A Relativistic Mass Tensor with Geometric Interpretation

Authors
Rockower, Edward B.
Subjects
Advisors
Date of Issue
1987-01
Date
Publisher
American Association of Physics Teachers
Language
Abstract
We derive a relativistic mass tensor (dyadic or matrix) whose origin and properties have a direct geometric interpretation in terms of projection operators related to the particle's world line and local inertial frame in Minkowski space, yet whose eigenvalues are simply the longitudinal (m1) and the transverse (m1 ) mass. Writing the noncovariant equations of motion (EOM) for a point particle in terms of this mass tensor bridges the gap between the compact but sterile form of the Lorentz covariant EOM and the usual ("unwieldy") noncovariant EOM in which m1 and m1 appear. General expressions for 3- and 4-space mass (inverse mass) tensors are presented in terms of the system Lagrangian (Hamiltonian).
Type
Article
Description
Series/Report No
Department
Operations Research (OR)
Organization
Naval Postgraduate School (U.S.)
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Rockower, Edward B. "A relativistic mass tensor with geometric interpretation." American Journal of Physics 55.1 (1987): 70-77.
Distribution Statement
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.