MEMS-based waste vibration and acoustic energy harvesters

Loading...
Thumbnail Image
Authors
Householder, Timothy J.
Subjects
MEMS
energy harvesting
piezoelectric
resonator
Advisors
Grbovic, Dragoslav
Denardo, Andres
Date of Issue
2014-12
Date
Dec-14
Publisher
Monterey, California: Naval Postgraduate School
Language
Abstract
Every machine vibrates and emits noise. This is unused energy that, with an appropriate mechanism, can be returned to the system. Utilizing an array of piezoelectric microelectromechanical systems (MEMS) devices to harvest this otherwise wasted energy, it is possible to improve the efficiency of any number of mechanical devices. Piezoelectricity is the mechanism by which certain crystalline structures generate electric potential when under strain, or, conversely, deform when subjected to an electric potential. It is this first effect that is important to this application. Though each MEMS device will generate a very small amount of power, a 1 m2 area can contain an array of millions of these devices. Energy harvesting, conservation, and efficiency are all key Department of Defense (DOD) priorities, and the universal application of these devices make them ideal for any expeditionary platform, such as ships, aircraft, and automobiles. This thesis designs and tests the first generations of acoustic and vibrational piezoelectric MEMS devices; including time-dependent finite element models, microfabrication processes, and the initial attempts at characterization and optimization.
Type
Thesis
Description
Series/Report No
Department
Physics
Organization
Identifiers
NPS Report Number
Sponsors
Funder
Format
Citation
Distribution Statement
Approved for public release; distribution is unlimited.
Rights
This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.
Collections