Numerical Determination of Tristimulus Values

dc.contributor.authorBorges, C.F.
dc.contributor.departmentApplied Mathematics
dc.date.accessioned2014-01-07T17:00:15Z
dc.date.available2014-01-07T17:00:15Z
dc.date.issued1994
dc.descriptionJournal of the Optical Society of America A, Vol. 11, No. 12, December 1994, pp. 3152-3161.en_US
dc.description.abstractI consider numerical methods for evaluating the tristimulus values of P, an arbitrary spectral power distribution. Various classical quadrature rules are discussed, and numerically stable algorithms for their construction are presented. I mtroduce a new quadrature rule developed specifically for evaluating tristimulus values. The method involves the simultaneous generation of three quadrature rules sharing a common set of nodes that is optimal in a sense much like the optimality of the Gauss rules.en_US
dc.identifier.citationC.F. Borges, Numerical Determination of Tristimulus Values, Journal of the Optical Society of America A, Vol. 11, No. 12, December 1994, pp. 3152-3161.
dc.identifier.urihttps://hdl.handle.net/10945/38062
dc.rightsThis publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.en_US
dc.titleNumerical Determination of Tristimulus Valuesen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
inc_Borges_numerical.pdf
Size:
823.73 KB
Format:
Adobe Portable Document Format
Collections