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ABSTRACT 
 
 
 
 A new, multidisciplinary algorithm for the CFD design optimization of 

turbomachinery blades is presented.  It departs from existing techniques in that it uses a 

simple, previously-developed Bezier geometry representation (BLADE-3D) that can be 

easily manipulated to achieve true 3-D changes in blade shape.  The algorithm incorporates 

zero and first-order optimization techniques including sensitivity analyses and one-

dimensional search methodology.  It features an iterative finite element structural analysis as 

well as a cold shape correction procedure to ensure that the resulting blade meets steady-

stress structural requirements.  The process was applied to two different transonic fan designs 

– the Sanger rotor designed for the NPS Turbomachinery Laboratory and NASA Rotor 67, 

otherwise known as the ‘NASA Fan’.  The optimization objectives for the two designs were 

mass flow rate and polytropic efficiency respectively.  Results for the Sanger rotor effort 

yielded an 8.1 % improvement in mass flow rate, a 5% improvement in total pressure ratio, 

and a 0.9 % increase in adiabatic efficiency.  Application to the NASA Fan resulted in a 2.5 

% increase in polytropic efficiency.  The results validate the utility of the BLADE-3D Bezier 

geometry package for use in future development of automated optimization routines for 

turbomachinery blade design.    
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EXECUTIVE SUMMARY 
 
 

A new, multidisciplinary algorithm for the design optimization of turbomachinery 

blades is presented.  It departs from existing techniques in that it uses a simple, previously-

developed Bezier geometry representation (BLADE-3D) that can be easily manipulated to 

achieve true 3-D changes in blade shape.  First, state-of-the-art 3-D computational fluid 

dynamics code is utilized to evaluate changes in blade aerodynamic performance with small 

changes in certain shape parameters chosen to maximize a given objective function – mass 

flow rate, efficiency, etc.  The results of this analysis are then applied repeatedly to achieve 

maximum improvement in the chosen function within specified limits of constraining 

parameters in accordance with traditional optimization methodology.  The algorithm 

incorporates an iterative finite element structural analysis as required to keep the optimization 

process from exceeding defined physical, stress and deflection limits.  Once an 

aerodynamically optimized blade shape is achieved, a cold shape correction procedure is 

performed and a final stress analysis conducted to ensure that the resulting blade meets 

steady-stress structural requirements.  Dynamic analysis and flutter prediction procedures are 

not included but are recommended for future incorporation.  The process was applied to two 

different transonic fan designs – the compact Sanger rotor developed for use in the NPS 

Turbomachinery Laboratory and the larger, more highly-cambered NASA Rotor 67, 

otherwise known as the ‘NASA Fan’.  The optimization objectives for the two designs were 

mass flow rate and polytropic efficiency respectively.  Results for the Sanger rotor effort 

yielded an 8.1 % improvement in mass flow rate, a 5% improvement in total pressure ratio, a 

0.9 % increase in adiabatic efficiency, and a reduction in blade weight of 59% (before 

dynamic and aeroelastic structural analysis).  Application to the NASA Fan resulted in a 2.5 

% increase in polytropic efficiency.  The results validate the utility of the BLADE-3D Bezier 

geometry package for use in future development of automated optimization routines for 

turbomachinery blade design.   
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I. INTRODUCTION 
 

 
Current techniques in turbomachinery blade design involve considerable 

empiricism and rely heavily upon the personal expertise and judgment of the human 

designer to arrive at a final working design.  As computer analysis tools become more 

sophisticated and interactive, efforts to use them to their fullest potential will 

undoubtedly lead to a wholly automated design process that involves the designer 

primarily as a sanity check at the end.  Computerized design optimization for 

turbomachinery blading is still in a fairly primitive state, and the reasons are plentiful.  

Despite the fact that very sophisticated and accurate three-dimensional CFD tools exist, 

traditional blade designers are somewhat reluctant to trust them completely.  Also, many 

of these codes require considerable computer time to execute and this expense is often 

cited as justification for using simpler and faster, albeit more primitive, flow analysis 

tools that involve 2-D and quasi3-D methods instead of full three-dimensional analysis.  

Three-dimensional flow codes that utilize Navier-Stokes solutions rely on empirical 

turbulence models that many designers are uncomfortable with.  These are but a few of 

the reasons frequently given for sticking with older, tried and true design methods. 

 One of the biggest obstacles to the development of 3-D computerized design 

optimization processes has been the lack of a suitable blade geometry package which 

allows the efficient application of traditional computer optimization techniques.  

Turbomachinery blades are usually represented mathematically by stacks of 2-D airfoil 

data that typically require at least 11 parameters per section or hundreds of points in 

space for full blade shape definition.  Even though 3-D flow codes are being used more 

and more to analyze blade performance in the design phase, design changes based upon 

these analyses are still performed on individual 2-D airfoil sections in a tedious process 

that is largely dependent upon human judgment.  The development by Abdelhamid of the 

BLADE-3D Bezier geometry package represents a significant step forward in this area 

[Ref. 1].  His 32-point, two parameter method of representing complete blade geometries 

should greatly enhance efforts to develop automated design schemes which alter blade 
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shapes three-dimensionally, thereby achieving greater improvement in performance with 

fewer iterations. 

The objective of the present study was to investigate the utility of BLADE-3D in 

the computerized design optimization of transonic fan blades.  It was the first step in what 

is hoped will be a continued effort based upon Abdelhamid’s work.  It sought to develop 

a design methodology or algorithm, one that relies as little as possible on human 

judgment for design change decisions and validates the potential for a fully automated 

process.  It was not the goal to address issues of computing expense, flow code accuracy 

or other problems contributing to the current state of blade design optimization.  

Computers get faster and more powerful almost on a monthly basis and flow analysis 

software designers are getting smarter every day.  The objective was simply to 

demonstrate the idea that automated design optimization is possible, and that with 

additional work, a viable software capability to do it might be achieved. 

 It will be noted that the designs achieved during the study are ‘point optimized’, 

that is, the blade shape was optimized and the performance maximized for a single set of 

boundary conditions.  Clearly, every compressor design process must consider off-design 

performance as well, and that requirement is acknowledged.  It is probable that off-design 

conditions could be looked at using the same methodology and that compromise designs 

could be achieved iteratively, although that concept was not examined here. 

 The algorithm developed here includes steady, static structural analysis of interim 

and final blade designs using the geometry package to pass information between 

disciplines in the optimization process.  Consequently, the algorithm is truly 

multidisciplinary.  No attempt was made to include dynamic response, aeroelastic effects 

or fatigue analysis in the design methodology (although a basic examination of the modal 

response characteristics for the resulting blade designs was performed and is provided in 

Appendix A, along with a brief discussion of flutter).  These are obviously areas that 

would need to be addressed in order to have a complete and utile optimization package. 

 The following chapters provide the details as to the course and outcome of the 

effort.  First, background and historical information is presented to provide the 
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foundation for further discussion.  The various resources used in the study including the 

BLADE-3D geometry package itself, other computer codes and the test fan designs are 

described next.  The development of the algorithm is then explained in some detail 

followed by presentation and discussion of the results.   
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II. BACKGROUND 
 

 
A. BASIC CONCEPT 

The purpose of an axial-flow fan rotor is to increase the total pressure of the air 

flow by imparting additional velocity through rotation.  Figure 1 illustrates this concept 

for the Sanger rotor, one of two transonic fan designs used in this research, at 27,000 

RPM and an exit static-to-inlet total pressure ratio of 1.19 [Ref. 2,3]. 

 

 
 

Figure 1.  Velocity Changes Across a Transonic Rotor 
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The performance of a rotor design is characterized by several performance 

parameters.  Primary among these are total pressure ratio, total temperature ratio, 

adiabatic and polytropic efficiencies, and mass flow rate.  Methodology for calculating 

these and the other metrics used in this work may be found in Appendix B.     

 

B. OVERVIEW OF CURRENT DESIGN PROCESS 

The design of a modern axial flow compressor is achieved through a series of 

distinct steps.  Although these steps have evolved in sophistication over the years, they 

remain essentially the same as those used to design the first generation of operational jet 

engines in the 1940’s and 1950’s.  First, a set of overall performance parameters must be 

identified for the compressor.  These parameters are usually determined by the work 

output capability of the turbine and must be matched closely to the other major 

components of the engine.  Once the design objectives such as total pressure ratio, mass 

flow rate, number of stages, etc are determined, a preliminary design for each stage may 

be performed. 

A meridional analysis of the flow through the compressor is conducted with the 

assumption that the flow is axisymmetric.  Flow properties such as pressure, temperature 

and velocity are defined along streamlines at the entry and exit of each blade row and a 

determination is made as to the shape of the flow passage, as well as the convergence 

characteristics of the stream surfaces from radial equilibrium.  Earlier applications of this 

throughflow analysis performed calculations between blade rows and accounted for blade 

losses with empirical data alone.  Later versions added complex analytic loss models.  

More current methods use numerical techniques to accurately calculate the flow through 

the blade rows using body force terms in the equations of motion to satisfy radial 

equilibrium at every point in the flow field.  Wennerstrom provided a good general 

description of current methodology [Ref. 4]. 

After entry and exit characteristics are determined for each row, calculations are 

performed to determine the variation in pressure and velocity along each stream surface 

and produce velocity triangles which are used to define blade section profiles.  Two-

dimensional blade sections are assigned by determining a mean camber line and thickness 
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distribution that achieves the desired turning characteristics of the flow.  The profiles, 

usually airfoils, are quite often chosen from existing databases and come with well-

understood loss characteristics.  Two-dimensional CFD tools may be utilized at this point 

to verify or perhaps improve performance of the individual airfoil sections.  These 2-D 

blade sections are then stacked radially to achieve an initial 3-D shape for the blade.  The 

through-flow and blade-to-blade calculations are usually performed iteratively to achieve 

an acceptable preliminary design. 

The next phase comprises finalizing the design.  A preliminary structural analysis 

is performed on the 3-D blade to verify that anticipated stresses and deflections are not 

excessive.  Additionally, 3-D CFD analysis may be conducted to determine whether or 

not the blade meets its overall design criteria.  If not, changes are made to section profiles 

along selected stream surfaces in hopes of improving overall performance.  Once 

adequate aerodynamic performance is achieved, a final structural analysis is performed to 

ensure that all structural requirements are met.  These include dynamic response 

characteristics, aeroelastic effects, and fatigue.  In addition, a shape correction procedure 

is normally implemented to account for deflections in the blade due to the rotational, 

thermal and gas loads encountered in use.  Once the de-rotated shape of the final blade is 

determined, it can be manufactured and tested.  The final compressor design is the 

culmination of this process for all blade rows and stages within the compressor.  

As previously stated, the design process has evolved over time and uses ever more 

sophisticated tools and procedures to achieve the high performance required of today’s 

turbomachinery applications.  A brief review of this evolutionary history follows.  

 

C. HISTORICAL PERSPECTIVE 

In the early years of jet engine design, i.e., the late 1930’s and throughout the 

1940’s, no generalized theory existed for the detailed calculation of flows through 

turbomachines.  The first compressors were primarily of the centrifugal type and were 

designed essentially by cut and try.  Configurations were conceived, built and tested and 

empirical databases for different designs were created.  Axial and mixed flow machines 
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came later and again, many were designed by cut and try, using blade shapes determined 

primarily through cascade wind tunnel tests. 

In 1952, Wu introduced a revolutionary theory for the exact calculation of 

turbomachinery flows [Ref 5].  It achieves solutions by calculating along two intersecting 

families of stream surfaces – a family of blade-to-blade (S1) surfaces and a family of 

throughflow (S2) surfaces as shown in Figure 2. 

 
 

 
Figure 2.  Stream Surfaces in a Turbomachine (From Ref. 5) 

 
Analysis is performed on first one set of stream surfaces and then the other in an 

iterative manner until a satisfactory flow solution is obtained.  The method is quite 

flexible in that the numbers of stream surfaces in either direction can be tailored to fit the 

specific problem at hand.  Although it yields a fully three-dimensional result, it was 

complex and cumbersome when first introduced and for that reason, much effort has been 

expended toward simplifying the process. 
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Figure 3.  Throughflow Analysis Framework (After Ref. 4) 

 
The most common simplification of Wu’s method uses one S2 surface and 

multiple S1 surfaces in a procedure that has become known as the Quasi-3D (Q-3D) 

approach to turbomachinery design.  A diagram of the throughflow calculation path is 

shown in Figure 3.  In Q-3D, the flow is assumed to be axisymmetric with S1 surfaces 

taken as surfaces of revolution at various radial locations.  As previously mentioned, 

earlier versions of this approach used between-blade calculating stations along the S2 

surface with blade effects accounted for with loss predictions derived from empirical 

data.  Designs produced with this method deviated only slightly from the previous ones 

upon which they were based and this led to a somewhat conservative mindset in the 

approach to blade design that persists even today.   

Evolution of the Q-3D process brought the development of analytical tools with 

which to predict losses inside blade rows and thereby decrease the heavy reliance on 

empiricism.  Mathematical loss models were developed which coupled fluid dynamic 

elements with observed empirical results and thereby made more generalized viscous 

flow predictions possible.  Koch and Smith presented such modeling in 1976 [Ref. 6].  

Shock loss prediction models for transonic blading were introduced as well.  Miller et al. 

produced a 2-D model in 1961 which became the standard tool for predicting these losses 

in axial compressors [Ref. 7].  Wennerstrom et al. updated the model in 1983 to account 

for three-dimensional effects such as shock obliquity and for weak losses from flow at 
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high subsonic Mach numbers [Ref. 8].  This updated model proved to be more accurate 

than Miller in predicting shock losses.     

As computer resources became more available in the 1960’s and 1970’s, 

numerical techniques for solving the throughflow problem were developed that used in-

blade computing stations in addition to those between the blade rows [Ref 9].  The 

calculations were performed using a variety of techniques the most common of which 

became known as the streamline curvature method.  Others included matrix solutions, 

finite element modeling and various time-marching schemes.  The streamline curvature 

method was developed by Smith, Silvester, and Hetherington in 1966, has been refined 

over the years and according to Wennerstrom, remains the method of choice for 

throughflow analysis today [Ref. 4,10,11].  In 1974, he outlined a through-blade version 

of the method, which represented the blades using distributed body forces in the 

momentum equations inside each blade row.  Derivatives in the circumferential direction 

were eliminated by formulating the equations axisymmetrically [Ref. 12].  A less simple 

but more accurate approach was published by Jennions and Stow in 1985 [Ref 13].  It 

formulated the equations of motion in three dimensions and then used a circumferential 

passage averaging technique to simplify the analysis to 2-D form.  Their version of the 

throughflow analysis was packaged in a computerized system which included blade-to-

blade analysis and a stacking line procedure, and was one of the first efforts to produce 

an overarching computer process for the aerodynamic design of turbomachinery.  

 

 
Figure 4.  Blade-to-Blade Stream Surface 
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The development of blade-to-blade analysis for the determination of blade 

profiles along stream surfaces has followed a similar path.  A blade-to-blade stream 

surface is depicted in Figure 4.  Early work on the subject, such as that presented by 

NASA in 1965, relied on information contained in extensive empirical databases to 

choose pretested airfoil shapes to achieve desired turning of the flow [Ref. 14].  In 1969, 

Crouse et al. introduced a computer program which developed blade shapes 

mathematically by producing double circular arc elements along conical surfaces that 

approximate the meridional stream surfaces [Ref. 15].  This system was updated in 1981 

to include an upfront throughflow analysis code, and a more complex shape generation 

capability utilizing high-degree polynomials to define the section camber line, as well as 

the pressure and suction surfaces [Ref. 16].  A blade stacking procedure was also 

addressed.  The ‘Crouse Code’ remains the basis today for the generation of initial 3-D 

blade geometries.   

Computational fluid dynamics (CFD) has evolved over the years as a valuable 

tool for analyzing the flow through turbomachines.  As computing power has grown, 

CFD codes have progressed from 2-D potential solvers to Euler solvers with differential 

boundary layer to 2-D Navier-Stokes solvers and finally, to full 3-D Navier-Stokes codes 

that can be used to analyze an entire blade, a stage, or even a whole compressor.  These 

codes have not yet been used extensively in the initial stages of design but have mainly 

been used to analyze the flow around mature designs (achieved with the lower order 

methods previously discussed) and to help verify performance prior to build and test.  

There has been quite a bit of effort to integrate CFD more fully into the design process 

however.  Until recently, this has been limited to utilizing 2-D codes to aid in the blade-

to-blade portion of the Q-3D process, and to using 3-D analysis at the end to verify the 

design.  Denton stressed the importance of fuller utilization of 3-D CFD to enhance 

accuracy of blade designs, and put forward his own 3-D design procedure [Ref. 17].  

Sanger used Denton’s 3-D CFD code to design one of the two rotors used in the present 

research.   

Wennerstrom states, “Since we use 2-D codes to design the hardware and will be 

using a 3-D code to analyze the flow through that hardware, the question is what do we 
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change to achieve the result we want from 3-D analysis?”[Ref. 4].  He claims that the 

designer must visualize such changes and that an optimization strategy based upon 3-D 

CFD is largely one of trial and error.  That premise provides the catalyst for the present 

research. 

 

D. NEWER DEVELOPMENTS  

Over the last decade, many new concepts have been introduced to improve the 

blade design process.  They have been aimed at both improving the performance of 

resulting designs and at streamlining the process itself, so that designs may be achieved 

more quickly and economically.  A few of those concepts will now be discussed. 

 

1. Sweep 

The idea of sweep to improve the aerodynamic performance of transonic and 

supersonic wings has been known since the earliest days of jet-powered flight.  Sweeping 

the wings aft decreases the speed of the chordwise component of the flow, thereby 

reducing the drag caused by supersonic shock wave effects.  The flows inside 

turbomachines are much more complicated however, and the positive effects from sweep 

observed in external aerodynamics are not easily applied to compressor flows, due to 

rotation and the complex interactions with case walls at the hub and tip.  There have been 

numerous investigations into the effects of sweep on the performance of transonic fan 

blades, and swept designs have actually been designed, built, and tested; although they 

are not yet in widespread commercial use.  References 18-20 describe earlier efforts to 

incorporate sweep into transonic rotor designs.  In 1997, Wadia et al. reported the results 

of an extensive swept-rotor test program, and offered analyses of various sweep schemes 

and their relative impact on blade performance [Ref. 21].  Abdelhamid developed a new 

3-D blade geometry package which he utilized to investigate sweep effects on a test rotor 

designed for the Naval Postgraduate School [Ref. 1].  The present work is based largely 

upon the success of his efforts. 
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2. CFD  and  Design Optimization 

As mentioned, 3-D computational fluid dynamics has not, until very recently, 

played much of a role in turbomachinery design.  It has been a valuable analysis tool but 

has generally been considered too unproven, as well as bulky and expensive, to use in 

routine blade design.  Q-3D methods, as a rule, use simpler formulations of the flow 

equations (Euler vs. Navier-Stokes) that can be solved more quickly and require less 

computer time, thus making them more attractive for everyday design tasks.  Some work 

has been done to try and find even quicker solutions to these equations, thereby making 

the Q-3D methodology that much more attractive despite its limitations [Ref. 22].  Q-3D 

methods have been used, along with optimization techniques similar to those utilized in 

this research, to find optimized 2-D section profiles which are then stacked to form an 

‘optimized’ compressor blade [Ref. 23].  The problem is that there has been little or no 

success in improving real blade performance measures using this method.  Much effort 

has been focused on aligning computerized Q-3D solutions with those obtained using full 

3-D analysis, such that the former may be used as a quicker and easier substitute for the 

latter.  Attempts to better approximate 3-D CFD solutions by manipulating variables in 

simpler codes has shown some promise, but the results still lack the fidelity and 

flexibility of true 3-D flow codes [Ref. 24].  

 

3. 3-D Inverse Methods 

Another  technique that seeks to take advantage of the power of 3-D CFD analysis 

in blade design, without truly designing in three dimensions, is the 3-D inverse method 

[Ref. 24,25,26].   2-D inverse methods create blade section profiles by finding a thickness 

distribution and camber which produce a given distribution of some chosen flow 

parameter, usually pressure, on either side of the blade.  This is different from the 

conventional direct method in which blade section shapes are selected from an existing 

catalog or assigned based on the geometry package in Crouse’s code.  The 3-D inverse 

method starts with a ‘guessed’ blade geometry and then modifies that geometry utilizing 

flow field information obtained from 3-D CFD analysis.  Corrections to the initial 

geometry are applied at multiple spanwise sections using the 3-D CFD pressure 
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distribution information which includes the effects of spanwise flow, case wall 

interaction, etc.  The biggest problem with this technique, as it stands, is that a blade must 

already exist to produce the 3-D CFD solution in the first place; so the exercise, it seems,  

becomes one of showing that the 3-D inverse method can be used to replicate an existing 

design.  Further work is required to develop practical inverse methods which incorporate 

the use of  3-D CFD in blade design.   

 

4. Multidisciplinary Design Optimization (MDO) 

The concept of Mulidisciplinary Design Optimization (MDO) is one which is  

being applied more and more often to the machine design field.  In its most rigorous 

form, it consists of algorithms and computerized methods for determining the relative 

contributions and importance of various disciplines (such as aerodynamics, structures, 

manufacturing, overall cost, etc.) to the design process and then ensuring that the process 

is properly aligned with those relationships [Ref. 27].  In its simplest form, it refers to the 

idea that a final design should not be prescribed in one area before the other areas have at 

least been looked at to ensure there will be no problems down the road.  Most current 

applications involve an iterative process in which aerodynamic designs are modified 

based on structural considerations, structural designs are changed because of 

manufacturing capabilities, and overarching changes are made due to cost.  Reference 27 

states,  

 

In final turbomachinery design steps, 3-D blade design 

optimizations need quickly converging algorithms treating one single 

aerodynamic objective.  The other involved disciplines lead to further 

constraints. 

   

Such was the attempted implementation of MDO in the present research effort.      
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III. RESOURCES 
 

 
A. BLADE-3D – THE ABDELHAMID BEZIER GEOMETRY PACKAGE 

In 1997, Major Abdelhamid of the Egyptian Air Force, while a PhD student at 

NPS, created a new and greatly simplified geometry scheme with which to represent the 

shapes of turbomachinery blades [Ref. 1].  The package, which this author has adapted 

and chosen to call BLADE-3D, defines the blade geometry as a set of Bezier surfaces, 

which are a special class of what are known as non-uniform rational B-spline surfaces, or 

NURBS surfaces for short.  While using NURBS to represent complex geometric shapes 

in design processes is not new, there are several features of BLADE-3D which make it 

unique when applied to turbomachinery design.  This section will provide a brief 

overview of those features. 

The Bezier surfaces, or surface patches as they are known, are derived from basic 

Bezier curve methodology, which parametrically represents complex curved shapes 

analytically with a minimum number of free parameters.  The formulation was developed 

in the late 50’s by an engineer at Renault, the French automaker, as an easier way to 

represent the curves used in auto body design [Ref 28].  Bezier curves may be expressed 

mathematically in several forms.  One common method is to use a polynomial 

formulation, known as the Bernstein polynomial, to represent the curve as a function of a 

chosen parameter t.  A cubic Bernstein polynomial is written as: 

 

                   Q(t) = (1-t)3*P1 + 3t*(1-t)2*P2 + 3t2*(1-t) *P3 + t3*P4 

 

where Pn=Pn(x,y,z) are the four control points that define the Bezier convex hull.  A cubic 

Bezier curve and its convex hull are shown in Figure 5. 
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Figure 5.  Bezier Curve with Convex Hull (After Ref. 1) 

 
It can be seen from the figure that the Bezier curve lies completely within the 

polygon of control points.  The two endpoints of the curve also form the bottom corners 

of the polygon and lines from those points to the inner control points are tangent to the 

curve at the endpoints.   Movement of any of the four control points will change the 

shape of the entire curve and the shape change at any point is proportional to its distance 

from the control point that was moved.  These are interesting properties of Bezier curves. 

 There are several other properties which make Bezier curves and surfaces well-

suited for the present application [Ref. 1].  First, they are invariant under translation, 

rotation and scaling, which means that transformations may be applied to the control 

points to achieve the same result for the overall curve (important with regard to the sweep 

function).  Continuity of slope of adjoining Bezier curves may be ensured by requiring 

that the common endpoint and the next control point in each curve are colinear.  

Continuity of curvature may be maintained by ensuring a common ratio between the 

segment lengths of  adjoining curves.  These properties are important in the fitting of the 

leading and trailing edge surfaces to the major surfaces of the blade, as will be discussed 

shortly. 
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Figure 6.  Subdivision of Bezier Curves (After Ref. 1) 

 
 Figures 6 shows one last property that is important, that of subdivision.  Bezier 

curves may be divided into smaller segments, which may in turn be represented by their 

own sets of control points.  These new control points may be determined mathematically 

from the original Bezier control points.  Again, this proves useful in fitting leading and 

trailing edge surfaces to the blade.   

 BLADE-3D uses six cubic Bezier surface patches to represent the surfaces of the 

turbomachinery blade [Ref. 1].  Two of these surface patches form the entirety of the 

pressure and the suction surfaces.  The other four surfaces comprise the leading and 

trailing edges, and form a very small portion of the overall blade.  Each side of the blade 

then may be described analytically by only sixteen points in space, the Bezier control 

points, as opposed to the many points required by NASA’s traditional MERIDL format 

[Ref. 16].  This feature, more than any other, is what gives BLADE-3D so much potential 

as a blade design optimization tool.  A Bezier surface and its net of sixteen control points 

is presented in Figure 7. 
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Figure 7.  Bezier Surface with Control Point Net (After Ref. 1) 

 
To obtain the control points for the Bezier surface that approximates the pressure 

or suction surface of a given blade, the blade is first represented by a set of data points.  

A parameter is chosen based on the geometry (arc length for example) and a set of 

control points calculated to approximate the surface.  A nonlinear least squares procedure 

is then performed to determine the error between the calculated surface and the original 

surface.  This error is then used to modify the original parameterization and the process is 

repeated.  This iterative procedure is performed until a suitable parameterization is found 

and the most accurate control points are determined. 

Leading and trailing edge surfaces are fitted to the pressure and suction surfaces 

by choosing scaling parameters which take advantage of the continuity of slope and 

curvature properties of Bezier curves.  These parameters are used to generate curves 

which maintain the slope and curvature of the pressure and suction surfaces at front and 

back.  These surfaces are joined and terminated at a midpoint, for which only continuity 
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of slope is achieved.  A blade profile showing all six Bezier surfaces is shown in Figure 

8. 

 

 

Figure 8.  Bezier Representation of Compressor Blade (After  Ref. 1) 

 
Subdivision, as previously described, may be used to change the point on the 

pressure or suction surface where the leading or trailing edge is fitted.  This, as will be 

seen later, is important in maintaining the chord length and overall footprint of the blade. 

BLADE-3D was written in C++, an object-oriented program language in which 

code may be formulated in chunks and then simply dropped into higher order routines to 

carry out complex mathematical manipulations.  It is organized into six subpackages, 

which build in turn on the preceding one.  Abdelhamid felt that such an architecture for 

the package would be useful in constructing interfaces with other software tools such as 

grid generators, flow analysis codes, structural analysis tools and ultimately, software 

designed to control manufacturing processes.  He envisioned the development of a 

graphical user interface in the future to make interface with the package easier.  A few 

modifications to the code were made by the author which helped adapt it to the research 

problem at hand.  Those changes are fully described later. 
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A complete discussion of the theory and formulation underlying BLADE-3D 

along with an extensive list of references pertaining to NURBS in general and Bezier 

curves and surfaces specifically is contained in Reference 1. 

 

B. THE SANGER ROTOR 

A transonic compressor stage was designed by Sanger at the NASA Glenn Research 

Center for use in the Turbopropulsion Laboratory at the Naval Postgraduate School as a 

research and teaching tool.  In many ways, the rotor is well-suited as the test article for the 

present study since the design philosophy relied heavily upon CFD techniques and sought to 

minimize the use of conventional empirical design methods.  Sanger used Denton’s TIP3D 

three-dimensional flow code, an Euler solver with viscous forces accounted for by distributed 

body forces, to complete the design.  The process yielded an aggressive, highly-loaded rotor 

which promised very good performance.  Performance enhancements achieved through the 

optimization process pursued in the present study would certainly bode well for application 

to less mature designs. 

The Sanger design was built and then tested in the compressor test rig at NPS.  

Unfortunately, before the testing could be completed at the highest speeds, the test rig 

suffered a hardware failure and the rebuilt stage has not yet been tested  at 100% speed.  The 

design parameters for the Sanger rotor are shown in Table 1 and a picture of the rotor is 

provided in Figure 9.   

Total Pressure Ratio 1.61 
Tip Speed 1300 ft/sec 
Design Mass Flow Rate 17.09 lbm/sec 
Tip Inlet Relative Mach Number 1.28 
Aspect Ratio 1.2 
Hub/Tip Radius Ratio 0.51 
Number of Blades 22 
Tip Solidity 1.3 
Tip Diameter 11.0 inches 

 

Table 1.  Sanger Rotor Design Summary 
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Figure 9.  The Sanger Rotor (From Ref. 3) 

 
 A complete description of the Sanger rotor, the design process and the CFD 

performance results may be found in References 2 and 3.  Previous work at the NPS 

Turbopropulsion Laboratory  involving the Sanger stage are contained in References 29  

through 32. 

 

C. NASA ROTOR 67 

NASA Rotor 67, also known as the ‘NASA Fan’, was designed in the late 1980’s at 

the NASA Lewis Research Center (now Glenn) and has been used extensively as a test case 

in the design, test and validation of many CFD software codes, tools and procedures.  Its 

design parameters and performance characteristics have been widely reported in the open 

literature and may be readily obtained from the Internet.  A brief synopsis of the design 

parameters for Rotor 67 is presented in Table 2 and a flow visualization image is shown in 

Figure 10. 
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Total Pressure Ratio 1.63 
Tip Speed 1400 ft/sec 
Design Mass Flow Rate 73.15 lbm/sec 
Tip Inlet Relative Mach Number 1.38 
Aspect Ratio 1.7 
Hub/Tip Radius Ratio 0.37 
Number of Blades 22 
Tip Solidity 1.26 
Tip Diameter 20.0 inches 

 

Table 2.  Rotor 67 Design Summary 

 

 

Figure 10.  NASA Rotor 67 

 
 

D. RESEARCH TOOLS 

1. Grid Generator – TCGRID 

TCGRID (Turbomachinery C-GRID) is a FORTRAN program designed to generate 

three-dimensional grids for turbomachinery blades [Ref. 33].  It was developed by Chima at 

NASA Glenn and is based upon an old, two-dimensional version of the Steger/Sorenson 

GRAPE code, which generates blade-to-blade grids on surfaces of revolution at given 

spanwise locations [Ref. 34].  TCGRID stacks and reclusters the grids spanwise to form the 

3-D grid.  All geometry manipulation in TCGRID is done with parametric cubic splines and 
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the code can handle axial, centrifugal and mixed flow machines.  The code accepts input in 

several formats and can generate either H-type or C-type grids, which are compatible with 

both the RVC3D and SWIFT flow analysis codes.   An example of a TCGRID-generated C-

grid is shown in Figure 11. 

 

 

Figure 11.  Leading Edge Detail of a Computational C-Grid from TCGRID 

 
  

2. Flow Analysis Code – RVC3D 

RVC3D (Rotor Viscous Code 3-D) is a computer code for analysis of three-

dimensional viscous flows in turbomachines [Ref. 35,36,37].  It too was developed by Chima 

at NASA Glenn and solves the thin-layer Navier-Stokes equations utilizing a multistage 

Runge-Kutta explicit finite-difference technique.  The equations are mapped to a general 

body-fitted coordinate system, with streamwise viscous terms neglected in accordance with 

the thin-layer assumption.  Turbulence effects are modeled with a 3-D adaptation of the 

Baldwin-Lomax turbulence model, or an alternate model based upon Cebeci-Smith [Ref. 37].  

The program is capable of analyzing either annular blade rows or linear cascades.  A simple 

tip clearance model based upon a pinched blade tip is available.  Variable inputs to the 

program include inlet total temperature and pressure, exit static-to-inlet total pressure ratio, 

and rotational speed.  The output is in standard q-file format and is compatible with PLOT-

3D and FAST flow visualization codes. 



 24

3. Flow Visualization Software – FAST   

FAST (Flow Analysis Software Tool) is a menu-driven software program designed to 

aid in the analysis of CFD code outputs.  It accepts grid generator and flow code output files, 

matches them and produces visual images of the details of the flow.  It can perform 

calculations of a variety of flow field properties, including pressure and Mach number, and 

can produce useful images of the aerodynamic body being studied.  The grid, blade, and flow 

images contained in this report were produced using FAST. 

 

4. Structural Analysis Tools 

a. Initial Graphics Exchange Specification – IGES 5.3 

  The Initial Graphics Exchange Specification is the standard for defining 

geometric objects for import into computer-aided design/modeling (CAD/CAM) software 

programs, and allows rapid interchange of data among a variety of engineering software 

applications [Ref. 38].  It has an 80-column ASCII format, and a standard IGES file is 

composed of five parts – Start, Global, Directory, Parameter, and Terminate.  An 

example of an IGES input file for the Sanger rotor is provided in Appendix E.   

  

b. I-DEAS Master Series Six 

  I-DEAS (Integrated Design Engineering Analysis Software) is an integrated 

package of mechanical engineering software tools [Ref. 39].  It is made up of a number of 

software modules called “Applications” which are further subdivided into “Tasks”.  The two 

application modules used in the present work were the “Design” module, under which the 

blade geometry was imported and manipulated to create a solid, and “Simulation”, which 

contains the tasks involved with finite element analysis such as meshing, application of loads 

and boundary conditions, and solving for stresses and deflections.  I-DEAS is a menu-driven 

program which can accept input information in a variety ways, including IGES, NASTRAN 

and ANSYS file formats.  Results are visually displayed and a universal file containing 

numerical values of finite element analysis data is also provided.  Outputs may be formatted 

for use in other CAD/CAM software tools.   
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IV. METHODOLOGY 
 

 
A. OVERVIEW 

The purpose of this section is to describe how the resources listed in the previous 

section  were used to achieve the results reported in the sections that follow.  It proceeds 

in near chronological order and seeks to provide some of the major details involved in the 

research.  An attempt is made to stay on course and avoid straying into tangential 

discussions but in a few cases, additional detail is provided for completeness.   

 

B. ADAPTATION OF BLADE-3D 

The first steps taken were to access and become familiar with Major 

Abdelhamid’s geometry package, BLADE-3D.  As previously discussed, the overall 

package consists of six C++ member class subpackages which are called by a main 

program to fit or change a geometry [Ref. 1]  These codes resided in a number of 

computer files archived on the NPS aeronautical department’s UNIX computer system, 

and had not been accessed for about two years.  The files contained very little annotation 

and there was no written documentation to describe how they were to be used.  To 

someone unfamiliar with C++, these files represented, in effect, an archeological cipher 

project which seemed very daunting at the time. 

 After a self-taught crash course in C++ [Ref. 40], the author set about trying to 

learn and exercise BLADE-3D.  The most logical course of initial action was to try to 

reproduce Abdelhamid’s results in fitting and manipulating the Sanger rotor geometry 

thereby learning in the process how to run and make modifications to the code, as 

required.  A suitable MERIDL3 input file for the Sanger geometry (Appendix D) was 

available, so the problem became a matter of constructing a C++ main program to read 

the input file, call the appropriate member programs to perform the Bezier fit and then to 

produce a recognizable output.  This proved to be no small task. 

 Understanding the structure of C++ programming is a small first step in the 

process of learning to actually compile C++ code and create executable routines.  
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Abdelhamid chose C++ because it was an object-oriented programming code within 

which packages may be written and then picked and chosen to put together short, concise 

executables.  He structured his geometry package such that each member class of routines 

was based upon other, simpler ones.  This makes sense until it comes time to work with 

the UNIX C++ compiler.  For the present work, all the member classes had to be studied 

and recompiled to ensure that none of the executable object files had been corrupted 

during storage and transfer.  It was required that the compilations be performed in a 

particular order utilizing just the right groupings of previously compiled object files or 

else the compilation would fail.  It took a month or so of dedicated effort to learn how 

Abdelhamid’s classes of subroutines fit together and to compile them into usable files.  

(Consideration was given to translating everything into MATLAB but that idea was 

abandoned as too labor intensive).  In the end, the compiler issue greatly aided in 

becoming familiar with all the subroutines and understanding which ones were most 

important for using the package.  The experience was very helpful when code changes 

were made later. 

 Once the codes were compiled and ready, the task became, as stated, to select an 

input routine, whatever geometry manipulation routines were required, and an output.  

There were three different input schemes and two outputs, all of which resided in the 

class ‘blade’.  The inputs allowed data to be read either as surface points on the blade or 

as the Bezier control points used by the package.  The surface points could be in 

Cartesian coordinates, or in MERIDL2 or MERIDL3 formats, which use cylindrical 

coordinates.  The control point inputs could be selected for either those that define all six 

blade surfaces or for those that define the pressure and suction surfaces only.  Outputs 

could be in either surface point or control point form.   

 The first effort at utilizing the code was to try and read the MERIDL3 Sanger 

rotor coordinates and output Bezier control points that matched those published in 

Reference 1.  First attempts at this failed, apparently due to the fact that the input routine 

could not recognize the MERIDL3 input data, which it was obviously designed to do.  A 

detailed review of the input code revealed an apparent flaw in the logic which converted 

the MERIDL3 data into Cartesian coordinates for use in the fitting routines.  The origin 
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of this bug in the code is unknown.  The problem was corrected and control points were 

finally produced for the pressure and suction surfaces of the Sanger geometry, which 

matched those in Reference 1 reasonably well. 

 BLADE-3D incorporates a routine that fits leading and trailing edge surfaces to 

the previously fitted pressure and suction surfaces, in accordance with a shape parameter 

provided in the input file.  What the values of these shape parameters should be was 

again a question that required investigation.  Abdelhamid’s files did not contain the 

appropriate parameter values nor did his notes allude to them.  Examination of the code 

revealed that the parameters were percentages of the overall blade chord, which 

determine the extent of the leading and trailing edges, and therefore were most likely on 

the order of .01, .05 or maybe even 0.1.  Figure 12 shows the variation of the leading 

edge shape with changes in the leading edge parameter. 

 

 

 

 

 

 

 

Figure 12.  Effect of Leading Edge Parameter Change 

 
 After considerable effort, the shape parameters were chosen to be .02 and .01 for 

the leading and trailing edge respectively.  These values produced the control points 

which most closely matched those reported by Abdelhamid, although there was still a 

problem.  As discussed in Reference 1, application of the leading and trailing edge 

parameters directly to the pressure and suction side control points obtained from fitting 

the MERIDL code yielded a blade which was longer chordwise than the original.  In 

addition, the shapes of the leading and trailing edges were asymmetric about the camber 

line.  The obvious solution was the application of the subdivision routines contained 
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within BLADE-3D but again, there was no guidance on how they should be 

implemented.   Through more trial and error, it was concluded that applying subdivision 

to both the pressure and suction surfaces in an amount equal to roughly half the leading 

edge shape parameter resulted in an appropriate correction to the chord length.  It was 

also found that if these corrections were applied unevenly, that is, slightly more to the 

suction side and slightly less to the pressure side, then the problem of symmetry could be 

taken care of as well.  The effects of varying the subdivision parameter on the pressure 

side only are shown in Figure 13. 

 

 

 

 

 

 

 

Figure 13.  Effect of Subdivision Applied to the Pressure Surface 

 
With a reasonably well-fitted representation of the Sanger geometry in hand, as 

well as a procedure to produce it, the next step was to compare its performance with that 

of the original using the RVC3D CFD code. 

 

C. IMPLEMENTATION OF CFD TOOLS AND PROCEDURES 

The first step in implementation of the CFD tools, after becoming familiar with 

their structure and operation, was the generation of a suitable computational grid.  Since a 

method for generating a grid directly from the Bezier control points does not exist 

(although it was proposed as one area of extension to Abdelhamid’s work), an alternative 

was employed.  As discussed, TCGRID was utilized to generate the grids for this project 

but first, the blade geometry had to be translated back to MERIDL format for 
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incorporation into the TCGRID input file.  As part of BLADE-3D, Major Abdelhamid 

created a routine which takes points from the fitted Bezier surfaces and creates 2-D blade 

profiles along conical sections similar to that required by the MERIDL format.  The 

output from this routine can be expressed in either Cartesian or cylindrical coordinates.  

The cylindrical coordinate version can be easily put into MERIDL0 form and then 

appended to the standard TCGRID namelist input (pre-existing for the Sanger rotor), to 

create a complete input file (Appendix E).  This was the technique used throughout the 

present study. 

First attempts to generate the grid uncovered an interesting problem.  While the 

BLADE-3D code was capable of outputting a MERIDL-like representation of the blade, 

it created anomalies at the trailing edge which frequently resulted in a negative Jacobian 

and subsequent rejection by the RVC3D flow code.  Negative Jacobians are indicative of 

negative cell volumes, or places in the grid where grid lines cross unexpectedly and 

inappropriately.  TCGRID generates a C-grid centerline which departs the trailing edge 

of the blade toward the grid exit, and from which the J grid lines project outward toward 

the grid boundary.  The problem in this case was that the grid centerline did not always 

depart directly from the trailing edge but from a point two or three cells removed on the 

pressure surface of the blade (a result of BLADE-3D not dividing the mathematical 

listing of the blade profile precisely at the trailing edge).  This caused some of the upward 

(suctionward) projecting J grid lines to have to ‘turn the corner” around the real trailing 

edge and most of the time, this did not happen correctly.  The grid lines passed through 

the trailing edge instead, hence the negative cell volumes, etc.  While it was possible to 

finesse the input file to deal with this problem, a broader solution was sought and 

ultimately found.  It was determined that by making small changes to the original 

BLADE-3D subdivision scheme used to define the fitted blade geometry, the problem 

with the BLADE-3D output could be almost alleviated, thereby precluding the 

subsequent issue with TCGRID.  Resolution of this problem resulted in the creation of 

suitable grids and enabled the effort to proceed forward into working with the flow code. 

Like TCGRID, initial attempts to apply RVC3D to compute the flow were not 

without problems.  Major Abdelhamid used RVC3D to verify the accuracy of his Bezier 
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geometry fit and also to investigate the effects of forward and aft sweep on the Sanger 

geometry.  Since he had relatively few runs to perform, he was able to carry each run out 

to 3000 iterations, a total certain to achieve convergence on all but the most complex 

flow cases; with convergence being defined as a three order-of-magnitude drop in the 

residual for the numerical method utilized.  Such a run required about two days to 

complete on an SGI Octane workstation of the type used in the present work and given 

the far greater number of runs required, it was decided that 3000 iterations would be an 

unacceptable number.  Initial runs of the baseline or fitted Sanger geometry were 

performed at 1500 iterations and did not achieve convergence.  Subsequent 2000 iteration 

runs were performed which did not converge either.  Various modifications to the 

computational parameters such as Courant number and levels of implicit residual 

smoothing in the pre-existing RVC3D input file for the Sanger rotor did little to change 

the convergence rate.   

As discussed previously, the design intent for the Sanger rotor was for relatively 

high loading, i.e. operation close to stall.  Due to the more complex flow patterns 

encountered in this regime, CFD computations of such flows require considerably longer 

to converge to the accepted level of accuracy.  Calculation time can be cut drastically 

simply by choosing a less complex flow regime to study, one not so close to stall and 

therefore not subject to complicated flow separation issues.  The decision was made to 

use a lower value for exit static-to-inlet total pressure ratio, 1.19 vs. the 1.22 value used 

in previous analyses of the Sanger rotor.  This point was chosen as the design intent for 

this exercise, and all subsequent RVC3D runs were performed there.  The necessary three 

order-of-magnitude convergence criterion was easily met within 1500 iterations, a 

computation that required slightly less than 24 hours on the Octane.  That was considered 

acceptable and the work moved forward. 

The first task in using the flow code was to verify the accuracy of the BLADE-3D 

fit to the original Sanger geometry by comparing performance at the design point.  The 

results of that comparison are shown in Figures 32 and 33 in Section V. 
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D. AERODYNAMIC OPTIMIZATION PROCEDURE 

1. Random Variation of Control Points 

The first step in formulating the optimization procedure for the Sanger rotor was 

to choose an objective function and any constraints that would be placed upon the process 

(Appendix C).  After some deliberation, it was decided that mass flow rate would be a 

good choice for the objective function since pressure ratio and efficiency are often 

targeted in an engine design, and improving mass flow would probably require the 

optimization of passage shape rather than changes in blade turning.  Also, for the 

conditions of this exercise, changes in mass flow rate required changes in only one flow 

variable, inlet Mach number, a factor that would simplify and shorten the required 

sensitivity analyses.  It was decided to require that there would be no loss in adiabatic 

efficiency during the process since decreases in efficiency are never a goal of good 

design.  The only other design constraint, except for those imposed upon the movements 

of control points, was a requirement for positive blade thickness.  As a matter of 

procedure, it was decided that the input values for the grid generation program and for the 

flow code would remain as consistent as possible so that any changes in the objective 

function would be solely due to changes in the blade geometry.  For that reason, it was 

decided to terminate the optimization procedure if a converged solution could not be 

obtained without changes to the grid or the input boundary conditions.   

Before the actual optimization process could begin, some ground rules for control 

point movement had to be set.  First of all, it was decided that the locations of the bottom 

row of control points, those in the hub region, would not be changed at all during the 

exercise.  This would provide a stable frame of reference for all modifications to the 

blade and would preclude any geometry changes that would require modifying the hub 

itself.  Secondly, a similar decision was made regarding the control points along the 

leading and trailing edges of the pressure and suction surfaces except when moved by the 

sweep mechanisms contained in BLADE-3D.  By limiting independent movement of 

these points, it was possible to maintain a fairly consistent chord length, thereby avoiding 

deviations in aspect ratio and solidity.  An added benefit was that a reasonably constant 

thickness was maintained at the leading and trailing edges and changes in the leading and 
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trailing edge shape parameters were avoided.  Movement of the off-blade control points 

at the tip were only allowed in the axial and tangential directions to prevent any 

significant changes in the radial dimensions of the blade at the tip, thereby avoiding 

redesign of the outer case wall. 

So the options for control point movement during the optimization process were 

limited to the four center off-blade points on both the pressure and suction surfaces with 

these points being moveable in all directions – axially, tangentially, and radially.   As 

mentioned, the center points at the tip on both surfaces could each be moved in only two 

directions.  The result was an optimization problem with 32 variables and because of this 

high number, it was decided at first to investigate using a Monte Carlo or random 

variation technique.  Figure 14 shows the possible variations in control points on the 

suction side. 

 

Figure 14.  Moveable Control Points  

 
To further limit the scope of the random variation effort initially, and to isolate 

the effects of the movements of suction side vs. pressure side points, it was decided to 

look at the center off-blade points by themselves, but only moving them in two 

directions.  This served to lower the number of random variables to 8.  The movements of 

these points was limited to approximately 10% of the chord length in the axial direction 
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and 5% of the thickness in the tangential direction and a FORTRAN routine, RANDCP, 

was written to produce random variations subject to these constraints (Appendix G).  One 

hundred RVC3D runs were made during this portion of the exercise and a representative 

plot of the results is shown in Figure 15. 
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Figure 15.  Example – Random Variation of Suction Surface Control Points 

 

 From the plot, it is seen that the random combination of new suction surface 

control points produced in this phase achieved very small if any positive changes in mass 

flow rate.  On the contrary, many of the runs produced substantial decreases in flow rate 

or in many cases, no solution at all.  In roughly one third of the 100 test cases tried, the 

flow code failed to converge to a solution.  The observation that some of the runs 

produced improvement in blade performance, however, was a positive indicator that there 

was potential in the optimization effort. 

 A similar procedure was performed for the center off-blade control points on the 

pressure side.  Again, 100 test runs were conducted using the same constraints as for 
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movement of the suction side points in the axial and tangential directions.  The results of 

these runs are presented in Figure 16. 
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Figure 16.  Example – Random Variation of Pressure Surface Control Points 

 

 The above figure shows that moving the pressure side control points seemed to 

have a more beneficial effect on mass flow rate than did that of the suction side points.  

For the pressure side, we see one combination that yielded a 2.5% improvement whereas 

the maximum for the suction side was about 1%.  A generally more positive trend is 

noted as well; that is, there are fewer negative results with lesser magnitude than for the 

suction side.  It should be mentioned also that out of the 100 cases run for the pressure 

surface, fewer of them failed to converge, an indication that the CFD code was more 

tolerant of perturbations in the pressure side flow field.  This fact would be supported by 

the results of the later optimization approach. 

 Based on these results, it was decided to pursue a more structured and orderly 

approach to the optimization but first, an examination of forward and aft sweep was 

conducted. 
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2. Effect of Forward and Aft Sweep 

A series of runs was performed to look at the variation in mass flow rate and the 

other blade performance parameters with application of BLADE-3D’s built-in sweep 

functions.  As previously mentioned, there are two – one that moves only the tipmost row 

of control points and one that moves the outer two rows to achieve a more gradual sweep 

effect from the midspan outward.  These modes were identified as Sweep 1 and Sweep 2 

respectively by Abdelhamid, and a comparison of both modes to the baseline shape 

utilizing 10% forward sweep is shown in Figure 17 (the magnitude of sweep is expressed 

as a percentage of the chord length). 

 

 

 

Figure 17.  Sweep Manipulation in BLADE-3D 

 
Examination of the two sweep modes was performed in 5% increments.  The 

results are shown in Figures 18 and 19. 
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Figure 18.  Effect of Sweep – Sweep 1 
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Figure 19.  Effect of Sweep – Sweep 2 
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The figures show that Sweep 1 provided essentially no improvement in mass flow 

rate in either direction.  All blade performance parameters decreased with sweep with the 

exception of total pressure ratio which improved slightly with aft sweep, and much more 

substantially with forward sweep up to a maximum of about 15% beyond which no 

solutions were obtained.  Sweep 2 had a much more dramatic effect, and it can be seen 

that there was considerable improvement in all parameters with forward sweep, and a 

comparable decrease with aft sweep.  The trend appears definitive.  It was decided, based 

upon these results, that further efforts involving sweep would focus exclusively on 

forward sweep since aft sweep showed no improvement whatsoever in mass flow rate. 

Since sweeping multiple rows of control points (Sweep 2) had a greater positive 

effect on the performance of the blade than did Sweep 1, the geometry package was 

modified to enable sweep of all three outer rows of points independently.  The 

modification was made by implementing a Sweep 1-type routine at each row, which 

could then be applied in concert to achieve a variety of sweep effects.  This change 

enabled a sweep optimization process to be performed, the results of which will be 

discussed later. 

 

3. One-dimensional Search Technique 

a. Pressure and Suction Side Control Points 

Since the random variation of control points described previously yielded 

less-than-hoped-for results, an approach based upon the technique outlined in Section III 

was implemented.  A one-dimensional search scheme was performed on the same center 

pressure side control points, this time using the radial direction since it had been excluded 

from the previous examination.  The problem required a 4-dimensional direction vector 

to be determined by sensitivity analysis.  This sensitivity analysis required that the radial 

component of each control point be incremented independently and positively by .001.  

An abbreviated RVC3D run of 200 iterations was then performed for each to determine 

the resulting direction of movement of the objective function (mass flow rate or more 

simply, inlet Mach number, which could be read directly from the RVC3D output).  An 
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abbreviated run was also conducted for the baseline blade for comparison purposes.  It 

was discovered that radial movement of the center points toward the edges; i.e., the hub 

for the inner points and the tip for the outer points, resulted in increases in inlet Mach 

number.  This resulting vector was then added in increasing multiples to the original 

radial components of the control points to complete the optimization.  This procedure was 

performed until a drop-off in efficiency was noted. 

It should be mentioned that no attempt was made at this point to use the gradient 

of the objective function in the optimization process.  It was decided to keep the 

components of the optimization vector equal in magnitude in order to keep a single 

control point from dominating the process at the expense of the others.  Also, .0001was 

used as the increment in the optimization vector itself rather than the .001 used in the 

sensitivity analysis.  This enabled closer control of the changes in the locations of the 

control points and would prevent, it was felt, rapidly passing by the closest point of 

approach to the maximum. Once the vector was determined, the optimization procedure 

was performed by conducting concurrent RVC3D runs to full convergence, utilizing 

increasing multiples of the optimization vector.  The results of these runs are presented in 

Figure 20. 
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Figure 20.  Pressure Side Radial Optimization 
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The figure shows that repeated application of the optimization vector resulted in 

ever increasing improvement in mass flow rate, as well as total pressure ratio.  As 

mentioned, the procedure was carried out until the adiabatic efficiency dropped from its 

original value which occurred after about 24 multiples of the vector.  There appears to be 

a knee in the curve at approximately the 16 multiple point after which the rate of increase 

in mass flow rate is reduced and the efficiency begins a more rapid drop off.  The cause 

of this knee is unknown.  It can be seen that the total pressure ratio continued to increase 

at a fairly constant rate throughout.  The improvement in mass flow rate achieved during 

this portion of the exercise was greater than that achieved through the random variation 

procedure and was achieved more rapidly, predictably and repeatably.  It validated the 

notion that an automated procedure consisting of a systematically applied optimization 

scheme indeed held promise for further investigation. 

Given the initial success of the systematic approach outlined above, it was applied 

to the entire 32-variable optimization problem defined at the outset.  The four center 

control points on both sides, as well as the middle tip points, were moved simultaneously 

in a manner determined by a similar sensitivity analysis procedure.  The same 

incrementation scheme was used with a similar concurrent method of applying the 

resulting optimization vector.  Again, the idea was to apply the vector until a drop in 

efficiency was noted, or until it was obvious that the maximum improvement had been 

attained.  Figure 21 shows the results of the first run. 
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Figure 21.  Sanger Rotor – Optimization Run 1 

 

 It can be seen in the above figure that the efficiency dropped off fairly early, 

around the 5th multiple, despite the fact that increases in mass flow rate and total pressure 

ratio occurred out through the 16 vector multiple point and apparently beyond.  Given 

that result, it was believed that a second run in which adiabatic efficiency was used as the 

objective function might be useful since an increase in efficiency beyond the initial value 

would allow further effort toward improving mass flow rate.  The second run was 

conducted in the same manner as the first (with the hope that mass flow rate would not 

decrease while attempting to improve efficiency).  The results of the second run are 

presented in Figure 22. 
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Figure 22.  Sanger Rotor – Optimization Run 2 

 

 As shown above, the second run was in fact successful in achieving an 

improvement in adiabatic efficiency with the added welcome outcome that both mass 

flow rate and total pressure ratio were also improved.  Polytropic efficiency was also 

tracked since it is a measure of merit that does not depend on the changing pressure ratio.  

The starting points for this run were the values of the parameters at the 5th multiple in run 

one.  The peak of the efficiency curve occurred at just over six in this run, at which point 

an additional .5% improvement in mass flow rate was realized.  The third optimization 

run was begun using the parameter values at that point, having again established mass 

flow rate as the objective function.  The results of Run 3 are shown in Figure 23. 
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Figure 23.  Sanger Rotor – Optimization Run 3 

 

 The results shown above were highly encouraging at first given that the apparent 

outcome after the first three optimization runs was an improvement of better than 4% in 

mass flow rate along with an increase in total pressure ratio of 2%+.  However, all was 

not as it seemed.  As before, the RVC3D runs for the increasing vector multiples were 

run concurrently to minimize wall clock time for the optimization process.  The grids 

generated were not examined in detail in advance and it was not until afterward that it 

was discovered that blade thickness had become an issue.  It was readily apparent in 

looking at the grid for the 32nd multiple that the thickness had in fact become negative, 

which was obviously unacceptable.  It was initially surprising that RVC3D actually 

achieved a converged solution with non-physical boundaries.  It served to show that the 

computer program cannot recognize whether the input geometry is physically possible or 

not.  Figure 24 depicts the thickness problem observed for multiple 32 as depicted by I-

DEAS.  
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Figure 24.  Sanger Rotor – Lack of Thickness during Run 3 

   

 This development made it clear that a check of blade thickness would be required 

in the optimization process.  The thickness calculation scheme and FORTRAN code 

previously discussed were formulated at this juncture and applied to the blade attained 

after vector multiple 32 in Run 3.  As observed, the thickness calculation produced a 

substantially negative result in the forward region between midspan and the tip.  Going 

back through the results from Run 3 to find the multiple where the blade still maintained 

a reasonable amount of positive thickness throughout, a new optimization run was begun 

at point eight. 

 For the fourth optimization run, the procedure was modified such that before the 

flow code was used, the thickness was checked by both the FORTRAN routine and a 

visual inspection in I-DEAS.  If thickness was found to be negative anywhere in the 

blade, then the closest control points on both surfaces were moved away from each other 

tangentially enough to achieve positive thickness.  This movement was accomplished 

manually by simply changing the y-coordinate of the specified control point in 
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increments of .002 until blade integrity was restored.  These changes were then 

incorporated into the geometry for the run through RVC3D.  For Run 4, the process 

became a multidisciplinary one in which structural analysis tools were used in 

conjunction with the flow code to produce an acceptable result.  The results for the fourth 

optimization run are shown in Figure 25. 

Figure 25.  Sanger Rotor – Optimization Run 4 

 

 The figure shows that continued progress was made in the improvement of mass 

flow rate; ultimately achieving an approximate 5.5% gain with an accompanying increase 

in total pressure ratio.  The efficiency maintained a slight improvement as well.  The fact 

that the process continued as long as it did was somewhat surprising given that there were 

thickness issues from the very beginning and the geometry was ‘brute-forced’ into 

remaining positive.  Finally, at the 40th multiple, there was a drop off in mass flow rate, 

which signaled closest passage to the maximum and an end to this phase of the 

optimization process.  Because of the thickness issue, it was decided that there probably 

wasn’t much to be gained by performing another sensitivity analysis and perhaps 
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proceeding in a different direction with the same process.  The decision was made to 

proceed to sweep as a method for further improving the performance of the blade. 

 The thickness issue necessitated the need to incorporate a structural analysis 

procedure into the process.  I-DEAS was selected, and considerable effort was expended 

learning to use it; especially in the process associated with creating IGES files to import 

the geometry.  Several weeks of work were required to ‘break the code’ on this and 

several other issues associated with using these tools.  Those issues will be discussed 

more fully later in this section. 

 

b. Forward Sweep 

  As a way to get a feel for how forward sweep should affect the 

performance of the so-far partially optimized blade, it was decided to perform an 

optimization procedure on the sweep function itself, utilizing the baseline blade, and then 

to apply those changes to the results of Run 4.  A sensitivity analysis similar to those 

already described was performed for the sweep function at each row of sweepable control 

points.  A gradient of the objective function with sweep was calculated for each row and 

then normalized by dividing through by the largest.  Sweep was incremented in each row 

in three different ways as shown in Table 3.  

 Smaller  Equal Larger  
 Increments*  Increments Increments 
Inner Row 0.9375 1 1.067 
Middle Row 1 1 1 
Outer Row 0.7292 1 1.37  

 
 
 

             *Smaller increments represent normalized gradient  

Table 3.  Sanger Rotor Sweep Optimization Scheme 

 
All three methods involve using the row with the largest gradient as unity.  The 

smaller increment applied the relative gradients directly while the larger increment 

applied the reciprocal such that the row with the smallest gradient changed the most per 

vector multiple.  The results of the methods are shown in Figure 26. 
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Figure 26.  Sanger Rotor – Optimization of Sweep 

 
 

 As expected, the larger increment method showed the most rapid improvement in 

mass flow rate and achieved an overall improvement of about 1.5%.  There was a 

possibility that one of the other two methods, while slower, might converge to a higher 

end point, which would make it the method of choice.  As is seen in the figure, that did 

not happen and the larger increment values were chosen for incorporation. 

 The results of the forward sweep optimization investigation were added to those 

for the four optimization runs accomplished previously to produce what was thought 

would be the final configuration of the optimized blade.  This geometry was then passed 

over to the structural analysis program and to determine whether or not it would meet 

structural requirements. 
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F. STRUCTURAL ANALYSIS 

1. Finite Element Analysis 

Blade geometry information was imported into I-DEAS via the IGES file format 

(Appendix E).  Since IGES supports the B-spline surface entity as an accepted data input, 

the control points for the Bezier surfaces defining the blade could be written directly into 

the input file.  While learning how to create and translate IGES files took some time – it 

was essentially like learning a new computer language – the payoff was tremendous in 

that it ultimately allowed for very efficient transfer of information back and forth 

between the aerodynamic and structural analysis phases of the research.  At first, all six 

Bezier surfaces were input into I-DEAS which resulted in a ‘part’ (as I-DEAS refers to it) 

composed of six separate components from which a solid is created.  As input, the six 

surfaces formed a hollow tube object, for which end surfaces had to be generated, and 

then all eight surfaces stitched together to produce the solid blade.  I-DEAS has various 

methods for accomplishing this, none of which worked very well for this geometry.  

After much trial and error and very little success, it was decided to reduce the input file to 

the pressure and suction surfaces only.  After doing this, it was found that the 

corresponding corners of the two surfaces could be connected with lines and that four 

additional surfaces could then be produced using the ‘Surface by Boundary’ function of 

the Master Modeler.  From there, the six surfaces could be stitched together to form a 

slightly modified solid blade.  The resulting part was essentially the original blade 

geometry without the leading and trailing edges and it was felt that this would be 

acceptable for the structural analysis since those portions were a very small percentage 

(less than 1%) of the overall blade mass.  This decision helped to streamline the input and 

modeling process considerably.   Figure 27 shows the solid blade as produced by this 

procedure in I-DEAS. 



 48

 

Figure 27.  Solid Modeling of Sanger Blade with I-DEAS 

 
Once a solid blade was generated, the meshing function of I-DEAS was used to 

complete the finite element model.  The fidelity of the mesh was determined 

automatically by I-DEAS depending upon the dimensions and details of the part.  It could 

also be selected by the user.  Usually, the program generated as coarse a mesh as was 

feasible without violating the geometry requirements of the component tetrahedral 

elements, and this served to minimize solution times.  As the blade became thinner during 

the optimization process, the mesh became finer and solution times increased 

substantially. 

After meshing was complete, boundary conditions and loads were applied.  The 

only boundary condition imposed for this blade was that it be clamped at the hub with no 

deflection allowed.  Blade loading consisted of applying a rotation about the x-axis 

equivalent to the compressor speed and a distributed gas load on the pressure side of the 

blade.  Both of these were easily performed in I-DEAS.  The gas load utilized was 

calculated from the RVC3D output.  Once boundary conditions and loads were applied, 

the finite element model solution could be performed. 
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Initial I-DEAS solutions for the baseline blade agreed very well with the results of 

the structural analysis for the Sanger rotor conducted by Hermann at NASA Glenn and 

also to the results obtained by Abdelhamid in his work [Ref. 1, 41]. 

 

2. Cold Shape Correction  

As the blade became thinner and thinner during the optimization process, it 

became apparent through structural analysis that large deflections under load were 

creating a situation in which the blade no longer retained the shape for which the 

aerodynamic analysis had been performed.  While this was true also for the baseline 

blade, the effects were far more pronounced in the modified blades.  It was obvious that 

some sort of shape correction procedure had to be developed that would result in the 

blade assuming the proper aerodynamic shape after the loading was applied.  This effort 

became the focus of the work for several weeks. 

In Reference 4, Wennerstrom devotes a couple of pages to this issue and discusses 

the idea that the blade must be manufactured in one shape, with the knowledge that it will 

deform into a different shape when loaded, and that this different shape must conform to 

the aerodynamic design intent.  He describes an iterative procedure in which structural 

analysis is performed to determine blade deflections, those deflections are subtracted 

from the design shape to create a new blade geometry and then this new blade is loaded 

to determine the new deflections, and so on.  This procedure is performed until the 

deflected shape of the revised blade geometry matches the original aerodynamic design.   

A technique to accomplish this was developed, but required some time to perfect 

since I-DEAS does not provide a direct output of deflected geometry, not to mention one 

in BLADE-3D control point format.  A way had to be found to calculate new control 

points for a deflected blade geometry before a correction procedure could be established.  

It was determined that the BLADE-3D surface point output was quite useful in this 

regard.  For a given set of control points, BLADE-3D can produce a set of Cartesian 

coordinate surface points for the pressure and suction surfaces of the blade.  In the I-

DEAS universal data file, original locations and deflections of the nodes in the finite 



 50

element model are provided in tabular format.  With these pieces of information, the 

closest node to each surface point could be calculated, and then the deflection of that 

node applied to the point to produce a surface model of the deflected blade.  Those points 

could then be used by BLADE-3D to calculate a new set of control points for the 

deformed model.  In addition, the nodal deflections could be subtracted from the original 

surface points to produce a ‘predeflected’ blade i.e., a corrected blade shape for further 

structural analysis.  FORTRAN routines to calculate the closest nodes and to produce 

deformed and ‘predeflected’ surface geometries (CNODE and DGEOM) are given in 

Appendix G. 

Once these techniques were developed, an iterative correction was attempted for 

the baseline blade as a test of the procedure, since the smaller deflections encountered 

there held better promise of success and validation of the method.  After several 

iterations, it was discovered that the process was diverging rather than converging on a 

new blade shape.  Repeated attempts produced the same result and reexamination of the 

process achieved nothing toward finding the problem.  However, by switching from using 

linear statics to non-linear statics on the advice of NASA Glenn, convergence was 

obtained [Ref. 42]. 

Linear static analysis, while suitable for very small deflections, was not working 

here because the deflections were large relative to the size of the blade.  Nonlinear statics 

applies the loading incrementally, which is in fact appropriate  since a spinning rotor 

takes time to come up to speed.  The solution is calculated using a varying stiffness 

matrix as the load is applied, and this results in smaller stresses and deflections for a 

given load case.  The cold shape correction procedure, with nonlinear analysis, converged 

successfully to a suitable ‘predeflected’ geometry for the baseline blade.  [The results for 

the cold shape correction of the Rotor 67 Final design contained in Section V were very 

similar to those attained for the baseline blade in terms of number of iterations and 

accuracy in matching the deflected blade to the intended geometry.]  The viability of the 

method was well-demonstrated.  Figure 28 provides a visualization of the geometry 

change produced by the cold shape correction procedure. 
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Figure 28. Blade Iterations during Cold Shape Correction  

 
Unfortunately, the attempted cold shape correction of the optimized Sanger rotor 

did not work out as well.  Because of the blade’s thinness, the deflections encountered 

under load were considerably higher than for the baseline blade, as is shown in Section 

V.  The correction procedure did not converge on a suitable cold shape nor did the 

deflections diverge.  After a few iterations, the excess deflections became almost stable.  

Therefore, a different approach was taken.  The structural analysis was run for the 

optimized blade, and the deflections were obtained and subtracted to get the first cold 

shape.  This cold shape was then loaded to achieve a new deformed blade, which was 

then run through RVC3D to determine its performance.  The idea was that if the original 

optimized blade shape could not be achieved, then the best performance by a loaded 

blade would have to be accepted as the design.  It was expected that this performance 

would be worse than before.  Surprisingly, the new hot shape actually performed better 

than the design achieved through the previous optimization, so this new shape became the 

accepted design and it is this geometry that is described in  detail in Section V.  

A comparison of the performance of the optimized blade and the new shape 

achieved through the cold shape correction procedure is shown on the speedline graphs in 

the Sanger Rotor Performance  portion of Section V (A-2). 
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G. ROTOR 67 

The methods outlined above were applied in turn to NASA Rotor 67.  The first 

task in the process was to achieve a BLADE-3D fit to Rotor 67, which was performed 

much in the same manner as previously described for the Sanger rotor.  The only issue 

here was that the existing MERIDL file for Rotor 67 contained 14 section profiles to 

define the geometry, as opposed to the 11 which had been used for the Sanger rotor.  

Since BLADE-3D had been formulated using the Sanger design, the fitting logic 

involved dividing the Bezier surfaces into ten spanwise pieces based upon the 11 section 

profiles obtained from MERIDL.  Therefore, the MERIDL geometry for Rotor 67 was 

redefined using 11 spanwise sections, and this was done by interpolating selected 

portions of the data.  The BLADE-3D fit was then easily accomplished, and a Rotor 67 

baseline geometry achieved. 

The purpose of investigating a second rotor was to demonstrate the general 

applicability of the optimization method.  To further that end, a different objective 

function as well as different search techniques were used.  First, the objective function 

was chosen to be polytropic efficiency, and rather than shoot for an open-ended 

optimization result, at least in the initial control point variation, it was decided to see if a 

one percent improvement in efficiency could be achieved simply by varying the off-blade 

suction side control points in two dimensions.  This decision was partly driven by time 

and by the fact that it was desired to avoid the extreme thickness changes observed in the 

Sanger rotor optimization.  As mentioned, computing time is greatly increased as the 

number of design variables increases.  The scheme chosen for this part of the 

investigation resulted in an eight-variable problem, much smaller than the 32-variable 

case looked at for the Sanger rotor.  The reason for this reduction is that the objective 

function depends upon two parameters, total temperature and total pressure, which 

change in relative magnitude as the calculations inside RVC3D proceed toward 

convergence.  Because of this, the runs performed for the sensitivity analysis had to be 

carried all the way to convergence to determine the true nature of changes in polytropic 

efficiency.  A way had to be found to reduce the overall computation time, and this was 

done by reducing the number of variables. 
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The results for the Rotor 67 suction side control point optimization procedure are 

presented in Figure 29. 
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Figure 29.  Rotor  67 – Suction Side Control Point Optimization 

 

It can be seen that the desired one percent improvement in polytropic efficiency 

for Rotor 67 was easily achieved by the optimization scheme used.  Also, it should be 

noted that the efficiencies improved to a higher degree than either mass flow rate or total 

pressure ratio, a result quite different from that observed for the Sanger rotor.  This 

suggests that the optimization process can in fact be tailored to target improvements in 

selected performance parameters. 

Forward sweep was applied to Rotor 67 as well in order to see if the efficiency 

could be further improved.  It was decided to go ahead and use the larger increment 

method as described for the Sanger investigations and those increments are shown in 

Table 4. 
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 Increments 
Inner Row 4.55 
Middle Row 1 
Outer Row 2.14 

 

Table 4.  Rotor 67 Sweep Optimization Scheme 

 
 
The results of the sweep optimization process for Rotor 67 is shown in Figure 30. 
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Figure 30.  Rotor 67 – Optimization of Sweep 

 

 It can be seen first of all that the forward sweep process resulted in a much more 

dramatic shape change for Rotor 67 than it did for the Sanger rotor.  Not only were the 

sweep increments larger at the one-third span point as well as the tip, the process was 

able to attain a higher number of vector multiples.  The result was a blade which departs 

radically from the accepted paradigm in overall shape if not in thickness as observed 
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before.  The performance of this blade is reported as ‘New’ under the Rotor 67 portion of 

Section V.  As will be seen, it was not the end result of the process.  

 When the structural analysis was conducted on the Rotor 67 new design, it was 

found that the steady stress levels far exceeded the maximum for the chosen material, a  

high-strength titanium alloy typical of those used in bypass fans.  The stresses in the new 

blade were on the order of 210,000 psi where the material could tolerate only about 

120,000 psi.  The observed maximum stress occurred at the leading edge where it joined 

the hub and was essentially a stress concentration which could have most likely been 

relieved by filleting; but that was outside the scope of this effort.  It was decided to 

remove some (approximately  75%) of the sweep that had been applied in the earlier 

optimization process, and doing so achieved a design which met acceptable stress levels.  

This blade is what is referred to as the Rotor 67 final design and its details are reported in 

Section V. 

 The cold shape correction procedure was successfully applied to the final design 

to achieve the appropriate ‘predeflected’ geometry.         

 

H. OPTIMIZATION ALGORITHM 

A major intent of this study was to develop a methodology or algorithm for the 

automated design optimization of compressor blades.  The processes and procedures 

developed through the investigations outlined in this section have been put together in 

flow chart format to visualize how such an automated procedure would look.  That flow 

chart is presented in Figure 31.   

      For this procedure, one enters the upper left side of the chart with the baseline 

configuration expressed in BLADE-3D format.  A search direction is defined through 

sensitivity analysis, and then the determination of the search distance is performed by the 

loop on the lower left.  It can be seen that this loop contains features which check the 

thickness against some predefined minimum and then compares the value of the objective 

function with that from the previous run.  It also checks to make sure that the constraint 

functions are not violated (here there is one, there could be several).  Departure to the 
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right from this loop leads to the structural analysis and cold shape correction portions of 

the procedure.  The diamond on the far right is that point at which the decision is made 

whether to accept the current design iteration, or to proceed in a different search direction 

to try to get closer to the maximum or minimum of the objective function. 

                             

 

Figure 31.  The Optimization Algorithm 

 
 This algorithm provides the foundation for a fully automated design optimization 

method although actual implementation in the course of the present study required hands-

on manipulation.  Data had to be organized and formatted in order to move it from one 

program to another.  The procedure was performed however, with very little interference 

in terms of human decision-making in the design process itself, once objectives and 

constraints were determined.   From that perspective, the goal of the research was 
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achieved.  Considerably more programming work will be required to generate a real and 

wholly computerized capability. 

 The design improvements to the Sanger Rotor and Rotor 67 that resulted from the 

application of the algorithm are detailed in the next section.         
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V. RESULTS AND DISCUSSION 
 

 
A. THE SANGER ROTOR 

1. Overview 

The Sanger rotor design was optimized using the procedure described in Section 

IV.  An overall comparison of the baseline and optimized configurations  is presented in 

Table 5. 

 Baseline               New Design
    

            Mass Flow Rate 16.55 lbm/sec  17.88 lbm/sec 
Total Pressure Ratio 1.6  1.68 
Adiabatic Efficiency 0.936  0.945 
Polytropic Efficiency 0.94  0.949 
Design Speed 27,000 RPM  27,000 RPM
Tip Inlet Relative Mach Number 1.19  1.21 
Tip Forward Sweep 0%  12% 
Weight Factor 1  0.4 
Maximum Steady Stress* 31,100 psi  22,500 psi 

 

*  110% design speed 

Table 5.  Sanger Rotor Optimization Summary 

 
 

As the above data indicate, dramatic improvements in the overall performance of 

the Sanger rotor were achieved through the optimization process.  Mass flow rate, which 

was the objective function for the exercise, increased by 8.1%.  This improvement was 

most likely due to the two most prominent changes realized in the shape of the Sanger 

blade - substantial loss of thickness and the addition of forward sweep.  The combined 

effect of these changes is a rotor with increased pumping capacity due to changes in 

passage shape with accompanying changes in the turning of the flow.    
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In addition to the improved mass flow rate, more modest gains were achieved in 

total pressure ratio and efficiency.  The total pressure ratio across the rotor increased by 

5% while the adiabatic and polytropic efficiencies increased by 0.9% each.  The original 

goal for the optimization was to improve mass flow rate with no loss in rotor efficiency.  

The fact that efficiency as well as total pressure ratio improved along with the flow rate is 

a pleasant side benefit of the 3-D optimization process.  Further discussion of the likely 

mechanisms behind these improvements will come in a following section which deals 

with the flow field. 

As discussed above, the optimization process resulted in substantial decreases in 

metal thickness, particularly in the outermost regions of the blade span.  The loss of 

thickness led directly to a large reduction in the mass of the blade.  As can be seen above, 

the overall weight of the blade decreased by approximately 60%, a quite dramatic 

reduction and one that may in fact be impractical from an overall structural and 

manufacturing perspective.  The non-linear static structural analysis performed on the 

optimized blade showed that it could withstand the steady static stresses and deflections 

induced by the operating conditions of the exercise; but a more in-depth structural 

analysis, to include dynamic response, unsteady effects and fatigue, would undoubtedly 

uncover issues [See Appendix A].  Even so, the severe thinning of the blade and the 

accompanying reduction in weight is an interesting and beneficial trend.  The weight 

reduction led to a sizeable decrease in the centrifugal loading on the rotor at 110% design 

speed and, as shown in Table 2, there was a 28% decrease in the maximum steady stress; 

again, an interesting and highly desirable result. 

 

2. Performance 

A set of constant speedlines was constructed for the baseline and optimized 

Sanger rotors by performing CFD runs at various values of exit-static to inlet-total 

pressure ratio.  The design value of this parameter for the exercise was 1.19 and for the 

speedlines, the values were varied between 1.16 and 1.22.  The values for all other 

boundary and initial conditions remained constant (except for the Base 90% line where 

speed was changed).  From the results, plots of total pressure ratio vs. mass flow rate and 
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efficiency vs. mass flow rate were constructed, which aptly demonstrate the performance 

improvement attained thought the optimization process.  These plots are presented in 

Figures 32 and 33. 
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Figure 32. Sanger Rotor Performance 
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Figure 33.  Sanger Rotor Efficiency 
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The results in the two figures provide a yardstick by which to measure the effects 

of the Bezier fit and optimization methodology on all areas of the rotor’s performance.  

The data point representing the performance of the original Sanger rotor at the (exercise) 

design point is labeled ‘Sanger’ on both plots.  This can be compared with the 

performance of the baseline or BLADE-3D fitted geometry by noting the location of the 

corresponding point on the ‘Base 100%’ speedline.  It is seen that there is very good 

correlation between the performance of the original and fitted geometries, and that the 

fitted baseline was a good starting point for the subsequent optimization effort. 

The ‘Base 90%” speedline is plotted as a reference for the improvement achieved.  

It can be seen that at 100% speed, the mass flow rate is increased by an amount 

comparable to that which would be attained by operating the rotor at about 105% design 

speed.  The implication is that the redesigned rotor would be able to produce the intended 

design mass flow rate at a lower speed; thereby decreasing the work input required from 

the turbine.  For a given engine cycle requirement, an alternative benefit of the rotor 

redesign would be that it could provide the basis for a rotor design which would produce 

the same mass flow rate at the same drive-turbine speed but with a reduced annulus area.  

This would lead to a further reduction in blade mass, a decreased frontal area for the 

engine, and an overall decrease in weight and drag for the aircraft. 

A similar observation can be made for the total pressure ratio.  The design intent 

total pressure ratio could be achieved at a lower speed with the redesigned rotor or 

alternatively, a higher pressure ratio could be attained at the same speed, which, if this 

were the first stage in a multi-stage machine, could potentially lead to the requirement for 

fewer subsequent stages and an overall decrease in the weight, size and complexity of the 

compressor.  The combined benefits of the improvements in mass flow rate and total 

pressure ratio are substantial.  In a fan, this translates into an increase in available thrust 

as long as the low pressure turbine is capable of providing the required drive power. 

As stated before, the improvement in rotor efficiency, while not specifically an 

objective of the optimization exercise, is beneficial.  Improved compressor efficiency 

would reduce the required work input from the turbine and would result in some 

combination of decreased weight, potentially lower turbine inlet temperatures, less 

complexity, and lower fuel consumption and therefore, an overall enhancement in engine 
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economy.  The nearly 1% improvement in adiabatic efficiency between the baseline and 

optimized or new configurations is clearly shown in the plot.  Another interesting 

observation is that the application of BLADE-3D to approximate the original Sanger 

geometry in and of itself resulted in a small but definite improvement in rotor efficiency.  

This could be an illustration of the benefit of the Bezier geometry scheme in representing 

the 3-D blade as opposed to the MERIDL stack of relatively independent 2-D blade 

profiles.  A smoother, less wavy shape might result in slightly fewer losses over the blade 

span and an overall slight improvement in efficiency.  Abdelhamid found a similar result 

in his work on the Sanger rotor [Ref. 1]. 

 

3. Geometry 

 The overall impact of the geometry changes made during the optimization 

process have been presented and discussed.  Figures 34 through 37 provide a graphical 

display of those changes and a basis for further discussion of their effects. 
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Figure 34.  Sanger Rotor Geometry – Hub 
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Figure 35.  Sanger Rotor Geometry – 30% Span 
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Figure 36.  Sanger Rotor Geometry – 70% Span 
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Figure 37.  Sanger Rotor Geometry – Tip 

 

The first figure compares the two geometries at the hub and it can be seen that 

they are identical.  The bottom row of Bezier control points, which define the blade 

geometry, lie in the hub wall and were not moved in the optimization process.  This was 

therefore the expected result. 

At 30 percent span, a definite thinning of the blade is apparent as well as the 

forward sweep applied by moving the second row of control points.  A small 

displacement of the blade in the direction of the pressure side can be observed in addition 

to the forward sweep toward the leading edge.  This is due to the fact that the sweep 

programmed for this row of control points was an adapted version of the code used to 

sweep the tip in the original BLADE-3D, where the chord or stagger angle of the blade is 

much greater.  The tangential component of the sweep function resulted in some 

translation rather than pure sweep.  The effect here is minor but in future efforts, this 

feature of BLADE-3D should probably be modified. 

The blade grows even thinner at 70% span, with the thinnest region (outside the 

leading and trailing edges) being just aft of where the leading edge Bezier surfaces join 
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with the pressure and suction surfaces.  The blade is also displaced somewhat toward the 

suction side as a result of the cold shape correction procedure, which resulted in some 

tangential deflection from the original shape.  It is interesting to note that the new 

geometry begins to resemble a forward-swept version of the suction surface of the 

baseline blade.  This is probably due to the fact that the changes in the flow rate were 

much more sensitive to changes in the pressure side control points, and that movement of 

the suction side points were more likely to result in non-solutions.  The optimization 

scheme ended up making the most dramatic changes to the pressure side, while leaving 

suction side relatively unchanged in comparison. 

The geometry at the tip is a continuation of what is observed at 70%.  The blade is 

forward swept, very thin and more highly cambered than the original blade.  While the 

new geometry results in some very positive effects on the flow field, the extreme thinness 

must obviously be viewed with some skepticism, even though the blade passes muster 

when subjected to a steady static stress analysis.  A more detailed discussion of the stress 

analysis results will be presented later. 

Figures 38 through 43 are plots of chord angle, camber angle, and several 

thickness parameters as a function of spanwise location.  They supplement the blade 

profile illustrations in understanding the changes to the geometry that occurred during the 

optimization process. 
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Figure 38.  Sanger Rotor – Chord Angle 
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Figure 39.  Sanger Rotor – Camber Angle 
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Figure 40.  Sanger Rotor – Maximum Thickness Distribution 
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Figure 41.   Sanger Rotor – Maximum Thickness Location 
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Figure 42.   Sanger Rotor – Minimum Thickness Distribution 
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Figure 43.  Sanger Rotor – Minimum Thickness Location 

 

The chord angle of the rotor remained essentially unchanged during the 

optimization except for a slight decrease near the tip.  This is most likely due to the fact 

that the tip leading edge deflects the most under load and the optimized blade is actually a 

load-deflected shape determined through the cold shape correction process.  The camber 

angle curves are similar although the new blade shows more camber near the tip.  This is 

reflected in the profile illustrations, and is due to the pressure side of the blade moving 

toward the suction side as previously mentioned.  The tip region of the new blade 

conforms more closely to the suction side of the baseline blade and therefore is more 

highly cambered. 

The thickness plots display the region between where the leading and trailing 

edge surfaces join the remainder of the blade.  The maximum thickness distribution plot 

demonstrates the dramatic reduction in thickness produced by the optimization 

procedure.  It clearly shows the region in the outer third of blade where thickness was 

manipulated directly to prevent it from becoming negative.  The slight increase in 

thickness at the tip of the new blade is a function of tip control point movement having 

been eliminated from the optimization procedure at some point prior to completion of the 

process.  The location of maximum thickness in the new blade behaves similarly with 
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span to that of the baseline until the very thin outer region.  Maximum thickness in the 

thinnest portion of the blade occurs right where the leading edge surfaces join the 

remainder of the blade.  Since the shapes of these leading edge surfaces were not changed 

during the optimization, the region just aft of the leading edge actually gets thinner with 

chord and this creates a concave area in the forward portion of the blade.  Again, this may 

seem impractical from a structural perspective and certainly lies outside the accepted 

paradigm for the shape of turbomachinery blading, but the effects of this shape on the 

flow field are positive and interesting to consider.  These effects will be presented in the 

section dealing with the flow field. 

Minimum thickness behaves similarly in both the baseline and the new blades.  

The location of minimum thickness generally occurs where the trailing edge joins the 

large surfaces of the blade but in the outer region of the new blade, the location of 

minimum thickness changes.  In fact, maximum and minimum thickness in this region 

appear to occur concurrently and this is just another indicator as to the extreme thinness 

of the optimized blade. 

 

4. The Flow Field 

A number of flow field parameters were extracted directly or calculated from 

RVC3D output data.  These parameters were plotted vs. span for both the Sanger baseline 

and optimized or new blade designs and those plots are provided in Figures 44 through 

52. 
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Figure 44.  Sanger Rotor – Absolute Inlet Mach Number 
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Figure 45.  Sanger Rotor – Relative Inlet Mach Number 
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Figure 46.  Sanger Rotor – Total Pressure Ratio 
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Figure 47.  Sanger Rotor – Total Temperature Ratio 
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Figure 48.  Sanger Rotor – Adiabatic Efficiency 
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Figure 49.  Sanger Rotor – Absolute Exit Mach Number 
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Figure 50.  Sanger Rotor – Exit Relative Mach Number 
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Figure 51.  Sanger Rotor – Incidence Angle 
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Figure 52.  Sanger Rotor – Deviation Angle 

 

 It can be seen that inlet Mach number, both absolute and relative, are higher in the 

optimized blade than in the baseline and that the increases are fairly uniform with span.    

The Mach number plots for the optimized blade decrease more slowly in the outer case 

wall region perhaps due to more energized flow near the blade tip as a result of the 

forward sweep.  The increase in mass flow rate realized in the optimization is a result of, 

and correlates directly with, the increased Mach number at the inlet. 

 Total pressure ratio is also increased in the optimized blade, and the increase 

becomes greater moving outward from the hub.  The original Sanger design sought to 

achieve a constant total pressure ratio across the span, and the plot of total pressure ratio 

vs. span would indicate that such is true for the baseline blade as well.  The spanwise 

increase in the new blade seems to correlate with the presence of forward sweep and is 

especially pronounced in the outer case wall boundary layer region.  An explanation for 

this phenomenon would be that not only is the flow more energized in this region, there 
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are also fewer losses due to shock and boundary layer separation effects.  These 

phenomena may be observed in the flow field contours presented later.  Total temperature 

increases in a similar manner but not nearly as dramatically.  It indicates that more work 

is being performed on the flow by the optimized blade, which would be expected for a 

rotor with increased pumping capacity.   

 The total pressure and total temperature ratios described above combine to 

account for the increased adiabatic efficiency observed in the new blade design.  As 

mentioned, both quantities are increased over those seen for the baseline and that increase 

becomes greater with span.   The total pressure ratio increase is far greater near the tip 

and explains why almost all the increase shown on the efficiency plot occurs in that 

region. 

 Absolute Mach number is increased at the exit as was expected for the higher 

mass flow rate achieved in the optimization process.  Exit relative Mach number is nearly 

unchanged, and is in fact lower in the middle of the blade than for the baseline.  This 

correlates well with the finding that deviation angle is lower over the majority of the 

span, as illustrated in the deviation angle plot.  Lower deviation angles translate to lower 

tangential velocity components which, depending upon local sonic velocity at the exit, 

could lead to lower relative Mach numbers.   

 The plot of incidence angle vs. span shows that it too is decreased in the new 

blade.  This decreased incidence angle indicates that the blade design is better suited to 

the conditions of the flow, and leads to fewer losses, as will be seen in the following 

contour images of the flow field.  Figure 53 is a depiction of Mach number contours just 

above the suction surface of the baseline blade on the left, and of the optimized blade on 

the right.  It provides an overall comparison of the flow fields around each blade as well 

as a good perspective view of the blades themselves.  The differences in shape between 

the two -  most specifically, the differences created by the introduction of the forward 

sweep, show clearly.  The contour lines shown are for the K surface five grid lines away 

from the surface of the blade; that is, just outside the boundary layer. 
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      Baseline               Optimized 

 

Figure 53.  Sanger Rotor – Geometry and Mach Number Distribution 

 
 The contour lines are very similar at first glance, but there are subtle differences 

which help to explain the improved performance of the optimized blade.  First, the peak 

Mach number for the optimized blade is lower than that for the baseline.  Since the 

contour colors are almost identical between the two images, a lower peak Mach number 

would indicate the overall flow is slightly slower over the new blade, thereby creating 

weaker shocks and fewer shock losses in the supersonic region.  Close examination of the 

shock area near the tip of the new blade shows that the contour lines around the shock are 

in fact spread over a larger distance, thus supporting the notion of a weaker shock 

structure.  Also of note is the trailing edge region.  The dark blue colors indicate areas of 

very low Mach number associated with flow separation in the boundary layer.  These 

areas are considerably larger and more pronounced on the baseline blade.  They extend 

over the entire span whereas there are places on the trailing edge of the new blade where 

they are not visible at all.  There is also a region of such flow along the tip.  Again, this 

area is larger for the baseline blade than for the new blade.  Weaker shocks and fewer 

friction losses in the tip region are the primary reasons for the higher total pressure ratio 

and improved efficiency achieved in the optimization. 
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 Figures 54 through 58 are blade-to-blade views of the flow contours at various 

spanwise locations for both blades with the baseline blade on the left. 

 

         Baseline              Optimized 

 

Figure 54.  Sanger Rotor – Mach Contours near the Hub 

 

 

 

Figure 55.  Sanger Rotor – Mach Contours at 30% Span 
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    Baseline                Optimized 

 

Figure 56.  Sanger Rotor – Mach Contours at Midspan 

 

Figure 57.  Sanger Rotor – Mach Contours at 70% Span 

 

Figure 58.  Sanger Rotor – Mach Contours near the Tip 
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 Comparison of these contour images again reveals the extreme relative thinness of 

the optimized blade.  These pictures support the ideas put forward in the previous 

discussion concerning weaker shocks and less flow separation near the trailing edge.  In 

those showing the flow at 70% span and near the tip, it can be seen that the leading edge 

shock stands considerably closer to the optimized blade than to the baseline, an indication 

that it is a weaker shock.  Also, in the area where the bow shock hits the preceding blade, 

the contour lines are farther apart on the optimized blade; the shock area is smeared out 

and this too demonstrates that it is weaker.  The dark blue areas on the trailing edge 

suction surfaces where flow separation occurs are easily seen to be larger for the baseline 

blade except near the hub where the geometries are nearly identical.   

 In general, the images of the flow field along with the graphical data previously 

presented aptly demonstrate properties and details of the flow which account for the 

performance improvements observed for the optimized design.  

 

5. Structural Comparison 

Finite element structural analyses were performed on the both the baseline and 

optimized blades in accordance with the procedures outlined in Section IV.  Figures 59 

and  60  present the results of that analysis. 
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Figure 59.  Sanger Rotor – Structural Analysis, Baseline Blade 

 

Figure 60.   Structural Analysis, Optimized Blade 
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The finite element analysis for the optimized blade shows that stress levels are 

much lower and more evenly distributed through the blade structure.  For the material 

utilized, a 7075-aluminum alloy, the maximum allowable stress was 55,000 psi and it is 

seen that both blades fall well below that value.  The primary reason for the dramatic 

decrease in stress for the new blade is the lower centrifugal loads caused by the thinning 

of the blade and the resulting decreased weight.  Gas loads for the optimized blade were 

slightly higher than for the baseline due to the increased mass flow rate.  The difference 

was approximately 2 pounds  - 13 pounds total vs. 11 - but the effect was small since the 

gas loads are an order of magnitude lower than the centrifugal loads.  Generally, forward 

sweep causes the stresses at the leading edge of the hub to increase substantially, and it 

can be seen that the highest stress in the new blade does occur in that region; but the 

effect is offset by the overall effect of the lower centrifugal loads. 

As would be expected with a much thinner blade, the maximum deflection for the 

optimized blade is on the order of four times that of the baseline.  It occurs in the region 

of the leading edge at the tip.  It was this large deflection that first made it apparent that a 

cold shape correction procedure would be required for the results of the aerodynamic 

optimization to remain valid.  The cold shape correction was developed and applied to 

the blade as described in Section IV. 

 

B. ROTOR 67 

1. Overview 

NASA Rotor 67 was optimized in accordance with the procedure described in 

Section IV.  An overall comparison of the baseline and final design configurations are 

presented in Table 6.  
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     Baseline  
 
            Final  Design 

    
Mass Flow Rate 73.80 lbm/sec  75.58 lbm/sec
Total Pressure Ratio 1.56  1.6 
Adiabatic Efficiency 0.895  0.914 
Polytropic Efficiency 0.902  0.92 
Design Speed 16,043 RPM  16.043 RPM 
Tip Inlet Relative Mach Number 1.37  1.38 
Tip Forward Sweep 0%  9% 
Weight Factor 1  0.96 
Maximum Steady Stress* 115,000 psi  132,000 psi 

 

• 110% design speed 

Table 6.  Rotor 67 Optimization Summary 

 
 From Table 6, it can be seen that the goal of increasing the polytropic efficiency 

at the design point by at least one percent was easily achieved in that the efficiency of 

the final design is nearly two percent higher than the baseline.  Adiabatic efficiency 

improved by a similar amount.  In addition, mass flow rate and total pressure ratio 

increased by approximately 2.5%, less than the improvement observed for the Sanger 

rotor since neither of these were the objective function for this exercise.  The amount of 

sweep at the tip for the Rotor 67 final design is only 9% as compared to that for the 

Sanger rotor but it should be noted that the sweep at one third span is much higher, 

about 19% as compared to 10%.  This shape difference results again from the different 

objective function.  The Rotor 67 geometry changes will be discussed in detail later. 

 There is much less of a weight change for the Rotor 67 effort and that results 

directly from the fact that blade thickness was not allowed to vary as dramatically and 

the blade retained something close to the baseline thickness.  The maximum stress 

increased in the final design due to the effect of forward sweep on the hub leading 

edge.  This will be shown in the section on structural analysis. 
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 The results help illustrate several positive aspects of the geometry package as well 

as the optimization process which it facilitates.  First, the fact that BLADE-3D 

produced a good fit to Rotor 67 proves that it has application across a range of blade 

designs.  Rotor 67 is a much larger blade with a higher aspect ratio and considerably 

more camber in the hub region.  It can be inferred that BLADE-3D would have little or 

no trouble fitting a generic preliminary design as part of an automated design 

procedure. 

 Secondly, targeted performance improvements were achieved through the 

optimization process and the relative increases in the various performance parameters 

were quite different than those observed for the Sanger rotor.  This shows that the 

concept of changing the position of Bezier control points to achieve improvements in      

3-D blade performance parameters is valid and viable. 

 

2. Performance 

Constant speedlines which illustrate the performance improvements obtained for 

Rotor 67, are shown in Figures 61 and 62. 
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Figure 61.  Rotor 67 Performance 
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Figure 62.  Rotor 67 Efficiency 

 
From the plots, it is easy to see the major difference between the optimization 

process for Rotor 67 and that for the Sanger rotor.  For the Sanger rotor, the structural 

analysis actually produced a better performing blade than that achieved during the basic 

procedure.  Here, it was required to back off the design resulting from the aerodynamic 

optimization in order to meet structural constraints.  That is shown on Figure 71 as a sort 

of backtrack of the design point line from the “new” to the “final” design.   

Once again, the point at which the original geometry was fitted by BLADE-3D is 

shown and again, it can be seen that it lies on or very close to the lines for the baseline 

100% performance on both plots.  Like the Sanger rotor effort, it was decided to choose a 

point on the speedline away from stall in order to facilitate convergence of the flow code.  

In this case, it appears that the point chosen was perhaps a little too far away in that it lies 

a considerable distance from the peak of the efficiency curve shown in Figure 62.  Since 

efficiency was the objective function, it would have made sense to conduct the 

optimization near peak efficiency, although efficiency improvements for the final design 
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were realized over the entire range of values plotted, and in particular at the chosen 

design point.   This, however, qualifies as a lesson learned for future investigations. 

The impact of the performance improvements seen here would be similar to those 

discussed for the Sanger rotor – smaller size, less complexity, better fuel efficiency, etc. 

 

3. Geometry 

The geometry changes for Rotor 67 resulting from the optimization process are 

presented in Figures 63 through 66.  Geometries for the baseline, the blade achieved 

through the aerodynamic design process (new), and the final design are all shown for 

comparison. 
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    Figure 63.  Rotor 67 Geometry – Hub 
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Figure 64.  Rotor 67 Geometry – 30% Span 
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Figure 65.  Rotor 67 Geometry – 70% Span 
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 Figure 66.  Rotor 67 Geometry – Tip 

 
There are several aspects of the geometry changes that should be noted.  The most 

obvious one as compared to the results for the Sanger rotor is that the thickness for all 

three geometries are very similar, thus showing that the design goal of avoiding thickness 

loss was achieved.  Secondly, the phenomenon observed for the Sanger rotor where 

sweep for the innermost row of control points (not the hub) resulted in tangential 

translation as well as pure sweep, is repeated here but to an even higher degree 

particularly in the new blade.  This is because the amount of sweep applied to the inner 

row was about twice as high as was explained in the overview.  Finally, it can be seen 

that forward sweep evident in the final blade is much less than that for the new blade and 

shows the result of removing sweep for structural considerations.   

Figures 67 through 71 are the accompanying plots of various geometric 

parameters. 
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Figure 67.  Rotor 67 – Chord Angle 
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Figure 68.  Rotor 67 – Camber Angle 
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Figure 69.  Rotor 67 – Maximum Thickness Distribution 
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       Figure 70.  Rotor 67 – Maximum Thickness Location 
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Figure 71.  Rotor 67 – Minimum Thickness Distribution 

 
In general, the plots show that none of the geometric parameters shown were 

changed substantially by the optimization process.  Values and trends of each one remain 

consistent.  There are a couple of points that should be made.  First, camber angle 

changes less rapidly in the new blade (and slightly less so in the final blade) as a function 

of span than it does in the baseline.  This creates an interesting result in the nature of the 

flow field, which will be discussed shortly.  Also, the location of maximum thickness is 

generally farther aft in the new and final blades, a result of the relative movement of the 

suction side control points to achieve the desired one percent improvement in efficiency.  

A plot of minimum thickness location is not provided since it was consistent in all three 

blades at 99% chord. 

 

4. The Flow Field 

As for the Sanger rotor, flow field properties for Rotor 67 are presented in Figures 

72 through 80.  Again, baseline, new and final designs are shown for comparison. 
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 Figure 72.  Rotor 67 – Absolute Inlet Mach Number 
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Figure 73.  Rotor 67 – Relative Inlet Mach Number 
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Figure 74.  Rotor 67 – Total Pressure Ratio 
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Figure 75.  Rotor 67 – Total Temperature Ratio 
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Figure 76.  Rotor 67 – Adiabatic Efficiency 
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Figure 77.  Rotor 67 – Absolute Exit Mach Number 
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Figure 78.  Rotor 67 – Exit Relative Mach Number 
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Figure 79.  Rotor 67 – Incidence Angle 
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Figure 80.  Rotor 67 – Deviation Angle 

 
The changes in the flow field parameters for Rotor 67 were very similar to those 

observed for the Sanger rotor.  Absolute inlet Mach number increased along with mass 

flow rate, total pressure ratio increased to a higher degree than did total temperature ratio 

with the accompanying effect on efficiency.  As with the Sanger, incidence and deviation 

angles decreased with the associated positive effects on the flow field.  One particular 

area should be noted.  In almost all of these flow field parameter charts, substantial 

improvements in the values can be observed in both redesigned blades in the hub region.  

The reason for this is that the baseline Rotor 67 design is very highly cambered at the hub 

and the camber changes rapidly with span in the inner one third of the blade.  This leads 

to an area of separated flow and high losses in the hub case wall region which can easily 

be seen in Figure 81, Mach contour maps which compare the flow over the baseline blade 

to that over the new aerodynamically redesigned blade. 
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        Baseline               New 

 

Figure 81.  Rotor 67 – New vs. Baseline, Geometry and Mach Number Distribution 

 

The first obvious feature of the new blade is the dramatic change in shape caused 

by the application of the forward sweep scheme indicated by the optimization process.  

The large amount of sweep can be seen at the one third span point on the blade along 

with the tangential translation previously described.  The sweep at the tip is much more 

noticeable here than it was on the Sanger rotor, because it is larger and because it changes 

less gradually over the span.  In any case, the huge region of separated flow near the 

inner case wall of the baseline blade is easily seen in this view, along with the fact that it 

is largely absent in the new blade.  As mentioned, the camber of the new blade changes 

more gradually with span, and the translation effect contributes as well.  While there are 

still regions of very low speed flow near the trailing edge of the new blade, and even 

some near the leading edge at the hub, the effects are not as significant as those observed 

for the separated region in the baseline.  It is interesting to note the resemblance of this 

new blade to a commercial fan blade introduced by Rolls Royce in 1998.  Although the 

Rolls Royce blade is actually swept aft, the similarity in the contour of the leading edge is 

striking.  This blade is pictured in Figure 82. 
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Figure 82.  Rolls Royce Commercial Fan Blade (From Ref. 4) 

 
Further comparison of the flow field between the baseline Rotor 67 geometry and 

the new blade are contained in Figures 83 through 87. 

            Baseline                New 

 

Figure 83.  Rotor 67 – New vs. Baseline, Mach Contours near the Hub 
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        Baseline                New 

 
 

Figure 84.  Rotor 67 – New vs. Baseline, Mach Contours at 30% Span 

 

 
 

Figure 85.  Rotor 67 – New vs. Baseline, Mach Contours at Midspan 

 
Figure 86.  Rotor 67 – New vs. Baseline, Mach Contours at 70% Span 
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  Baseline     New 

 
 

Figure 87.  Rotor 67 – New vs. Baseline, Mach Contours near the Tip 

 
In addition to the large wake near the hub, other flow features which  contribute to 

improved performance in the new blade can be observed.  First, the overall Mach number 

is lower which, as with the Sanger rotor, implies a weaker shock structure.  Secondly, the 

passage shock develops more slowly with span in the new blade, and can be seen to be 

weaker near the tip, where the contour lines are farther apart than in the baseline blade.  

Finally, the incidence angle near the tip appears to be smaller and it looks like the flow is 

smoother and more aligned, which would lead to fewer losses in the boundary layer.  A 

contour map of the final design as compared to the baseline blade is shown in Figure 88. 

        Baseline              Final 

 

Figure 88.  Rotor 67 – Final vs. Baseline, Geometry and Mach Number Distribution 
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While it is clear that the final design retains some of the forward sweep applied to 

the new blade, it is obviously far less dramatic, and the overall flow field more closely 

resembles that of the baseline blade as was indicated by the previous examination of the 

performance parameters.  The overall Mach number is lower, but the region of separated 

flow is again present at the hub although not to the degree observed for the baseline 

blade.  As with the new blade, the passage shock appears to develop slower with span and 

is considerably weaker in the tip region.  The regions of low speed flow near the trailing 

edges appear similar in both blades, with the exception of the hub region; although in the 

baseline blade,  it appears to extend a little farther toward the tip thereby contributing to 

slightly higher viscous losses.  Figures 89 though 93 complete the picture of the final 

design flow field. 

   Baseline             Final 

 
Figure 89.  Rotor 67 – Final vs. Baseline, Mach Contours near the Hub 

 
Figure 90.  Rotor 67 – Final vs. Baseline, Mach Contours at 30% Span 
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Baseline             Final 

 
Figure 91.  Rotor 67 – Final vs. Baseline, Mach Contours at Midspan 

 
Figure 92.  Rotor 67 – Final vs. Baseline, Mach Contours at 70% Span 

 

 
Figure 93.  Rotor 67 – Final vs. Baseline, Mach Contours near the Tip 
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5. Structural Comparison 

a. Finite Element Analysis 

Finite element analyses were performed for the Rotor 67 baseline, new 

and final configurations in accordance with the procedures discussed in Section IV.  As 

previously mentioned, the steady stresses in the new blade were found to be far too high 

and therefore the design was rejected out of hand.  The final design was arrived at by 

removing the majority of forward sweep from the new blade as discussed.  The results of 

the structural analysis for the baseline and final designs are presented in Figures 94 and 

95. 

 
Figure 94.  Rotor 67 – Structural Analysis, Baseline Blade 
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Figure 95.  Rotor 67, Structural Analysis, Final Blade 

 
Although the peak stress in the final design is higher than the allowable 120,000 

psi, it can be seen that there is just a very small area in the leading edge hub region where 

this stress occurs.  In almost all other areas of the blade, the stress levels are no higher 

than 100,000 psi which is well below the limit.  It is believed that this high stress region 

can be treated as a stress concentration and is correctible with a slight redesign of the 

hub-blade interface at the leading edge.  The maximum deflections are similar in both 

blades and are larger than what was observed in the Sanger rotor.  This is to be expected 

since the Rotor 67 blades are heavier, with a much higher aspect ratio and therefore a 

considerably larger bending moment than the Sanger blades. 

 

b. Cold Shape Correction 

A cold shape correction procedure was performed on the Rotor 67 final 

design in order to find the ‘predeflected’ shape that would produce the aerodynamic 

design intent when loaded.  The result is illustrated in Figure 96. 
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Figure 96.  Rotor 67 - Cold Shape Correction 

 
The image on the left shows the aerodynamic design in red and the predeflected 

cold shape (finite element model) in green.  The image on the right shows the two 

superimposed after the finite element model has been placed under the appropriate load.  

The mottled red-green effect is evidence that the two shapes coincide in the second 

image.  A history of the iterative process required to achieve the proper cold shape is 

presented in Figure 97.  The vertical axis measures the deflection beyond the desired 

shape during each iteration. 
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Figure 97.  Rotor 67 - Cold Shape Correction History 
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VI. CONCLUSIONS 
 

 

The purpose of this study was to evaluate the potential of the BLADE-3D Bezier 

geometry package in helping to facilitate the development of an automated design 

optimization process for turbomachinery blades.  The work was performed on axial 

transonic fan blades specifically and involved adapting traditional optimization 

techniques into a methodology or algorithm which took advantage of the compact blade 

geometry representation to produce true 3-D shape changes, and then evaluated the 

performance using high-level CFD software and finite element structural analysis.  The 

author more or less blindly followed the procedure where it led thereby exercising little 

human judgment in the design decisions normally required in turbomachinery design.  

This was considered important to the concept of fully automated computerized design.   

It is recognized that use of BLADE-3D in the traditional design procedure might 

limit a designer’s ability to make small geometry changes in targeted areas, thereby 

effectively limiting the design space.  This is certainly a limitation of the Bezier geometry 

representation, but one that is offset by its advantages to the optimization and 

manufacturing processes.  The Bezier representation produces geometries that are 

inherently smoother than those produced by manipulating individual section profiles thus 

making them easier to machine.  An additional advantage is that since less data is 

required to fully represent the blade, input files for manufacturing control programs can 

be smaller and less prone to error.  

Although an effective optimization procedure for compressor blades was 

demonstrated, it is acknowledged that compressors are not designed in a vacuum.  The 

compressor is simply one among several major engine components that must work 

together to accomplish the overall engine design goal.  It may be that optimizing a fan or 

compressor using the methodology developed here would not necessarily produce the 

best design for a given application.  That should not necessarily diminish the value of the 

procedure.  It does represent a useful tool that a designer may put in his toolkit to use as 

appropriate.   
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It is believed that the research was successful in achieving its goal.  The blade 

designs produced herein meet design requirements within the scope of the exercise.  

While the practicality of the product blades themselves may be questioned further, 

particularly in the areas of dynamics response and aeroelasticity, the more important 

point is that the methodology used to design them is viable; it appears to hold promise for 

incorporation into current design sequences, especially in the final design phase where 

improving the performance of a preexisting preliminary design is the goal.  With more 

work, particularly in the area of programming, the algorithm presented here could be 

developed into a complete and automated software package which could take initial blade 

configurations and transform them into useful final designs with highly tailored 

performance objectives             

A longer range goal of future work would be to adapt the algorithm to include a 

method to initiate a design.  This might mean adapting a Crouse-like capability as an 

upfront module to the process perhaps using only three axisymmetric streamtubes to 

produce the four spanwise elements needed to define the initial Bezier geometry. 
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VII. RECOMMENDATIONS 
 

 

Abdelhamid made a series of recommendations at the conclusion of Reference 1, 

two of which were addressed by this work.  First of all, it was recommended that a 

method of calculating traditional design parameters, in conjunction with the use of the 

Bezier geometry package, be developed and that was done to a partial extent here.  

Secondly, he recommended that the utility of the package in a design optimization 

process, to include aerodynamic and structural considerations, be investigated; and again 

that was accomplished herein.  His other recommendations were: 

1. That a 3-D grid generator which is fully compatible with the Bezier representation 

be created.  Do not necessarily concur.  The MERIDL-like output of BLADE-3D 

is quite compatible with TCGRID and other similar grid generation programs.  It 

appears that using those tools in conjunction with BLADE-3D poses no threat to 

its capability. 

2. That a technique to start a new blade design using BLADE-3D be developed.  

Concur.   

3. That a graphical user interface be developed to make the geometry package easier 

to use.  Definitely concur.  As discussed in Section III, learning and using the 

package in its current C++ format, particularly with no documentation, was a 

tedious and time-consuming process.  A menu-driven, Windows-based 

implementation would be especially useful and facilitate future interface with 

other software programs. 

In addition, the following recommendations are made: 

4. That further work be performed in the area of structural analysis to incorporate 

dynamic response, aeroelastic effects and fatigue analysis into the optimization 

process.   

5. That an effort be made to streamline the procedures associated with transferring 

information between the various software resources utilized in the process up to 
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and including an overarching computer program to achieve a fully automated 

capability. 

6. That the next extension of this work be to attempt to design a blade from scratch 

utilizing this optimization process in the final design stage.  The intent of the 

exercise should be to achieve a practical design which could then be built and 

tested in the lab as further validation of the algorithm and any future 

enhancements.             
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APPENDIX A.  MODAL ANALYSIS AND FLUTTER 
 

 
A brief dynamic modal analysis was performed for the blade designs obtained in 

order to make an initial assessment of the potential for vibration and flutter.  The first ten 

dynamic modes were calculated in I-DEAS for the baseline and new/final designs for 

both rotors and the results are shown in Table 7. 

    Frequency (Hz) 

    Sanger Rotor    Rotor 67 
  Normal Mode    Baseline       New    Baseline    Final 

 1       768.0       353.9       285.9    275.5 

 2      2780.5     1155.7       777.2    707.3 

 3      2932.2     1567.9      1323.5  1289.5 

 4      5242.2     2097.2      1797.7  1680.0 

 5      5577.4     2564.4      2120.6  1977.8 

 6      6603.4     2788.3      2477.2  2283.9 

 7      7876.2     3475.2      2865.3  2797.1 

 8      9210.8     4084.8      3486.1  3102.7 

 9      9754.7     4407.0      3724.5  3356.9  

10     10211.8     4601.7      3831.5  3608.7 

 

Table 7.  Normal Modes and Frequencies 

 

Frequency vs. mode plots were generated for each blade and linear extrapolations 

performed to obtain approximate values for the higher modes.  Since the stator for the 

Sanger stage contains 27 blades, it was decided that modal excitations could occur, at a 

minimum, in the regions of 1EO and 27 EO for the Sanger design and those were 

examined specifically.  The same was done for Rotor 67 and the results for both are 

shown in Figures 98 through 101.  The first engine order plots depict frequency vs. mode 

number for clarity while the 27th engine order plots are traditional Campbell diagrams.      
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Figure 98.  Sanger Rotor - First Engine Order 
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Figure 99.  Sanger Rotor - 27th Engine Order 
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Figure 100.  Rotor 67 – First Engine Order 
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Figure 101.  Rotor 67 – 27th Engine Order 

 
 The modal analysis shows that in both designs, the frequencies associated 

with a given structural mode are reduced.  For the Sanger rotor, the reduction for each 

mode was greater than 50% which leads to a problem in the first engine order.  It can be 

seen that the first structural mode for the new Sanger design falls at about the 80% speed 

point which indicates that the new design has a potential for partial-speed vibration which 

might be excited by rotor imbalance or upstream flow disturbances.  Such increased 

potential for vibration at the lower structural modes seems intuitive for a very thin blade 

design.  The final Rotor 67 frequencies, while slightly lower than the baseline, create no 

such problems in the first engine order.  The redesign of both rotors might be expected to 

behave better in the 27th engine order since given frequencies correspond to higher 

structural modes which are normally more difficult to excite.  The difference is much 

more pronounced in the Sanger design than in Rotor 67. 

Aeroelastic characteristics of fan and compressor blades are much more difficult 

to analyze and predict.  A great deal of research has been devoted to more fully 

understanding the nature of unsteady flow in turbomachines and trying to predict the 

effects of various design features on the susceptibility to flutter [Ref. 43].  Figure 109 

shows different types of flutter and the operating regions where they might be expected to 

occur in an axial compressor. 
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Figure 102.  Flutter Boundaries in an Axial Compressor (From Ref. 43) 

 
For the operating regime examined during this study, it appears that the resulting 

designs would be most susceptible to flutter associated with regions III and IV - 

supersonic flutter near the 100% speed line.  The prominent design features in the 

optimized blades, thinness and forward sweep, might be expected to have an effect.  It is 

intuitive that thinner blades would most likely be more susceptible to flutter given their 

increased deflection under load and lower modal response frequencies.  It is less 

appropriate and more difficult to speculate on the effect of forward sweep alone.  While 

forward sweep has been demonstrated to have a detrimental effect on flutter 

characteristics in external flows, a similar effect has not been shown for fan and 

compressor blades.  There is currently no methodology to predict susceptibility to flutter 

based simply upon the sweep of the blades.  Flutter measurements have been performed 

on forward swept blades and compared with results produced by CFD [Ref. 44].  The 

work validated the use of CFD as a tool to predict flutter although no conclusion was 

drawn as to the contribution of the forward sweep to the flutter mechanisms examined.   

 Reference 44 demonstrates the idea that structural damping in flutter 

regions is tied to the location of the passage shock on the blade surfaces.  Having the 

shock near the midchord on the pressure surface is stabilizing while having the shock  
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near the midchord on the suction surface is destabilizing.  It would appear that design 

changes that cause the passage shock to move forward result in lighter damping and 

therefore increased susceptibility to flutter.  Examination of Figures 92 and 93 show that 

for the final Rotor 67 design, the passage shock, while weaker, does in fact move forward 

slightly at 70% and near the tip.  This would indicate that the final Rotor 67 design might 

be more susceptible to flutter but whether it is due primarily to forward sweep needs 

further study. 
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APPENDIX B.  CALCULATION OF BASIC PARAMETERS 
 

 
1. Pressure Ratio, Mass Flow Rate and Efficiency 

Total pressure ratio, mass flow rate and efficiency are calculated directly from 

data produced by RVC3D (Appendix F).  The output file provides tables of numerous 

flow properties at both the inlet and exit planes of the computational grid, and in both the 

absolute and relative frames of reference.  Values are provided at the individual grid lines 

which define the blade span and as average values across the span.  The values in the 

table are those resulting from circumferential averaging of the flow properties and 

provide an axisymmetric picture of the flow field. 

Values for average absolute total pressure vs. reference total pressure at both the 

inlet and exit planes are obtained from the output.  These were used to calculate the total 

pressure ratio across the rotor.  Total temperature ratio was determined in a similar 

manner.  From these, adiabatic efficiency, η, was calculated using the following 

relationship:  
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1
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                      (1)             

where π is total pressure ratio, τ is total temperature ratio and γ = 1.4 for air.  For a given 

π, the corresponding total temperature ratio is defined as: 
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=                                                          (2) 

where e is the polytropic efficiency which relates a differential enthalpy change with 

pressure to that of the ideal process.  If total pressure ratio and total temperature ratio are 

known, polytropic efficiency may be calculated with Equation (2). 

Mass flow rate at the inlet can be expressed as:  

          AVm ρ=                   (3)       
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where ρ is the local air density, A is the cross-sectional area of the flow passage and V is 

the uniform axial flow velocity.  A more useful expression for understanding compressor 

performance is: 
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where Pt, Tt, A, and M are inlet values of total pressure, total temperature, annulus area 

and flow Mach number respectively.  Mass flow rate was computed from Equation (4) 

using the average absolute inlet Mach number obtained from the RVC3D output.  Since 

reference total temperature and pressure as well as inlet annulus area are constant, the 

inlet absolute Mach number is a direct indication of the variation in mass flow rate with 

changes in the blade geometry. 

 

3. Chord Angle, Camber Angle, Incidence and Deviation Angles 

Figure 103 is a depiction of blade chord angle (ζ), which was calculated from the 

MERIDL representation of the blade geometry.  It was determined simply by 

constructing a straight line from the very first MERIDL point describing a blade section 

profile to the midpoint in that data set, the first point being the trailing edge and the 

midpoint representing the leading edge in MERIDL.  The angle between that line and a 

line defining the axial direction of the flow was determined from the coordinates of the 

endpoints. 

 

Figure 103.  Chord Angle (ζ) 
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Camber angle is illustrated in Figure 104 and was calculated in the following 

manner.  The first few MERIDL points immediately aft of the leading edge on both the 

pressure and suction surfaces of the blade are essentially linear.  Straight lines were 

constructed through both sets of points and then the angle between each of these lines and 

the axial direction was determined in the same manner described for finding the chord 

angle.  The camber-line-to-chord angle (ϕle) is found by taking the average of these two 

angles and then subtracting the chord angle.  A similar procedure was performed at the 

trailing edge to determine ϕte.  The sum of these two angles for the leading and trailing 

edge gave the camber angle (ϕ). 

 

Figure 104.  Camber Angle (ϕ) 

 

Incidence (i) and deviation (δ) angles, as shown in Figure 105, were determined 

using chord angle, camber angle, and data from the RVC3D output file.  The output file 

provides flow angle to the axial at both the inlet (β1) and exit (β2) planes.  The incidence 

and deviation angles were calculated using the following relationships: 

                     lei ϕζβ −−= 1                                                 (5) 
 

                                 teϕζβδ +−= 2                                          (6) 
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The sign of the incidence angle is similar to that of angle-of-attack in external 

flows – positive if the flow is from below the leading edge and negative if from above.  

The sign of the deviation angle is positive if the flow departs upward (suctionward) from 

the trailing edge and negative otherwise. 

 

 
Figure 105.  Incidence (i) and Deviation (δ) Angles 

 
 
3.  Blade Thickness 

Blade thickness calculations were made in a relatively coarse manner since no 

precise constraints were placed on thickness other than the requirement that it could not 

be negative.  The process is illustrated in Figures 106 and 107.  A good approximation to 

the actual thickness was computed by first finding the midpoint between a MERIDL 

pressure surface point and that of its geometric counterpart on the suction surface.  That 

is, if the blade section profile was composed of 50 points, then point 1 would be 

subtracted from point 50, point 2 from point 49, and so on.  Once the midpoint was 

determined, the closest point on each blade surface was found by way of a sorting 

procedure.  The distance between these two points was then calculated thereby producing 

a reasonably close estimate of the thickness.  The higher the number of points used to 

define the blade section, the more accurate is the procedure.  For this study, 147 surface 

points were used to describe the blade sections in MERIDL format, with 60 points each 

on the Bezier pressure and suction surfaces.  This provided a reasonably good level of 
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fidelity in calculating blade thickness.  Locations of minimum and maximum thicknesses 

(d) as a percentage of chord were determined by taking the midpoint defined above for 

both the minimum and maximum thicknesses, calculating the distances from the leading 

edge and then taking the cosine along the blade chord.   

 

Figure 106.  Calculation of Blade Thickness 

 
 

    
 

Figure 107.  Location of Maximum or Minimum Thickness (d) 

 
As stated, the only constraint applied to blade thickness in the present study was 

that it not be negative.  I-DEAS provided a double check on this constraint in that 

negative thickness could be easily seen when viewing the blade in the solid modeling 
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phase of the structural analysis.  Of equal utility was the fact that if the blade did not have 

positive thickness everywhere, then the meshing routine simply would not work, and 

continuation of the finite element modeling procedure was impossible. 

A FORTRAN routine, BPARAM, was developed to calculate the design 

parameters outlined in this section and may be found in Appendix G. 
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APPENDIX C.  OPTIMIZATION THEORY AND TECHNIQUE 
 

 
The concept of design optimization involves improving the performance of a system 

by attempting to maximize or minimize the value of some objective function which is 

dependent, most often, on the values of multiple design variables [Ref. 45].  For example, it 

may be desired to maximize the amount of lift generated by a particular wing design where 

lift is influenced by the size of the wing, its camber, the size and shape of lift enhancing 

devices along the leading and trailing edges, and many other parameters.  Increasing the size 

of the wing also increases the drag which results in the requirement for more thrust and a 

bigger, heavier engine.  The lift increase achieved by making the wing larger is offset by the 

weight increase of the wing itself and also by that of the larger engine.  The goal of design 

optimization is to find the right combination of such design variables to achieve the best 

possible result for the objective function. 

Optimization problems come in various shapes and sizes.  The given objective may 

be a function of only one variable, or of very many.  The problem may not be subject to 

constraints in which case the optimization process would proceed to a true maximum or 

minimum of the objective function.  Most design problems are multivariable problems that 

are constrained by the values of other functions besides the objective.  In our example above, 

the overall weight of the aircraft design is most likely fixed; therefore changes to the size of 

the wing which result in exceeding this maximum weight would not be allowed.  In such 

optimization problems, the actual maximum or minimum of the objective function is rarely 

achieved and improvements are limited by the presence of the constraints. 

In some problems, there are many variables each of which may assume a wide range 

of specific values.  Ideally, one would wish to look at all the possible combinations of the 

variables to find the one that provides the absolute maximum or minimum of the objective 

function.  Unfortunately, this is usually not possible.  Take for example a problem with three 

variables each of which may assume one of ten different values.  This doesn’t sound like a 

very large problem but there are in fact 1000 different combinations of the variables to 

consider, a sizeable number even though it would take seconds to solve the problem with a 

high-speed computer.  What if there were 48 variables again with 10 possible values?  In that 
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case, there would be 1048 potential combinations, a number that would most certainly require 

years of computer time to solve.  In such problems, the Monte Carlo or random combination 

technique has proven useful in streamlining the process [Ref. 46].  This procedure generates 

randomly chosen values of the design variables, combines them and then evaluates the effect 

on the objective function.  For functions with well-defined maxima or minima, a 

computerized routine to perform this technique can normally get close in a matter of minutes, 

even for problems with very large numbers of possible solutions.  It is used in a variety of 

optimization applications. 

In general, an optimization procedure consists of establishing a starting condition, 

choosing a direction in which to search for a maximum or minimum of the objective 

function, and then figuring out how far in that direction to proceed.  The starting point may 

be defined as a vector whose components are the initial values of the design variables under 

consideration, Xq, where q is the iteration or run number.  The direction of search may be 

defined as a vector S whose components are predetermined increments of the design 

variables.  These increments are usually chosen by a sensitivity analysis which changes the 

values of the individual design variables in turn and then evaluates the effect on the objective 

function.  Both X and S are n-dimensional vectors where n is the number of design variables 

that define the problem.  The optimization procedure can then be stated as:  

              Xq  = Xq-1 + αq  S 

Where α is a measure of how far the process goes in the direction of S.  The value of α is 

determined by assigning it ever increasing values, substituting it into the above equation and 

finding the objective function generated by Xq.  The objective function may be plotted 

against α to find the value that produces the maximum desired improvement.  Figure 108 

illustrates this process where the objective function is being minimized. 
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Figure 108.  Finding the Search Distance (From Ref. 45) 

 
 The procedure outlined above is known as a one-dimensional search.  An overview of 

the results of the process for a two-dimensional minimization problem is shown in Figure 

109. 

 
Figure 109.  The One-Dimensional Search (From Ref. 45) 
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For the procedure shown above, the direction vector S was chosen to be 







−
−

1
1

 

(perhaps a better choice would have been 







−
+

1
1

) and it can be seen that the maximum α 

determined in the previous figure corresponds to the point at which the search line crosses the 

contour closest to the minimum.  At this point, a new search direction would be determined, 

most likely something like 







0
1

 , and the next iteration or run would be performed.  It  is 

clear that several such iterations would arrive at a point very near the minimum.  The vector 

S may be defined in various ways.  The one shown in this example used no gradient 

information and therefore this particular example is for what is known a zeroth-order 

optimization method.  Methods that use gradient information to establish the magnitude of 

the components of S are called first-order methods and there are second-order methods that 

use second derivative information as well.  Second-order methodology was not used in the 

present study. 

Convergence criteria for optimization problems may be expressed in sophisticated 

mathematical terms but generally consist of checking the gradient of the objective function to 

ensure that it goes to zero at the optimum.  In most practical problems, the end of the process 

is signaled by the potential for violating a preset constraint if the procedure is continued.  

Such was the case in the optimization procedures used in the present work. 

Numerical optimization can be a very useful design tool.  It has some definite 

advantages but it is acknowledged that there are accompanying disadvantages.  Among the 

positive features are that computerized optimization methods are not biased by intuition and 

experience in engineering.  The possibility of obtaining better, nontraditional designs is 

enhanced and optimization virtually always leads to some improvement in performance.  On 

the down side, computational time increases as the number of design variables increases and 

sometimes, the methods become numerically ill-conditioned.  Because there is no stored 

experience or intuition, outcomes are limited by the range of applicability of the underlying 

analysis program.  Finally, it is difficult to guarantee that a process has converged to a true 

maximum or minimum.  For constrained engineering problems, as mentioned, this is not so 

much of an issue.       
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APPENDIX D.  MERIDL VS. BLADE-3D 
 

 

1. The following is the MERIDL3 geometry definition for the Sanger rotor.  
11 23 22      

0 0.000514 0.002301 0.005027 0.008746 0.013525 0.019448 0.025568 
0.031878 0.038395 0.045135 0.052088 0.059237 0.066568 0.074067 0.081719 
0.089506 0.097415 0.104086 0.10947 0.113531 0.116248 0.116636  

0.00136 0.001751 0.003532 0.006238 0.009908 0.014595 0.020362 0.026281 
0.03235 0.038563 0.044956 0.051567 0.058387 0.065405 0.072609 0.079987 

0.087529 0.095222 0.10174 0.107019 0.111013 0.113692 0.114041  
0.002013 0.002353 0.004135 0.006837 0.010492 0.015144 0.020848 0.026682 
0.032644 0.038731 0.044945 0.051351 0.057968 0.064787 0.071798 0.078992 
0.086358 0.093887 0.100278 0.105463 0.109392 0.112029 0.112356  
0.002617 0.002913 0.004692 0.007384 0.011017 0.015627 0.021259 0.027 
0.032848 0.0388 0.044857 0.051036 0.057417 0.064001 0.07078 0.077748 
0.084894 0.092212 0.098434 0.10349 0.107325 0.109902 0.110207  
0.003875 0.004123 0.005878 0.008529 0.012096 0.016608 0.022099 0.027672 
0.033327 0.039064 0.044881 0.050778 0.056765 0.062939 0.069314 0.075885 
0.082643 0.089584 0.095503 0.100323 0.103986 0.10645 0.106724  
0.007383 0.007577 0.009239 0.011743 0.015099 0.019322 0.02443 0.029584 
0.034782 0.040025 0.045312 0.050643 0.056018 0.061437 0.066995 0.072754 
0.078711 0.084862 0.090132 0.094442 0.097727 0.099942 0.100171  
0.010925 0.011094 0.01264 0.014965 0.018075 0.02198 0.026692 0.03143 
0.036196 0.04099 0.045811 0.050659 0.055534 0.060436 0.065366 0.070365 
0.075575 0.081001 0.085687 0.089541 0.092492 0.094488 0.09469  
0.012591 0.012749 0.014226 0.016447 0.019417 0.023145 0.027641 0.032161 
0.036707 0.041277 0.045871 0.05049 0.055133 0.0598 0.064492 0.06921 
0.074074 0.079161 0.083566 0.087197 0.089983 0.091869 0.092059  
0.014092 0.014243 0.015665 0.017803 0.020663 0.024255 0.028587 0.032945 
0.037327 0.041734 0.046166 0.050623 0.055105 0.059611 0.064143 0.068699 
0.073344 0.078207 0.082428 0.085913 0.088589 0.090402 0.090584  
0.014068 0.014213 0.015624 0.017747 0.020588 0.024157 0.028465 0.0328 
0.037163 0.041553 0.045971 0.050417 0.05489 0.05939 0.063918 0.068472 
0.073071 0.077861 0.082024 0.085465 0.088111 0.089904 0.090081  
0.014718 0.014854 0.016226 0.018291 0.021057 0.024535 0.028737 0.032972 
0.037239 0.041537 0.045868 0.05023 0.054624 0.05905 0.063508 0.067997 
0.072518 0.077153 0.081192 0.084538 0.087114 0.088863 0.089032  

       
0.22289 0.223164 0.224119 0.225574 0.22756 0.230111 0.233273 0.236541 
0.23991 0.243389 0.246988 0.250699 0.254516 0.25843 0.262434 0.266519 

0.270677 0.274899 0.278461 0.281335 0.283503 0.284954 0.285162  
0.251549 0.251717 0.252483 0.253645 0.255222 0.257236 0.259714 0.262257 
0.264864 0.267534 0.270281 0.273121 0.276052 0.279067 0.282162 0.285332 
0.288573 0.291878 0.294678 0.296946 0.298663 0.299814 0.299964  
0.267527 0.267655 0.268328 0.269348 0.270728 0.272485 0.274639 0.276842 
0.279093 0.281391 0.283738 0.286156 0.288655 0.29123 0.293877 0.296593 
0.299375 0.302218 0.304631 0.306589 0.308072 0.309068 0.309192  
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0.284586 0.284683 0.285263 0.28614 0.287324 0.288826 0.290661 0.292532 
0.294438 0.296378 0.298351 0.300365 0.302444 0.30459 0.306799 0.30907 
0.311399 0.313784 0.315811 0.317459 0.318709 0.319549 0.319648  
0.309498 0.309561 0.310012 0.310694 0.311611 0.31277 0.314181 0.315614 
0.317067 0.318542 0.320037 0.321552 0.323091 0.324678 0.326317 0.328005 
0.329743 0.331527 0.333048 0.334287 0.335228 0.335861 0.335932  
0.357485 0.357513 0.357749 0.358105 0.358582 0.359182 0.359909 0.360641 

0.36138 0.362126 0.362877 0.363635 0.364399 0.36517 0.36596 0.366779 
0.367626 0.3685 0.369249 0.369862 0.370329 0.370644 0.370677  
0.398682 0.398694 0.3988 0.398959 0.399173 0.399441 0.399764 0.40009 
0.400417 0.400746 0.401077 0.40141 0.401744 0.402081 0.402419 0.402763 

0.40312 0.403493 0.403815 0.404079 0.404282 0.404419 0.404433  
0.418757 0.418763 0.418826 0.41892 0.419046 0.419204 0.419394 0.419585 
0.419778 0.419971 0.420166 0.420362 0.420558 0.420756 0.420955 0.421154 

0.42136 0.421576 0.421762 0.421916 0.422034 0.422114 0.422122  
0.428363 0.428368 0.428414 0.428484 0.428578 0.428696 0.428837 0.42898 
0.429124 0.429268 0.429413 0.429559 0.429706 0.429853 0.430002 0.430151 
0.430303 0.430462 0.4306 0.430714 0.430802 0.430861 0.430867  
0.441651 0.441654 0.441683 0.441726 0.441784 0.441857 0.441945 0.442033 
0.442122 0.442211 0.442301 0.442392 0.442483 0.442575 0.442667 0.44276 
0.442854 0.442951 0.443036 0.443106 0.44316 0.443197 0.443201  
0.455686 0.455687 0.455696 0.455711 0.45573 0.455754 0.455783 0.455812 
0.455841 0.455871 0.455901 0.455931 0.455961 0.455992 0.456023 0.456054 
0.456085 0.456117 0.456145 0.456168 0.456186 0.456198 0.456199  

       
0 0.00313 0.013824 0.029582 0.050062 0.074802 0.103219 0.13024 

0.15586 0.179937 0.202284 0.222896 0.241772 0.258919 0.27435 0.288078 
0.300126 0.310517 0.31793 0.323057 0.32644 0.328478 0.328755  
0.003128 0.005248 0.014776 0.028894 0.047394 0.069991 0.096331 0.121816 
0.146442 0.170204 0.192927 0.214376 0.234537 0.253398 0.270953 0.287196 
0.302128 0.315751 0.326106 0.333741 0.33909 0.342478 0.342908  

0.00604 0.00778 0.016799 0.030195 0.047807 0.069419 0.09476 0.119448 
0.143479 0.16685 0.189543 0.211273 0.231916 0.251457 0.269884 0.287186 
0.303358 0.318393 0.330054 0.338813 0.34505 0.34905 0.349537  
0.007812 0.009253 0.017833 0.030604 0.047445 0.068195 0.092652 0.116621 
0.140101 0.163087 0.185579 0.207502 0.228555 0.24869 0.267892 0.286148 
0.303448 0.319781 0.33265 0.342455 0.349523 0.354099 0.35463  
0.009343 0.010493 0.0186 0.030696 0.046703 0.066514 0.089999 0.113166 
0.136014 0.15854 0.180744 0.202624 0.224143 0.245014 0.26516 0.284567 
0.303219 0.321104 0.335414 0.346469 0.354528 0.35979 0.360368  
0.012457 0.013335 0.020849 0.032095 0.047041 0.065645 0.087855 0.109937 
0.131892 0.15372 0.175419 0.196989 0.21843 0.239739 0.260729 0.281254 
0.301299 0.320851 0.336758 0.349226 0.358424 0.364482 0.365102  
0.015765 0.016553 0.023727 0.034476 0.048786 0.066639 0.088013 0.109331 
0.130593 0.1518 0.17295 0.194043 0.21508 0.23606 0.256983 0.277785 
0.298246 0.318337 0.334786 0.347746 0.357349 0.363693 0.364329  
0.017368 0.018125 0.025166 0.035718 0.049774 0.067318 0.088335 0.109313 
0.130251 0.151148 0.172006 0.192823 0.2136 0.234336 0.255031 0.275683 
0.296131 0.316262 0.332787 0.345836 0.355522 0.36193 0.362568  
0.017681 0.018424 0.025428 0.035926 0.049911 0.06737 0.088289 0.109172 
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0.130021 0.150833 0.17161 0.192351 0.213056 0.233725 0.254357 0.274953 
0.295433 0.315629 0.332229 0.345354 0.355104 0.361559 0.362199  
0.020481 0.021191 0.028075 0.038395 0.05214 0.069302 0.089865 0.110394 
0.130889 0.15135 0.171776 0.192168 0.212524 0.232846 0.253132 0.273383 
0.293579 0.313542 0.329959 0.342944 0.352593 0.358983 0.359607  
0.022265 0.022938 0.029745 0.039948 0.053539 0.070507 0.090839 0.111137 
0.131402 0.151632 0.171829 0.191991 0.212119 0.232212 0.25227 0.272292 
0.292279 0.312138 0.328482 0.341417 0.351034 0.357405 0.358014  

       
0.01214 0.013271 0.015723 0.020605 0.026613 0.03327 0.040423 0.04693 

0.052625 0.056725 0.058821 0.058171 0.055174 0.050923 0.04564 0.039421 
0.032344 0.024471 0.017334 0.011261 0.0065 0.003227 0.002754  
0.008415 0.009086 0.011001 0.015115 0.0203 0.02614 0.032514 0.038449 
0.043927 0.048565 0.051401 0.05221 0.050709 0.047455 0.043005 0.037468 
0.030935 0.023484 0.01662 0.010724 0.006074 0.002868 0.002444  
0.006996 0.007507 0.009179 0.012944 0.017738 0.023178 0.029159 0.034788 

0.04008 0.044786 0.048184 0.049451 0.048574 0.045817 0.041758 0.036547 
0.030278 0.023035 0.016306 0.010494 0.005897 0.002722 0.002323  
0.005881 0.006264 0.00769 0.011089 0.01547 0.020478 0.026017 0.031279 

0.03631 0.040932 0.044751 0.046737 0.046556 0.044468 0.040876 0.036021 
0.030002 0.02291 0.016238 0.010429 0.005811 0.002612 0.002229  
0.004812 0.005074 0.00621 0.009149 0.013 0.017449 0.022407 0.02716 
0.031787 0.036186 0.04008 0.043052 0.044156 0.043004 0.040114 0.035758 
0.030056 0.023107 0.016429 0.010538 0.005816 0.002528 0.002158  
0.003883 0.004038 0.004859 0.007093 0.010122 0.013734 0.017867 0.021901 
0.025897 0.029809 0.033485 0.036674 0.03904 0.039943 0.038515 0.035235 
0.030241 0.023646 0.016996 0.010959 0.00603 0.002559 0.002193  
0.003711 0.003821 0.004584 0.006259 0.008616 0.011596 0.015185 0.018781 
0.022355 0.025837 0.029117 0.032043 0.034427 0.036053 0.036581 0.034767 
0.030549 0.024341 0.017731 0.011542 0.006395 0.002729 0.002349  
0.003711 0.003803 0.004605 0.006016 0.00804 0.010721 0.014083 0.017523 
0.020946 0.024251 0.027322 0.030037 0.032265 0.033869 0.034707 0.03394 
0.030501 0.024674 0.018166 0.011918 0.006638 0.002844 0.002453  
0.003764 0.003847 0.004695 0.006003 0.007894 0.010468 0.013774 0.017194 
0.020602 0.023871 0.02688 0.029512 0.031656 0.033208 0.034068 0.033707 
0.030752 0.02508 0.018572 0.012234 0.006836 0.002934 0.002534  
0.003647 0.003714 0.004599 0.00571 0.007335 0.009645 0.012724 0.015971 
0.019214 0.0223 0.025098 0.027502 0.029426 0.030807 0.031601 0.031609 
0.029519 0.024393 0.018209 0.012062 0.006763 0.002905 0.002513  
0.003567 0.003619 0.004576 0.005519 0.00691 0.009001 0.011916 0.015057 
0.018207 0.021177 0.023823 0.026041 0.027763 0.02896 0.029632 0.029767 
0.028414 0.024014 0.018085 0.012047 0.006772 0.002905 0.002519  
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2. This is the BLADE-3D representation. 

 

11 60 15 10
0.02 0.01   
0.116426 0.0915974 0.269938  
0.0814964 0.0749555 0.256755  
0.0258405 0.0291749 0.237413  
0.0011103 -2.787E-05 0.223518  
0.110617 0.115474 0.296665  
0.0861021 0.0863615 0.304139  
0.0094634 0.0127973 0.268077  
0.0003368 0.0020513 0.27911  
0.0880483 0.152075 0.395773  
0.0824019 0.13402 0.39411  
0.0300771 0.0307192 0.453349  
0.0149014 0.0060386 0.423515  
0.0889173 0.159072 0.427576  
0.0697966 0.117683 0.444517  
0.0318585 0.0471745 0.456041  
0.0154538 0.0109658 0.455618  
0.000524 0.0021362 0.22314  
0.0349709 0.0535454 0.239784  
0.0625972 0.0795338 0.242945  
0.115355 0.092138 0.269125  
0.0005038 0.0028901 0.283852  
0.0120356 0.0230912 0.232444  
0.0732094 0.101217 0.332275  
0.110846 0.113342 0.292469  
0.0142932 0.0070067 0.424733  
0.0245537 0.0215171 0.446428  
0.0777159 0.158137 0.399354  
0.0888766 0.151865 0.391967  
0.0149953 0.0115811 0.455572  
0.0332974 0.0527988 0.456682  
0.06239 0.130432 0.440037  
0.0884033 0.159698 0.427377  

 

 

 

 



 131

APPENDIX E.  INPUT FILES 
 

 
1. TCGRID 

&nam1 merid=0 im=185 jm=50 km=49 itl=20 
       icap=16 &end 
 &nam2 nle=15 nte=10 dsle=3.5e-4 dste=2.5e-4 dshub=1.5e-5 dstip=1.5e-5 
       dswte=3.5e-4 dswex=.010 dsthr=.39 dsmin=1.2e-5 dsmax=.002 
       dsin=.010 clear=.00000 rcorn=.008 ktip=50 &end 
 &nam3 iterm=50 idbg=0 0 0 0 0 0 0 0 aabb=.6 
       ccdd=.2 &end 
 &nam4 zbc=-0.100  -0.040  0.2000  -0.1000  -0.0400  0.2000 
       rbc= 0.220   0.220  0.2800   0.4560   0.4560  0.4560 &end 
 "NPGS TRANSONIC DESIGN -GENER. FROM V8FBND13 INCDP-BASE=DEC13 INMER" 
     
 32   14 
 -.833     -.667    -.5833    -.50      -.4583    -.425     -.40833   -.3917 
 -.3333    -.25     -.16666   -.0833    0.         .0833     .1        .1167 
 .125      .133     .14167    .15       .1583     .16666    .175      .183 
 .19166    .208     .25       .3333     .41666    .5        .667      .8333 
     
 .00083     .00083   .00083    .00083    .001667   .00625    .01083    .01667 
 .04467     .08937   .13405    .17873    .2234     .2681     .277      .286  
 .2904      .29333   .295583   .297667   .29933    .30033    .30166    .3025  
 .303333    .304166  .306083   .306083   .306083   .306083   .306083   .306083 
     
 -.8333     -.7637   -.666666  -.5       -.33333   -.2083    -.1239    -.04167 
 .0529      .2167    .3083     .5        .66666    .83333 
     
 .4583     .4583     .4583     .4583     .4583     .4583     .4583     .4583 
 .4583     .4583     .4583     .4583     .4583     .4583  
 
(Blade geometry follows in MERIDL0 format) 
 
 
2. RVC3D 

'MY ROTOR 1' 
 &nl1 im=185 jm=50 km=49 itl=20 iil=85 ktip=48 &end 
 &nl2 nstg=4 cfl=5 avisc1=0 avisc2=1.0 avisc4=.5 irs=1 epi=0.65 epj=0.75 epk=0.75 ivdt=1 

itmax=2000 &end 
 &nl3 ibcin=1 ibcex=3 ires=10 icrnt=50 iresti=0 &end 
 &nl4 om=-2.54 prat=1.19 emxx=.46 alex=52 igeom=1 &end 
 &nl5 ilt=2 iltin=2 renr=6.651e6 tw=0 vispwr=.6667 cmutm=14 jedge=25 kedge=18 srtip=0 

xrle=-.2 xrte=0.3 dblh=0.001 dblt=0.02 &end 
 &nl6 &end 
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3. I-DEAS (IGES 5.3) 
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APPENDIX F.  RVC3D OUTPUT  
 

 
1 
  ---------------------------------------------------------------

-------------------------------------------------- 
    RVC3D: Rotor Viscous Code 3-D, version 208 
    R. V. Chima, NASA Lewis Research Center 
  ---------------------------------------------------------------

-------------------------------------------------- 
    MY ROTOR 1                                                                    
  ---------------------------------------------------------------

-------------------------------------------------- 
 
 ***** namelist input 
 
      &nl1 - grid parameters 
        im        jm        km       itl       iil      ktip 
       185        50        49        20        85        48 
 
      &nl2 - algorithm parameters 
      nstg       cfl    avisc1    avisc2    avisc4 
         4   5.00000   0.00000   1.00000   0.50000 
       irs       eps       epi       epj       epk     itmax      

ivdt 
         1   0.00000   0.65000   0.75000   0.75000      2000         

1 
 
      &nl3 - boundary condition & code control 
     ibcin     ibcex     isymt      ires     icrnt    iresti    

iresto      iqin      mioe 
         1         3         0        10        50         0         

1         0         3 
 
      &nl4 - flow parameters 
     igeom        ga        om      prat      emxx      emty      

emrz      expt      alex 
         1   1.40000  -2.54000   1.19000   0.46000   0.00000   

0.00000   0.00000  52.00000 
 
      &nl5 - viscous parameters 
       ilt      renr      prnr        tw    vispwr      prtr     

cmutm     jedge     kedge 
         2 6651000.0   0.70000   0.00000   0.66670   0.90000  

14.00000        25        18 
     iltin      dblh      dblt     srtip      xrle      xrte 
         2   0.00100   0.02000   0.00000  -0.20000   0.30000 
 
      &nl6 - output control 
       nko 
         0 
  
 
 ***** annular geometry, pitch =     -0.286 radians 
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 ***** ibcin=1, inlet vt & merid. angle specified 
 
 ***** ibcex=3, radial equil. spanwise, constant p b-b 
 
 ***** inlet profile calculated from input 
 
 ***** initial conditions generated internally 
 
 ***** time step limit 
 
       cfl     dtmin      imin      jmin      kmin 
     5.000  1.52E-05       165         2        30 
1 
  ---------------------------------------------------------------

------------------------------------------------------------ 
    theta-direction averaged quantities on inlet 
    primitive variables, absolute system 
    approximate energy average 
    notation: rr=rho0ref, cr=c0ref, er=rr*cr**2, pr=p0ref, 

tr=t0ref, alpha=atan(vth/u), phi=atan(vr/u) 
  ---------------------------------------------------------------

------------------------------------------------------------ 
  
    k  distance    % mdot    rho/rr      u/cr    vth/cr     vr/cr      

e/er     ps/pr     p0/pr     ts/tr     t0/tr      Mach 
    1   0.20572   0.00000   0.91288   0.00000  -0.51293   0.00000   

1.66445   0.86484   1.04496   0.94738   1.00000   0.52698 
    2   0.20574   0.00000   0.90115   0.05973  -0.44472   0.00000   

1.63512   0.86486   0.99868   0.95973   1.00000   0.45804 
    3   0.20576   0.00002   0.88766   0.17616  -0.31178   0.00000   

1.60137   0.86489   0.94723   0.97435   1.00000   0.36279 
    4   0.20580   0.00007   0.88517   0.26404  -0.21148   0.00000   

1.59513   0.86491   0.93792   0.97711   1.00000   0.34223 
    5   0.20586   0.00015   0.88576   0.29265  -0.17894   0.00000   

1.59661   0.86492   0.94010   0.97647   1.00000   0.34713 
    6   0.20593   0.00028   0.88699   0.32021  -0.14765   0.00000   

1.59967   0.86493   0.94462   0.97513   1.00000   0.35708 
    7   0.20604   0.00049   0.88901   0.34967  -0.11428   0.00000   

1.60470   0.86495   0.95213   0.97293   1.00000   0.37295 
    8   0.20620   0.00082   0.89227   0.38383  -0.07566   0.00000   

1.61284   0.86495   0.96438   0.96939   1.00000   0.39734 
    9   0.20643   0.00134   0.89719   0.42259  -0.03196   0.00000   

1.62514   0.86496   0.98311   0.96408   1.00000   0.43162 
   10   0.20676   0.00215   0.90157   0.45056   0.00000   0.00000   

1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 
   11   0.20723   0.00335   0.90157   0.45056   0.00000   0.00000   

1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 
   12   0.20791   0.00507   0.90157   0.45056   0.00000   0.00000   

1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 
   13   0.20887   0.00753   0.90157   0.45056   0.00000   0.00000   

1.63608   0.86496   1.00000   0.95940   1.00000   0.46000 
   14   0.21024   0.01107   0.90157   0.45056   0.00000   0.00000   

1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 
   15   0.21219   0.01612   0.90157   0.45056   0.00000   0.00000   

1.63608   0.86496   1.00000   0.95940   1.00000   0.46000 
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   16   0.21494   0.02333   0.90157   0.45056   0.00000   0.00000   
1.63608   0.86496   1.00000   0.95940   1.00000   0.46000 

   17   0.21878   0.03357   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   18   0.22410   0.04801   0.90157   0.45056   0.00000   0.00000   
1.63608   0.86496   1.00000   0.95940   1.00000   0.46000 

   19   0.23135   0.06821   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   20   0.24102   0.09607   0.90157   0.45056   0.00000   0.00000   
1.63608   0.86496   1.00000   0.95940   1.00000   0.46000 

   21   0.25357   0.13376   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   22   0.26927   0.18338   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   23   0.28805   0.24634   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   24   0.30933   0.32251   0.90157   0.45056   0.00000   0.00000   
1.63608   0.86496   1.00000   0.95940   1.00000   0.46000 

   25   0.33203   0.40953   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   26   0.35473   0.50274   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   27   0.37601   0.59599   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   28   0.39478   0.68323   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   29   0.41047   0.75992   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   30   0.42301   0.82379   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   31   0.43268   0.87464   0.90157   0.45056   0.00000   0.00000   
1.63609   0.86496   1.00000   0.95940   1.00000   0.46000 

   32   0.43993   0.91356   0.90095   0.44691   0.00000   0.00000   
1.63454   0.86496   0.99761   0.96005   1.00000   0.45611 

   33   0.44525   0.94176   0.89694   0.42219   0.00000   0.00000   
1.62451   0.86496   0.98214   0.96435   1.00000   0.42992 

   34   0.44909   0.96111   0.89285   0.39522   0.00000   0.00000   
1.61430   0.86496   0.96658   0.96876   1.00000   0.40154 

   35   0.45184   0.97415   0.88955   0.37181   0.00000   0.00000   
1.60606   0.86496   0.95414   0.97235   1.00000   0.37706 

   36   0.45378   0.98289   0.88692   0.35187   0.00000   0.00000   
1.59948   0.86496   0.94430   0.97524   1.00000   0.35631 

   37   0.45515   0.98874   0.88471   0.33411   0.00000   0.00000   
1.59395   0.86496   0.93609   0.97767   1.00000   0.33790 

   38   0.45612   0.99264   0.88276   0.31749   0.00000   0.00000   
1.58906   0.86496   0.92887   0.97984   1.00000   0.32074 

   39   0.45679   0.99524   0.88096   0.30138   0.00000   0.00000   
1.58458   0.86496   0.92228   0.98183   1.00000   0.30416 

   40   0.45726   0.99695   0.87929   0.28541   0.00000   0.00000   
1.58039   0.86496   0.91615   0.98371   1.00000   0.28776 

   41   0.45759   0.99808   0.87770   0.26935   0.00000   0.00000   
1.57641   0.86496   0.91036   0.98549   1.00000   0.27133 

   42   0.45782   0.99882   0.87618   0.25301   0.00000   0.00000   
1.57262   0.86496   0.90486   0.98720   1.00000   0.25465 

   43   0.45798   0.99931   0.87472   0.23618   0.00000   0.00000   
1.56897   0.86496   0.89960   0.98884   1.00000   0.23751 
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   44   0.45809   0.99962   0.87330   0.21854   0.00000   0.00000   
1.56543   0.86496   0.89451   0.99045   1.00000   0.21959 

   45   0.45816   0.99982   0.87191   0.19959   0.00000   0.00000   
1.56194   0.86496   0.88952   0.99203   1.00000   0.20039 

   46   0.45822   0.99993   0.86796   0.13152   0.00000   0.00000   
1.55208   0.86496   0.87551   0.99654   1.00000   0.13174 

   47   0.45826   0.99998   0.86584   0.07119   0.00000   0.00000   
1.54677   0.86496   0.86804   0.99899   1.00000   0.07123 

   48   0.45829   1.00000   0.86506   0.02413   0.00000   0.00000   
1.54482   0.86496   0.86531   0.99988   1.00000   0.02413 

   49   0.45830   1.00000   0.86496   0.00000   0.00000   0.00000   
1.54457   0.86496   0.86496   1.00000   1.00000   0.00000 

  ----- overall  averages ---------------------------------------
------------------------------------------------------------ 

   50   0.35522   0.00965   0.90078   0.44585  -0.00451   0.00000   
1.63411   0.86496   0.99694   0.96024   1.00000   0.45501 

  ---------------------------------------------------------------
------------------------------------------------------------ 

1 
  ---------------------------------------------------------------

------------------------------------------------------------ 
    theta-direction averaged quantities on exit 
    primitive variables, absolute system 
    approximate energy average 
    notation: rr=rho0ref, cr=c0ref, er=rr*cr**2, pr=p0ref, 

tr=t0ref, alpha=atan(vth/u), phi=atan(vr/u) 
  ---------------------------------------------------------------

------------------------------------------------------------ 
  
    k  distance    % mdot    rho/rr      u/cr    vth/cr     vr/cr      

e/er     ps/pr     p0/pr     ts/tr     t0/tr      Mach 
    1   0.30384   0.00000   1.22080   0.00000   0.00000   0.00000   

2.36111   1.32222   1.32222   1.08308   1.08308   0.00000 
    2   0.30386   0.00001   1.22080   0.05525  -0.05317   0.00000   

2.36470   1.32222   1.32725   1.08307   1.08425   0.07368 
    3   0.30389   0.00005   1.22080   0.16050  -0.15445   0.00000   

2.39140   1.32222   1.36511   1.08307   1.09300   0.21403 
    4   0.30392   0.00014   1.22080   0.23988  -0.23086   0.00000   

2.42877   1.32222   1.41939   1.08307   1.10524   0.31990 
    5   0.30397   0.00031   1.22080   0.26606  -0.25604   0.00000   

2.44433   1.32222   1.44245   1.08307   1.11034   0.35480 
    6   0.30404   0.00056   1.22080   0.29151  -0.28054   0.00000   

2.46102   1.32222   1.46746   1.08307   1.11581   0.38875 
    7   0.30414   0.00095   1.22080   0.31905  -0.30704   0.00000   

2.48079   1.32222   1.49750   1.08307   1.12229   0.42548 
    8   0.30428   0.00155   1.22080   0.35151  -0.33828   0.00000   

2.50638   1.32222   1.53702   1.08307   1.13067   0.46876 
    9   0.30447   0.00248   1.22080   0.38914  -0.37450   0.00000   

2.53915   1.32222   1.58872   1.08307   1.14141   0.51895 
   10   0.30474   0.00390   1.22080   0.41693  -0.40123   0.00000   

2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 
   11   0.30511   0.00593   1.22080   0.41693  -0.40123   0.00000   

2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 
   12   0.30564   0.00878   1.22080   0.41693  -0.40123   0.00000   

2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 
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   13   0.30637   0.01276   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   14   0.30738   0.01828   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   15   0.30879   0.02595   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   16   0.31072   0.03651   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   17   0.31335   0.05097   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08308   1.15004   0.55600 

   18   0.31689   0.07058   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   19   0.32158   0.09681   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   20   0.32767   0.13130   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   21   0.33536   0.17555   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   22   0.34475   0.23066   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   23   0.35576   0.29682   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   24   0.36805   0.37280   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   25   0.38107   0.45584   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   26   0.39408   0.54183   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   27   0.40637   0.62602   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   28   0.41738   0.70404   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   29   0.42678   0.77267   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   30   0.43447   0.83033   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   31   0.44056   0.87692   1.22080   0.41693  -0.40123   0.00000   
2.56548   1.32222   1.63114   1.08307   1.15004   0.55600 

   32   0.44525   0.91324   1.22080   0.41326  -0.39770   0.00000   
2.56190   1.32222   1.62533   1.08307   1.14887   0.55111 

   33   0.44879   0.94014   1.22080   0.38866  -0.37403   0.00000   
2.53872   1.32222   1.58802   1.08307   1.14127   0.51831 

   34   0.45142   0.95904   1.22080   0.36218  -0.34855   0.00000   
2.51533   1.32222   1.55102   1.08307   1.13361   0.48299 

   35   0.45335   0.97210   1.22080   0.33946  -0.32669   0.00000   
2.49660   1.32222   1.52182   1.08307   1.12747   0.45270 

   36   0.45476   0.98109   1.22080   0.32031  -0.30825   0.00000   
2.48174   1.32222   1.49894   1.08307   1.12260   0.42715 

   37   0.45578   0.98726   1.22080   0.30339  -0.29197   0.00000   
2.46933   1.32222   1.48003   1.08307   1.11853   0.40458 

   38   0.45651   0.99148   1.22080   0.28766  -0.27683   0.00000   
2.45840   1.32222   1.46351   1.08307   1.11495   0.38361 

   39   0.45703   0.99436   1.22080   0.27251  -0.26225   0.00000   
2.44842   1.32222   1.44854   1.08308   1.11168   0.36341 

   40   0.45741   0.99631   1.22080   0.25758  -0.24788   0.00000   
2.43911   1.32222   1.43469   1.08307   1.10863   0.34349 
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   41   0.45768   0.99763   1.22080   0.24264  -0.23351   0.00000   
2.43033   1.32222   1.42170   1.08307   1.10576   0.32358 

   42   0.45787   0.99852   1.22080   0.22753  -0.21896   0.00000   
2.42198   1.32222   1.40941   1.08307   1.10302   0.30342 

   43   0.45801   0.99911   1.22080   0.21204  -0.20406   0.00000   
2.41397   1.32222   1.39772   1.08307   1.10039   0.28277 

   44   0.45810   0.99950   1.22080   0.19589  -0.18851   0.00000   
2.40623   1.32222   1.38647   1.08307   1.09786   0.26123 

   45   0.45817   0.99975   1.22080   0.17862  -0.17189   0.00000   
2.39862   1.32222   1.37548   1.08307   1.09536   0.23820 

   46   0.45822   0.99990   1.22080   0.11716  -0.11275   0.00000   
2.37725   1.32222   1.34496   1.08307   1.08836   0.15624 

   47   0.45826   0.99997   1.22080   0.06326  -0.06088   0.00000   
2.36582   1.32222   1.32882   1.08307   1.08462   0.08437 

   48   0.45829   0.99999   1.22080   0.02142  -0.02062   0.00000   
2.36165   1.32222   1.32298   1.08307   1.08325   0.02857 

   49   0.45830   1.00000   1.22080   0.00000   0.00000   0.00000   
2.36111   1.32222   1.32222   1.08308   1.08308   0.00000 

  ----- overall  averages ---------------------------------------
------------------------------------------------------------ 

   50   0.38882   0.00840   1.22080   0.41202  -0.39651   0.00000   
2.56070   1.32222   1.62338   1.08307   1.14847   0.54945 

  ---------------------------------------------------------------
------------------------------------------------------------ 

1 
  ---------------------------------------------------------------

---------- 
 ***** convergence history for variable number  1 
      iter      rrms      rmax  mdot_err      t0ex      p0ex imax 

jmax kmax 
  ---------------------------------------------------------------

---------- 
         1  5.01E-05  4.38E-01   0.09876   1.09198   1.55570  165    

2   41 
        10  2.64E-05  1.65E-01   0.04257   1.12451   1.57642   91   

10   12 
        20  1.99E-05  1.06E-01   0.00793   1.14001   1.57848  162    

2    5 
        30  1.61E-05  1.01E-01  -0.03570   1.13991   1.58216  161    

8    2 
        40  1.53E-05  6.83E-02  -0.07606   1.14243   1.58244  158    

2    2 
        50  1.41E-05  8.50E-02  -0.12709   1.14477   1.58408  160    

2    2 
        ÖÖÖÖ.. 
      2000  2.33E-08  2.87E-04  -0.00073   1.15491   1.59899   88   

30   32 
 
 ***** cpu time =     0.000 seconds 
 
 ***** mass flow error (1-mdot_ex/mdot_in) =   -0.00073 
 
 ***** time step limit 
 
       cfl     dtmin      imin      jmin      kmin 
     5.000  2.11E-05        21         2         2 
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1 
  ---------------------------------------------------------------

------------------------------------------------------------ 
    theta-direction averaged quantities on inlet 
    derived   variables, absolute system 
    approximate energy average 
    notation: rr=rho0ref, cr=c0ref, er=rr*cr**2, pr=p0ref, 

tr=t0ref, alpha=atan(vth/u), phi=atan(vr/u) 
  ---------------------------------------------------------------

------------------------------------------------------------ 
  
    k  distance    % mdot   vtot/cr     alpha       phi     ps/pr     

p0/pr     ts/tr     t0/tr      Mach  ad.effic 
    1   0.20572   0.00000   0.51457 -90.00000 -88.00816   0.85924   

1.03875   0.95069   1.00365   0.52775   0.00000 
    2   0.20574  -0.00001   0.45592  78.74520  28.19649   0.86076   

0.99868   0.95843   1.00000   0.46570   0.00000 
    3   0.20576  -0.00001   0.31874 -79.39626  28.19973   0.88156   

0.94723   0.97968   1.00000   0.32203   0.00000 
    4   0.20580   0.00002   0.27068 -54.85330  28.20066   0.89069   

0.93792   0.98535   1.00000   0.27268   0.00000 
    5   0.20586   0.00008   0.28635 -42.24608  28.19919   0.88724   

0.94010   0.98360   1.00000   0.28872   0.00000 
    6   0.20593   0.00018   0.30507 -32.11046  28.19683   0.88450   

0.94462   0.98139   1.00000   0.30795   0.00000 
    7   0.20604   0.00035   0.32990 -22.73231  28.19233   0.88154   

0.95213   0.97823   1.00000   0.33355   0.00000 
    8   0.20620   0.00063   0.36146 -13.64993  28.18539   0.87902   

0.96438   0.97387   1.00000   0.36628   0.00000 
    9   0.20643   0.00109   0.39497  -5.26114  28.17407   0.87987   

0.98311   0.96880   1.00000   0.40128   0.00000 
   10   0.20676   0.00181   0.42040   0.00000  28.15654   0.88165   

1.00000   0.96465   1.00000   0.42803   0.00000 
   11   0.20723   0.00288   0.43113   0.00000  28.12954   0.87582   

1.00000   0.96282   1.00000   0.43938   0.00000 
   12   0.20791   0.00444   0.43179   0.00000  28.08779   0.87546   

1.00000   0.96271   1.00000   0.44007   0.00000 
   13   0.20887   0.00668   0.43098   0.00000  28.02304   0.87591   

1.00000   0.96285   1.00000   0.43921   0.00000 
   14   0.21024   0.00989   0.43074   0.00000  27.92438   0.87604   

1.00000   0.96289   1.00000   0.43896   0.00000 
   15   0.21219   0.01449   0.43093   0.00000  27.77480   0.87594   

1.00000   0.96286   1.00000   0.43916   0.00000 
   16   0.21494   0.02105   0.43109   0.00000  27.54907   0.87585   

1.00000   0.96283   1.00000   0.43933   0.00000 
   17   0.21878   0.03039   0.43105   0.00000  27.21214   0.87587   

1.00000   0.96284   1.00000   0.43929   0.00000 
   18   0.22410   0.04363   0.43081   0.00000  26.71443   0.87600   

1.00000   0.96288   1.00000   0.43903   0.00000 
   19   0.23135   0.06223   0.43059   0.00000  25.98974   0.87611   

1.00000   0.96292   1.00000   0.43881   0.00000 
   20   0.24102   0.08808   0.43095   0.00000  24.95691   0.87592   

0.99999   0.96286   1.00000   0.43918   0.00000 
   21   0.25357   0.12347   0.43242   0.00000  23.53522   0.87510   

0.99999   0.96260   1.00000   0.44074   0.00000 
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   22   0.26927   0.17080   0.43497   0.00000  21.66935   0.87369   
0.99998   0.96216   1.00000   0.44344   0.00000 

   23   0.28805   0.23196   0.43771   0.00000  19.35690   0.87215   
0.99996   0.96168   1.00000   0.44635   0.00000 

   24   0.30933   0.30732   0.43960   0.00000  16.67617   0.87108   
0.99994   0.96135   1.00000   0.44835   0.00000 

   25   0.33203   0.39474   0.44035   0.00000  13.79533   0.87064   
0.99991   0.96122   1.00000   0.44914   0.00000 

   26   0.35473   0.48940   0.44052   0.00000  10.94363   0.87050   
0.99986   0.96119   1.00000   0.44933   0.00000 

   27   0.37601   0.58477   0.44082   0.00000   8.33513   0.87028   
0.99980   0.96114   1.00000   0.44964   0.00000 

   28   0.39478   0.67430   0.44184   0.00000   6.11686   0.86963   
0.99971   0.96095   1.00000   0.45073   0.00000 

   29   0.41047   0.75311   0.44384   0.00000   4.35130   0.86841   
0.99960   0.96060   1.00000   0.45285   0.00000 

   30   0.42301   0.81877   0.44637   0.00000   3.01601   0.86690   
0.99949   0.96015   1.00000   0.45554   0.00000 

   31   0.43268   0.87105   0.44770   0.00000   2.04724   0.86609   
0.99943   0.95991   1.00000   0.45696   0.00000 

   32   0.43993   0.91098   0.44271   0.00000   1.36522   0.86682   
0.99703   0.96080   1.00000   0.45165   0.00000 

   33   0.44525   0.93998   0.42551   0.00000   0.89781   0.86274   
0.98162   0.96379   1.00000   0.43343   0.00000 

   34   0.44909   0.96003   0.40250   0.00000   0.58371   0.86093   
0.96613   0.96760   1.00000   0.40919   0.00000 

   35   0.45184   0.97356   0.38080   0.00000   0.37511   0.86039   
0.95374   0.97100   1.00000   0.38644   0.00000 

   36   0.45378   0.98261   0.36238   0.00000   0.23894   0.85997   
0.94393   0.97374   1.00000   0.36724   0.00000 

   37   0.45515   0.98864   0.34641   0.00000   0.15020   0.85947   
0.93574   0.97600   1.00000   0.35064   0.00000 

   38   0.45612   0.99265   0.33197   0.00000   0.09368   0.85886   
0.92854   0.97796   1.00000   0.33569   0.00000 

   39   0.45679   0.99531   0.31858   0.00000   0.05784   0.85811   
0.92197   0.97970   1.00000   0.32186   0.00000 

   40   0.45726   0.99705   0.30606   0.00000   0.03598   0.85719   
0.91585   0.98127   1.00000   0.30897   0.00000 

   41   0.45759   0.99819   0.29438   0.00000   0.02220   0.85606   
0.91008   0.98267   1.00000   0.29696   0.00000 

   42   0.45782   0.99893   0.28338   0.00000   0.01302   0.85476   
0.90460   0.98394   1.00000   0.28569   0.00000 

   43   0.45798   0.99939   0.27222   0.00000   0.00739   0.85357   
0.89937   0.98518   1.00000   0.27426   0.00000 

   44   0.45809   0.99967   0.25874   0.00000   0.00248   0.85313   
0.89434   0.98661   1.00000   0.26049   0.00000 

   45   0.45816   0.99984   0.23564   0.00000  -0.00230   0.85534   
0.88944   0.98890   1.00001   0.23696   0.00000 

   46   0.45822   0.99993   0.20221   0.00000   0.00193   0.85078   
0.87559   0.99186   1.00004   0.20304   0.00000 

   47   0.45826   0.99998   0.15443   0.00000   0.01039   0.85412   
0.86853   0.99540   1.00017   0.15479   0.00000 

   48   0.45829   1.00000   0.10123   0.00000   0.02536   0.86045   
0.86665   0.99839   1.00044   0.10132   0.00000 

   49   0.45830   1.00000   0.00000   0.00000   0.00000   0.86291   
0.86291   0.99965   0.99965   0.00000   0.00000 
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  ----- overall  averages ---------------------------------------
------------------------------------------------------------ 

   50   0.35522   0.00906   0.43620  -0.45092  14.24261   0.87011   
0.99665   0.96195   1.00000   0.44474   0.00000 

  ---------------------------------------------------------------
------------------------------------------------------------ 

1 
  ---------------------------------------------------------------

------------------------------------------------------------ 
    theta-direction averaged quantities on inlet 
    derived   variables, relative system 
    approximate energy average 
    notation: rr=rho0ref, cr=c0ref, er=rr*cr**2, pr=p0ref, 

tr=t0ref, alpha=atan(vth/u), phi=atan(vr/u) 
  ---------------------------------------------------------------

------------------------------------------------------------ 
  
    k  distance    % mdot   vtot/cr     alpha       phi     ps/pr     

p0/pr     ts/tr     t0/tr      Mach 
    1   0.20572   0.00000   0.00000  89.72063 -88.00816   0.85924   

0.85924   0.95069   0.95069   0.00000 
    2   0.20574  -0.00001   0.12180 -37.91501  28.19649   0.86076   

0.87013   0.95843   0.96139   0.12441 
    3   0.20576  -0.00001   0.21225  73.85657  28.19973   0.88156   

0.91027   0.97968   0.98869   0.21444 
    4   0.20580   0.00002   0.34619  63.76829  28.20066   0.89069   

0.96886   0.98535   1.00932   0.34875 
    5   0.20586   0.00008   0.40263  59.52964  28.19919   0.88724   

0.99389   0.98360   1.01602   0.40598 
    6   0.20593   0.00018   0.45331  57.29147  28.19683   0.88450   

1.02107   0.98139   1.02248   0.45759 
    7   0.20604   0.00035   0.50576  55.71216  28.19233   0.88154   

1.05373   0.97823   1.02939   0.51136 
    8   0.20620   0.00063   0.56366  54.64204  28.18539   0.87902   

1.09667   0.97387   1.03741   0.57117 
    9   0.20643   0.00109   0.62339  54.32283  28.17407   0.87987   

1.15271   0.96880   1.04652   0.63335 
   10   0.20676   0.00181   0.66570  54.31787  28.15654   0.88165   

1.19925   0.96465   1.05328   0.67779 
   11   0.20723   0.00288   0.67345  53.68801  28.12954   0.87582   

1.20024   0.96282   1.05353   0.68633 
   12   0.20791   0.00444   0.67520  53.72683  28.08779   0.87546   

1.20167   0.96271   1.05389   0.68815 
   13   0.20887   0.00668   0.67658  53.89120  28.02304   0.87591   

1.20372   0.96285   1.05440   0.68951 
   14   0.21024   0.00989   0.67915  54.06425  27.92438   0.87604   

1.20666   0.96289   1.05514   0.69211 
   15   0.21219   0.01449   0.68313  54.27246  27.77480   0.87594   

1.21088   0.96286   1.05619   0.69618 
   16   0.21494   0.02105   0.68872  54.56445  27.54907   0.87585   

1.21693   0.96283   1.05770   0.70188 
   17   0.21878   0.03039   0.69642  54.97647  27.21214   0.87587   

1.22557   0.96284   1.05984   0.70973 
   18   0.22410   0.04363   0.70706  55.53557  26.71443   0.87600   

1.23788   0.96288   1.06287   0.72056 



 142

   19   0.23135   0.06223   0.72181  56.25235  25.98974   0.87611   
1.25530   0.96292   1.06712   0.73558 

   20   0.24102   0.08808   0.74215  57.11152  24.95691   0.87592   
1.27973   0.96286   1.07301   0.75633 

   21   0.25357   0.12347   0.76952  58.08446  23.53522   0.87510   
1.31352   0.96260   1.08104   0.78433 

   22   0.26927   0.17080   0.80469  59.15932  21.66935   0.87369   
1.35927   0.96216   1.09167   0.82036 

   23   0.28805   0.23196   0.84725  60.34775  19.35690   0.87215   
1.41936   0.96168   1.10525   0.86396 

   24   0.30933   0.30732   0.89562  61.64569  16.67617   0.87108   
1.49502   0.96135   1.12178   0.91345 

   25   0.33203   0.39474   0.94743  62.98826  13.79533   0.87064   
1.58532   0.96122   1.14074   0.96635 

   26   0.35473   0.48940   0.99973  64.26868  10.94363   0.87050   
1.68638   0.96119   1.16108   1.01971 

   27   0.37601   0.58477   1.04940  65.39221   8.33513   0.87028   
1.79176   0.96114   1.18138   1.07040 

   28   0.39478   0.67430   1.09392  66.29791   6.11686   0.86963   
1.89397   0.96095   1.20029   1.11592 

   29   0.41047   0.75311   1.13182  66.97140   4.35130   0.86841   
1.98653   0.96060   1.21680   1.15479 

   30   0.42301   0.81877   1.16256  67.44952   3.01601   0.86690   
2.06547   0.96015   1.23046   1.18644 

   31   0.43268   0.87105   1.18608  67.83606   2.04724   0.86609   
2.12952   0.95991   1.24127   1.21059 

   32   0.43993   0.91098   1.20150  68.38454   1.36522   0.86682   
2.17428   0.96080   1.24952   1.22577 

   33   0.44525   0.93998   1.20805  69.37853   0.89781   0.86274   
2.17772   0.96379   1.25566   1.23054 

   34   0.44909   0.96003   1.20944  70.56205   0.58371   0.86093   
2.17024   0.96760   1.26015   1.22952 

   35   0.45184   0.97356   1.20907  71.64255   0.37511   0.86039   
2.16164   0.97100   1.26337   1.22699 

   36   0.45378   0.98261   1.20815  72.54569   0.23894   0.85997   
2.15304   0.97374   1.26566   1.22434 

   37   0.45515   0.98864   1.20682  73.31906   0.15020   0.85947   
2.14396   0.97600   1.26728   1.22157 

   38   0.45612   0.99265   1.20513  74.01011   0.09368   0.85886   
2.13416   0.97796   1.26843   1.21863 

   39   0.45679   0.99531   1.20317  74.64587   0.05784   0.85811   
2.12374   0.97970   1.26922   1.21557 

   40   0.45726   0.99705   1.20108  75.23698   0.03598   0.85719   
2.11289   0.98127   1.26978   1.21249 

   41   0.45759   0.99819   1.19897  75.78699   0.02220   0.85606   
2.10184   0.98267   1.27017   1.20950 

   42   0.45782   0.99893   1.19688  76.30418   0.01302   0.85476   
2.09075   0.98394   1.27044   1.20661 

   43   0.45798   0.99939   1.19469  76.82886   0.00739   0.85357   
2.07975   0.98518   1.27063   1.20364 

   44   0.45809   0.99967   1.19196  77.46318   0.00248   0.85313   
2.06886   0.98661   1.27077   1.20002 

   45   0.45816   0.99984   1.18736  78.55329  -0.00230   0.85534   
2.05803   0.98890   1.27086   1.19400 

   46   0.45822   0.99993   1.18131  80.14370   0.00193   0.85078   
2.02629   0.99186   1.27096   1.18615 
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   47   0.45826   0.99998   1.17417  82.44238   0.01039   0.85412   
2.01001   0.99540   1.27113   1.17688 

   48   0.45829   1.00000   1.16844  85.02962   0.02536   0.86045   
2.00544   0.99839   1.27144   1.16938 

   49   0.45830   1.00000   1.16408  90.00000   0.00000   0.86291   
1.99807   0.99965   1.27067   1.16428 

  ----- overall  averages ---------------------------------------
------------------------------------------------------------ 

   50   0.35522   0.00906   1.00124  64.86833  14.24261   0.87011   
1.68789   0.96195   1.16244   1.02085 

  ---------------------------------------------------------------
------------------------------------------------------------ 

1 
  ---------------------------------------------------------------

------------------------------------------------------------ 
    theta-direction averaged quantities on exit 
    derived   variables, absolute system 
    approximate energy average 
    notation: rr=rho0ref, cr=c0ref, er=rr*cr**2, pr=p0ref, 

tr=t0ref, alpha=atan(vth/u), phi=atan(vr/u) 
  ---------------------------------------------------------------

------------------------------------------------------------ 
  
    k  distance    % mdot   vtot/cr     alpha       phi     ps/pr     

p0/pr     ts/tr     t0/tr      Mach  ad.effic 
    1   0.30384   0.00000   0.77208 -90.00000 -89.99994   1.19000   

1.69441   1.12221   1.24143   0.72883   0.67352 
    2   0.30386   0.00001   0.73625 -84.53786   3.26619   1.19004   

1.64594   1.11658   1.22499   0.69675   0.68007 
    3   0.30389   0.00004   0.71002 -78.83150   3.32580   1.19011   

1.61194   1.11345   1.21428   0.67287   0.68207 
    4   0.30392   0.00010   0.69519 -73.92559   3.36751   1.19019   

1.59444   1.10931   1.20597   0.66005   0.69226 
    5   0.30397   0.00021   0.68849 -70.25256   3.39254   1.19030   

1.58761   1.10528   1.20009   0.65488   0.70561 
    6   0.30404   0.00039   0.68594 -67.42542   3.42889   1.19044   

1.58597   1.10171   1.19581   0.65351   0.71931 
    7   0.30414   0.00068   0.68560 -65.04169   3.46420   1.19063   

1.58714   1.09831   1.19232   0.65420   0.73360 
    8   0.30428   0.00112   0.68676 -62.79453   3.51209   1.19089   

1.59036   1.09486   1.18919   0.65633   0.74923 
    9   0.30447   0.00179   0.68937 -60.41085   3.57491   1.19125   

1.59581   1.09091   1.18595   0.66003   0.76828 
   10   0.30474   0.00282   0.69364 -57.73210   3.66468   1.19172   

1.60403   1.08612   1.18234   0.66558   0.79269 
   11   0.30511   0.00439   0.69939 -54.77619   3.78876   1.19236   

1.61501   1.08033   1.17816   0.67289   0.82383 
   12   0.30564   0.00680   0.70560 -51.74591   3.95255   1.19321   

1.62744   1.07386   1.17344   0.68091   0.86079 
   13   0.30637   0.01043   0.71028 -49.00186   4.14799   1.19432   

1.63828   1.06761   1.16851   0.68742   0.89889 
   14   0.30738   0.01578   0.71136 -46.86214   4.36538   1.19577   

1.64408   1.06271   1.16392   0.69005   0.93117 
   15   0.30879   0.02345   0.70802 -45.42669   4.60134   1.19766   

1.64336   1.05976   1.16001   0.68777   0.95299 
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   16   0.31072   0.03420   0.70085 -44.56911   4.85960   1.20011   
1.63723   1.05861   1.15684   0.68117   0.96441 

   17   0.31335   0.04894   0.69115 -44.06244   5.14202   1.20328   
1.62815   1.05870   1.15424   0.67172   0.96887 

   18   0.31689   0.06883   0.68026 -43.69400   5.42956   1.20731   
1.61851   1.05952   1.15207   0.66088   0.96986 

   19   0.32158   0.09526   0.66923 -43.30764   5.67932   1.21237   
1.61008   1.06083   1.15041   0.64975   0.96921 

   20   0.32767   0.12979   0.65883 -42.80621   5.86198   1.21853   
1.60406   1.06247   1.14928   0.63917   0.96834 

   21   0.33536   0.17395   0.64933 -42.16441   5.96499   1.22581   
1.60077   1.06425   1.14858   0.62943   0.96836 

   22   0.34475   0.22892   0.64035 -41.42308   5.94477   1.23406   
1.59942   1.06631   1.14832   0.62012   0.96819 

   23   0.35576   0.29503   0.63153 -40.62338   5.79998   1.24297   
1.59912   1.06868   1.14844   0.61090   0.96696 

   24   0.36805   0.37118   0.62284 -39.80742   5.52936   1.25210   
1.59929   1.07122   1.14880   0.60178   0.96486 

   25   0.38107   0.45470   0.61432 -39.03746   5.12910   1.26093   
1.59933   1.07390   1.14937   0.59281   0.96124 

   26   0.39408   0.54143   0.60630 -38.34595   4.63337   1.26901   
1.59912   1.07657   1.15009   0.58435   0.95638 

   27   0.40637   0.62653   0.59929 -37.77372   4.09863   1.27605   
1.59888   1.07916   1.15099   0.57689   0.95034 

   28   0.41738   0.70538   0.59363 -37.40078   3.60337   1.28194   
1.59880   1.08192   1.15240   0.57071   0.94142 

   29   0.42678   0.77449   0.58941 -37.35455   3.22991   1.28672   
1.59886   1.08529   1.15477   0.56578   0.92709 

   30   0.43447   0.83205   0.58623 -37.76700   3.00870   1.29055   
1.59857   1.08990   1.15864   0.56153   0.90413 

   31   0.44056   0.87782   0.58372 -38.66699   2.93353   1.29359   
1.59767   1.09598   1.16413   0.55758   0.87277 

   32   0.44525   0.91282   0.58141 -39.94696   2.84844   1.29598   
1.59596   1.10304   1.17065   0.55359   0.83735 

   33   0.44879   0.93877   0.57825 -41.42296   2.58634   1.29785   
1.59262   1.11051   1.17739   0.54872   0.80168 

   34   0.45142   0.95756   0.57291 -42.90383   2.11006   1.29929   
1.58650   1.11793   1.18358   0.54185   0.76782 

   35   0.45335   0.97089   0.56404 -44.23384   1.52557   1.30036   
1.57653   1.12483   1.18846   0.53182   0.73703 

   36   0.45476   0.98022   0.55062 -45.31963   1.05000   1.30113   
1.56214   1.13079   1.19143   0.51780   0.71005 

   37   0.45578   0.98666   0.53245 -46.13267   0.76914   1.30168   
1.54373   1.13550   1.19220   0.49968   0.68721 

   38   0.45651   0.99108   0.51035 -46.68137   0.62674   1.30204   
1.52269   1.13882   1.19091   0.47824   0.66865 

   39   0.45703   0.99409   0.48562 -46.98079   0.61278   1.30229   
1.50068   1.14079   1.18796   0.45467   0.65425 

   40   0.45741   0.99613   0.45938 -47.05117   0.64154   1.30245   
1.47891   1.14161   1.18381   0.42994   0.64355 

   41   0.45768   0.99751   0.43199 -46.93207   0.66607   1.30255   
1.45780   1.14154   1.17886   0.40433   0.63571 

   42   0.45787   0.99844   0.40293 -46.68052   0.67480   1.30261   
1.43705   1.14088   1.17335   0.37724   0.62966 

   43   0.45801   0.99905   0.37074 -46.34990   0.66577   1.30265   
1.41595   1.13987   1.16736   0.34725   0.62427 
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   44   0.45810   0.99946   0.33285 -45.97926   0.64196   1.30267   
1.39357   1.13863   1.16079   0.31193   0.61858 

   45   0.45817   0.99971   0.28581 -45.59280   0.60914   1.30268   
1.36937   1.13719   1.15353   0.26802   0.61207 

   46   0.45822   0.99987   0.22660 -45.20857   0.58041   1.30269   
1.34439   1.13547   1.14574   0.21265   0.60542 

   47   0.45826   0.99995   0.15527 -44.84594   0.56488   1.30269   
1.32219   1.13341   1.13823   0.14584   0.60093 

   48   0.45829   0.99999   0.07774 -44.53096   0.56083   1.30269   
1.30757   1.13143   1.13263   0.07308   0.60038 

   49   0.45830   1.00000   0.00000   0.00000   0.00000   1.30269   
1.30269   1.13275   1.13275   0.00000   0.59119 

  ----- overall  averages ---------------------------------------
------------------------------------------------------------ 

   50   0.38882   0.00907   0.61729 -40.42720   4.71076   1.25916   
1.59899   1.07870   1.15491   0.59434   0.92643 

  ---------------------------------------------------------------
------------------------------------------------------------ 

1 
  ---------------------------------------------------------------

------------------------------------------------------------ 
    theta-direction averaged quantities on exit 
    derived   variables, relative system 
    approximate energy average 
    notation: rr=rho0ref, cr=c0ref, er=rr*cr**2, pr=p0ref, 

tr=t0ref, alpha=atan(vth/u), phi=atan(vr/u) 
  ---------------------------------------------------------------

------------------------------------------------------------ 
  
    k  distance    % mdot   vtot/cr     alpha       phi     ps/pr     

p0/pr     ts/tr     t0/tr      Mach 
    1   0.30384   0.00000   0.00043 -89.99999 -89.99994   1.19000   

1.19000   1.12221   1.12221   0.00040 
    2   0.30386   0.00001   0.08055  29.40941   3.26619   1.19004   

1.19489   1.11658   1.11788   0.07623 
    3   0.30389   0.00004   0.15747  29.02394   3.32580   1.19011   

1.20877   1.11345   1.11841   0.14923 
    4   0.30392   0.00010   0.21960  28.64588   3.36751   1.19019   

1.22681   1.10931   1.11895   0.20850 
    5   0.30397   0.00021   0.26457  28.32641   3.39254   1.19030   

1.24391   1.10528   1.11928   0.25166 
    6   0.30404   0.00039   0.29870  28.04660   3.42889   1.19044   

1.25930   1.10171   1.11955   0.28458 
    7   0.30414   0.00068   0.32737  27.78958   3.46420   1.19063   

1.27396   1.09831   1.11975   0.31238 
    8   0.30428   0.00112   0.35449  27.54193   3.51209   1.19089   

1.28935   1.09486   1.12000   0.33878 
    9   0.30447   0.00179   0.38347  27.30064   3.57491   1.19125   

1.30749   1.09091   1.12032   0.36715 
   10   0.30474   0.00282   0.41642  27.09776   3.66468   1.19172   

1.33031   1.08612   1.12080   0.39957 
   11   0.30511   0.00439   0.45327  27.01892   3.78876   1.19236   

1.35878   1.08033   1.12142   0.43609 
   12   0.30564   0.00680   0.49158  27.17959   3.95255   1.19321   

1.39198   1.07386   1.12219   0.47437 
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   13   0.30637   0.01043   0.52659  27.66360   4.14799   1.19432   
1.42594   1.06761   1.12307   0.50965 

   14   0.30738   0.01578   0.55387  28.48264   4.36538   1.19577   
1.45534   1.06271   1.12406   0.53728 

   15   0.30879   0.02345   0.57196  29.59894   4.60134   1.19766   
1.47705   1.05976   1.12518   0.55560 

   16   0.31072   0.03420   0.58281  30.97500   4.85960   1.20011   
1.49198   1.05861   1.12654   0.56644 

   17   0.31335   0.04894   0.58996  32.59510   5.14202   1.20328   
1.50370   1.05870   1.12831   0.57337 

   18   0.31689   0.06883   0.59687  34.44785   5.42956   1.20731   
1.51617   1.05952   1.13077   0.57986 

   19   0.32158   0.09526   0.60619  36.50470   5.67932   1.21237   
1.53269   1.06083   1.13433   0.58856 

   20   0.32767   0.12979   0.61974  38.71963   5.86198   1.21853   
1.55577   1.06247   1.13928   0.60125 

   21   0.33536   0.17395   0.63831  41.05375   5.96499   1.22581   
1.58697   1.06425   1.14574   0.61875 

   22   0.34475   0.22892   0.66171  43.48964   5.94477   1.23406   
1.62670   1.06631   1.15388   0.64080 

   23   0.35576   0.29503   0.68949  45.98344   5.79998   1.24297   
1.67500   1.06868   1.16376   0.66697 

   24   0.36805   0.37118   0.72078  48.44361   5.52936   1.25210   
1.73124   1.07122   1.17512   0.69641 

   25   0.38107   0.45470   0.75389  50.77121   5.12910   1.26093   
1.79319   1.07390   1.18757   0.72749 

   26   0.39408   0.54143   0.78704  52.86593   4.63337   1.26901   
1.85794   1.07657   1.20045   0.75854 

   27   0.40637   0.62653   0.81822  54.65438   4.09863   1.27605   
1.92155   1.07916   1.21306   0.78764 

   28   0.41738   0.70538   0.84526  56.11245   3.60337   1.28194   
1.97891   1.08192   1.22482   0.81262 

   29   0.42678   0.77449   0.86593  57.26380   3.22991   1.28672   
2.02406   1.08529   1.23526   0.83121 

   30   0.43447   0.83205   0.87851  58.17978   3.00870   1.29055   
2.05165   1.08990   1.24426   0.84149 

   31   0.44056   0.87782   0.88289  58.93644   2.93353   1.29359   
2.06041   1.09598   1.25188   0.84334 

   32   0.44525   0.91282   0.88067  59.60746   2.84844   1.29598   
2.05400   1.10304   1.25816   0.83853 

   33   0.44879   0.93877   0.87436  60.28106   2.58634   1.29785   
2.03846   1.11051   1.26341   0.82971 

   34   0.45142   0.95756   0.86671  61.04679   2.11006   1.29929   
2.02009   1.11793   1.26817   0.81972 

   35   0.45335   0.97089   0.86029  61.98390   1.52557   1.30036   
2.00437   1.12483   1.27285   0.81115 

   36   0.45476   0.98022   0.85704  63.14535   1.05000   1.30113   
1.99516   1.13079   1.27769   0.80595 

   37   0.45578   0.98666   0.85795  64.52814   0.76914   1.30168   
1.99436   1.13550   1.28271   0.80513 

   38   0.45651   0.99108   0.86307  66.06685   0.62674   1.30204   
2.00218   1.13882   1.28780   0.80876 

   39   0.45703   0.99409   0.87188  67.66674   0.61278   1.30229   
2.01779   1.14079   1.29282   0.81630 

   40   0.45741   0.99613   0.88359  69.25406   0.64154   1.30245   
2.03996   1.14161   1.29775   0.82697 
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   41   0.45768   0.99751   0.89754  70.81252   0.66607   1.30255   
2.06765   1.14154   1.30266   0.84006 

   42   0.45787   0.99844   0.91346  72.38483   0.67480   1.30261   
2.10050   1.14088   1.30776   0.85520 

   43   0.45801   0.99905   0.93170  74.05852   0.66577   1.30265   
2.13953   1.13987   1.31348   0.87267 

   44   0.45810   0.99946   0.95349  75.96132   0.64196   1.30267   
2.18792   1.13863   1.32046   0.89356 

   45   0.45817   0.99971   0.98093  78.23614   0.60914   1.30268   
2.25157   1.13719   1.32964   0.91986 

   46   0.45822   0.99987   1.01639  80.96326   0.58041   1.30269   
2.33856   1.13547   1.34208   0.95383 

   47   0.45826   0.99995   1.06081  84.04350   0.56488   1.30269   
2.45565   1.13341   1.35847   0.99643 

   48   0.45829   0.99999   1.11132  87.14172   0.56083   1.30269   
2.60014   1.13143   1.37843   1.04478 

   49   0.45830   1.00000   1.16408  90.00000   0.00000   1.30269   
2.75997   1.13275   1.40376   1.09375 

  ----- overall  averages ---------------------------------------
------------------------------------------------------------ 

   50   0.38882   0.00907   0.76355  52.04857   4.71076   1.25916   
1.80344   1.07870   1.19530   0.73517 

  ---------------------------------------------------------------
------------------------------------------------------------ 

 
 ***** restart file written on unit 3 ***** 
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APPENDIX G.  COMPUTER PROGRAMS 
 

 

1. BLADE-3D Executable 

 
#include <iostream.h> 
#include <iomanip.h> 
 
#include "surface.h" 
#include "bsurface.h" 
#include "matrix.h" 
#include "blade.h" 
 
main() 
{ 
int a,b,c,d; 
//int e; 
float f,g; 
//float j,k; 
cin >> a >> b >> c >> d; 
//cin >> e; 
cin >> f >> g; 
//cin >> h >> i; 
//cin >> j >> k; 
blade sang1(a,b,c,d); 
sang1.readBsurf_2(); 
//sang1.subdl(0,h,i); 
//sang1.subdt(0,.005,.005); 
//sang1.subdl(1,h,i); 
//sang1.subdt(1,.003,.007); 
//sang1.subdl(2,h,i); 
//sang1.subdt(2,.002,.008); 
//sang1.subdl(3,h,i); 
//sang1.subdt(3,.002,.008); 
sang1.lete(f,g); 
//cout << a << "   " << b << "   " << c << "   " << d << endl; 
//cout << e << endl; 
//cout << f << "   " << g << endl; 
//cout << h << "   " << i << endl; 
//cout << j << "   " << k << endl; 
//sang1.output_f(); 
sang1.print(); 
 
return 0; 
} 
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2. RANDCP,  a program to produce random control point variations 

 
 INTEGER NSPAN, NPOINT, NLE, NTE 
 REAL LE, TE, XT, YT, RAND  

REAL X(32), Y(32), Z(32), XL(32), XU(32), YL(32), 
YU(32),E1(32), E2(32) 
REAL X1L(16), X1U(16), Y1L(32), Y1U(32), F1(16), F2(16), 
XR(32), YR(32) 
INTEGER X2L(16), X2U(16), Y2L(32), Y2U(32), XN(16), YN(32), 
YB(32) 

 OPEN (UNIT = 14, FILE = 'kfile', STATUS = 'OLD') 
 READ *, NSPAN, NPOINT, NLE, NTE 
 READ *, LE, TE 
 DO 10 I=1,32 
  READ *, X(I), Y(I), Z(I) 
10      CONTINUE 
 XT = .117 * .05 
 YT = .05 * .05 
 DO 70 I=6,7 
  XL(I) = X(I) - XT 
  XU(I) = X(I) + XT 
  YL(I) = Y(I) - YT  
  YU(I) = Y(I) + YT   
70      CONTINUE 
        DO 80 I=10,11 
  XL(I) = X(I) - XT 
  XU(I) = X(I) + XT 
  YL(I) = Y(I) - YT 
  YU(I) = Y(I) + YT   
80      CONTINUE 
 READ (14,*), K 
130 DO 110 I=6,7   
  X1L(I) = 1/XL(I) 
  X1U(I) = 1/XU(I) 
  F1(I) = X1U(I)-X1L(I) 
  F2(I) = 10/F1(I) 
  X2L(I) = INT(X1L(I)*F2(I)) 
  X2U(I) = INT(X1U(I)*F2(I)) 
  XN(I) = ABS(X2L(I)) - INT(RAND(K)) 
120  IF (XN(I).LE.ABS(X2U(I))) THEN 
   XN(I) = XN(I) + INT(RAND(K)) 
   GO TO 120 
  END IF 
  IF (X2U(I).LT.0) THEN 
   XN(I) = -XN(I) 
  END IF 
  XR(I) = XN(I)/F2(I) 
  XR(I) = 1/XR(I) 
                Y1L(I) = 1/YL(I) 
  Y1U(I) = 1/YU(I)   
  E1(I) = ABS(Y1U(I)-Y1L(I)) 
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  E2(I) = 10/E1(I)   
  Y2L(I) = INT(Y1L(I)*E2(I)) 
  Y2U(I) = INT(Y1U(J)*E2(I)) 
121  IF (Y2L(I).LT.0) THEN 
   YN(I) = Y2L(I) + INT(RAND(K)) 
  END IF 
  IF (Y2L(I).GT.0) THEN 
   YN(I) = Y2L(I) - INT(RAND(K)) 
  END IF     
  IF (YN(I).EQ.0) THEN 
   GO TO 121 
  END IF  
  YR(I) = YN(I)/E2(I)     
  YR(I) = 1/YR(I) 
110     CONTINUE 
 IF (XR(7).GT.XR(6)) THEN 
    GO TO 130 
 END IF 
170 DO 140 I=10,11   
  X1L(I) = 1/XL(I) 
  X1U(I) = 1/XU(I) 
  F1(I) = X1U(I)-X1L(I) 
  F2(I) = 10/F1(I) 
  X2L(I) = INT(X1L(I)*F2(I)) 
  X2U(I) = INT(X1U(I)*F2(I)) 
  XN(I) = ABS(X2L(I)) - INT(RAND(K)) 
150  IF (XN(I).LE.ABS(X2U(I))) THEN 
   XN(I) = XN(I) + INT(RAND(K)) 
   GO TO 150 
  END IF 
  IF (X2U(I).LT.0) THEN 
   XN(I) = -XN(I) 
  END IF 
  XR(I) = XN(I)/F2(I) 
  XR(I) = 1/XR(I) 
                Y1L(I) = 1/YL(I) 
  Y1U(I) = 1/YU(I)   
  E1(I) = ABS(Y1U(I)-Y1L(I)) 
  E2(I) = 10/E1(I)   
  Y2L(I) = INT(Y1L(I)*E2(I)) 
  Y2U(I) = INT(Y1U(J)*E2(I)) 
160  IF (Y2L(I).LT.0) THEN 
   YN(I) = Y2L(I) + INT(RAND(K)) 
  END IF 
  IF (Y2L(I).GT.0) THEN 
   YN(I) = Y2L(I) - INT(RAND(K)) 
  END IF     
  IF (YN(I).EQ.0) THEN 
   GO TO 160 
  END IF  
  YR(I) = YN(I)/E2(I)     
  YR(I) = 1/YR(I) 
140     CONTINUE 
 IF (XR(11).GT.XR(10)) THEN 
    GO TO 170 
 END IF 
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 DO 180 I=6,7 
    X(I) = XR(I) 
    Y(I) = YR(I) 
180     CONTINUE 
 DO 190 I=10,11 
    X(I) = XR(I) 
    Y(I) = YR(I) 
190     CONTINUE 
        WRITE (16,30), NSPAN, NPOINT, NLE, NTE 
 WRITE (16,50), LE, TE 
 DO 100 I=1,32 
  WRITE (16, 90), X(I), Y(I), Z(I) 
100  CONTINUE 
30      FORMAT (I2,I5,I5,I5) 
40      FORMAT (I1) 
50      FORMAT (F6.4,F7.4) 
60      FORMAT (F12.10,F15.10,F15.10) 
90      FORMAT (3F15.10, 2I8) 
 END  
*****************************************************************

***********************************************************************
***********************************  

 
 FUNCTION RAND(K) 
 
 INTEGER K, M, CONST1 
 REAL G, CONST2, RAND 
 PARAMETER (CONST1=2147483647, CONST2=.4656613E-9) 
 SAVE 
 DATA M /0/ 
 
 IF (M.EQ.0) M=K 
 M=M*65539 
 IF (M.LT.0) M=(M+1)+CONST1 
 G=M*CONST2 
 G=1000*G 
10 IF (G.GT.10) THEN 
  G=G/10 
  GO TO 10 
 END IF 
 RAND=G 
 END 

 

3. BPARAM, a program to caluculate blade design parameters 

 
           INTEGER NSPAN, NPOINT, NBLADE, LOC, LOC2 
           REALX(11,147),Y(11,147), Z(11,147),GAMMA(11), CA1, CA2, 
           PHI(11), TH(74) 

    REAL CHORD, MIN, MAX, D1, D2, D3, D4, D5, D6, I25, I50, I75, 
D25, D50, D75                         
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     REAL CA, S0IN, S0OUT, S25IN, S25OUT, S50IN, S50OUT, S75IN, 
S75OUT, POUT 
REAL S100IN, S100OUT, I0, D0, I100, D100, TA1, TA2, TA, MA,  
PIN, TOUT 

 REAL PR, EF, MD, PEF, A 
 READ *, NSPAN, NPOINT, NBLADE 
 READ *, S0IN, S25IN, S50IN, S75IN, S100IN 
 READ *, S0OUT, S25OUT, S50OUT, S75OUT, S100OUT 
      READ *, MA, PIN, TOUT, POUT 
 DO 10 I=1, 11 
    READ *, (X(I,J), J=1,NPOINT)   
    READ *, (Y(I,J), J=1,NPOINT)                 
         READ *, (Z(I,J), J=1,NPOINT) 
    XBAR = X(I,147)-X(I,76) 
    ZBAR = Z(I,147)-Z(I,76) 
    CHORD = SQRT(XBAR*XBAR+ZBAR*ZBAR) 
    D2 = SIN(Y(I,147))*Z(I,147) 
    D1 = SIN(Y(I,76))*Z(I,76) 
    GAM = ATAN((D2-D1)/CHORD) 
    GAMMA(I) = GAM/2/3.14159*360 
    D4 = SIN(Y(I,57))*Z(I,57) 
    D3 = SIN(Y(I,64))*Z(I,64) 
    CA1 = ATAN((D4-D3)/(X(I,57)-X(I,64))) 
    CA1 = CA1/2/3.14159*360 
    D6 = SIN(Y(I,96))*Z(I,96) 
    D5 = SIN(Y(I,89))*Z(I,89) 
    CA2 = ATAN((D6-D5)/(X(I,96)-X(I,89))) 
    CA2 = CA2/2/3.14159*360 
    CA = (CA1+CA2)/2 
    D4 = SIN(Y(I,16))*Z(I,16) 
    D3 = SIN(Y(I,9))*Z(I,9) 
    TA1 = ATAN((D4-D3)/(X(I,16)-X(I,9))) 
    TA1 = TA1/2/3.14159*360 
    D6 = SIN(Y(I,132))*Z(I,132) 
    D5 = SIN(Y(I,139))*Z(I,139) 
    TA2 = ATAN((D6-D5)/(X(I,132)-X(I,139))) 
    TA2 = TA2/2/3.14159*360 
    TA = (TA1+TA2)/2  
    PHI(I) = CA - TA 
    DO 40 K=1,(NPOINT+1)/2 
       TH(K) = (SIN(Y(I,NPOINT-K+1))*Z(I,NPOINT-K+1) 
     #        -SIN(Y(I,K))*Z(I,K))*12 
40    CONTINUE 
    MIN = 1 
    DO 50 L=5, (NPOINT-9)/2 
       IF (TH(L).LT.MIN) THEN 
          MIN = TH(L) 
                 LOC = L 
              END IF 
50         CONTINUE 
           MAX = 0 
    DO 80 M=5, (NPOINT-9)/2 
       IF (TH(M).GT.MAX) THEN 
          MAX = TH(M) 
                 LOC2 = M 
              END IF 
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80         CONTINUE 
           WRITE (*,70), GAMMA(I), PHI(I) 
10 CONTINUE 
70      FORMAT(F10.3, F10.3, F15.8, I8, F15.8, I8) 
 WRITE *, ' ' 
 WRITE *, ' ' 
 WRITE *, '   Incidence Angle', '     Deviation Angle' 
 I0 = S0IN-((PHI(1)/2)+GAMMA(1)) 
 D0 = -(S0IN-S0OUT)+PHI(1)+I0 
 WRITE (*,90), I0, D0 
 I25 = S25IN-((PHI(3)/2)+GAMMA(3)) 
 D25 = -(S25IN-S25OUT)+PHI(3)+I25 
 WRITE (*,90), I25, D25 
 I50 = S50IN-((PHI(6)/2)+GAMMA(6)) 
 D50 = -(S50IN-S50OUT)+PHI(6)+I50 
 WRITE (*,90), I50, D50 
 I75 = S75IN-((PHI(9)/2)+GAMMA(9)) 
 D75 = -(S75IN-S75OUT)+PHI(9)+I75 
 WRITE (*,90), I75, D75 
 I100 = S100IN-((PHI(11)/2)+GAMMA(11)) 
 D100 = -(S100IN-S100OUT)+PHI(11)+I100 
 WRITE (*,90), I100, D100 
 WRITE *, ' ' 
 WRITE *, ' ' 
 WRITE *, ' ' 
 WRITE *, ' ' 
 PR = POUT/PIN 
 A = .4/1.4 
 EF = ((PR**A)-1)/(TOUT-1) 
 MD = ((((MA**2)*.4/2)+1)**-3)*MA*159.563 
 PEF = (LOG(PR)*.4)/(LOG(TOUT)*1.4) 
 WRITE *, 'Pressure Ratio:  ', PR 
 WRITE *, 'Efficiency:  ', EF 
 WRITE *, 'Mass Flow Rate:  ', MD 
 WRITE *, 'Polytropic Efficiency:  ', PEF 
90      FORMAT (F15.3, F20.3) 
 END 

 

 

4. CNODE, a program to calculate the closest finite element node 

 
 REAL X(308), Y(308), Z(308), A(9000), B(9000), C(9000) 
 REAL F(9000), G(9000), H(9000), K(9000) 
      INTEGER NODE(9000), MNODE 
 DO 10 I=1,308 
  READ (10,*), X(I), Y(I), Z(I) 
10 CONTINUE 
 DO 20 J=1,4177 
  READ (20,60), NODE(J), A(J), B(J), C(J) 
20 CONTINUE 
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 DO 30 I=1,308 
  D=10 
  DO 40 J=1,4177 
   F(J)=ABS(A(J)-X(I)) 
   G(J)=ABS(B(J)-Y(I)) 
   H(J)=ABS(C(J)-Z(I)) 
   K(J)=SQRT(F(J)**2+G(J)**2+H(J)**2) 
   IF (K(J).LT.D) THEN 
    MNODE=NODE(J) 
    D=K(J) 
   END IF    
40  CONTINUE 
  WRITE (30,50), X(I), Y(I), Z(I), MNODE 
30 CONTINUE 
50      FORMAT (3F12.8, I6) 
60      FORMAT (I4, 3F12.8) 
 END 
 
 
 

5. DGEOM, a program to calculate deflected geometry and new cold shape 
 
 
 
 REAL X(308), Y(308), Z(308), E(308), F(308), G(308) 
 INTEGER MNODE(308) 
 DO 20 I=1,308 

READ (50,*), X(I), Y(I), Z(I), MNODE(I), E(I), F(I), 
G(I) 

20      CONTINUE 
 DO 30 I=1,308 
  WRITE (60,40), X(I)+E(I), Y(I)+F(I), Z(I)+G(I) 
30      CONTINUE 
 DO 80 I=1,154 

WRITE(80,70), 
    (X(I)+E(I))/12,(Y(I)+F(I))/12,(Z(I)+G(I))/12, 

     #          (X(I+154)+E(I+154))/12, (Y(I+154)+F(I+154))/12,  
     #          (Z(I+54)+G(I+154))/12 
80      CONTINUE 
 DO 50 I=1,308 
  READ (10,*), X(I), Y(I), Z(I) 
  WRITE (70,40), X(I)-E(I), Y(I)-F(I), Z(I)-G(I) 
50      CONTINUE 
 DO 60 I=1,154 

WRITE (*,70),  
    (X(I)-E(I))/12,(Y(I)-F(I))/12,(Z(I)-G(I))/12, 

     #          (X(I+154)-E(I+154))/12, (Y(I+154)-F(I+154))/12,  
     #          (Z(I+154)-G(I+154))/12 
60      CONTINUE 
40      FORMAT (3F11.6) 
70      FORMAT (6F10.6) 
 END 
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