Energy Capture Module (ECM) for use in Unmanned Mobile Vehicles (UMVS) with a specific study of the Draganflyer X6 UAV
Loading...
Authors
DeDeaux, Cedric N.
Subjects
Advisors
Date of Issue
2010-09
Date
Publisher
Monterey, California. Naval Postgraduate School
Language
Abstract
Unmanned drones, robots, and vehicles are often chosen to perform tasks in harsh and dangerous environments. Autonomous vehicles are ideal in tactical situations when these vehicles can perform functions for warfighters when the risk to human life is significantly too high. In particular, unmanned aerial vehicles (UAVs) have become a common staple of military operations. Common sizes range from slingshot-launched spy bots to global guardians. Small UAV of all types have limited mission endurance due to volume and weight constraints of their energy storage and power sources. In many cases, UAVs are limited in the extent to which they could provide tactical advantage because of their need to be recharged or refueled. Even with the use of highly efficient energy and power sources, it is extremely difficult to design a feasible energy system that will provide power for prolonged duration missions. A method, energy capture, exists to provide recharging of an energy source remotely. By utilizing electromagnetic waves, energy can be transmitted wirelessly over great distances. This method has been implemented in several forms today, and shows promise as a possible way to provide for much greater UAV mission endurance. An Energy Control Module (ECM) is proposed as a scalable and Modular Open System (MOS) design concept that can utilize either a tuned laser photovoltaic cell or a microwave receiver to convert received electromagnetic energy to maintain the onboard UAV platform battery charged. The ECM can utilize ground or shipboard based power supply to wirelessly transmit power to a UAV. This thesis presents a study of the characteristics needed for an ECM that allows a small UAV platform to remain on station and perform its designed functions while recharging its energy source for prolonged duration missions.
Type
Thesis
Description
Series/Report No
Department
Identifiers
NPS Report Number
Sponsors
Funder
Format
xviii, 43 p. : ill. ;
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.