FEDERATED LEARNING OF BAYESIAN NEURAL NETWORKS

Loading...
Thumbnail Image
Authors
Loomis, Justin M.
Subjects
Bayesian neural networks
federated learning
independently and identically distributed
IID
Advisors
Orescanin, Marko
Date of Issue
2023-03
Date
Publisher
Monterey, CA; Naval Postgraduate School
Language
Abstract
Although federated learning and Bayesian neural networks have been researched, there are few implementations of the federated learning of Bayesian networks. In this thesis, a federated learning training environment for Bayesian neural networks using a public code base, Flower, is developed. With it is the exploration of state-of-the-art architecture, residual networks, and Bayesian versions of it. These architectures are then tested with independently and identically distributed (IID) datasets and non-IID datasets derived from the Dirichlet distribution. Results show that the MC Dropout version of Bayesian neural networks can achieve state-of-the-art results—91% accuracy—for IID partitions of the CIFAR10 dataset through federated learning. When the partitions are non-IID, federated learning through inverse variance aggregation of probabilistic weights does as well as its deterministic counterpart, with roughly 83% accuracy. This shows that Bayesian neural networks can be federated and achieve state-of-the-art results as well.
Type
Thesis
Description
Department
Computer Science (CS)
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release. Distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections