastal forecasters. 

While not the focus of this project, the potential influences of El Nino, La Nina, 

or La Nada may limit the general applicability of these results. Numerous studies have 

shown that MSC events exhibits interannual variability that is associated with the 
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climatological changes given by El Nino and La Nina events. These events will cause an 

increase or decrease in MSC events and is not addressed in this thesis.   The data used for 

this thesis (addressed in subpart B below) were obtained during a La Nada event, the 

transition between El Nino and La Nina events. 

B. DATA USED AND PERIOD OF STUDY 

The period examined in this thesis is from 1 June to 31 August 2000.  The focus 

was on the summertime regime, and the daylight hours when visible satellite imagery was 

available.  There was no assumption that this particular period was “typical” for the entire 

region of study.  Over 12000 GOES-10 visual satellite pictures, broken down into four 

regions along the U.S. West Coast at 30 minutes intervals, were examined to characterize 

the evolution of the MSC events.  Detailed discussion of satellite imagery and how it was 

manipulated is provided in Chapter II.   

In addition to the satellite imagery, observations, and model generated analyses 

and forecasts were obtained locally through the Naval Postgraduate School’s archived 

data of FNMOC’s NOGAPS fields for the period of study.  These data fields were used 

to classify the synoptic patterns.  For a limited set of 11 representative MSC events, more 

extensive fields for 00Z were used to run COAMPS to examine additional aspects of 

MSC events. From these cases, data was obtained from the Master Environmental 

Library (MEL) at the Naval Research Library in Monterey, California to initialize 

COAMPS.   
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II. METHODOLOGY 

A. CLASSIFICATION OF STRATUS EVOLUTION 

The first step to characterize MSC evolution was to examine all visual GOES-10 

satellite imagery from 1 June to 31 August 2000.  The imagery consisted of; a western 

region that included the western United States and the coastal area of the Eastern Pacific 

Ocean (not shown), as well as four regional, one kilometer resolution pictures titled 

Seattle, Washington, Eureka, Monterey, and Los Angeles, California that correspond to 

the National Weather Service (NWS) forecast office that they support.  Figures 1 through 

4 are examples of the regional satellite pictures studied.  These pictures were archived at 

30-minute increments with some limited exceptions, i.e. picture was too dark, missing 

pictures, and the occurrence of corrupt files for one reason or another. The satellite 

imagery was compiled on three CD-R’s; each one containing one month’s worth of data, 

approximately 650MB for each month.  The data set was relatively complete with the 

following breakdown. There were 3877 pictures for the month of June of which 176 were 

unusable or corrupt, and there were no pictures available for the 11th of June.  July and 

August contained 4380 images each. July had 380 unusable or corrupt pictures with the 

2nd-4th   of July experiencing the phenomena of “ground hog day” where the satellite 

images were identical, but correctly labeled in 30-minute increments.  August had 390 

unusable or corrupt files.  The nature of the unusable or corrupt files was sporadic and 

therefore, did not hinder the classification of MSC evolution for nearly all days in the 

three-month period. 
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Figure 1.  Seattle, Washington GOES-10 regional imagery. 

 

To facilitate the classification of fog and stratus tendencies, each month’s satellite 

imagery was transferred to a laptop computer, where it could be animated for easier 

initial evaluation of the imagery.    Thumbnails of images were created using an 

evaluation copy of a program called Graphic Workshop Professional, version 2.0a by 

Alchemy Mindworks Inc. 1998 (patch 18).  This particular software package allowed for 

the display of numerous images at once and could further evaluate a series of images 

through the use of the slideshow feature set at one-second delay between images. This 

allowed for a near continuous loop of images and hence easy classification of fog and/or 

stratus tendencies for each of the four required sections. 
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Figure 2.  Eureka, California GOES-10 regional imagery. 

 
Figure 3.  Monterey, California GOES-10 regional imagery. 

 9



 
Figure 4.  Los Angeles, California GOES-10 regional imagery. 

 

After the initial evaluation of imagery, it was decided to characterize the large 

number of images into the daily, daytime (visual satellite images) evolutions only. In 

particular, only the fog and stratus that occurred within approximately 3km of the coast 

and its daily evolution was considered.   The following categories were developed to 

initially separate the MSC events that occurred within 3km of the coastline and are based 

on the tendency of the MSC event during the daylight portion of the day.    

• MSC category 1.  Fog and stratus dissipating or decreasing in coverage. 

• MSC category 2.  Fog and stratus developing or increasing in coverage. 

• MSC category 3.  Fog and stratus associated with a front. 

• MSC category 4. No change or decreasing coverage in fog and stratus then 
increasing coverage. 

• MSC category 5. No change or increasing coverage of fog and stratus then 
decreasing coverage. 

• MSC category 6.  Little or no change in coverage in fog and stratus. 
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• MSC category 7.  Fog and stratus not present. 

 

Examples of each category with the exception of MSC category 7 are given in 

limited sequences in Figures 5 through 10 on the following pages to give a clearer 

indication of the tendency of the MSC event.  The figures show a sequence of three 

images beginning in the early morning to midday, and finally late afternoon.   
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Figure 5.  Example of MSC category 1.  (Decreasing) 
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Figure 6.  Example of MSC category 2. (Increasing) 
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Figure 7.  Example of MSC category 3. (Frontal) 
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Figure 8.  Example of MSC category 4. (Decrease then increase) 
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Figure 9.  Example of MSC category 5.  (No change then decrease) 
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Figure 10.  Example of MSC category 6. (Little change) 
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MSC category 1, Monterey region  shown in Figure 5,  is where the daily, 

daytime visual imagery of the evolution of the MSC event showed dissipating or 

decreasing  coverage without any perturbations in the sequence.  The satellite sequence 

showed clear evidence of dissipation or decrease in coverage in any of the particular 

regions described.  This is not to imply cloudy to clear, but indicates a tendency towards 

less fog and stratus. 

MSC category 2, Monterey region shown in Figure 6, is where the daily, daytime 

visual imagery of evolution of the MSC event showed forming or increasing coverage 

without any perturbations in the sequence.  The satellite sequence showed clear evidence 

of formation or increase in coverage in any of the particular regions described.  This is 

not to imply clear to cloudy, but to indicate a tendency towards more fog and stratus. 

MSC category 3, Seattle region shown in Figure 7, is where an MSC event is 

associated with a frontal system regardless of tendency during the daytime.  The 

dynamics of the evolution of any fog and stratus are clearly related to the front, albeit 

pre- or postfrontal.  

MSC category 4, Eureka region shown in Figure 8, is where the MSC coverage is 

static or undergoing a decrease in coverage followed by an increase in coverage during 

the daytime visual imagery of evolution of the MSC event. This category differs from 

MSC category 1 by the perturbation in the beginning of the sequence there is static or 

decreasing coverage prior to the increasing tendency. The satellite sequence showed clear 

evidence of several hours of static or decrease in coverage followed by an increase in 

coverage in any of the particular regions described.   

MSC category 5, Los Angles region shown in Figure 9, is where the MSC 

coverage is static or undergoing an increase in coverage followed by a decrease in 

coverage during the daylight hours.  This category differs from MSC category 2 in that 

the beginning of the sequence there is static or increasing coverage prior to the decreasing 

tendency. The satellite sequence showed clear evidence of several hours of static or 

 18



increase in coverage followed by a decrease in coverage in any of the particular regions 

described. 

MSC category 6, Monterey region shown in Figure 10, is where the MSC event 

exhibits little to no change in coverage throughout the day.  Any change is one tenth or 

less in any given region. The satellite sequence showed clear evidence of little or no 

change in any of the particular regions described. 

MSC category 7 is where there was no fog and stratus present within 3km of the 

coast during the day.     

These category definitions describe the coastal conditions only and, therefore, do 

not reflect meteorological conditions further offshore or inland.  As shown in many 

satellite images thus far, many times there are marine clouds that cover several thousand 

kilometers (offshore), but are not affecting the shoreline.   

It is clear and deliberate that these categories are based on tendency throughout 

the day of the MSC events, and further broken down to the four individual regions 

described previously. This was done in anticipation of using a mesoscale model to search 

for mesoscale features that may be unique to each of the four regions, i.e. a Catalina Eddy 

in the bight region of California.  

The majority of the MSC events were clearly identifiable using this technique; 

however, there were a small number of events that were borderline between categories.  

This was especially true when satellite imagery for a particular day was missing in part or 

in total.  In these cases, 23 years of forecasting and satellite evaluating experience were 

used in making a subjective judgment call.  While not perfect, it was a logical and 

confident step.  While only seven percent of all satellite pictures experienced problems, 

the MSC tendencies were evaluated before and after the missing pictures, compared to 

the known synoptic situation as evaluated against other known synoptic situations, and 

finally compared to surface observations to make certain that fog and/or stratus was or 

was not reported. 

Once categorized, several statistical analyses were performed to separate the 

individual categories for the individual regions by month, and to make a detailed 
 19



accounting of the dates of occurrence for each type of MSC event.  These steps were vital 

in running composites of the synoptic situation.  The examination of individual categories 

will be discussed in more detail in Chapter III, while the statistical accounting is 

discussed  below.   Tables 1 through 3 illustrate the results of this statistical analysis of 

the MSC events, i.e. based on tendency of the MSC event, for each month during the 

summer of  2000.   

Table 1 depicts three central categories into which the MSC events fall.  Over 53 

percent of the MCS events were category one, while only 19 percent were in category six 

and 14 percent were in category four. The remaining categories were inconsequential. 

The results clearly indicated that fog and stratus events had a strong tendency to dissipate 

 

Category 1 2 3 4 5 6 7 

 
Seattle 

 
Eureka 

 
Monterey 
 
Los Angeles 

 
Total cases: 
 

 
    16 

 
    14 
 
    14 

 
    17 

 
    61 

 
     0 

 
     0 

 
     2 
 
     0 
 
     2 

 
     4 

 
     3   

 
     1 
 
     0 

 
     8 

 
    2 

 
     3 

 
     1 
 
     10 

 
     16 

 
    1 

 
     1 

 
     0 
 
     0 

 
     2 

 
     2 

 
     8 

 
     11 
 
     2 

 
    22 

 
     3 

 
     0 

 
     0 
 
     0 

 
     3 

Table 1.  June MSC events statistical breakdown per category.  Note the preponderance 
of category 1 cases (MSC dissipating or decreasing in coverage). 
 

throughout the day in all regions studied.  Consider categories one and four combined, 

both indicate dissipation in the fog and stratus events, the resulting percentage is now 68 

percent.      
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Category 1 2 3 4 5 6 7 

 
Seattle 

 
Eureka 

 
Monterey 
 
Los Angeles 

 
Total cases: 
 

 
    15 

 
    15 
 
    21 

 
    25 

 
    86 

 
     4 

 
     0 

 
     2 
 
     1 
 
     7 

 
     1 

 
     1   

 
     0 
 
     0 

 
     2 

 
    4 

 
     6 

 
     1 
 
     4 

 
     15 

 
    0 

 
     1 

 
     0 
 
     0 

 
     1 

 
     6 

 
     8 

 
     8 
 
     2 

 
    24 

 
     0 

 
     0 

 
     0 
 
     0 

 
     0 

Table 2.  July MSC events statistical breakdown per category.   
 

During July, the statistical breakdown was far more dominated by MSC decreases 

than June. Table 2 shows a strong predominance towards fog and stratus dissipation with 

nearly 75 percent of the days experiencing category one or four events.  The remaining 

category, six, occurred nearly 18 percent of the time.   

When compared to June and August, July exhibited the greatest frequency of 

dissipation of fog and stratus events.  July also exhibited the greater frequency of fog and 

stratus events that showed no or little change throughout the day.  No region experienced 

a clear day during July, making the month the foggiest of the summer.  

 

Category 1 2 3 4 5 6 7 

 
Seattle 

 
Eureka 

 
Monterey 
 
Los Angeles 

 
Total cases: 
 

 
    21 

 
    18 
 
    19 

 
    15 

 
    63 

 
     1 

 
     0 

 
     1 
 
     0 
 
     2 

 
     1 

 
     0   

 
     0 
 
     0 

 
     1 

 
    3 

 
     2 

 
     2 
 
     9 

 
     16 

 
    0 

 
     1 

 
     4 
 
     1 

 
     6 

 
     5 

 
     8 

 
     5 
 
     4 

 
    22 

 
     0 

 
     0 

 
     0 
 
     2 

 
     2 

Table 3.  August MSC events statistical breakdown per category.   
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While August was nearly a clone of July, there were some indications that the 

MSC events began to lessen near the end of the month.  Nearly 71 percent of the cases as 

shown in Table 3 show dissipation, nearly 20 percent of the time the fog and stratus 

exhibits no or little change.  Two days, both of which were in the Los Angeles region, did 

not experience any fog and stratus as compared to July where these days were clear.  

The summer cycle seems to indicate a maximum influence of frontal-associated 

fog and stratus in June; the beginning of summer, while cases of dissipation is the lowest.  

July brings fog and stratus events to all regions, with the dominant tendency being 

dissipation throughout the day.  August is also a month where fog and stratus events 

occur nearly everyday. However,  there were some indications of a slight break in the 

tenacity of the fog and stratus near the end of the month.   

B. CHOOSING REPRESENTATIVE CASES 

1. Extraction of Dates and Composites 
In order to characterize the relationships between MSC categories and the 

evolution of the synoptic-scale circulations, the dates of each type of MSC event were 

identified.  This was done simply through the use of Microsoft’s Windows Find routine, 

since the files were named by date.  During the previous step, the image files for the 

MSC events in each category had already been separated and it became a simple 

procedure to count each MSC event in each category and to make note of the dates of the 

MSC events for each month.  Further discussion of the actual results using this 

classification will be given in Chapter III.   

After compiling the dates for each MSC event and separating the MSC events into 

categories and regions, 135 files (each of the seven categories – where applicable – in 

each of the four regions by three months at 00Z and 12Z = 82 files and averaging the 00Z 

and 12Z left 53 files) listing the dates for each classification were created to use in 

constructing synoptic composites.  Consequently, each file contained dates separated by 

category and region broken down by month, i.e. all category 1 MSC events for the Seattle 

region for the month of June.  This process was initially done for all regions and all 

categories broken down separately at 00Z and 12Z for each month.  This separation into 
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00Z and 12Z composites was to examine any diurnal signature. In addition, the 00Z and 

12Z analysis were combined, thus averaging the diurnal effect to highlight the 

background synoptic-scale structure for each month.   This also allowed a comparison of 

the effect and strength of the diurnal change to the average.   

In addition, the 00Z and 12Z files were combined for each month by region and 

category over the entire summer period of this study, i.e. all category one MSC events for 

Seattle, Eureka etc. These were created monthly for each region to examine the summer 

average without diurnal change. This was done for comparison purposes to the entire 

summer averages to determine the effect and strength of any summer variability, 

especially within the synoptic patterns. 

Composites of the synoptic situation for all 135 different collections were done 

through a computer routine based in FORTRAN 77 code that averaged eleven 

atmospheric parameters by summing each field over all events and then dividing by the 

number of events.  This was done from the surface to the 300mb level using the standard 

atmospheric levels. See Appendix A for a copy of the FORTRAN 77 code used.  

Additionally, after the composites were produced, the results were converted into a 

GEMPAK grid format in order to be viewed using GARP.  

Once in GARP, overlaying the mean sea-level pressure with 10-meter winds and 

2-meter temperature at 2 degree Fahrenheit increments  was done to characterize the 

synoptic pattern over of a large portion of the Pacific Ocean and the western one third of 

the U.S. This step allowed for the comparison of the various composites to determine the 

synoptic similarities that might exist and the strength of any such similarities between the 

MSC event categories previously described.  

2. Representative Cases Chosen for COAMPS Simulations 
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To gain additional insight into the physical relationships that force the various 

MSC evolutions, 11 dates were chosen to simulate using COAMPS. Only the most 

prevalent categories were chosen for analysis in order to keep the analysis manageable. 

The 11 days were based on comparisons with composites to best match the day-to-day 

synoptic patterns as well as to match a particular category for all regions; i.e. the same 

MSC categorical event occurred on the same day for each of the four regions.  This was a 

high priority in order to minimize computer simulation time.  Further considerations were 



also taken into account in decreasing level of prioritization.  Dates were chosen in the 

middle of the month to best depict monthly variability throughout the period of study and 

dates were picked if three of the four regions had MSC events that occurred on the same 

day.  The only exception to this was the dates selected to run simulations for category 

four MSC events.  This event occurred throughout the period of study, but not necessarily 

on the same day for each region.  Since this type of event manifested itself as a 

reoccurring event, five days were chosen to adequately study this type of MSC evolution 

more closely.   

The above described priority factors resulted in the following COAMPS 

simulations: category one (three days), category four (four days), category six (three 

days), and category five (one day).  The data fields at 00Z were used to initialize the 

model, which was allowed to run for 36 hours with output at three-hour increments.  The 

00Z initialization allowed any model perturbations to smooth out prior to the examination 

period between 12Z and 00Z for the next afternoon local time.  The selected dates are 

listed in Table 4. 

 

Month 
 

June 
 

July 
 

August 
 

 
Dates 

 
1st, 8th, 28th 

 
18th, 19th, 20th, 30th 

 
4th, 7th, 16th, 18th  

Table 4.  Summary of date’s chosen for COAMPS simulation runs. 
 
C. COAMPS SIMULATION RUNS 

The model simulations were initialized with the data obtained from the Master 

Environmental Library (MEL) for 00Z on the day to be examined (afternoon of previous 

day local time).  While a cold start was done for each day selected, the forecasts from 

12Z to 00Z were used for this study to allow the model to adjust any imbalances in the 

initial structure.  
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The COAMPS model configuration used for these simulations was chosen to 

allow ample synoptic and larger-scale mesoscale resolutions. A detailed description of 

COAMPS is given in Appendix B. The grid resolution used for the COAMPS simulations 

were 63 km for the outer grid and 21km for the next nested grid. The model domain for 



both grids is shown in figures 11 and 12.  These grids adequately capture the large-scale 

evolution on the outer nest and mesoscale evolution on the inner nest.  While higher 

resolution nests could have been included, the focus was on the relationship between 

MSC events and synoptic evolution.  Consequently, no additional fine-scale nests were 

used.   

 
Figure 11.  Example of aerial coverage of the outer COAMPS grid used (63km). 
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Figure 12.  Example of aerial coverage of the middle COAMPS grid used (21km) 

 
 

The 11 case studies selected were simulated using NOGAPS boundary conditions 

on the outer nest.  Their results were evaluated for inconsistencies and compared to 

limited hand analyses for verification through the use of GARP.  While it is widely 

accepted that computer simulations result in errors, there are consistent signals, especially 

in the synoptic pattern that can be utilized with a high degree of confidence.  These 

particular simulations were no different.  All simulations began with perturbations that 

even a rookie forecaster would have been able to pick out, but in all cases, the 

simulations smoothed out quickly and were reasonable, with the notable exception that 

the moisture variable was somewhat inconsistent when depicted in Vis5D.  There was a 

consistent tendency to over develop the clouds where none exisited as seen on the various 

satellite images. 

The forecast fields at both the 63 and 21km resolution were put into GRIB format 

for ingesting into GARP where several meteorological parameters were evaluated 

beginning with the synoptic patterns followed by an examination of the coastal regimes 
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through the use of cross-sectional analysis.  The fields were studied at three-hour 

increments from 12Z to 00Z, the local daylight timeframe.  A worksheet was developed 

to streamline the process of evaluation.   

Upon conclusion of the GARP portion of the study, the fields were put into Vis5D 

to evaluate mainly the air-parcel trajectory from the synoptic-scale to the mesoscale 

coastal regime.  While a host of other parameters could have been evaluated in Vis5D, 

the priority was trajectory analysis. This was done since other aspects of the analysis 

were covered using other techniques.  Several examples of the output fields are presented 

in Chapter IV. 
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III. SYNOPTIC PATTERNS ASSOCIATED WITH MSC 
EVOLUTIONS 

To characterize the relationship between the various MSC events and the synoptic 

evolution, the composite analyses as well as individual synoptic charts were examined.  

Since the days that produced a given MSC category varied by region, each region was 

examined separately.  The diurnal variation in the synoptic forcing was examined for the 

predominate MSC categories by combining 00Z and 12Z composites and analyses. In 

addition, individual months were examined separately in order to highlight any variation 

through the summer.  This examination revealed some very consistent relationships 

between synoptic pattern and MSC evolution for each region, which are described in the 

following sections.  

A. SEATTLE REGION 

During the month of June, only three days (25-27 June), did not experience a 

MSC event of some type.  In other words, no fog and/or stratus/stratus cumulus clouds 

were present in the coastal regime.  The synoptic pattern that was consistent in producing 

the non-MSC event, MSC category 7 – No MSC present, was the northward extension of 

the coastal inverted trough from the desert southwest. Figure 13 shows an example of 

synoptic pattern.   The remaining 27 days of June experience some type of  MSC event,  

primarily  MSC case 1 – MSC dissipating or decreasing throughout the day; 16 days.  

The synoptic pattern that was most closely associated with this  event  was  the  result  of  

ridging  into  the  Pacific Northwest.  Typical cases associated with MSC  
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Figure 13.  NOGAPS 26/12Z June 00 surface analysis.  Note the coastal inverted trough 
along the entire west coast.   

 

category one indicate an important relationship between the character of the surface 

ridging and the MSC evolution.  Ridging from a cold-core high-pressure system, Figure 

14,  had the tendency to completely clear out the region rather quickly, prior to noon 

local.  Whereas ridging that originated from the subtropical high-pressure system (shown 

later) had the tendency to show a slow decreasing amount of MSC coverage (category 

one or four) that for the most part never completely cleared the entire coastline.  This  

type  of   MSC  event  was generally  long  term, i.e.  lasted  several days  
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Figure 14.  NOGAPS 15/00Z June 00 surface analysis.  Note the ridging into the Pacific 
Northwest.    
   

with some minor perturbations to the overall synoptic pattern. The MSC event reoccurred 

each day that subtropical ridging was present.  

Table 1 described the statistical breakdown by MSC category for the month of 

June.  As described previously, MSC category one was the predominate event for the 

Seattle region, with a small number of events occurring in the other categories.  Figure 15 

depicts a typical analysis that shows ridging into the Pacific Northwest that was 

commonly found to result in category one events. 
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Figure 15.  NOGAPS 22/12Z June 00 surface analysis.  Note the subtropical ridging into 
the Pacific Northwest.  
 

Although MSC category one dominated the July pattern, there were four days that 

the MSC pattern did not change during the course of the day, (i.e. MSC category 4, little 

or no change in MSC coverage).  These days typically experienced strong ridging from 

the subtropical high, i.e. 1030mb or higher.  A more eastward extension of the high is 

seen by the 1027mb center closer to the coast as shown in Figure 16. This eastward 

portion of the synoptic pattern is similar to that discussed for the Seattle region for the 

month of June.  The central pressure of the subtropical high pressure was not a clear 

indication of a persistent fog and status event, whereas the near shore structure was more 

indicative. Other days during the month of July saw the subtropical high-pressure center 

exceed 1030mb with more prominent ridging in the Pacific Northwest, which resulted in 

numerous MSC category one events.   
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Figure 16.  NOGAPS 20/12Z July 00 surface analysis.  Note the strong subtropical high 
over the central Pacific Ocean and ridging into the Pacific Northwest. 
 

Little change occurred for the Seattle region during the month of August.  Again, 

a MSC event occurred in each day of the month with MSC category one being the 

overwhelmingly dominant case.  While five days went with little or no change in MSC 

coverage, the synoptic situations that caused MSC category six were not any different 

than those that produced MSC category one except that the surface ridging did not 

diminish. Specifically, the anticyclonic curvature, which is the key, did not diminish. 

This is an import distinction that results in a MSC category one or four event from a 

category six event.  During the month of August, the subtropical high-pressure center had 

moved further north to its climatological home and has strengthened.  Its central pressure 

was consistently greater than 1030mb as illustrated in Figure 17.  The ridgeline remained 

consistently extended into the Pacific Northwest.  This resulted in numerous MSC events 

during the month. 
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Figure 17.  NOGAPS 08/12Z August 00 surface analysis.  Note the position, strength of 
subtropical high-pressure cell and continued ridging into the Pacific Northwest. 
 

The composite near-surface synoptic scale structure for the 16 days of MSC 

category one is shown in Figures 18 and 19 are for the Seattle region at 12Z and 00Z 

respectively.  The two composites  show  subtle  diurnal changes  that are associated with 

the diurnal decrease in stratus in MSC category one.  Category six (no or little change on 

MSC coverage) and category seven (no fog and stratus) were the  most  prevalent  other 

types  during the  month of  June, with a  few frontal events also. 
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Figure 18.  Composite of NOGAPS June surface analysis at 12Z  for MSC category one 
events in the Seattle region. 

 

Comparing the 12Z and 00Z composites show a weakening of the surface ridge 

into the Pacific Northwest.  This is a key synoptic signal that indicates dissipation of the 

fog and stratus event.  The weakening of the surface ridging is due to daily  inland 

warming, which results in lower surface pressure. 
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Figure 19.  Composite of NOGAPS June surface analysis at 00Z for MSC category one in 
the Seattle region. 
 

The morning or “cold” composite surface analysis, shown in Figure 18, where the 

MSC coverage is at its peak is characterized by the dominant subtropical high-pressure 

system that has a mean central pressure of 1026mb and produces a significant ridgeline 

into the Pacific Northwest.  Coastal surface winds are light at approximately 10kts and 

slightly oriented onshore to parallel to the coast.  The land-sea temperature contrast along 

the coastline is minimal, which is characteristic of low-level marine air over the inland 

areas and due to cold land surface’s due to nighttime cooling if clouds are not present. 

At the afternoon or “hot” composite surface analysis, shown in Figure 19, the 

subtropical high-pressure center is one milibar higher at 1027.  The land-sea temperature 

contrast has increased slightly while the coastal surface winds have increased to 20kts in 

response to the increase in the pressure gradient force.  The most telling signature is the 

decrease in anticyclonic turning of the sea-level isobars, which indicates a weakening of 

the surface ridging (not necessarily the surface pressure) into the Pacific Northwest.  This 

 36



decrease in surface  ridging is  consistent with  inland  warming,  which  is  due  in  part  

to decreased coastal stratus, i.e. more incoming short-wave radiation.  Figure 20  

  
Figure 20.  Composite of June MSC category one without diurnal variation for the Seattle 
region. 

 

represents the composite of June MSC category one without the diurnal variation.  Of 

interest is the lack of a baroclinic zone along the coast that is common in the more 

southern regions.   

For a MSC category six event, no or little change, the composites (not shown) are 

similar to those for category one in Figures 18 and 19.  However, the surface ridging into 

the Pacific Northwest does not abate during the day, but maintains its significant 

curvature throughout the day with little diurnal signature.  This is consistent with a lack 

of inland warming and the persistence of MSC event inland. 

In the somewhat rare cases where an MSC event does not occur, i.e. no fog and 

stratus present, this synoptic pattern is characterized by an inverted trough oriented along 
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the coast as illustrated in the composite shown in  Figure 21.  While the composite shows 

troughing, it fails to adequately  show  an offshore  component  to the  winds, which were 

 
Figure 21.  Composite of NOGAPS surface analysis for the month of June depicting a 
non fog/stratus event. 

 

evident in many of the individual surface analyses such as shown in Figure 13.  This 

offshore flow is a critical coastal process that prohibits fog and stratus formation and is 

best seen in the composites as coastal warming and troughing.   

The July composites for MSC category one reveal little variation compared to the 

June pattern.  The diurnal changes in the surface ridging over the Pacific Northwest 

remain the same as June.  The biggest differences are in the position of the subtropical 

high and in the coastal winds.  As shown in Figure 22, the surface coastal winds are now 

very light, less than 10 knots and are oriented more onshore. This is consistent with the 

more offshore location of the subtropical high, which tends to weaken the cross-coast 

pressure gradient.  Even though the cross-coast pressure gradient is weaker, surface 

ridging into the Pacific Northwest is evident and its diurnal change continues to be the 

synoptic signature that indicates the evolution of category one fog and stratus events. 
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Figure 22.  Composite of NOGAPS July surface analysis of MSC category one without 
diurnal effects. 

 

Summer variability is exemplified most during the month of August.  Table 3 

shows that Seattle region experienced 21 occurrences of MSC category one events during 

August where the composite structure is quite different.  Figure 23 shows the subtropical 

high much stronger and further north than in June or July.  The ridging into the Pacific 

Northwest that characterized category one is less prevalent during August.  

MSC category one patterns, shown in Figure 23 an example, shows the 

subtropical ridge now has a central pressure of 1031mb, which is a significant increase 

over June.  Additionally, 
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Figure 23.  Composite of NOGAPS August surface analysis of MSC category one 
without diurnal change. 
 

the ridgeline that was so prevalent earlier in the summer is now much less in anticylonic 

curvature.  Earlier in the summer, this would be the telling signature of fog and stratus 

dissipation, but now in late summer it is not.  The key synoptic relationship is the strength 

of the subtropical high-pressure cell, greater than 1030mb, to the degree of anticylonic 

curvature into the Pacific Northwest that keeps the fog and stratus buttressed up against 

the coast and results in a category six event.  This is due to increased subsidence and 

longer low-level trajectories that bring in cooler air.  

Potentially, day-to-day variations in coastal sea surface temperatures during the 

month might account for differing MSC evolutions. Although only three buoys and a 

small handful of ships provided the coastal SST observations, they indicate that SST 

varied from 10-15 degrees Centigrade along the Pacific Northwest coast.  Coastal buoys 

along the Washington coast varied only from 13 to 15 degrees C with 13-14 degrees C as 

the norm.  The greatest variability appeared along the Oregon coast with SST’s from 10-

15 degrees C, although temperatures remained primarily in the 13-14 degree C range.  
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These SST’s were comparable to or slightly warmer than the composite air temperatures 

seen in figures 18 and 19.  However, the slight variability in SST’s did not seem to 

impact the MSC events along the Pacific Northwest coast. 

July SST observations along the coast continued to show the same variability as 

described for the month of June.  However, there was a slight increase in coastal 

temperatures, especially toward the end of the month where SST’s off both the coast of 

Washington and Oregon were consistently 16 degrees C.  This is consistent with overall 

general summertime warming. 

Sea surface temperatures continued the summer rise into August.  Temperatures 

were very consistent at 15 to 16 degrees C with the exception of 18-degree water in the 

vicinity of the Washington and Oregon border near Cape Disappointment, i.e. the 

Columbia River outflow region.  Even though SST changes through the summer, there 

was no clear correlation with any individual mesoscale MSC events and the SST in this 

region. 

B. EUREKA REGION 

The Eureka region experienced an MSC event everyday during June.  The events 

fell primarily into two categories; MSC category one and six (no or little change), with 

MSC category one once again being the predominant type of event. 

The synoptic signal that resulted in the MSC category one is somewhat 

misleading and is quite different from that described for the Seattle region.  Where 

ridging was the primary feature affecting the MSC events in the Pacific Northwest, it is 

more of a cyclonic to parallel flow that is occurring along the coast for the Eureka region.   

The cyclonic turning, as shown in the June MSC category one composites in Figures 24 

and 25, results from an extended trough that originates in the high desert of  Nevada and  

extends to just  
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Figure 24.  Composite of NOGAPS 12Z June 00 surface analysis.  This is the morning 
composite analysis where the MSC category one is established most. 

 

offshore of the Northern California region. The orientation of this trough is important for 

airflow considerations as it can produce either weak offshore flow or along-coast flow, 

which tend to result in different stratus evolutions. 

Unlike the Seattle region, a comparison between the 12Z morning composite and 

the 00Z afternoon composite, shown in Figures 24 and 25, give no clear indication of the 

MSC evolution. Close examination of the diurnal variation reveals nothing useful.  While 

there is clear evidence of a thermal ribbon along the coast, a baroclinic zone, which did 

not occur  in the Seattle region, it seems to have no clear function as a predictor of MSC 

evolution for the Eureka region.  The clear indications appear to be seen best in the flow  

 42



 
Figure 25.  Composite of NOGAPS 00Z June 00 surface analysis.  This is the afternoon 
composite where the MSC category one has abated. 
 
 

patterns for this region.  Although the flow patterns are implied from Figures 24 and 25,  

the composites tend to smooth out important details that seem to be key predictors. 

The subtropical high-pressure system offshore is unchanged diurnally as is the 

coastal wind regime.  However, the isobar pattern hints at the very core of the problem.  

In Figure 24, the trough appears to be having greater cyclonic curvature and a weaker 

pressure gradient in the near shore area while in Figure 25, the cyclonic curvature is less 

and the pressure gradient is increased.  The 12Z pattern, shown in Figure 24, seems to 

suggest a tendency for weak offshore flow, which favors decreasing stratus in the 

afternoon. 

 The relationship between weak offshore flow and stratus dissipation is illustrated 

in  Figure 26 that shows a typical synoptic pattern, which results in the dissipation of fog 

and stratus in the Eureka region.  It is important to note that where the offshore flow no 
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longer exists; the fog and stratus will most likely persist.  Comparison of Figures 26 and 

27 show a loose correlation between where offshore flow is occurring and the lack of fog 

and stratus along the coast.  The notable exception is the region from Eureka to the 

Oregon border where topography and vegetation (maintenance of moisture) has a clear 

influence on the small-scale structure. 

 

 
Figure 26.   NOGAPS 13/12Z June 00 surface analysis.  Note the deep inverted trough 
along the California coast (MSC category one). 
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Figure 27.  GOES-10 13/1425Z June 00 Satellite imagery.  

 

The Eureka region also experiences a fair number of occurrences in June of MSC 

category six, little or no change.  The relationship between MSC and the synoptic pattern 

in this case seemed to be more apparent than in category one.  As Figure 28 shows, there 

appears to be three differences in the overall pattern compared to category one. First, the 

subtropical high-pressure system is located further north in the Pacific than normal, it is 

3mb’s higher in central pressure (1026 to 1029mb), and the most telling sign is the 

reorientation of the trough.  The tough now is originating from the desert southwest, vice 

the Nevada desert.  This changes the flow pattern from a cyclonic trough to one that is 

much weaker and less cyclonic. In addition, there is no easterly flow present, which 

allows the MSC event to continue with little to no change during the day.  
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Figure 28.  Composite of NOGAPS June 00 surface analysis.  This shows the mean 
synoptic pattern without diurnal change (MSC category six). 
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Figure 29.  Composite of NOGAPS July surface analysis for MSC category six. Note 
coastal trough is no longer present. 

 

An example of the synoptic situation that resulted in MSC category six for the 

Eureka region is not unlike the one that resulted in MSC category one.  Figure 29 shows a 

remarkable likeness to that of Figure 26.  However, the biggest difference appears to be 

the extension of the subtropical high into the Pacific Northwest. This surface extension 

into the Pacific Northwest results in a slight reorientation of the sea-level pattern over the 

Eureka region.  This large-scale pattern manifests itself once again as an inverted trough, 

but more aligned now in an east to west fashion.  This pattern no longer produces an 

offshore flow, but due to the continued cyclonic nature of the pattern, which suggests 

weak lifting is persistent in the boundary layer.  It is hypothesized that a rather strong 

negative (downward) heat flux is occurring due to cold upwelling as a result of the 15-

20kts of wind along the coast, which maintains the integrity of the boundary layer. Any 

incoming short-wave radiation apparently falls short in causing boundary layer 

decoupling that would normally lead to fog and stratus dissipation. Decoupling is a 
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process whereby two stratified layers, normally separated by an inversion, become mixed 

as a result of the inversion weakening significantly or breaking up. 

The analysis  field shown  in Figure 30  indicates a  high-pressure  cell inland  

  
Figure 30.  NOGAPS 20/12Z June 00 surface analysis.  Note the 1024mb high-pressure 
cell over southern Oregon. (MSC category six) 

 
 

over southeastern Oregon, which is consistent in producing MSC category six events for 

the Eureka  region.  This  inland  high-pressure  center  contributed  to   the  persistence   

and  perhaps a  slight strengthening  of the  inverted trough extending over the coast.  The 

presence of the inland high-pressure center is  different in comparison to MSC category 

one events for the Eureka region.  

 Comparison of Figures 30 and 31 reveal a clear region along the coast. 

This is likely  the effect of the coastal mountains upon the coastal region, which provide 

an effective barrier to land-falling storm systems. Larger-scale forcing is causing clearing 

further seaward.  However, the trajectory of the air in this case would come from the east. 

If the flow were significant enough, i.e. a Froude number greater than one, the flow 
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would go over the mountains and dry adiabatically on the Pacific Coast side (this case, 

leeward).  This effect would be stronger than any lift created as a result of the cyclonic 

turning in the inverted trough and hence  dryness.  Of  note also in  Figure 31,  (20 June) 

is a small area of fog south of Cape Mendocino to Point Arena.  This region closely 

correlates to the lack of an offshore flow in the base of the trough.  

 
Figure 31.  GOES-10 20/1430Z June 00 satellite imagery.  Note that the only fog and 
stratus present appear at the base of the inverted trough. 

 

The month of July simply emphasized what was seen for June for the Eureka 

region, little summer variability.  The month was once again dominated by MSC events 

that occurred daily with the large majority of MSC events falling into category one, 

(decreasing or dissipation).  However, the forecasting challenge during the month of July 

is changed significantly.  While the same synoptic patterns as June continue to exist in 

July for MSC category one, which includes the same MSC evolution perturbations, the 

challenge now spreads to MSC category six.  Figure 29 shows little change in the 

synoptic pattern as compared to the months of June and July that resulted in MSC 
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category one.  Composite of MSC category six without the diurnal variation is shown for 

simplicity. 

The key is the change of processes that cause persistence in MSC events. While 

subtle changes are occurring in the synoptic scale such as a 2mb increase in the central 

pressure of the subtropical high-pressure system, this is not the key.  The key now lies in 

the trajectory of airflow along the coast.  The cyclonic turning may or may not be 

evident, but if the flow has a very long near-shore trajectory, there is persistence in the 

MSC event.     

The MSC events were closely associated with the same synoptic patterns as 

described for June.  Of note, the subtropical high had move further north and had 

strengthened.  The inverted trough remained the tell tale sign for the region and was the 

key synoptic-pattern indicator.  It was noted that the pattern that resulted in dissipation 

was always the same. The pattern of dissipation was also very consistent. It first 

dissipated beginning in the north where an easterly flow developed during the day. An 

important comment at this time is to point out that while the synoptic pattern indicated an 

offshore flow at night, the pressure gradient was sufficiently weak that any flow would be 

too weak to cause significant change.   Nighttime air-sea temperature differences were 

minimal in the marine layer coastal regime. Only in the daylight hours did the larger-

scale motions begin to invigorate sufficiently as to cause significant motion of the air. 

The last area to experience clearing, if clearing were to occur, was the region from 

Eureka to the Oregon Border.  This region depended on the base of the inverted trough; 

i.e. no easterly flow meant any clearing.  Figures 32 and 33 are typical examples of fog 

and   stratus in  this  region  and  the  associated   synoptic  pattern   that  produced  them. 

Additionally,  topographic and to a lesser extent, coastal vegetation may play a role for 

the region.  
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Figure 32.  NOGAPS 11/00Z July 00 surface analysis.  Note synoptic pattern, in 
particular, the trough extending through the Eureka region.  Compare to Figure 33 below. 

 

 
Figure 33.  GOES-10 11/2030Z July 00 satellite imagery.  Note, MSC event is localized 
in the region from Eureka to the Oregon border.  This is an afternoon local time picture.  
Compare to Figure 31 above. 
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Those periods where the MSC category six (little to no change) occurred, two 

distinct patterns emerged.  First, the 6th and 7th of July saw a continuous MSC event.  

This resulted from a weak circulation that occurred over water and was an extension of 

the trough over the Eureka region.  Figure 34  shows the synoptic pattern responsible.  

This is presented to point out possible anomalies that may enhance a known synoptic 

pattern. Second, events that occurred on the 16th, 20th, 24th, and 29th of July all showed an 

eastward displacement of the trough.  This caused a cessation of the cyclonic flow along 

the coast and allowed for a more parallel flow, one out of the north-northwest.    

 
Figure 34.  NOGAPS 7/00Z July 00 surface analysis.  Note weak circulation off Northern 
California coast. 

 

Figure 35 shows an example of a more coastal following flow pattern that resulted 

in persistence of fog and stratus.  This particular flow pattern was found more prevalent 

further south, but the results remain the same.  It is hypothesized that this coastal flow 

pattern intensified the upwelling process whereby deeper, cooler water was brought to the 
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surface as surface water was pushed further west due to Coriolis, which resulted in the 

negative heat flux cooling the overlying air to condensation causing fog and stratus.  The 

corresponding satellite series for this day, (not shown) depicted a larger MSC coverage 

area, especially along the coast.  

 
Figure 35.  NOGAPS 20/00Z July 00 surface analysis.  Note position of inverted surface 
trough displaced eastward over the high desert. 

 

The theme of little summer variability continued into August.  Like previous 

months, August experienced an MSC event on a daily basis. As shown in Figure 34 

previously for the Seattle region, the subtropical high-pressure center moved further north 

and strengthens.  This proved to be of  little consequence for the Eureka region in terms 

of altering the frequency of MSC events or patterns described previously.  

The Eureka region balanced nicely with MSC category one events occurring 

slightly more often than category six events throughout the summer.  Only a slight 

separation appears for August where there were 18 category one events to 8 category six 

events.  Unfortunately, little insight is gained from the prevailing synoptic pattern.  While 
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MSC category one remained unchanged, there did appear a change, albeit slight, in the 

pattern to indicate a possible key.  Figure 36 shows the subtle changes, which once again 

points to increased cyclonic turning vice an extended along-shore flow.  Both are key 

features in the synoptic pattern as indicators of persistent fog and stratus.  

For the August ritual of MSC category six, little summer variability is evident 

with regards to the larger-scale patterns.  Figure 36 shows the subtropical high-pressure 

system and the weak inland warm-core lows. There are possibly two related differences 

that the composites reveal.  They were a weakening in the pressure gradient resulting in 

weaker coastal winds (10 knots or less)  and  a simultaneously  lessening  of the  cyclonic 

turning as a result of the westward extension of the Nevada trough. This situation 

consistently prolonged the fog and stratus event.  

 
Figure 36.  Composite of NOGAPS August 00 surface analysis for MSC category six.  
Note the weak coastal winds and much weaker cyclonic turning (in northern CA). 

 
 

Of note, the water temperatures were significantly cooler compared to that of the 

Seattle region especially at the beginning of the month where coastal water temperatures 
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were observed at 8 to 9 degrees C at the start, but warmed to 10-13 degrees C by the end. 

Since MSC events occurred on a daily basis, water temperatures appeared to have not 

played an important role in and of themselves or in relationship with inland temperatures. 

Early summer variability  of June was not evident in July as water temperatures 

did not exhibit such a dramatic change.  Temperatures were persistent at 10 to 13 degrees 

C throughout the month.  The only exception was a particularly cool region of 10 degree 

C water off shore near the Capetown/Eureka area in Northern California where the land 

has a significant extension into the Pacific Ocean.  As mentioned previously, fog and 

stratus tend to persist from this region northward to the Oregon boarder, but not 

necessarily at the Capetown/Eureka region where surface waters were cooler.  A better 

observing net in this region might reveal cooler temperature in the entire region, which 

would account in some ways for the persistence of fog and stratus in the region. 

While sea surface temperatures in August experienced a slight decrease of one 

degree C over July, the slight changes did not have a significant impact on the coastal fog 

and stratus coverage or consistency. 

C. MONTEREY REGION 

This region is arguable the most important region for accurate fog and stratus 

forecasts due to three coastal international airports (SFO, OAK, and SJC) and a number 

of regional coastal airports that have tremendous impact on many Pacific Rim flights as 

well as others.  As mentioned in the introduction, delays can be costly and frustrating. 

The Monterey region during the month of June was typified by with fog and 

stratus.  There was no overwhelming category.  14 days experienced MSC category one 

while 11 days experienced MSC category six. The other five days also experienced an 

MSC event making it a clean sweep in terms of fog and stratus occurring each day of the 

month. 

The composites revealed limited indications in the synoptic pattern that may aid 

forecasters in forecasting the evolution of the fog and stratus for this region.  Figure 37 is 

a composite of 12Z and Figure 38 is a composite of 00Z, together they present an 

unmistakable diurnal signal. The 12Z composite shows weak coastal winds as a result of 
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weak cyclonic turning.  This is consistent and a known characteristic that results in  

category one and six events. However, as Figure 38 illustrates, there is a pronounced 

baroclinic zone present along the coast, which is consistent with inland warming.  But 

more important, is the development of inland warm-core lows.  This alters the coastal 

flow more inland.  While typically a sea breeze develops in this condition, it does not 

hold the key to forecasting the MSC evolution; the sea breeze has no effect.  However, 

the development of the inland warm-core low, while enhancing the sea breeze, will have 

an effect and is a key indicator of MSC evolution.  

 
Figure 37.  Composite of NOGAPS 12Z June surface analysis for the Monterey region of 
MSC category one events. 
 

While no or little change is observed in the strength and position of the 

subtropical high-pressure system, there is a subtle change in the warm-core desert 

southwest low.  As this low develops, it weakens the pressure gradient in the Monterey 

region and turns the flow inland.  There is no doubt while this synoptic flow is weak, it 

will enhance the sea-breeze effect.  Additionally, the land-sea temperature contrast is 
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significant earlier in the season for this region as compared to the more northern regions’ 

summer  variability.  

The development of an inland warm-core low has to be of sufficient strength as to 

alter the large-scale wind field by turning the flow inland.  While smaller scale even 

insignificant flows are occurring such as a sea breeze, it is the overall flow pattern  that is  

 
Figure 38.  Composite of NOGAPS 00Z surface analysis for the Monterey region for 
MSC category one events. 

 

important.  With the large-scale flow turning inland, it may support flow, surface 

divergence at the coast, which results is the dissipation of the fog and stratus for the 

region 

MSC category six events are very clear-cut in terms of the synoptic signature.  It 

is very similar to that of the Eureka region.  There is an inverted trough extending up the 

west coast.  Where the easterly flow abates, fog and stratus events are the most persistent 

due to the lack of any significant flow pattern in the region and the slight lifting 

associated with the inverted trough that normally originates in the desert southwest. 
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The Monterey region for the month of June experienced three different patterns 

that resulted in the MSC category one, fog and stratus dissipation or decreasing.  The first 

pattern, which was frequent during the first week of June, saw the subtropical high-

pressure cell located well south in the North Pacific Ocean and a dynamic/cold-core low 

pressure system located north of the subtropical high, but south of the Gulf of Alaska.  A 

weak ridge with one or more high-pressure centers located near the west coast provided 

sufficient subsidence across the region to result in fog and stratus for the Monterey  

  
Figure 39.  NOGAPS 4/00Z June 00 surface analysis.  Note weak ridge along west coast. 

 
 

region.  Figure 39 shows typical synoptic pattern that occurred during the first week of 

June. 

The second pattern while similar to the first depicts ridging from the subtropical 

ridge that is displayed further south into Southern Oregon and Northern California rather 

than into the Pacific Northwest.  Like the first pattern, both produced relatively lighter 

coastal winds and subsidence that results in fog and stratus.  Figure 40 shows the synoptic 
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pattern.  Additional similarity includes the presence of a dynamic/cold-core low north of 

the subtropical high-pressure cell once again.  It is clear that an occluded frontal system is 

impacting the Pacific Northwest; it is the displaced ridgeline that is affecting the 

Monterey region and resulting in fog and stratus. 

 
Figure 40.  NOGAPS 10/00Z June 00 surface analysis.  Note subtropical ridging into 
Southern Oregon and Northern California. 

 
 

The third pattern was the most typical synoptic pattern that results in fog and 

stratus for the Monterey region. The subtropical high-pressure center has moved further 

north by months end and the inverted trough extend into the Eureka region, which is a 

common pattern for that region as well.  Figure 41 shows the most common synoptic 

pattern over the Monterey region that resulted in MSC category one events. 
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Figure 41.  NOGAPS 22/12Z June 00 surface analysis.  Note weak flow pattern over 
Monterey region. 
 

The pattern most responsible for the persistent fog and stratus (category six 

events) was oddly enough the same pattern that caused clearing for the Seattle and 

Eureka regions, the inverted trough.  However, the difference is that the Monterey region 

is located far enough south as to not experience the easterly flow that regions located 

further north experienced.  The Monterey region saw very weak flow, and at times a very 

weak circulation in that flow.  Figure 42 shows typical pattern of the inverted trough 

along the coast, but also shows a notable absence of cross-coast isobars south of Eureka.  
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Figure 42.  NOGAPS 14/12Z June 00 surface analysis.  Note the weak, almost cyclonic 
flow over the Monterey region. 
           

This would imply a very weak cross-coast pressure gradient and hence a lack of 

any strong forcing by the wind field in the horizontal.    Vertical motion is also weak, but 

the presence of negative omega (not shown) implies weak upward motion. This weak 

upward motion in the marine boundary layer (MBL) is the key process to cause 

persistence in the fog and stratus events.  This flow pattern is similar to that which 

resulted in MSC category one.  The very subtle differences in the pattern, of which it 

appears that flows less than 10 knots with a hint of cyclonic curvature that seems to be 

the difference. 

July for the Monterey region fell into MSC category one, 21 of 31 days.  The 

remainder of days, less three, fell into MSC category six (persistence).  The pattern that 

produced MSC category one was the typical pattern expected and described above.  The 

subtropical high-pressure cell has moved further north as described in previous sections.  

However, the big change seemed to be the influence now of the warm-core low that 

develops over the high desert of Nevada to the desert southwest region.  With the 
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development of this warm-core low, the resulting flow had a slight onshore component, 

the effects of which will be seen in the mesoscale chapter (Chapter IV). 

MSC category six events while occurring far less in July become more difficult to 

predict with the synoptic pattern.  While the inverted trough is present, is has become less 

recognizable as the composite shows  in  Figure 43.   However,  this appears to be a  

 
Figure 43.  Composite of NOGAPS July surface analysis for Monterey category six 
events. 
 

function of smoothing out the real synoptic signal as a result of the composite process.  

Forecasters should continue to key in on the coastal inverted trough as an indicator of 

persistence noting the lack of cross-coast isobars and resulting weak wind field. 

Persistence of the fog and stratus (MSC category six) resulted when the inverted 

trough that normally influences the Eureka region shifted south to Northern California.  

 62



 
Figure 44.  NOGAPS 11/12Z July 00 surface analysis.  Note the inverted trough 
extending from the warm-core low over Nevada to Northern California. (MSC category 
six) 

 

Figure 44 illustrates an example of the synoptic pattern showing the perturbation that 

resulted in persistence and is not unlike that which occurred in June for the Monterey 

region. 

Summer variability ceases by mid July. August synoptic patterns were unchanged 

in terms of the results expected for the Monterey region. While MSC events occurred in 

each day with categories one and six being the dominant ones, there was a slight increase 

in the other MSC categories in particular category five, fog and stratus increasing then 

decreasing.   

19 occurrences of category one and only five events of category six were 

observed for the month of August. Four events of category five were also observed.  In 

the case of category five events, there were no synoptic signatures observed to indicate 
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persistence prior to dissipation except those previously described, only that the 

occurrence of which occurred later in the day. 

The synoptic pattern for category six continues to be more challenging to interpret 

through the use of composites.   While the isobar pattern depicted indicate a geostrophic 

coastal flow, the actual wind field, although weak, hinted at a weak inverted trough, 

which has already been addressed as a key indication to persistence. As Figure 45 

illustrates, weak flow pattern suggests the presence of an inverted trough.  Persistence is 

more likely to been seen as a result of a long trajectory coastal flow that initiates the 

upwelling process that in turns provides the necessary conditions for extended fog and 

stratus events. 

 
Figure 45.  Composite of NOGAPS August surface analysis for the Monterey region for 
category six events. 
 

There were some very minor flow anomalies within the large-scale pattern 

throughout the month, but proved inconsequential to the final results.  There did not 
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appear to be any strengthening of the warm-core low centers in August as one might have 

expected, at least in the model simulations. 

Like the Eureka region, sea surface temperatures experienced a lot of variability 

early in the summer season with 9 to 10 degree water temperatures at the beginning of 

June to 13-14 degree water by the end of the June.  With a consistent SST field, i.e. 

without anomalies, little impact was seen in the MSC evolutions. 

July and August sea surface temperatures were far more stable with 13 to 

occasionally 15 degrees during the remainder of the summer.  However, one anomaly 

was noted for the Monterey Bay where the water temperature was 1 to 3 degrees cooler in 

the latter half of the summer season.  This could have played a key role in the micro- 

climate for the Monterey Bay region, but would not be seen in the model simulations. 

D. LOS ANGELES REGION 

The Los Angeles region has the largest fleet concentration area (San Diego) along 

the west coast, while the Seattle region (Bremerton and Whidbey Island) has the second 

largest. These two areas are of major concern to U.S. Navy commanders.  While fog and 

stratus events play havoc with the Monterey region in terms of its impact to commercial 

aviation, it is these two other regions that impact fleet operations nearly daily.  The 

primary fleet workup area is a region off the Southern California coast known as SoCal.  

This is a region that is frequency inundated with fog and stratus.  Carrier operations are 

known for numerous interruptions due to this weather menace with a significant number 

of carrier diverts to shore locations.  All are costly both in terms of fuel used along with 

plane and crew accommodations for those unable to return to the ship. 

The data collected for the month of June for the Los Angeles region fell primarily 

into two MSC categories, one and four (no change or decreasing then increasing).  MSC 

category one is the primary event in which 14 occurrences were noted while MSC 

category four saw 10 events occur.  There did not seem to be a strict synoptic pattern 

responsible for MSC category one.  However, there was some variability noted with the 

subtropical high-pressure cell location during the month of June.  This is a significant 

departure from the other regions and is also significant in that there were a larger number 
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MSC events that resulted in the afternoon growth of fog and stratus.  This too is 

noteworthy in terms of potential air traffic delays and potential fleet divert fields.   

The synoptic pattern that results in category one events are identical to that 

described for the Monterey region.  The formation period as seen in the analyses is 

characterized by weak coastal winds (5 knots) that exhibit a weak divergent pattern.  No 

cross-coast component is observed.  The subtropical high-pressure system is situated well 

west in the central North Pacific Ocean and no desert southwest warm-core low is 

evident.  As the day progresses, the development of the low is normally observed.  The 

effects are two-fold; an increase in wind speed (10 knots) due to the increase in the 

pressure gradient force and a cross-coast (onshore) component develops. These two 

features lessen or even arrest the divergent wind field and are the indicators to fog and 

stratus dissipation pattern that normally follows.  The processes that are responsible are 

again, not found in the synoptic scale, but in the mesoscale environment that will be 

addressed later. 

There are signatures that are discernible in the synoptic pattern that indicated the 

increase in afternoon fog and stratus events, category four.  Figures 46 and 47 are shown 

to illustrate the diurnal changes.  The key  indicator  is  the weak  existence of  the  warm- 
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Figure 46.  Composites of NOGAPS 12Z June surface analysis for the Los Angeles 
region for category four events. 
 

core low over the desert southwest on the 12Z composite, illustrated in Figure 46.  This 

feature is not evident in category one events for the same period. 
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Figure 47.  Composite of NOGAPS 00Z June surface analysis for the Los Angeles region 
for category four events. 
 

Examples of 00Z composites for June revealed  the warm-core low over the desert 

southwest is deeper by 3mb compared to category one events.  The deeper low alters the 

large scale flow inland bringing with it the early return of fog and stratus to the region. 

While some high clouds were observed in the satellite images, (mainly associated with 

the subtropical jet stream), they were extremely limited and not the key factor.  Of note, 

the majority of these events were in the latter half of the month of June, a probable 

indication of seasonal variability. 

The high-pressure cell begins the month of June due west of the bight region and 

slowly migrated north during the month.  While there was no distinct ridging like the 

Pacific Northwest, there were some indications of weak anticyclonic turning across the 

region as shown in Figure 47. There was a consistent and mostly weak flow that was 

observed out of the northwest that followed the coastline that is in response to the weak 

ridging.  As a result of being further located south, many times a weak warm-core low 

 68



develop during the entire summer period inland that caused a slight turning of the 

synoptic flow into the coast.  While at the same time, a divergent wind pattern in the 

horizontal can be seen in the region on Figure 48.  While not strong indications, these 

were the synoptic signs to a category one event; weak ridging, weak or absent warm-core 

low, and a divergent near surface wind pattern.   

 
Figure 48.  NOGAPS 08/00Z June 00 surface analysis.  Note weak warm-core low over 
northeastern Nevada 

 

Examining satellite imagery during the month, the dissipation pattern of  the fog 

and stratus tended not to dissipate from a north to south manner like the more northern 

regions, but would dissipate from shore to seaward, much like a large snow plow pushing 

snow off the road. There was no specific synoptic signal that would indicate this breakup. 

In the case of MSC category four, the overriding synoptic pattern remained the 

same.  The subtle difference that resulted in the afternoon intrusion of fog and stratus was 

the development of a warm-core low over the desert southwest. At first glance, this is a 

confusing signal as compared to category one patterns.  However, the stronger the inland 
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warm-core low,  the stronger the overall flow became. There were two basic cases 

observed.  First, if a warm-core low formed over the high desert of Nevada, the warm-

core low over the desert southwest would be the stronger of the two.  In the second case, 

only the formation of the warm-core low over the desert southwest would be observed.  

In either situation, the stronger warm-core low was over the desert southwest. These 

cases caused a near direct onshore flow throughout the day, albeit fairly weak, i.e. 10 

knots or less as shown in the COAMPS simulations.  Figure 49 shows typical pattern for 

MSC category four where weak ridging can be seen, but more importantly, a much 

stronger inland warm-core low, i.e. a 999mb low. 

  
Figure 49.   NOGAPS  16/12Z June 00 surface analysis.  Note the formation of a 999mb 
warm-core low over the desert southwest. 

 

Moderate variability is observed during the month of July of which 25 

occurrences of MSC category one was observed as compared to 17 cases in June.  The 

synoptic pattern was one of consistency, as one would expect with such a high 

occurrence of category one events.  The Catalina Eddy may have been responsible for 

some limited number of these events, but not directly addressed due to its infrequent 
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nature.  Some evidence of a dominant warm-core low over the desert southwest was 

observed however.  While this low appeared from time to time, it was either weaker or 

part of the board high-desert warm-core low-pressure system.  The key indicator in the 

synoptic pattern seemed to be that a horizontal divergent wind flow.  While the winds 

were typically weak, 10 kts or less and many time 5 kts or less,  there was a divergent 

pattern present in the simulation.  There was also evidence of weak ridging, but that was 

not nearly as consistent feature as was the divergent wind flow within the region.  It 

should be noted that the discussion of the divergent wind patterns and other wind patterns 

refers to the horizontal fields only and does not imply vertical motions.  With the absence 

of a divergent wind pattern, radiative effects may play an important role, i.e., the 

boundary layer decoupling process. 

The month of August resembled that of June by exhibiting greater variability, 14 

occurrences of MSC category one, 10 occurrences of MSC category four, and two days 

with no fog and stratus.  Category one synoptic patterns were unchanged from previous 

months.  However, category four events showed some disparity from June.  The 

overnight existence of the warm-core low over the desert southwest was not evident for 

August in the composites (not shown), as one would have expected.  The development of 

this warm-core low was also not as deep in central pressure as was observed in June 

composites.  They were some 3 to 5 mb’s higher.  The biggest indicator that resulted in 

the weaker warm-core low was the presence of light and variable coastal winds, i.e. 

winds less than five knots.    

In the two days where there was no fog and stratus observed in the region, the 

synoptic pattern showed a minor, but important anomaly.  As illustrated in Figure 50, the 

position of the warm-core low was shifted further south into northern Mexico.  This 

resulted in a weak easterly flow over the region.  While not a true Santa Anna wind 

event, it does have very similar results due to the adiabatic warming experienced from 

downslope flow over various mountain ranges in the region. 
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Figure 50.  Composite of NOGAPS August surface analysis for the Los Angeles region.  
This is an example of category seven (no fog and stratus) event. 

The Los Angeles region was clearly the most difficult to observe clear synoptic 

pattern indications of MSC evolution. This was due to two reasons; one of which is the 

latitudinal location of the region and the other is the geographical relationship to the 

predominate flow pattern.   The strength and locations of both the subtropical high and 

the inland warm-core low played important roles that appeared to manifest itself in the 

presence or absence of a divergent, horizontal wind pattern in the bight region.  

Topography no doubt plays a role as it does in the other regions, but perhaps more so 

here.  The key to this region will lie with mesoscale forcing, which will follow in the next 

section.  

Of the 14 occurrences of MSC category one in August, there were no 

perturbations out of the typical synoptic pattern.    However, MSC category four was 

somewhat more allusive and a definitive synoptic pattern was not observed, unlike July.  

Many times the appearance of the warm-core low over the desert southwest that was 

somewhat absent in July was more prevalent during August, but somewhat inconsistent 
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throughout the month. There was however, lower pressure across the region, but not the 

clear presence of a warm-core low as depicted by the analyses.  A much smaller scale 

analysis may have revealed the presence of such a feature.  Another, more consistent 

signal, seemed once again to be the presence of a weak wind field with divergent 

characteristics in the bight region.  There was no correlation between the warm-core low 

over the desert southwest and light winds with the formation of fog and status.  The most 

promising synoptic scale indication seemed to be the presence of a divergent wind field 

in the bight region.  While weak ridging was often associated with this wind field, it was 

not always the case.  Although diurnal sea breezes were prevalent at the shoreline, it was 

the broader divergent pattern that occurred in the late afternoon that signaled the return of 

the fog and stratus prior to sunset. 

There were two days in which no fog and stratus were observed in the bight 

region, the 10th and 17th of August.  While the overall synoptic patterns were quite 

different over the North Pacific Ocean, the resulting flow pattern over the bight region 

was the same.  Figure 51 shows flow pattern over bight region.   The single commonality 

for this event was the presence of an offshore flow.  While in the northern bight region 

the flow was more northerly vice a northwesterly flow, normally a clear signal that 

initiates the Catalina Eddy, the remaining flow across the region was also offshore.  This 

appeared more as a result of the inland warm-core low being displaced further south than 

typical.   Adiabatic warming and drying from coastal mountains seems is the result of the 

easterly flow pattern.  Additionally, with a strong coastal or slightly inland high-pressure 

cell, one that would cause abnormally warm temperatures also produces the Santa Anna 

winds, a warm katabatic wind that dries much of the regions it effects. 
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Figure 51.  NOGAPS 10/12Z August 00 surface analysis.  Note the offshore flow over 
the bight region. 
 

Significant sea surface temperature variability was observed during the month of 

June.  The lowest water temperatures were consistently near Point Conception at 12 

degrees at the start of the month to 15 degrees C by the end of the month. While the 

remainder of the Bight region was in the range from 18 to 20 degrees C. This was not 

unlike that which was observed in the Capetown region of Northern California.  

Nighttime inland marine layer temperatures were slightly cooler.  This further allowed 

the condensation process to occur on a nearly nightly basis. 

July water temperatures were cooler.  13 to 15 degrees C at Point Conception and 

15 to 20 degrees C throughout the remainder of the region, changing slightly from June, 

while near shore marine layer temperatures was warmer.  This created greater stability in 

the boundary layer, especially at night.  

By August with summer at its peak, so were the sea surface temperatures. The 

mean temperatures are now at 17 to 22 degrees C with the continued exception of the 
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Point Conception region where water temperatures remained at 13 to 15 degrees C  With 

the increase of water temperatures, August MSC events once again resembled that of 

June where in both months the water and near shore temperature relationship was the 

same. 
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IV. MESOSCALE SIGNALS IN THE COASTAL REGIME 

The previous chapter demonstrated a relationship between synoptic structure  and 

the evolution of fog and stratus each day.  As was noted earlier, 11 cases were chosen to 

examine the more detailed forcing of MSC by running COAMPS simulations. Although 

the COAMPS forecasts were not without error, the forecasts by COAMPS were found to 

be acceptable representations of the weather conditions during the period of study 

because they had similar large-scale structure to the NOGAPS analyses used in the 

composites. The emphasis in using the COAMPS forecasts is to relate the observed 

stratus evolution to synoptic and mesoscale structures in the COAMPS forecasts. 

Inferences drawn in this examination are of course limited by the forecast error of  the 

COAMPS forecasts, however if a consistent signal is obtained it is suggestive of a 

probable physical relationship. To more fully establish this relationship, mesoscale 

verification is required and was not done for this study. Subjective comparisons to 

NOGAPS analyses and other synoptic scale observations was done is suggests that the 

forecasts are credible.  

In this section, the mesoscale, coastal regime is examined to determine boundary 

layer mechanics and associated variables and processes that lead to particular stratus 

evolution.  Specifically, trajectory analysis and forecasts using Vis5d, moisture fluxes, 

low-level Q-vectors to examine forced vertical motions, and the thermal wind 

relationships are examined for their relationship to stratus evolution.  Table 5 below lists 

the parameters examined. 
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Table 5.  Environmental parameters investigated in both the synoptic and mesoscale 
regimes. 

Synoptic regime                                               Mesoscale regime 

Strength & position of STH                            MBL height & tendency 

Strength & position of warm-core low           Theta at top of MBL & tendency 

Dir & speed of coastal winds                          Coastal vertical motions (w) 

Dir & speed of ageostropic winds                   MBL thermal winds 

Dir & speed of geostropic winds                     Q-vector analysis’s & forecasts 

Pressure gradient force indicators                   Moisture conv/div & tendencies 

SST and tendencies                                         Clouds present above the MBL  

 

Not all MSC categories were investigated for each region for each month.  

Instead, the three basic evolutions, decreasing, increasing and no change were the focus 

for the dates listed in Table 6 as representative case studies.  Keep in mind, this study is 

based on COAMPS with 21km resolution with a model start time 12 hours prior to the 

events in question to allow the model sufficient time to adjust. Consequently, 12-24h 

forecasts were examined and compared to the observed evolution of the fog and stratus 

events as seen in the satellite images.  

A. PRESSURE GRADIENTS 

The composite analysis suggested a relationship between the sea level pressure 

distribution and MSC evolution and forecaster thumb rules often use pressure differences 

to determine stratus behavior. Consequently, the strength and tendency of the pressure 

gradient force was examined in each region to evaluate its diurnal effects as well as its 

seasonal variability on MSC evolution.  To construct this measure, a point was chosen for 

each region and a one-degree spread on either side of a point based on the coast was used 

to determine the pressure gradient force across the coast.   
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While the diurnal change was very clear and consistent with the sea breeze 

evolution, the fog and stratus events did not evolve in any consistent relationship to the 

magnitude of these pressure differences.   Both the resulting near-surface wind direction 

and speed were investigated for each of the cases chosen.  During the afternoon period 

when the sea breeze would be at its maximum strength, the MSC event would be 

retreating, while at other times, the MSC event could be moving onshore with the same 

flow regardless of speed.  The pressure gradient force was simply not a indicator in 

predicting any facet of a MSC event and should be discarded as such. 

B. BOUNDARY LAYER EVOLUTION 

Since the surface pressure showed little consistent signal, the boundary layer  

structure was presumed to play a role and examined through the use of GARP.  In each 

region, a cross section was chosen at the mid-point of that region in each case studied.  

The vertical resolution used was from the surface to 700mb at 2 degree K increments.  A 

sufficient cross-coast distance was used to observe the changing boundary layer from 

seaward to inland. 

1. MSC Events That Lead to Dissipation or Decrease in Coverage 
In the case of the MSC events leading to dissipating or decreasing amounts 

regardless of anomalies (tendency changes in the overall change), the model consistently 

depicted a lowering of the boundary layer near the coast and steady to mostly decreasing 

temperatures at the top of the boundary layer.  The degree of dissipation was well 

correlated with the amount of change the model was predicting.  That is, a change 

(lowering of the top of the boundary layer) of approximately 1500 feet or more and a 

temperature change (cooling) of 4 degrees K of potential temperature or more was a 

strong indicator of a more rapid dissipation of fog and stratus.  Weaker changes resulted 

in steady to slower dissipation rates.  It should also be noted that if only one parameter 

met the criteria and the other did not, then the rate of dissipation would be steady or 

slowed.  Both criteria had to happen for a more rapid dissipation.  Keep in mind that this 

is not to imply cloudy to clear scenarios, but only a decrease or dissipation in coverage, 

which sometimes leads to clear conditions.   
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It appeared the COAMPS model handled the boundary layer decoupling quite 

well.  There were no clouds present in the case studies above the boundary layer to 

influence the decoupling process.  It is thought that radiative effects were sufficient 

enough to weaken the boundary layer inversion.  This was suggested in the COAMPS 

simulation runs where the model showed increasing temperatures (Kelvin) at the top of 

the boundary  layer.   

2. MSC Events That Lead to Formation or Increase in Coverage 
In these cases, the model changes were more subtle, but recognizable.  The top of 

the boundary layer showed a maximum height change of approximately 1000 feet; often 

times, much less.  This variation was mostly a lowering, but could exhibit a slight rising 

of the top of the boundary layer.  The temperatures at the top of the layer were the real 

key.  Temperatures were primarily steady with only occasional variations of no more than 

two degrees K in either direction.   Steady or rising temperatures indicated a quicker 

formation period. 

Satellite observations for these case studies all showed increasing amounts of fog 

and stratus throughout the day or most likely near the end of the sun lit hours, which 

verified the model predictions well in these cases.   Boundary layer inversions were quite 

strong in these cases where radiative effects were not strong enough to break down or 

even weaken the inversion significantly.   

3. MSC Events That Lead to No or Little Change in Coverage  
As one would expect, the top of the boundary layer remained virtually unchanged, 

as did the potential temperature throughout the day.  Boundary layer fluctuations were no 

more than 500 feet while potential temperatures stayed within 2 degrees K.  These minor 

fluctuations could also be errors in the model run or evidence of weak gravity waves in 

the model and probably fall within the prediction limits of marine boundary layer depth 

and inversion strength for the model.  This highlights the potential for a bad forecast by 

the model even though it predicts a very consistent signal. 

For the 11 cases examined, the marine boundary layer variations failed to follow 

the aforementioned pattern for the 28 June 2000 run.  The model predicted a major 

lowering of the boundary layer (greater than 1500 feet) and a 4-degree K drop in 
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potential temperature, which is consistent with dissipation, but observations showed 100 

percent coverage of fog and stratus throughout the day (for the Monterey region). 

C. TRAJECTORY ANALYSES AND FORECASTS   

Given the dependence of the MSC evolutions on the marine boundary layer  depth 

and inversion strength, air parcel trajectory that contributed to their evolution were 

examined. Trajectory analyses and forecasts were examined through the use of the Vis5d 

program.  The same 36h simulations that were used in GARP are examined in Vis5D. 

Although, many processes could be examined in detail,  the focus was limited to 

trajectory analyses and forecasts.  Moisture analyses and forecasts were also looked at, 

but the model did not handle cloud development and dissipation well and therefore, it 

was mostly ignored as a useful predictor of observed behavior. This is an area where the 

forecast error was large, which apparently did not adversely impact the basic flow 

patterns as compared to the available observations. 

1. MSC Events That Lead to Dissipation or Decrease in Coverage 
Flows in and above the boundary layer were investigated over the 36h COAMPS 

model run with the emphasis on the daylight hours.   These trajectories were compared to 

the satellite imagery for verification. That is, if the simulations showed a trajectory that 

was descending, did the corresponding series of satellite images show dissipation?  

Several model runs were examined and the results were consistent with the air trajectory 

simulations.   Several examples are presented as evidence. 

The summertime synoptic-scale structure varied only somewhat from day-to-day 

and produced a characteristic type of coastal trajectory. A large majority of the 

trajectories were typical of flows around the northwestern to western quadrant of the 

subtropical high-pressure system. These trajectories were mainly along the coast from the 

north as shown in Figure 52. Two cases had  trajectories, due to different  synoptic-scale 

structure that were westerly in nature, i.e. onshore flows that originated well over water  

as illustrated in Figure 53.  Although these were the general character of the trajectories, 

there were identifiable differences in their association with MSC type. 
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Figure 52.  Vis5d illustration of boundary layer flow denoted in red around subtropical 
high-pressure system. Arrows indicate direction of flow. 
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Figure 53.  Vis5D illustration of westerly on shore flow.  Boundary layer winds denoted 
in red and flow above the boundary layer denoted in yellow.  
 

The key trajectory profile that indicated dissipation of the MSC event was one 

where the air was descending in the boundary layer or more likely air just above the 

boundary layer was descending into the layer.  It is hypothesized that entrainment of 

warmer, drier air located just above the MBL would help account for the dissipation of 

the fog and stratus. 

There were three basic flow patterns that were found in the majority of the cases, 

first was the flow along the coast from the north, the second was the trajectory shown 
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above in Figure 48, and the last was a southerly trajectory.  Figures 54 and 55 show 

descending air. In this case both a northerly and southerly flow converged and descended  

 
Figure 54.  Vis5D trajectories of late afternoon locally on 18 July 00 for the Eureka 
region. All three flows indicate descending air into or towards the MBL.  
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Figure 55.  Vis5D illustration at 21Z 4 Aug 00 for the Eureka region.   
 
into the boundary layer. The combination of boundary layer decoupling, possibly through 

radiative effects, weakening the boundary layer inversion allows for entrainment of 

warmer and drier air into the boundary layer  

2. MSC Events That Lead to Formation or Increase in Coverage 
The case studies in this category also had common characteristics, but there were 

a few anomalies. Figure 56 illustrates the characteristic trajectory for this MSC category, 

the flow is nearly horizontal within the boundary layer and along the coast.  The  
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Figure 56.  Vis5D illustration at 21Z 7 Aug 00 of the Eureka region.  Red denotes flow in 
the boundary layer.  
 

trajectory many times did not start out as horizontal, but spends several hours afterwards 

in a nearly horizontal flow.  Satellite observations correlated well, often depicting a 

decreasing coverage in the MSC event during period when there was weak descending 

air, but the process is arrested shortly after the flow becomes horizontal. One possible 

explanation in that the boundary layer is a cooler, moisture-laden air in a coastal-

following flow in the boundary layer that advances the upwelling process.   The 

upwelling process results in cooler water being brought to the surface through air-sea 
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interactions, which further cools the air just above it.  Due to the high moisture content of 

the air just above the water, it condenses and fog and stratus results.  While the horizontal 

flow does not change the marine boundary layer  depth, it was associated with MSC 

increases. 

3. MSC Events That Lead to No or Little Change in Coverage 
There are two key factors that stand out in the prediction of this MSC event.  

Unlike the previous MSC category, this event requires two trajectory components.  First 

as shown in Figure 57, the trajectory is normally several hundred kilometers to a 

thousand kilometers long over the same 36h period.  It is the result of the flow around the 

subtropical high-pressure system. The trajectory, once it encounters the continent, 

follows the coast southward with little to no onshore component. 

The second key factor as shown in Figure 58, is that the long trajectory flow must 

stay within the confines of the boundary layer. This extended flow within the MBL 

differs from category one in that category one flow is characterized by descending air.  

This coastal air mass is homogenous and laden with moisture.  The strength of the 

subtropical high is large, normally greater than 1030mb.  Subsidence in the western 

quadrant produces a strong capping boundary layer inversion and prevents any 

entrainment from air above.  This is consistent with the lack of change in MBL inversion 

strength or depth noted in the previous section. The flow as described in the previous 

section develops and enhances the upwelling process over a very long coastal region and  
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Figure 57. Vis5D illustration at 21Z 20 Jul 00 along the West Coast.  Red denotes 
boundary layer flow and yellow denotes flow above.  Note the long trajectory around the 
subtropical high-pressure system. 
 

normally for a long period of time.  Two or more days of continuous periods of fog and 

stratus with little change is not uncommon for these types of trajectories. 
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Figure 58.  Vis5D illustration from 21Z 20 Jul 00.  Red denotes boundary layer flow, 
which is horizontal with no mixing evident.   
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D. Q-VECTORS 

In view of the fact that both the trajectory analysis and the boundary layer 

structure analysis indicate a dependence of MSC evolution on the three-dimensional 

motion, perhaps a simpler method such as Q-vectors can be applied.  Q-vectors are useful 

to calculate synoptic-scale vertical motions and only require one level to be evaluated. A 

change in synoptic-scale subsidence is likely to be associated with changes in the 

boundary layer depth and MSC evolution. 

This large-scale lifting and sinking are deviations can be determined from the 

omega equation, σ ▼2 ω + f2 ωρρ = -2h ▼ · Q where the  Q  vector is defined as  

Q = -(uxθx +  υxθy) .  σ is static stability. Omega is vertical motion in isobaric 

coordinates. f  is the Coriolis  parameter. ωρρ  is the partial derivative of omega with 

respect to h is height. ▼ is the gradient operator on an isobaric surface. An important 

property of Q is that is can be evaluated reliably using   (uyθx  + υyθy) geostropic 

approximation for the derivatives of the wind components.  Unlike the evaluation of wind 

divergence, where divergence is very sensitive to small inaccuracies in wind data, Q is 

not prone to large errors due to small observational inaccuracies.  The rules about 

convergence and divergence are quite simple.  In regions where there is a convergence of 

Q-vectors there is upward vertical motion.  Likewise, in regions where there is a 

divergence of Q-vectors there is downward vertical motion.  Q-vectors were evaluated 

using GARP by calculating them using data from the near surface region (1010mb)  and 

represent the near-surface observed wind field. Here, vertical motion is implied from the 

horizontal near-surface wind and temperature field.  While vertical motion is available 

from the model itself, it tends to be rather small scale and the omega equation extracts the 

synoptic scale forcing more directly. 

1. MSC Events That Lead to Dissipation or Decrease in Coverage 
COAMPS did a reasonable job in depicting Q-vectors along the coastal regions 

based on comparisons with satellite imagery with the exception of the bight region where 

COAMPS did not depict Q-vectors immediately along the coast due to the 1010 mb 

surface being underground, but was able to depict them somewhat offshore where the 

surface is above ground.  Therefore, the model could not easily be compared with the 
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forecast evolution of MSC events in this region based on satellite images. During periods 

and areas of fog and stratus dissipation, Q-vector divergence was the primarily indication 

of fog and stratus dissipation in the COAMPS simulation runs,  as shown in Figure 59. 

 
Figure 59.  Q-vectors from 8 Jun 00.  Divergence in the Q-vectors is the primary 
indication in the Monterey region where fog and stratus dissipated. 
 
This feature normally verified well with satellite imagery and thus led credence to the 

concept of using Q-vectors for MSC evolution.  In areas where  strong  divergence of Q-

vectors was found, MSC dissipation was also found through comparison with satellite 

images.  Where the magnitude of Q-vectors were small, and no clear indication of a 

divergent pattern was indicated in the model simulations, the MSC event was slow to 

dissipate or only small areas cleared, but not necessarily where the model indicated.  This 

is consistent with the marine layer becoming more shallow associated with MSC 

dissipation. 

In the region of Capetown/Eureka to the Columbia River, MSC events occurred 

more frequently and lasted longer.  Many times where a divergent pattern would be 

 91



indicated elsewhere, a neutral and/or weak convergent  pattern of Q-vectors would be 

indicated here. Numerous sequences of satellite images confirmed the presence of fog 

and stratus in the region, as seen in Figure 60. This phenomenon can be attributed to the 

westward extension of land at Capetown, the pertubating point that deflects the flow in 

the region.  It is hypothesized that this generates a gravity wave, which is created by 

“anything that perturbs the flow”.   The resulting gravity waves  will move north and 

south along the coast from the pertubating point.  Those gravity waves that flow north 

against the prevailing wind field will have a Froude number of less than one.  This means 

the gravity wave phase speed is greater than the ambient wind speed or is said to be 

subcritical. Flows that have a Froude number of less than one exhibit the characteristic of 

not having the energetics to not go over a barrier.  In the absence of topography that 

would allow a flow to go around a barrier, the flow becomes trapped, as in this case. 

Gravity waves that are able to flow south with the prevailing flow will have Froude 

number’s greater than one.  This means the wind speed is greater than the gravity wave 

phase speed and is said to be supercritical. Super- and Subcritical flows were noted in 

several meteorological parameters in the region.  The gravity waves may be evident by 

the presence of fog and stratus whereas the surrounding areas are clear. 
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Figure 60.  GOES-10 satellite image from 1600, 2 Jul 00.  Note the presence of fog and 
stratus from Capetown/Eureka region to near the Oregon/California border. 
   

To further this concept, the momentum equation, not given, implies that there 

must be a height change that must accompany any change in acceleration or deceleration 

of the flow is consistent with the shallow water flow dynamics.  The momentum equation 

can also be integrated along a streamline to determine the energy balance given by 

Bernoulli’s equation, (not given).  The results of which implies that total energy (kinetic 

plus potential) must be conserved following a parcel.  This further implies that for high 

winds, as in the case of supercritical flow, the inversion must be low. A low inversion 

implies MSC dissipation.  Again figure 60 shows a great example of this.  The area south 

of Capetown is clear of fog and stratus.  In cases where the flow is subcritical, this 

implies a higher MBL, which usually implies the presence of fog and status. 

2. MSC Events That Lead to Formation or Increase in Coverage 
 Q-vector derived vertical motion for this category was different and more 

challenging to interpret from COAMPS simulation runs because the simulations were not 

as consistent as hoped.  The convergence of Q-vectors as shown in Figure 61 is a good 
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example of cases where the MSC event increased in coverage.  However, this was not a 

consistent signal, perhaps due to model error associated with  weak wind fields.  In those 

cases where the wind field was not weak, Q-vectors were consistent in showing 

convergence.  Convergence of Q-vectors implies upward vertical motion that would lead 

to condensation of the moist marine layer, and hence the development of stratus clouds 

and fog. 

Figure  61 also points out some inconsistencies in the simulation runs for this 

category.  For example, the San Francisco Bay region implies (no inland Q-vectors) 

divergence in the Q-vector pattern, but this day showed an increase in fog and stratus for 

the Bay area.  While this is considered a minor perturbation to the overall divergent field, 

it does point out the possible inconsistencies that arise. 

  

Figure 61.  Q-vectors from 20 Jul 00. Note areas of convergence.  Areas were consistent 
with the development of fog and stratus. 
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3. MSC Events That Lead to No or Little Change in Coverage 
There were two Q-vector patterns that emerged that seemed to indicate the 

continuation of fog and stratus.  The first is a convergent pattern within the Q-vector field 

as shown in Figure 61. However, the strength of the Q-vectors was weak in most cases.  

This pattern is consistent with the formation of fog and stratus by the lifting of moist air 

to the condensation point as described above.  A stronger indication or magnitude of Q-

vectors would be an indication of less stable air and would probably lead to the formation 

of stratocumulus clouds.  

The second pattern, which is shown in Figure 62, is a Q-vector field that shows 

neither convergence or divergence, but more of a static situation in the vertical, i.e. less 

vertical motion.   In a large majority of cases, the strength of the Q-vectors is very weak, 

giving the appearance of a light and variable field, again less vertical motion.  This is the 

pattern in which forecaster can key in on.  The lack of any vertical derived motion  

 
Figure 62.  Q-vectors from 28 Jun 01.  Note the lack of a defined area along the coast of 
convergence or divergence.  This area experience near continuous coverage of fog and 
stratus throughout the day. 
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implies a relatively smooth horizontal flow as discussed in air-parcel trajectories without 

much if any vertical motions.  This is consistent with large-scale region of higher MBL’s. 

Q-vectors appeared to be a good predictor or indicator for the evolution of the 

MSC events.  During periods where the model depicted weak coastal fields, the 

forecasting problem increased significantly, but if compared to other meteorological 

parameters such as the expected  tendency of the MBL and air-parcel trajectories, it 

becomes much easier problem to forecast the evolution. 

E. THERMAL WIND RELATIONSHIP WITHIN THE BOUNDARY LAYER 

The evolution of MSC events in the boundary layer is related to thermodynamic 

changes as well as MBL depth changes.  Regions of cold advection might tend to favor 

MSC increases due to MBL cooling .  Likewise, warm advection might favor MSC 

decreases due to warming of the MBL.  While thermal changes along the trajectories are 

what are really required, the Eulerian thermal advection may give some insight into 

potential MBL temperature changes.  One way to assess the character of the thermal 

advection is to examine the low-level flow.  The 11 cases were used characterize the 

MSC evolution based on the type of advection. 

The thermal wind, defined as a difference; VT  ≡ V2 – V1 where V1 is the lower-

level winds and V2 is the upper-level winds.  Assessed in GARP as V1 at the surface and 

V2 at 850mb,  the thermal wind in the boundary layer was compared to the surface flow 

to get the type of thermal advection.  Strong thermal winds imply a strong horizontal 

temperature gradient in the near-surface layer and lead to the possibility of the existence 

of a low-level coastal jet. Such studies in the past have included coastal waves during the 

summer, CALJET, and most recently PACJET, which was conducted during the winter 

of 2001.  The existent of the coastal jet was not examined in this study, but is consistent 

with strong sloping inversions. 

The derivative definition of thermal wind in P-coordinates is ∂Vg/∂p = - R⁄ƒρ k x 

▼Τ.  An important property of this expression is that the horizontal and vertical 

derivatives, albeit different variables, can be evaluated from each other.  The average 
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temperature of a layer, the boundary layer in these cases, is proportional to the thickness 

h: T = const x h.  This allows the substitution of temperature for thickness and vice-versa. 

Thickness advection is given by –V • ▼h ≈ ƒ/g k • (V1 x V2) where V is the 

average wind in the layer.  The sign of the advection is determined by –V • ▼h = > 0 

warm advection, < 0 cold advection.  Traditional marine expressions for turning ships are 

often used for wind turning with height.  If the thermal wind indicates turning to the left 

with height then there is backing, which indicates cold air advection.  If the thermal wind 

indicates turning to the right with height then there is veering, which indicates warm air 

advection.  Since the low-level along coast flow was generally from the northwest, a 

thermal wind vector pointing onshore (offshore) would indicate cold (warm) advection 

within the layer from level one to level two.  More importantly, cold air advection 

implies lower thickness, while warm air advection implies greater thickness as described 

above 

1. MSC Events That Lead to Dissipation or Decrease in Coverage 
In an examination of the thermal wind within the boundary layer, some interesting 

results emerged.  A thermal wind that was parallel to the coast was an indication that no 

temperature advection or thickness advection was taking place. For these cases, other 

factors prevailed in determining the dissipation of fog and stratus.  However, when the 

thermal wind was shown to have an easterly component, i.e. a flow extending from 

onshore to offshore, there was verification of fog and stratus dissipation though satellite 

imagery.  This was an indication of warm air advection since the winds were veering with 

height within the boundary layer. 

2. MSC Events That Lead to Formation or Increase in Coverage 
As in the above case, when the thermal wind was parallel to the coast, there was 

no affect or indication towards the evolution of the MSC event.  However, when there 

was a westerly or onshore component of the thermal wind within the boundary layer, 

there was a clear correlation with the presence of fog and status.  This was particularly 

true in two regions; Capetown/Eureka area to the Columbia River outflow region and the 

San Francisco Bay area.  With backing winds with height, the westerly component of the 

thermal wind suggests cold air advection into the layer and is consistent with an 

 97



increasing buoyancy flux due to cooling temperatures; both of which are  consistent 

features of increasing fog and stratus.  These features were often found beginning in the 

mid to late afternoons, with the exception of the lifting of the MBL. The simulations were 

slow in lifting the MBL and normally did not occur in the simulations until the evening 

hours.  

3. MSC Events That Lead to No or Little Change in Coverage 
Again, there were clear indications.  Like described for the previous two 

categories, parallel flow of the thermal wind vector to the NW coastal flow provided no 

indication about the MSC evolutions.  There were no temperature or thickness advections 

taking place. All of the case studies for this category showed a thermal wind vector that 

was primarily parallel to the coast.  This is very consistent with the persistence of MSC 

events for this category. A static situation in terms of the thermal wind relationship 

implies no advection of temperature or thickness changes.  As seen previously, MBL 

heights will also remain static in these cases as well as long MBL trajectories.    
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V.CONCLUSION/SUMMARY 

A. CLASSIFICATION OF MSC EVENTS 

A classification of the MSC events was completed and can be summarized in a 

more practicable and efficient manner, complete with realistic definitions and general 

comments on the potential impact to flight operations.  It was found that the original 

seven categories while good for this study would not be practical or logical to the 

forecaster in the field.  No category was assigned to non-MSC events.  To that end, the 

following four categories can be used in describing a particular MSC event. 

MSC category 1.   Fog and status dissipating or decreasing in coverage 

throughout the daylight hours regardless of any initial tendency in coverage throughout 

the day.  Satellite imagery will show a clear change in coverage with a tendency towards 

less coverage along the coast and inland valleys.  This event primarily occurs in the 

morning hours. 

MSC category 2.  Fog and stratus forming or increasing in coverage throughout 

the daylight hours regardless of any initial tendency in coverage throughout the day.  

Satellite imagery will show a clear change in coverage with a tendency towards more 

coverage along the coast and inland valleys 

MSC category 3.   Fog and stratus coverage that exhibits little to no change 

throughout the day.   Changes of the MSC event are  limited to one tenth of the area in 

any of the four satellite regions.  Satellite imagery  will  show no  significant  changes in  

coverage  along  the coast.  While  the  norm  of  this  category  has  shown  coverages of  

90  to  100 percent,  this  category  also  implies  limited  overages  of  a  much  lesser 

extent. 

MSC category 4.  Fog and stratus that is clearly associated with a frontal          

system, albeit pre or postfrontal.  The dynamics associated with the front are the clear 

cause of the fog and stratus regardless of coverage or tendency.  Satellite imagery clearly 

shows clouds associated with the frontal system. The underling layer(s) of fog and stratus 

may or may not be evident through satellite imagery. 
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B. SUMMARY OF SYNOPTIC-SCALE FORCING ON MESOSCALE 

FEATURES 
Comparison of the composites in each MSC category for each region revealed 

that the synoptic-scale forcing was effectively the same. There was surface ridging into 

the Pacific Northwest followed by cyclonic circulation in the Eureka region and a nearly 

parallel flow down the remainder of the coastline. All resulted in the initiation of MSC 

category one events.  It is the nature of the perturbations in the synoptic-scale forcing that 

predicts the MSC evolution as modeled by mesoscale simulations.  Additionally, the 

presence and evolution of inland meteorological features played a supporting role in 

modifying the synoptic forcing mechanisms.   

1. Seattle Region 
Perhaps the most predictable region of the four in terms of MSC evolution was 

the Seattle region.  There were unambiguous signals in the synoptic pattern that resulted 

in MSC events and their evolutions.  The greatest indicator was the surface ridgeline into 

the Pacific Northwest that extended form the subtropical high-pressure system.  The 

presence of this feature was always associated with fog and stratus along the coast and 

inland valleys. The key to forecasting this event lies with any mesoscale model’s ability 

to forecast the extent of anticyclonic curvature into the region.  As the anticyclonic 

curvature lessened, so did the coverage of fog and stratus.  If the curvature persisted 

throughout the day, the coverage of fog and stratus also persisted due to implied 

subsidence. 

At least for the summer of 2000, the normal synoptic pattern was for a surface 

ridgeline to extend into the Pacific Northwest from the subtropical high-pressure system 

with a distinct daily variability, which included the lessening of the anticyclonic 

curvature in the region.  This does not imply a lowering in surface pressures or a 

weakening in the pressure gradient. Neither of these proved to be a factor. There was no 

seasonal variability observed for this region.  As the subtropical high strengthened and 

migrated north, the ridgeline continued to persist.  The surface ridgeline could extend 

from the west to nearly south and the results would be the same. In one case, the surface 

ridgeline extended from the northwest from a dynamic, cold-core high-pressure system. 

While fog and stratus were present, the dissipation was rapid and completed by mid- 
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morning.  A rather strong inverted trough along the west coast that occasionally extended 

into the Pacific Northwest always cleared the region out by changing the normal 

northerly flow along the coast to an easterly flow that originated overland.  The region 

would also be the first and last to experience a frontal passage during the season.  The 

effects of which are well known and easier to forecast. 

2. Eureka Region 
The synoptic signal was less unambiguous for this region during the summer 

months than it was for the Seattle region.  It is more difficult to predict, but not totally 

impossible.  The overwhelming synoptic pattern responsible for MSC category 1 events 

was the presence of an inverted trough extending from the high desert of Nevada through 

the Eureka region. 

As the summer progressed, the forecasting challenge seemed to lie in the 

evolution of the MSC event.  There were times when the MSC event would dissipate 

while other times the MSC event would persist throughout the day without any 

appreciable change in the synoptic pattern in either case.   It was clear therefore, that the 

synoptic pattern did not hold the key in terms of the MSC evolution. 

Early indications of persistence were the presence of light winds of less than 10 

knots in the base of the inverted trough.  While later indications was also the presence of 

light winds, but with an inverted trough that extended from the desert southwest 

northward along the coast and only in the regions of coastal light winds. 

The key indicator in the synoptic pattern was the presence of light coastal winds 

in the base of the trough that allowed the persistence of the MSC event.   Again as in the 

Seattle region, any easterly flow that went cross-coast resulted in clearing in the coastal 

regions. 

 

3. Monterey Region 

The Monterey region as mentioned earlier is arguably the most important region 

in terms of the presence of three major international airports, all located in the Bay 

Region.   The importance of accurate MSC forecasts is the most acute here and has the 

greatest impact on Pacific Rim flights. 
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While the synoptic patterns were not as clear-cut as hoped in the composites, 

there are some key indicators that forecasters can focus in on.  The biggest of which is the 

development of the warm-core low over either desert region.  This results in an onshore 

flow that enhances the sea breeze.  While this is not the physical process that causes the 

MSC event to dissipate, it does seem to indicate that dissipation will follow.              

The lack of any significant flow along the coast, that is, during periods where an 

inverted trough extending north up the coast is present, is where forecasters can expect 

the persistence of the MSC event.  Offshore flows as usual, tend to result in clear coastal 

weather, resulting at times in record high temperatures.  Hurray, for an easterly flow! 

4. Los Angeles Region 
This region was probably the most difficult region to forecast for in terms of 

synoptic features.  This was due to varying water temperatures, complex coastal 

orientation, and topography. 

The position of the subtropical high-pressure system relative to the bight region 

normally placed the greatest area of subsidence into this region.  Additionally, fog and 

stratus dissipation pattern was unlike the other three regions in that the dissipation pattern 

would be inland to seaward, vice north to south. 

The biggest synoptic feature that the MSC events seem to hinge on was similar to 

that of the Monterey region.  The presence of light winds 5 to 10 knots during the 

morning followed by the development of the warm-core low over the desert southwest 

that increased and turned the flow inland.  This indicated, like the Monterey region, that 

dissipation was sure to follow.  A stronger than normal warm-core low, especially early 

in the season seemed to indicate persistence of the fog and stratus event for the region.  

While none of these synoptic indicators would give any forecaster great confidence, they 

were consisting indicators of the MSC events, either dissipating or persisting. 

There was one occasion where the development of the warm-core low was further 

south into Mexico.  The flow associated with this feature resulted in weak easterly winds, 

which will clear and warm the coastal region. 
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C. RECOMMENDATIONS FOR FORECASTING TECHNIQUES 

1. Mesoscale Indicators 
This particular section will not be broken down into individual regions because of 

the close similarities in the mesoscale features.  Granted, these features are born from the 

synoptic-scale, which as been shown to be different for each region.  However, the 

mesoscale features have common threads that are predictable for each region.  There are 

some very limited exceptions of course, and those will be summarized in this section. 

There are two unambiguous indicators to the evolution of the fog and stratus 

events.  First and foremost was the ability to compute the air parcel trajectories.  A clear 

indication was seen by the coastal trajectories, especially in the vertical with time.  

Descending air, i.e. the entrainment of warmer, drier air from just above the layer, was 

seen to cause dissipation regardless of the region.  Long coastal trajectories within the 

boundary layer were indications to begin the upwelling process that brought cooler water 

to the surface, and thus cooled the air above causing or continuing the condensation of 

water droplets, i.e. the development or persistence of the MSC event. 

In the cases of the Monterey and Los Angeles regions the development of the 

warm-core low was seen as an indicator to dissipation by turning the flow more inland 

via a cross-coast component.  Presumably the development of the warm-core low 

modifies the air-parcel trajectory by a sufficient manner as to aid in the warming and 

drying of this flow.  It is known that the pressure gradient force causes wind to flow from 

high pressure to low pressure, while other forces such as Coriolis, centripetal, and friction 

modify the primary flow.  The trajectory of this primary flow is one that descends 

initially.  Such is the flow around the eastern quadrant of Northern Hemisphere high-

pressure systems.  This is where the greatest subsidence is found. Depending on other 

factors, the flow will begin to lift once again.  The lifting region is normally found in and 

around low-pressure systems. It is during the descent stage of the overall pattern that is 

being suggested as a possible mechanism that helps in the dissipation of the fog and 

stratus layer.  Other factors such as the strength of the inversion, topography, upper-lever 

dynamics, radiative processes, and ocean variables all play roles.  It is the extent of each 

of these factors that vary  and their relationships that must be considered. 
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The second indicator was through the use of Q-vectors. While this analysis 

implies vertical motion, it does not imply three-dimensional trajectories.  If vertical 

motion is shown, the extent and depth of the vertical motion cannot be determined from 

the near-surface Q-vector analysis, but it is helpful and insightful.  As several figures 

have shown, during the simulation runs where there were indications of convergence of 

Q-vectors, fog and stratus was shown to increase in coverage. During the convergent 

pattern, the base of which is considered a hard boundary, i.e. the ocean,  the flow is 

turned upward.  The lifted air is cooled and condenses resulting in the formation of 

clouds. Where Q-vectors were indicating a divergent pattern, fog and stratus would 

dissipate. The divergent pattern is in response to descending air running into a hard 

boundary and flowing outward.  The descending air warms adiabatically and becomes 

drier since warmer air has the ability to hold more moisture.  Finally, where there was no 

clear indication of convergence or divergence in the Q-vector field, fog and stratus 

remained, exhibiting little change.  This implies that little to no vertical motion is taking 

place, but only horizontal flows are occurring. 

The thermal wind relationship proved helpful, especially in isolated regions where 

topography may have played a key role.  The two major areas were the regions from 

Capetown/Eureka to the Columbia River, and the San Francisco Bay area.  Monterey Bay 

region was affected by a much lesser extent. An onshore component of the thermal wind 

in the boundary layer was a clear indication of fog and stratus in the area. This implied 

cold-air advection in the boundary layer.  However, this type of forecasting is dependent 

upon the model to accurately forecast this particular parameter. Caution is advised.  

Forecasting the evolution of the boundary layer, through the COAMPS simulation 

runs, was not found to be a terribly insightful. While the daily evolution normally saw the 

lowering of the boundary layer along the coast that slopes up seaward, which is 

consistent with subsidence patterns associated with the subtropical high, there were some 

perturbations in the MBL that could possibly indicate the evolution of the MSC event. 

Significant lowering of the marine boundary layer, 1500 feet or greater, indicated 

dissipation. Subsidence is normally strong in these regions, but the depth of change is 

critical.  Little change in the marine boundary layer indicated MSC persistence.  This is 
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consistent with a relatively static pattern where vertical motions are nearly non-existent.  

There were no clear indications, at least through the simulations of the MBL that would 

point to fog and stratus increasing in coverage.   One would surmise or expect an increase 

in the MBL, but the COAMPS model did not depict such occurrences during the day.  

However, during the final hours of the simulation, there would be indications of the MBL 

lifting.  These final hours of the simulation are during the evening hours.  It could be that 

the simulation runs showed a lag in the diurnal cycle from reality. 

As a final remark, the coastal pressure gradient force had limited impact and was 

not a true indicator of any MSC event.  Many times when a strong sea breeze was seen in 

response to increases in the cross-coast pressure gradient, the fog and stratus would be 

retreating seaward.  Only in the cases on the synoptic–scale where a warm-core low 

development significantly was the large-scale trajectory  modified.  This was the key, not 

the pressure gradient force.  

2. Summary of Forecasting Techniques 
Tables 6-9 are provided to give a brief summary of forecasting techniques that 

were consistent during the course of this study.  No attempt to add synoptic and 

mesoscale variability is given in the tables. 

Location for Table 6 is for the Seattle region.  The following abbreviations are 

used for Tables 6-9. APT is air-parcel trajectory.  D is descending air, A is ascending air,  

NVM is no or little vertical motion, Conv is convergence, Div is divergence, Neut is 

neutral,  F&S is fog and stratus,  Diss is fog and stratus dissipating, and Form is fog and 

stratus forming. 

Synoptic Pattern                  APT                 Q-Vector            Forecast       MSC Cat 

Weakening ridgeline           D                       Div                     Diss                1 

Strengthen ridge line           NVM or A       Conv                   Form               2         

Persistent Ridging               NVM                Conv or Neut     F&S                 3 

Table 6.  Summary of forecasting techniques for the Seattle Region. 
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 Table 7 below is a summary for the Eureka region. 

Synoptic Pattern                  APT                 Q-Vector            Forecast       MSC Cat 

Weak inverted trough            D                     Div                     Diss                 1 
(E-W orientation) 
 
 Parallel flow                       NVM or A       Conv or Neut       Form               2 
 (Isobars parallel to coast)  
 
 Weak flow pattern              NVM                Conv or Neut      F&S                 3 
  (no isobars. Inverted  
  trough oriented NW-SE) 
Table 7.  Summary of forecasting techniques for the Eureka Region. 
 

 Table 8 below is a summary for the Monterey region. 

Synoptic Pattern                  APT                 Q-Vector            Forecast       MSC Cat 

Weak parallel flow                 D                     Div                     Diss                 1 
(Isobars oriented parallel 
to coast) 
 
 Large-scale flow                 NVM or A       Conv or Neut       Form               2 
 turned inland (inland 
 warm-core low present) 
 
 Weak flow pattern              NVM                Conv or Neut       F&S                 3 
  (no isobars. Inverted  
  trough oriented NW-SE) 
Table 8.  Summary of forecasting techniques for the Monterey Region. 
 

 

 

 

 

 

 

 106



Synoptic Pattern                  APT                 Q-Vector            Forecast       MSC Cat 

Weak ridging &                     D                     Div                     Diss                 1 
divergent wind pattern 
 
Parallel to onshore                NVM or A       Conv or Neut     Form                2 
Large-scale flow. (inland 
warm-core low present)  
 
Catalina Eddy                       NVM or A        Conv or Neut     Form               2 
  
Onshore large-scale              NVM or A        Conv or Neut     Form                3 
flow. (strong inland  
warm-core low present)  
 
Table 9.  Summary of forecasting techniques for the Los Angles Region. 
 

3. Final Comments and Recommendations 

This final section summarized some forecasting techniques that will help coastal 

forecasters.  They are based in the synoptic patterns, but have smaller mesoscale features 

or influences, which if detected properly will help the forecasting problem, enormously. 

As all good forecasters are acutely aware of, the model is only one tool in a vast 

array of tools learned over the years.   Dependence on a single tool, and in particular a 

computer model, will lead the forecaster down the path of embarrassment of a truly 

busted forecast.  It happens to the best of us.  If the model does not initialize well, or is 

not handling the situation well, then other forecasting techniques and experience must be 

used. 

While there are some clear indications in the synoptic pattern in most cases, and 

further indicators in the mesoscale, the ability to “see” these features are paramount.  The 

development of Vis5D or any other software that allows forecasters to visualize the 

atmosphere closer to its true state is invaluable.  It is highly recommended that Vis5D 

been downloaded from the University of Wisconsin.  There is no charge, simply a 

hardware requirement to run the software.  All of which can be found at the University of 

Wisconsin web site given previously.  The model output will need to be converted to 
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Vis5D formats and the forecast output periods need to be small, 3hrs, to get reasonable 

trajectories. 

The use of Q-vector, analyses and forecasts, is recommended.  While not 

trajectory forecasts, they give helpful insight into vertical motions occurring in the near-

surface environment.  This is especially if true mesoscale models (<10km resolution) can 

be employed. 

While the summer of 2000 was only a small snapshot into the synoptic patterns 

with coastal and mesoscale influences, further studies of several years are recommended 

to better determine long-term variability, i.e. climatic changes and cycles. 

As computing power becomes better, further refinement of sea surface 

temperature modeling is needed.  Greater details could provide better insight in term of 

air-sea interactions and fluxes, both vertically and horizontally in the MBL. 

One factor consistently fell short of expectations within the simulation runs was 

the poor handling of moisture. Both is the Vis5D depiction of clouds and GARP’s 

depiction of moisture convergence/divergence fields, was inconsistent.  The moisture 

variable is important to the formation, dissipation, and advection of  fog and stratus.  

Better modeling of this important variable in the mesoscale environment is critical. 

While much of the information presented is based on COAMPS simulation runs, 

future studies to include short-period observations and analyses to confirm (or deny) 

information presented herein is also recommended. 
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APPENDIX A FORTRAN 77 

 
program average 
      parameter(ix=66,iy=36,iz=9) 
      real sum(ix,iy,iz),grid(ix,iy,iz),grid2(ix,iy) 
      real sum2(ix,iy,iz),sum3(ix,iy,iz),pgrd(iz),sum6(ix,iy,iz) 
      real sum4(ix,iy,iz),sum5(ix,iy,iz),sumh1(ix,iy),sumh2(ix,iy) 
      integer n(8,iz) 
      character file*8,filename*300,parm(8)*3,outfile*60,outfile2*80 
      character dattim*11,gdatim(2)*20,parms(8)*12,hour*4 
      logical err 
      data parms /'UREL        ','VREL        ','TMPK         ', 
     +            'HGHT        ','DPDK        ','OMEG         ', 
     +            'PMSL        ','GWTMPK      '/ 
      data parm /'u  ','v  ','t  ','ght', 'td ','omg','slp','sst'/ 
 
c 
      call getarg(1,hour) 
      call getarg(2,outfile) 
      lo=nblank(outfile) 
      izi=iz 
       outfile2(1:lo+4)=outfile(1:lo)//'.gem' 
c 
      do k=1,izi 
        do np=1,8 
        n(np,k)=0 
        enddo 
        do i=1,ix 
          do j=1,iy 
           sum(i,j,k)=0.0 
           sum2(i,j,k)=0.0 
           sum3(i,j,k)=0.0 
           sum4(i,j,k)=0.0 
           sum5(i,j,k)=0.0 
           sum6(i,j,k)=0.0 
           sumh1(i,j)=0.0 
           sumh2(i,j)=0.0 
          enddo 
        enddo 
       enddo 
c 
 10   continue 
      read(5,'(a11)',end=40)dattim 
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      gdatim(1)=dattim(1:11)//'f000      ' 
      gdatim(2)='  ' 
      file(1:8)='20'//dattim(1:4)//'01' 
      if(dattim(5:6).gt.'15')file(1:8)='20'//dattim(1:4)//'16' 
      filename='/d/rtd4/case/0006-08/gempak/grids/'//file//'_nog1m.gem' 
c 
      do np=1,8 
       call unoggi(grid,grid2,ix,iy,iz,parm(np),filename,gdatim, err,pgrd) 
c 
      if(np.lt.7)then 
       do k=1,izi 
         if(grid(1,1,k).eq.-9999.0.or.grid(1,1,k).eq.0.0)go to 20 
         n(np,k)=n(np,k)+1 
          do i=1,ix 
            do j=1,iy 
              if(np.eq.1)then 
              sum(i,j,k)=sum(i,j,k)+grid(i,j,k) 
              elseif(np.eq.2)then 
              sum2(i,j,k)=sum2(i,j,k)+grid(i,j,k) 
              elseif(np.eq.3)then 
              sum3(i,j,k)=sum3(i,j,k)+grid(i,j,k) 
              elseif(np.eq.4)then 
              sum4(i,j,k)=sum4(i,j,k)+grid(i,j,k) 
              elseif(np.eq.5)then 
              sum5(i,j,k)=sum5(i,j,k)+grid(i,j,k) 
              elseif(np.eq.6)then 
              sum6(i,j,k)=sum6(i,j,k)+grid(i,j,k) 
              endif 
            enddo 
          enddo 
  20     continue 
       enddo 
      else 
         if(grid(1,1,1).eq.-9999.0.or.grid(1,1,1).eq.0.0)go to 30 
         n(np,1)=n(np,1)+1 
          do i=1,ix 
            do j=1,iy 
              if(np.eq.7)then 
              sumh1(i,j)=sumh1(i,j)+grid(i,j,1) 
              elseif(np.eq.8)then 
              sumh2(i,j)=sumh2(i,j)+grid(i,j,1) 
              endif 
            enddo 
          enddo 
  30     continue 
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      endif 
c 
      enddo 
       go to 10 
 40   continue 
c 
      do k=1,izi 
        ng1=n(1,k) 
        if(ng1.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sum(i,j,k)=sum(i,j,k)/float(ng1) 
          enddo 
        enddo 
        else 
        do i=1,ix 
          do j=1,iy 
           sum(i,j,k)=-9999.0 
          enddo 
        enddo 
        endif 
c 
        ng2=n(2,k) 
        if(ng2.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sum2(i,j,k)=sum2(i,j,k)/float(ng2) 
          enddo 
        enddo 
        else 
        do i=1,ix 
          do j=1,iy 
           sum2(i,j,k)=-9999.0 
          enddo 
        enddo 
        endif 
c 
        ng3=n(3,k) 
        if(ng3.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sum3(i,j,k)=sum3(i,j,k)/float(ng3) 
          enddo 
        enddo 
        else 
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        do i=1,ix 
          do j=1,iy 
           sum3(i,j,k)=-9999.0 
          enddo 
        enddo 
        endif 
c 
        ng4=n(4,k) 
        if(ng4.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sum4(i,j,k)=sum4(i,j,k)/float(ng4) 
          enddo 
        enddo 
        else 
        do i=1,ix 
          do j=1,iy 
           sum4(i,j,k)=-9999.0 
          enddo 
        enddo 
        endif 
c 
        ng5=n(5,k) 
        if(ng5.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sum5(i,j,k)=sum5(i,j,k)/float(ng5) 
          enddo 
        enddo 
        else 
        do i=1,ix 
          do j=1,iy 
           sum5(i,j,k)=-9999.0 
          enddo 
        enddo 
        endif 
c 
        ng6=n(6,k) 
        if(ng6.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sum6(i,j,k)=sum6(i,j,k)/float(ng6) 
          enddo 
        enddo 
        else 
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        do i=1,ix 
          do j=1,iy 
           sum6(i,j,k)=-9999.0 
          enddo 
        enddo 
        endif 
       enddo 
c 
        ng7=n(7,1) 
        if(ng7.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sumh1(i,j)=sumh1(i,j)/float(ng7) 
          enddo 
        enddo 
        else 
        do i=1,ix 
          do j=1,iy 
           sumh1(i,j)=-9999.0 
          enddo 
        enddo 
        endif 
c 
        ng8=n(8,1) 
        if(ng8.ne.0)then 
        do i=1,ix 
          do j=1,iy 
           sumh2(i,j)=sumh2(i,j)/float(ng8) 
          enddo 
        enddo 
        else 
        do i=1,ix 
          do j=1,iy 
           sumh2(i,j)=-9999.0 
          enddo 
        enddo 
        endif 
c      
c 
c  on output assign a time of year month day and hour 
      gdatim(1)=dattim(1:4)//'01/'//hour(1:4)//'F000' 
      gdatim(2)='  ' 
c 
       call gemgrid(ix,iy,izi,outfile2,grid2,sum,sum2,sum3, 
     +     sum4,sum5,sum6,sumh1,sumh2,pgrd, 
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     +     gdatim,parms,8) 
c 
c       outfile2=outfile(1:lo)//'00Z'//parm(1:lp)//'.GRD' 
c       open(unit=2,file=outfile2,access='sequential', 
c     +      form='unformatted',status='new') 
c      do k=1,izi 
c       do i=1,ix 
c          do j=1,iy 
c             grid2(i,j)=sum(i,j,k) 
c          enddo 
c       enddo 
c       write(2)grid2 
c       print *,sum(1,1,k) 
c      enddo 
c       close(unit=2) 
c 
       stop 
       end 
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APPENDIX B COAMPS 

A. COUPLED OCEAN/ATMOSPHERE MESOSCALE PREDICTION 
SYSTEM (COAMPS) 

1. Background 
COAMPS is the latest product in a series of model developments at the Naval 

Environmental Prediction and Research Facility (NEPRF), Naval Oceanographic and 

Atmospheric Research Laboratory (NOARL) and currently, the Naval Research 

Laboratory (NRL) since 1977.  COAMPS is derived from the Navy Operational Global 

Atmospheric Prediction System (NOGAPS) and the Navy Operational Regional 

Atmospheric Prediction System (NORAPS) to meet the ever-growing demand from war 

fighters for highly accurate atmospheric and oceanographic forecasts.  As weapons 

become increasingly smart and technology makes possible for nearly  true all-weather 

operations, it was essential that meteorological and oceanographical models be developed 

to support the military operations of the future.  

2. Description 
Improved understanding of physical processes, continuous and dramatic 

improvements in computer technology, increased observational networks (both ashore 

and afloat), and the fairly recent development and availability of detailed surface 

parameters such as terrain and ocean height along with soil and vegetation types have 

lead to the numerical prediction of some meso-β-scale atmospheric phenomena.  Meso- 

β-scale implies that the hydrostatic approximation may be invalid at times, particularly 

for very-small scale features such as convection and smaller-scale topographic features 

where the vertical wavelength is a significant fraction of the horizontal wavelength. In 

these cases the vertical resolution term cannot be ignored. 
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A three-dimensional mesoscale model represents an analysis-nowcast and short-

term (up to 72 hours) forecast tool that is applicable for any given region of the planet.   

Initialization takes place by either the atmospheric component of NOGAPS or from the 

most recent COAMPS forecast as the first guess.  Several fields describing the surface 

conditions must be set prior.  The surface terrain height is obtained from either the U.S. 

Navy 20′ resolution terrain field or the Navy Imagery and Mapping Agency (NIMA) 



Digital Terrain Elevation Data (DTED) level 1 data (100-m resolution). Either database 

can be bilinearly interpolated to the model grid.  In addition to the terrain height, the 

surface albedo, surface roughness, ground wetness, and ground temperature must be 

specified initially.  The analysis routine is a five-step process and is shown in Figure 63 

as a flow chart that provides detailed steps used by COAMPS. 

COAMPS includes an atmospheric data assimilation system comprised of data 

quality control, analysis, initialization, a nonhydrostatic atmospheric model component 

and an ocean model.  The atmospheric system consists of two major components  - 

Analysis and Forecast, and some post-processing software.  The COAMPS analysis 

routine prepares the initial  and boundary files  used in the forecast model. The forecast 

routines perform time integration of the model numerics and physics and output 

prognostics and diagnostic fields in pressure, sigma, or height coordinates. 

COAMPS analysis uses the Arakawa-Lamb scheme A grid (no staggering).  The 

forecast model, both horizontal and vertical grids are staggered and utilizes the  Arakawa- 
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Figure 63.  Flow chart of the analysis routine.  (COAMPS Training Manual)  The 
analysis routine is described in five parts: setup parameters, setup grid, setup surface and 
terrain fields, read and process initial input fields and write fields.  The subroutines called 
in each part are shown in italics.  The atmospheric fields may be either idealized or real 
data as indicated by the value of name list parameter icase.   
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Lamb scheme C, which is used by both the atmospheric and ocean models.  For  

real data, the Polar stereographic, Lambert conformal, Mercator, or Spherical grid 

projections are allowed.  The model grid projection is specified along with latitude and 

longitude of any one point in the grid.  This makes COAMPS globally relocatable and 

applicable for forecasting in the polar, midlatitude, and equatorial regions.  Currently 

only the atmospheric model can use nested grids at a reduction ratio of 3:1.  The inner 

grids can be specified arbitrarily within the confines of the next coarser grid.   

3. Specific Setup Used 
11 events were chosen and then ran in COAMPS using 63km and 21km 

resolutions.  The fields were initialized at 00Z the evening before the MSC event to allow 

the model to settle out any perturbations, which it did quite well by the six hour forecast 

run.  The COAMPS forecast run was allowed to forecast out to 36 hours with output at 

three hour increments, a temporal and spatial period that was sufficient enough to capture 

the following day’s MSC event and slightly beyond.  

The Specific setup used for this thesis is given in Tables 6 and 7. 

 
COAMPS 2.0 SPECIFICATIONS 

Parameter                 Information 

 Basic equations:       Primitive equations including non-hydrostatic effects 

Field formats:           Applications grids are latitude-longitude  or Cartesian coordinates  
                            on horizontal map projection 

 

Variables:                 Wind components, potential temperature, mixing ratio, surface       
pressure, ground temperature, ground wetness, SST 

 
Numerical                Arakawa C-grid, vertically and horizontally staggered with split 

Techniques:              explicit time integration 

Integration               Regional, surface to sigma (30) = 31500m (approx 10mb) 
 domain: 

Horizontal                User specified, 63 x 21 km, double nested 
resolution: 
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Vertical levels:         30 vertical levels on sigma z coordinates 

Nested grids:            Two 

Forecast time:           36 hours 

Initial fields:             An MVOI maps both real and synthetic observations from  
NOGAPS on the model grid.  In the incremental update cycle, 
analysis increments to the first-guess are interpolated in the 
vertical to the model vertical levels, and added to the most recent 
model forecasts 

 

First-guess               As COAMPS runs in a continuous update cycle, the first-guess  
analysis:                   fields come from the previous COAMPS forecast 

 

Boundary                 Davies (1976) or Perkey-Kreitzberg (1976) treatment of  
conditions:               NOGAPS forecast fields 

 

Orography:              Envelope topography is from the 1 km terrain data, except the 
                           from the NIMA DTED level 1 data set 

 

Horizontal               Fourth-order diffusion applied to all prognostic variables, except 
diffusion:                 Exner perturbation (pi) 
 

Moisture                  Explicit physics (Rutledge and Hobbs, 1983) for horizontal grid 
physics:                   resolutions less than specified value (typically 10km). Cumulus 

                           convective process (Kain and Fritch, 1990) 
Radiation:                Longwave & shortwave radiation (Harshvardhan, 1987) 

Planetary                 1.5 order turbulence kinetic energy closure (Deardorff, 1980) 
boundary layer:  

Land surface:          Single layer/bucket model 

Ocean surface:        COAMPS makes its own SST analysis at the surface every time 
                          It runs using optimum interpolation techniques 

Table 10.  COAMPS 2.0 Specifications (From Dumas, 2001) 
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COAMPS Model Vertical Spacing 

Level #            Spacing (m)             Height (m)             Height (ft)           Pressure (mb) 
      45                     2,000                       20,000                    65,616.8                   55 
      44                     2,000                       18,000                    59,055.1                   75.3 
      43                     2,000                       16,000                    52,493.4                   103.2 
      42                     2,000                       14,000                    45,931.8                   141.5 
      41                     2,000                       12,000                    39,370.1                   193.9 
      40                     2,000                       10,000                    32,808.4                   264.6 
      39                     2,000                         8,000                    26,246.7                   356.2 
      38                     1,000                         6,000                    19,685.0                   472.0 
      37                     1,000                         5,000                    16,404.2                   540.4 
      36                     1,000                         4,000                    13,123.4                   616.6 
      35                        700                         3,000                      9,842.5                   701.2 
      34                        400                         2,300                      7,545.9                   765.9 
      33                        300                         1,900                      6,233.6                   805.0 
      32                        200                         1,600                      5,249.3                   835.3 
      31                        100                         1,400                      4,593.2                   856.1 
      30                        100                         1,300                      4,265.1                   866.6 
      29                          50                         1,200                      3,937.0                   877.2 
      28                          50                         1,150                      3,773.0                   882.6 
      27                          50                         1,100                      3,608.9                   888.0 
      26                          50                         1,050                      3,444.9                   893.4 
      25                          50                         1,000                      3,280.8                   898.8 
      24                          50                            950                      3,116.8                   904.3 
      23                          40                            900                      2,952.8                   909.8 
      22                          40                            860                      2,821.5                   914.2 
      21                          40                            820                      2,690.3                   918.6 
      20                          40                            780                      2,559.1                   923.0 
      19                           40                          740                       2,427.8                   927.5 
      18                           40                          700                       2,296.6                   932.0 
      17                           40                          660                       2,165.4                   936.5 
      16                           40                          620                       2,034.1                   941.0 
      15                           40                          580                       1,902.9                   945.5 
      14                           40                          540                       1,771.7                   950.1 
      13                           40                          500                       1,640.4                   954.6 
      12                           40                          460                       1,509.2                   959.2 
      11                           40                          420                       1,378.0                   963.8 
      10                           40                          380                       1,246.7                   968.4 
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COAMPS Model Vertical Spacing (con’t) 
       
        9                           40                          340                       1,115.5                   973.1 
        8                           40                          300                          984.3                   977.7 
        7                           40                          260                          853.0                   982.4 
        6                           40                          220                          721.8                   987.1 
        5                           40                          180                          590.6                   991.8 
        4                           40                          140                          459.3                   996.6 
        3                           40                          100                          328.1                 1001.3 
        2                           40                            60                          196.9                 1006.1 
        1                           20                            20                            65.6                 1010.9 
        0                             0                              0                              0.0                 1013.3    

Table 11. The vertical structure of the COAMPS model. (From Dumas 2001)  Note: 
Height (Z) and Pressure (P) values are based on the U.S. Standard Atmosphere 
 
 
B. VIS5D 

1. Background 
Developed for the Stellar GS-1000 computer system, it was used to give 

demonstrations at the European Centre for Mid-Range Weather Forecasting (ECMWF) in 

December 1988 and at the American Meteorological Society (AMS) conference in 

Anaheim in January 1989.  The original version was able to depict time series of 

multivariate 3-D grids by animated isosurfaces and horizontal contour line slices, world 

topography map with map boundaries, and wind trajectory tracing with the Vis5d 

program.  

With continued development over the years, the latest version of 5.2 has far-

reaching capabilities that allow the scientist to examine the atmosphere in 5-D allowing 

for better understanding of processes through various isosurfaces to colored slices. 

The Visualization Project at the University of Wisconsin-Madison Space Science 

and Engineering Center (SSEC) developed Vis5D.  Written by Bill Hibbard, Johan 

Kellum, and Brian Paul with the help of:  

• Andre Battaiola of CPTEC, Sao Paulo, Brazil  

• Dave Santek of SSEC  

• Marie-Francoise Voidrot-Martinez of the French Meteorology Office.  
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• Dave Kamins and Jeff Vroom of Stellar Computer, Inc.  

• Simon Baas and Hans de Jong of the Netherlands for the HP/VOGL port  

• Pratish Shah of Kubota Computer for the Kubota port  

• Mike Stroyan of HP for the PEX support  

Additionally, The National Aeronautical and Space Administration (NASA) and 

the Environmental Protection Agency (EPA) supported the development of Vis5D.  

2. Description 
Vis5D is a system for interactive visualization of large 5-D gridded data sets such 

as those produced by numerical weather models. One can make isosurfaces, contour line 

slices, colored slices, volume renderings, etc of data in a 3-D grid, then rotate and 

animate the images in real time. There's also a feature for wind trajectory tracing, a way 

to make text annotations for publications, support for interactive data analysis, etc. 

Vis5D is a software system for visualizing data made by numerical weather 

models and similar sources.  Vis5D works on data in the form of a five-dimensional 

rectangle. That is, the data are real numbers at each point of a "grid" which spans three 

space dimensions, one time dimension and a dimension for enumerating multiple 

physical variables.  Vis5D works perfectly well on data sets with only one variable, one 

time step (i.e. no time dynamics) or one vertical level. However, data grids should have at 

least two rows and columns. 

The major new feature of Vis5D version 5.1 is support for comparing multiple 

data sets.  This extra data can be incorporated at run-time as a list of *.v5d files or 

imported at anytime after Vis5D is running.  Data can be overlaid in the same 3-D 

display and/or viewed side-by-side spreadsheet style. Data sets that are overlaid are 

aligned in space and time.  In the spreadsheet style, multiple displays can be linked.  

Once linked, the time steps from all data sets are merged and the controls of the linked 

displays are synchronized. 
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The Vis5D system includes the vis5d visualization program, several programs for 

managing and analyzing five-dimensional data grids, and instructions. For more 

detailed information about this remarkable and capable software program, visit the 

University of Wisconsin at Madison, Space Science and Engineering Center (SSEC) at 

http://www.ssec.wisc.edu/~billh/vis5d.html. 

http://www.ssec.wisc.edu/
http://www.ssec.wisc.edu/~billh/vis5d.html.


3. How Vis5D was Used  
Version 5.2 was used to examine the trajectory of air parcels in and above the 

boundary layer in the coastal regime and to observe the potential influences that the 

synoptic pattern would have on the coast with these trajectories.   Several examples are 

provided in Chapter IV with results that proved very insightful to the evolution of MSC 

events. 

Vis5D utilized high-resolution topography of the west coast from southern British 

Columbia to Baja, and was limited in height to 500mb with a one-half kilometer vertical 

resolution to put the focus in the lower atmosphere.  This configuration worked extremely 

well. 

C. THE GENERAL METEOROLOGY PACKAGE (GEMPAK) ANALYSIS 
AND RENDERING PROGRAM (GARP) 

1. Background 
GARP was written to support the Cooperative Program for Operational 

Meteorology, Education and Training (COMET), which were established in 1989. The 

COMET Residence Program (RP) provides education in mesoscale meteorology for 

students and instructors from around the world. In support this effort, several software 

packages for handling data were developed, including a meteorological display package 

called GEMPAK, which supplies many of the processing and data display functions.  

2. Description 
GARP (GEMPAK Analysis and Rendering Program) is an X Windows/Motif 

software application designed by the COMET staff for the display and analysis of 

meteorological data sets. It provides for a graphics user interface (GUI) around many of 

the capabilities of GEMPAK.  Supported data sets include model data like the Eta, NGM, 

RUC, and Fleet Numerical Meteorology and Oceanography Center’s NOGAPS. A 

Satellite imagery in NOAA Port GINI format or MCIDAS area file format, NIDS and 

Nowrad radar data, surface data and upper air data are also supported.  

As an application, GARP is layered on top of GEMPAK.  GARP uses Motif to 

create a point and click GUI front end to the display and analysis capabilities of 

GEMPAK.  GARP attempts to make it easy to manage, integrate and visualize multiple 

meteorological data sets.  
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Architecturally, GARP is written as a GEMPAK application much like the 

NAWIPS applications NSAT and NWX. GARP is written almost entirely in ANSI C 

(with some Fortran 77 interface subroutines). GARP uses GEMPAK software and 

application libraries to provide a high level framework to manage and control a users 

interaction with GEMPAK, the data and an X Window display.  

The basic design of GARP provides a point-and-click capability for displaying 

meteorological data in addition to providing access to more sophisticated diagnostic 

capabilities of GEMPAK. GARP is being implemented as an application layered on top 

of the existing GEMPAK libraries. 

Some caveats to GARP include:  GARP has automatic time matching across data 

types. For example, if one chooses to plot a 5-hour series of satellite images and then 

choose to overlay surface observations on top of the satellite images, the observation 

date/times that correspond to the selected satellite images will be pre-selected. However, 

one is free to change the date/times selected if you turn off time matching; Current 

version (2.1) of GARP will NOT allow one to combine multiple images. For example, a 

satellite image and a radar image or an IR and a VIS satellite image.)  For more detailed 

information regarding GARP, go to http://www.comet.ucar.edu/pub_html/garp/. 

3. How GARP was Used 
GARP was used extensively to examine a number of meteorological parameters.  

Beginning with the synoptic patterns, the strength and position of the subtropical ridge 

was looked at along with the strength and location of any inland warm-core lows.  

Additionally, any other observable phenomenon was noted such as fronts, eddies, and 

dynamic high-pressure systems.  Notes were taken as to the influences, if any, of the 

coastal wind broken down into the geostropic and ageostropic components, sea surface 

temperature observations, and the strength and tendency of the pressure gradient force 

across the coast. 

Afterwards, the coastal environment was studied that included the cross-section 

examinations of the marine boundary layer using potential temperature and its’ tendency 

in time. Coastal Q-vectors, cross-coast vertical motions, and moisture convergence and 

divergence tendencies were also considered. 
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